
Modelling of a Braitenberg inspired guidance
system for an Autonomous surface vessel (ASV)

Tore Engebretsen

Supervisors
Filippo Sanfilippo and Morten Kjeld Ebbesen

This Master’s Thesis is carried out as a part of the education at the University of Agder and is
therefore approved as a part of this education. However, this does not imply that the University

answers for the methods that are used or the conclusions that are drawn.

University of Agder, 2020
Faculty of Engineering and Science
Department of Engineering Sciences

Acknowledgements

I would first like to thank my thesis advisers Associate Professor Filippo Sanfilippo and Associate
Professor Morten Kjeld Ebbesen at University of Agder. Even through a time period out of the
ordinary, they were always available for guidance and showing me encouragement. They allowed
this paper to be my own work, but steered me in the right direction whenever they thought I needed
it.

I would also like to thank Morten Rudolfsen and Andreas Klausen at University of Agder for
supporting me through the challenges of this thesis.

Finally, I must express my profound gratitude to my parents, brothers and nearest friends for
providing me with unfailing support and continuous encouragement throughout my years of study
and through the process of researching and writing this thesis. This accomplishment would not
have been possible without them. Thank you.

i

Abstract

Aquatic unmanned robotic systems have gained popularity due to their abilities to perform a wide
range of operations at low cost and no risk to human lives. Therefore, navigation systems are being
developed to increase the controllability and raise the level of autonomy of such vehicles. The
research presented in this thesis covers investigations and development of unmanned vehicles (UVs)
and their navigation systems. In addition, a control concept called the Braitenberg algorithm is
explored as a basis for controlling UVs.

The Braitenberg algorithm is a concept based on a thought experiment that models the animal
world in a minimalistic and constructive way, from simple reactive behaviours through the simplest
vehicles, to the formation of concepts and generation of ideas. The concept is used on a large variety
of experiments, wheeled robots and other land robots, but unknown to the world of boats at this
point. The Braitenberg concept is therefore implemented as a control algorithm in a simulation for
controlling an unmanned surface vehicle (USV) and navigating in sheltered waters with obstacles.
The obstacles are randomly placed in the environment and fictional sensors on the vehicle have a
fixed detection range. The algorithm gives control inputs so that the vehicle is attracted to a set
of waypoints while avoiding obstacles along the way.

Using the Braitenberg algorithm, the surface vehicle is able to use GPS positioning data to navigate
through a course defined by a set of waypoints while detecting and avoiding the obstacles in the
environment.

The simulation shows that using the Braitenberg algorithm as a basis for an autonomous navi-
gation system is a viable solution for making a USV able to track waypoints and avoid obstacles
autonomously.

iii

Nomenclature

2D Two Dimensional

3D Three Dimensional

A A

AIS Automatic Identification System

ASV Autonomous Surface Vessel

ATRA Autonomy and Technology Readiness Assessment

cmd Command

COLREG International Regulations for Preventing Collisions at Sea

DDPG Deep Deterministic Policy Gradient

EC Environmental Complexity

ES External System

ESI External System Independence

GNC Guidance, Navigation and Control

GNSS Global Navigation Satellite System

GPS Global Positioning System

GUI Graphical User Interface

IMU Inertia Motion Unit

LiDAR Light Radar (Light Detection and Ranging)

MC Mission Complexity

MNC Memristive Neuromorphic Circuits

MPC Model Predictive Control

ROS Robot Operating System

UAV Unmanned Aerial Vehicle

USV Unmanned Surface Vehicle

v

Contents

1 Introduction 1
1.1 Background . 1
1.2 Motivation . 4
1.3 Objectives . 5
1.4 Assumptions and Prerequisites . 7
1.5 Disposition . 7

2 Related works 8
2.1 State of the art . 8

2.1.1 Mechanical design . 8
2.1.2 Sensors . 10
2.1.3 Related control methods . 11

2.2 Braitenberg . 14
2.2.1 Braitenberg experiment . 14
2.2.2 Braitenberg and Bio-inspired robot control 15

2.3 Review of previous projects . 17

3 Methods 20
3.1 Braitenberg assumptions and hypotheses . 20
3.2 Concept . 21
3.3 Proposed model . 25

3.3.1 Reaching a waypoint, go to goal . 25
3.3.2 Avoiding an obstacle . 27
3.3.3 Reaching a waypoint while avoiding an obstacle 30
3.3.4 Navigate through multiple waypoints with multiple obstacles 32

