
Safety assurance of high voltage control module
in a robotic paint system

Martin Sirevåg
Rabah Saleh Hagag

Supervisors
David Anisi

Yvonne Murray

This Master’s Thesis is carried out as a part of the education at the University of Agder and is
therefore approved as a part of this education. However, this does not imply that the University

answers for the methods that are used or the conclusions that are drawn.

University of Agder, 2020
Faculty of Engineering and Science
Department of Engineering Sciences

Abstract

This thesis is a case study considering the use of formal verification methods as means of verifying
the functionality of the High Voltage Controller (HVC) for a robotic paint system. The goal
of this thesis is to use model checking, which is an output-driven approach, as a complement
to standard testing of control systems by introducing a way to verify specific properties of the
model. Formal verification originally comes from embedded hardware systems, and it can be used
to verify properties of the model before testing the physical system. In this case study it is used
to verify the properties of the software for the system. This approach will ideally help identify
potential problems early in the development phase of a control system. In this case study, the
development phase has already been completed, which makes this a somewhat unique situation.
Two different tools have been used to model and verify the software for the HVC. The first is
Simulink Design Verifier by MathWorks. The second is RoboTool, which is a tool developed by
the RoboStar group at the University of York. The biggest difference between the tools is that
Simulink Design Verifier uses the Simulink framework and therefore has support for input-driven
simulation models. That means that the model can be modelled around input values and run a
dynamic simulation. Simulink Design Verifier can also be used in higher abstraction with a more
output-driven approach, that is analysing the behaviour regardless of the input values. Whereas
RoboTool is designed with model checking of robotic systems in mind. It is intended for a higher
abstraction and a more output-driven modelling approach. RoboTool is still under development,
and the possibility of converting RoboChart models to simulation models, which they call RoboSim,
is something RoboStar is currently working on. Not every property was verified in either tool, but
combined, every property of interest was verified.

I

Contents

Abstract I

Contents III

List of Abbreviations IV

1 Introduction 1

1.1 Application Description . 1

1.2 Motivation . 4

1.3 Background . 4

2 Theory 7

2.1 Formal Verification and Model Checking . 7

2.2 Verification and Standard Verification Techniques . 7

2.3 Temporal Logic . 12

2.4 Linear Temporal Logic . 13

2.5 Computational Tree Logic . 14

2.6 Communicating Sequential Processes . 15

3 Modelling and Verification Tools 16

3.1 Verification and Validation in Simulink . 16

3.2 RoboTool . 22

3.3 FDR4 . 24

II

4 Modelling 28

4.1 General Modelling Procedure . 28

4.2 Simulink Modelling . 29

4.3 RoboTool Modelling . 36

5 Formal Verification 44

5.1 Verification in Simulink Design Verifier . 44

5.2 Verification in RoboTool and FDR4 . 48

6 Results 52

6.1 Simulink Design Verifier Results . 52

6.2 FDR4 results . 57

6.3 Tool comparison . 58

7 Discussion and Conclusion 59

7.1 Conclusion . 59

7.2 Future work . 60

7.2.1 Stateflow and Simulink Design Verifier . 60

7.2.2 RoboTool and FDR4 . 61

Bibliography 64

List of Figures 68

List of Tables 69

List of Abbreviations

AC Alternating Current.

AP Atomic Propositions.

CPU Central Processing Unit.

CSP Communicating Sequential Processes.

CTL Computational Tree Logic.

FDR Failures-Divergences Refinement.

FSM Finite State Machine.

HVC High Voltage Controller.

IPS Integrated Paint System.

kV Kilo Volt.

LTL Linear Temporal Logic.

PID Proportional Integral Derivative.

PWM Pulse Width Modulation.

SLDV Simulink Design Verifier.

IV

Chapter 1

Introduction

1.1 Application Description

Electrostatic painting is mainly used in the bulk and mass production industry for coating small
objects such as cars and bicycles. Electrostatic painting increases the quality of the coat and the
efficiency of the painting by reducing the required amount of paint, decreasing the painting time
and making the process a fully automated operation by the help of robots. Nevertheless, the
electrostatic painting method has some alarming hazards if the procedure and safety precautions
are underestimated. Those hazards can be for instance, sparks that increase the risk of fire in the
facility or even deadly electrical shock during operation or maintenance. Both of these hazards
must be seriously taken into account. Figure 1.1 shows the robotic paint system.

Figure 1.1: Robotic paint system from ABB[21]

1

CHAPTER 1. INTRODUCTION

1.1.1 Electrostatic Painting Principle

The main difference between the electrostatic method and the conventional coating method is that
the conventional method uses pressurized air to apply the coat, while the electrostatic method uses
electrostatic fields of 50 to 100 kV. The spray particles are charged by a negative high voltage at
the applicator. The particles follow the lines of the electrostatic field from the applicator (cathode)
to the earthed object (anode) as shown in Figure 1.2[1].

Figure 1.2: Electrostatic painting principle[1]

Several factors have to be monitored in order to guarantee the efficiency and success of the painting
process. Some of these are the shape of the work piece, the distance between the applicator and the
work piece, the high voltage current at the tip of the applicator and the presence of contamination.

The high voltage current is the main part of the process. By increasing the high voltage current,
the effectiveness of the operation and transferable painting go up, and as a result the possibility of
discharge sparks rises. If the applicator gets within a certain distance from the work piece, a safety
function is activated to make the high voltage current drop to zero in order to ensure personal
safety.

The company ABB has produced their own high voltage controller unit (HVC) for supervising,
controlling and monitoring the painting process. The next subsection will explain some of its
features and functionalities in detail.

1.1.2 High Voltage Control System

A general state machine was developed and provided to the group. Figure 1.3 shows the sequential
behaviour of this state machine. There are three additional monitors running concurrently with
the system to monitor it, and cause the system to transition to the ErrorMode state if the monitor
has detected an error.

The high voltage control system is mainly composed of the high voltage controller (HVC-02), the
high voltage cascade unit and the applicator. The CCPU is incorporated into the high voltage
controller module (HVC-02). The CCPU is a particular CPU that ABB uses, it can be connected
to application cards, such as the HVC. Figure 1.4 illustrates the components of the high voltage
control system and their relations and work sequence[1].

2

CHAPTER 1. INTRODUCTION

Figure 1.3: Finite state diagram of the High Voltage Controller (HVC)

Figure 1.4: High voltage control system unit[1]

The high voltage control module provides the cascade unit with the necessary power for driving
the applicator. It generates a 24V Alternating Current (AC) signal that goes into the transformer
of the cascade, which in turn supplies a rectified high voltage to the applicator.

The required value of the high voltage and the other reference parameters are set up in the In-
tegrated Paint System (IPS) configuration files. The HVC-02 module performs closed loop control
by monitoring the output of the cascade unit, and feeds it back from the cascade unit to the IPS
controller in the HVC-02 module. The HVC-cascade interface is shown in Figure 1.5.

Figure 1.5: Block diagram of one part of the paint robot, containing the HVC[1]

3

CHAPTER 1. INTRODUCTION

1.2 Motivation

The main motivation in this thesis is to do a comparison between formal verification and standard
software testing. Therefore, this thesis is a case study, where formal verification methods are applied
to the HVC of a robotic paint robot, where traditional testing methods have already been applied.
ABB provided the group with the use case, including documents and datasheets describing the
system, as well as detailed explanations of the errors. When using model checking methods, it is
important to know which errors could occur. Formal verification does not only require a model
that accurately captures the behaviour of the system, but also well defined properties to look for
within the model.

Many systems in the industrial market can be quite complex. Using traditional testing methods
can be a challenge, since it can be hard to know every scenario to test for. Formal verification
methods uses output-driven models[13], this concept is further discussed in Chapter 4.1. When
verifying such a model, a property must first be formally described by the programmer. Running
the analysis will verify whether the described property is satisfied during every possible execution
of the system. Formal verification methods require an accurate representation of the system to be
verified. If the model does not accurately capture the system, the results will be unreliable. The
properties to verify also have to be well defined. Knowledge and experience about the system to be
verified is required in order to know which situations might occur. During this case study there is
an advantage by the fact that the errors revealed during operation of the system has been provided,
and are well defined. It can still be a challenge to translate informally described errors into formal
specifications required by the verification tools.

Multiple tools and languages are available for model checking and formal verification. Another
motivating factor in this thesis is to test different tools, and to see the difference in the capabilities
of the tools and how they are used. In this project, Stateflow chart from Simulink and RoboChart
will be used for modelling purposes. RoboChart uses FDR for verification, while Stateflow uses
Simulink Design Verifier (SLDV). There are also other languages and tools for formal verification,
such as finite automata, but this thesis will mostly focus on the ones used for the case study.

1.3 Background

In this case study, the goal is to check the reliability of the controller software for the high voltage
control unit. The investigation will be carried out by Simulink, validating and reporting its ability
for such tasks is part of the study. In parallel, the same verification will be done in RoboTool. The
report will also do comparisons between the flexibility and usability of both these model checking
tools.

Figure 1.5 shows a simplified block diagram of the painting system, containing the HVC module.
The 24V power signal powers the HVC module. HV.Actual is a high voltage signal measured from
the system, and is used as a reference value. HV.Actual should follow the value of HV.SetPoint.
IM is a measurement of the current and is used to compare to internally defined limits in order to
detect errors regarding over or under-current limits.

4

CHAPTER 1. INTRODUCTION

A few errors went undetected by traditional testing methods, but was later discovered during
operation. These errors were identified and documented both in text and visualized as graphs.
Four issues were detected, the first three regarding HV.Actual. The fourth issue is regarding the
24V power signal missing.

The issues regarding the HV.Actual were as follows:

1. Sometimes both the HV.Actual and HV.SetPoint had non-zero values that differed from each
other. In this case the HVC did not respond to changes of the HV.SetPoint value, and had a
constant actual value.

2. In some cases HV.SetPoint had no value, but HV.Actual still had a non-zero value.

3. In some cases, there was a non-zero HV.SetPoint, but the HV.Actual continued to be zero.

Regarding the 24V power signal, there was one case discovered:

4. Sometimes the system would report that the 24V power signal was missing, even if it was present,
resulting in a deadlock.

Figures 1.6 - 1.8 demonstrates these issues graphically. The issues regarding HV.Actual occurred if
the 24V power signal was turned off while HV.SetPoint had a non-zero value. When this happened,
HV.SetPoint would be turned off due to the missing power signal, and HV.Actual would drop to
zero. However, the Pulse Width Modulation (PWM) output, which drives the cascade, was not
turned off. Because of this, when the 24V power signal was turned back on, the PWM signal that
was still on would feed the cascade and the voltage would increase, which makes the integrator
term of the PID controller to increase causing a windup effect. This can be seen in Figure 1.6 when
the 24V power is switched back on. The blue line indicates the HV.Actual, this rise was caught by
a limit alarm which disabled the PWM.

Figure 1.6: Error concerning HV.Actual value

An additional error would sometimes occur where the HVC froze when the 24V power was disabled,
which would result in the alarm not catching the rising voltage. This would cause the voltage to
continue to increase until the system was reset or the power was turned off. This is shown in
Figure 1.7.

The issue where the 24V power signal was indicated as missing was due to a deadlock in the system

5

CHAPTER 1. INTRODUCTION

which caused the controller to report the signal as missing. This can be seen in Figure 1.8.

Figure 1.7: Error when the 24V power signal failed and the HVC froze

Figure 1.8: Error when the 24V power signal was falsely reported missing

6

Chapter 2

Theory

This chapter will give an overview of the central theory surrounding model checking and formal
verification. Some of the theory in this chapter have not been directly applied in the work, but are
still crucial in order to get a better understanding of the principles of model checking and can be
considered a bridge to the theory that has been directly applied.

2.1 Formal Verification and Model Checking

The need for formal verification stem from the complexity of systems that are being designed for
the industry. The increasing interactions between humans and cyber-physical systems imposes
disciplined standards, processes and procedures during development and manufacturing of such
products. The main goals of the disciplined rules are to prevent loss of lives and economic loss.

In 1995, statistics mentioned that people encounter about 25 ICT devices on a daily basis[3].
However, what is still really limiting our ability to exploit these systems and design them is our
insufficient confidence in their correctness under all circumstances. Therefore, formal verification
becomes increasingly significant in designing complex systems, particularly when it comes to safety
critical systems[4].

