
Design and Implementation of a Computer Vision
System for Robotic Disassembly of Electric

Vehicle Battery Pack.

By:

Eduard Marti Bigorra

Supervisors:

Martin Marie Hubert Choux
Ilya Tyapin

This Master’s Thesis is carried out as a part of the education at the University of Agder and is
therefore approved as a part of this education. However, this does not imply that the University

answers for the methods that are used or the conclusions that are drawn.

University of Agder, Spring 2020
Faculty of Engineering and Science

Department of Mechatronics

Preface

This report is written as part of the Master’s program in Mechatronics at the University of Agder.
Being part of this project has been an excellent opportunity for me to grow professionally and
personally.

I want to thank my supervisors, associate professor Martin Marie Hubert Choux and associate
professor Ilya Tyapin at the University of Agder for all their support and opportunities since I
contacted them for the first time. I appreciate their implication and the trust placed in me during
all the project.

I also wish to thank PhD candidates Atle Aalerud and Dipendra Subedi for their assistance and
useful recommendations.

Lastly, I would like to make a special mention to my dad, my mum and especially my sister. Thank
you for all your unconditional support, without you this would not have been possible. Gràcies de
tot cor.

Grimstad, June 23, 2020

i

Abstract

The increasing demands for greener transport solutions results in a foreseeable increase of Electric
Vehicles (EV). The development of EVs puts strong demands on the development of Lithium-
Ion Batteries but also into its dismantling process, which today is made manually and therefore
is time-consuming. LIBRES, Lithium-Ion Battery Recycling, is a project owned by Norsk Hydro
with the goal of finding fully-automated solutions for complete LIB batteries dismantling. The work
presented in this thesis is a part of the LIBRES project and its aim is to develop a task planner
for EV LIB battery pack dismantling to a module level through the design and implementation of
a computer vision system. The designed task planner integrates the communication between the
primary system elements (i.e. the robot, the 3D camera and the computer). The aim of the task
planner is (1) to scan the dismantling scene, (2) to identify the different LIB components and their
locations in the battery, (3) to create a dismantling order and lastly (4) to move the robot to the
detected dismantling positions. The object detection algorithm "You Only Look Once" combined
with the projects pose estimation part is used to find the different components in the disassembly
scene and determine their position. To implement the designed task planner, a Volkswagen Hybrid
LIB pack is considered. Results show that the method has a good accuracy with errors lower than
5 mm. In addition, the system is able to perform steps (1), (2), and (3) mentioned above, in an
average time of 40 seconds.

ii

Contents

Preface i

Abstract ii

1 Introduction 1

1.1 Industrial Motivation . 1

1.2 Project objectives and scope . 2

1.3 Project limitations . 2

1.4 Report Outline . 2

2 Theory on Disassembly 4

2.1 Challenges in disassembly . 4

2.2 Disassembly Automation . 6

2.2.1 Mechanical design review . 7

2.2.2 Perception systems in automated disassembly 10

2.3 Product analysis . 12

2.3.1 Main components of a LIB pack . 13

2.3.2 Manual disassembly of a Volkswagen Hybrid LIB pack (25 Ah) 14

3 Robot Operating System communication 16

3.1 Robot Operating System (ROS) . 16

3.1.1 ROS distributions . 16

3.1.2 ROS background . 17

3.1.3 ROS in Python (rospy) . 18

3.2 Moveit! . 19

3.2.1 MoveIt! Setup Assistant . 21

3.2.2 ABB IRB4400 + track IRBT4004 MoveIt! package creation and configuration 22

iii

3.2.3 Essential coding to move the robot . 25

3.3 ROS implementation . 26

3.3.1 Zivid 3D camera ROS driver . 27

3.3.2 ABB ROS-Server . 29

3.3.3 Catkin Workspace . 31

4 Guidance: UiA Robotics Lab ROS set up manual 32

5 Object detection 37

5.1 Image capture: Zivid one parameter adjustment . 37

5.2 Object detection: YOLOv3 . 44

5.3 YOLOv3 Algorithm training . 47

5.3.1 System’s nomenclature . 47

5.3.2 Labeling . 47

5.3.3 Training Images acquisition . 47

5.3.4 Training stage . 48

5.3.5 YOLOv3 training results . 50

5.3.6 Training data creator (function) . 50

6 Pose estimation 52

6.1 Structural light camera: Zivid one 3D camera . 52

6.1.1 Pointcloud concept . 53

6.1.2 Structured Light Imaging . 53

6.2 Point cloud and depth images storage . 54

6.3 Intrinsic and Extrinsic Parameters . 56

6.3.1 Pinhole Camera Model . 57

6.3.2 Intrinsic Parameters . 58

6.3.3 Extrinsic Parameters Calibration . 59

6.4 World coordinates of the detected components . 62

7 Methodology, task planning 68

7.1 Task planning methodology analysis . 68

7.2 Fully automated dismantling system . 69

7.2.1 Agent emulating human behaviour . 69

7.2.2 Semi-destructive disassembly . 71

7.3 Task Planner Design . 71

7.3.1 Task Planner overview . 72

7.3.2 Integrated Functions and scripts . 75

7.3.3 Integrated Functions and scripts flow charts 81

7.3.4 Running the task planner . 87

7.3.5 Conclusion . 88

8 Project results 89

8.1 Object detection results . 89

8.2 Time analysis . 90

8.3 Decision-making: Optimal path . 92

8.4 Accuracy . 94

9 Conclusions, future work and discussion 97

Bibliography 100

A Hardware Specifications 103

A.1 Zivid 3D Camera . 104

A.2 IRB4400 . 105

A.3 IRB4400 . 106

B Code Documentation 107

B.1 [main()]: Task planner core . 107

B.2 [CamR_pos()]: Find the positions in camera reference base frame 109

B.3 [WR_pos]: World reference base frame position detection: 110

B.4 [remove()]: Removal Operation . 111

B.5 [num_components]: Components analysis . 112

B.6 [what_component and has_comp_over]: Decision-making 113

B.7 [training_data_autogenerator()]: Automatic YOLO training data creator 115

B.8 [merge_detection()]: Merge detection . 116

B.9 [move_to_pict.py]: Image capturing . 118

B.10 [move_pos.py]: Move the robot TCP to a specific position 123

B.11 [move_to_cal.py]: Calibration images capturing . 124

B.12 Moving the robot basic code . 127

B.13 [training_data.py]: Training images capture . 128

B.14 [obtain_calfiles.py]: Obtain calibration files . 131

C Extrinsic calibration 133

C.1 Extrinsic calibration (Zivid Command Line Interface tool) 133

C.2 Final calibration transform: calibration_transform.yalm 134

C.3 Calibration positions . 135

C.3.1 pos01.yaml . 135

C.3.2 pos02.yaml . 135

C.3.3 pos03.yaml . 135

C.3.4 pos04.yaml . 136

C.3.5 pos05.yaml . 136

C.3.6 pos06.yaml . 136

C.3.7 pos07.yaml . 137

C.3.8 pos08.yaml . 137

C.3.9 pos09.yaml . 137

C.3.10 pos10.yaml . 138

C.3.11 pos11.yaml . 138

C.3.12 pos12.yaml . 138

D Task planner feedback 140

E Guidance Code 142

E.1 moverobot.py . 142

Chapter 1

Introduction

Global warming is today one of the major concerns in the society being the greenhouse effect one
of the major causes. The emission of too much carbon dioxide (CO2) by combustion engines to the
air is said to cause accelerated global warming.

In fact, transport is responsible for nearly 30% of the European Union’s total CO2 emissions and
while greenhouse gas emissions decreased in the majority of sectors between 1990 and 2018, CO2
emissions increased by 172 Million tonnes (CO2 equivalents) in transport [2]. For that reason,
updating and changing the traditional fuel-based powered vehicles for zero-emission vehicles (EV)
is getting every day more common among personal car users. This change is already becoming
a reality in Norway where in 2017 the 21% of the new passenger cars sold in the country were
zero-emission cars (or 40% if rechargeable hybrid vehicles are included).

In 2018, the global electric car fleet exceeded 5.1 million, up by 2 million since 2017, almost doubling
the unprecedented amount of new registrations in 2017. In Europe, 1.2 million electric cars were
sold during this year. In terms of electric car market share, Norway remained the global leader
at 46% of its new electric car sales in 2018, more than double the second-largest market share in
Iceland at 17% and six-times higher than third-highest Sweden at 8% [15].

1.1 Industrial Motivation

Due to the increasing market share of the EV and the necessity of recycling the lithium-ion battery
(LIB), the project LIBRES (Lithium-Ion Battery Recycling project) was launched in 2018. Different
projects conform the LIBRES project, and this master project is one of them. LIBRES project
main goal is to have, by 2022, a developed LIB recycling pilot plant in Norway large enough to
handle commercial volumes in 2024. Norsk Hydro ASA is the project owner, and the University of
Agder (UiA) is one of the research and development partners for the project. One of the leading
associates linked with battery dismantling work package is BatteriRetur AS.

Today, the automotive LIBs dismantling process is mainly carried out manually and the use of
robotics in this process is limited to simple tasks or human assistance [37]. Automated systems
are more robust, have a lower-cost and are lower-time consuming compared to manual systems.
Given the increasing number of new electric cars registrations the implementation of robotics and
automation is the near future of this sector of the industry [38].

Thus, this master project is a part of the current research project LIBRES and the main goal of
this thesis, is to develop a battery dismantling process chain using computer vision and the robot

1

CHAPTER 1. INTRODUCTION

to partially disassembly an electric vehicle LIB from pack to module level.

1.2 Project objectives and scope

This project aims to automate the dismantling process of Electric Vehicles Lithium Ion Batteries
from battery pack to module level through the design of a computer vision system.

The task planner to be designed needs to coordinate the robot, camera and computer in order to
capture images and point cloud data, analyse the images through object detection, find the world
reference frame positions (pose estimation), decide the operations order and move the robot to
the desired points. Thus, communication between the main system elements (i.e. robot,...) is
considered as one of the main challenges.

In order to accomplish the above-mentioned objective, the scope of the work presented in this thesis
is to:

– Study the disassembly process and its automation.

– Setup communication between the system elements using ROS-Robot Operating System.

– Create robot and linear track MoveIt! package.

– Define task planner methodology.

– Draft a ROS setup manual for UiA Robotics Lab.

– Detect object (Using 2D Images).

– Estimate pose (Using 3D point clouds).

– Integrate all the parts in the task planner design.

1.3 Project limitations

The objective of the project is not to a complete and functioning dismantling system prototype
and some of the parts, i.e. the tools should be done in future stages of the LIBRES project.

The task planner will be verified using only one Volkswagen LIB pack. However, other battery
types should also be tested in order to ensure the robustness of the proposed task planner.

1.4 Report Outline

The rest of this report is organized as follows. Chapter 2 (Theory on disassembly) contains theory
on disassembly automation and product analysis. Next, chapter 3 (ROS communication) includes
all the essential Robot Operating System configurations and concepts relevant for the project.
MoveIt! package creation is also presented in chapter 3. Then, it is important to highlight that
chapter 5 (Object Detection) and chapter 6 (Pose Estimation) are highly interconnected. The final
goal of object detection + pose estimation is to obtain the positions of the components in world
reference base frame (see Figure 1.1). To do so, chapter 5 aims to explain how the algorithm
detects the components in the scanning images of the battery pack. Then, chapter 6 shows how

2

CHAPTER 1. INTRODUCTION

the information extracted from chapter 5 is used to find the positions of the components in the
world reference base frame, solving the pose estimation problem.

In chapter 7 the task planner is explained. The task planner is the main core of the proposed
dismantling system and is the responsible to integrate all the knowledge and the functions presented
in chapters 2, 3, 5 and 6 (see Figure 1.1). Lastly, Chapter 9 presents conclusions and future work.

Figure 1.1: report outline

3

Chapter 2

Theory on Disassembly

In the life cycle of a product, End Of Life (EOL) treatment is one of the most important stages
to achieve high sustainability. Since disassembly is a key operation to achieve a successful EOL
treatment, its automation using robotics has received particular attention in the research commu-
nities, the last few years, together with the increased popularity of circular economy. The aim of
this chapter is hence to present theory on the robotic dismantling processes and in disassembly
automation.

Designing products according to the Design for Disassembly (DfD) guidelines is the final solution
to accomplish the economical feasibility for the disassembly of products. In the particular case of
the EV LIBs, the standardization of the models is beginning to happen and it is going to become
a reality in the next years.

This chapter presents the main challenges and uncertainties in disassembly, explains disassembly
automation and analyses the product to be dismantled (LIBs).

2.1 Challenges in disassembly

Generally, the disassembly process of EoL products cannot be considered as the reverse of its
assembly, mainly because of the presence of several uncertainties.

These uncertainties are mainly caused by uncertainties within models, model-related variations and
operational difficulties.

Uncertainties within models

• Component defects:
Component defects can cause problems during the disassembly process. This defects are
mainly caused by the use of the product during its lifespan. For example: damaged batteries,
broken screws or fasteners, etc..

• Upgrading or downgrading during usage:
During maintenance operations a change in the configuration of the product can happen,
specially in products with exchangeable components.

• Damage during the disassembly operation:

4

CHAPTER 2. THEORY ON DISASSEMBLY

Disassembly consists of several operations realised in a time sequence. Prior disassembly
operations can damage some components to be disassembled at later stages, specially in
fragile products. In the specific case of LIB, it should not be a major problem.

Model-related variations

In the same product family (for this project LIBs), depending on the producer, the year/month and
the car model, different versions can be found. Within these models there can be different charac-
teristics, components, materials, fasteners or internal configurations. Thus, incomplete information
is one of the main challenges to deal with during the design of a dismantling system. These dif-
ferences are clearly visible between the Volkswagen and the Mitsubishi battery packs shown in the
Figure 2.1.

(a) Volkswagen battery pack (b) Mitsubishi battery pack

Figure 2.1: Volkswagen and Mitsubishi battery packs

Operation difficulties

Many papers are dedicated to qualify the difficulty of the disassembly process of a product. The
main criteria are ideas are summarised below:

• In [16], the term disassemblability is quantified by assessing in five major criteria: (a) com-
ponent accessibility, (b) precision in locating the component, (c) force required to perform
tasks, (d) additional time, and (e) special problems.

• Similarly in [18], the disassemblability is quantified by summarising the following character-
istics: (a) Minimal force exertion, (b) quick operation without excessive manual labour, (c)
simple mechanism of disassembly, (d) minimal use of tool, (e) minimal part repetition, (f)
easy recognition of fasteners, (g) simple product structure and (h) avoidance in usage of toxic
material.

• Finally the authors in [13] state that the development of optimal disassembly plans relies
on four key phases: (a) product analysis, (b) assembly analysis, (c) usage mode and effect
analysis and (d) dismantling strategy.

The disassemblability of industrial batteries, as described above, can be improved either by mod-
ifying their design, or by developing new technologies to ease and eventually remove some of the
above-mentioned challenges, as for example, making the recognition of fasteners an easy task. This
second route, i.e. making the disassembly process smarter and more efficient is the one chosen in
this study.

5

CHAPTER 2. THEORY ON DISASSEMBLY

2.2 Disassembly Automation

In great measure the economic feasibility of the disassembly process goes through an automated
disassembly. Nowadays, the disassembly process is done manually, causing high operating costs,
specially in developed countries. The main restriction for the success of the automated systems in
dismantling are the variations and uncertainties in used products.

To be automated, a dismantling system must include sensors and an artificial intelligence (AI) agent
controlling the mechanical operation units. The sensors give the flexibility to perceive important
information about the precise state of the treated product at each moment of the process.

When talking about the degree of autonomy in the dismantling process, this can go from manual
disassembly to semi-automatic disassembly and fully-automatic disassembly [21].

The design of this kind of system involves different engineering fields like: computer vision, robotics,
mechanical systems, control systems, disassembly process planning and product analysis.

Why automation?

Automation has proved to be more cost-effective, more accurate, and faster to handle repetitive
works than human workers. Moreover, robots are able to work on hazardous tasks and in unde-
sirable (for humans) environments. For these reasons, automation plays an important role in the
modern manufacturing industry. But, some similar issues are faced in the disassembly process. The
implementation of manual disassembly is difficult to justify (in an economical point of view) due
to the generally-low economic returns from EOL treatment. That is because the process is usually
laborious, it has high costs and it is affected by the variations and uncertainties of the used prod-
ucts. " The process may also be hazardous depending on the subject of disassembly. For example,
the disassembly of electric vehicle batteries deals with risks due to the chemical composition and
any charge remaining in the cells. Automation has a high potential to reduce these problems in
the disassembly process." [29]

The design of an automated dismantling system, sets technical and economical challenges such as
the variety of manufacturers and different product types, variety in design and product structure,
small lot sizes and insufficient collection logistic, varying product condition after the usage phase,
changes in standard components, insufficient disassembly tools, changes in legislation and changes
in market demand and prices. So all these points should be taken into account in the design of an
automated dismantling system.

Given its high flexibility (due to the perception, the dexterity and the intelligence) of humans in
front of the variations in returned products, manual labour has traditionally been used rather than
automated systems.

• Perception: refers to the sensor systems ability to perceive information about the process.

• Dexterity: relates to the proficiency of carrying out the physical operation.

• Intelligence: relates to the ability to plan and control the process according the knowledge
of the product.

In practice, to limit the variations encountered in the process, each system is designed for disassem-
bling a particular product type or family. Therefore, the technical requirements of the dismantling
tools, relating to e.g. the type of techniques, product size and weight, can be limited. A specifically-
designed system can satisfy the cost constraint given a sufficiently-large lot size. However, the lot

6

CHAPTER 2. THEORY ON DISASSEMBLY

size of returned EOL products is unpredictable and may lead to difficulty at the strategic planning
level. In addition, the profit depends on the market value of the recycled and reused parts, which
changes according to demand and legislation. Therefore, strategic planning regarding these aspects
should be done before developing the automated system.

2.2.1 Mechanical design review

In the disassembly process it is necessary to interact physically with the components and the
products to be disassembled. Mechanical design refers here to the development of the tools required
to realize the disassembly operations. Tools can be categorized in three types: manipulators,
disassembly tools and handling devices.

Manipulators

Manipulators are the robot or other devices that perform the movement in the disassembly process.
Using sensors, disassembly tools, and other devices, they carry out the dismantling. A disassembly
system can consist of one or various manipulators working cooperatively.

Robot arms are usually the selected manipulators given their versatility. A low-level control (force-
torque control, path planning and motion control) is generally included in industrial robots. The
selection of the specific manipulator depends basically on the task. The robot needs to have
sufficient degrees of freedom (DOF) to perform the operations.

In this project, the ABB IRB 4400 robot has been assigned as the manipulator (see Figure 2.2b).
"IRB 4400 is an extremely fast, compact robot for medium to heavy handling. It has exceptional
all-round capabilities which makes it suitable for a variety of manufacturing applications. The load
capacity of 60 kg at very high speeds usually permits handling of two parts at a time." [3]

(a) Working range (b) ABB IRB 4400

Figure 2.2: ABB IRB 4400

Some of the most important specifications of this manipulator are: (see the all the specifications

7

CHAPTER 2. THEORY ON DISASSEMBLY

datasheet in appendix A)

SPECIFICATIONS
Reach 1.95 m
Payload 60 kg
Number of axis 6
Controller IRC5 Single Cabinet
Position repeatability RP 0.06 mm
Path repeatability RT (at 1.6 m/s) 0.09 mm

Disassembly tools: connective components

• Screw automatic removal:
As it is known, screws are one of the most important categories of fasteners and they can be
found in almost all the products, specially in LIB. The removal of the screws can be done by
three different means: non-destructive, semi-destructive and destructive [5].
In the non-destructive removal, a screwdriver attached to an electric motor equipped with
a potenciometer is used for measuring and monitor continuously the torque.
In the semi-destructive removal, using a pneumatic tool it is created a new slot in the
head of the screw (see figure 2.3) . This allows to remove different types of screw and it also
works for damaged screws. Tools developed by Seliger [30] and Feldmann [10].
In the destructive removal, the connection is disestablished intentionally damaging the head
of the screw by using various methods of material removal (grinding, drilling, chisel, milling,
etc..)
In addition to that, in a project for BatteriRetur, a flexible screwdriver was designed in the
University of Agder. As can be seen in Figure 3, the tool is capable of fitting in different
types of screws of various sizes.

Figure 2.4: UiA screwdriver concept tool

• Snap-fits automatic removal:
Snap-fits are used as fasteners according to the principle of design for assembly (DFA). It
is an assembly method used to attach flexible parts, usually plastic. The components are
interlocking together thanks to the hook-like elements.

8

CHAPTER 2. THEORY ON DISASSEMBLY

(a)

(b)

Figure 2.3: Screws semi-destructive removal

There are some studies in Snap-fits non-destructive automated disassembly that demon-
strate that is only possible in certain conditions [17].

Disassembly tools: Handling devices

Handling devices refer to fixtures, logistics systems and grippers used to control the motion of the
parts and products through the steps during the dismanling process.

• Product fixtures:

The aim of the fixtures (Figure 2.5) is to ensure the location and orientation of the product in
a specific place. This is essential to have highly accurate physical operations. In certain oper-
ations, the reaction forces would cause undesired displacement of the object to be dismantled,
if not properly fixed.

The design of the fixture should be able to fix different product models and it should not
obstruct the detection and the removal of the different product components or connective
components.

9

CHAPTER 2. THEORY ON DISASSEMBLY

Figure 2.5: Product fixtures

• Grippers The main objective of the grippers is to help the manipulator grasping and han-
dling the desired components and objects. Grippers can be classified between their use: to
disestablish connections and to remove the components that have been already disconnected

From one side, for removing the disconnected components, the gripper type depends especially
on the geometry of the component. Visual input, together with force feedback, may be used
to determine the size and shape of the object. From the other side, the "pull" action is usually
associated with the operation of the disestablishing connection, for example, pulling electric
cables.

Figure 2.6: Grippers for disassembly of Lithium-Ion Battery [35]

2.2.2 Perception systems in automated disassembly

In general, when a system needs to make dynamic decisions (depending on a variable state or
situation), it requires a perception system. Thus, the current situation should be recognised before
any action in order to act in the proper way. Therefore, the term perception system encompasses
the recognising and localising of the objects of disassembly and its fastening elements.

An accurate world model has a great importance for robotic assembly and disassembly. If all
the positions and tolerances could be guaranteed, a robotic blind system could be feasible for
dismantling applications. But it is usually inefficient and uneconomical to design a disassembly

10

CHAPTER 2. THEORY ON DISASSEMBLY

system for a particular product. For this reason, flexible methods, like computer vision based
systems, gain importance in this field.

In general, perception systems consist of:

• Geometric data obtention.

• Reading of the raw data provided by sensors: In order to convert this data into semantic
information useful for scene creation, location of the components, etc...

Within the strong points of computer vision based systems can be distinguished:

• High flexibility to positioning errors: The automatic localisation of the components
enables the system to reduce positioning errors. This is because the detections are done at
the moment, just before realizing the operations.

• Easy setting up for arrival products: Given that the positions are found for each specific
product, the position of the system or other specifications have not the importance that would
have in a blind system.

• Robust against product modifications: Sometimes during the lifespan of the product,
the dismantling object can have been undergone to modifications. These modifications are
motivated for multiple reasons like upgrades, reparations, etc...

• Verify the process by "seeing": During the dismantling process, the system is capable of
checking the current state.

• Possibility of disassembling unknown products: Using the generic structure of a prod-
uct type.

Quick sensor technologies review

For this project, Zivid One 3D camera has been assigned. The Zivid One is a high precision
structural light camera. Anyways, since for future stages of the project, the incorporation of other
sensory technologies should be reconsidered, an analysis of these technologies has been done.

• Stereo cameras:
Conventional cameras, sense a scene by measuring the reflection of ambient lighting in the
visible spectrum by the objects to be disassembled. Mainly, conventional cameras capture 2D
images, but a 3D scene can be constructed by using several cameras. Using this principle,
the stereo vision cameras can capture 3D scenes.

Figure 2.7: Stereo Cameras principle

11

CHAPTER 2. THEORY ON DISASSEMBLY

• Light Detection and Ranging (LiDAR) Scanner/Pulsed Time of Flight (ToF)
This kind of cameras uses active sensors, which emit energy to illuminate the target object.
This energy is emitted in from of a not visible for humans pulsed laser. The same emitted laser
pulse is received, and the distance can be derived using the return time and the wavelength of
the laser. This operation is repeated point by point, determining the depth image. LiDARS
can determine high precision and high-resolution depth maps.

• Continuous Wave Time of Flight (ToF) camera:
Due to the expensive cost of LiDAR cameras, the Continuous Wave Time of Flight cameras
were created. To find the depth, these type of cameras iluminate the whole scene with a
continous wave modulated light and measure the phase shift of the received light wave (see
figure 2.8).

Figure 2.8: Continuous Wave Time of Flight (ToF) camera

• Structured Light Camera:
Structured light cameras project a known light pattern onto the surface. The features of
the surface distort the pattern. Analysing these distortions the surface topography can be
reconstructed. See the full explanation in section 6.1.2.

2.3 Product analysis

The Hybrid and electric vehicles high voltage battery pack consist in individual modules and cells
organized and connected in series and parallel." A cell is the smallest, packaged form a battery can
take and is generally on the order of one to six volts. A module consists of several cells generally
connected in either series or parallel. A battery pack is then assembled by connecting modules
together, again either in series or parallel." [1]

Some of the most important and general components are:

– Battery modules.

12

CHAPTER 2. THEORY ON DISASSEMBLY

– Battery management system (BMS).

– Cooling system.

– High voltage and information wires.

– Connective components.

2.3.1 Main components of a LIB pack

Battery modules (main component to be removed)

As mentioned in the introduction, the aim of the designed dismantling system is to disassembly
all the components of the electric battery pack in order to obtain the battery modules. Battery
modules are composed by a combination of a fixed number of cells, and they are the main component
of the battery pack.

Battery modules usually incude a CMC (Cell Module Controller), to monitor and control the
temperatures of the cells, the SOC (State Of Charge) and balance them so that their SOC is as
equal as possible.

Battery management system (BMS)

The battery management system (BMS) is an electronic system that manages a rechargeable bat-
tery (cell or battery pack), such as by protecting the battery from operating outside its safe op-
erating area, monitoring its state, calculating secondary data, reporting that data, controlling its
environment, authenticating it and / or balancing it.

The battery management system (BMS) is an electronic system that controls a rechargeable battery
(cell or battery pack). Its main functionalities are; to protect the battery from operating outside
its safe operating area, to monitor its state, to calculate and report secondary data, to control the
battery environment, and to balance the current states of the battery.

One of the essential parameters that are required to ensure safe charging and discharging is SOC.
SOC is described as the present capacity of the battery stated in terms of its rated capacity. SOC
provides the current status of the battery and allows batteries to securely be charged and discharged
at a level proper for battery life enhancement. Consequently, SOC helps in the administration of
batteries. Nevertheless, estimating SOC is not direct because it involves the measurement of the
battery voltage, temperature, current and other information that pertains to the battery under
consideration.

BMS is a separate entity with hardware and firmware and is connected to a battery charger rather
than integrated within the charger. BMS consists of a number of sensing devices for monitoring
battery parameters that will be used in the algorithm for SOC estimation.

Cooling system

The cooling system of the LIB is the responsible to keep the batteries cool. It is recommended to
keep LIB at around 15◦C and 45◦C, if the appropiate temperature is not mantained, the life cycle
of the LIB will shorten. Given the quite poor thermal stability and the excessive charging and
discharging of these batteries during their lifespan, the cooling system has a very important role in
this kind of batteries controlling the temperatures.

13

CHAPTER 2. THEORY ON DISASSEMBLY

High voltage and information wires

From the one side, the high voltage wires are the responsible to carry the electric current. From
the other side, the information wires transfer the diferent sensors information from the battery
modules to the BMS:

Connective components

Finally, one of the most relevant components of the battery pack are the connective components.
These are responsible for attaching and holding the other components.