3.4 Manual override . 32

4 Tools and implementation 33
4.1 Implementation . 33

4.1.1 ROS and Gazebo . 33
4.1.2 Controller . 34

5 Results 38
5.1 Tracking a waypoint . 39
5.2 Avoiding an obstacle . 40
5.3 Reaching a waypoint while avoiding an obstacle . 41
5.4 Navigate through multiple waypoints and obstacles 42
5.5 Manual override . 48

6 Discussions 49
6.1 State of level of autonomy regarding small USVs . 49
6.2 Simulated model . 49

7 Conclusions and future work 51

vii

7.1 Conclusions . 51
7.2 Future work . 52

References 53

A Code with explanations 56

B Complete Code of Braitenberg Controller 61

C Digital twin ROS/Gazebo Setup 66

D Setup of the Braitenberg controller node 68

Chapter 1

Introduction

1.1 Background
Around two-thirds of the earth is covered by oceans, but compared to land, not much of the ocean
has been properly explored. Climate change, environmental abnormalities, personnel requirements,
and national security concerns are all contributing to a strong demand from industrial, scientific,
and military communities to develop new and innovative unmanned surface vehicles (USVs).

Despite the strong demand for methods of exploration, normally only semi-autonomous USVs have
been used rather than fully-autonomous USVs. The reason for this is that fully-autonomous USVs
still face numerous challenges. Limitation in autonomy arise due to the challenges in automated and
reliable guidance, navigation and control (GNC) [4] functions for all different operating conditions.
The vehicles must be able to operate in sophisticated and hazardous environments, and the risk of
sensor, actuator and communication failures must be reduced to a minimum. Further development
of fully-autonomous USVs is required in order to minimise both the need for human control and
the effects to the effective, safe and reliable USVs operation due to human error.

USVs can be developed for a wide range of potential applications in a cost-effective way, such as
scientific research, environmental missions [27], ocean resource exploration, rescue missions [18] and
military uses [34].

Benefits of using USVs:

• USVs can perform longer and more hazardous missions than manned vehicles.

• Personnel safety is far greater since no crew is needed onboard during operation.

• Maintenance cost can be lowered where no operator equipment or safety equipment for crew
are installed.

• The possibility of keeping low weight and a compact design of USVs give them enhanced
manoeuvrability and deployability in shallow waters (riverine and coastal areas) where larger
crafts cannot operate effectively.

• USVs have greater potential payload capacity and are able to perform monitoring and sam-
pling at deeper depth compared to other vehicles as aircraft/UAVs and spacecraft.

1

Figure 1.1: The Otter, an USV from Maritime Robotics [23]. The USV is used for research and
bathymetric measurements.

With many advantages of small USVs, the motivation to develop small scale and cost effective
autonomous systems is high. The development of such systems could include doing more research
on self-adapting systems, machine learning, artificial intelligence and of course combining several
of these creating sophisticated systems. One step towards a self-adapting intelligent control system
can be to utilise a control theory called the Braitenberg algorithm.

The Braitenberg algorithm is a concept based on a thought experiment done by the Italian-Austrian
cyberneticist Valentino Braitenberg. The experiment models the world of animals in a minimalistic
and constructive way. It is inspired from looking at behaviour of insects and animals around a
source of food or a source of light. They use sensor organs to detect the smell of food or the
intensity of light and are drawn to the source. In the same way they can be repelled from poison
or the light source.

This concept can further inspire the creation of self adapting vehicles from simple reactive be-
haviours through the simplest of vehicles, to the creation of concepts and ideas for more sophisti-
cated systems. For the simplest vehicles, the motion of the vehicle is directly controlled by input
signals from sensors such as light sensitive photo cells. Although the control and the vehicle can be
simple, the resulting behaviour may seem to be complex or even intelligent [3]. A vehicle adopting
this control theory might able to navigate itself through different unknown environments, seeking
out the source of control signal and avoiding different obstacles.

2

The Braitenberg concept can from an engineer point of view, be seen as and implemented in a
vehicle with propulsion actuators and sensors that can detect the strength of a signal source. An
example of a Braitenberg vehicle type called 2a / 2b is shown in Figure 1.2.

Figure 1.2: Simple Braitenberg vehicle

The vehicle is a two wheeled driven robot with two photo cell sensors. Version (a) gives more
power to the right wheel if the sensor on the right is closer to the light source, making the robot
drive away from the source. Depending on the application, the connection between the sensors and
the wheels can be switched as to have the robot deflect from the light (a) or be attracted to it
(b). By moving the light source to a desired position, the Braitenberg algorithm can be used as a
navigation system.