2.2 Verification and Standard Verification Techniques

To make the definition of verification understandable and easily digestible, it can be formulated
as one simple question. Is the product built correctly? From this question, it can be inferred
that verification is meant to verify specifications of the model for the system. Hence, verification
is to verify certain properties for the targeted design and thus the correctness of the system.
The specification of targeted design represents the properties in formal verification which must be
verified. In a case where all properties are met, the targeted design will be considered a success and
the correctness of the complex system has been verified. Figure 2.1 demonstrates the systematic
approach for the verification and validation process in industrial products.

7

CHAPTER 2. THEORY

Figure 2.1: Flowchart showing the verification process

The principal validation techniques for complex systems are simulation, testing and formal veri-
fication that contains model checking and deductive verification[3]. Simulation and testing are
performed by feeding inputs into the system and observing the corresponding output. Though
these methods are effective particularly in the early stages of development, finding more complex
errors can be a challenge. Only relying on input-driven testing methods may result in errors or bugs
going undetected, especially when it comes to highly complex systems. Some techniques are well-
known in certain fields, for example peer review is used in software verification, while simulation is
mostly used for hardware verification[3].

The definition of formal verification is to verify the correctness of the system by testing certain
properties that describe the system behaviour through an abstract mathematical model[4]. This
verification approach is conducted through an exhaustive exploration of all possible executions
of the complex system[3]. While simulation and testing techniques consider specific scenarios or
behaviors, the formal verification technique can be seen as a comprehensive verifying method for
covering all behaviours of the system.

The focus in the next chapters will be related to the formal verification procedure, particularly
with regards to model checking. Several steps have to be taken in order to carry out the formal
verification process, such as defining the formal model and stating the formal properties.

Stating the formal specifications is the initial step before performing any verification. It is vital
to accurately understand the engineering requirements and specifications for the targeted system.
This understanding is very helpful during conversion of the design into an abstract model to use
by the model checking tools. Accordingly, this technique is called the model based verification
technique[3]. In view of what has been introduced, the model has to be representative of the
system in order for the automatic verification results to be valid. It is necessary to know which
properties are important and which are not. Simplification of the model plays a significant key role
in the verification process, since any irrelevant information should be simplified[4].

8

CHAPTER 2. THEORY

"Any verification using model-based techniques is only as good as the model of the
system"[3].

2.2.1 Modelling Systems

This thesis is devoted to embedded systems. Such systems can be modelled by for instance a finite
state machine. Finite state machines (FSM) are the preferred structure to model systems for model
checking. The essential idea behind FSM is to model the system according to its internal states.
The internal states specify the system status that can be held for a period of time and transition to
another internal state under certain conditions. One of the simplest examples of a state machine is
built up with two states, on and off. In this simple system, transitions from one state to the other
happens when the transition condition occurs, which is when the power is switched on or off.

Figure 2.2: Finite state machine representation

2.2.2 Modelling Programs

Finite state machines can be used to model both software and hardware systems. Software can
be modelled differently according to their structure whether they are sequential or concurrent
programs. Sequential and concurrent models constitute the base for any system modelling. In
sequential models, as shown in Figure 2.3, each state has a unique entry point and a unique exit
point. States are arranged in a linear order, each state is preceded and followed by another state
sequentially. Sequential models are usually used for describing a simple logical program. Only one
state can be active at any given time and the rest are inactive. Sequential processes are always
terminated by what is called a terminal state[3].

9

CHAPTER 2. THEORY

Figure 2.3: Representation of sequential states

Concurrent programs are composed of several sequential processes that can be executed individu-
ally at the same time. In asynchronous executions, one process is executed at a time, while in
synchronous executions all processes executes at the same time. Processes communicate by differ-
ent means such as using shared variables or by exchanging action messages between the processes,
known as message passing[3].

2.2.3 Model Checking

Model checking is one of the formal verification techniques. It verifies finite state machines for
sequential or concurrent systems. Model checking is an exhaustive procedure for systematically and
automatically searching the entire state machine to verify if a certain property is satisfied. Even
though the model checking procedure is constrained to finite states, model checking is applicable
to important systems such as hardware controllers and other communication protocols[4]. Model
checking benefits from being an automatic procedure, so it is preferred to be conducted whenever
it can be applied[3]. In some cases where systems are infinite, the model checking technique can
be used in combination with other techniques such as deductive verification[14]. Other limitations
are processors and memory. The available model checkers can process a state space of 108 - 109

states, however larger state spaces can be treated by implementing algorithms with a reasonable
efficiency[3].

The model of the system in model checking is an abstract, high level model, it is not a detailed
model of the actual components of the system. This is an important aspect of formal verification.
Converting the system into a representative abstract model is an important aspect and can be a
challenge. Additionally, properties must be stated precisely and unambiguously.

Safety properties and fairness are among the properties that can be examined by model checking
tools. If any violation occurs within any execution path, the model checker tool provides a counter
example. The counter example shows how the property is violated and the execution path from
the initial state to the state that violates the property is highlighted[3].

10

CHAPTER 2. THEORY

2.2.4 Model Checking Process

Using model checking requires a systematic process to ensure the accuracy of the verification. The
model checking process evolves through organized steps. It begins with setting up the model for
the system, stating the properties formally, running the model checker and analysing the results.

1. Modelling the System

The first step in the model checking process is to model the system in a way that the model checker
tool can handle, it is simply a compilation task. Due to constraints on the computational power of
the model checker, the possibility of eliminating or ignoring irrelevant details should be considered.
Simulation can be used before model checking in order to enhance the quality of the model checking
by detecting trivial or simpler errors. Discovering these errors early can save time and effort for
model checking [4]. However, formal verification methods are usually applied before simulation, to
rule out more high level errors.

2. Specification and Properties Definition

The model represents the behaviour of the system, the properties describes intended behaviours
that should be verified within the system. Clear definitions of the properties is crucial to the
model checking process. These properties are usually specified by using temporal logic, which is
called a property specification language. The system specifications can be formally written with
temporal logic to form different properties such as fairness properties, reachability properties and
safety properties[3].

3. Verification

Verification is to verify whether the specifications are met for the abstract model of the system. The
results are issued by the model checker tools in different forms depending on the tool in question.

4. Analysing the Result

Verification of the model can lead to three outcomes. Whether the property is valid, not valid or
if the model of the system is beyond the computational power of the model checker. A valid result
means the system satisfies the desired property. Discrepancies between the model and the actual
system will cause inaccurate results. Insufficient memory due to the model being too complex
leads to an error because of limitations on the model checker’s computational power[3]. Figure 2.4
demonstrates the model checking process.

11

CHAPTER 2. THEORY

Figure 2.4: Representation of a general model checking procedure additionally showing how it is a
complement to simulation

2.3 Temporal Logic

Temporal logic is particularly important for concurrent or reactive systems. The importance stems
from the need to describe event order in time without mentioning time explicitly. Consequently,
temporal logic is classified as two types. The first is linear temporal logic and the second is branching
temporal logic, also called computational tree logic. In the former, time can be seen as if every
present moment has one unique possible moment in the future. In the latter, the recent moments
are split into a tree branch pattern (branching) into many possible moments in the future. Several
temporal logic operators are used such as G, U, and X, these are explained in Sections 2.4 and 2.5.
However, the G operator is the one most frequently used. The linear logic formula consists of a
set of Atomic Propositions and the temporal logic operators previously mentioned. For instance,
G(p) where p is a specific property that has been defined by using a set of atomic propositions[4].
Atomic Proposition (AP) is a statement or assertion that must be true or false.

Quantifiers such as universal and existential are used in combination with linear temporal logic in
order to formalize branching temporal logic. For instance A(p), where A represents the universal
quantifier and p represents the process. The concept of temporal logic was introduced a long time
ago by several people, but Amir Pnueli was the first who used temporal logic in reasoning about
concurrency[3]. In the 1980’s[4], Clarke and Emerson have introduced the temporal logic model
checking algorithm which allowed temporal logic model checking to be automated.

12

CHAPTER 2. THEORY

2.4 Linear Temporal Logic

Linear temporal logic (LTL), as the name suggests, is used for analysing linear structures. These
can simply be a linear structure on their own, or a linear unwrapping of a tree structure or state
machine.

LTL Grammar of Atomic Propositions (AP):

φ := true | pi | φ1 ∧ φ2 | ¬φ | Xφ | φ1 ∪ φ2 (2.1)

φ contains all of the atomic propositions of LTL. The first expression "true", is always true. pi is
true if the first state in the linear model contains pi, pi ∈ AP. φ1 ∧ φ2 is true if both φ1 and φ2

is true in the first state, φ1 and φ2 are both LTL formulas. ¬φ means not φ, which means that it
this expression is true if the first state does not contain φ. Xφ is true if the next state contains φ.
The last expression φ1 ∪φ2 is true if φ1 is true until φ2 becomes true[24]. These expressions can be
combined in order to make more complex properties. The expressions containing φ, φ1 or φ2 can
be exchanged for any of the expressions within φ. For instance, φ1 ∧ φ2 can be used to create the
expression p1 ∧ p2, where as mentioned before pi is an atomic proposition. Some examples of linear
executions that satisfy certain LTL properties can be seen in Figure 2.5.

Figure 2.5: Figure showing examples of linear executions that satisfies the requirements described
on the left[11]

Most of the previous expressions consider the linear execution from the point of view of the first
state. They can however be used used to describe more global properties by combining some of the
grammar into one statement. For instance, "true ∪ p1" means true until p1 is true. Which means
that at some point in time p1 will become true. This can be rephrased as "p1 is eventually true
in the future". Another property that can be derived is "¬(true ∪ ¬p1)". This expression is a bit
more complex, but by analysing parts of the expression individually makes it more intuitive. The
expression inside the parenthesis means true until not p1. By itself, this is true if p1 is never true.

13

CHAPTER 2. THEORY

The negation before the parenthesis means that the meaning of the expression is opposite. Which
means that the whole expression means that p1 is always true. These two combinations have their
own operators[11].

Elementary temporal logic operators:

F/ � "eventually" - eventually true in the future (2.2)

G/� "always" - true now and in the future (2.3)

Whether F or �, or G or � is used depends on the source. In the report G and F will be used to
describe these operators. G and F can also be used together. For instance GFp1 means that "p1

will always eventually happen" which means that p1 will appear "infinitely often" throughout the
sequence[11].

2.5 Computational Tree Logic

Computational tree logic (CTL) is used on systems that can be expressed in the form of a com-
putational tree. A computational tree consists of several possible executions, as opposed to a
linear execution which only contains one. State machines with several possible executions can be
unwrapped into a computational tree. An example of this is shown in Figure 2.6, where a state ma-
chine is unwrapped into an infinite computational tree. Particular branches of the computational
tree can be isolated and viewed as a single linear execution[3].

Figure 2.6: Example of a computational tree extracted from a state machine[3]

The temporal logic operators F and G described in chapter 2.4, can also be used in CTL[3]. CTL
also distinguishes between between state formulae and path formulae[7].

14

CHAPTER 2. THEORY

State formulae:

φ := true | pi | φ1 ∧ φ2 | ¬φ1 | Eα | Aα (2.4)

Path formulae:

α := Xφ1| φ1 ∪ φ2 | Fφ1 | Gφ1 (2.5)

Some of the expressions are similar to the ones explained in Chapter 2.4, and have the same
meaning. In the state formulae, there are two new operators E and A. Eα means that there exists
a path, where α holds true. Aα means that, in all paths, α is true. The α after the expressions
E and A in the state formulae, means that α can only be an expression from the path formulae.
Likewise, the φ in the path formulae must be an expression from the state formulae[7].

2.6 Communicating Sequential Processes

Communicating Sequential Processes (CSP) was first introduced by C.A.R. Hoare, in his book
"Communicating sequential processes"[5]. CSP is a mathematical language for describing concur-
rent systems that communicate by message passing. It is important to understand the distinction
between concurrency and parallelism. In parallelism, the processes work simultaneously, this can
be achieved by using multiple processors or processor cores. While concurrent systems work con-
currently. Concurrent systems are not parallel, the sequential processes may be executed in any
order, and the processor might jump between actions in the processes. Such systems can become
quite complex and introduce situations such as non-determinism, deadlocks or livelocks. This can
make analysis of such a system challenging. The CSP notation can be used to ease the analysis of
such systems.

Due to CSP having a basis in mathematical notation, it is a robust notation. In Hoare’s book
"Communicating sequential processes"[5], mathematical proofs are used to prove the validity of the
language. The math behind this language is the basis for the functional language CSPM used
by the verification tool for the RoboTool model. This functional language is further described in
Section 3.3.1.