Into a battery pack, many different connective components can be found. These can range from
the simplest (i.e. screws) to special fasteners designed especially for a particular LIB model.

Figure 2.9: Example of connective components

2.3.2 Manual disassembly of a Volkswagen Hybrid LIB pack (25 Ah)

In order to better understand how the disassembly process should be, and given that the object
detection has to be able to detect the majority of the components, a manual dismantling of a
battery pack together with a visit to the company BatteriRetur (specialized in battery dismantling
company) have been done.

It is essential to know all the main components of the battery and recognize how they are attached
to the battery pack to identify the basic dismantling steps within the different pack models. Thus,
as it can be seen in the Figure 2.10, a manual disassembly and a part listing of the Volkswagen
battery pack have been done.

14

CHAPTER 2. THEORY ON DISASSEMBLY

Figure 2.10: Manual dismantling of Volkswagen Hybrid LIB battery pack

Part listing

During the manual disassembly process, the main components described in section 2.3, have been
observed. Thus the pack part listing is:

Part number Part name Location in Figure 2.10
1 LIB modules Image 3
2 BMS Green label in image 1
3 Screws Blue labels in image 4
4 Connective elements Image 6
5 High Voltage wires Green label in image 5
6 "Information" wires Blue label in image 5
7 Cooling system Green label in image 4

15

Chapter 3

Robot Operating System
communication

This chapter aims to present the basic concepts about ROS and the main ROS packages used in
this project. It explains MoveIt! and the created MoveIt! package and finally shows how ROS has
been implemented in this project.

3.1 Robot Operating System (ROS)

Although it is called Robot Operating System (ROS), it is not an operating system. ROS is a
middleware for developing robotics platforms.

Technically, ROS is an open-source, meta-operating system for robots, and provides the services
expected from an operating system like hardware abstraction, low-level device control, implemen-
tation of most used functionalities, communication between processes and package management.
Tools and libraries, to ease the building, running and writing code across, are also provided [24].

3.1.1 ROS distributions

Every year in May, a ROS distribution is released. A ROS distribution is a version of a collection
of ROS packages. The publication of the new ROS distributions goes according to the Linux
distributions. The distributions released in odd-numbered years have standard ROS support for
two years, instead the distributions released in even-numbered years have support for five years.

Due to the UiA robotics lab conditions, the ROS Kinetic Kame distribution has been used in this
project. The ROS Kinetic release is stable for Ubuntu 16.04.

Distribution Release date EOL date
ROS Melodic Morenia May 23rd, 2018 May, 2023
ROS Lunar Loggerhead May 23rd, 2017 May, 2019
ROS Kinetic Kame May 23rd, 2016 April, 2021
ROS Jade Turtle May 23rd, 2015 May, 2017
ROS Indigo Igloo July 22nd, 2014 April, 2019

Table 3.1: Last ROS Distributions

16

CHAPTER 3. ROBOT OPERATING SYSTEM COMMUNICATION

3.1.2 ROS background

ROS architecture is based on the publish-subscribe mechanism. Publish-subscribe is basically a
messaging pattern. The basic idea is that the message posted by the publishers, is not programmed
to be sent directly to the subscriber. Instead, the sent message is categorized into classes without
knowing any information of the future subscribers. The same with the subscribers, they subscribe
into a topic without knowing any information about the sender (publisher).

The basic ROS elements are:

• Nodes: A node is a process that performs computation. Nodes use the ROS client API
and they are identified in the Master by its graph resource name. For this project, the Zivid
camera and the robot are nodes. [27]

• Topics: Topics are named buses over which nodes exchange messages. [28]

• Master or core: The ROS Master provides naming and registration services to the rest
of the nodes in the ROS system. It tracks publishers and subscribers to topics as well as
services. The role of the Master is to enable individual ROS nodes to locate one another.
Once these nodes have located each other they communicate with each other peer-to-peer.
[25]

• Message: A specific data structure, based on a set of built-in types, 8 used as type for topics.
[26]

• Services: In the publish-subscribe mechanism the request-reply interaction is done with a
Service. Basically, a service is a synchronous remote procedure call. The node that wants to
call the service, sends a request message and waits for the reply. The service is offered by a
node under a defined string name.

The following Figure 3.1, extracted from the chapter [6], shows the idea of the publish-subscribe
(ROS topic) mechanism. Supposing two nodes, where the Node A is a publisher to a topic (Figure
3.1 a) and the Node B is a subscriber to the same topic (Figure 3.1 b), the roscore sends the network
address to the subscriber (Figure 3.1 c), The subscriber contacts directly to each publisher, which
results in a direct data exchange within the subscriber and the publisher (Figure 3.1 d. Many nodes
can publish and subscribe to the same topic, which results in a N:M relation (Figure 3.1 e).

17

CHAPTER 3. ROBOT OPERATING SYSTEM COMMUNICATION

Figure 3.1: ROS topic mechanism

3.1.3 ROS in Python (rospy)

The whole code in this project has been done with the programming language Python (task plan-
ning, object detection, etc..). Python is a well supported language for the ROS-community. In this
project, the Python library rospy has been used in order to realize the communication within the
different nodes.

The aim of the rospy library is to create a client library for ROS using Python. Rospy enables the
Python programmers to interface with ROS and eases the access to the ROS topics and services.

ROS Publisher

Initialisation of the Publisher.

pub = rospy.Publisher(’topic_name’, std_msgs.msg.String, queue_size=10)

To publish data.

pub.publish(std_msgs.msg.String("hello world"))

ROS Subscriber

To subscribe to a topic:

rospy.Subscriber("chatter" , String, callback)

18

CHAPTER 3. ROBOT OPERATING SYSTEM COMMUNICATION

3.2 Moveit!

’MoveIt! is a software for mobile manipulation, incorporating the latest advances in motion plan-
ning, manipulation, 3D perception, kinematics, control and navigation. It provides an easy-to-use
platform for developing advanced robotics applications, evaluating new robot designs and building
integrated robotics products for industrial, commercial, Research and Development and other do-
mains. MoveIt! is the most widely used open-source software for manipulation and has been used
on over 65 different robots.’ [7]

The aim of Moveit! is to provide the core functionality for manipulation in ROS.

• Architecture:
The central node of the Moveit! architecture is the move_group. The main objective of the
move_group is to manage different capabilities, integrate kinematics, planning and percep-
tion.
The architecture of the move_group consists in an adopted from ROS plugin-based architec-
ture 1.
To interact with the move_group, users can use three API: C++, Python and through GUI.

Figure 3.2: Moveit! Architecture scheme

• Collision Checking:
In this case, FCL [20], which is a general-purpose library that integrates several techniques
for fast and accurate collision checking and proximity computation, is the main package for
native collision checking. The collision checking architecture follows a plugin architecture,
allowing any collision checker to be integrated.
Collision checking is usually (computationally) the most expensive part of motion planning.
It lasts 80%-90% of the motion plan calculation time.

• Kinematics: The aim of inverse and forward kinematics is to calculate the variable joint
parameters needed to place the end effector or the tool centre point in a certain position and
vice versa. [8]

1A plugin architecture is an architecture that will call external code at certain points without knowing all the
details of that code in advance.

19

CHAPTER 3. ROBOT OPERATING SYSTEM COMMUNICATION

MoveIt! uses a plugin achitecture for solving inverse kinematics as well. A numerical solver
(useful for any robot) is used as a native solver for inverse kinematics. Nevertheless, users
are free to add their own custom solvers. For forward kinematics, MoveIt! provides a native
implementation.

Specifically, analytic solvers are much faster than the native solvers. I.e. IKFast is one of the
most popular analytic solvers for industrial arms [7].

• Motion planning:

The plugin architecture allows MoveIt! to use different motion planners from multiple li-
braries. A ROS action or service, offered by the ros node move_group, allows the interface
to the motion planners. Generally, the configuration of the default motion planners is done
through MoveIt! setup assistant. [7]

One of the most used motion planner libraries is the Open Motion Planning Library (OMPL).
OMPL consists of many state-of-the-art sampling-based2 motion planning algorithms and it
is aimed at three different audiences: Motion planning researchers, robotics educators and
end-users in the industry. Within the different algorithms collected in the OMPL can be
found [34]:

– Probabilistic Roadmap Method (PRM)

– Rapidly-expanding Random Trees (RRT, RRTconnect, lazy RRT)

– Kinodynamic Planning by Interior-Exterior Cell Exploration (KPIECE, bidirectional
KPIECE, bidirectional lazy KPIECE)

– Single-query bi-directional probabilistic roadmap planner with lazy collision checking
(SBL)

• Planning scene:

The planning scene is the representation of the world around the robot, the last state of the
robot is represented as well. It is stored in the planning scene monitor placed inside the
move_group node.

The planning scene monitor listens to:

– The joint_states topic and the tf (transform tree). To find the robot state information.

– Using a world geometry monitor creates the 3D occupancy information using the infor-
mation received from the sensors.

– From user input or other sources, the world geometry information.

2The fundamental idea of sampling-based motion planning is to approximate the connectivity of the search space
with a graph structure. The search space is sampled in various ways, and selected samples end up as the vertices of
the approximating graph. [34]

20

CHAPTER 3. ROBOT OPERATING SYSTEM COMMUNICATION

Figure 3.3: Moveit! Architecture scheme

3.2.1 MoveIt! Setup Assistant

The MoveIt! Setup Assistant is a GUI software designed to allow and help users creating new
MoveIt! packages for different robot models. The main function of the setup assistant is to
generate a Semantic Robot Description Format (SRDF) file for the robot. [7]

Semantic Robot Description Format (SRDF)

Basically, an .srdf file is a representation of the semantic information about robots. The intention
of this files is to represent and add some information not included to the .urdf files such as collisions
between the links. Thus, add information that has a semantic aspect to it. [31]

The main tags in SRDF are:

• <robot>: Root tag, all the information is included in this tag.

• <group>: Links and joints representation.

• <group_state>: Define a specific state for a <group>.

• <link>: Specify that a link is part of a <group>.

• <joint>: Specify that a join is part of a <group>.

• <chain>: Kinematic representation of a chain.

• <end_effector>: Information regarding an end effector.

• <disable_collisions>: Disable the collision checking between a specific pair of links.

• <passive_joint>: Change the default active state for a specific <joint>.

21

CHAPTER 3. ROBOT OPERATING SYSTEM COMMUNICATION

MoveIt! Setup Assistant

The main parts or steps for creating a new MoveIt! package using the Setup Assistant are:

• Launch the application:
The first step is starting the setup assistant.

$~ rosrun moveit_setup_assistant moveit_setup_assistant

This action opens a window where the user has to select between two options: Create a new
MoveIt! configuration package and Edit existing MoveIt! configuration package. Then, the
robot configuration (URDF file or a xacro file) should be loaded.

• Generating the Self-Collision Matrix:
The self-collision matrix is generated using a random sampling method. The sampling settings
are selected by the user. Using high sampling values gives better results but slows down the
process of generating the MoveIt! configuration package. A typical value is 10.000 samples.

• Add virtual joints:
Virtual joints are needed to specify where is the robot in the world reference. There are
two types of virtual joints: fixed and related to a motion of a mobile frame. When adding
a virtual joint, there have to be a source of information about the transform (i.e a tf static
transform publisher).

• Planning groups:
The planning groups creation is the main purpose of the SRDF. The aim of planning groups
is to connect (semantically) different parts of the robot. Usually, move groups are defined by
a set of joints but they can be defined as a chain (specifying the first and the tip link).
The kinematics of the created group can be solved by the MoveIt! default kinematic solver,
KDL Kinematics solver (in the Kinematics Dynamics Library package KDL). Anyways, a
specific kinematics solver can be defined.

• Robot poses:
User-defined fixed poses of the robot can also be defined in the SRDF file. I.e home position.

• Passive joints:
The passive joints are those that cannot be used for planning or controlling the robot. In this
step, these joints are specified.

• Configuration Files:
The last step, is to generate the MoveIt! configuration package. Once this is done, a simula-
tion of the robot can be launched (demo.launch file).

$~ roslaunch <moveit_config_package_name> demo.launch

3.2.2 ABB IRB4400 + track IRBT4004 MoveIt! package creation and config-
uration

For this project, an specific MoveIt! package for the righty robot has been created. In this case, the
righty robot is an ABB IRB4400 robot mounted on an ABB track IRBT4004. Both, are controlled

22

CHAPTER 3. ROBOT OPERATING SYSTEM COMMUNICATION

by the IRC5 controller and the created MoveIt! package is capable to move the robot around the
combined workspace 3.

During all this section, the righty robot refers to the group robot plus track.

Creation of the URDF robot model

URDF files and the xacro files are different formats to save and load the robot descriptions. In this
case, the whole MoveIt! package is configured to use the URDF file of the righty robot. Note that
working with both formats gives at the end the same results.

In this case the URDF file has been created from the righty.xacro file. The righty.xacro file has been
provided by Atle Aalerud (wp3_robots package). Thus, the URDF file has been created running:

~$ rosrun xacro xacro --inorder -o model.urdf model.urdf.xacro

The provided righty.xacro file loads all the information regarding to the IRB4400 manipulator and
the IRBT4000, defines the relative position between them and the position of the track in reference
to the world.

The independent xacro files for the manipulator and the track are provided in the ROS-Industral
ABB support on Github 4.

To include the track description file:

<xacro:include filename="$(find abb_irbt4004_support)/urdf/irbt4004r_macro.xacro"/>
<xacro:abb_irbt4004r prefix="${prefix}"/>

To include the manipulator description file.

<xacro:include filename="$(find abb_irb4400_support)/urdf/irb4400_60_macro.xacro"/>
<xacro:abb_irb4400_60 prefix="${prefix}"/>

Tool definition

As explained before in the project objectives and scope section 1.2, the design of the tools is not
included in the scope of the project. Anyways, a simulated tool has been defined. Note that the
dimensions and the orientations of the tool have been invented.

Thus, to define a new tool, the URDF file has to be modified. First of all, a new link should be
defined. For instance, to define the tool 1:

<link name="tool1"/>

Given the dimensions of the tool, and the link where the tool is attached, the next step is to define
a joint. The rpy and the xyz values, are referenced from the parent frame (in this example the
righty_tool0).

</joint>
<joint name="righty_tool0−tool1" type="fixed">

3The combined workspace is defined by the reachable positions by the robot combining the moves done by the
track plus the moves done by the own robot.

4Link: https://github.com/ros-industrial/abb

23

CHAPTER 3. ROBOT OPERATING SYSTEM COMMUNICATION

<parent link="righty_tool0"/>
<child link="tool1"/>
<origin rpy="0 0 0 " xyz="1.1 0.0 0.0"/>

</joint>

In case of having to define a real tool to work on real removal operations, it is recommended to
enable the tool collisions and the tool visuals. To do so, the collision and visual meshes should be
added.

To enable the tool visuals:

<link name="tool_name_here">
<visual>
<origin rpy="0 0 0" xyz="0 0 0"/>
<geometry>
<mesh filename="package:path_to_package.stl"/>

</geometry>
<material name="">
<color rgba="0.9254902 0.9254902 0.9058824 1"/>

</material>
</visual>

</link>

To enable tool collisions:

<link name="tool_name_here">
<collision>
<origin rpy="0 0 0" xyz="0 0 0"/>
<geometry>
<mesh filename="package:path_to_package.stl"/>

</geometry>
<material name="">
<color rgba="0.9254902 0.9254902 0.9058824 1"/>

</material>
</collision>

</link>

Move group creation

The move group is one of the basis of the ROS communications with the robot. It is declared in
the srdf file (righty.srdf). More than one move group for the same manipulator can be defined in
the same srdf file.

In this case, the move group ’righty_tcp’ has been created. It has been defined as a chain where
the base link is the righty track and the tip link is the simulated tool. Using this move group, the
whole set (manipulator + track) moves to reach the desired positions.

<group name="righty_tcp">
<chain base_link="righty_track_right" tip_link="tool1" />

</group>

24

CHAPTER 3. ROBOT OPERATING SYSTEM COMMUNICATION

In case of wishing a move group chain to move only the manipulator, the base link should be
changed for the IRB4400 base link.

Camera configuration (pose and collision checking)

The definition of the MoveIt! camera settings, it is very similar to the tool definition.

Fistly, the new link for the camera has been defined.
<link name="zivid_optical_frame"/>

Then, using the extrinsic calibration of the camera (explained in section 6.3.3, the joint between
the tool1 and the camera link has been declared.
<joint name="tool1−zivid_optical_frame" type="fixed">

<parent link="tool1"/>
<child link="zivid_optical_frame"/>
<origin rpy=" −1.55510702 0.00474244 −1.76689492" xyz="−1.0406646482792733

0.28582285515849640 0.043799123724683504"/>
</joint>

Finally, it has been downloaded (from the official Zivid documentation web-page [43] the camera
3D mesh in .stl format. After that, the collisions and the visuals have been set up.

<link name="zivid_optical_frame">
<visual>
<origin rpy="0 0 0" xyz="0 0 0"/>
<geometry>
<mesh filename="package://wp3_robots/meshes/zivid_camera/zivid_one_cad.stl"

scale="0.001 0.001 0.001"/>
</geometry>
<material name="">
<color rgba="0.9254902 0.9254902 0.9058824 1"/>

</material>
</visual>
<collision>
<origin rpy="0 0 0" xyz="0 0 0"/>
<geometry>
<mesh filename="package://wp3_robots/meshes/zivid_camera/zivid_one_cad.stl"

scale="0.001 0.001 0.001"/>
</geometry>
<material name="">
<color rgba="0.9254902 0.9254902 0.9058824 1"/>

</material>
</collision>

</link>

3.2.3 Essential coding to move the robot

To move the robot has been and is one of the most important and basic tasks of the project.

25

CHAPTER 3. ROBOT OPERATING SYSTEM COMMUNICATION

To run the robot using Python, ROS and MoveIt!, the moveit_commander class plays an important
role.

Some of the most important class functions are (see the full reference in shorturl.at/rEIJ9):

• RobotCommander() -> Instantiates a RobotCommander object.

• PlanningSceneInterface() -> Instantiates a PlanningSceneInterface object. This object is an
interface to the world robot environment.

• set_planner_id() -> Sets which motion planner use when motion planning.

• plan() -> Calculates the motion plan within the current state and the goal state using the
specified motion planner.

• execute() -> Executes the plan.

• stop() -> Ensures that there is no residual movement.

In the appendix B.12 a basic code based on Python, ROS and MoveIt! (MoveGroupCommander(),
roscpp, etc..) has been presented.

3.3 ROS implementation

In this project, ROS has been used to integrate the system elements. As it can be observed in
Figure 3.4, the Zivid camera, the ABB IRB4400 robot, the rack pc, and the laptop where the
system is running, are continuously communicating through the ROS Master.

26

shorturl.at/rEIJ9

CHAPTER 3. ROBOT OPERATING SYSTEM COMMUNICATION

Figure 3.4: System elements scheme

3.3.1 Zivid 3D camera ROS driver

To realise the integration of the camera, the official Zivid ROS package has been used.

Launch the camera node

After connecting the camera to an USB3 port, to launch the camera node using the predefined
parameters:

$~ ROS_NAMESPACE=zivid_camera rosrun zivid_camera zivid_camera_node

But, the following parameters can be redefined when launching the driver:

• file_camera_path (string, default: ""): In case of using a file camera, not the real one. This
can be used for developers without access to hardware.

• frame_id (string, default: "zivid_optical_frame"): Specify the frame_id used for all pub-
lished images and point clouds.

• num_capture_frames (int, default: 10): Specify the number of dynamic_reconfigure cap-
ture/frame_<n> nodes that are created. This number defines the maximum number of
frames that can be a part of a 3D HDR capture

27

CHAPTER 3. ROBOT OPERATING SYSTEM COMMUNICATION

Services

The main ROS services offered by the Zivid ROS driver are:

• Capture_assistant/suggest_settings (zivid_camera/CaptureAssistantSuggestSettings.srv):
Analyze the scene and suggest settings for the particular scene, camera distance and other
conditions.

• Capture (zivid_camera/Capture.srv): Launches a 3D capture. The resulting point cloud
and the color image are published to the corresponding topics.

• Capture_2d (zivid_camera/Capture2D.srv): Useful to trigger a 2D capture. The resulting
image is published to the topic color/image_color.

• Is_connected (zivid_camera/IsConnected.srv): Returns the camera state from the prespec-
tive of the ROS driver (connected/disconnected).

Topics

The data is published in the following topics:

• color/camera_info (message type: CameraInfo): Camera calibration and metadata 5.

• color/image_color (message type: Image): RGB color image. In the capture.srv service, the
image is encoded as rgb8 and for the capture2d.srv service the image si encoded as rgba8.

• depth/image_raw (message type: Image): Depth image. Instead of containing the RGB
information, each pixel contains the z value (NaN in case of a missing value).

• points (message type: Pointcloud2): Point cloud data. The output is in camera frame. The
published information for each point is: x(m), y(m), z(m), c(contrast value), r,g, and b
(colors).

Set the frame settings

To realize the set up and change the different camera parameters (see section 5.1):

• Brightness (double)

• Enable (bool)

• Exposure_time (int)

• Gain (double)

• Iris (int)

For instance, to configure the parameters defined in section 5.1 for the frame 0 6, the next Python
code would be used:

5data that provides information about other data
6The frame 0 configuration is the one used for the 2D images.

28

CHAPTER 3. ROBOT OPERATING SYSTEM COMMUNICATION

frame0_config_client = dynamic_reconfigure.client.Client("/zivid_camera/capture/frame_0")
frame0_config = {"enabled": True, " iris " : 17, "exposure_time": 60000, "brightness" :1.0, "gain" :

4.0}
frame0_config_client.update_configuration(frame0_config)

For 3D HDR captures, with more than one frame, each frame can be configured the in the same
way.

3.3.2 ABB ROS-Server

In order to operate and communicate with the robot using ROS, the ABB ROS-server has been
installed in the robot controller. First, the controller needs to meet some requirements, and then
the ROS-server can be installed and configured.

Controller prerequisites

The ABB ROS Server code is written in RAPID, using a socket 7 interface and multiple parallel
tasks. So, the controller needs to have the next specific packages installed to allow the ROS
communication.

• Multitasking (623-1): Multitasking gives the possibility of executing up to 20 programs
(tasks) in parallel, including the main program.

• Socket Messaging (672-1): Socket Messaging, allows the RAPID program to exchange
TCP/IP messages over a network, with a C/C++ or Python program on another computer
or rapid program running into another robot controller. It is constantly receiving messages
over the Ethernet channel of the controller (IRC5).

Installing the ROS-Server

Then, the next files have been downloaded and copied to the robot controller. they have been saved
into the ROS sub-directory (HOME/ROS/*).

• ROS_common.sys: Global variables and data types shared by all files.

• ROS_messages.sys: Implementation of specific message types.

• ROS_motion.mod: Issues motion commands to the robot.

• ROS_motionServer.mod: Receive robot motion commands.

• ROS_socket.sys: Socket handling and simple_message implementation.

• ROS_stateServer.mod: Broadcast joint position and state data.

Download link: https://github.com/ros-industrial/abb/tree/indigo-devel/abb_driver/
rapid

7’Sockets are a generalization of the Unix file access mechanism that provides an endpoint for communication,
either across a network or within a single computer. A socket can also be thought of as an extension of the named
pipe concept that explicitly supports a client/server model, wherein multiple clients may be attached to a single
server.’ [32]

29

https://github.com/ros-industrial/abb/tree/indigo-devel/abb_driver/rapid
https://github.com/ros-industrial/abb/tree/indigo-devel/abb_driver/rapid

CHAPTER 3. ROBOT OPERATING SYSTEM COMMUNICATION

ROS-Server configuration

1. The tasks have been created.

Name Type Trust Level Entry Motion Task
ROS_StateServer SEMISTATIC NoSafety main NO
ROS_MotionServer SEMISTATIC SysStop main NO
T_ROB1 NORMAL - main YES

2. Definition of the following Signals.

Name Type of Signal
signalExecutionError Digital Output
signalMotionPossible Digital Output
signalMotorOn Digital Output
signalRobotActive Digital Output
signalRobotEStop Digital Output
signalRobotNotMoving Digital Output
signalRosMotionTaskExecuting Digital Output

3. Tie Signals to the system output:

Signal Name Status Arg 1 Arg 2
signalExecutionError Execution Error N/A T_ROB1
signalMotionPossible Runchain OK N/A N/A
signalMotorOn Motors On State N/A N/A
signalRobotActive Mechanical Unit Active ROB_1 N/A
signalRobotEStop Emergency Stop N/A N/A
signalRobotNotMoving Mechanical Unit Not Moving ROB_1 N/A
signalRosMotionTaskExecuting Task Executing N/A T_ROB1

4. Link modules with the tasks.

File Task Installed All Tasks Hidden
HOME:/ROS/ROS_common.sys NO YES NO
HOME:/ROS/ROS_socket.sys NO YES NO
HOME:/ROS/ROS_messages.sys NO YES NO
HOME:/ROS/ROS_stateServer.mod ROS_StateServer NO NO NO
HOME:/ROS/ROS_motionServer.mod ROS_MotionServer NO NO NO
HOME:/ROS/ROS_motion.mod T_ROB1 NO NO NO

Robot Motion Task: Manual and auto modes

When running the robot, the T_ROB is the responsible task for launching the robot motion.
Depending on the controller mode (auto or manual) the task has a different behaviour.

While running in manual mode (used mode during all the tests done in this project):

– The robot moves at a reduced speed.

– The enable switch must be held during all robot movements.

30

CHAPTER 3. ROBOT OPERATING SYSTEM COMMUNICATION

– Since the movement execution can take longer than expected, ROS may try to cancel the
move.

While running in automatic mode:

– The robot moves at full speed.

– It is very important that the workspace is clear of personal and obstacles.

3.3.3 Catkin Workspace

A catkin workspace is the folder where all the catkin packages are modified, built, and installed.
The catkin workspace can contain up to four spaces (source, build, development and install spaces).
Each space has a role in the software development process.

• Source Space: The source space contains the code of catkin packages. Inside each folder,
placed in the source space, one or more catkin packages can be contained.

• Build Space: In the build space is CMake is invoked in order to build the catkin packages
in the source space. CMake and catkin keep the cache information and other files here.

• Development (Devel) Space: The development space (devel) is where built targets are
located before being installed. The way targets are created in the devel space is the same as
their design when they are installed.

• Install Space: Once targets are created, they can be installed into the install space by
requesting the install target, usually with make install. The install space does not have to be
contained in the workspace.

In the catkin workspace of the project, there have been placed the source files for the ABB robots
(catkin_ws/abb), the Zivid 3D camera (catkin_ws/zivid-ros) and the specifically created files for
using the Lab robots (catkin_ws/wp3_robots-master).

31

Chapter 4

Guidance: UiA Robotics Lab ROS set
up manual

Note: This guidance has been done using Ubuntu 16.04 and ROS Kinetic, it has not been tested
with different Operating System or different ROS versions.

1. Network and .bashrc file configuration:

In the UIA robotics Lab (henceforth lab) it is used a distributed ROS core structure. This
means that the ROS core is running in the rack PC an the other computers are nodes that
communicate with the ROS core (rack pc in this case). Thus, to use an external computer
the Network Address of this computer (ROS node) has to be declared.

First of all, install ROS following the steps and instructions explained in the official ROS
tutorial. ROS installation guidance link

Once ROS is correctly installed, the network settings of the computer have to be modified.
First, plug-in the Ethernet cable to establish a network connection between the computer
and the rack PC. Then, go to the top bar and press Network settings > Edit connections....
In Network connections select Add > Ethernet.

Figure 4.1: Caption

Set the IPv4 Settings. Modify the Method to Manual (Method > Manual) and add a new
address for the computer, this address has to be predefined in the rack PC and will be the
IP for the ROS Node, in Addresess (Add).