3

1.2 Motivation

There are many reasons for developing fully autonomous vehicles, and the different approaches to
the challenge is just as plentiful. Enabling USVs to work in any unstructured or unpredictable
environment without human supervision is crucial. A key feature is to develop a navigation system
that is self adaptive. A robust self adapting navigation system should be able to be deployed in
many different environments and situations, and still be able to perform its prioritised tasks.

There are several existing products and projects that are closing in on achieving fully autonomous
surface vessels. Examples are the navigation system from Sea-Machines, which integrates with
existing vessel systems and onboard sensors to manage pre-planned and dynamically charted mis-
sions [30]. Another project currently in development is the autonomous container ship Yara Birke-
land developed together with Kongsberg [35]. When deployed, this ship will autonomously trans-
port fertiliser for Yara in Norway. In addition, it is a zero-emission vessel. Yara Birkeland aims to
start autonomous operation this year 2020 [36].

a b

Figure 1.3: (a) A USV with control system delivered by Sea-Machines. (b) 3D model of Yara
Birkeland at port.

Although development on autonomous systems are progressing, the systems of Sea-Machines and
Kongsberg are applied to large vessels. These vessels have the possibility to carry large sensor pack-
ages and great computational power which greatly improves the possible autonomous capabilities.
Developing an autonomous navigation system for smaller vessels gives a different set of challenges.
Vessels of a size that one person can carry, is not able to house the same amount of sensors or
powerful computers. These vessels will most likely be powered by relatively small battery packs
and computational power and operation time is limited.

Developing a navigation system that is less dependent on advanced and complex sensor systems,
that will require less computational power, will give great benefits to small size USVs. Such a
low demanding navigation system will let the USV prioritise tasks other than navigation. Vessels
intended for research or surveillance could extend their operational time before needing a recharge.

This is where a bio-inspired Braitenberg algorithm might be able to contribute to a low demanding
autonomous navigation system. The concept of Braitenberg describes how the complex behaviour
of animals and insects can be described in a simplistic way. If a navigation system with complex
behaviour can be solved using simple methods, then the computational power of a robot can
be used for other purposes. In addition, through the literature study done for this thesis, the
Braitenberg algorithm has not yet been used as a basis for navigation system of USVs. Only for
land based vehicles like wheeled robots and snakes. Therefore, exploring the use of the Braitenberg
algorithm as a basis for navigation system of USVs is very interesting. The Braitenberg algorithm
can contribute to the development of creating fully autonomous USVs.

4

1.3 Objectives
The main objective of this thesis is to explore the current state of autonomous surface vehicles
and improve the level of autonomy by using the Braitenberg algorithm as a means of navigation.
The navigation system will be purposely made for smaller size USVs that will navigate through an
unknown environment, detect and avoid obstacles and shorelines. An USV developed in previous
projects will be used as simulation model and physical robot, see section 2.3.

The Braitenberg algorithm will be implemented in a simulation following these steps:

• Develop a digital robot simulation model that can use GPS data to track a waypoint and
navigate to the waypoint. In addition, use the same model to have the robot be repelled from
a point.

• Develop a program that can autonomously track a set of waypoints navigating through the
environment and avoid obstacles as they are detected along the track.

• Combine human control input with Braitenberg control to allow detours and extra obstacle
avoidance if necessary.

As a result of the objectives, the aim is to raise the level of autonomy. An autonomy classification
system called ATRA is used to define the level of autonomy during the different stages of robot
development. See Table 1.1.

5

Table 1.1: The ATRA framework [11, 17], applied to aquatic surface robots with the different
levels of external system independence (ESI), of environmental complexity (EC) and of mission
complexity (MC). (ES) refers to External System.

Level Description Guidance Navigation Control ESI EC MC

9
Fully

autonomous

Human-level decision-

making, accomplishment of

most missions without any

intervention from ES (100% ESI).

Human-like navigation

capabilities. Situational wareness in

extremely complex environments and

situations.

Same or better

control performance as

human controlled vessels

in the same situation and

conditions.

8
Full mission

planning

High-level decision making.

Evaluation and optimisation of

mission performance.

Higher level entities and properties are

derived from the environment

perception according to the desired

task to be performed.

Same as previous levels.