15

Chapter 3

Modelling and Verification Tools

This chapter will go through the capabilities of the different tools in greater detail. Some of the
differences between the tools will become apparent in this chapter. The first part of the chapter
will discuss Simulink, Stateflow and Simulink Design Verifier. The second part will go through
RoboTool and FDR4. The modelling frameworks are built with different purposes in mind, this
will become apparent in this chapter. Simulink is a tool mainly focused on models for simulation,
whereas RoboChart models are designed with formal verification of robotic systems in mind.

3.1 Verification and Validation in Simulink

MathWorks uses model-based design to verify and validate the Simulink models by using a variety of
toolboxes such as Simulink Design Verifier, Simulink coverage and Polyspace. Using these toolboxes
increases the confidence in the design and reduces the time needed for debugging the design[25].
Simulink Design Verifier statically analyses the properties and discovers whether the model satisfies
the requirements or not. Simulink coverage shows how much of the model that can be analysed by
the verification tool, and displays it as a percentage. Polyspace debugs the generated code to catch
the run-time errors and static errors. The formal verification process starts by defining the system
requirements and then building a model. The model is verified according to the specification. If all
properties are met, the model is considered successfully built. Figure 3.1 demonstrates the formal
verification and validation process in MathWorks[15].

16

CHAPTER 3. MODELLING AND VERIFICATION TOOLS

Figure 3.1: Formal verification process in Mathworks[15]

3.1.1 Simulink

Simulink is a MathWorks product and add-in product to MATLAB. It is an interactive tool to
simulate, model and analyse dynamic systems. The environment of Simulink has different blocks
that can be added via drag and drop to the Simulink canvas. Blocks are graphically represented
to ease the work in Simulink. Primitive blocks and predefined library blocks are incorporated
in the Simulink library browser. Customizable blocks and predefined user functions are included
in Simulink as well. Results from Simulink or inputs from the MATLAB environment can be
transferred interchangeably. A graphical editor and solvers (discrete-and continuous) are provided.
Parameters of predefined blocks and sample time of model and blocks can be modified according
to the user’s requirements or preferences. It is widely used in design of systems, especially reactive
systems which is the issue of interest in this case study. Code generation, system verification and
simulation are part of Simulink’s capabilities[12].

3.1.2 Stateflow

Stateflow is a graphical language integrated in the environment of Simulink. It is utilized to
represent the control logic of reactive systems via finite state machines. State transitions, transition
conditions, and temporal logic can all be expressed graphically in Stateflow. It facilitates the control
logic in models of high abstraction, where the functionality, deterministic supervisory control and
task scheduling are emphasized. Additionally, it has access to Simulink functions to represent the
whole system of continuous and discrete combination. Figure 3.2 illustrates the use of Stateflow to
represent the logic of switching the power of a device on or off, expressed as a state machine.

Many features and traits are incorporated into Stateflow, such as graphical error debugging during
execution, inconsistency in states and logic, and static and run time analysis. Stateflow has the
ability to generate code in the C language from its flowchart model. This code can run in another
application that the designer might try to build, such as embedded systems [18].

In the concurrent system where the cyclic fashion always occurs, sharing of resources usually hap-
pens. Stateflow in Simulink can not deal with sharing resources. Stateflow follows the 12 o’clock
rules and therefore if there are 2 states sharing the same resource, the first state checked is the one
closest to the 12 position of the clock. As a result, Stateflow is unable to handle non-deterministic

17

CHAPTER 3. MODELLING AND VERIFICATION TOOLS

states[18].

Figure 3.2: Representation of the Stateflow environment[18]

3.1.3 Simulink Desing Verifier

Simulink Design Verifier (SLDV) is a commercial toolbox produced by MathWorks with support
for Simulink models. It utilizes formal methods to identify errors in the model without running a
simulation. Simulink Design Verifier identifies design errors, generates test cases for model coverage,
and verifies the design against the requirements. Figure 3.3 shows the functionality of SLDV.
Detectable errors by SLDV include division by zero, integer overflow, dead logic and assertion
violations[17].

Figure 3.3: Simulink Design Verifer functions

The user can specify the properties in SLDV by using the verification sub-system block from the
Simulink library. In that block, the assertions can be written to be utilized in the verification

18

CHAPTER 3. MODELLING AND VERIFICATION TOOLS

analysis. The input and output signals from the model are connected to the verification subsystem.
Block connections into the model’s input and output does not affect the simulation result or code
generation. Figure 3.4 shows the architecture of the verification subsystem block and the Simulink
sub-model.

Figure 3.4: Demonstration of the architecture of the verification subsystem block and Simulink
sub-model

Error Identification in Simulink Design Verifier

SLDV analyses the model based on mathematical equations. For that reason, simulation is not
required. The analysis process checks all possible combinations of scenarios under all possible
circumstances, and verifies whether the model meets the requirements. It points out the logical
errors and inefficiencies early, therefore the requirements can be refined, errors can be detected and
the design can be verified[25].

Error Mode in the Simulink Design Verfier

When the error detection mode is chosen, SLDV generates a progress dialogue box. In the dialogue
box, processed numbers of valid items, falsified items and elapsed time can be seen. The elapsed
time is normally limited to 300 seconds by default in SLDV.

Detailed analysis reports are available in PDF or HTML format, which includes the whole process
of the error detection. Another option is to highlight the errors on the model. Error highlighting
is of huge benefit during debugging of complex logical structures[25]. Figure 3.5 shows the error
detection box during the error detection mode.

In the highlighted model, the coloured boxes, branches or logical conditions with red means that
an error is detected. If the process is highlihgted as green, it means that the process is valid and
error-free. Figure 3.6 shows highlighted boxes with green and red.

The type of errors that can be detected in SLDV includes static run-time errors (division by zero
and integer overflow), detecting dead logic, reachability and assertion violation detection.

19

CHAPTER 3. MODELLING AND VERIFICATION TOOLS

Figure 3.5: Design error detection progress box

Figure 3.6: Error detection and model highlighting[25]

20

CHAPTER 3. MODELLING AND VERIFICATION TOOLS

Integer Overflow Detection and Division by Zero

Integer overflow occurs when the result of an arithmetic operation does not fit into the allocated
memory space. SLDV uses the error detection analysis to identify both overflow and zero division
in the model. SLDV checks all possible paths inside the model and returns valid in case no error
was discovered during the error detection, or else generates test cases that demonstrates the integer
overflow and zero division.

Dead Logic Error Detection

Dead logic occurs when some states or logic remain inactive during the execution, or is obsolete.
Design errors or requirement errors causes the occurrence of dead logic. If the code is generated
while dead logic is present, it generates a dead code. The simulation test is not enough to uncover
dead logic in the model even if exhaustively used in the model test, and is not adequate to prove
that a specific part of the model is kept inactive during the execution test. To detect dead logic in
the model, the test generation mode in Simulink Design Verifier is used. When the test generation
analysis is ended, the objects inside the model are highlighted red or green depending on the
presence of dead logic. Red color refers to the objects that cannot be active in the simulation,
green color means fully active objects. Finally, a test case is generated by Simulink Design Verifier
to reproduce the dead logic in simulation[16].

Assertion Violation Detection

By activating assertion violation detection in the property-proving mode, Simulink Design Verifier
becomes able to test all valid scenarios that can trigger an assertion violation during the simulation.
Any valid scenario that leads to assertion violations are highlighted as red, and the test vector that
triggered the assertion violation is generated by Simulink Design Verifier[16].

3.1.4 Verifying Design Against Safety Requirements

In order to prove the correctness of the system against the safety requirements and formalize
the safety properties, both the assumption objective block and proof objective block are used. By
utilizing the assumption objective block, the input vector can be constrained to certain input values.
In proof objective blocks the value parameters are set to acceptable values of the block’s input signal.
Any deviation from that value causes a property violation and the property is disproved. SLDV
verifies all associated requirements as properties with the designed system under all possible input
values and provides a counter example if a property is disproved[17]. Figure 3.7 illustrates how to
write a safety property in SLDV, where signal 2 needs to be false for the condition to be met.

21

CHAPTER 3. MODELLING AND VERIFICATION TOOLS

Figure 3.7: Safety property in Simulink Design Verifer

3.2 RoboTool

RoboTool is an Eclipse plugin that supports graphical modelling and validation of RoboChart
models[22]. The software is developed by the RoboStar research group[22]. RoboChart is a notation
inside RoboTool, used for creating models which are specifically designed for robotic systems in the
form of state transition diagrams. RoboTool supports the CSP model checker FDR4[10]. Figure 3.8
shows the interface of RoboTool and provides a few explanations.

Figure 3.8: The graphical user interface of RoboTool

In this project, RoboTool is one of the tools used to model the system. There are certain limitations
to using RoboChart to make the model. First of all, simulation is not possible in RoboTool as of
yet, which makes the analysis more generalized and focused around the architecture rather than a
numerical analysis through simulation. RoboChart models are intended to have a higher abstraction
than models designed for simulation tools. However, it is possible to define more specific tasks and
operations, mainly through the operation module. Adding such functionality will highly increase
the complexity of the model, and may cause problems for the verification tool FDR4. This will be
discussed further in Section 4.3.

RoboChart can be used both for modelling sequential systems and parallel systems. In general, the
state machines inside the RoboChart notation are used for sequential behaviour, and controllers
are used to model parallel behaviour. The top level component in RoboChart is a module, which
is used for representing the whole robotic system[20]. A robotic platform contains the variables,

22

CHAPTER 3. MODELLING AND VERIFICATION TOOLS

events and operations that represents the hardware of the robot.

The interfaces in RoboChart are used to store variables, events or operation signatures[20]. Fig-
ure 3.9 shows examples of such interfaces. The definitions of operations however, are defined in
its own module, operation definition. Inside an operation definition, an internal state transition
diagram can be made to define the behaviour of the operation. The operation definition module
requires access to the variables and events that are being used in this diagram. The required inter-
faces containing these, can be provided to the operation definition by using the required interface
feature in the top window of the operation definition module, see Figure 3.10. By using the required
interface tool, the variables are considered shared variables. If the defined interface tool is used,
the operation will create local variables specific to that module.

Figure 3.9: Examples of interfaces and a robotic platform

Events are the main form of communication between a state machine and its environment. The
connection can be between other state machines, controllers or a robotic platform[20]. The connec-
tions between the events between state machines can be defined as synchronous or asynchronous.
If the connection is defined as synchronous, one of the state machines have to wait for the recipient
to receive the event. While on asynchronous communication, the event can simply be written,
but the state machine writing the event, can simply proceed without waiting for the event to be
read. Events can also be used to represent a physical aspect of the robot, such as a sensor signal.
An example used in the RoboChart documentation for instance uses "obstacle" as an event, which
would represent a sensor having detected an obstacle[19].

As mentioned earlier, certain modules may require access to an interface containing either variables
or events, that have not been explicitly defined inside the module. For this purpose, the tools
required interface, provided interface and defined interface can be used. Modules such as control-
lers, state machines or operation definitions have two windows. The top window is for variable
declaration and providing interfaces using the tools mentioned above. Figure 3.9 shows an example
of how these are used for a robotic platform. The interface containing variables is provided using
the provided interface tool, while the interface with events are provided using defined interface. On
the robotic platform, two boxes with the event names appear after providing it. These boxes are
used for the connections described earlier. By using the connection tool, connections can be made
between these and a controller or state machine where communication is required.

A state machine, as mentioned earlier, is used to describe the sequential behaviour of the robot.
Inside the state machine, different tools can be used, such as states, transitions, initial junctions,
junctions and final junctions. A state is the most basic and essential of these. It is stable, which

23

CHAPTER 3. MODELLING AND VERIFICATION TOOLS

Figure 3.10: Example of an operation

means that time can be spent inside of it, and a transition from it does not have to happen instantly.
Transitions are the connections made between states or junctions. A transition can be guarded by
probability, an atomic proposition (a boolean true or false value) or an event. The transition can
also perform an action or reset a clock. The stable property of a state mentioned earlier, means
that one of the transitions from the state does not have to be true at all times, since it is possible
to spend time in the state. For junctions, this is not the case. The initial junction can only have
one outgoing transition, this can not be guarded, but it can perform an action or reset a clock. A
state machine must have exactly one initial node. A regular junction can have several outgoing
transitions, but at least one of the outgoing transitions has to be true at all times, since a junction
is unstable, and no time can be spent in a junction. A final junction marks the end of a state
transition diagram. It can not have any outgoing transitions, but it can have multiple transitions
going into it.