Set the IPv6 Settings. Set Method to Ignore (Method > Ignore).

32

http://wiki.ros.org/kinetic/Installation

CHAPTER 4. GUIDANCE: UIA ROBOTICS LAB ROS SET UP MANUAL

Figure 4.2: IPv4 settings.

Figure 4.3: IPv6 settings.

After configuring the network properly, the .bashrc file has to be modified. The .bashrc file is
a shell script that Bash runs whenever it is started interactively. This file has to be modified
in order to set the new ROS MASTER (the rack PC). Open the .bashrc file typing:

~$ sudo nano .bashrc

Move to the final part of the document and add the following lines:

#Define the adress of the rack PC (ROS MASTER)
export ROS_MASTER_URI=http://10.225.120.50:11311
#Define your IP
export ROS_IP=#write_your_IP_here#
#Define the Host Name
export ROS_HOSTNAME=#your_name#.wp3.localnet

Now everything is defined and we are able to operate with ROS normally.

33

CHAPTER 4. GUIDANCE: UIA ROBOTICS LAB ROS SET UP MANUAL

2. Create and configure your catkin workspace:
Create your catkin workspace following the official tutorial: How to create a catkin workspace
link.
Once your catkin workspace is created, download onto the src folder the abb ROS support.

~$ cd catkin_ws/src
~$ git clone https://github.com/SFI−Mechatronics/wp3_abb

Rebuild the catkin workspace:

~$ catkin build

3. Launch the demo.launch file and move the simulated robot using Python:
MoveIt! configurations for both robots in the lab are located in the folder wp3_robots-master
. In each configuration folder there are the config and the launch folders (see Figure 4.4).

Figure 4.4: MoveIt! Packages for righty and lefty.

To work with these MoveIt! packages, MoveIt! should be installed Link: MoveIt! installation
Tutorial.
If it is the first time working with MoveIt! it is strongly recommended to do the Link: MoveIt!
Tutorial in order to have a basis in the source.
Take a look into these folders (Figure 4.5)

Figure 4.5: MoveIt! files for righty and lefty.

Launch the demo.launch file. This will show a 3D representation of the robot in Rviz. This
demo file launch a simulation of the robot (working in fake execution mode)

~$ roslaunch righty_moveit_config demo.launch

34

http://wiki.ros.org/catkin/Tutorials/create_a_workspace
http://wiki.ros.org/catkin/Tutorials/create_a_workspace
https://moveit.ros.org/install/
https://moveit.ros.org/install/
http://docs.ros.org/kinetic/api/moveit_tutorials/html/index.html
http://docs.ros.org/kinetic/api/moveit_tutorials/html/index.html

CHAPTER 4. GUIDANCE: UIA ROBOTICS LAB ROS SET UP MANUAL

Figure 4.6: Righty simulation in Rviz.

————————————————————————————————–
- Troubleshooting while launching the demo.launch file:

Figure 4.7: Possible emerging error.

To fix that, go to demo.launch file and comment the following line:

<!−− arg name="pipeline" value="$(arg pipeline)"/ −−>

————————————————————————————————–
The next step is try to move the simulated robot using Python. To do so, it is going to be used
the Python moveit_commander interface. This interface allows us to move the predefined
move group.
Create a Python script (i.e moverobot.py): (See code in appendix E.1)
Note: It is very important to understand the lines of this code. Check (Link: MoveGroup-
Commander functions) to know all the possibilities of working with Python interface
After running this Python script using rosrun the robot simulation should move (see in Figure
4.8). REMEMBER: the Python script should be an executable script. To make it executable
run sudo chmod +x /usr/share/testfolder/aFile
————————————————————————————————–
- Troubleshooting selection of an unreachable position. As it is logical, if you select an un-
reachable position the motion planner (RRT, RRTconnect, PRM, etc..) is not able find a
path to reach the position. Thus, the terminal shows the next error:
————————————————————————————————–

35

http://docs.ros.org/jade/api/moveit_commander/html/classmoveit__commander_1_1move__group_1_1MoveGroupCommander.html
http://docs.ros.org/jade/api/moveit_commander/html/classmoveit__commander_1_1move__group_1_1MoveGroupCommander.html

CHAPTER 4. GUIDANCE: UIA ROBOTICS LAB ROS SET UP MANUAL

Figure 4.8: Rviz: Robot simulation moving to a defined position.

Figure 4.9: Error: Not reachable position.

4. Establish connection with the real robot and move the real robot to a defined
position.
Once the simulation is working, let’s work with the real robot. First, test the robot visual-
ization using rviz. Thus, launch the robot communication.

~$ roslaunch wp3_robots show_righty.launch

This will show the simulation with the real-time values of the joints states of the real robot.
The robot is publishing the current joints states.
Close the robot state visualization tab (show_righty.launch), and launch the real robot.
To launch the real robot:

~$ roslaunch wp3_robots load_robot_mod.launch

To launch the load_robot_mod.launch file, is the equivalent action on the real robot of
launching the demo.launch file on the simulated robot. Therefore, at this point, working with
the real robot is almost the same as working with the simulated robot.
Anyways, note that to move the real robot the ROS_main task should be runned in the
robot controller. To run this task -> (PROGRAM EDITOR/DEBUG/ROS_main). When
the program is loaded press the safety button + PLAY button.
Thus, to move the real robot, now run again the previously created Python based script
(moverobot.py). Code in appendix E.1.

36

Chapter 5

Object detection

In this project, object detection is crucial to find and to distinguish all the elements placed in
the dismantling scene. From object detection, it is extracted necessary information used by pose
estimation and consequently by the task planner. Therefore, good results in this part are also
important for having good global resuts.

Only 2D images have been utilized for this part. Thus, the used algorithm aims to find the
position of the components in the 2D image. This information is used afterwards in pose estimation
to determine the world reference base frame positions of the LIB pack components (see Pose
Estimation chapter 6). Another possibility is to use 3D object detection as presented in [42].
In this project, 2D object detection has been preferred over 3D object detection for computational
reasons, 3D convolution requires a lot of computational power.

Why computer vision? "Experience in the field of robotic disassembly has indicated that robotic
disassembly cannot simply be considered as the reversal of assembly, due to two main factors: the
use of irreversible fasteners and the presence of a higher degree of uncertainties." [39] So, given
these factors, a smarter system is needed.

Computer vision allows the reaction of the system in front of deviations and uncertainties in the
object of disassembly. To react against these is not possible when the systems depend entirely on
a static database. Moreover, the automatic detection of the components eases and reduces the
preprocessing and the preparation of the entrance of the object of disassembly to the system. A
system of this kind is also robust in front of production modifications.

This chapter reports the camera parameter adjustment, describes the used algorithm and explains
the procedure done for training the algorithm.

5.1 Image capture: Zivid one parameter adjustment

To have positive results in image recognition, it is crucial to have good quality images. Good
quality images help the algorithm to have better results. Then, if the training images are clear,
better training results are obtained as well.

The adjustment of the camera parameters has great importance in taking good quality images. In
this case, images are obtained using the Zivid camera (see section 6.1).

The main modifiable parameters for the Zivid camera are the exposure time, the iris aperture, the
projector brightness and the gain. So, the adjustment of the camera parameters has been done

37

CHAPTER 5. OBJECT DETECTION

analyzing the obtained results using different values for these parameters. The obtained values
and results are conditioned mainly by the specific light conditions (of the lab) and the capturing
distance. In case of changing these conditions, the parameter adjustment should be redone.

Stops concept

Exposure stops, or just stops, is a common term in photography and is used to describe how much
light hits the sensor, or the brightness level of the image, relative to a reference level (sometimes
referred to as "0 stops"). The brightness of the image is doubled when you "move one stop up"
and reduced by half if you "move one stop down". The total amount of stops a camera has at its
disposal is therefore equivalent to the sum of how many times the light intensity can be doubled
from lowest to highest possible. The amount of stops available in a sensor is very relatable to the
dynamic range of the camera. The Zivid camera has about 23 stops available, which is a crucial
component as to why Zivid is able to achieve good data on shiny objects. [44]

Figure 5.1: Stops concept

Exposure time

The exposure time - also known as shutter speed - is the amount of time that a single camera image
is exposed to light, or how long the shutter remains open. A Zivid camera takes multiple images in
order to calculate depth, and the exposure time of an individual image is defined in microseconds
from 6 500 to 100.000. When exposure of 6.500 µs is chosen, the Zivid camera needs about 80 ms
to capture a 3D image. Increasing the exposure time by some ratio increases the exposure of the
image by the same amount.

Taking images means sampling light information in a certain time window. Many problems can
arise from the ambient light. Specially for structured light cameras, the frequency of the AC power
source where the ambient light sources are connected can have a negative influence to the results,
specially in point clouds. Thus, the exposure time of the sampling has been selected taking into
account the frequency of the AC source. By choosing an exposure time that satisfies the equation
below (where n is a positive integer and f is the frequency of the light source), it is possible to
filter out noise that varies with time from an ambient light source:

texp = n

2fs
, n = |Z| (5.1)

38

CHAPTER 5. OBJECT DETECTION

Thus, it is recommended to use sampling rates in the multiples of 10.000 µs in countries that have
a 50 Hz power line (Table 5.1), such as Europe, and 8.333 µs in countries with 60 Hz power line,
such as the US.

Exposure time (Ms) 6500 10000 20000 40000 80000 100000
Capture time (ms) 90 130 250 490 970 1210
Stops -0.62 0 +1 +2 +3 +3.32

Table 5.1

Iris aperture

The camera aperture is the opening of the lens window. Some cameras come with fixed aperture,
while others are adjustable. The aperture is typically described by f -numbers N (see equation 5.1),
where f is the focal length and D is the diameter of the entrance pupil.

N = f

D
(5.2)

Modern lenses use standarized f -number: f/1, f/1.4, f/2, f/2.8, f/4, f/5.6, f/8, f/11, f/16, f/22, f/32,
etc.. Stepping up or down this series corresponds to adding or substracting one stop.

In this case, the zivid camera has an integrated mechanical iris. The iris parameter can be modified
in a range from 0 to 72, where 0 is a completely closed iris and 72 completely open iris. The
correspondece between the iris and the f -number is the following:

f -number f/1.4 f/2 f/2.8 f/4 f/5.6 f/8 f/11 f/16 f/22 f/32
Iris 72 46 35 27 21 17 14 12 10 8

Stops +4 +3 +2 +1 0 -1 -2 -3 -4 -5
Focus, near (mm) 925 900 850 800 750 650 600 500 425 350
Focus, far (mm) 1100 1150 1200 1300 1500 1900 2800 13000 Inf Inf

Depth of Field (mm) 175 250 350 500 750 1250 2200 12500 Inf Inf

As it is specified in the table above, the aperture of the iris depends on the distance of the object
that is deemed to be focus. To explain that, it is important to clarify the concept circle of confusion
(CoC). In optics, a circle of confusion is an optical spot caused by a cone of light rays from a lens
not coming to a perfect focus when imaging a point source (see Figure 5.2). The modification of
the aperture of the iris allows to focus objects in a limited boundary range (Focus, near and far in
the table).

Projector brightness

The amount of light emitted by the Zivid camera projector is controlled by the parameter projector
brightness. The range of the parameter is 0 when the projector is completely stopped and 1.8
when at the maximum output power mode. Maximizing projector brightness maximize the signal
amplitude of the camera which in turn minimizes impact from noise as long as the reflected light
from the projector does not over-saturate the pixel. So, maximize the projector brightness is a
good way to maximize signal-to-noise ratio (SNR).

39

CHAPTER 5. OBJECT DETECTION

Figure 5.2: Circle of confusion (CoC) concept

The modification of the brightness parameter affects to stops as well . Besides, when the projector
brightness is higher than 1.0, a thermal safety system limits the maximum duty cycle to ensure the
thermal balance of the camera.

Projector Brightness 0.25 0.50 1.00 1.80
Stops -2 -1 0 +0.85

Lumen 100 200 400 720

Gain

’Gain in a digital imaging device represents the relationship between the number of electrons
acquired on an image sensor and the analog-to-digital units (ADUs) that are generated, representing
the image signal. Increasing the gain amplifies the signal by increasing the ratio of ADUs to
electrons acquired on the sensor. The result is that increasing gain increases the apparent brightness
of an image at a given exposure.’

Higher gain values help to have better results in images with dark regions and dark objects. Any-
ways, while the gain is increased, the noise in the 3D point cloud is icreased as well.

Gain 1x 2x 4x 8x 16x
Stops 0 +1 +2 +3 +4

dB -6 0 6 12 18

40

CHAPTER 5. OBJECT DETECTION

Figure 5.3: Noise modifying the projector brightness

Camera parameters set up

To realize the camera set up it has been taken into account the stops method. In this case, there
are two unchangeable conditions: The capture distance with an approximated value of 1.7 m and
the location of the lab (Grimstad, Norway). Thus, these conditions have a direct effect in two
parameters:

• Iris aperture: The distance is between the boundary values [650 mm and 1900 mm], so the
iris aperture should be 17 to have the image correctly focused.

• Due to the project location (Norway with a 50Hz power line), the exposure time should
be a multiple of 10.000.

Thus, starting from these conditions, different pictures using different values for the exposure time,
the projector brightness and the gain have been done and analysed in order to define the optimal
values.

- Results:

First test

Parameters: Iris Aperture Exposure time projector brightness Gain Laboratory light Total Stops
Value 17 20.000 µs 1.0 1.0 Turned on -
Stops -1 Stops +1 Stops +0 Stops +0 Stops - +0 Stops

As it can be observed in figure 5.4a and in the histogram 5.4b, the image is dark (colors placed in
the left side of the histogram), thus in the next test the stops should be increased.

Apart from that, some reflections can also be observed. This reflections are caused by the material
or object reflectivity combined with the ambient light and the projector light. Reflections can cause
problems in the 2D image detections and problems in the definition of the 3D point cloud as well.

Second test

Figure 5.5: Dark region detail

At this point, given the dark images obtained in the
first test the Stops should be increased. There are
three ways to increase the Stops: increasing the ex-
posure time, the gain, or the projector brightness.

41

CHAPTER 5. OBJECT DETECTION

(a)

(b)

Figure 5.4: Image (a) and image histogram (b)

Thus, the projector brightness has been increased
(from 1.0 to 1.8).

Analysing the brightness of the images obtained in
this second test, the results are better than in the
first test. The histogram (see Figure 5.6b) has moved
a bit to the right. But the reflections have increased.
Moreover, the definition and quality in the dark re-
gions are very poor (see Figure 5.6a).

Parameters: Iris Aperture Exposure time projector brightness Gain Laboratory light Total Stops
Value 17 20.000 µs 1.8 1.0 Turned on -
Stops -1 Stops +1 Stops +0.85 Stops +0 Stops - +0.85 Stops

(a)

(b)

Figure 5.6: Image (a) and image histogram (b)

Third test

Figure 5.7: Dark region detail

Given the reflectivity problems observed in the
second test, the laboratory light was turned off
and the projector brightness was decreased from
1.8 to 1.0 again. So, with less light and still
having the problem with dark regions, for the
third test, the exposure time and the gain were

42

CHAPTER 5. OBJECT DETECTION

increased. In this case the exposure from 20.000
µs to 50.000 µs and the gain from 1.0 to 4.0.

The results with this new configuration are bet-
ter, the reflections are eliminated and the black
regions have better results (see figure 5.8). But
the image is still too dark.

Parameters: Iris Aperture Exposure time projector brightness Gain Laboratory light Total Stops
Value 17 50.000 µs 1.0 4.0 Turned off -
Stops -1 Stops (aprox) +2.25 Stops +2 Stops +0 Stops - +3.25 Stops

(a)

(b)

Figure 5.8: Image (a) and image histogram (b)

Fourth test

After the previous results, the last test aims to increase the brightness of the image. So, the
exposure time was increased from 50.000 µs to 60.000 µs.

With these parameters, the image seems to be more balanced, the dark regions are well defined
and there are no reflectivities.

Parameters: Iris Aperture Exposure time projector brightness Gain Laboratory light Total Stops
Value 17 60.000 µs 1.0 4.0 Turned off -
Stops -1 Stops (aprox) +2.5 Stops +2 Stops +0 Stops - +3.25 Stops

(a)

(b)

Figure 5.9: Image (a) and image histogram (b)

43

CHAPTER 5. OBJECT DETECTION

5.2 Object detection: YOLOv3

When talking about object detection, it is important to clarify the concepts of image classification
and object localisation. Image classification, refers to a computer vision process that is able to
classify an image according to its visual content. Then, object localisation allows to detect the
specific position of the object in the image (see Figure 5.10).

Object detection, basically provides the tools for finding all the objects (in this case the components)
in one image, and drawing the bounding boxes around them. Finally, image segmentation is able
to define the contours of the detected objects.

Figure 5.10: Object detection basic concepts overview

Given that the final purpose of the project is to implement the solution to the industry, algorithms
based on segmentation have been discarded. This decision is based on that the creation of the
training database for this type of algorithms is more complicated. This results on larger procedures
to add new models into the known database.

When analysing object detection algorithms, they can be generally classified into two groups:

• Algorithms based on classification: Implemented in two stages, first, they select the
regions of interest (ROI) in the image. Then, they classify this regions using convolutional
neural networks (CNN). Since, they have to find the ROI of the image, the solution can be
slow.
One of the most representative algorithms of this type are the Region-based Convolutional
Neural Network algorithm (RCNN, Fast-RCNN, Faster-RCNN and Mask-RCNN) and the
RetinaNet algorithm.

• Algorithms based on regression: Instead of predicting the Regions of Interest of the
image, this type of algorithms predict classes and bounding boxes for the images in one run.
Within the well-known algorithms of this group, there are the You Only Look Once (YOLO)
family algorithms and SSD (single Shot Multibox Detector).

YOLOv3.

In this project, the You Only Look Once YOLOv3 has been selected as the main algorithm for the
object detection part.

44

CHAPTER 5. OBJECT DETECTION

YOLO is a real-time object detection algorithm. It is based on a convolutional neural network, and
as explained before, it is an algorithm based on regression. Thus, the algorithm applies a single
neural network to the full image.

The image is divided into smaller regions on which the bounding boxes (and the probabilities) are
predicted for each region. These predicted probabilities weight the bounding boxes [41].

YOLOv1 was the first version of the algorithm. This version had 26 layers in total, with 24
Convolution Layers followed by 2 Fully Connected layers, but the main problem with YOLOv1 was
its incapacity to detect tiny objects. Then, in December 2016, the paper ’YOLO 9000: Better,
Faster, Stronger’ by Redmon and Farhadi was released. A lot of improvements were included in
the second version of the algorithm [22].

Finally, in April 2018 the same researchers published ’YOLOv3: An Incremental Improve-
ment’, with code available on a GitHub repository. This final version no longer copes with small
objects and runs significantly faster than other detection methods [23] (see Figure 5.11).

Figure 5.11: YOLO Performances [23]

YOLO functioning

The algorithm only requires one forward propagation pass through the neural network to obtain
the predictions. Then, to detect only one time each object, a non-max suppression is done. In that
way, the algorithm returns the detected objects with the bounding boxes and the probabilities.

Using YOLO algorithm, an individual CNN is able to predict multiple bounding boxes and the
corresponding probabilities for them. YOLO trains on full images and directly optimizes detection
performance (see Figure 5.12).

The system uses dimension clusters as anchor boxes 1 to predict the bounding boxes. Four coordi-
nates (tx, ty, tw and th) are predicted for each bounding box. Therefore, if the previous bounding
box has width and height (pw and ph) and the cell is displaced by (cx and cy) from the top-left

1’Anchor boxes are a set of predefined bounding boxes of a certain height and width. These boxes are defined
to capture the scale and aspect ratio of specific object classes you want to detect and are typically chosen based on
object sizes in your training datasets’ [4]

45

CHAPTER 5. OBJECT DETECTION

Figure 5.12: YOLO Architecture scheme

image corner, see Figure 5.13 [23]. The predictions are:

bx = σ (tx) + cx

by = σ (ty) + cy

bw = pwe
tw

bh = phe
th

(5.3)

Figure 5.13: Predicted bounding boxes

Then, the algorithm predicts, using logistic regression, an objectiveness score for each bounding
box. If the bounding box is overlapping the ground truth object 2, the score has a value of 1. If a
bounding box is overlapping a ground truth object, but the score is not the best, it is ignored.

Later, to realize the class definition, the algorithm predicts the classes that a bounding box can
contain using multi-label classification. A multi-label approach gives better results than other
classifiers (i.e. softmax) for applications where there are many overlapping labels.

2Ground truth represents the desired output of an algorithm on an input

46

CHAPTER 5. OBJECT DETECTION

5.3 YOLOv3 Algorithm training

YOLOv3 is trained on full images with no hard negative mining. To train YOLOv3, it is used:
multi-scale training, data augmentation and batch normalisation (within other standard proce-
dures). The open-source neural network Darknet is used for training. Darknet is written in C and
CUDA and supports CPU and GPU computation.

This section aims to explain the algorithm training procedure. Thus, the used terminology, the
labelling, the images acquisition and its training stage have been explained. Moreover, the designed
function training_data_autogenerator() has also been described here.

5.3.1 System’s nomenclature

The detected components should have a concrete nomenclature in order to ease the access of the
task planner to the database. Moreover, it is very important that the detection distinguish the
different components, brands and versions.

1. For the main components:

COMPONENT_BRAND_VERSION

2. For the screws:

screw

3. For the connection components:

connection_TYPE

5.3.2 Labeling

The main objective of labeling the pictures is to let the algorithm know where the the different
components are located in the image. The algorithm takes the labeled images and extracts the
features of the labeled areas in order to learn how the different objects are and how to detect them.
To create the database for this project, it has been used the open-source program LabelImg (see
Figure 5.14. It returns a text file in the defined YOLO format. In this format, the lines of the text
file contain the information regarding each label. So, every line has the position of two corners of
the label and then the class that it belongs to. [23]

In case that in future stages of the project an update of the database would be needed, for example
to add new components or new LIB packs models, this labeling process should be repeated.

5.3.3 Training Images acquisition

In order to obtain the training images the script training_data.py (see the full code appendix
B.13) has been created. This function aims to capture automatically images from different angles
in order to obtain the training data easily.

Basically, the script runs a for loop iterating over a list that contains 4 different orientations for
the TCP. For each orientation, another for loop takes twenty pictures with different position values
(changing the y position within each picture).

47

CHAPTER 5. OBJECT DETECTION

Figure 5.14: Labeling example (LabelImg window)

To have better training results, it is important to run the script several times taking pictures of
the battery pack placed in different orientations.
for e in range(0,4):

pose_goal.orientation.x = 0.0
pose_goal.orientation.y = y[e]
pose_goal.orientation.z = 0.0
pose_goal.orientation.w = w[e]

for i in range(0,20):
pose_goal.position.y = pose_goal.position.y−0.02
move_group.set_pose_target(pose_goal)
plan = move_group.go(wait=True)
Calling ‘stop() ‘ ensures that there is no residual movement
move_group.stop()
s .capture()
s .im_num=s.im_num+1

pose_goal.position.y = 7.20
pose_goal.position.x = pose_goal.position.x+0.15

5.3.4 Training stage

The training of the algorithm has been done with the code train.py. The code is included in the
official yolov3 open source code repositories.

The main arguments to run the training script are: A folder with all the images and text files with
the label information and the LIBRES.data file.

• Images and label information:
It has been created a folder containing all the images and the labels information. So, the
images (.jpg) and the text (.txt) files are located in this folder. The name for the image and
the text files should be the same.

48

CHAPTER 5. OBJECT DETECTION

• LIBRES.data, LIBRES.names and LIBRES.txt files:
The main objective of the LIBRES.data file is to provide the path to access the necessary
information to train the algorithm (the LIBRES_classes.names and the LIBRES.txt files).

———— LIBRES.data ————

classes=5
train=data/LIBRES.txt
valid=data/LIBRES.txt
names=data/LIBRES_classes.names

On the one side, the LIBRES.names file contains all the names of the components. The names
are saved following a specific order. That order corresponds to the order given in the labeling
process.

———— LIBRES_classes.names ————

VW_modules_01
VW_bms_01
Mitsubishi_modules_01
screw
empty_screw
...

On the other side, the LIBRES.txt file contains the path to all the training images.

———— LIBRES.txt ————

...
/.../ path_to_file/IMG_2413.jpg
/.../ path_to_file/IMG_2261.jpg
/.../ path_to_file/IMG_2259.jpg
/.../ path_to_file/IMG_2211.jpg
/.../ path_to_file/IMG_2200.jpg
...

• Training process:
A total number of 89 images have been used to train the algorithm. The training process
(see Figure 5.15 has lasted 1.431 hours.

Figure 5.15: YOLOv3 training process

49

CHAPTER 5. OBJECT DETECTION

5.3.5 YOLOv3 training results

Every time that a training of the algorithm is realized, the algorithm returns the values different
parameters along the training epochs (see Figure 5.16). "One Epoch is when an entire dataset is
passed forward and backward through the neural network only once." [9]. Apart from detecting
training problems, these results are mainly used to detect overtrainings.

Figure 5.16: YOLOv3 obtained training results.

5.3.6 Training data creator (function)

The creation of a database is basic to have a good training of the algorithm. The more images used
for training the algorithm the better detection results are obtained.

The aim of the function training_data_autogenerator() (see full code in appendix B.7), is to use the
components localisation images taken (while the system is working) to create YOLO training data.
Generally, the function converts the information obtained from the detection into valid training
data for YOLO (image, .txt file and path).

To do this, first of all, the function reads and opens an image, and the corresponding .txt file with
the results of the detection. Using a for loop, converts each line of the .txt file written in the default
output format to the valid training data format. How the labels are defined is the main difference
between both formats. From one side, in the training data format, the labels are defined by the
central (x,y) position of the label and the label dimensions (height and width) expressed in parts
per unit. From the other side, in the detection output format, the (x,y) positions of two opposite
corners of the label are defined. Thus, for each component, the function finds dimensions and the
center of the label, and using the image size, converts these values into parts per unit.

Finally, when the conversion has been done, these values are written in a .txt file, and the path of
each file is added to the autogenerated_data.txt file to complete the training data generation.

50

CHAPTER 5. OBJECT DETECTION

Figure 5.17: Task planner function training_data_autogenerator() flow chart

51

Chapter 6

Pose estimation

The pose estimation problem is to determine the pose in world reference base frame of the different
components previously detected in the object detection stage. In general, pose estimation includes
the determination of three translations and three rotations. However, in this study, pose estimation
is limited to three translations and a fixed rotation.

Thus, after object detection, presented in chapter 5, the next step is to relate the image coordinates
of the components with the 3D point cloud information. Which results in the component positions
in the world reference base frame. This is necessary information to move the robot to the desired
positions and realise the dismantling.

This chapter presents the project’s camera and 3D datasets, it explains how this 3D information is
used and matched with the information extracted from object detection to determine the positions
of the different components.

6.1 Structural light camera: Zivid one 3D camera

Zivid One 3D camera has been assigned for this project. Zivid is a market-leading provider of
3D machine vision cameras and software established in Norway. Its Zivid One and Zivid One
Plus products are regarded as the world’s most accurate real-time 3D color cameras and bring a
human-like vision to the smart factories and warehouses of Industry 4.0.

Figure 6.1: Zivid One

Some of the most relevant Zivid One M specifications are showed in the table below (see more

52

CHAPTER 6. POSE ESTIMATION

specifications in appendix A):

SPECIFICATIONS
Precision 0.1 mm
Acquisition rate 10 Hz
Output 3D+RGB
Imaging 3D HDR

6.1.1 Pointcloud concept

Point clouds represent the X, Y, and Z geometric coordinates of a sampled scene. Point clouds are
a means of assembling a massive quantity of single spatial measurements into a dataset.