7
Dynamic global

planning

Same as Level 6 but planning in

a dynamic environment.

Same as Level 6 but mapping in a

dynamic environment.
Same as previous levels.

6 Global planning

Goal waypoint provided by ES.

Global path planning

determines optimal path to

goal.

Global map includes properties of the

environment. Localisation of aquatic

surface robot relative to map.

Same as previous levels.

5

Local planning

with

environment

awareness

Same as Level 4 but local

motion planner also takes into

account properties of the

environment (flow speed,

resistance, etc.).

Same as Level 4 but local map also

includes properties of the environment

(flow speed, resistance, etc.).

Same as previous levels.

4
Navigation from

A to B

Drive from start point A and

stop at point B using sensors to

collect and react to the

feedback signals.

Local mapping with geometrical

representation of immediate

surroundings. Localisation of aquatic

surface robot relative to map.

Local adaptive control to

compensate for possible

deviations between map

and actual environment.

3 Reactive control

Motion planner reacts to sensor

input feedback and detects if

aquatic surface robot is jammed

in environment.

Aquatic surface robot can detect

contacts between its own body and

the environment. No mapping.

Local adaptation to resolve

jammed situations and/or

local surface adaptation.

2
Pre-planned

motion

Pre-programmed motion

patterns.
Same as Level 1.

Automatic control to

follow specified motion

pattern. No adaptation.

1 Remote control

All guidance functions are

performed by external systems

(mainly human operator).

Sensors may be adopted, but all data is

processed and analysed by a remote

ES. No mapping. No localisation.

All control commands are

given by a remote ES

(mainly human operator). 0
%

 L

o
w

 L
ev

el

 M
id

 L
ev

el

H

ig
h

 L
ev

el

10
0

%

Lo
w

es
t

Le
ve

l

 S
im

p
le

 L
ev

el

M
o

d
er

at
e

Le
ve

l

 D
if

fi
cu

lt
 L

ev
el

 E
xt

re
m

e
Le

ve
l

Lo
w

es
t

Le
ve

l

Lo

w
 L

ev
el

M

id
 L

ev
el

H
ig

h
 L

ev
el

H
ig

h
es

t
Le

ve
l

The target is to add features to a USV in order to reach level 7. However, regarding level 6, the
global path planning and mission planning will be added through manually setting coordinates
for waypoints. In addition, the robot might not choose to drive the optimal path as the robot is
entirely dependent on the sensor data in an unknown environment for navigation.

6

1.4 Assumptions and Prerequisites
When deployed, small USVs are exposed to many environmental effects and factors. Many of which
are difficult to model. Therefore, the following boundaries are set:

Vessel:

The navigation system will be designed for a prototype robot of size approximately 40x50cm, driven
by two water jets and have a very shallow hull construction. The construction is completely water
proof, but not intended for subsurface operation. The robot was constructed in a previous project
and this thesis is a continuation of that project. More information on the robot can be found in
Section 2.3 Review of previous projects.

Environment:

• The robot is designed to operate in sheltered waters with calm seas. No noticeable waves.

• Detectable obstacles are above sea level. Any subsurface obstacles like reefs, rocks and logs
will not be detectable.

• Water currents are neglected.

• Wind force can be applied if time allows it, constant force and direction.

Sensors:

• Constant GPS signal, always available. Accuracy is considered ideal.

• Robot is equipped with sensors that can detect obstacles at a distance of 5 meters and is able
to place these in the global coordinate system at the correct position. The exact sensors are
not defined. However, LiDAR or acoustic sensors are viable options.

1.5 Disposition
Chapter 1 gives an introduction to some commercially available unmanned surface vehicles and
their uses. It also gives the objectives of this thesis and sets the boundary limits of expected new
research and development.

Chapter 2 explains the work previously done on this project, provides an overview of current state
of USV systems and describes the development of navigation systems over the last years.

Chapter 3 describes the implementation of the Braitenberg algorithm and how the simulation is
set up.

Chapter 4 describes how the simulation environment is set up and how the controller code is
developed.

Chapter 5 contains a selection of important and interesting results obtained from the simulation.

Chapter 6 highlights challenges during setup of the simulation and the development of a fully
autonomous USV.

Chapter 7 concludes the thesis and summarises improvements and challenges learned from the
project.