3.3 FDR4

Failures-Divergences Refinement (FDR4) is a refinement checker that uses CSP algebra[9]. FDR4
has a graphical interface and allows to check assertions written in CSPM . If the assertions do not
pass, the refinement checker shows a trace of the instance where the property in the assertion has
not been fulfilled. This feature can be used as a means of debugging the model. By identifying
where the property is violated, this can give insight to how this violation might be resolved. FDR4
also has a probe tool available, where the user can manually go through the state transitions and
pick which sequences to look through. This allows for the user to look for specific transitions in the
models in order to get a better understanding of how the model may be executed. Figure 3.12 shows
the interface of FDR4, the left margin shows the assertions written in the RoboChart assertions
file.

24

CHAPTER 3. MODELLING AND VERIFICATION TOOLS

Figure 3.11: Example of a state diagram, showing some of the properties described in Chapter 3.2

Figure 3.12: The interface of FDR4, with assertions in the right side margin

25

CHAPTER 3. MODELLING AND VERIFICATION TOOLS

Models with a high level of complexity may encounter problems when assertions are checked with
the FDR4 tool. An increased number of states, variables or large data types greatly increases
the complexity of the model. When FDR4 attempts to verify an assertion, it will run all possible
executions of the model, which means that a few states may still lead to the verification tool having
to check a great number of transitions for each assertion. This has to be considered when modelling,
and can be a great challenge. Trivial functionality that will not affect the properties of interest
should be disregarded. This is one of the challenges when doing the formal verification, because
the programmer will have to be able to identify which aspects of the model are vital and which
aspects should be neglected. Floating point numbers are not currently supported by the FDR4
tool, this must be considered when creating the RoboChart model[23]. User defined data types
can be defined within the assertion file, which can then be used in the model. Care should be
taken here, as creating large data types, or using floating point data types can cause trouble for
the FDR4 refinement checker due to computational limitations.

Assertions in FDR4 are the properties to be verified by the FDR4 verification tool. Some of the
most common assertions such as deadlock, reachability and timelock are included in the FDR4
semantics. The tool also accepts custom assertions, which will have to be defined by the user.
FDR4 only accepts CSP files for verifications. Assertions written in the assertion file automatically
gets saved within CSP files both within the project’s csp-gen and csp-gen/timed folders. It is
however possible to edit these files directly, but it is recommended to use the assertion file. By
using the assertions file, the syntax will be generated automatically, which requires less familiarity
with CSPM . CSP specifications written within the assertion file can be specified as timed, untimed,
or not be specified. If the type is not specified, the specification will be compiled within both the
timed and untimed CSP files. Whereas if this has been specified, it will only be compiled to the
appropriate file. CSP specifications in the assertion file must be encapsulated with a csp-begin and
csp-end statement. The CSP specifications are used to create custom specification, assertions can
later be written based on these specifications. Built in specifications can directly be written as
assertions.

3.3.1 CSPM

CSPM is a lazy functional language with support for CSP notation, and can be used for writing
assertions[6]. It was developed as a means of encouraging development of CSP tools. In RoboTool,
FDR4 is used for the model checking, FDR4 supports assertions written in the CSPM language,
and was the first tool to utilize this dialect[23]. CSPM is an important part of the verifications
using RoboTool, since it is the language used for writing the assertions. The language is used for the
formal verification of the RoboChart model. The CSPM reference manual describes programming
languages as being more generally used for describing algorithms in a form that can be executed[23].
CSPM differs from other types of programming, since it is intended as a way of describing parallel
systems which can be analysed and manipulated automatically. Therefore, it is more accurate to
consider it as processes rather than an executable program in the traditional sense[23]. CSPM has
no restriction on the use of upper and lower-case letters. That means that the user of the language
may freely adopt a naming convention for separating types such as processes, constructors or
channels. CSPM assertions can be tested in three different types of models, the traces model, the

26

CHAPTER 3. MODELLING AND VERIFICATION TOOLS

failures model and the failures-divergences model. In the traces model, a process is represented by
a finite number of traces[8]. The failures model is represented by traces as well as it failures[8].
Failures come in pairs of (s, X) where s is a finite trace of the process and X is a set of events that
the model can refuse after s[8]. In the failures divergences model, the failures model is included,
but additionally it includes the divergences model[8]. The divergence part of the model is a finite
trace during or after which, an infinite sequence or consequitive internal actions occur[8]. When
using FDR4 for verification, these different types of models can be specified, if no model has been
specified, the failures-divergences model will be chosen by default.

27

Chapter 4

Modelling

This chapter will go through the modelling of the abstract models. The first section will go through
the general modelling procudure and discuss some of the differences between the tools. The two next
sections will go through the specific modelling procedure for Stateflow and RoboTool respectively.

4.1 General Modelling Procedure

As mentioned earlier, this case study is in a quite unique situation when it comes to the workflow.
In the regular workflow, the model checking is done before any code has been written and before any
testing has been done. The model checking procedure is therefore used very early in the development
phase. The standard workflow of such a development phase is demonstrated in Figure 4.1. From
the figure it is seen that the first step is making the model for verification. This model has the
form of a state machine and should be of a higher abstraction than a model used for simulation.
The steps will be slightly different between the Simulink and the RoboChart model, since Simulink
offers the possibility of simulating the model. Additionally, in Simulink the model can have more
details and mathmatical operations. RoboChart models are intended for a higher abstraction, and
the properties to be verified are at a higher level.

Models for formal verification are designed to be output-driven while simulation models are input-
driven[13]. A simulation model tests a certain set of input and the software simulates the behavior
of the system according to these input. On a model for formal verification, one looks for particular
properties regarding the outputs. The model checker will then verify whether the given property
holds[13]. This concept differs greatly from input-driven models. It can be a challenge for an en-
gineer with experience using simulation as a verification tool to adapt to this new way of modelling.
That is something the group has experiences during the process, especially regarding the modelling
of RoboChart models. StateFlow on the other hand allows more input-driven methods to be used
when designing the model, while the result is still considering an output-driven approach.

28

CHAPTER 4. MODELLING

Figure 4.1: Representation of a general modelling procedure using model checking and visual
representation of how model checking is related to simulation

4.2 Simulink Modelling

The Simulink model has been built according to the C++ code that was provided by ABB. The
necessary requirements and specifications were extracted from the code. The first step in building
the model was to determine which lines in the code were relevant to perform formal verification. The
second step was to make a simplified Stateflow chart to describe the sequence of actions and events.
The Stateflow chart is comprised of limited states and therefore a vital aspect is to determine and
specify the number of states, transition conditions between those states, action conditions and the
variables in the states. In Simulink, each state has its own variables, shared variables and the
variables that result from the calculation inside the state itself. Variables can be local or global.
The input and output into the system is considered as a global variable where the local variables can
be for example a variable to enumerate the state in stateflow and use it later. The input variables
in the Simulink environment could be used as a transition condition in the Stateflow environment.
Moreover, the output of each state in Stateflow can be scoped or displayed in the Simulink canvas.

The functionality of the high voltage control module has been expressed in two sub models in
the Simulink canvas. The Stateflow chart sub model and the controller sub model. The first sub
model is a chart for the states of the state machine. It involves the logic for setting the setPoint
by transitioning from one state to the next inside the flowchart. It constitutes the functionality
of the HVC-02 module. Additionally, it monitors the limits of the variables, receiving the new
setpoint, calculates the new limits and ramping the old setpoint value to the new setpoint. The
second sub model is the controller where a first order transfer function is used to represent the high
voltage output from the cascade. The functionality of the IPS in the HVC-02 is modelled by a PID
controller. The output voltage is 10 percent less than the actual high voltage from the cascade.
Figure 4.2 shows these two sub models. The green block is known as a Subsystem Verification block
according to the Simulink Design Verifer library. Its functionality and use will be explained later
in Chapter 5.

29

CHAPTER 4. MODELLING

Figure 4.2: The model blocks configuration in the Simulink Environment

4.2.1 Input and Output Variables to the Simulink Model

The variables in the model have been classified as input variables and output variables. The input
variables include the value of the set point that needs to be set and is called newsetpoint in the
model. pow24VStatus is another input to the model which causes a transition from one state to
another as it will be explained further later in this section. The variable PWM_out is a boolean
variable used to represent the ramping action. If it is 1, it causes a transition to next state. The
variable ActualHV is the actual high voltage. It is a representation of the high voltage at the
output of the cascade. setPoint is the output of Flowstate chart to the Simulink canvas.

4.2.2 Stateflow - Sub model

The flowchart in the model contains the logic of the HVC-02 module. The sequence of the module’s
functionality is represented as states in the flowchart, so each state constitutes the module func-
tionality at certain conditions. In the Init state, where the values are initialized, the acceptable
high and low limit values for the variable setPoint or the output ActualHV of the HVC-02 module
are set.

Figure 4.3 shows the Init state and its variables. Some of these variables are local variables and
some are global variables. In the state, each variable that is preceded by the word Entry is classified
as an output and can be displayed or monitored in the Simulink environment. For instance, the
variable limitsup is an output variable and can be observed and used in Simulink. undervoltVal30,
undervoltVal90, overvoltVal30 and overvoltVal90 are local variables.

Functions inside the states usually have different font colors. In the Init state, overvoltlimit and
undervoltlimit are displayed in green because they are Matlab functions and the body of the
function can be inside or outside the state depending on what is required. The previously mentioned

30

CHAPTER 4. MODELLING

Figure 4.3: The Init state in flowchart

functions are used to calculate the upper and lower limits for the setPoint. The CheckLimits state
reads these values during the CheckLimit function before ramping the setpoint.

Figure 4.4 shows the Matlab function blocks in the Stateflow canvas. The commands of the function
are written in the Matlab environment as a m-file script.

Figure 4.4: Matlab Body’s Function Block

The variable res was introduced in the flowchart model. This variable is a boolean and is incorpor-
ated inside the function DisableHV. When the value of res is set to 1, the outcome of the function
DisableHV is that the variable disableHV is set to zero. As a result, the setpoint is reset and
becomes 0 and the actual high voltage goes to 0 as well. However, if the variable res is equal to 0,
the DisableHV function output is 1. Consequently, the set point becomes 0 and the Error Mode
state becomes active. The variable res is only added as a local variable to ease the building of the
model and add more flexibility to call the DisableHV function during states when it is necessary.

Figure 4.5 illustrates the function DisableHV. Figure 4.5 is a graphical representation of the if else
function in the Stateflow environment and it is a premade pattern to be used by the user.

After calculating the values in the Init state, the transition from the Init state to the Wait24Vpower
state happens. When the Wait24Vpower state becomes active, the state checks the value of the
setPoint. If the value is bigger than zero, the transition from the Wait24Vpower to the ErrorMode
state occurs and the setPoint value is set to 0. The dummy variable SetPointVal reads the value of
setpoint from the Simulink canvas. When the variable pow24VStatus is 1 and the setpoint is zero,
the state Wait24Vpower transits into ClosedLoop state which become active. Figure 4.6 shows the
Wait24Vpower state.

31

CHAPTER 4. MODELLING

Figure 4.5: DisableHV function

Figure 4.6: Wait24Vpower State

32

CHAPTER 4. MODELLING

As can be seen from Figure 4.7, the ClosedLoop state contains two sub-states. One is called
CheckLimits. It oversees the ActualHV value and resets the setpoint if it is out of the calculated
limits from the Init state.

Figure 4.7: ClosedLoop State

The sub state CheckLimits includes two child states in sequential order. The first child state is
the CheckingLimits state. In it, the graphical function CheckLimit is called. It returns 0 when its
statement is false. When the checked values such as the actual high voltage are out of limits, the
CheckLimit function returns 0 and hence the child state OutOfLimit becomes active.

Because the variable res equals 0 in the OutOfLimit child state, the DisableHV function that
is inside it returns 1. Accordingly, the value of setPoint becomes 0 and the ErrorMode state is
activated. The structure of the CheckLimit function is illustrated in Figure 4.8.

Figure 4.8: The Structure of CheckLimit Function

In case all values are within the limits, the transition condition [CheckLimit==1] is true and the
transition from the sub state CheckLimits to the RampingsetPoint sub state occurs.

The newsetpoint variable has three possible values; 0, higher than the old setPoint or lower than the

33

CHAPTER 4. MODELLING

recent setPoint. The RampingsetPoint sub state ramps the old value of a setPoint to the new value.
The time of ramping to the new value must be within 2 seconds[2]. The local variable msetpoint
is used as a dummy variable to store the old value of the setPoint in. After the completion of the
ramping process, the newsetpoint value is assigned to the setPoint value that is being fed into the
controller.