In this project, the PointClouds have been obtained using the camera Zivid One. Zivid one is an
structural light camera and its output is an organized point cloud. This means that the point cloud
is organized as a 2D array of points that features an image like structure. The correlation between
pixels in 2D images and the 3D points in ordered point clouds is of 1:1. Thus, the results of the 2D
operations and algorithms can be directly obtained in the 3D point cloud. Given that the camera
has 2.3 MP (1920 x1200), and because of the 1:1 correlation, the created point cloud consists of
2.3 milion points.

(a) Point cloud structure.

(b) Point cloud array.

Figure 6.2: Point cloud

6.1.2 Structured Light Imaging

In this type of 3D cameras, the point cloud is obtained modulating patterns of light on the scene
and capturing their reflection with a 2D imaging camera.

Thus, a known pattern is projected onto the surface, in this case the battery pack. When the
camera views the pattern from a different prespective, the surface features of the battery pack
distort the pattern. Analysing these distortions, the surface topography can be reconstructed.

In this case, the Zivid camera contains a projector and a camera. The camera and the projector are
placed in different distances forming an specific angle. The depth information is obtained dividing
the stripe displacement in each point of the image (see Figure 6.3). In the specific case of the Zivid

53

CHAPTER 6. POSE ESTIMATION

one, for every frame, several images are captured at an acquisition rate of 10 Hz in order to increase
the accuracy of the captured point cloud.

Figure 6.3: Structured light imaging

6.2 Point cloud and depth images storage

The creation of the point cloud files is one of the basics of this project. It has been used for:

• In the task planner, to save the point clouds used for the detection and the pose estimation.

• For the extrinsic calibration. To save the point clouds used by the Zivid CLI calibration tool.

• In initial stages of the project, in order to understand the pointclouds.

Capture service

As explained before, the integration of the different system elements (camera, computer and robot)
has been done through ROS. Thus, first of all when the computer wants to indicate to the camera
that a capture is needed, the ROS capture.srv service has to be invoked.

This service is invoked to trigger a 3D capture. The resulting point cloud is published into the topic
/zivid_camera/points and the depth image is published into the topic /zivid_camera/depth/image_raw.
Moreover, the 2D color image is published into the topic color/image_color .

From the one side, to save the Pointcloud2 message, it should be converted into any of the valid
point cloud formats (.zdf, .pcl, .ply, .pcd, etc..). Given its ability to store and process point cloud
dataset and its capacity of storing different data types, in this project, the .pcd format has been
selected [36].

From the other side, the chosen format for saving the depth image dataset has been the Numpy
file format (.npy). This format is the fastest to store points (thus, reduces the system timings) and
it eases the access of the task planner to the depth image [40].

54

CHAPTER 6. POSE ESTIMATION

To save the Pointcloud2 message and the depth image, a ROS subscriber has been created. This
subscriber, receive the messages and launches the function callback2 (to save and transform the
Pointcloud2 message to .pcl data) and callback3 (to save and transform the depth message to .npy
data).

self .Pointcloud_sub = rospy.Subscriber(’/zivid_camera/points’, PointCloud2, self.callback2)

To do so, the pcl library should be installed:

~$ pip3 install python-pcl

def callback2(self ,ros_cloud)
points_list = []
for data in point_cloud2.read_points(ros_cloud, skip_nans=True):

points_list .append([data[0], data [1], data [2], data [3]])
pcl_data = pcl.PointCloud_PointXYZRGB()
pcl_data.from_list(points_list)
pc_num= str(self.im_num)+’.pcd’
rospy. loginfo (pc_num)
pcl_data.to_file(’/home/eduard/LIBRES_SYS/yolov3/data/samples/’+pc_num)

def callback3(self ,data):
try:

NewImg = self.bridge.imgmsg_to_cv2(data, "passthrough")
depth_array = np.array(NewImg, dtype=np.float32)
directory_im2 = r’/home/eduard/LIBRES_SYS/yolov3/data/depth/’
im_name= ’depth’+str(self.im_num)+’.npy’
np.save(os.path.join(directory_im2, im_name), depth_array)
cv2.waitKey(100)
print(’npy saved’)

except CvBridgeError as e:
print(e)

cv2.destroyAllWindows()
rospy. loginfo (’depth image saved’)

Figure 6.4: Point cloud saving flow chart

55

CHAPTER 6. POSE ESTIMATION

Point cloud data visualization

There are different ways to visualise these saved point clouds. One is using the pcl_viewer. This
viewer can easily be installed in Ubuntu running:

~$ sudo apt-get install -y pcl-tools

Thus, to visualize the point cloud run (substituting the point cloud path):

~$ pcl_viewer -multiview 1 "point_cloud_path".pcd

The obtained output is showed in Figure 6.5.

Figure 6.5: pcl_viewer

6.3 Intrinsic and Extrinsic Parameters

Geometric camera calibtation refers to the procedure of estimating the parameters and image sensor
of a camera. These parameters can be used to correct lens distortion, find objects in world units,
determine the position of the camera, etc..

Thus, to find the camera parameters means to find the intrinsics, extrinsics and distortion coeffi-
cients.

56

CHAPTER 6. POSE ESTIMATION

Figure 6.6: Extrinsic and intrinsic parameters concept

6.3.1 Pinhole Camera Model

The pinhole camera model determines the relationship between the coordinates of a point placed
in the world space (P(X,Y,Z) in Figure 6.7) and its projection onto the image plane [14].

For ideal pinhole cameras, the camera aperture is described as a point and no lenses are used
to focus the light. This cameras (called perspective cameras), can be represented by a direct
perspective transformation. This transformation does not consider many effects of a real camera
such as distortions, blurring, unfocused objects, etc...

Figure 6.7: Pinhole Camera Model

57

CHAPTER 6. POSE ESTIMATION

Geometry and mathematics of the pinhole projection

The aim of the pinhole equations is to compute the intersection of a light ray coming from a point
placed in the world (P=(x,y,z)) with the image plane. [33]

Basic perspective projection: Deriving using similar triangles, the basic equations (6.1 and 6.2)
can be obtained.

x = f
X

Z
(6.1)

y = f
Y

Z
(6.2)

So, from the equations (6.1 and 6.2), the homogeneous transformations can be found. Fundamen-
tally, the homogeneous coordinates represent a 2D point (x,y) by a 3D point (x’,y’,z’).

 x′

y′

z′

 =

 f 0 0 0
0 f 0 0
0 0 1 0



X
Y
Z
1

 (6.3)

6.3.2 Intrinsic Parameters

As explained before in the subsection 6.3.1, the intrinsic matrix transforms the 3D camera coordi-
nates to 2D homogeneous image coordinates. The intrinsic parameters matrix is (where f is the
focal length, s is skew coefficient, and c is the optical center):

K =

 fx s cx

0 fy cy

0 0 1

 (6.4)

• Focal length, fx and fy: Is the distance between the pinhole and the image plane. The focal
length is usually measured in pixels.

• Otpical center, cx and cy: it is the principal point in the Figure 6.7, in pixels.

• Axis skew, s: Is non-zero if the image axes are not perpendicular.

In this case, the values for the intrinsic parameters matrix (K) for the Zivid are:

K =

 2765.132 0 946.901
0 2764.617 579.477
0 0 1

 (6.5)

These parameters have been found in the sensor_msgs/CameraInfo.msg ROS message published
in the topic depth/Camera_info (see ROS messages and ROS topics in section 3.1.2). The message
contains the meta data information for the camera.

58

CHAPTER 6. POSE ESTIMATION

6.3.3 Extrinsic Parameters Calibration

The main objective of the extrinsic calibration of the camera is to calculate the necessary transform
matrices in order to obtain the position of the object in the robot base coordinate system (extrinsic
parameters).

The relation

HROB
OBJ = HROB

EE ∗HEE
CAM ∗HCAM

OBJ (6.6)

In this case, it has been used an eye in hand configuration, so the end effector of the robot is
equipped with a camera. For that configuration, realize the camera calibration means calculating
the transform matrix HEE

CAM (see equation 6.6). Note that, in equation 6.6, HROB
OBJ is the transform

matrix of the object from the robot base frame, HROB
EE is the transform of the end-effector from

the robot base frame, HEE
CAM is the transform of the camera in frame end-effector, and HCAM

OBJ is
the transform of the object from the camera base frame.

(a) Robot’s and end-effector’s coordinates
systems.

(b) Plot of the transform matrices concept and robot’s,
end-effector’s and camera’s coordinates systems.

Figure 6.8: Eye-in-hand configuration

Thus, it has been taken different images of the checkerboard 1 (see Figure 6.11) from different
known robot configurations. Then, to find the transform matrix (HEE

CAM) it has been used the
Zivid CLI tool. The arguments of the Zivid CLI tool are the image and the matching robot pose in
a .yaml file. So, it has been created a python script in order to convert the different robot positions
from quaternions to the correspondent opencv format.

Zivid 3D camera uses a special 9x6 gray/white checkerboard. For that reason, the calibration
object used has been provided by the camera manufacturer, see Figure 6.11.

1The checker board is the object used for calibration.

59

CHAPTER 6. POSE ESTIMATION

Figure 6.9: 9x6 gray/white checkerboard

Extrinsic calibration process

In this case, the Zivid camera extrinsic calibration has been done using the Zivid Command Line
Interface (CLI) tool for Hand-Eye calibration. The main function of this tool is to obtain the
transform matrix of the camera from the end-effector (HEE

CAM).

To calculate this transform, the tool needs a dataset containing:

• The point cloud captures of the calibration checkerboard (Figure 6.11) from different positions
and orientations (in .zdf format).

• The corresponding positions of the end-effector (in .yalm format, see appendix C.3).

Figure 6.10: Calibration dataset (.zdf and .yalm files)

From the one side, n order to move the robot to the different positions the script move_to_cal.py
has been created, see the full code in appendix B.11. It is essential to underline that the end-effector
used to take the calibration point clouds is defined in a specific position, in case of using a different
end-effector position the quaternions defined in the script might be invalid needing to redefine new
valid poses. In the case of redefining the poses, the .yalm files should also be updated.

60

CHAPTER 6. POSE ESTIMATION

From the other side, to obtain the .yalm files quickly from the positions the obtain_cal_files.py
has been created. The arguments for this script are two lists. The first one contains the x, y and
z positions, and the second one contains the rotation in quaternions (qx, qy, qz and qw). With this
information calculates the transform matrix and automatically creates all the .yalm files, see the
full script in appendix B.14.

After creating all the necessary files, the next step has been opening the Zivid CLI tool for calibra-
tion.

C:\Users\>ZividExperimentalHandEyeCalibration.exe --h
SYNOPSIS

ZividExperimentalHandEyeCalibration.exe [-h] [--eih] [--eth] [-n <max-
images>] [-d <input-dir>] [--tf <transform-file>] [--rf <residuals-
file>]

OPTIONS
-h, --help help
--eih, --eye-in-hand perform eye-in-hand calibration
--eth, --eye-to-hand perform eye-to-hand calibration
-n, --max-images <max-images> max number of input images (default: 100)
-d, --input-dir <input-dir> input directory for point clouds and robot

poses
--tf, --transform-file <transform-file> save resulting hand eye transform

to file
--rf, --residuals-file <residuals-file> save resulting hand eye residuals

to file

Please specify either --eye-in-hand or --eye-to-hand

Then, the path where .yalm and .zdf files are located has been provided. Moreover, the path where
the calibrated transform and the residuals should be stored has also been provided.

C:\Users\>ZividExperimentalHandEyeCalibration.exe --eih -d "C:\Users\\Documents\
final_cal_files" --tf "C:\Users\\Documents\final_cal_files\calibration
transform.yaml" --rf "C:\Users\\Documents\final_cal_files\residual.yaml"

Finally, after running the previous command the finals results have been obtained. Appendix C.1.
Thus, the final transform matrix is:

HEE
CAM =


−1.948419e− 01 1.6311910e− 02 9.806989e− 01 −1.040664e+ 03
−9.808231e− 01 1.594048e− 03 −1.948931e− 01 2.8582285e+ 02,
−4.742362e− 03 −9.998656e− 01 1.568851e− 02 4.379912e+ 01

0. 0. 0. 1.



61

CHAPTER 6. POSE ESTIMATION

Figure 6.11: Extrinsic calibration flow chart

6.4 World coordinates of the detected components

In order to be able to move the robot to the positions where all the components are located, the
world reference frame position of them should be obtained. To do so, the 2D image detection is
used. As it is explained in chapter 5, the different components are detected and the positions of
them in the coordinates of the image are obtained. When the detection is done, a .txt file containing
all the positions is created. Each line of the .txt file contains the position of two corners of the

62

CHAPTER 6. POSE ESTIMATION

bounding box, inside which the component is located, the class 2 and the detection accuracy (see
the example below).

x_1 y_1 x_2 y_2 class accuracy
862 473 1314 669 1 0.796174

(a) (b)

Figure 6.12: Point cloud data example

A previous step before obtaining the world reference frame position of the components is to obtain
the camera coordinates of the component. This means the x,y and z coordinates of the desired
components in camera reference frame (see Figure 6.13). It is important to underline that the point
cloud information is always in camera reference frame (see point cloud examples in figure 6.12).
This is the main purpose of the function CamR_pos (full code in appendix B.2).

Figure 6.13: Camera reference coordinates concept

2The class of the detection is an integer that represents a component, i.e. screws, battery module, etc...

63

CHAPTER 6. POSE ESTIMATION

CamR_pos and WR_pos

For this project, two versions of the CamR_pos function have been written. The first one, finds the
desired coordinates using and analysing the pointcloud, and the second one (final version) analyses
directly the depth image.

- First version

In this first version, the function matches the 2D image (in this case 1200 pixels x 1900 pixels) with
the 3D point cloud. To do this matching, first the function finds the maximum and the minimum x
and y values of the point cloud. Then, an interpolation is done using: this point cloud values, the
maximum and the minimum values of the 2D image (in this case xmin = 0, xmax = 1200, ymin = 0,
ymax = 1900), and the (x, y) positions in the 2D image of the both corners of the label. The result
of this interpolation is the x and y values of the label corners in camera reference frame.

Once the x and y position of the the detected label have been found, the next is to find the z
position (still working in camera reference frame). Using a for, the function goes over the point
cloud looking for the z value corresponding to the x and y positions bounded inside the label and
calculating the mean of the z value inside the label.

The main reason for discarding this version were the imprecise results and the high computational
cost of the solution. Since, it is not an organized point cloud, the point cloud cannot be indexed.
For that reason the function has to run over the whole point cloud to find the positions.

Figure 6.14: CamR_pos flow chart (first version)

64

CHAPTER 6. POSE ESTIMATION

- Final version

In the second (and final) version, it has been suggested a different approach for the solution. Instead
of looking to the point cloud to find the positions, the depth image has been analysed.

Thus, the idea in this second approach is to find the z coordinates of the desired area using the
depth image. To do so, the function runs over the pixels where the components have been detected
and looks for the z value in these pixels. With the z value, the pixel position and the intrinsic
parameters (explained in section 6.3.2), the x and y values can also be found. Basically, the x and
y positions are found solving the equations 6.7 and 6.8 (where x, y are the positions in camera
reference, cx and cy are the position of the optical center, and fx and fy are the focal length):

x = (xpixel − cx) ∗ z ∗ f−1
x (6.7)

y = (ypixel − cy) ∗ z ∗ f−1
y (6.8)

Figure 6.15: CamR_pos flow chart (final version)

After calculating the positions in camera reference frame, the world reference coordinates can be
calculated and this is the aim of the WR_pos function B.3. To do so, the transform matrix 3 of
the camera in world reference has been calculated. The transformation matrix is obtained with
the rotation and the translation of the camera at the capture instant. Thus, the world reference
positions are finally calculated using the equation 6.9, where POSW R

OBJ is the position of the object
3Matrices allow arbitrary linear transformations to be displayed in a consistent format, suitable for computa-

tion.This also allows transformations to be concatenated easily (by multiplying their matrices). [11]

65

CHAPTER 6. POSE ESTIMATION

in world reference, HW R
CAM is the transformation matrix of the camera frames to the world reference

frames and POSCAM
OBJ is the position of the object in camera reference.

POSW R
OBJ = HW R

CAM ∗ POSCAM
OBJ (6.9)

Figure 6.16: WR_pos flow chart

6 Degrees of Freedom of the screws

Given that in this project the specific tools needed for the removal operation have not been designed,
and how it is explained in section 6.4 only the (x,y,z) coordinates in world reference has been
obtained.

For the specific case of the screw removal operation, depending on the tool, an estimation of the 6
Degrees of Freedom (DOF) of the screw might be needed. Although it has not been implemented,
a theoretical analysis of this solution has been done.

To find the 6 DOF of the screws, the designed solution should follow the next steps:

• Extract an small round of interest point cloud near the screw. This action should be repeated
x times to have a high density point cloud in the area.

• A 3D model of the screw should be created (in .stl format)

• Mesh the model to create a model pointcloud. This operation can be done i.e. with tools like
Meshlab or Blender.

66

CHAPTER 6. POSE ESTIMATION

• Align the meshed model with the recorded point cloud. The ICP tool could be useful for this
task.

• Obtain the 6 DOF of the screw.

67

Chapter 7

Methodology, task planning

Robots need task planning algorithms to sequence actions toward accomplishing goals that are
impossible through individual actions. In the context of the work presented in this thesis, each
battery pack is different depending on the model. Thus, the order of the operations is going to
be different depending on the position of these components, i.e., a specific battery pack model
can have the battery management system screwed on the modules, but in another one maybe this
component is screwed next to the battery modules, so the order of operation is different. For that
reason, task planning has been one of the main challenges of this project.

This chapter presents the task planning methodology followed to make the task planner design,
then explains the task planner design and how it integrates all the system elements. A detailed
explanation and the flow charts of all the involved Python-based functions and scripts are also
included.

7.1 Task planning methodology analysis

In this study, there have been considered two ways of handling the design of a computer vision
based dismantling system capable of dismantling a LIB pack to module:

• Model detection combined with a database position
One possibility to solve the task planning issue is to use a LIB pack model detection combined
with a database containing all the positions and order of operations.
First of all, this model requires the creation of a database containing all required operations
and positions. As each battery pack needs its own predefined data, if the OEM (Original
Battery Manufacturers) change or make some variations to the model, the database must be
updated.
In this method, computer vision techniques detect the specific model of the battery pack and
once the battery model is known, the next step is to define its orientation and position in
order to relate and use the information located in the database. This database contains the
positions and the operations that the robot must follow to perform the disassembly. [35]

Pros Cons
- Optimal path - Huge database

- Robust to errors - Sensitive to changes
- Time effective - Unnecessary moves if some parts are missing

- Possible crash with not perfectly screwed screws

68

CHAPTER 7. METHODOLOGY, TASK PLANNING

• Fully automated dismantling system
Another handling for the design of the task planning problem is a completely automated dis-
mantling system. For this handling, the main challenge is to find a common dismantling task
plan for all the different battery models and reduce the consequences due to bad detections.
First of all, the system detects, cuts and removes all the wires and cables. Afterwards, it
detects and removes all the screws. Once the screws are removed, some components are free
to be taken out. When these components are out of the battery pack, the system checks if
there are new accessible screws, and repeats all the operations.
Given that some components have more complex dismantling operations, not just unscrew
and remove, this system should also have a small database containing the operations for
this group of components. Thus, when the system detects a component that needs a special
operation or moves, i.e. a slide, it will access the database of moves.
In a system of this kind the detection errors can be fatal, so a safety database should also
be included. The safety database contains the necessary information to ensure that the
operations are safe. For instance, the number of screws that have to be removed for removing
a certain component. [35]

Pros Cons
- Relatively small database - A bad detection can result in fatal error

- Stable to modifications and new versions - Still a small database is needed
- - Not optimal path
- - Additional computing time

Given that one of the requirements of the system is to have high flexibility, the fully automated
dismantling system handling presented above has been selected as the methodology to follow by
the task planner.

7.2 Fully automated dismantling system

Due to the elevated degree of autonomy of the fully automated dismantling systems, this kind of
systems requires a high-level task planner. Theoretically, the system should be capable of resolving
and carrying out all the uncertainties appeared during the dismantling process.

Nonetheless, sometimes the achievement of the robustness and the flexibility required in the disas-
sembly process is a huge challenge. It is impossible to guarantee that all the uncertainties can be
solved using automation exclusively.

It also has to be taken into account that there are variations and uncertainties caused by the use
of the product. Therefore, LIB that has to be treated are in their End-of-Life, and this has its
consequences.

In order to solve or minimize to the maximum these uncertainties, the disassembly has been imple-
mented following the principle of cognitive robotics. ’Cognitive robotics allow a robot to reason, re-
vise and perceive change in unpredictable environments’ [35] https://link.springer.com/content/pdf/10.1007

7.2.1 Agent emulating human behaviour

Human operators are more capable of dealing with uncertainties in comparison to automated sys-
tems. Thus, the intention of cognitive robotics is to emulate the behaviour of a human operator

69

CHAPTER 7. METHODOLOGY, TASK PLANNING

during the disassembly process.

The agent emulating the human behaviour needs to be adapted with the closed perception action
loop architecture and competences of the automation. Due to the limitations of automation, human
assistance must be included in the behaviour control. As a consequence, in the hypothetical case
of unresolved situations an operator will help the robot.

The first step is to recognise the model of the sample in order to see if the model is known. If the
model is known, the robot follows the instructions in the database. In case that the system does
not realise a successful dismantling, the operator helps to learn and revise the system. If the model
is being seen for the first time, the robot (cognitive robotic agent) executes different operations
according to the components detected in the current state. The removal process is carried out with
a certain number of attempts and different techniques. After exhausting the automated alternatives
the operator assistance is requested.

In relation to the process flow (see Figure 7.1), a sequence of actions is generated using the knowl-
edge in the database and the disassembly system goes through the states of disassembly. When
one main component has been successfully removed, the agent passes to the next stage of the
disassembly. This continues until the goal state is reached.

Figure 7.1: Concept overview: Agent emulating human behaviour [12]

70

CHAPTER 7. METHODOLOGY, TASK PLANNING

7.2.2 Semi-destructive disassembly

’The semi-destructive approach aims to destroy only connective components, e.g. via breaking,
folding or cutting, leaving main components with little or no damage. This increases the efficiency
of the operation and has been found in many cases to be economically feasible. Many research works
relating to automatic disassembly use semi-destructive techniques to overcome the uncertainties in
the product condition and geometry. ’ [35]

7.3 Task Planner Design

The task planner is responsible for merging the different functions and elements of the system. To
do this, the task_planner.py script based on Python has been created (see the full code in appendix
B).

Fundamentally, the task planner script integrates the robot, the computer and the Zivid camera,
using tools like Python, ROS, OpenCV, etc... . Using the information provided by these elements,
the task planner is in charge of decision making. After analysing the situation and the different
components, it communicates with the robot in order to send the dismantling actions.

The designed task planner integrates different Python scripts and functions. The aim of each
function or script is different. To explain them, in this section, they have been categorised depending
on their functionality inside the system.

• Image Capturing

• Object detection (2D Image analysis).

• Pose estimation (3D Point cloud and depth image).

• Decision making.

• Robot communication and path plannification (using ROS and MoveIt!).

Figure 7.2: Task planner concept

71

CHAPTER 7. METHODOLOGY, TASK PLANNING

7.3.1 Task Planner overview

This section aims to give a general overview of the task planner process and mention the different
functions and scripts. After a short explanation, a reference to the detailed description of these
function and scripts has been provided.

First of all, the main loop of the task planner (or the dismantling system) is the next: Takes 2D
and 3D Images, detects components, finds the world reference positions, decides the order of the
operations, removes the components and repeats this actions until the goal state is reached (see
step A-E respectively in Figure 7.3).

Figure 7.3: Task planner main loop

Image Capturing (A)

Firstly, the task planner moves the robot into three predefined positions (certain translation and
orientation) in order to take the images (runs ’rosrun lefty_move move_to_pict.py’).

The aim of taking three images is to ensure that the system is able to indentify the different parts
of the LIB pack. For that reason, the images are taken from different orientations. In case that
for other LIB packs were necessary to take four pictures instead of three, the code can be easily
modified.

The information provided from the images does not contribute precisely in the same way (in the
task planner point of view). In this case, the first and third images are taken with more inclination.
These images aim to detect the screws placed in the lateral sides of the battery. Sometimes, given
the geometry of the battery packs, the screws placed in this location can be occluded. Then, the
second image is analysed to detect all the components and the decision making is based on it.

To give a better accuracy to the system, the positions of the detected screws (in different images)
are merged. Thus, if, i.e. a screw is detected into 2 or more images a mean of the positions is
calculated.

Used functions and scripts:

– Script (ROS): move_to_pict.py -> See the full explanation in section 7.3.2, flow chart
in Figure 7.8 and code in appendix B.9.

72

CHAPTER 7. METHODOLOGY, TASK PLANNING

Object detection (2D Image) (B)

Once the images have been taken, the next step is to apply the object detection. The object
detection part is responsible for detecting the different components in the image. Such as screws,
modules and BMS. For more information regarding the detection of different battery components,
see Chapter 5.

the object detection script used by the task planner is detect.py 1. This script uses the YOLO (You
Only Look Once) object detection system to obtain the image position, of the components. For
more information about the YOLO alorithm, see section 5.2. The output of the object detection
system is a .txt file containing all the image coordinates of the labels containing the objects.

Below, in Figure 7.4, there is an overview of the inputs and outputs of the script detect.py during
an object detection.

– Script (Python): detect.py

Figure 7.4: Object Detection Overview

Decision making (C)

Once the different objects are detected, the num_components() function converts the data from
the lines of the .txt files into arrays in order to ease the programming. For more information, see
section 7.3.2.

1Calls: (’python3 /LIBRES_SYS/yolov3/detect.py –save-txt’)

73

CHAPTER 7. METHODOLOGY, TASK PLANNING

The data returned by the function num_components() is used by the function what_component()
in order to decide the order of the removal operations. To realize this task, the function establish
priorities to the components using the computer vision based subfunction has_comp_over().

To decide the order of the removal operations, only one image is used, the one taken with less
camera angle with respect to horizontal. The images with a higher inclination are only used for
detecting screws.

– Function (Python): num_components() -> See the full explanation in section 7.3.2,
flow chart Figure 7.9 and code in appendix B.5.

– Function (Python): what_component() -> See the full explanation in section 7.3.2,
flow chart Figure 7.10 and code in appendix B.6

– Function (Python): has_comp_over() -> See the full explanation in section 7.3.2, flow
chart Figure 7.11 and code in appendix B.6

Position calculation (D)

At this point the system has the positions of the objects in 2D camera coordinates (pixels). These
positions are not useful for the system thus, in order to move the robot to these positions, they
have to be transformed into 3D points.

Therefore, to find the world reference coordinates of the different components, first the camera
reference coordinates 2 are found (CamR_pos()). Then, given that the capture positions are
known, the world reference position of the objects can be obtained (WR_pos).

This action is done for all the images taken. Once all the positions from the different points of view
are found the nearby points (representing the same object or component) are merged.

Used functions:

– Function (Python): CamR_pos() -> See the full explanation in section 6.4, flow chart
in Figure 6.15 and code in appendix B.2.

– Function (Python): WR_pos() -> See full explanation in section 6.4, flow chart in Figure
6.16 and code in appendix B.3.

Robot communication and removal operation (E)

Finally, when the order of the operations and all the positions are known, the last step is to proceed
with the dismantling. To do so, the task planner calls the removal operation (remove()) for every
single component.

For this project, the removal operation has not been specifically designed. Now the system is
moving the robot onto the calculated positions (move_pos().py) and waits for 1 second, simulating
a supposed removal operation.

Used functions and scripts:

2The camera reference coordinates of an object means the position of the object in relative to the camera.

74

CHAPTER 7. METHODOLOGY, TASK PLANNING

– Function (Python): remove() -> See the full explanation in section 7.3.2, flow chart in
Figure 7.13 and code in appendix B.4.

– Function (ROS-Python): move_pos().py -> See the full code in appendix B.10.