7

Chapter 2

Related works

2.1 State of the art

2.1.1 Mechanical design

USVs that are currently being used and developed need to fulfil a set of minimum requirements in
order to become fully autonomous. They need a solid and stable hull design, a propulsion system,
a set of sensors and a GNC system [4]. In addition, communications to a ground station allows for
configuration of mission and manual control if needed.

Figure 2.1: Basics of a USV. Schematics showing the main components of a common USV, most
of which are necessary to operate autonomously.

As seen in Figure 2.1, the GNC module for USV is the brain of the vessel, utilising the sensor
data, guides the vessel according to its guidance algorithms and controls the propulsion to move
the vessel to its desired location.

8

The design of the hull reflects the intended use of the USVs. The kayak design is a robust con-
struction and if needed can be designed to be self righting. It also gives room to connect more
internal components close together. However, the kayak design is more exposed to roll motion.
This could interfere with measurements of bathymetric data of the seabed [4]. A multi hull design
can in this case be more stable and more suitable for bathymetric measurements [27]. All three
hull designs are currently being used in the development of any size of USV. From smaller USVs
like the single hull GeoSwath 4R [16] and the catamaran Otter [23], to large vessels like the single
hull Yara Birkeland [35] and the trimaran Sea Hunter [34].

Mainly two types of propulsion are dominating the USV marked, propeller with rudder and water
jet. The propeller and rudder design is a low cost solution with few components and easy to
implement in a hull. Making the hole for the propeller shaft water proof can be done with a water
proof bearing. The drawback with an open propeller is that seaweed and other contamination can
get tangled up in the propeller and rudder, thus stopping the engine or prevent turning. Water
jet propulsion on the other hand is a more complex construction [1]. They normally have three
ports that must be water proof and tolerances around the propeller must be adhered. Turning can
be done using two different methods. One is by directing the water jet with a nozzle and is often
combined with a revering mechanism. The other method is by the use of differential thrust if the
USV is equipped with two jets. The water inlet to the propeller is normally protected by grating.
This makes the water jet a reliable propulsion system running less risk of contamination of the
propeller. It is also safer for humans during a search and rescue mission.

A paper written early in year 2020 includes a review of several small size USVs currently available
and operational [28]. The paper focuses on USVs of size up to 2m in length and mass up to 55kg.
It describes physical design, what sensor packages are included and areas and objectives of typical
operation. The reviewed USVs are shown in Figure 2.2 and a summary of their characteristics are
shown in Table 2.1.

Figure 2.2: USV designs varying in size and capabilities.

9

Table 2.1: Characteristics of USVs in Figure 2.2. ("-" not given).

Figure USV Name Manufactorer
L
[m]

W
[m]

H
[m]

Weight
[kg]

Range
[m]

Endurance
[h]

Max Speed
[knots]

a Otter Maritime Robotics 2,00 1,08 0,81 55 2500 20,0 5,5
b SR-Surveyor M1.8 Sea Robotics 1,80 0,91 1,00 49 6200 5,5 4
c Heron Clearpath Robotics 1,35 0,98 0,32 28 - 2,5 3,3
d GeoSwath 4R Kongsberg Maritime 1,80 0,90 - 55 1500 6,0 6
e SL20 Ocean Alpha 1,05 0,55 0,30 10 2000 2,0 10
f Z-Boat 1800-RP Teledyne Marine 1,80 1,00 1,10 38 1200 4,0 10

The same paper also states that commercial applications of these USVs provide evidence that
most of the technology necessary for the development of USVs is mature and available, including
sensors, communication and control principals [28]. High-speed with acceptable endurance could
be achieved at relatively low cost. To the best of the researchers knowledge, a low-cost and open
framework for aquatic surface robots is still missing. The paper also suggest a common platform
for developers to use, so that future work and development of USVs can be accelerated through
collaboration between teams and more easily compared based on the common platform.

2.1.2 Sensors

Sensor packages implemented in the design of smaller USVs can be divided into two groups, sensors
used for navigation and sensors used for data sampling.