Figure 4.9: RampingsetPoint State

The newsetpoint has the potential to be 0 and according to the ramping function in the code, no
change has to occur and the variable msetpoint will be set to 0.

The ClosedLoop state is kept active until the power is switched off, or the values in Init state go
beyond the allowed limits, or newsetpoint is intended to be set again.

The ErrorMode state is activated when the setPoint goes over or under the voltage limits that are
specified in the Init state.

The transition to the ErrorMode state is set in motion when the variable res equals 0 and hence
the DisableHV function becomes active. Variable res can be 1 in the model of the system in two
places. The first is in theWait24Vpower state and the second is in the ClosedLoop state. Figure 4.10
illustrates the ErrorMode state.

34

CHAPTER 4. MODELLING

Figure 4.10: ErrorMode State State

4.2.3 Controller Sub-model

Due to lack of information about the PID parameters and the plant, a first order system is included
as a replacement of the plant and hence the PID controller is tuned accordingly. The setPoint from
the Stateflow chart is sent out to the PID controller. The controller eliminates the error between
the value of the setPoint and the actual high voltage value, ActualHV.

In terms of functionality, the PID controller acts as the High Voltage Controller in the HVC-02
module, where the values are sent back from the cascade to the IPS. The output voltage from the
applicator or atomizer is less than the ActualHV because of the resistance. This drop in the voltage
is estimated by 10 percent in the model according to some elementary calculation from the ABB
manual[2]. The signals setPoint, PWM_out, and ActualHV are logged and used during properties
formalization. Figure 4.11 shows the components of the controller sub-model.

Figure 4.11: The Controller

35

CHAPTER 4. MODELLING

4.3 RoboTool Modelling

This section will first describe a few changes that had to be done to the model in order to make it
usable for verification. During the modelling procedure it is important to know the limitations of
the FDR4 tool. A model with many states, large data types, many variables or many calculations
can increase the verification time a lot. One of the biggest challenges of modelling in RoboTool has
to do with the group’s ability to adapt to the more abstract form of modelling. In the final part
of the chapter, the latest version of the model will be presented, highlighting the most vital parts,
and explaining why it was modelled a certain way.

As mentioned earlier, RoboChart models are intended to be of a higher abstraction than models
for simulation. Initially in the modelling process, the idea was to model the system as similarly
as possible to the actual code that the model is representing. This means that in the first version
of the model, some lower level behaviour and calculations were used in the states. As an example
of this, the system has a state responsible for ramping up the duty cycle from 0 to 45 in 135
milliseconds, i.e., increments the value by 1 every 3 milliseconds. This state was indeed made in
the RoboTool model, and can be seen in Figure 4.12. In the Figure it can be seen that the initial
node transitions to the ramping state, this is because it is the first state in the sequential part of the
state machine. The outgoing transition compares the continuously increasing dutyCycle variable to
a constant rampThresh that was defined with an initial value of 45. The behaviour of the state is
captured using an internal state machine within the ramping state. The internal state transitions
back to itself every 3 time units, the transition increments dutyCycle in the transition action every
time a transition occurs. The time units in RoboTool do not represent any particular time unit,
and the interpretation of it is decided by the programmer, in this case it represents milliseconds.

Figure 4.12: The original version of the ramping state

The main reason why lower level functionality is not ideal to capture within RoboChart is because
of the verification tool FDR4, this will be described in more detail later. The original ramping state
did cause some trouble for the verification, and verification on the model could not be done within
a reasonable time frame. This behaviour is not crucial to any of the assertions to be checked, and
could therefore safely be neglected. The simplification of the state removes the dutyCycle variable,
the transition from the simplified ramping state is only based on time in the new implementation.
The new version of the state can be seen in Figure 4.13. Not all the states will be presented in such
detail, the purpose of presenting changes in the ramping state was an example of simplifications
that had to be done in order to reduce the verification time.

36

CHAPTER 4. MODELLING

Figure 4.13: The new version of the ramping state

Most of the changes that had to be made on the model was due to misconceptions regarding the use
of events. Chapter 3.2 describes the purpose of events, which is mainly used for communications
between state machines or to represent physical attributes of the robotic system. Events can be
used to cause a state transition. The misconception about events was that initially, the group
thought that when an event was called in an action, this would cause a transition if the event was
used in a transition from the state where this action was made. An example where this mistake was
made was in the original implementation of the disableHV operation. The disableHV operation
will turn off the setPoint and the high voltage power ActualHV. disableHV also requires a boolean
argument when the operation is called. If the argument is true, the operation should cause the
system to enter the ErrorMode state. If it is false, no transition will happen, but the power and
set point is still turned off. The original implementation of the state can be seen in Figure 4.14. A
state from the old implementation calling the operation is shown in Figure 4.15.

Figure 4.14: The old version of the disableHV operation

In this implementation of the operation, the DisableTrue event is used in an action in the operation.
The same event as seen in Figure 4.15, is used on the guard between the Wait24Vpower and the
ErrorMode state. The operation call in the internal state s1 in the Wait24Vpower state will not
cause a transition, and will not reflect the intended behaviour of the system. A solution to this is
to simply use a boolean variable as a guard instead, since the transition should only happen during
the specific conditions. The new implementation of the operation is shown in Figure 4.16, the new
implementation uses shared variables. The boolean used in the transition is set true or false based
on the argument to the operation as described earlier. Figure 4.17 shows the boolean used in a
transition, the image also shows that the boolean is set to false during the transition so that if the

37

CHAPTER 4. MODELLING

system enters the state again later, the transition will not happen when it should not.

Figure 4.15: Demonstrates where the DisableTrue event is used for a transition

Figure 4.16: The new version of the disableHV operation

The final model does use an event as a transition guard in two instances. An event, as mentioned
earlier, can represent a physical attribute of the robotic system, such as a sensor signal. This is
used in the checkLimits operation. The purpose of this operation initially is to measure the actual
high voltage of the system, and compare it to the different limits calculated in the Init state. These
limits and the comparison have been omitted in the model for the sake of simplifying the model for
verification. Capturing the behaviour could be challenging in an abstract model like RoboChart.
Unlike a simulation model, the system does not compile and dynamically run through the system.
The model is instead analysed by the verification tool, that goes through all possible transitions
in order to verify or disprove a property. Specific values could be used, but this would defeat the

38

CHAPTER 4. MODELLING

Figure 4.17: Demonstrating the boolean used for a transition

purpose of such a model. The specific value would cause a predefined route the transition would
follow, the verification would then only prove the properties for that exact execution. An event
VoltageLim is used instead of using actual values to do this. Designing it this way will allow both
executions to be possible. The operation checkLimits can be seen in Figure 4.18. The operation
supplyVoltCheck is shown in Figure 4.19. This operation works in a similar manner, but uses the
event SupplyLim to represent whether the supply voltage has breached a limit.

Figure 4.18: Visual representation of the check limits operation

If the variables for setPoint and the ActualHV are given initial values, they may cause specific
transitions to occur, so these values are used a bit differently. The set point is represented as a
variable real setPoint without an initial value. Instead of having a variable for the high voltage, a
custom enumerated variable ActualHV is used which can have the values Power_On or Power_Off.
This implementation causes a deviation between the RoboChart model and the behaviour of the
actual system and does mean that some of the properties of interest may not be accurately veri-
fied. One of the assertions regarding the closed loop state has been represented through using
enumerated variables. The ClosedLoop state represents a closed loop PID controller. Due to this
implementation, actual increase or decrease of the ActualHV variable are not modelled.

39

CHAPTER 4. MODELLING

Figure 4.19: Visual representation of the supplyVoltageCheck operation

In the current implementation, the variable simply represents whether the system is controlling the
voltage, or if the voltage has been turned off in the ErrorMode state. The ClosedLoop state can be
seen in Figure 4.20.

Figure 4.20: Representation of the ClosedLoop state

The first thing every state in the system does is to set the enumerated variable currentState and
gives it the appropriate value. The enumerated variable has a name for every state in the state
machine. This is set as an entry action to the state, so that it will be set as the states are entered. In
the ClosedLoop state the value is simply set as: currentState = State::ClosedLoop see Figure 4.20.
State is the enumerated types containing the possible values for the currentState variable, see
Figure 4.21.

The behaviour inside the ClosedLoop state is designed using an internal state diagram. In the first
state, the checkLimit operation is called, this is also done in the actual system. If the operation
call results in the voltage being outside the limit, represented by the VoltageLim event, a boolean
variable lim is set to true which causes a transition to internal state s1. s1 calls the disableHV
operation with the argument true, which will cause a transition to the ErrorMode state. However, if
these set of events do not occur, the operation will set the boolean checkOK to true and it proceeds

40

CHAPTER 4. MODELLING

to s3 which calls the supplyVoltCheck operation. The supplyVoltCheck may cause a transition to
s1 which causes a transition to ErrorMode. If the event SupplyLim does not trigger a transition
inside the operation, supplyOK is set true, and the state machine proceeds to s2. Internal state s2
emulates the controller by setting the setPoint variable to 1, then if the setPoint is 1, it changes
powStatus to On, while calling checkLimit every 5 time units. This operation call may cause a
transition from the internal state which will cause the system to transition to the ErrorMode state.

Figure 4.21: Representation of the enumerated interfaces for State and Power

The ErrorMode state is entered whenever the excecution encounters an error. There errors can
be tied to voltage or current limits being exceeded, or if there is a fault in the execution which
gives setPoint a value when it should be zero, among other things. Most of the circumstances that
can lead to transitions to the error state occurs in the sequential part of the model that has been
modelled in RoboChart. In the actual system there are three different watchdogs monitoring certain
conditions and operating concurrently with the sequential part. In RoboChart, these watchdogs
have not been modelled. In order to include them, they would each be created within their own state
machine within the same controller where the sequential state machine is. These state machines
would then communicate based on events. The watchdogs would then be able to affect the sequential
system in order to cause transitions to the ErrorMode state. However, in the current model, only
the sequential part is included. The state is shown in Figure 4.22.

When the sequential part of the system is isolated from the watchdogs, transitions to the ErrorMode
state can only occur from the Wait24Vpower or ClosedLoop state. The purpose of the ErrorMode
state is to shut off the power and set the setPoint to zero when an error occurs. Once this has been
done, and all errors have been acknowledged, the system will proceed the the Wait24Vpower state.
In the RoboChart model, this is somewhat simplified. For instance, there is nothing to represent
that the errors have been acknowledged. In order to do this, a variable could be used to keep
track of the type of error that has occured. The boolean variable errorFlag is used to signify if the
system is in the ErrorMode, which means that an error has occured. The flag is set true in the
entry action to the state, and then set false when it exits. This variable can also be used in order
to analyse the behaviour in the state.

An overview of the state machine is shown in Figure 4.23. The functionality within the states is
collapsed in order to display the architecture better.

41

CHAPTER 4. MODELLING

Figure 4.22: Demonstration of the ErrorMode state

Figure 4.23: An overview of the state machine and its transitions

42

CHAPTER 4. MODELLING

The final interfaces for storing operations, variables, events and the interface for the robotic platform
is shown in Figure 4.24. The structure of the system is made seperately from the file containing
interfaces and operations and the file containing the state machine. This is done in order to have
a structured overview of the hierarchy of the model and also to make the file for the state machine
more readable. The structure of the system is shown in Figure 4.25.

Figure 4.24: The different interfaces used in the RoboChart model

Figure 4.25: Displays the architecture of the RoboChart model

43

Chapter 5

Formal Verification

In contrast to Chapter 4, which focuses on the modelling capabilities of the tools as well as present-
ing the model of the system, this chapter will specifically be focused around the model checking and
formal verification of the tools. This chapter will show the implementation of these concepts on the
models created during the project. Differences between the model checking with the different tools
will become apparent. Section 5.1 will go through the verification in the Simulink Design Verifier,
Section 5.2 will explain the verification process used by RoboTool and FDR4. The properties of
interest can be simplified as:

P1: The actual high voltage should always follow the setpoint.

P2: The PWM output signal should be set to 0 when the 24V power signal is switched off.

P3: The system should be deadlock free.

5.1 Verification in Simulink Design Verifier

The method to verify the requirements of the system and how to formalize them in Simulink Design
Verifier will be discussed and presented in this section. Property verification blocks and assertion
writing technique will be showed and discussed here. Proofs of the defined properties will be shown
in the result chapter. Under the Simulink Design Verifier library, there are three sub items that
helps the user to write and formalize the requirements in Simulink. These items are:

• Objective and constraints.