7.3.2 Integrated Functions and scripts

The aim of this subsection is to mention and give a detailed explanation of the different functions
and scripts used by the task planner.

Function: main()

The main function basically runs the core of the task planner. See the main function flow chart in
subsection 7.3.3 (Figure 7.7).

Fist of all, the function launches the variables (screw_pos, connect_pos, compon_pos, empty_screw_pos,
co_tot). The intention of these variables is basically to save the resulting output of the num_components
function. Then, it reads the file containing the classes names (LIBRES_classes.names), and saves
them into a dictionary. The creation of this dictionary aims to allow the system to have access
to the nomenclature (see section 5.3.1). The nomenclature is useful for the system because it can
relate the detected classes with their name and in that way know what kind of component it is
analysing.

After the object detection is carried out, the function begins to run its principal loop. Note that
this loop keeps running until the dismantling is completed. The first action of the loop is to take
the 2D and the 3D images of the battery pack (move_to_pict.py). Next, runs the object detection
to detect the components placed in these images, using the YOLOv3 algorithm (detect.py).

When the detection is done, the function analyses each taken image running a "for in range"
loop 3. For each image, it finds the different components and converts the positions of the ob-
jects from image base frame to camera reference frame. Note that the decision-making is just
done with the second image (see function what_component and its flow chart 7.10). Thus, when
the detected positions have been converted into camera frame, they are saved into three arrays
(rem_component_cam_0, rem_component_cam_1, rem_component_cam_2). Precisely these are
the arguments of the function merge_detection which is the next to be run. The output of this func-
tion are the positions of the different components in world reference frame (rem_component_final).
The components are placed in order of removal preference. Finally, the function runs a for through
rem_component_final, calling the remove function.

The system considers that the loop is ended when the rem_component_final is empty. Therefore,
the goal state is reached.

Script: move_to_pict.py

This script aims to move the robot to the predefined capture positions and take and save the 2D
and 3D images. Flow chart of the script in subsection 7.3.3 (Figure 7.8)

3It is important to consider that the design of these functions is based on the Volkswagen battery pack (section
2.3.2. To have a good view of all the necessary components, in this case, is enough to take three images from different
angles.

75

CHAPTER 7. METHODOLOGY, TASK PLANNING

To do so, the script combines the essential coding to move the robot, presented in subsection 3.2.3,
and the ROS communication the Zivid camera.

The structure followed by the script is the following:

– Init the sample class. Configure the camera parameters, create the image, point cloud and
depth image subscribers and wait until the camera service is ready.

– Move the robot to the first capture position.

– Invoke the capture service.

– Save the 2D image, the point cloud and the depth info

– Repeat the previous steps for the second and the third capture positions.

Therefore, after completing each robot trajectory, the capture service (of the camera) is invoked.
Every time that this service is invoked, the 2D and the 3D information is published into the topics
("/zivid_camera/color/image_color"," /zivid_camera/depth/image_raw" and "/zivid_camera/points").

Every time that a color image message is published to the topic "/zivid_camera/color/image_color",
the rospy subscriber (image_sub) launches the callback() function. This function converts the image
ROS message into an open-cv2 file format. Then it saves the image into the desired directory.

Then, if the point cloud dataset message is published to the topic "/zivid_camera/points", the
rospy subscriber calls the function callback3() which converts the point cloud ROS message data
into a .pcd file using the pcl library. More detailed explanation on how to save the point cloud
data in section 6.2 (Point cloud and depth images storage).

Finally, when a depth image message is published to the topic " /zivid_camera/depth/image_raw",
the third rospy subscriber launches the function callback3(). This function aims to convert the
ROS message into a Numpy array and saves it under .npy format. More detailed explanation on
how to save the point cloud data in section 6.2 (Point cloud and depth images storage).

The names of the .jpg, .npy and .pcd files, follow the numbers sequence (0,1,2,..).

Function: num_components

The main objective of the function num_components is to read the results of the object detections
and to translate these results in Python variables in order to ease the programming.

The inputs of the function are:

• Dict_comp (Dictionary): This dictionary contains the class names corresponding to the class
numbers.

• num_im (Integer): This variable gives the information of what image is being analysed. For
instance, when the first picture is analysed, the value is 0, in case of analysing the second
image the value is 1, and so forth.

The results of the object detections, are saved in the/output folder in a .txt file. As it is explained
in section 6.4, the .txt file contains the position of two corners of the bounding box (within each
component located), the class, and the detection accuracy.

76

CHAPTER 7. METHODOLOGY, TASK PLANNING

Using a for loop, the function runs over the lines of the .txt file converting them into arrays. Each
line is classified and saved into different variables according to the kind of detected components
(screws, connective, connection, empty screws or components).

x_1 y_1 x_2 y_2 class accuracy
862 473 1314 669 1 0.796174

So, the outputs of the function are:

• screw_pos (array): An array containing the coordinates of the detected screws. Referenced
in the image base frame.

• connect_pos (array): An array containing the coordinates of the detected connective compo-
nents. Referenced in the image base frame.

• compon_pos (array): An array containing the coordinates of the detected general compo-
nents. Referenced in the image base frame.

• empty_screw_pos (array):

• co_tot (array): An array containing the coordinates of all the detected components. Refer-
enced in the image base frame.

Functions: what_component and has_comp_over

The function what_component is the responsible of the decision making. As explained in Section
7.3.1, the function analyses the detected objects and using computer vision decides the order of
the removal operations. The function has_comp_over could be considered as a sub-function of
the function what_component, it establishes the different probabilities of a specific component of
having a component over.

From one side, the inputs for the function what_component are:

• screw_pos (array): An array containing the coordinates of the detected screws. Referenced
in the image base frame.

• connect_pos (array): An array containing the coordinates of the detected connective compo-
nents. Referenced in the image base frame.

• compon_pos (array): An array containing the coordinates of the detected general compo-
nents. Referenced in the image base frame.

• empty_screw_pos (array):

• co_tot (array): An array containing the coordinates of all the detected components. Refer-
enced in the image base frame.

First of all, the function creates the variable compon_rem (array), the aim of this array is to contain
the list of the components positions in the removal order. Given the nature of the disassembly, the
first components to be removed are the screws. Thus, the screws positions are the first to be added
to the compon_rem array.

To add the rest of the components and decide the order of the operations, the function
what_component runs over the list co_tot analysing each component using the function
has_comp_over.

77

CHAPTER 7. METHODOLOGY, TASK PLANNING

Essentially, has_comp_over realize a computer vision analysis of a specific component, and returns
the probability of being over the other components. Thus, the components are ordered from more
probability to be over to less probability.

From the other side, the inputs for the sub-function has_comp_over are:

• co_tot (array): An array containing the coordinates of all the detected components. Refer-
enced in the image base frame.

• co_an (array): Array containing the image coordinates of a specific component (the compo-
nent being analysed).

The analysis of the probabilities is done using computer vision. The function has_comp_over, runs
over the co_tot using a for loop and compares each component with the specific component being
analysed (co_an).

To realise this comparison, the full image is converted into grey-scale and equalised. Image equali-
sation is a good method to have better quality images without losing information. Moreover, the
equalised image has a better distribution of the intensities of the pixels.

After obtaining the equalised image, the function crops the image into the area of interest, in
this case, the area of the analysed component. This window is binarised using an Otsu threshold.
Thresholding is an effective tool to separate an object from the background, thus in this case,
segmentation is done to try to separate both components. In the Otsu method, the threshold is
determined by minimising intra-class intensity variance [19].

When the window has been binarised, the means of the intensities in the intersection area and in
the rest of the field are calculated and compared with the maximum value (255). The separation
between the values is calculated. This difference is what determines the probability of the analysed
component of being over the other component.

This procedure is repeated for all the components. The maximum value is taken because it repre-
sents the maximum difference between the analysed components, so the worse case.

The output of the function is:

• max(p_list) (float).

Function: remove()

As explained before, the detailed design of the removal operation is not included in the scope of the
project. To program a detailed and working function for the removal operation, the tools should
be completely defined. Anyways, the designed function simulates the removal operation and it is
prepared to be completed in future stages of the project with the specific removal operation.

The inputs of the function are:

• pos_comp (Array): Array containing the position and the class of a specific component.

• Dict_comp (Dictionary): Python dictionary containing the related names of the detected
classes.

First of all, the function remove() checks what kind of component is the selected to be removed.
Since the function is structured depending on the type of the component (screw, connection or

78

CHAPTER 7. METHODOLOGY, TASK PLANNING

general component), in future stages of the project, it is going to be easier to substitute the
simulated script for the definitive removal script or function. In the current version, the function
calls the same script for all the components (move_pos.py).

Given a specific position (in world coordinates) the script move_pos.py, moves the tip link of the
robot to this position. Specifically, the robot does the next sequence of actions (see 1-3 in Figure
7.5):

1. Moves the robot to a safety position. Displaced 30cm safety margin in the z-axis added to
the first target.

2. Moves the robot to the desired position.

3. Moves the robot back to the safety position and quits the script.

Figure 7.5: Safety positions

Function: merge_detection

The function merge_detection aims to merge the positions of the components (for this version just
the screws) commonly detected in one or more images.

The inputs of the function merge_detection are:

• rem_component_cam_0 (Array): Array containing the positions of all the screws detected
in the first image in camera reference frame.

• rem_component_cam_1 (Array): Array containing the positions of all the components de-
tected in the first image in camera reference frame. The components are placed in the list in
order of removal. This is because the decision-making has been previoulsy done in this image
(given its inclinations and consequently its light conditions).

79

CHAPTER 7. METHODOLOGY, TASK PLANNING

• rem_component_cam_2 (Array): Array containing the positions of all the screws detected
in the last image in camera reference frame.

First of all, the function runs a "for in range" loop finding the world reference frame positions of
the input lists of components. To do so, it uses the WR_pos function. Then, these positions are
all stored in the variable rem_component_WR, also the repeated positions.

The next step of the function is to filter the repeated positions to find the output list
(rem_component_WR_filt). To filter the points, the function runs over the rem_component_WR
array adding the not-repeated components to the filtered list. The function considers the two
components as the same one, when the x and y distances are lower than 1cm, and defines the final
position as the mean of both points.

Functions explained in other sections: camR_pos and WR_pos

The aim of the functions camR_pos and WR_pos is to find the position of the detected objects
in world reference in order to use this information to move the robot to the desired positions
(decided by the previously explained functions). They are also used by the task planner, but the
full description of the functions is in the Pose Estimation chapter (see section 6.4).

80

CHAPTER 7. METHODOLOGY, TASK PLANNING

7.3.3 Integrated Functions and scripts flow charts

Task planner Flow Chart

Figure 7.6: Task planner flow chart

81

CHAPTER 7. METHODOLOGY, TASK PLANNING

Function: main()

Figure 7.7: Task planner main function flow chart

82

CHAPTER 7. METHODOLOGY, TASK PLANNING

Script: move_to_pict.py

Figure 7.8: Task planner move_to_pict flow chart

Function: num_components

Figure 7.9: Task planner num_components function flow chart

83

CHAPTER 7. METHODOLOGY, TASK PLANNING

Function: what_component

Figure 7.10: Task planner what_component function flow chart

84

CHAPTER 7. METHODOLOGY, TASK PLANNING

Function: has_comp_over

Figure 7.11: Task planner has_comp_over function flow chart

85

CHAPTER 7. METHODOLOGY, TASK PLANNING

Function: merge_detection

Figure 7.12: Task planner merge_detection function flow chart

86

CHAPTER 7. METHODOLOGY, TASK PLANNING

Function: remove

Figure 7.13: Task planner remove function flow chart

Functions explained in other sections: camR_pos and WR_pos

Flow charts in section 6.4.

7.3.4 Running the task planner

The aim of this subsection, is to explain how to run the task planner.

First of all, open a linux terminal and launch the robot (to configure the ROS master and the
catkin workspace, follow the steps 1-2 in the Guidance, see chapter 4) :

– Working in the simulated mode:

$ roslaunch righty_moveit_config demo.launch

– Working with the real robot:

$ roslaunch wp3_robots load_robot_mod.launch

87

CHAPTER 7. METHODOLOGY, TASK PLANNING

Launch the camera node.

$ ROS_NAMESPACE=zivid_camera rosrun zivid_camera zivid_camera_node

Finally, run the task planner.

$ python3 task_planner.py

Parameters configuration

When running the task planner, four parameters can be configured in order to modify the behaviour
of the task planner. These are:

• - - autotrain (default=False) -> Enables (True) and disables (False) the training data auto
generator (subsection 5.3.6).

• - - take_images (default=True) -> Enables (True) and disables (False) the image capturing
(subsection 7.3.1).

• - - detect (default=True) -> Enables (True) and disables (False) the object detection (YOLO).

• - - debug (default=False) -> Runs the dismantling in "debug mode", asking for permission
to the user to move the robot from the safety positions to the dismantling positions and vice
versa.

To configure these parameters when launching the task planner:

$ python3 task_planner.py --autotrain False --take_images False --detect False --
debug True

Feedback given by the task planner

The system prints some feedback to let the user know what is the task planner doing at each
moment. (See a feedback example in the appendix D)

7.3.5 Conclusion

The proposed task planer is able to recognise which component to remove first and the complete
disassembly plan without prior knowledge of the disassembly strategy. This method is therefore
well suited for products with large variations and hence increases the disassemblability as defined
in chapter 2.

88

Chapter 8

Project results

The aim of this section is to evaluate the accuracy, timing and capacity of decision making of the
task planner. To do so, a Volkswagen battery pack is taken as basis.

8.1 Object detection results

Figure 8.1 shows the results of the YOLOv3 algorithm implementation, where the red filled boxes
indicate the position of the connective components, the blue-filled boxes indicate the screws posi-
tions, the pink-filled boxes indicate the position of the BMS and the black-filled boxes indicate the
position of the battery modules.

Figure 8.1: YOLOv3 output results

89

CHAPTER 8. PROJECT RESULTS

8.2 Time analysis

The aim of this subsection is to analyse the timings of the operations realized by the system. These
are:

– Image capture.

– Image detection.

– Data analysis and decision making.

– Move the robot to pose.

Image capture (mean time: 29.1 seconds)

In this case, the image capture process refers to the robot movement into the image positions
plus the image capturing. In order to do the analysis, the process has been divided into seven
different actions. The first action refers to the robot model loading, and the rest refer to the robot
movements and image captures, see Figure 8.2.

• Load the robot model (MoveIt!). Mean time: 3.2 seconds.

• Move to the first position. Mean time: 6.7 seconds. (1) in Figure 8.2.

• First image capture. Mean time: 3.6 seconds. (2) in Figure 8.2.

• Move to the second position. Mean time: 3.0 seconds. (3) in Figure 8.2.

• Second image capture. Mean time: 3.5 seconds. (4) in Figure 8.2.

• Move to the third position. Mean time: 6.0 seconds. (5) in Figure 8.2.

• Third image capture. Mean time: 3.6 seconds. (6) in Figure 8.2.

90

CHAPTER 8. PROJECT RESULTS

Figure 8.2: Image capturing actions

Image detection (mean time: 4.8 seconds)

The image detection time is the necessary timing to achieve the object detection. Thus, to apply
the YOLO algorithm to the three taken images and find the different components in the 2D images.
Mean time: 4.8 seconds.

Data analysis and decision making. (mean time 9.2 seconds)

Data analysis and decision-making time refer to the timing of calculating the positions in world
frame coordinates and decide the optimal path for the operations. Mean time: 9.2 seconds. Note
that this is the main objective of the proposed system.

Move to the desired positions (mean time: 13.1 seconds)

The robot approaches the components to realize the removal operation. As explained before, to
implement this approach, the robot first moves to a safety position displaced thirty centimetres
in the Z-axis (world frame coordinates) and then moves to the desired location. After that, the
robot moves back to the safety position. The timings for this operation have been divided into six
sub-processes.

• Load the robot model (MoveIt!). Mean time: 3.2 seconds.

• Move to the safety position. Mean time: 1.8 seconds.

• Move to the component position. Mean time: 2.2 seconds.

91

CHAPTER 8. PROJECT RESULTS

• Removal operation. Mean time: not applicable, since it depends on the removal operations,
which is not considered in this project.

• Load the robot model (MoveIt!). Mean time: 3.2 seconds.

• Move to the safety position. Mean time: 2.6 seconds.

Timing summary

Image capture (26.5 s)

Load the robot model (3.2 s)

Move to the first position (6.7 s)

First Image capture (3.6 s)

Move to the second position (3 s)

Second Image capture (3.5 s)

Move to the third position (3 s)

Third Image capture (3.5 s)

Image detection (4.8 s)

Data analysis and de-
cision making (9.2 s)

Move to the desired posi-
tions (13.1 s + removal time)

Load the robot model (3.2 s)

Move to the safety position position (1.5 s)

Move to the component position (2.2 s)

Removal operation (- s)

Load the robot model (3.2 s)

Move to the safety position (3 s)

Figure 8.3: Timing summary

8.3 Decision-making: Optimal path

The decision-making of the system (the order of the removal operations) affects directly onto the
dismantling time. For this reason, the aim of this section is to analyse the order suggested by the
task planner for the Volkswagen LIB pack 1.

1Note: It was expected to realize more tests with different battery pack models, but due to the coronavirus
lockdown and the difficulties accessing the lab, it has finally been tested with one battery pack.

92

CHAPTER 8. PROJECT RESULTS

Optimal dismantling plans

After manually dismantling and analysing the battery pack, the optimal dismantling plans have
been defined (see Figure 8.4).

In the optimal path the screws need to be removed. This step is always the first one. Therefore,
decision-making does not have a direct influence here. As shown in Figure 8.4, the second step
is to remove the connective components and the battery management system. In this case, the
order of the removal operations for these three elements is not critical for a successful removal
(right connective - BMS - left connective, left connective - BMS - right connective or BMS - both
connective).

Figure 8.4: Optimal dismantling plans

Dismantling plans proposed by the system

A set of tests have been carried out under different conditions (i.e different orientations, different
ambient lights conditions, etc..), the system has given a good response.

It has been observed, within the proposed dismantling plans, that the system follows the guidelines
defined in section 8.3. Because the BMS and the two connective components (left and right) are
not overlapping, the system is proposing two different plans that are equivalent. These are referred
as the first and the second plans and are illustrated in Figure 8.5 and 8.6 respectively.

In the first plan, the system begins removing the screws (important to highlight that the screws
are always the first components to be removed), and then decides to remove one connective com-
ponent (in some tests the left one in other tests the right one), the BMS, and the other connective
component in that order. Finally, it removes the battery modules. See Figure 8.5.

93

CHAPTER 8. PROJECT RESULTS

Figure 8.5: Dismantling plan proposed by the system (A)

In the second plan, screws are still the first component to be removed. Then, the system proposes
to remove the BMS and the connective components in that order. As in the previous plan, the
battery modules are removed the last. Thus, the main difference observed between the first plan
(Figure 8.5) and the second one (Figure 8.6) is that in the second plan the BMS is removed the
first (after the screws). This has no impact on the final disassembly process.

Figure 8.6: Dismantling plan proposed by the system (B)

8.4 Accuracy

To analyse the system’s accuracy, a 3D printed pointer 2 simulating the tool has been used. The
simulated tool consists of a thin bar of 25 cm long with a sharp end (simulating the tool center
point). The tool is illustrated on Figure 8.7.

2It has been considered that the 3D printed tool is good enough for testing the accuracy because of its resilience
and production facilities.

94

CHAPTER 8. PROJECT RESULTS

Figure 8.7: Tool

With the tool mounted, it has been run the task planner in debug mode. For safety reasons, the
robot TCP has been moved 3cm above in the Z-axis (word base frame) in order to avoid collisions
with the battery pack in case of failure. Some of the tests are shown in Figure 8.8. In the majority
of the cases, the system has an accuracy of (<0.5mm). The error, considering the diameter of the
screws heads (from 1 to 2.5 cm), is acceptable.

Figure 8.8: Accuracy tests

95

CHAPTER 8. PROJECT RESULTS

In order to show the system accuracy, the previous images have been zoomed in Figure 8.9. Thus,
the positions 1-4 in Figure 8.9 correspond to the same positions in images 1-4 in Figure 8.8.

Figure 8.9: Detailed images: Accuracy tests

96

Chapter 9

Conclusions, future work and
discussion

With the intention of proposing an approach to an automated operating LIB pack dismantling
system, the main objectives of the project have been achieved. Thus, the fields of computer vision,
robotics and battery disassembly have been successfully unified, resulting in a designed and tested
automated disassembly system.

Following this purpose, the assigned main hardware elements (the robot, the 3D camera and the
computer) have been interconnected to carry out the principal system tasks, such as object detec-
tion, pose estimation, decision-making and to move the robot. Therefore, the system is able to
recognise the dismantling object main components, to find their position, and to move the robot
to the defined positions in a specific order. Lab tests have been used to validate the designed task
planner. In this case, the testing object has been a Volkswagen LIB pack.

Regarding the object detection part, the algorithm You Only Look Once is implemented. The
principal contribution of the object detection part is to detect and find the components placed in
the dismantling scene. The results show that the algorithm performs well, giving expected results
and detecting the main components.

The information extracted from the object detection was used in pose estimation to find the centre
point coordinates of the different components, where 2D images and the YOLO results have been
matched with the 3D datasets.

The results obtained in the tests demonstrate that the obtained solution accomplish the fixed
requirements and suggest that future research on this topic should follow in this direction.

The MoveIt! package for the group (ABB IRB4400 manipulator + IRBT4004 track) was created.
This package has been used by the task planner to move the manipulator to the desired positions.
Moreover, a manual to set the UiA Robotics Lab distributed ROS core and the ABB IRB 4400
robots has also been provided.

The results presented in this thesis cast a new light on the use of automation in the EV LIB
batteries disassembly process. The experience in this field could also be adapted to be used for
other dismantling processes and opens new doors and research challenges to other fields directly
related to robotics like tool design.

Note that due to the Covid-19 situation, the initially assigned lab hours have been reduced signifi-
cantly and this issue has directly affected the project’s design and testing stages.

97

CHAPTER 9. CONCLUSIONS, FUTURE WORK AND DISCUSSION

Future work:

The efforts in future stages of the project should be focused on instrumentation and tool design
for the dismantling system, the improvement of the task planner and its capacity of dealing with
different battery packs and continue the research in the object detection and pose estimation topics.

In addition, the system should be tested and trained for different LIB pack models and the robot
should be run, always following the safety conditions, in auto mode. It is also important to consider
a change of the robot speed for some operations, for example rapid motion.

In the future, in order to ensure a robust dismantling process, the task planner should be able to
deal with different tool designs, therefore the final removal operation functions must be specially
adjusted and integrated. Then, it is essential to detect flexible bodies such as wires and cables.
Thus, the direction of the research on the object detection and pose estimation part should concern
how to find a feasible solution for such the objects.

Discussion

Based on the experience achieved in this project, some comments, recommendations and discussions
regarding operational time-saving, wires and the camera positioning in future project stages are
given below.

- Time saving

In this project, the robot model is loaded every time when the task planner wants to move the
robot. Thus, in future stages of the project the robot model should be loaded just once in the
beginning. If this is done, the system will be at least 9.6 seconds faster.

Moreover, as explained in section 8.2, during all the project tests, the ROS main has been run in
manual mode. Since the manual mode is running at a 25% of the maximum speed of the robot, in
future stages of the project, all the movements will be faster (running in automatic mode). Figure
9.1 shows the process time based on a full speed. In addition, ROS 2 system might be considered
instead of ROS presented in this report. Based on the author’s knowledge, ROS 2 developers
claimed it will be a real-time system.

Image capture (18 s)
Load the robot model (3.2 s)

Move to the first position (2.2 s)
First Image capture (3.6 s)

Move to the second position (1 s)
Second Image capture (3.5 s)

Move to the third position (1 s)
Third Image capture (3.5 s)

Image detection (4.8 s)
Data analysis and decision making (9.2 s)

Move to the desired positions (2.23 s + remove)
Move to the safety position position (0.5 s)

Move to the component position (0.73 s)
Removal operation (- s)

Move to the safety position (1 s)

Figure 9.1: Desired task planner timings

98

CHAPTER 9. CONCLUSIONS, FUTURE WORK AND DISCUSSION

- Wires

Wires detection is one of the main challenges for the future stages of the project and in computer
vision in general. The future versions of the task planner should be able to handle wires, i.e. to
cut them. To do this, the information required by the task planner to find the wires should be
provided by a computer vision part. Thus, new algorithms should be implemented in the computer
vision part.

A short-term solution to solve the wires problem would be a training the YOLO algorithm to detect
electrical connections (see Figure 9.2), and cut the connections directly.

Figure 9.2: Electrical connection detail

- Camera positioning

In case of having access to more than one camera, a good option to consider is to place the cameras
in fixed positions. Using an eye-in-hand configuration performs well, and has some advantages
(i.e. only one camera is needed), but it has some disadvantages too. In case of implementing the
methodology in the industry, the continuous moves and removal operations could have negative
consequences like unexpected collisions of the camera with the environment, miscalibrations, etc...

99

Bibliography

[1] A Guide to Understanding Battery Specifications. http://web.mit.edu/evt/summary_
battery_specifications.pdf. Accessed: 2020-02-05.

[2] Pilzecker A. et al. “Annual European Union greenhouse gas inventory 1990-2018 and inventory
report 2020.” In: Copenhagen: European Environment Agency (2020).

[3] ABB IRB 4400. https://new.abb.com/products/robotics/industrial-robots/irb-
4400. Accessed: 2020-03-15.

[4] Anchor Boxes for Object Detection. https://se.mathworks.com/help/vision/ug/anchor-
boxes- for- object- detection.html#:~:text=Anchor%20boxes%20are%20a%20set,
sizes%20in%20your%20training%20datasets. Accessed: 2020-04-16.

[5] Daniel Apley et al. “Diagnostics in Disassembly Unscrewing Operations.” In: International
Journal of Flexible Manufacturing Systems 10 (Apr. 1998). doi: 10.1023/A:1008089230047.

[6] Andreas Bihlmaier and Heinz Wörn. “Hands-on Learning of ROS Using Common Hardware.”
In: Robot Operating System (ROS): The Complete Reference (Volume 1). Ed. by Anis Koubaa.
Cham: Springer International Publishing, 2016, pp. 29–50. isbn: 978-3-319-26054-9. doi: 10.
1007/978-3-319-26054-9_2. url: https://doi.org/10.1007/978-3-319-26054-9_2.

[7] Sachin Chitta. “MoveIt!: An Introduction.” In: Robot Operating System (ROS): The Complete
Reference (Volume 1). Ed. by Anis Koubaa. Cham: Springer International Publishing, 2016,
pp. 3–27. isbn: 978-3-319-26054-9. doi: 10.1007/978- 3- 319- 26054- 9_1. url: https:
//doi.org/10.1007/978-3-319-26054-9_1.

[8] A. D’Souza, S. Vijayakumar, and S. Schaal. “Learning inverse kinematics.” In: Proceedings
2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the
Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180). Vol. 1. 2001,
298–303 vol.1.

[9] Epoch vs Batch Size vs Iterations. https://towardsdatascience.com/epoch-vs-iterations-
vs-batch-size-4dfb9c7ce9c9. Accessed: 2020-05-25.

[10] Klaus Feldmann, Stefan Trautner, and Otto Meedt. “Innovative disassembly strategies based
on flexible partial destructive tools.” In: Vaccine 23 (Dec. 1999), pp. 159–164. doi: 10.1016/
S1367-5788(99)90079-2.

[11] James E. Gentle. “Matrix Transformations and Factorizations.” In: Matrix Algebra: Theory,
Computations and Applications in Statistics. Cham: Springer International Publishing, 2017,
pp. 227–263. isbn: 978-3-319-64867-5. doi: 10.1007/978-3-319-64867-5_5. url: https:
//doi.org/10.1007/978-3-319-64867-5_5.