• Temporal operators.

• Verification utilities.

A combination from the first and last items are used during the process of writing the formal re-
quirements for this thesis. The second item, temporal operators, is comprised of Detector, Extender
and Within Implies blocks. The temporal operator function is mainly to shift the signal steps in

44

CHAPTER 5. FORMAL VERIFICATION

time or detect the signal after certain steps in time. The temporal operators are not used in this
thesis. Assumption objective, proof objective, implies and verification subsystem blocks were briefly
explained in Chapter 3, so the point of focus here will be on their implementation to prove the
properties. Two verification subsystems are placed in the model. In order to function correctly, the
block may not have any output signals. The inputs to the verification block comprise the inputs
and the outputs from the Simulink model. For instance, the input variable pow24VStatus and the
output variable ActualHV are inputs to the verification subsystem block. Figure 5.1 shows the
input variables to the block and it should be noted that there are no outputs from the block to the
Simulink canvas.

Figure 5.1: Inputs to the verification subsystem block in the model

One of the formal properties for the system requirements inside the block in Figure 5.1 is shown in
Figure 5.2. P1 is the first property to be proven. The actual high voltage ActualHV must always
follow the setPoint value. Accordingly, if the value of setPoint equals 0, the value of ActualHV
variable must go to zero. In contrast, when the value of the setPoint is higher than zero this implies
that the value of ActualHV is bigger than zero as well.

In logical math, the property P1 can be written in two parts. The first part expresses the relation
between setPoint and the actual high voltage ActualHV when the setPoint value equal 0. The
second part represents the implication relation between them when their values are above 0.

(setPoint = 0 =⇒ ActualHV = 0) ≡ ¬(setPoint = 0) ∨ (ActualHV = 0)

(setPoint > 0 =⇒ (ActualHV > 0) ≡ ¬(setPoint > 0) ∨ (ActualHV > 0)

Both sides of the equivalence relation can be verified by truth tables. However, the relation is added
only to demonstrate the functionality of the implies block in Simulink and make it more sensible.
The previously mentioned property P1 was carried out in verification subsystem block in Simulink
as seen in Figure 5.2.

In the second property P2, the variable pow24VStatus is a boolean input to the Simulink model.

45

CHAPTER 5. FORMAL VERIFICATION

Figure 5.2: Illustrates the implementation of P1 in the verification subsystem block

From Figure 5.3, condition A [pow24VStatus==0] has to be true before it implies B. The B state-
ment is a formalization for that PWM_out must be 0 when the condition has been met. The
interpretation for A implies B according to the model is that the PWM_out must be equal to 0 if
the input variable pow24VStatus is 0.

In logical math property P2 can be formulated as:

(pow24VStatus = 0 =⇒ PWM_out = 0) ≡ ¬(pow24VStatus = 0) ∨ (PWM_out = 0)

Figure 5.3: Formalization of second property P2 in the verification subsystem block

The last official requirement in the thesis is P3. It is to check whether the system is deadlock free or
not. It is not possible to check for deadlock freedom in Simulink Design Verifier, but reachability
verification for the states is possible. The reason for this impossibility is because the Simulnik
Design Verifier can not handle non-deterministic systems as was explained in Subsection 3.1.2.

The successful proofs for the previously mentioned assertions motivates the group to conduct more
verification to discover more of Simulink’s capabilities in the field of formal verification. These
tests are to prove to what extent the model is accurate and to examine hidden errors. The next
requirement to be verified is related to the setPoint and newsetpoint in the model.

Ramping the newsetpointt in the C++ code is achieved by assigning the value of newsetpoint

46

CHAPTER 5. FORMAL VERIFICATION

to msetpoint and ramp it gradually within a limited time. The exception happens when the
newsetpoint value is equal to zero, then the value of msetpoint must be reset to zero and accordingly
the setPoint is set to zero and no change occurs. In the model the same strategy is followed and
implemented. If the value of the newsetpoint equals zero, the setPoint must equal zero. Figure 5.4
illustrates the formalization of the above mentioned property. Though the value of the setPoint is
initialized between 0 and 90, its value equals 0 when the newsetpoint is set to 0.

Figure 5.4: Newsetpoint and Setpoint property Assertion

47

CHAPTER 5. FORMAL VERIFICATION

5.2 Verification in RoboTool and FDR4

Verification of RoboChart models is done using the FDR4 refinement checker. The assertions for
the model are written in the assertions file in the RoboTool project. FDR4 only accepts files
of the type CSP, when saving the assertions file, it will automatically be compiled into CSP
files, seperating timed and untimed assertions. The semantics contain some built in assertions for
checking properties such as reachability and deadlock. One of the properties of interest in the thesis
is that the model should be deadlock free, specified in property P3. The reachability property is
also important, if not all the states were reachable, that could be an indication of a flaw in the
design. The built in assertions written for checking deadlock and reachability and how they appear
in the assertions file is shown in Figure 5.5.

Figure 5.5: The built in assertions in the assertions file

These assertions are automatically compiled to CSP, in the CSP file they will appear as in Fig-
ure 5.6, which shows the deadlock as well as the two first reachability assertions. Though it is
possible to manually edit the CSP file, it is quite apparent that it is a lot easier to edit the
assertions file and let the CSP syntax be compiled automatically.

Figure 5.6: The built in assertions as they appear in the CSP file

The built in assertions are trivial and easy to check, but verifying these properties are quite im-
portant, which is why they have to be verified. Figure 5.7 shows that these assertions were verified
in FDR4. In Section 4.3, it is mentioned that not all of the non-trivial properties can be verified in

48

CHAPTER 5. FORMAL VERIFICATION

the current model, because of how it is designed. With certain changes they could be, but due to
changes in the model there has not been time to make the necessary changes. As a proof of concept,
a few custom CSP specifications have been written and asserted to FDR4. A CSP specification
describes a custom behaviour or property. These need to be written as an event followed by a
process, described in the CSP language as "e→ P ", pronounced "e then P", where e is an event an
P is a process.

Figure 5.7: Shows that the built in assertion has been successfully verified by FDR4

Part of property P1 requires to check that when the setPoint is set to 0, ActualHV is set to
Off. The ClosedLoop state may not be representative enough for the actual system. The property
described in this paragraph is one of two parts used to verify whether ActualHV is following the
setPoint. To verify this first part, the property describes that when the setPoint variable becomes
0, the ActualHV will be set Off. This represents the safety critical part of the requirement. This
specification can be expressed as in Figure 5.8. Some of the steps described in the next paragraphs
can be applied to several of the assertions.

Figure 5.8: Assertion for checking when setPoint is set to 0 it is followed by ActualHV being set
off

Separate internal states are used within the ErrorMode state to set the values for setPoint and
ActualHV. Asserting this specification on the State_machine using the Failures-divergences model
fails and produces the counter example in Figure 5.9.

Figure 5.9: Counter example of the setpoint assertion

The counter example shows the instances where the specification is met, highlighted in green, and
the situation where it is not met in red. The situation where the assertion fails is when the the

49

CHAPTER 5. FORMAL VERIFICATION

event set_EXT_setPoint.0 occurs after the event set_setPoint.0. Since such external event calls
does not interfere with the behaviour in the specification, another assertion is run while hiding the
external events. This can be done by defining the formal CSP specification describing the relevant
events and then specifying the events of interest, all events in the list except for the specified events
of interest will be excluded in the analysis. The specification is shown in Figure 5.10.

Figure 5.10: The specification that hides events that are not of interest

SharedVarEvs contains the relevant events in this process, while SMHiddenEvs specifies which
events are of interest. This is however not enough for the assertion to pass, A counter example is
produced in FDR4 with an infinite sequence of τ events, which is an internal event call, the infinite
τ event call is a divergence. As mentioned in Section 3.3.1 an assertion is by default tested on the
failures-divergences model unless any other models has been specified. This is not relevant to the
specification of interest, therefore the assertion can be tested using the Failures model, where it
does pass. Figure 5.11 shows the different assertions mentioned and Figure 5.12 shows how FDR4
displays whether an assertion has passed or failed.

Figure 5.11: The assertions for the setPoint specification

Figure 5.12: Shows assertion results for one of the setPoint assertions displayed in FDR4

Counter examples can only be produced if an assertion fails. The Debug button in Figure 5.12
brings up the counter example. By default, all internal events are displayed as τ events, which can
make the counter example difficult to interpret, these can be hidden from the display by de-selecting
the View Taus check box. A counter example displaying τ events is shown in Figure 5.13

Part of property P1 requires checking whether ActualHV is turned off after the setPoint is set to
0. This is one part of the specification stating that the actual voltage should always follow the
setPoint. Since numerical modelling is not realistically feasible because the FDR4 computing time
increases with the complexity of the model, this can not be checked directly. However, this behavior
is still represented in the model. The second part of the specification is to verify that when the
setPoint is set to 1, the power should be turned on. The specification for this is written as shown in

50

CHAPTER 5. FORMAL VERIFICATION

Figure 5.13: Counter example displaying τ events

Figure 5.14. In order for the assertion to pass the verification, the hidden events had to be used and
the assertion was tested on the failures model. How the different custom assertions were written
based on the custom specifications is shown in Figure 5.15. The assertions tested on SMHiddenEvs
uses hidden events in the analysis. The assertions where no model has been specified, are tested
on the failures-divergences model. Some of the assertions in Figure 5.15 are not discussed in the
report, this is because some of these are used in order to analyse the model or simply test the
capabilities of FDR4. Figure 5.16 shows that both assertions about setPoint tracking passes in
FDR4.

Figure 5.14: Specification describing that after the event set_setPoint.1 happens, it should be
followed by set_powStatus.Power_On

Figure 5.15: The custom assertions and how they are asserted to FDR4 in the assertions file

Figure 5.16: Both assertions for checking whether ActualHV is tracking setPoint passed in FDR4

51

Chapter 6

Results

The results for Simulink Design Verifier will be presented first, followed by the results from Ro-
boTool and FDR4. The last part will present a few differences between the results of the different
tools.

6.1 Simulink Design Verifier Results

The Simulink Design Verifier verifies all possible paths in the model. It searches for any scenario
that can disprove a property and if it is the case, Simulink Design Verifier will generate a counter
example.

Simulink Design Verifier examines all inputs of the system against all possible trajectories in the
model. The result of the verification of a property is either valid or disproved. Simulink Design
Verifier issues a report including all details from the verification process. In Chapter 5, several
properties have been formally written in Simulink Design Verifier. The next step is to conduct the
verification process. The Prove Properties button in the tool bar in Simulink Design Verifier starts
the formal verification process. The user has the ability to switch between error detection mode
or property proving mode. Moreover, in the error detection mode several options are available. For
instance, the check can be held only for dead logic (reachability, not deadlock) detection, division
by zero or choose and select all types of error detection in Simulink Design Verifier.

The formal verification result for the properties in Chapter 5 will be presented in this chapter. If
an assertion block turns green, this means the property is verified against the requirement and it
is valid.

In Figure 6.1, the first property P1 from Chapter 5 is verified and proved valid.

Figure 6.2 is the result of the formal verification for the second property P2 from Figure 5.3 in
Chapter 5.

The next property to prove according to what has been introduced in Chapter 5 is that when
newsetpoint equals 0, the setPoint is 0. The newsetpoint input value has been constrained to 0

52

CHAPTER 6. RESULTS

while the value of setPoint has been investigated for the whole range from 0 to 90KV.

Figure 6.1: Proof of P1 - ActualHV follows setPoint

Figure 6.2: Proof of P2 - PWM_out is being turned off when pow24VStatus is disabled

Figure 6.3: setPoint follows newsetpoint proof

53

CHAPTER 6. RESULTS

As was mentioned in Chapter 5, Simulink Design Verifier is not able to detect the deadlock and
therefore P3 can not be verified. Instead of that it detects the dead logic in the error mode and
hence the result of the errors mode covers the dead logic, division by zero and an integer overflow
error detection.

6.1.1 Results from Error Detection Mode

Error detection was performed in stages. Firstly, division by zero error detection was selected from
the error detection settings in the tool bar, after that an integer overflow error check was used.
Lastly, the dead logic error and identifying active logic boxes was ticked. The reason to detect the
errors in stages is to investigate each type of errors individually and hence increase the efficiency
of debugging the errors.