[12] Serafim GuimarÃ£es et al. “Relation between the amount of smooth muscle of venous tissue
and the degree of supersensitivity to isoprenaline caused by inhibition of catechol-O-methyl
transferase.” In: Naunyn-Schmiedeberg’s archives of pharmacology 286 (Feb. 1975), pp. 401–
12. doi: 10.1007/BF00506654.

100

http://web.mit.edu/evt/summary_battery_specifications.pdf
http://web.mit.edu/evt/summary_battery_specifications.pdf
https://new.abb.com/products/robotics/industrial-robots/irb-4400
https://new.abb.com/products/robotics/industrial-robots/irb-4400
https://se.mathworks.com/help/vision/ug/anchor-boxes-for-object-detection.html##:~:text=Anchor%20boxes%20are%20a%20set,sizes%20in%20your%20training%20datasets
https://se.mathworks.com/help/vision/ug/anchor-boxes-for-object-detection.html##:~:text=Anchor%20boxes%20are%20a%20set,sizes%20in%20your%20training%20datasets
https://se.mathworks.com/help/vision/ug/anchor-boxes-for-object-detection.html##:~:text=Anchor%20boxes%20are%20a%20set,sizes%20in%20your%20training%20datasets
https://doi.org/10.1023/A:1008089230047
https://doi.org/10.1007/978-3-319-26054-9_2
https://doi.org/10.1007/978-3-319-26054-9_2
https://doi.org/10.1007/978-3-319-26054-9_2
https://doi.org/10.1007/978-3-319-26054-9_1
https://doi.org/10.1007/978-3-319-26054-9_1
https://doi.org/10.1007/978-3-319-26054-9_1
https://towardsdatascience.com/epoch-vs-iterations-vs-batch-size-4dfb9c7ce9c9
https://towardsdatascience.com/epoch-vs-iterations-vs-batch-size-4dfb9c7ce9c9
https://doi.org/10.1016/S1367-5788(99)90079-2
https://doi.org/10.1016/S1367-5788(99)90079-2
https://doi.org/10.1007/978-3-319-64867-5_5
https://doi.org/10.1007/978-3-319-64867-5_5
https://doi.org/10.1007/978-3-319-64867-5_5
https://doi.org/10.1007/BF00506654

BIBLIOGRAPHY

[13] Surendra M. Gupta and Charles R. McLean. “Disassembly of products.” In: Computers In-
dustrial Engineering 31.1 (1996). Proceedings of the 19th International Conference on Com-
puters and Industrial Engineering, pp. 225–228. issn: 0360-8352. doi: https://doi.org/10.
1016/0360-8352(96)00146-5. url: http://www.sciencedirect.com/science/article/
pii/0360835296001465.

[14] Richard Hartley and Andrew Zisserman.Multiple View Geometry in Computer Vision. 2nd ed.
USA: Cambridge University Press, 2003. isbn: 0521540518.

[15] IEA. Global EV Outlook 2019: Scaling up the transition to electric mobility. url: https:
//www.iea.org/reports/global-ev-outlook-2019. (accessed: 2020-03-05).

[16] Ehud Kroll, Brent Beardsley, and Antony Parulian. “A Methodology to Evaluate Ease of
Disassembly for Product Recycling.” In: IIE Transactions 28.10 (1996), pp. 837–846. doi:
10.1080/15458830.1996.11770736. eprint: https://doi.org/10.1080/15458830.1996.
11770736. url: https://doi.org/10.1080/15458830.1996.11770736.

[17] K. Masui et al. “Development of products embedded disassembly process based on end-of-
life strategies.” In: Proceedings First International Symposium on Environmentally Conscious
Design and Inverse Manufacturing. 1999, pp. 570–575.

[18] H.S. Mok, H.J. Kim, and K.S. Moon. “Disassemblability of mechanical parts in automobile
for recycling.” In: Computers Industrial Engineering 33.3 (1997). Selected Papers from the
Proceedings of 1996 ICCIC, pp. 621–624. issn: 0360-8352. doi: https://doi.org/10.1016/
S0360-8352(97)00207-6. url: http://www.sciencedirect.com/science/article/pii/
S0360835297002076.

[19] N. Otsu. “A Threshold Selection Method from Gray-Level Histograms.” In: IEEE Transac-
tions on Systems, Man, and Cybernetics 9.1 (1979), pp. 62–66.

[20] J. Pan, S. Chitta, and D. Manocha. “FCL: A general purpose library for collision and prox-
imity queries.” In: 2012 IEEE International Conference on Robotics and Automation. 2012,
pp. 3859–3866.

[21] R. Parasuraman, T. B. Sheridan, and C. D. Wickens. “A model for types and levels of human
interaction with automation.” In: IEEE Transactions on Systems, Man, and Cybernetics -
Part A: Systems and Humans 30.3 (2000), pp. 286–297.

[22] J. Redmon and A. Farhadi. “YOLO9000: Better, Faster, Stronger.” In: 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). 2017, pp. 6517–6525.

[23] Joseph Redmon and Ali Farhadi. YOLOv3: An Incremental Improvement. 2018. arXiv: 1804.
02767 [cs.CV].

[24] Robot Operating System Introduction. http://wiki.ros.org/ROS/Introduction. Accessed:
2020-02-20.

[25] Robot Operating System Master. http://wiki.ros.org/Master. Accessed: 2020-02-202020-
02-20.

[26] Robot Operating System Messages. http://wiki.ros.org/Messages. Accessed: 2020-02-20.
[27] Robot Operating System Nodes. http://wiki.ros.org/Nodes. Accessed: 2020-02-20.
[28] Robot Operating System Topics. http://wiki.ros.org/Topics. Accessed: 2020-02-20.
[29] J. Schmitt et al. “Disassembly automation for lithium-ion battery systems using a flexi-

ble gripper.” In: 2011 15th International Conference on Advanced Robotics (ICAR). 2011,
pp. 291–297.

[30] G. Seliger et al. “Flexible disassembly tools.” In: Feb. 2001, pp. 30–35. isbn: 0-7803-6655-7.
doi: 10.1109/ISEE.2001.924498.

101

https://doi.org/https://doi.org/10.1016/0360-8352(96)00146-5
https://doi.org/https://doi.org/10.1016/0360-8352(96)00146-5
http://www.sciencedirect.com/science/article/pii/0360835296001465
http://www.sciencedirect.com/science/article/pii/0360835296001465
https://www.iea.org/reports/global-ev-outlook-2019
https://www.iea.org/reports/global-ev-outlook-2019
https://doi.org/10.1080/15458830.1996.11770736
https://doi.org/10.1080/15458830.1996.11770736
https://doi.org/10.1080/15458830.1996.11770736
https://doi.org/10.1080/15458830.1996.11770736
https://doi.org/https://doi.org/10.1016/S0360-8352(97)00207-6
https://doi.org/https://doi.org/10.1016/S0360-8352(97)00207-6
http://www.sciencedirect.com/science/article/pii/S0360835297002076
http://www.sciencedirect.com/science/article/pii/S0360835297002076
https://arxiv.org/abs/1804.02767
https://arxiv.org/abs/1804.02767
http://wiki.ros.org/ROS/Introduction
http://wiki.ros.org/Master
http://wiki.ros.org/Messages
http://wiki.ros.org/Nodes
http://wiki.ros.org/Topics
https://doi.org/10.1109/ISEE.2001.924498

BIBLIOGRAPHY

[31] Semantic Robot Description Format (SRDF). http://wiki.ros.org/srdf. Accessed: 2020-
03-10.

[32] Socket Interface. https://www.sciencedirect.com/topics/computer-science/socket-
interface. Accessed: 2020-04-02.

[33] Peter Sturm. “Pinhole Camera Model.” In: Computer Vision: A Reference Guide. Ed. by
Katsushi Ikeuchi. Boston, MA: Springer US, 2014, pp. 610–613. isbn: 978-0-387-31439-6.
doi: 10.1007/978-0-387-31439-6_472. url: https://doi.org/10.1007/978-0-387-
31439-6_472.

[34] I. A. Sucan, M. Moll, and L. E. Kavraki. “The Open Motion Planning Library.” In: IEEE
Robotics Automation Magazine 19.4 (2012), pp. 72–82.

[35] Wei Hua Chen Supachai Vongbunyong. Disassembly Automation. Automated Systems with
Cognitive Abilities.

[36] The PCD (Point Cloud Data) file format. https : / / vml . sakura . ne . jp / koeda / PCL /
tutorials/html/pcd_file_format.html. Accessed: 2020-03-17.

[37] Kathrin Wegener et al. “Disassembly of Electric Vehicle Batteries Using the Example of the
Audi Q5 Hybrid System.” In: Procedia CIRP 23 (Dec. 2014). doi: 10.1016/j.procir.2014.
10.098.

[38] Kathrin Wegener et al. “Robot Assisted Disassembly for the Recycling of Electric Vehicle
Batteries.” In: vol. 29. Apr. 2015. doi: 10.1016/j.procir.2015.02.051.

[39] A. Weigl-Seitz et al. “On strategies and solutions for automated disassembly of electronic
devices.” In: The International Journal of Advanced Manufacturing Technology 30 (Sept.
2006), pp. 561–573. doi: 10.1007/s00170-005-0043-8.

[40] What is .npy files and why you should use themâ. https://towardsdatascience.com/what-
is-npy-files-and-why-you-should-use-them-603373c78883. Accessed: 2020-03-25.

[41] You Only Look Once alogrithm. https://medium.com/@ODSC/overview-of-the-yolo-
object-detection-algorithm-7b52a745d3e0. Accessed: 2020-03-15.

[42] Yin Zhou and Oncel Tuzel. VoxelNet: End-to-End Learning for Point Cloud Based 3D Object
Detection. 2017. arXiv: 1711.06396 [cs.CV].

[43] Zivid official documentation. http://www.zivid.com/downloads. Accessed: 2020-03-25.
[44] Zivid: Introduction to stops. https://zivid.atlassian.net/wiki/spaces/ZividKB/

pages/98763232/Introduction+to+Stops. Accessed: 2020-04-25.

102

http://wiki.ros.org/srdf
https://www.sciencedirect.com/topics/computer-science/socket-interface
https://www.sciencedirect.com/topics/computer-science/socket-interface
https://doi.org/10.1007/978-0-387-31439-6_472
https://doi.org/10.1007/978-0-387-31439-6_472
https://doi.org/10.1007/978-0-387-31439-6_472
https://vml.sakura.ne.jp/koeda/PCL/tutorials/html/pcd_file_format.html
https://vml.sakura.ne.jp/koeda/PCL/tutorials/html/pcd_file_format.html
https://doi.org/10.1016/j.procir.2014.10.098
https://doi.org/10.1016/j.procir.2014.10.098
https://doi.org/10.1016/j.procir.2015.02.051
https://doi.org/10.1007/s00170-005-0043-8
https://towardsdatascience.com/what-is-npy-files-and-why-you-should-use-them-603373c78883
https://towardsdatascience.com/what-is-npy-files-and-why-you-should-use-them-603373c78883
https://medium.com/@ODSC/overview-of-the-yolo-object-detection-algorithm-7b52a745d3e0
https://medium.com/@ODSC/overview-of-the-yolo-object-detection-algorithm-7b52a745d3e0
https://arxiv.org/abs/1711.06396
http://www.zivid.com/downloads
https://zivid.atlassian.net/wiki/spaces/ZividKB/pages/98763232/Introduction+to+Stops
https://zivid.atlassian.net/wiki/spaces/ZividKB/pages/98763232/Introduction+to+Stops

Appendix A

Hardware Specifications

103

zivid.com

3D Camera Specifications

Full RGB 3D
color camera

High Dynamic Range
rapid electronic iris

Airtight and
intelligent cooling

Active lighting for
textureless objects

Small Medium Large

Optimal Range (m) 0.3 - 0.8 0.6 - 1.6 1.2 - 2.6

Maximum Range (m) 1.0 2.0 3.0

FOV (mm) 170 x 140 @ 0.3m
650 x 480 @ 1.0m

420 x 270 @ 0.6m
1370 x 900 @ 2.0m

850 x 530 @ 1.2m
2110 x 1360 @ 3.0m

Spatial Resolution (mm) 0.12 @ 0.3m
0.40 @ 1.0m

0.23 @ 0.6m
0.75 @ 2.0m

0.45 @ 1.2m
1.11 @ 3.0m

Precision / z-noise (mm) 0.03 @ 0.3m
<0.2 @ 1.0m

0.07 @ 0.6m
<1.0 @ 2.0m

0.3 @ 1.2m
<2.0 @ 3.0m

Acquisition Rate 13 Hz (full resolution)

Output 3D (XYZ) + Color (RGB) + Quality (Q) for each pixel

Image Size 1920 x 1200 (2.3 Mpixel)

Imaging Color, 3D HDR,
Reflection and noise filters

Simplicity Factory-calibrated 3D camera, easy and intuitive GUI Zivid Studio,
Modern and high level API.

Software APIs C++ / C# / .NET
GeniCam/HALCON (RC)

OS Windows 7 / 8 / 10
Ubuntu 16.04 / Ubuntu 18.04

Physical Interface USB3.0 (5m / 10m / 25m options)
24V DC

Dimensions and weight 226 x 165 x 86 mm
2 kg

Environmental 10-40°C / 5G Sinus / 25G Shock
IP65 aluminum housing

Safety and EMC CE / EN60950 / CB / FCC class A

All product, product specifications and data are subject to change
without notice to improve reliability, function or design or otherwise.

APPENDIX A. HARDWARE SPECIFICATIONS

A.1 Zivid 3D Camera

104

—
We reserve the right to make technical
changes or modify the contents of this
document without prior notice. With re-
gard to purchase orders, the agreed par-
ticulars shall prevail. ABB does not accept
any responsibility whatsoever for potential
errors or possible lack of information in
this document.

We reserve all rights in this document and
in the subject matter and illustrations con-
tained therein. Any reproduction, disclo-
sure to third parties or utilization of its
contents – in whole or in parts – is forbidden
without prior written consent of ABB.
Copyright© 2019 ABB
All rights reserved

—
abb.com/robotics

P
R

10
0

35
E

N
_R

8
 R

ev
.F

 A
p

ri
l 2

0
19

Position
repeatability

Path
repeatability*

IRB 4400/60 0.06 mm 0.09 mm

IRB 4400/L10 0.05 mm 0.16 mm

*At 1.6 m/s.

—
Performance (according to ISO 9283)

Electrical Connections

Supply voltage 200-600 V, 50/60 Hz

Rated power
transformer rating

7.8 kVA

—
Technical information

Physical

Robot base 920 x 640 mm

Robot weight 1040 kg

Environment

Ambient temperature for mechanical unit

During operation +5° C (41° F) to + 45°C (113°F)

Relative humidity Max. 95%

Noise level Max. 70 dB (A)

Safety Double circuits with
supervision, emergency stops
and safety functions, 3-position
enable device

Emission EMC/EMI-shielded

Data and dimensions may be changed without notice.

Axis
movement

Working
range

Axis max
speed
IRB 4400/60

Axis max
speed
IRB 4400/L10

Axis 1, Rotation +165° to -165° 150°/s 150°/s

Axis 2, Arm +95° to -70° 120°/s 150°/s

Axis 3, Arm +65° to -60° 120°/s 150°/s

Axis 4, Rotation +200° to -200° 225°/s 370°/s

Axis 5, Bend +120° to -120° 250°/s 330°/s

Axis 6, Turn +400° to -400°
Max. rev:
+200°1 to -2002

330°/s 381°/s

1 Max. rev: +183 to -183 valid for IRB 4400/L10
2 The default working range for axis 6 can be extended by changing parameter
values in the software.
There is a supervision function to prevent overheating in applications with
intensive and frequent movements.

—
Movement

1020

1225

2140 1720

300

290

1955

890

680

100 200

400

300

200

60 kg

100

 Working range, IRB 4400/60

 Working range, IRB 4400/L10

150085 300

300 200

390 530

1070
2547

(1477)

17
20

89
0

(1
50

)

14
8

24
50

90
5

68
0

—
Specification

Robot version Reach (m) Handling
capacity (kg)

IRB 4400/60 1.96 60

IRB 4400/L10 2.53 10

Supplementary load

 on axis 2 35 kg

 on axis 3 15 kg

 on axis 4 0-5 kg

Number of axes 6

Protection Standard version IP 54, Foundry
Plus 2 IP 67 and high pressure
steam washable

Mounting Floor

Controller IRC5 Single Cabinet

Integrated signal supply 23 signals and 10 power on
upper arm

Integrated air supply Max. 8 bar on upper arm

APPENDIX A. HARDWARE SPECIFICATIONS

A.2 IRB4400

105

©
 C

op
yr

ig
ht

 A
B

B
 R

ob
ot

ic
s.

 P
R

10
33

5E
N

_R
3

A
ug

 2
01

6.	 Robot Travel length No of robots Mounting pos

IRBT 4004 IRB 4400/ 4450S/4600 1.9... 19.9 m/1 m step One or two/track Floor

IRBT 6004/ 7004 IRB 6620/6650S/6700 1.7... 19.7 m/1 m step One or two/track Floor

IRBT 7004 IRB 7600 1.7... 19.7 m/1 m step One or two/track Floor

Cable arrangement

Plastic with cover - standard

Acceleration/Retardation (m/s2) X004

IRB 4004 2.5*

IRB 6004 2.0*

IRB 7004 1.8*

* Dep. on actual load

Speed (m/s)

IRB 4004 2.0

IRB 6004 1.6

IRB 7004 1.2

Pos to Pos time (s) *) 1 m 2 m 3 m 4 m 5 m

IRBT 4004 < 1.2 < 1.7 < 2.2 < 2.7 < 3.2

IRBT 6004 < 1.5 < 2.1 < 2.8 < 3.4 < 4.0

IRBT 7004 < 1.7 < 2.6 < 3.4 < 4.2 < 5.0

*) With max load

For more information please contact:

ABB AB
Robotics
Hydrovägen 10
SE-721 36 Västerås, Sweden
Phone: +46 21 325000

www.abb.com/robotics

Note
We reserve the right to make technical changes or modify the contents of this
document without prior notice. With regard to purchase orders, the agreed particulars
shall prevail. ABB does not accept any responsibility whatsoever for potential errors
or possible lack of information in this document.

We reserve all rights in this document and in the subject matter and illustrations
contained therein. Any reproduction, disclosure to third parties or utilization of its
contents - in whole or in parts – is forbidden without prior written consent of ABB.

Copyright© 2016
ABB All rights reserved

APPENDIX A. HARDWARE SPECIFICATIONS

A.3 IRB4400

106

Appendix B

Code Documentation

B.1 [main()]: Task planner core

def main():
i=0
#Declaration of the variables
screw_num=0
connect_num=0
screw_pos=[]
connect_pos=[]
compon_pos=[]
co_tot=[]
#rem_success is the responsible of ending the disasssembly loop in case of detecting 0

components in the image
rem_success=’None’
removed_components=[]
names_file= open(’/yolov3/data/LIBRES_classes_1.names’,’r’)
names_file_lines=names_file.readlines()
Dict_counter=0
#adds the classes names in the dictionary
for names in names_file_lines:

Dict_comp[Dict_counter]=names
Dict_counter=Dict_counter+1

Dict_counter=0

#Disassembly loop
while rem_success!=’Goal state reached’:

Move the robot to take pictures (takes the pictures and saves them)
print(’================IMAGE ACQUISITION================’)
if opt.take_images==’True’:

os.system(’rosrun lefty_move move_to_pict3.py’)
#analyses the image using the YOLOv3 algorithm (Object detection).
print(’================IMAGE DETECTION================’)
if opt.detect==’True’:

os.system(’python3 /yolov3/detect.py −−save−txt’)
if opt.autotrain==’True’:

107

APPENDIX B. CODE DOCUMENTATION

training_data_autogenerator()
print(’================PLANNING REMOVAL================’)
#For loop running through the 3 images
for num_im in range(3):

#num_im is the image number (there are 3 images 0.jpg, 1.jpg and 2.jpg)

(screw_num,connect_num,compon_num,empty_screw_num, screw_pos, connect_pos,
compon_pos, empty_screw_pos, co_tot) = num_components(Dict_comp,
num_im)

rem_component=[]

#obtains the components positions (camera reference base frame) for all the images
if num_im==0:

print(’================Analysing the first image positions
================’)

rem_component=screw_pos
rem_component_cam_0 contains the positions in camera reference of the screws

found in the first image
rem_component_cam_0=CamR_pos(rem_component,Dict_comp,num_im)

if num_im==1:
print(’================Analysing the second image positions

================’)
#desition−making
rem_component=what_component(screw_num,connect_num,compon_num,

empty_screw_num, screw_pos, connect_pos,compon_pos, empty_screw_pos,
co_tot)

rem_component_cam_1 contains the positions of the components in order of
removal.

rem_component_cam_1=CamR_pos(rem_component,Dict_comp,num_im)
if num_im==2:

print(’================Analysing the third image positions
================’)

rem_component=screw_pos
rem_component_cam_0 contains the positions in camera reference of the screws

found in the last image
rem_component_cam_2=CamR_pos(rem_component,Dict_comp,num_im)

print(’================Merging results================’)
Merge the results obtained in the previous step (Returns the list of the positions in

world reference base frame)
rem_component_final=merge_detection(rem_component_cam_0,

rem_component_cam_1,rem_component_cam_2)

Removes all the components
print(’================REMOVING COMPONENTS

================’)
for rem_specif in rem_component_final:

#remove function (main part to fulfill in future stages of the project)
rem_success=remove(rem_specif,Dict_comp)
if rem_success:

#Array containing all the components succesfully removed.

108

APPENDIX B. CODE DOCUMENTATION

removed_components.append(rem_specif)

#if the rem_component list is == [] Goal state reached
if rem_component_final==[]:

rem_success=’Goal state reached’
#call the next battery

B.2 [CamR_pos()]: Find the positions in camera reference base
frame

The main purpose of camR_pos is to find the positions in camera base frame
def CamR_pos(rem_component,Dict_comp,num_im):

#Finds the position of the components in camera reference base frame
print(’=======pointcloud analysis=======’)
#Loads the depth image
depth_im=np.load(’/yolov3/data/depth/depth’+str(num_im)+’.npy’)
(rows,cols) = depth_im.shape
rem_component_cam is an array containing values of the postition of the different

components in camera reference
rem_component_cam=[]

#Intrinsic parameters definition
fx=2765.132568359375
fy=2764.61767578125
fx_inv=1/fx
fy_inv=1/fy
cx=946.9010620117188
cy=579.4774780273438

#Runs the results of object detection analysing the detected labels .
for comp in rem_component:

sq contains the position in pixels in the 2D image (square two corners) [x1,y1,x2,y2]
sq=comp[0:4]
counter=0
Means (in x−axis, y−axis, z−axis)
x_mean=0
y_mean=0
z_mean=0
n=0
Converts sq to int list (was an string)
while n<=3:

sq[n]=int(sq[n])
n=n+1

sq_1=sq[0:2]
sq_2=sq[2:4]
Finds a mean of the pixels positions (inside the label)
for i in range(sq_1[0],sq_2[0]):

for e in range(sq_1[1],sq_2[1]):

109

APPENDIX B. CODE DOCUMENTATION

Using the intrinsic parameters fins (x,y,z)
z=depth_im[e,i]
x=(i−cx)∗z∗fx_inv
y=(e−cy)∗z∗fy_inv
if z>=0.5 and z<=20:

z_mean=z_mean+z
x_mean=x_mean+x
y_mean=y_mean+y
counter=counter+1

if counter>0:
x_mean=x_mean/counter
y_mean=y_mean/counter
z_mean=z_mean/counter
pos=[x_mean,y_mean,z_mean,comp[4]]
rem_component_cam.append(pos)

print(’−Pointcloud analysed−’)
#Returns the detections converted.
return rem_component_cam

B.3 [WR_pos]: World reference base frame position detection:

Converts to World reference base frame the array containing the positions in camera reference
base frame

def WR_pos(rem_component_cam,num_im):
pos=[]
Converts the list to float
for e in rem_component_cam[0:3]:

pos.append(float(e))
pos.append(1)
Loads the transform matrix containing the camera position at the moment of the image

capturing
tf_matrix=np.load(’/yolov3/data/transf_matrix/matrix’+str(num_im)+’.npy’)
pos=np.matrix(pos)
pos=pos.transpose()
tf_matrix=np.matrix(tf_matrix)
wr_pos=tf_matrix∗pos
#wr_pos=[[x],[y],[z]]
#transforms to a list wr_pos_def=[x,y,z]
wr_pos_def=[]
for e in wr_pos:

wr_pos_def.append(float(e[0]))

wr_pos_def[3]=rem_component_cam[3]

Returns the list containing the wr positions
return wr_pos_def

110

APPENDIX B. CODE DOCUMENTATION

B.4 [remove()]: Removal Operation

This function aims to move the robot to the desired positions (in future stages of the
project it should be fulfilled with the necessary code)

def remove(pos_comp,Dict_comp):
print(’=======Remove operation=======’)
#removal operation depending on the component.
#pso_comp=[x,y,z,mod]
print(str(pos_comp))
#if the component is an screw
if pos_comp[3]==’3’:

#remove operation for screwprint(’moving to a safety position ’)
x=pos_comp[0]
y=pos_comp[1]
z=pos_comp[2]
Move the robot to the desired position
os.system(’rosrun lefty_move move_pos_1.py −−x ’+str(x)+’ −−y ’+str(y)+’ −−z ’+

str(z))
#PLACE THE REMOVAL FUNCTION FOR SCREWS HERE!
print(’removing screw’)
if opt.debug==’True’:

input("Press Enter to move the robot to the next position ... ")
print(’moving to a safety position ’)
x=pos_comp[0]
y=pos_comp[1]
z=pos_comp[2]+0.4
os.system(’rosrun lefty_move move_pos.py −−x ’+str(x)+’ −−y ’+str(y)+’ −−z ’+str(

z))

#General removing operation (rest of the components)
else:

print(’Moving robot to the removal position’)
x=pos_comp[0]
y=pos_comp[1]
z=pos_comp[2]
print(y)
os.system(’rosrun lefty_move move_pos.py −−x ’+str(x)+’ −−y ’+str(y)+’ −−z ’+str(

z))
print(’removing’+Dict_comp[pos_comp[3]])
#PLACE THE REMOVAL FUNCTION HERE!
if debug==’True’:

input("Press Enter to move the robot to the next position ... ")
time.sleep (1.0)
print(’moving to a safety position ’)
x=pos_comp[0]
y=pos_comp[1]
z=pos_comp[2]+0.3
os.system(’rosrun lefty_move move_pos.py −−x ’+str(x)+’ −−y ’+str(y)+’ −−z ’+str(

z))
return True

111

APPENDIX B. CODE DOCUMENTATION

B.5 [num_components]: Components analysis

#counts the number of detected components
def num_components(Dict_comp,num_im):

print(’=======Component analysis=======’)
Reads txt file
f= open(’/yolov3/output/’+str(num_im)+’.jpg.txt’,’r’)
f1= f. readlines ()
Variable to know if there are screws or connection components
screw_num=0
empty_screw_num=0
Number of connective components
connect_num=0
compon_num=0
#position of the screws and connect_num
connect_pos=[]
screw_pos=[]
compon_pos=[]
empty_screw_pos=[]
Empty array with all the components detected in the image (screws not included)
co_tot=[]
For component line in file
for co_lin in f1 :

co_lin= co_lin.split ()
#co_name=name of the component (screw, VW_modules, etc..)
co_name=Dict_comp[int(co_lin[4])]
The variable pos contains the position in the image and the class pos=[x,y,z,c]
pos=co_lin[0:5]
if co_name[0:5]==’screw’:

screw_pos.append(pos)
#there is a screw
screw_num=screw_num+1

elif co_name[0:10]==’connection’:
#there is a connection component
connect_pos.append(pos)
connect_num = connect_num + 1
co_tot.append(co_lin)

elif co_name[0:5]==’empty’:
#there is an empty screw
empty_screw_pos.append(pos)
empty_screw_num = empty_screw_num + 1

else:
co_tot.append(co_lin)
compon_pos.append(pos)
compon_num=compon_num+1

print(’there are ’+ str(screw_num)+ ’ screws’)
print(’there are ’+ str(connect_num)+ ’ connective components’)
print(’there are ’+ str(compon_num)+ ’ components (modules, bms, etc..)’)
print(’there are ’+ str(empty_screw_num)+ ’empty screws’)