Because the model does not have any mathematical relation on the form of numerators and denom-
inators, division by zero error detection is considered trivial. As a result, from the dialogue box in
Figure 6.4, it is seen that there are not any object in the model to be processed. Like division by
zero errors, there are no integer overflow errors in the model and the processed objectives are zero.

Figure 6.4: Result of the error detection for an integer overflow and division by zero errors

Reachability in Simulink Design verifier is immensely affected by the inputs to the model, para-
meters configuration and constraints on the states. Figure 6.5 shows the number of the dead
logic-reachability in the model when the input variable pow24VStatus set to 0.

The number of dead logic is reduced dramatically when the variable pow24VStatus is on as it seen
in Figure 6.6

54

CHAPTER 6. RESULTS

The variable pow24VStatus is an input to the model and a transition condition between two states
in the model, so when the condition is not true the transition does not occur and SLDV considers
that the rest of the states are dead logic as Figure 6.5 illustrates. Moreover, reducing the constraints
on states leads to less dead logic in the model.

Figure 6.5: Errors detection when 24V Power is Off

Figure 6.6: Errors detection when 24V Power is On

55

CHAPTER 6. RESULTS

6.1.2 Usability Remarks

Simulink Design Verifier only supports discrete solvers and hence the Simulink model has to be
discrete. As a result, Simulink Design Verifier is not applicable to continuous time blocks from
Simulink. The first model of the system used continuous time blocks. For instance, the PID
controller was of the continuous time type. The compatibility error is recognized when using SLDV
with the continuous time controller. Similarly, more blocks such as the continuous integrator can
not be used with SLDV. The above mentioned problem is considered a practical limitation of SLDV.

Simulink Design Verifier was not able to differentiate between the constants and the variables in
the denominator. Therefore, many division by zero errors are detected by Simulink Design Verifier
even when the denominator has a constant value in it.

56

CHAPTER 6. RESULTS

6.2 FDR4 results

In FDR4, two of the main three properties were verified. Property P1 from Chapter 5 was that the
ActualHV should follow the setPoint. This assertion was verified using two custom specifications.
The variables were modelled as being either on or off, due to the fact that dynamic simulation is
not possible in RoboChart. Using variables in this way is also more convenient for handling the
specifications. Property P3 was that the system should be deadlock free, which was verified using
the built-in semantics in RoboTool. The reachability of the states was also verified in order to
verify that that all possible states could be reached, and that the transitions were built correctly.
Figure 6.7 shows the verification of the state machine being deadlock-free and it also shows the
reachability for all the states. Figure 6.8 shows that the custom specifications for the ActualHV
following setPoint had to be verified using the failures model with hidden external events. Figure 6.9
shows that both setPoint tracking assertions passed in FDR4.

Figure 6.7: Results from the built in assertions, among these are the verification of property P3

Figure 6.8: Results from the custom setpoint assertions which verifies part of P1

57

CHAPTER 6. RESULTS

Figure 6.9: Results from the custom set point assertions which verify both assertions for property
P1

6.3 Tool comparison

Two tables where made in order to systematically show some key differences in the tools. These
differences will be further discussed in Section 7.1. Table 6.1 shows a few differences in capabilities
between the verification tools. These capabilities are key factors of interest that was noted about
the tools. Table 6.2 shows which properties could be verified within each of the tools. Reasoning for
which properties could or could not be verified within each tool is discussed in Section 5.1 and 5.2.

Property SLDV RoboTool
Can check for deadlock No Yes
Can check for reachability Yes Yes
Allows dynamic simulation Yes No
Graphical modelling Yes Yes
Allows input-driven modelling Yes No

Table 6.1: Tool capability comparison

Verified properties SLDV RoboTool
P1: ActualHV tracking setPoint Yes Yes
P2: setPoint is turned off when
24V Power is turned off Yes No

P3: Deadlock-free No Yes

Table 6.2: Overview of which properties could be verified within each tool

58

Chapter 7

Discussion and Conclusion

The results from the previous chapter will be discussed here. The first section is general and
discusses both tools. The final section of this chapter discusses future work. First future work
regarding Stateflow and SLDV is presented, then the same is discussed for RoboTool and FDR4.

7.1 Conclusion

Throughout this report, it is clear that the tools are quite different, both in terms of modelling and
verification. Simulink Design Verifier uses the Simulink framework for modelling, which allows for a
more input-driven and dynamic way of modelling. This may also come at the cost of the abstraction
level of the verification. Introducing an input-based approach means that certain outcomes may be
excluded from the analysis if the input variables changes the execution. However, modelling in such
a way can be more intuitive for an engineer who is new to formal verification methods, and who has
more experience with dynamic simulations. Simulink Design Verifier also offers the capability of
creating models of higher abstraction. Having the option of creating more lower level functionality
can be helpful. This is something that has benefited the group during this thesis, because the group
have had some previous experience with using Simulink for simulation of dynamic models.

RoboTool on the other hand, was created specifically for formal verification of robotic systems. The
modelling in the software is therefore highly abstract, and dynamic simulations are not possible, as
of yet. This can be a challenge for someone with more experience from simulation based models.
This type of modelling can be regarded as the opposite of simulation models. This is because
simulation models are input-driven whereas formal verification models are output-driven. The goal
in formal verification is to look for a specific type of behavior in the model and to see whether the
model satisfies it. Whereas in a simulation model, the input values and dynamics of the system is
modelled, and the outputs are analysed.

Both tools posed different challenges, even if SLDV was more similar to previous methods the
group had used, it was still challenging to use the tool for model checking. The verification in the
different tools also had different capabilities. For instance in the specification for whether ActualHV
followed the setPoint, the specification written in CSPM for RoboTool could not be directly applied

59

CHAPTER 7. DISCUSSION AND CONCLUSION

to SLDV.

7.2 Future work

This section will discuss improvements that could be made in future work with this case study.
It is divided so that the first part will discuss improvements that could be made with regards to
Stateflow and SLDV, the second part discusses the same for RoboTool and FDR4.

7.2.1 Stateflow and Simulink Design Verifier

The future work for Stateflow and SLDV is spilt into two parts. The first part is about the model
and the second is regarding the model checking tool.

The Model

In terms of building the model, the actual system is composed of several state machines that work
simultaneously and communicate continuously by exchanging internal messages. The model has
been simplified to alleviate the complexity of it and reduce the required computational power.
To simplify, more constraints have been imposed on the main sequential state machine. The
functionality of the interrupt state and supply voltage check state are compensated by resetting
the setPoint in every state before the wait24Vpower state. This approach worked properly and
led to satisfactory results. However, the previous strategy affects the reachability of the states.
Reducing the number of constraints in the model will improve the reachability. One way to reduce
the constraints in the model is by adding more details to the model instead of building a plain and
highly abstract model.

In terms of accuracy, the behaviour of the model was captured from the given C++ code. The
accuracy can be increased by adding more details to the model from the code.

The Verification Tool

Simulink Design Verifier is a toolbox incorporated into the Simulink environment, and has been
used to verify the properties. Several issues were raised during the work. For instance, some of
the Simulink blocks are not supported by Simulink Design Verifier. As a result, a compatibility
error was generated when initializing the verification task. Simulink Design Verifier automatically
checks the compatibility, and the result of the automatic check is compatible or not compatible.
Sometimes the outcome of the automatic check is partially compatible, the result of the verification
will be incomplete or it is not exactly what was expected. The group faced the case of a partially
compatible model when trying to add a user-defined function block in the C language. Adding
such a block would capture the behavior of the code better than converting the code into logic in
Stateflow and would save considerable time and efforts during the conversion process.

60

CHAPTER 7. DISCUSSION AND CONCLUSION

Stateflow does not support non-deterministic systems and hence deadlock properties cannot be
detected. Considering detection of deadlock errors in any future improvement will increase the
capability of SLDV in the formal verification. However, PolySpace which is another toolbox from
MathWorks, can be used in combination with Simulink Design Verifier to catch deadlock errors. C
code can be generated from the model which can be verified for deadlock errors by using PolySpace.

Formalizing several properties at the same time requires a careful approach. If the properties
contradict each other, an error will be generated and the process stops. The group faced this
problem where in many instances, all properties were not satisfied because one of them contradicts
the other during the property formalization and no counter example was issued.

Working to improve and solve the previously mentioned points will lead to more accurate results
and will increase the flexibility of using the tool.

7.2.2 RoboTool and FDR4

For future work with the model in RoboTool, the model should be expanded in order to enable
verification of the property that could not be verified. This is property P2 from Chapter 5. In
order to get this verification to work, a variable representing the PWM_output signal would have
to be implemented. Additionally, the system does not fully capture how the system behaves based
on changes in the 24V power signal. Since the verification time quickly increases as the model is
expanded, special care is necessary in order to not introduce too much of the type of behaviour
that highly increases the verification time.

Another part of the model that is not quite complete, is that only the sequential part of the system
has been modelled. The watchdogs continuously running concurrently with the sequential part
have not been modelled. This also affects property P2, as the concurrent monitors can affect the
transitions regarding the specification. In order to introduce this behaviour, the three different
monitors would be modelled as separate state machines which would communicate with the main
state machine through events. The main task of these monitors are to detect errors, and cause the
system to transition to the ErrorMode state.

61

Acknowledgements

First of all would like to acknowledge our supervisors David Anisi and Yvonne Murray and thank
them for their continuous support and supervision during our work with the thesis. Through weekly
meetings they have helped us focus our aim to complete the thesis in a satisfactory manner.

We would also like to thank ABB Robotics for presenting the thesis. They have provided us with
the necessary documentation and information about the system. ABB has also been providing
guidance to help us better understand the functionality of the system and the C++ code that has
been crucial to building the models.

We would also like to thank Pedro Ribeiro from the University of York, who is one of the developers
of RoboTool. Through e-mail communication and Skype meetings, he has answered questions about
the software and guided us in utilizing the tool properly. These guided sessions often led to new
changes in the model and giving the group a better understanding of the tool’s capabilities.

62

Bibliography

[1] ABB HVManul pdf. ABB.

[2] ABB IPS HVC Manual pdf. ABB.

[3] Christel Baier and Joost-Pieter Katoen. Principles of model checking. The MIT Press, Cam-
bridge, Massachusetts. url: http : / / is . ifmo . ru / books / _principles _ of _ model _

checking.pdf.

[4] Edmund M Clarke Jr et al. Model checking book 2nd edition. 2018.

[5] Communicating Sequential Processes. C.A.R. Hoare. url: http : / / www . usingcsp . com /

cspbook.pdf.

[6] CSPM manual. Oxford university. url: https://cocotec.io/fdr/manual/cspm.html.

[7] CTL. A video lecture about CTL. 2015. url: https : / / www . youtube . com / watch ? v =

Blh060Hgbm8&list=PLK50zIm6tHRiKFJvKu1a7q_z2tcXnBUHp&index=43.

[8] Failures-Divergences Refinement. University of Oxford, 2012. url: https://www.cs.ox.ac.

uk/projects/concurrency-tools/download/fdr2manual-2.94.pdf.

[9] Thomas Gibson-Robinson et al. Failures Divergences Refinement (FDR) Version 3. 2013.
url: https://www.cs.ox.ac.uk/projects/fdr/.

[10] Thomas Gibson-Robinson et al. ‘FDR3 — A Modern Refinement Checker for CSP’. In: Tools
and Algorithms for the Construction and Analysis of Systems. Ed. by Erika Ábrahám and
Klaus Havelund. Vol. 8413. Lecture Notes in Computer Science. 2014, pp. 187–201.

[11] Introduction to LTL. A video introduction to linear temporal logic. 2015. url: https://

www.youtube.com/watch?v=W5Q0DL9plns&list=PLK50zIm6tHRiKFJvKu1a7q_z2tcXnBUHp&

index=33.

[12] Steven T. Karris. Introduction to Simulnik with Engineering Application. 2006.

[13] William K. Lam. Simulation-Based Verification versus Formal Verification. 2005. url: https:

//www.informit.com/articles/article.aspx?p=392278&seqNum=4.

[14] Edmund M.Clarke et al. Handbook of Model Checking. Springer, Cham. url: https://link.

springer.com/book/10.1007/978-3-319-10575-8.

[15] Mathworks. Algorithm Verifcation and Validdation in Matalb. url: https://www.mathworks.

com/videos/algorithm-verification-and-tool-validation-in-matlab-1500578151023.

html.

[16] Mathworks. Simulnik design verifier catalog. url: https://pdf.directindustry.com/pdf/

mathworks/simulink-design-verifier/12865-435443-_3.html.