112

APPENDIX B. CODE DOCUMENTATION

return (screw_num,connect_num,compon_num,empty_screw_num, screw_pos,
connect_pos,compon_pos, empty_screw_pos, co_tot)

B.6 [what_component and has_comp_over]: Decision-making

#Responsible of the desition−making
def what_component(screw_num,connect_num,compon_num,empty_screw_num, screw_pos,

connect_pos,compon_pos, empty_screw_pos, co_tot):
#decide what component should be removed next

#creation of the variables with the positions of the components that can be removed
print(’=======What components should be removed=======’)
connect_rem=[]
screw_num=[]
compon_rem=[]
co_an=[]
com_rem_other=[]
The screws are always the first to be removed
if screw_num!=0:

compon_rem=screw_pos
print(’screws should be removed’)

Analyses the rest of components using the computer vision based function has_comp_over
for comp in co_tot:

comp.append(has_comp_over(co_tot,comp))
com_rem_other.append(comp)

Sorts the list depending on the "probabilities " returned by the function has_comp_over
com_rem_other.sort(key=itemgetter(6))
for comp in com_rem_other:

compon_rem.append(comp)
#returns the components in removal order
return compon_rem

Given a certain component (in this case co_an) returns the probability of the different
components of having a component over

def has_comp_over(co_tot,co_an):
comp=co_an
i=0
Converts to integer
while i<5:

comp[i]=int(comp[i])
i=i+1

p_list=[]

#Runs over the list containg all the components
for comp2_str in co_tot:

113

APPENDIX B. CODE DOCUMENTATION

comp2=[]
inside=False
comp2_str=comp2_str[0:5]
#convert to int
for e in comp2_str:

comp2.append(int(e))
Looks if comp and comp2 intersect in the image
for x in range(comp2[0],comp2[2]):

for y in range(comp2[1],comp2[3]):
if x>comp[0] and x<comp[2] and y>comp[1] and y<comp[3]:

inside=True
break

if inside==True:
break

#if they intersect
if inside==True:

#reads the image
img_0 =cv2.imread(’/yolov3/data/samples/1.jpg’);
#window in the area of comp
img_1= img_0[comp[1]:comp[3],comp[0]:comp[2]]
img_grey = cv2.cvtColor(img_0, cv2.COLOR_BGR2GRAY)
#find the intersection area label
area=[0,0,0,0]
#first the x1 and x2 values
if comp2[0]<comp[0]:

area[0]=comp[0]
else:

area[0]=comp2[0]

if comp2[2]<comp[2]:
area[2]=comp2[2]

else:
area[2]=comp[2]

#find the y1 and y2 values
if comp2[1]<comp[1]:

area[1]=comp[1]
else:

area[1]=comp2[1]
if comp2[3]<comp[3]:

area[3]=comp2[3]
else:

area[3]=comp[3]

img_2=img_0[area[1]:area[3],area[0]:area [2]]
#equalize the full image
img_equ = cv2.equalizeHist(img_grey)
#window in the area of interest (the component)
img_3=img_equ[comp[1]:comp[3],comp[0]:comp[2]]
#Binarization

114

APPENDIX B. CODE DOCUMENTATION

ret2 ,thresh1 = cv2.threshold(img_3,0,255,cv2.THRESH_BINARY+cv2.
THRESH_OTSU)

#intersection label coordinates
area_im=[area[0]−comp[0],area[1]−comp[1],area[2]−comp[0],area[3]−comp[1]]
#window in the intersection
intersection_image=thresh1[area_im[1]:area_im[3],area_im[0]:area_im[2]]
#intersection window area
(intersection_x, intersection_y) =intersection_image.shape
intersection_area=intersection_x∗intersection_y
#main window area calculation
(comp_x, comp_y) =thresh1.shape
comp_area=comp_x∗comp_y
#calculation of the mean of the pixels of the window excluding the intersection pixels
intersection_t=intersection_area∗intersection_image.mean()
comp_t=comp_area∗thresh1.mean()
mean_exc=(comp_t−intersection_t)/(comp_area−intersection_area)
#percentage intersection, and the rest of the area p_exc
p_int=intersection_image.mean()/255
p_exc=mean_exc/255
p_max=max(p_int,p_exc)
p_min=min(p_int,p_exc)
#differences of percentage
p_difference=p_max−p_min
p_list .append(p_difference)

if len(p_list)==0:
p_list .append(0.0)

#returns the maximum percentage for each component
return max(p_list)

B.7 [training_data_autogenerator()]: Automatic YOLO training
data creator

#Use and covert the detections to create new training images
def training_data_autogenerator():

#load the txt (containing the detections) and the image
img_0 =cv2.imread(’/yolov3/data/samples/2.jpg’);
txt_f= open(’/yolov3/output/2.jpg.txt’,’r’)
lines= txt_f.readlines()
Dict={}
#image shape
(y_size,x_size,RGB)=img_0.shape
line_YOLO_tot=[]
#run over the lines
for line in lines :

line=line. split ()
Proportional label sizes x_dif (width), y_dif (height) , and label centres x_1, y_1
x_dif_p=int(line[2])−int(line[0])
y_dif_p=int(line[3])−int(line[1])
x_1=(float(line[0])+float(line [2]))/(2∗x_size)

115

APPENDIX B. CODE DOCUMENTATION

x_dif=float(x_dif_p)/x_size
y_1=(float(line[1])+float(line [3]))/(2∗y_size)
y_dif=float(y_dif_p)/y_size
Array containing the infromation of a yolo line
line_YOLO=[line[4],round(x_1,6),round(y_1,6),round(x_dif,6),round(y_dif,6)]
line_YOLO_tot.append(line_YOLO)

#Sorts the lines depending on the component
line_YOLO_tot.sort(key=itemgetter(0))

#Path definition and txt creation
path, dirs , files = next(os.walk(’/more_trai/autocreated_training_images/’))
file_count = len(files)
num=int(file_count/2)
YOLO_txt_file= open(’/more_trai/autocreated_training_images/’+str(num)+’.txt’,’w’)

Write the lines
for line_YOLO_w in line_YOLO_tot:

i=0
for e in line_YOLO_w:

line_YOLO_w[i]=str(line_YOLO_w[i])
i=i+1

YOLO_txt_file.write(" ".join(line_YOLO_w) + "\n")

#add the path to the data file .
autogenerated_data=open(’/yolov3/data/autogenerated_data.txt’,’w’)
autogenerated_data.write(’/more_trai/autocreated_training_images/’+str(num)+’.jpg’+"\n

")
cv2.imwrite(’/more_trai/autocreated_training_images/’+str(num)+’.jpg’, img_0)
#close all the files
YOLO_txt_file.close()
autogenerated_data.close()

B.8 [merge_detection()]: Merge detection

#merge_detection
def merge_detection(rem_component_cam_0,rem_component_cam_1,

rem_component_cam_2):
#rem_component_cam_1,(rem_component_Cam_1) contains the list with all the

components screws+other components
#the aim of the function is to merge the screw detection of the three images (taken with

different inclinations)
rem_component_WR_0=[]
rem_component_WR_1=[]
rem_component_WR_2=[]
rem_component_WR=[]
rem_component_WR_filt=[]
num_rep=0
#obtain the WR frame coordinates of the components (for each image)

116

APPENDIX B. CODE DOCUMENTATION

print(’−−Finding the WR frame coordinates for each image−−’)
for num_im in range(3):

if num_im==0:
print(’−First iamge−’)
for rem_specif in rem_component_cam_0:

pos_comp= WR_pos(rem_specif,num_im)
rem_component_WR_0.append(pos_comp)

if num_im==1:
print(’−Second iamge−’)
for rem_specif in rem_component_cam_1:

pos_comp= WR_pos(rem_specif,num_im)
rem_component_WR_1.append(pos_comp)

if num_im==2:
print(’−Second iamge−’)
for rem_specif in rem_component_cam_2:

pos_comp= WR_pos(rem_specif,num_im)
rem_component_WR_2.append(pos_comp)

#Appends all the postions into rem_component_WR
for component in rem_component_WR_0:

rem_component_WR.append(component)

for component in rem_component_WR_2:
rem_component_WR.append(component)

for component in rem_component_WR_1:
rem_component_WR.append(component)

#Merges the closer positons (<1cm)
print(’−−merging positions−−’)
For loop runing over rem_component_WR
for component in rem_component_WR:

repeated=False
x_sum=component[0]
y_sum=component[1]
z_sum=component[2]
count=1
#For loop comparing the components already in the filtered list with the component

being analysed
for component_2 in rem_component_WR_filt:

x_dif=abs(component[0]−component_2[0])
y_dif=abs(component[1]−component_2[1])
z_dif=abs(component[2]−component_2[2])
#Checks if the differences between both positions are lower than 1cm
if x_dif <=0.01 and y_dif<=0.01 and component[3]==component_2[3]:

repeated=True
num_rep=num_rep+1
x_sum=x_sum+component_2[0]
y_sum=y_sum+component_2[1]
z_sum=z_sum+component_2[2]
count=count+1

117

APPENDIX B. CODE DOCUMENTATION

#if the component was not in the list
if repeated==False:

rem_component_WR_filt.append(component)
#if the component was in the list
if repeated==True:

component_mean=[x_sum/float(count),y_sum/float(count),z_sum/float(count),
component[3]]

rem_component_WR_filt.append(component_mean)

#returns the definitive array containing the components positions
return rem_component_WR_filt

B.9 [move_to_pict.py]: Image capturing

#!/usr/bin/env python

import sys
import os
import copy
import rospy
import tf
import numpy as np
import dynamic_reconfigure.client
from zivid_camera.srv import ∗
from sensor_msgs.msg import PointCloud2
import cv2
from sensor_msgs.msg import Image
from cv_bridge import CvBridge, CvBridgeError
import time
import moveit_commander
import moveit_msgs.msg
import geometry_msgs.msg
from math import pi
from std_msgs.msg import String
from moveit_commander.conversions import pose_to_list
from sensor_msgs import point_cloud2
import pcl
from tf.transformations import quaternion_matrix

#from pyntcloud import PyntCloud

def main():
#intialize movitcommander and the node

im_num=0
moveit_commander.roscpp_initialize(sys.argv)
rospy.init_node(’robot_irb’, anonymous=True)

#Instantiate a RobotCommander object. Provides information
s = Sample_01()
s .im_num=0

118

APPENDIX B. CODE DOCUMENTATION

robot = moveit_commander.RobotCommander()
#Instantiate a PlanningSceneInterface object. This provides a remote interface for getting ,

scene = moveit_commander.PlanningSceneInterface()

#define the groupname
group_name = ’righty_tcp’
move_group = moveit_commander.MoveGroupCommander(group_name)
move_group.set_planner_id(’RRTconnect’)
move_group.set_goal_position_tolerance(0.0001)
move_group.set_goal_orientation_tolerance(0.0001)

#define the Publisher
display_trajectory_publisher = rospy.Publisher(’/move_group/display_planned_path’,

moveit_msgs.msg.DisplayTrajectory,
queue_size=20)

print "====== Moving robot to the first image pose ======"

print move_group.get_current_pose()
print move_group.get_current_rpy()
#pose goal in quaternions
pose_goal = geometry_msgs.msg.Pose()
#pose_goal = move_group.get_random_pose()
q = tf.transformations.quaternion_from_euler(−0.656599232586658, 1.396548903822593,
−0.6)

#q=[0, 0.6085625, 0.0405708, 0.7924681]
pose_goal.orientation.x = q[0]
pose_goal.orientation.y = q[1]
pose_goal.orientation.z = q[2]
pose_goal.orientation.w = q[3]
pose_goal.position.x = 3.65
pose_goal.position.y = 6.65
pose_goal.position.z = 0.9
Move the robot to the first postion
move_group.set_pose_target(pose_goal)

plan = move_group.go(wait=True)
Calling ‘stop() ‘ ensures that there is no residual movement
move_group.stop()

Call the capture service (to obtain the first picture)

s .capture()
print(’sleeping ’)
time.sleep (1.5)

print "====== Moving robot to the second image pose ======"
move_group.clear_pose_targets()

119

APPENDIX B. CODE DOCUMENTATION

q = tf.transformations.quaternion_from_euler(0.21155554664879492, 1.2930785482720229,
0.2258100592267419)

#q=[0, 0.6085625, 0.0405708, 0.7924681]
pose_goal.orientation.x = q[0]
pose_goal.orientation.y = q[1]
pose_goal.orientation.z = q[2]
pose_goal.orientation.w = q[3]
pose_goal.position.x = 3.55
pose_goal.position.y = 6.4
pose_goal.position.z = 1.0
Move the robot to the first postion
move_group.set_pose_target(pose_goal)

plan = move_group.go(wait=True)
Calling ‘stop() ‘ ensures that there is no residual movement
move_group.stop()
s .im_num=s.im_num+1
s.capture()
print(’sleeping ’)
time.sleep (1.5)

print "====== Moving robot to the third image pose ======"
move_group.clear_pose_targets()

q = tf.transformations.quaternion_from_euler(1.3087151694609415, 1.1710170611405144,
1.32071516512365)

#q=[0, 0.6085625, 0.0405708, 0.7924681]
pose_goal.orientation.x = q[0]
pose_goal.orientation.y = q[1]
pose_goal.orientation.z = q[2]
pose_goal.orientation.w = q[3]
pose_goal.position.x = 3.70
pose_goal.position.y = 6.05
pose_goal.position.z = 0.90

Move the robot to the first postion
move_group.set_pose_target(pose_goal)

plan = move_group.go(wait=True)
Calling ‘stop() ‘ ensures that there is no residual movement
move_group.stop()

Call the capture service (to obtain the first picture)
s .im_num=s.im_num+1
s.capture()
print(’sleeping ’)
time.sleep (1.5)
move_group.clear_pose_targets()

class Sample_01:

120

APPENDIX B. CODE DOCUMENTATION

def __init__(self):
#wait until the service is available
rospy. loginfo (’waiting for the service ’)
rospy.wait_for_service("/zivid_camera/capture", 30.0)

self . tf_listener = tf.TransformListener()
#create a subscriber

self .depth_sub = rospy.Subscriber(’/zivid_camera/depth/image_raw’, Image, self.
callback3)

self .image_sub = rospy.Subscriber(’/zivid_camera/color/image_color’, Image, self.
callback)

self .Pointcloud_sub = rospy.Subscriber(’/zivid_camera/points’, PointCloud2, self.
callback2)

#call the capture service
self .capture_service = rospy.ServiceProxy("/zivid_camera/capture", Capture)
self .bridge = CvBridge()
rospy. loginfo ("Enabling the reflection filter ")
general_config_client = dynamic_reconfigure.client.Client(

"/zivid_camera/capture/general/"
)
general_config = {"filters_reflection_enabled " : True}
general_config_client.update_configuration(general_config)

rospy. loginfo ("Enabling and configure the first frame")
frame0_config_client = dynamic_reconfigure.client.Client(

"/zivid_camera/capture/frame_0"
)
frame0_config = {"enabled": True, " iris " : 17, "exposure_time": 60000, "brightness" :1.0,

"gain" : 4.0}
frame0_config_client.update_configuration(frame0_config)

rospy. loginfo ("Enabling and configure the second frame")
frame1_config_client = dynamic_reconfigure.client.Client(

"/zivid_camera/capture/frame_1"
)
frame1_config = {"enabled": True, " iris " : 17, "exposure_time": 60000, "brightness" :1.0,

"gain" : 4.0}
frame1_config_client.update_configuration(frame1_config)

def callback(self ,data):
rospy. loginfo (’Taking image’)
(trans, rot) = self . tf_listener .lookupTransform(’/world’,’/zivid_optical_frame’, rospy.

Time(0))
matrix = quaternion_matrix(rot)

transf_mat=np.zeros([4, 4], dtype = float)
transf_mat[0:4,0:4]=matrix
i=0

121

APPENDIX B. CODE DOCUMENTATION

for e in trans:
transf_mat[i,3]=e
i=i+1

directory_matr = r’/home/eduard/LIBRES_SYS/yolov3/data/transf_matrix’
file_name= ’matrix’+str(self.im_num)+’.npy’
np.save(os.path.join(directory_matr, file_name), transf_mat)

try:
cv_image =self.bridge.imgmsg_to_cv2(data, "bgr8")

except CvBridgeError as e:
print(e)

(rows,cols ,channels) = cv_image.shape
#cv_image= HoG_1.test1(cv_image)

#self.im_num=self.im_num+1
directory_im = r’/home/eduard/LIBRES_SYS/yolov3/data/samples’
im_name= str(self.im_num)+’.jpg’
cv2.imwrite(os.path.join(directory_im , im_name), cv_image)
cv2.waitKey(100)
rospy. loginfo (’Image saved’)
cv2.destroyAllWindows()

def callback2(self ,ros_cloud):

points_list = []
for data in point_cloud2.read_points(ros_cloud, skip_nans=True):

points_list .append([data[0], data [1], data [2], data [3]])

pcl_data = pcl.PointCloud_PointXYZRGB()
pcl_data.from_list(points_list)
pc_num= str(self.im_num)+’.pcd’
rospy. loginfo (pc_num)
pcl_data.to_file(’/home/eduard/LIBRES_SYS/yolov3/data/samples/’+pc_num)

rospy. loginfo (’PointCloud2 saved’)

def callback3(self ,data):
try:

NewImg = self.bridge.imgmsg_to_cv2(data, "passthrough")
depth_array = np.array(NewImg, dtype=np.float32)
directory_im2 = r’/home/eduard/LIBRES_SYS/yolov3/data/depth/’
im_name= ’depth’+str(self.im_num)+’.npy’
np.save(os.path.join(directory_im2, im_name), depth_array)
cv2.waitKey(100)
print(’npy saved’)

except CvBridgeError as e:
print(e)

cv2.destroyAllWindows()
rospy. loginfo (’depth image saved’)

122

APPENDIX B. CODE DOCUMENTATION

def capture(self) :
rospy. loginfo ("Calling capture service ")
self .capture_service()

if __name__ == ’__main__’:
main()

B.10 [move_pos.py]: Move the robot TCP to a specific position

#!/usr/bin/env python

import sys
import os
import copy
import rospy
import tf
import numpy as np
import dynamic_reconfigure.client
from zivid_camera.srv import ∗
from sensor_msgs.msg import PointCloud2
import cv2
from sensor_msgs.msg import Image
from cv_bridge import CvBridge, CvBridgeError
import time
import moveit_commander
import moveit_msgs.msg
import geometry_msgs.msg
from math import pi
from std_msgs.msg import String
from moveit_commander.conversions import pose_to_list
from sensor_msgs import point_cloud2
import pcl
from tf.transformations import quaternion_matrix
import argparse
#from pyntcloud import PyntCloud

def main():
#intialize movitcommander and the node

im_num=0
moveit_commander.roscpp_initialize(sys.argv)
rospy.init_node(’robot_irb’, anonymous=True)

#Instantiate a RobotCommander object. Provides information

robot = moveit_commander.RobotCommander()
#Instantiate a PlanningSceneInterface object. This provides a remote interface for getting ,

scene = moveit_commander.PlanningSceneInterface()

#define the groupname

123

APPENDIX B. CODE DOCUMENTATION

group_name = ’righty_tcp2’
move_group = moveit_commander.MoveGroupCommander(group_name)
move_group.set_planner_id(’RRTconnect’)
move_group.set_planning_time(7)
move_group.set_goal_position_tolerance(0.001)
move_group.set_goal_orientation_tolerance(0.005)

#define the Publisher
display_trajectory_publisher = rospy.Publisher(’/move_group/display_planned_path’,

moveit_msgs.msg.DisplayTrajectory,
queue_size=20)

print " Moving robot"
#print robot.get_current_state()
pose_goal = move_group.get_random_pose()
#pose goal in quaternions
pose_goal = geometry_msgs.msg.Pose()
#pose_goal = move_group.get_random_pose()
pose_goal.orientation.x = 0.0
pose_goal.orientation.y = 0.7071068
pose_goal.orientation.z = 0.0
pose_goal.orientation.w = 0.7071068
pose_goal.position.x = float(opt.x)
pose_goal.position.y = float(opt.y)
pose_goal.position.z = float(opt.z)

Move the robot to the first position
move_group.set_pose_target(pose_goal)
plan2=move_group.plan()

plan = move_group.execute(plan2,wait=True)
Calling ‘stop() ‘ ensures that there is no residual movement
move_group.stop()
move_group.clear_pose_targets()
print " Robot moved"

if __name__ == ’__main__’:
parser = argparse.ArgumentParser()
parser.add_argument(’−−x’, type=str, default=3.2, help=’desired x pos’)
parser.add_argument(’−−y’, type=str, default=3.2, help=’desired y pos’)
parser.add_argument(’−−z’, type=str, default=2.0, help=’desired z pos’)
opt = parser.parse_args()
main()

B.11 [move_to_cal.py]: Calibration images capturing

#!/usr/bin/env python

import sys

124

APPENDIX B. CODE DOCUMENTATION

import os
import copy
import rospy
import tf
import numpy as np
import dynamic_reconfigure.client
from zivid_camera.srv import ∗
from sensor_msgs.msg import PointCloud2
import cv2
from sensor_msgs.msg import Image
from cv_bridge import CvBridge, CvBridgeError
import time
import moveit_commander
import moveit_msgs.msg
import geometry_msgs.msg
from math import pi
from std_msgs.msg import String
from moveit_commander.conversions import pose_to_list
from sensor_msgs import point_cloud2
import pcl
from tf.transformations import quaternion_matrix
#from pyntcloud import PyntCloud

def main():
#intialize movitcommander and the node

moveit_commander.roscpp_initialize(sys.argv)
rospy.init_node(’robot_irb’, anonymous=True)

#Instantiate a RobotCommander object. Provides information
s = Sample_01()

robot = moveit_commander.RobotCommander()
#Instantiate a PlanningSceneInterface object. This provides a remote interface for getting ,

scene = moveit_commander.PlanningSceneInterface()

#define the groupname
group_name = ’righty_tcp’
move_group = moveit_commander.MoveGroupCommander(group_name)
move_group.set_planner_id(’RRTconnect’)
move_group.set_goal_position_tolerance(0.006)
move_group.set_goal_orientation_tolerance(0.008)

#define the Publisher
display_trajectory_publisher = rospy.Publisher(’/move_group/display_planned_path’,

moveit_msgs.msg.DisplayTrajectory,
queue_size=20)

pose_goal = geometry_msgs.msg.Pose()

125

APPENDIX B. CODE DOCUMENTATION

ql=[[0, 0.6427792, 0.0080347, 0.7660094],[0, 0.6419443, 0.080243, 0.7625409], [0,
0.6746999, 0.0793765, 0.7338116],[0, 0.8033253, 0.052554, 0.5932171],[0, 0.8188746,
0.0372216, 0.5727643],[0, 0.8038569, 0, 0.5948228],[0, 0.7524433, −0.1151699,
0.6485098],[0, 0.7768853, −0.0380826, 0.6284894],[0, 0.7061704, −0.0784634,
0.7036809],[0, 0.6746999, −0.0793765, 0.7338116],[0, 0.6419443, −0.080243,
0.7625409],[0, 0.7071068, 0, 0.7071068]]

for q in ql :
pose_goal.orientation.x = q[0]
pose_goal.orientation.y = q[1]
pose_goal.orientation.z = q[2]
pose_goal.orientation.w = q[3]
pose_goal.position.x = 3.4
pose_goal.position.y = 6.0
pose_goal.position.z = 0.7
#joint_goal = move_group.get_current_joint_values()
#print joint_goal
#joint_goal[5] = 0

move_group.set_pose_target(pose_goal)
#plan= move_group.go(joint_goal, wait=True)
plan = move_group.go(wait=True)
os.system(’ python3 /home/yolov3/detect.py’)
Calling ‘stop() ‘ ensures that there is no residual movement
move_group.stop()
s .capture()
time.sleep(35)

print "−−−−−−−−−−−−−−−−−−−−−−−−−−−"
It is always good to clear your targets after planning with poses.
Note: there is no equivalent function for clear_joint_value_targets()
move_group.clear_pose_targets()

class Sample_01:
def __init__(self):

#Node declaration

#wait until the service is available
rospy. loginfo (’waiting for the service ’)
rospy.wait_for_service("/zivid_camera/capture", 30.0)

self . tf_listener = tf.TransformListener()
#create a subscriber
self .image_sub = rospy.Subscriber(’/zivid_camera/color/image_color’, Image, self.

callback)
self .Pointcloud_sub = rospy.Subscriber(’/zivid_camera/points’, PointCloud2, self.

callback2)
#call the capture service
self .capture_service = rospy.ServiceProxy("/zivid_camera/capture", Capture)
self .bridge = CvBridge()
rospy. loginfo ("Enabling the reflection filter ")
general_config_client = dynamic_reconfigure.client.Client(

"/zivid_camera/capture/general/"

126

APPENDIX B. CODE DOCUMENTATION

)
general_config = {"filters_reflection_enabled " : True}
general_config_client.update_configuration(general_config)

rospy. loginfo ("Enabling and configure the first frame")
frame0_config_client = dynamic_reconfigure.client.Client(

"/zivid_camera/capture/frame_0"
)
frame0_config = {"enabled": True, " iris " : 21, "exposure_time": 20000}
frame0_config_client.update_configuration(frame0_config)

def callback(self ,data):
print ’ok’

def callback2(self ,ros_cloud):
print ’ok2’

def capture(self) :
rospy. loginfo ("Calling capture service ")
self .capture_service()

if __name__ == ’__main__’:
main()

B.12 Moving the robot basic code

#intialize movitcommander and the node
moveit_commander.roscpp_initialize(sys.argv)
rospy.init_node(’robot_irb’, anonymous=True)

#Instantiate a RobotCommander object. Provides information
robot = moveit_commander.RobotCommander()

#Instantiate a PlanningSceneInterface object. This provides a remote interface for getting ,
scene = moveit_commander.PlanningSceneInterface()

#define the groupname
group_name = ’righty_tcp2’
move_group = moveit_commander.MoveGroupCommander(group_name)

#set the planner (RRT, RRTconnect, PRM...)
move_group.set_planner_id(’RRTconnect’)
move_group.set_planning_time(7)

#set tolerances
move_group.set_goal_position_tolerance(0.001)
move_group.set_goal_orientation_tolerance(0.005)

#define the Publisher
display_trajectory_publisher = rospy.Publisher(’/move_group/display_planned_path’,

moveit_msgs.msg.DisplayTrajectory,
queue_size=20)

pose_goal = move_group.get_random_pose()
#pose goal in quaternions

127

APPENDIX B. CODE DOCUMENTATION

pose_goal = geometry_msgs.msg.Pose()
Move the robot to the position

move_group.set_pose_target(pose_goal)
plan2=move_group.plan()
plan = move_group.execute(plan2,wait=True)

Calling ‘stop() ‘ ensures that there is no residual movement
move_group.stop()

B.13 [training_data.py]: Training images capture

#!/usr/bin/env python

import sys
import os
import copy
import rospy
import tf
import numpy as np
import dynamic_reconfigure.client
from zivid_camera.srv import ∗
from sensor_msgs.msg import PointCloud2
import cv2
from sensor_msgs.msg import Image
from cv_bridge import CvBridge, CvBridgeError
import time
import moveit_commander
import moveit_msgs.msg
import geometry_msgs.msg
from math import pi
from std_msgs.msg import String
from moveit_commander.conversions import pose_to_list
from sensor_msgs import point_cloud2
import pcl
from tf.transformations import quaternion_matrix
#from pyntcloud import PyntCloud

def main():
#intialize movitcommander and the node

im_num=0
moveit_commander.roscpp_initialize(sys.argv)
rospy.init_node(’robot_irb’, anonymous=True)