63

http://is.ifmo.ru/books/_principles_of_model_checking.pdf
http://is.ifmo.ru/books/_principles_of_model_checking.pdf
http://www.usingcsp.com/cspbook.pdf
http://www.usingcsp.com/cspbook.pdf
https://cocotec.io/fdr/manual/cspm.html
https://www.youtube.com/watch?v=Blh060Hgbm8&list=PLK50zIm6tHRiKFJvKu1a7q_z2tcXnBUHp&index=43
https://www.youtube.com/watch?v=Blh060Hgbm8&list=PLK50zIm6tHRiKFJvKu1a7q_z2tcXnBUHp&index=43
https://www.cs.ox.ac.uk/projects/concurrency-tools/download/fdr2manual-2.94.pdf
https://www.cs.ox.ac.uk/projects/concurrency-tools/download/fdr2manual-2.94.pdf
https://www.cs.ox.ac.uk/projects/fdr/
https://www.youtube.com/watch?v=W5Q0DL9plns&list=PLK50zIm6tHRiKFJvKu1a7q_z2tcXnBUHp&index=33
https://www.youtube.com/watch?v=W5Q0DL9plns&list=PLK50zIm6tHRiKFJvKu1a7q_z2tcXnBUHp&index=33
https://www.youtube.com/watch?v=W5Q0DL9plns&list=PLK50zIm6tHRiKFJvKu1a7q_z2tcXnBUHp&index=33
https://www.informit.com/articles/article.aspx?p=392278&seqNum=4
https://www.informit.com/articles/article.aspx?p=392278&seqNum=4
https://link.springer.com/book/10.1007/978-3-319-10575-8
https://link.springer.com/book/10.1007/978-3-319-10575-8
https://www.mathworks.com/videos/algorithm-verification-and-tool-validation-in-matlab-1500578151023.html
https://www.mathworks.com/videos/algorithm-verification-and-tool-validation-in-matlab-1500578151023.html
https://www.mathworks.com/videos/algorithm-verification-and-tool-validation-in-matlab-1500578151023.html
https://pdf.directindustry.com/pdf/mathworks/simulink-design-verifier/12865-435443-_3.html
https://pdf.directindustry.com/pdf/mathworks/simulink-design-verifier/12865-435443-_3.html

BIBLIOGRAPHY

[17] MathWroks. Simulink design verifer. url: https : / / www . mathworks . com / products /

simulink-design-verifier.html.

[18] MathWroks. Statflow and Stateflow coder. url: https://edulab.unitn.it/nfs/Manualistica/

Software/MathWorks%20Guide/stateflow/sf_ug.pdf.

[19] Alvaro Miyazawa et al. Robochart reference. Robostar, University of york. url: https://www.

cs.york.ac.uk/circus/publications/techreports/reports/robochart-reference.

pdf.

[20] Alvaro Miyazawa et al. Robochart reference manual. Robostar, University of york. url:
https://www.cs.york.ac.uk/circus/RoboCalc/assets/RoboChart-manual.pdf.

[21] PCI. The Next Big Thing in Robotic Painting: Smart Atomizers. url: https://www.pcimag.

com/articles/106518-the-next-big-thing-in-robotic-painting-smart-atomizers.

[22] Robostar notation tools. Robostar, University of york. url: https://www.cs.york.ac.uk/

robostar/notations-tools/.

[23] Bryan Scattergood and Philip Armstrong. CSPM : A Reference Manual. Bryan Scattergood,
Philip Armstrong. url: http://www.cs.ox.ac.uk/ucs/cspm.pdf.

[24] Semantics of LTL. A video about the semantics of LTL. 2015. url: https://www.youtube.

com/watch?v=TLrOwq-8iDs&list=PLK50zIm6tHRiKFJvKu1a7q_z2tcXnBUHp&index=34.

[25] Shobhit Shanker and Prashant Hedge. Improving the quality of complex control logic design
using model verification. url: https://www.mathworks.com/content/dam/mathworks/

mathworks- dot- com/solutions/automotive/files/in- expo- 2013/improving- the-

quality - of - complex - control - logic - design - using - model - verification - and -

validation-techniques.pdf.

64

https://www.mathworks.com/products/simulink-design-verifier.html
https://www.mathworks.com/products/simulink-design-verifier.html
https://edulab.unitn.it/nfs/Manualistica/Software/MathWorks%20Guide/stateflow/sf_ug.pdf
https://edulab.unitn.it/nfs/Manualistica/Software/MathWorks%20Guide/stateflow/sf_ug.pdf
https://www.cs.york.ac.uk/circus/publications/techreports/reports/robochart-reference.pdf
https://www.cs.york.ac.uk/circus/publications/techreports/reports/robochart-reference.pdf
https://www.cs.york.ac.uk/circus/publications/techreports/reports/robochart-reference.pdf
https://www.cs.york.ac.uk/circus/RoboCalc/assets/RoboChart-manual.pdf
https://www.pcimag.com/articles/106518-the-next-big-thing-in-robotic-painting-smart-atomizers
https://www.pcimag.com/articles/106518-the-next-big-thing-in-robotic-painting-smart-atomizers
https://www.cs.york.ac.uk/robostar/notations-tools/
https://www.cs.york.ac.uk/robostar/notations-tools/
http://www.cs.ox.ac.uk/ucs/cspm.pdf
https://www.youtube.com/watch?v=TLrOwq-8iDs&list=PLK50zIm6tHRiKFJvKu1a7q_z2tcXnBUHp&index=34
https://www.youtube.com/watch?v=TLrOwq-8iDs&list=PLK50zIm6tHRiKFJvKu1a7q_z2tcXnBUHp&index=34
https://www.mathworks.com/content/dam/mathworks/mathworks-dot-com/solutions/automotive/files/in-expo-2013/improving-the-quality-of-complex-control-logic-design-using-model-verification-and-validation-techniques.pdf
https://www.mathworks.com/content/dam/mathworks/mathworks-dot-com/solutions/automotive/files/in-expo-2013/improving-the-quality-of-complex-control-logic-design-using-model-verification-and-validation-techniques.pdf
https://www.mathworks.com/content/dam/mathworks/mathworks-dot-com/solutions/automotive/files/in-expo-2013/improving-the-quality-of-complex-control-logic-design-using-model-verification-and-validation-techniques.pdf
https://www.mathworks.com/content/dam/mathworks/mathworks-dot-com/solutions/automotive/files/in-expo-2013/improving-the-quality-of-complex-control-logic-design-using-model-verification-and-validation-techniques.pdf

List of Figures

1.1 Robotic paint system from ABB[21] . 1

1.2 Electrostatic painting principle[1] . 2

1.3 Finite state diagram of the High Voltage Controller (HVC) 3

1.4 High voltage control system unit[1] . 3

1.5 Block diagram of one part of the paint robot, containing the HVC[1] 3

1.6 Error concerning HV.Actual value . 5

1.7 Error when the 24V power signal failed and the HVC froze 6

1.8 Error when the 24V power signal was falsely reported missing 6

2.1 Flowchart showing the verification process . 8

2.2 Finite state machine representation . 9

2.3 Representation of sequential states . 10

2.4 Representation of a general model checking procedure additionally showing how it
is a complement to simulation . 12

2.5 Figure showing examples of linear executions that satisfies the requirements de-
scribed on the left[11] . 13

2.6 Example of a computational tree extracted from a state machine[3] 14

3.1 Formal verification process in Mathworks[15] . 17

3.2 Representation of the Stateflow environment[18] . 18

3.3 Simulink Design Verifer functions . 18

3.4 Demonstration of the architecture of the verification subsystem block and Simulink
sub-model . 19

65

LIST OF FIGURES

3.5 Design error detection progress box . 20

3.6 Error detection and model highlighting[25] . 20

3.7 Safety property in Simulink Design Verifer . 22

3.8 The graphical user interface of RoboTool . 22

3.9 Examples of interfaces and a robotic platform . 23

3.10 Example of an operation . 24

3.11 Example of a state diagram, showing some of the properties described in Chapter 3.2 25

3.12 The interface of FDR4, with assertions in the right side margin 25

4.1 Representation of a general modelling procedure using model checking and visual
representation of how model checking is related to simulation 29

4.2 The model blocks configuration in the Simulink Environment 30

4.3 The Init state in flowchart . 31

4.4 Matlab Body’s Function Block . 31

4.5 DisableHV function . 32

4.6 Wait24Vpower State . 32

4.7 ClosedLoop State . 33

4.8 The Structure of CheckLimit Function . 33

4.9 RampingsetPoint State . 34

4.10 ErrorMode State State . 35

4.11 The Controller . 35

4.12 The original version of the ramping state . 36

4.13 The new version of the ramping state . 37

4.14 The old version of the disableHV operation . 37

4.15 Demonstrates where the DisableTrue event is used for a transition 38

4.16 The new version of the disableHV operation . 38

4.17 Demonstrating the boolean used for a transition . 39

4.18 Visual representation of the check limits operation 39

66

LIST OF FIGURES

4.19 Visual representation of the supplyVoltageCheck operation 40

4.20 Representation of the ClosedLoop state . 40

4.21 Representation of the enumerated interfaces for State and Power 41

4.22 Demonstration of the ErrorMode state . 42

4.23 An overview of the state machine and its transitions 42

4.24 The different interfaces used in the RoboChart model 43

4.25 Displays the architecture of the RoboChart model 43

5.1 Inputs to the verification subsystem block in the model 45

5.2 Illustrates the implementation of P1 in the verification subsystem block 46

5.3 Formalization of second property P2 in the verification subsystem block 46

5.4 Newsetpoint and Setpoint property Assertion . 47

5.5 The built in assertions in the assertions file . 48

5.6 The built in assertions as they appear in the CSP file 48

5.7 Shows that the built in assertion has been successfully verified by FDR4 49

5.8 Assertion for checking when setPoint is set to 0 it is followed by ActualHV being set
off . 49

5.9 Counter example of the setpoint assertion . 49

5.10 The specification that hides events that are not of interest 50

5.11 The assertions for the setPoint specification . 50

5.12 Shows assertion results for one of the setPoint assertions displayed in FDR4 50

5.13 Counter example displaying τ events . 51

5.14 Specification describing that after the event set_setPoint.1 happens, it should be
followed by set_powStatus.Power_On . 51

5.15 The custom assertions and how they are asserted to FDR4 in the assertions file . . . 51

5.16 Both assertions for checking whether ActualHV is tracking setPoint passed in FDR4 51

6.1 Proof of P1 - ActualHV follows setPoint . 53

6.2 Proof of P2 - PWM_out is being turned off when pow24VStatus is disabled 53

67

LIST OF FIGURES

6.3 setPoint follows newsetpoint proof . 53

6.4 Result of the error detection for an integer overflow and division by zero errors . . . 54

6.5 Errors detection when 24V Power is Off . 55

6.6 Errors detection when 24V Power is On . 55

6.7 Results from the built in assertions, among these are the verification of property P3 57

6.8 Results from the custom setpoint assertions which verifies part of P1 57

6.9 Results from the custom set point assertions which verify both assertions for property
P1 . 58

68

List of Tables

6.1 Tool capability comparison . 58

6.2 Overview of which properties could be verified within each tool 58

69

	Abstract
	Contents
	List of Abbreviations
	Introduction
	Application Description
	Electrostatic Painting Principle
	High Voltage Control System

	Motivation
	Background

	Theory
	Formal Verification and Model Checking
	Verification and Standard Verification Techniques
	Modelling Systems
	Modelling Programs
	Model Checking
	Model Checking Process

	Temporal Logic
	Linear Temporal Logic
	Computational Tree Logic
	Communicating Sequential Processes

	Modelling and Verification Tools
	Verification and Validation in Simulink
	Simulink
	Stateflow
	Simulink Desing Verifier
	Verifying Design Against Safety Requirements

	RoboTool
	FDR4
	CSPM

	Modelling
	General Modelling Procedure
	Simulink Modelling
	Input and Output Variables to the Simulink Model
	Stateflow - Sub model
	Controller Sub-model

	RoboTool Modelling

	Formal Verification
	Verification in Simulink Design Verifier
	Verification in RoboTool and FDR4

	Results
	Simulink Design Verifier Results
	Results from Error Detection Mode
	Usability Remarks

	FDR4 results
	Tool comparison

	Discussion and Conclusion
	Conclusion
	Future work
	Stateflow and Simulink Design Verifier
	RoboTool and FDR4

	Bibliography
	List of Figures
	List of Tables