#Instantiate a RobotCommander object. Provides information
s = Sample_01()
s .im_num=0
robot = moveit_commander.RobotCommander()

#Instantiate a PlanningSceneInterface object. This provides a remote interface for getting ,

scene = moveit_commander.PlanningSceneInterface()

128

APPENDIX B. CODE DOCUMENTATION

#define the groupname
group_name = ’righty_tcp’
move_group = moveit_commander.MoveGroupCommander(group_name)
move_group.set_planner_id(’RRTconnect’)
move_group.set_goal_tolerance(0.001)

#define the Publisher
display_trajectory_publisher = rospy.Publisher(’/move_group/display_planned_path’,

moveit_msgs.msg.DisplayTrajectory,
queue_size=20)

print "====== Moving robot to the first image pose ======"

pose_goal = move_group.get_random_pose()
#pose goal in quaternions
pose_goal = geometry_msgs.msg.Pose()
y=[0.992713,0.997495,1.0,1.0,0.996865]
w=[0.1205028,0.0707372,0.0,0.0,−0.0791209]
#pose_goal = move_group.get_random_pose()
pose_goal.orientation.x = 0.0
pose_goal.orientation.y = y[0]
pose_goal.orientation.z = 0.0
pose_goal.orientation.w = w[0]
pose_goal.position.x = 3.5
pose_goal.position.y = 7.20
pose_goal.position.z = 1.8
Move the robot to the first postion
for e in range(0,4):

print ’−−−−−−−−−−−−−−’
pose_goal.orientation.x = 0.0
pose_goal.orientation.y = y[e]
pose_goal.orientation.z = 0.0
pose_goal.orientation.w = w[e]

for i in range(0,20):
pose_goal.position.y = pose_goal.position.y−0.02
move_group.set_pose_target(pose_goal)
plan = move_group.go(wait=True)
Calling ‘stop() ‘ ensures that there is no residual movement
move_group.stop()
Call the capture service
s .capture()
s .im_num=s.im_num+1

pose_goal.position.y = 7.20

pose_goal.position.x = pose_goal.position.x+0.15

class Sample_01:
def __init__(self):

129

APPENDIX B. CODE DOCUMENTATION

#wait until the service is available
rospy. loginfo (’waiting for the service ’)
rospy.wait_for_service("/zivid_camera/capture", 30.0)

self . tf_listener = tf.TransformListener()
#create a subscriber
self .image_sub = rospy.Subscriber(’/zivid_camera/color/image_color’, Image, self.

callback)
#call the capture service
self .capture_service = rospy.ServiceProxy("/zivid_camera/capture", Capture)
self .bridge = CvBridge()
rospy. loginfo ("Enabling the reflection filter ")
general_config_client = dynamic_reconfigure.client.Client(

"/zivid_camera/capture/general/"
)
general_config = {"filters_reflection_enabled " : True}
general_config_client.update_configuration(general_config)

rospy. loginfo ("Enabling and configure the first frame")
frame0_config_client = dynamic_reconfigure.client.Client(

"/zivid_camera/capture/frame_0"
)
frame0_config = {"enabled": True, " iris " : 17, "exposure_time": 60000, "brightness" :1.0,

"gain" : 4.0}
frame0_config_client.update_configuration(frame0_config)

def callback(self ,data):
try:

cv_image =self.bridge.imgmsg_to_cv2(data, "bgr8")
cv2.waitKey(50)

except CvBridgeError as e:
print(e)

(rows,cols ,channels) = cv_image.shape
#cv_image= HoG_1.test1(cv_image)

#self.im_num=self.im_num+1
directory_im = r’/home/LIBRES_SYS/training_images/’
#cv2.imshow("Image window", cv_image)
cv2.waitKey(50)
im_name= str(self.im_num)+’.jpg’
cv2.imwrite(os.path.join(directory_im , im_name), cv_image)
cv2.waitKey(50)
cv2.destroyAllWindows()
rospy. loginfo (’Image saved’)

def capture(self) :
rospy. loginfo ("Calling capture service ")
self .capture_service()

if __name__ == ’__main__’:

130

APPENDIX B. CODE DOCUMENTATION

main()

B.14 [obtain_calfiles.py]: Obtain calibration files

import sys
sys.path.remove(’/opt/ros/kinetic/lib/python2.7/dist−packages’)
from scipy.spatial .transform import Rotation as R
import math
import yaml
import numpy as np
import cv2

def transform_matrix(quarti, txyz):
transf=[]
offset = np.array([1700,200,900])
txyz = list((np.array(txyz)+ offset))
quart= [quarti [0], quarti [1], quarti [2], quarti [3]]
Rot_part_obj = R.from_quat(quart)
Rot_part = Rot_part_obj.as_matrix()
for i in range(3):

Rot_lst=[]
for e in range(3):

Rot_num= float(Rot_part[i][e])
Rot_lst=Rot_lst+[Rot_num]

transf= transf + Rot_lst
transf= transf + [txyz[i]]

transf= transf + [0.,0.,0.,1.]
shape = (4,4)
transf = np.array(transf)
transf_m= transf.reshape(shape)
return transf_m

def create_yaml(transf,name):
cv_file = cv2.FileStorage(name, cv2.FILE_STORAGE_WRITE)
matrix = np.matrix(transf)
print("write matrix\n", matrix)
cv_file .write("PoseState", matrix)
cv_file . release ()

quat_lst=[[0, 0.6427792, 0.0080347, 0.7660094],[0, 0.6419443, 0.080243, 0.7625409], [0,
0.6746999, 0.0793765, 0.7338116],[−0.06162842, 0.66446302, 0.24184476, 0.70441603],[0,
0.8188746, 0.0372216, 0.5727643],[0, 0.8038569, 0, 0.5948228],[−0.02268207,
0.75995941, −0.09463294, 0.6426444],[−0.02268207, 0.75995941, −0.09463294, 0.6426444
],[0.15304592, 0.69034553, −0.15304592, 0.69034553],[0, 0.6746999, −0.0793765,
0.7338116],[0, 0.6419443, −0.080243, 0.7625409],[0, 0.7071068, 0, 0.7071068]]

131

APPENDIX B. CODE DOCUMENTATION

txyz_lst
=[[3.4,6.0,0.7],[3.4,6.0,0.7],[3.4,6.0,0.7],[3.4,6.0,0.7],[3.4,6.0,0.7],[3.4,6.0,0.7],[3.4,6.0,0.7],[3.4,6.0,0.7],[3.4,6.0,0.7],[3.4,6.0,0.7],[3.4,6.0,0.7],[3.4,6.0,0.7]]

leng=len(quat_lst)
for e in range(leng):

transf= transform_matrix(quat_lst[e],txyz_lst[e])
ep=e+1
num= str(ep)
pos= ’pos’
yaml_ext=’.yaml’
name=pos+num+yaml_ext
create_yaml(transf, name)

132

Appendix C

Extrinsic calibration

C.1 Extrinsic calibration (Zivid Command Line Interface tool)

C:\Users\Eduard Marti>ZividExperimentalHandEyeCalibration.exe --eih -d "C:\Users\
Eduard Marti\Documents\final_cal_files" --tf "C:\Users\Eduard Marti\Documents\
final_cal_files\calibration transform.yaml" --rf "C:\Users\Eduard Marti\
Documents\final_cal_files\residual.yaml"

Reading frame from C:\Users\Eduard Marti\Documents\final_cal_files\img01.zdf
Reading pose from C:\Users\Eduard Marti\Documents\final_cal_files\pos01.yaml
Detecting square centers... OK
Reading frame from C:\Users\Eduard Marti\Documents\final_cal_files\img02.zdf
Reading pose from C:\Users\Eduard Marti\Documents\final_cal_files\pos02.yaml
Detecting square centers... OK
Reading frame from C:\Users\Eduard Marti\Documents\final_cal_files\img03.zdf
Reading pose from C:\Users\Eduard Marti\Documents\final_cal_files\pos03.yaml
Detecting square centers... OK
Reading frame from C:\Users\Eduard Marti\Documents\final_cal_files\img04.zdf
Reading pose from C:\Users\Eduard Marti\Documents\final_cal_files\pos04.yaml
Detecting square centers... OK
Reading frame from C:\Users\Eduard Marti\Documents\final_cal_files\img05.zdf
Reading pose from C:\Users\Eduard Marti\Documents\final_cal_files\pos05.yaml
Detecting square centers... OK
Reading frame from C:\Users\Eduard Marti\Documents\final_cal_files\img06.zdf
Reading pose from C:\Users\Eduard Marti\Documents\final_cal_files\pos06.yaml
Detecting square centers... OK
Reading frame from C:\Users\Eduard Marti\Documents\final_cal_files\img07.zdf
Reading pose from C:\Users\Eduard Marti\Documents\final_cal_files\pos07.yaml
Detecting square centers... OK
Reading frame from C:\Users\Eduard Marti\Documents\final_cal_files\img08.zdf
Reading pose from C:\Users\Eduard Marti\Documents\final_cal_files\pos08.yaml
Detecting square centers... OK
Reading frame from C:\Users\Eduard Marti\Documents\final_cal_files\img09.zdf
Reading pose from C:\Users\Eduard Marti\Documents\final_cal_files\pos09.yaml
Detecting square centers... OK
Reading frame from C:\Users\Eduard Marti\Documents\final_cal_files\img10.zdf
Reading pose from C:\Users\Eduard Marti\Documents\final_cal_files\pos10.yaml
Detecting square centers... OK

133

APPENDIX C. EXTRINSIC CALIBRATION

Reading frame from C:\Users\Eduard Marti\Documents\final_cal_files\img11.zdf
Reading pose from C:\Users\Eduard Marti\Documents\final_cal_files\pos11.yaml
Detecting square centers... OK
Reading frame from C:\Users\Eduard Marti\Documents\final_cal_files\img12.zdf
Reading pose from C:\Users\Eduard Marti\Documents\final_cal_files\pos12.yaml
Detecting square centers... OK
Pose file not found C:\Users\Eduard Marti\Documents\final_cal_files\pos13.yaml
Performing hand-eye calibration ...

--- Hand-Eye calibration transform ---
[[-0.194842, 0.016312, 0.980699, -1040.664648],

[-0.980823, 0.001594, -0.194893, 285.822855],
[-0.004742, -0.999866, 0.015689, 43.799124],
[0.000000, 0.000000, 0.000000, 1.000000]]

--- Per-pose calibration residuals ---
000: { Residual for rotation in deg: 0.263577, Residual for translation in mm:

5.53127 }
001: { Residual for rotation in deg: 0.643463, Residual for translation in mm:

19.4177 }
002: { Residual for rotation in deg: 0.483391, Residual for translation in mm:

14.181 }
003: { Residual for rotation in deg: 0.535631, Residual for translation in mm:

21.6278 }
004: { Residual for rotation in deg: 0.485077, Residual for translation in mm:

14.1401 }
005: { Residual for rotation in deg: 0.477544, Residual for translation in mm:

22.2801 }
006: { Residual for rotation in deg: 0.424545, Residual for translation in mm:

14.4672 }
007: { Residual for rotation in deg: 0.28992, Residual for translation in mm:

10.131 }
008: { Residual for rotation in deg: 0.263035, Residual for translation in mm:

8.53168 }
009: { Residual for rotation in deg: 0.388036, Residual for translation in mm:

8.65553 }
010: { Residual for rotation in deg: 0.281926, Residual for translation in mm:

6.35422 }
011: { Residual for rotation in deg: 0.775168, Residual for translation in mm:

4.51259 }

Saving hand-eye transform to file C:\Users\Eduard Marti\Documents\final_cal_files
\calibration transform.yaml

Saving hand-eye residuals report to file C:\Users\Eduard Marti\Documents\
final_cal_files\residual.yaml

C.2 Final calibration transform: calibration_transform.yalm

134

APPENDIX C. EXTRINSIC CALIBRATION

%YAML:1.0
−−−
PoseState: !! opencv−matrix

rows: 4
cols : 4
dt: d
data: [−1.9484199038762506e−01, 1.6311914540471650e−02,

9.8069899572999109e−01, −1.0406646482792733e+03,
−9.8082317916272654e−01, 1.5940480551990266e−03,
−1.9489317645294763e−01, 2.8582285515849640e+02,
−4.7423621657005643e−03, −9.9986568120664199e−01,
1.5688516381967554e−02, 4.3799123724683504e+01, 0., 0., 0., 1.]

C.3 Calibration positions

C.3.1 pos01.yaml

%YAML:1.0
−−−
PoseState: !! opencv−matrix

rows: 4
cols : 4
dt: d
data: [1.7354073459727493e−01, −1.2309310747712398e−02,

9.8474976227687105e−01, 1.7034000000000001e+03,
1.2309310747712398e−02, 9.9987088719921091e−01,
1.0329075485191144e−02, 206., −9.8474976227687105e−01,
1.0329075485191144e−02, 1.7366984739806390e−01,
9.0070000000000005e+02, 0., 0., 0., 1.]

C.3.2 pos02.yaml

%YAML:1.0
−−−
PoseState: !! opencv−matrix

rows: 4
cols : 4
dt: d
data: [1.6293719307784388e−01, −1.2237713306151238e−01,

9.7901752201661729e−01, 1.7034000000000001e+03,
1.2237713306151238e−01, 9.8712212251401188e−01,
1.0302306803370079e−01, 206., −9.7901752201661729e−01,
1.0302306803370079e−01, 1.7581507056383178e−01,
9.0070000000000005e+02, 0., 0., 0., 1.]

C.3.3 pos03.yaml

135

APPENDIX C. EXTRINSIC CALIBRATION

%YAML:1.0
−−−
PoseState: !! opencv−matrix

rows: 4
cols : 4
dt: d
data: [7.6958876780053198e−02, −1.1649478733060624e−01,

9.9020517864205781e−01, 1.7034000000000001e+03,
1.1649478733060624e−01, 9.8739874310170650e−01,
1.0711062807194831e−01, 206., −9.9020517864205781e−01,
1.0711062807194831e−01, 8.9560133678346809e−02,
9.0070000000000005e+02, 0., 0., 0., 1.]

C.3.4 pos04.yaml

%YAML:1.0
−−−
PoseState: !! opencv−matrix

rows: 4
cols : 4
dt: d
data: [−2.9618693627839693e−01, −6.2351863678280883e−02,

9.5309262082646606e−01, 1.7034000000000001e+03,
6.2351863678280883e−02, 9.9447615410319701e−01,
8.4435916622959947e−02, 206., −9.5309262082646606e−01,
8.4435916622959947e−02, −2.9066309038159394e−01,
9.0070000000000005e+02, 0., 0., 0., 1.]

C.3.5 pos05.yaml

%YAML:1.0
−−−
PoseState: !! opencv−matrix

rows: 4
cols : 4
dt: d
data: [−3.4388211420053721e−01, −4.2638407278654221e−02,

9.3804427281323377e−01, 1.7034000000000001e+03,
4.2638407278654221e−02, 9.9722910499072115e−01,
6.0959645538217144e−02, 206., −9.3804427281323377e−01,
6.0959645538217144e−02, −3.4111121919125836e−01,
9.0070000000000005e+02, 0., 0., 0., 1.]

C.3.6 pos06.yaml

%YAML:1.0

136

APPENDIX C. EXTRINSIC CALIBRATION

−−−
PoseState: !! opencv−matrix

rows: 4
cols : 4
dt: d
data: [−2.9237172915775939e−01, 0., 9.5630474849249925e−01,

1.7034000000000001e+03, 0., 1.0000000000000002e+00, 0., 206.,
−9.5630474849249925e−01, 0., −2.9237172915775939e−01,
9.0070000000000005e+02, 0., 0., 0., 1.]

C.3.7 pos07.yaml

%YAML:1.0
−−−
PoseState: !! opencv−matrix

rows: 4
cols : 4
dt: d
data: [−1.5887006706504336e−01, 1.4937761967995802e−01,

9.7593372138147683e−01, 1.7034000000000001e+03,
−1.4937761967995802e−01, 9.7347178790393163e−01,
−1.7331764161178836e−01, 206., −9.7593372138147683e−01,
−1.7331764161178836e−01, −1.3234185496897521e−01,
9.0070000000000005e+02, 0., 0., 0., 1.]

C.3.8 pos08.yaml

%YAML:1.0
−−−
PoseState: !! opencv−matrix

rows: 4
cols : 4
dt: d
data: [−2.1000213213137930e−01, 4.7869021821041920e−02,

9.7652837196374975e−01, 1.7034000000000001e+03,
−4.7869021821041920e−02, 9.9709943109557309e−01,
−5.9171625453264126e−02, 206., −9.7652837196374975e−01,
−5.9171625453264126e−02, −2.0710156322695228e−01,
9.0070000000000005e+02, 0., 0., 0., 1.]

C.3.9 pos09.yaml

%YAML:1.0
−−−
PoseState: !! opencv−matrix

rows: 4
cols : 4

137

APPENDIX C. EXTRINSIC CALIBRATION

dt: d
data: [−9.6663304535539174e−03, 1.1042639760023416e−01,

9.9383729692973277e−01, 1.7034000000000001e+03,
−1.1042639760023416e−01, 9.8768698908061003e−01,
−1.1081706688914875e−01, 206., −9.9383729692973277e−01,
−1.1081706688914875e−01, 2.6466804658361598e−03,
9.0070000000000005e+02, 0., 0., 0., 1.]

C.3.10 pos10.yaml

%YAML:1.0
−−−
PoseState: !! opencv−matrix

rows: 4
cols : 4
dt: d
data: [7.6958876780053198e−02, 1.1649478733060624e−01,

9.9020517864205781e−01, 1.7034000000000001e+03,
−1.1649478733060624e−01, 9.8739874310170650e−01,
−1.0711062807194831e−01, 206., −9.9020517864205781e−01,
−1.0711062807194831e−01, 8.9560133678346809e−02,
9.0070000000000005e+02, 0., 0., 0., 1.]

C.3.11 pos11.yaml

%YAML:1.0
−−−
PoseState: !! opencv−matrix

rows: 4
cols : 4
dt: d
data: [1.6293719307784388e−01, 1.2237713306151238e−01,

9.7901752201661729e−01, 1.7034000000000001e+03,
−1.2237713306151238e−01, 9.8712212251401188e−01,
−1.0302306803370079e−01, 206., −9.7901752201661729e−01,
−1.0302306803370079e−01, 1.7581507056383178e−01,
9.0070000000000005e+02, 0., 0., 0., 1.]

C.3.12 pos12.yaml

%YAML:1.0
−−−
PoseState: !! opencv−matrix

rows: 4
cols : 4
dt: d
data: [0., 0., 1.0000000000000002e+00, 1.7034000000000001e+03, 0.,

138

APPENDIX C. EXTRINSIC CALIBRATION

1.0000000000000002e+00, 0., 206., −1.0000000000000002e+00, 0., 0.,
9.0070000000000005e+02, 0., 0., 0., 1.]

139

Appendix D

Task planner feedback

================IMAGE ACQUISITION================
================IMAGE DETECTION================
Namespace(agnostic_nms=False, cfg=’/home/eduard/LIBRES_SYS/yolov3/cfg/yolov3.cfg’, classes=None, conf_thres

=0.3, device=’’, fourcc=’mp4v’, half=False, img_size=416, iou_thres=0.6, names=’/home/eduard/LIBRES_SYS/
yolov3/data/LIBRES_classes_1.names’, output=’/home/eduard/LIBRES_SYS/yolov3/output’, save_txt=True,
source=’/home/eduard/LIBRES_SYS/yolov3/data/samples’, view_img=False, weights=’/home/eduard/LIBRES_SYS/
yolov3/weights/last.pt’)

Using CUDA device0 _CudaDeviceProperties(name=’GeForce RTX 2070’, total_memory=7952MB)

Model Summary: 222 layers, 6.19491e+07 parameters, 6.19491e+07 gradients
image 1/3 /home/eduard/LIBRES_SYS/yolov3/data/samples/0.jpg: 288x416 4 VW_modules_01s, 1 VW_bms_01s, 29 screws

, 13 empty_screws, 2 connection_001s, Done. (0.026s)
image 2/3 /home/eduard/LIBRES_SYS/yolov3/data/samples/1.jpg: 288x416 4 VW_modules_01s, 1 VW_bms_01s, 22 screws

, 13 empty_screws, 2 connection_001s, Done. (0.019s)
image 3/3 /home/eduard/LIBRES_SYS/yolov3/data/samples/2.jpg: 288x416 4 VW_modules_01s, 1 VW_bms_01s, 21 screws

, 10 empty_screws, 2 connection_001s, Done. (0.019s)
Results saved to /home/eduard/LIBRES_SYS//home/eduard/LIBRES_SYS/yolov3/output
Done. (0.332s)
================PLANNING REMOVAL================
=======Component analysis=======
there are 29 screws
there are 2 connective components
there are 5 components (modules, bms, etc..)
there are 13empty screws
================Analysing the first image positions ================
=======pointcloud analysis=======
-Pointcloud analysed-
=======Component analysis=======
there are 22 screws
there are 2 connective components
there are 5 components (modules, bms, etc..)
there are 13empty screws
================Analysing the second image positions================
=======What components should be removed=======
screws should be removed
task_planner_v6.py:384: RuntimeWarning: invalid value encountered in double_scalars

mean_exc=(comp_t-intersection_t)/(comp_area-intersection_area)
=======pointcloud analysis=======
-Pointcloud analysed-
=======Component analysis=======
there are 21 screws
there are 2 connective components
there are 5 components (modules, bms, etc..)
there are 10empty screws
================Analysing the third image positions================
=======pointcloud analysis=======
-Pointcloud analysed-
================Merging results================
--Finding the WR frame coordinates for each image--
-First iamge-
-Second iamge-
-Second iamge-

140

APPENDIX D. TASK PLANNER FEEDBACK

--merging positions--
================REMOVING COMPONENTS================
=======Remove operation=======
[3.726657567683155, 6.488918064461358, 0.2827778053023142, ’3’]
Failed to import pyassimp, see https://github.com/ros-planning/moveit/issues/86 for more info
[INFO] [1592344877.276959264]: Loading robot model ’righty’...
[INFO] [1592344877.425951391]: Loading robot model ’righty’...
[INFO] [1592344877.487651533]: Loading robot model ’righty’...
[INFO] [1592344878.620464443]: Ready to take commands for planning group righty_tcp2.
-----Moving robot to the safety position-----
SAFETY POSITION REACHED
-----Moving robot to the desired position-----
Robot moved

removing screw
Press Enter to move the robot to the next position...

141

Appendix E

Guidance Code

E.1 moverobot.py

!/usr/bin/env python

import sys
import copy
import rospy
import numpy as np
import dynamic_reconfigure.client
import time
import moveit_commander
import moveit_msgs.msg
import geometry_msgs.msg
from math import pi
from std_msgs.msg import String
from moveit_commander.conversions import pose_to_list

def main():
#intialize movitcommander and the node

moveit_commander.roscpp_initialize(sys.argv)
rospy.init_node(’robot_irb’, anonymous=True)

#Instantiate a RobotCommander object. Provides information

robot = moveit_commander.RobotCommander()
#Instantiate a PlanningSceneInterface object.

scene = moveit_commander.PlanningSceneInterface()

#define the groupname
group_name = ’lefty_tcp’
move_group = moveit_commander.MoveGroupCommander(group_name)
move_group.set_planner_id(’RRTConnectkConfigDefault’)

#define the Publisher
display_trajectory_publisher = rospy.Publisher(’/move_group/display_planned_path’,

moveit_msgs.msg.DisplayTrajectory,

142

APPENDIX E. GUIDANCE CODE

queue_size=20)

print "============ Printing robot state"
print robot.get_current_state()
pose_goal = move_group.get_random_pose()

#pose goal in quaternions
pose_goal = geometry_msgs.msg.Pose()
pose_goal = move_group.get_random_pose()
#q= [0.2677762,0.1967738,0.9304776,0.1542317]
#txyz= [−559.017,−181.636,809.017]
#txyz = np.array(txyz)∗0.001
#pose_goal.orientation.x = q[1]
#pose_goal.orientation.y = q[2]
#pose_goal.orientation.z = q[3]
#pose_goal.orientation.w = q[0]
#pose_goal.position.x = txyz[0]+1.7
#pose_goal.position.y = txyz[1]+0.2
#pose_goal.position.z = txyz[2]+0.9

move_group.set_pose_target(pose_goal)
print pose_goal
plan = move_group.go(wait=True)
print ’2’
Calling ‘stop() ‘ ensures that there is no residual movement
move_group.stop()

It is always good to clear your targets after planning with poses.
Note: there is no equivalent function for clear_joint_value_targets()
move_group.clear_pose_targets()

if __name__ == ’__main__’:
main()

143

	Preface
	Abstract
	Introduction
	Industrial Motivation
	Project objectives and scope
	Project limitations
	Report Outline

	Theory on Disassembly
	Challenges in disassembly
	Disassembly Automation
	Mechanical design review
	Perception systems in automated disassembly

	Product analysis
	Main components of a LIB pack
	Manual disassembly of a Volkswagen Hybrid LIB pack (25 Ah)

	Robot Operating System communication
	Robot Operating System (ROS)
	ROS distributions
	ROS background
	ROS in Python (rospy)

	Moveit!
	MoveIt! Setup Assistant
	ABB IRB4400 + track IRBT4004 MoveIt! package creation and configuration
	Essential coding to move the robot

	ROS implementation
	Zivid 3D camera ROS driver
	ABB ROS-Server
	Catkin Workspace

	Guidance: UiA Robotics Lab ROS set up manual
	Object detection
	Image capture: Zivid one parameter adjustment
	Object detection: YOLOv3
	YOLOv3 Algorithm training
	System's nomenclature
	Labeling
	Training Images acquisition
	Training stage
	YOLOv3 training results
	Training data creator (function)

	Pose estimation
	Structural light camera: Zivid one 3D camera
	Pointcloud concept
	Structured Light Imaging

	Point cloud and depth images storage
	Intrinsic and Extrinsic Parameters
	Pinhole Camera Model
	Intrinsic Parameters
	Extrinsic Parameters Calibration

	World coordinates of the detected components

	Methodology, task planning
	Task planning methodology analysis
	Fully automated dismantling system
	Agent emulating human behaviour
	Semi-destructive disassembly

	Task Planner Design
	Task Planner overview
	Integrated Functions and scripts
	Integrated Functions and scripts flow charts
	Running the task planner
	Conclusion

	Project results
	Object detection results
	Time analysis
	Decision-making: Optimal path
	Accuracy

	Conclusions, future work and discussion
	Bibliography
	Hardware Specifications
	Zivid 3D Camera
	IRB4400
	IRB4400

	Code Documentation
	[main()]: Task planner core
	[CamR_pos()]: Find the positions in camera reference base frame
	[WR_pos]: World reference base frame position detection:
	[remove()]: Removal Operation
	[num_components]: Components analysis
	[what_component and has_comp_over]: Decision-making
	[training_data_autogenerator()]: Automatic YOLO training data creator
	[merge_detection()]: Merge detection
	[move_to_pict.py]: Image capturing
	[move_pos.py]: Move the robot TCP to a specific position
	[move_to_cal.py]: Calibration images capturing
	Moving the robot basic code
	[training_data.py]: Training images capture
	[obtain_calfiles.py]: Obtain calibration files

	Extrinsic calibration
	Extrinsic calibration (Zivid Command Line Interface tool)
	Final calibration transform: calibration_transform.yalm
	Calibration positions
	pos01.yaml
	pos02.yaml
	pos03.yaml
	pos04.yaml
	pos05.yaml
	pos06.yaml
	pos07.yaml
	pos08.yaml
	pos09.yaml
	pos10.yaml
	pos11.yaml
	pos12.yaml

	Task planner feedback
	Guidance Code
	moverobot.py