Sensors used for navigation commonly includes global navigation satellite system (GNSS) sensors.
GNSS includes systems as the American developed system GPS and the Russian developed system
GLONASS and more. Using a GNSS sensor that can connect to several of the satellite systems can
greatly improve accuracy and stability of the positioning data. The Otter and the SR-Surveyor M1.8
have sensors that can utilise several of the satellite positioning systems [16, 25]. The positioning
sensor and data will from hereon be called by GPS for simplicity reasons. Another common factor
is the lack of a system to avoid obstacles while navigating. In fact, none of the above compared
USV models include any sensor for detecting obstacles. The course must therefore be carefully
planned by an operator beforehand to ensure that the USV will not collide. However, studies show
a test being done on the Otter where low cost 2D LiDAR sensors are used to detect obstacles [14].
Unfortunately, the results are not yet satisfactory due to the functionality of the 2D LiDAR sensor.
SR-Surveyor M1.8 is equipped with a LiDAR but it is only used to map the local environment at
a side view and therefore not used for obstacle detection or avoidance. To the author’s knowledge,
a functional obstacle detection and avoidance system intended for a complex environment is yet to
be developed.

The USVs are commonly equipped with different sensors used for data sampling. Bathymetrics,
temperature, concentration of different substances in the water [22] to name a few. These type of
sensors will not be further covered in this thesis.

10

2.1.3 Related control methods

The control features of the USVs currently in use can vary. The companies producing these vessels
are often not very open about their approach and solution to navigation and autonomous features.
Therefore, comparison can be a challenge. Information gathered from the manufacturers documen-
tation can be seen in Table 2.2, though it might be incomplete as some information is not open to
public.

Table 2.2: Currently implemented USV Control features compared to Table 1.1 of the level of
autonomy according to the ATRA classification system.

Control Features

9 Fully autonomous

Obstacle avoidance

Mission planning x x x x

Waypoint control x x

Course control x

Heading control x

Speed control x x x

0 Remote control x x x x x

AnSweR Bot Heron SR-Surveyor
M1.8

Level of
autonomy

Otter SL20 Z-Boat 1800-
RP

GeoSwath 4R

Although being an open source product, Heron seem to either have a lack of developed features,
or it is not openly documented. Otter on the other hand, has implemented mission planning and
templates for missions to help with for example cover a complete area for scanning. Table 2.2
shows that none of the above compared models include obstacle avoidance nor can be defined as
fully autonomous.

Figure 2.3: GNC schematics showing an overview of the flow of information in an autonomous
navigation system [15].

11

Figure 2.3 describes a GNC model commonly adopted by the robotics community [15].

1. The Guidance system is designed to continuously generate and update trajectory commands
to the control system. The commands are generated according to the information given by
the navigation system, planned mission and the sensed environmental conditions.

2. The Navigation system identifies the USV’s states (position, heading, velocity) and environ-
ment based on sensor data.

3. The Control system uses the provided information from the guidance system and navigation
system to generate the proper motor control signal.

Recent research show development of different ways of increasing the level of autonomy of surface
vessels. Interesting and necessary topics are control theory, path optimisation, obstacle and collision
avoidance. Improvements in all these areas will greatly contribute to the fully autonomous USV.

An article on control theory explores the use of loop-shaping in a course-keeping feedback controller,
increasing its robustness and stability [9]. A simulation of a course-keeping control of a motor vessel
called "YUKUN" was carried out in multi-directional irregular waves and a smart USV simulation.
The results show an improvement in course-keeping of up to 12% compared to a nonlinear feedback
control method.

Another paper describes the challenges of path planning for an underactuated USV in unknown
environments with obstacles [39]. A deep deterministic policy gradient (DDPG)-based path plan-
ning algorithm with powerful actor-critic architecture is proposed, aiming at the usability problem
caused by the complicated control law of the traditional method. A reward system is specially
designed for speed control, attitude correction and target approaching. Simulation show that
the optimal path can be automatically generated under unknown environmental disturbance, and
therefore giving the proposed DDPG-based path planning scheme effectiveness and meaning.

Obstacle avoidance and anti collision systems are these days widely discussed. Development is
highly motivated by increasing demand for such systems, though none of the compared USV models
in Figure 2.2 utilises them. This could indicate that the systems are not yet matured to a point
where implementation on small USVs is feasible. It could also indicate that a complete working
obstacle avoidance and anti collision system is too expensive for small USVs. On larger UAVs
however, implementation of such systems seem more cost effective and are more common [30, 34].

Sea trials of an autonomous surface vessel (ASV) have been performed in the North Sea as part of
an ASV Challenge posed by Deltares through a Dutch initiative [12]. The ASV was equipped with a
collision avoidance system based on model predictive control (MPC). The testing aimed at verifying
COLREGs-compliant (International Regulations for Preventing Collisions at Sea) behaviour of the
ASV in different challenging situations using automatic identification system (AIS) data from other
vessels. The scenarios cover situations where some obstacle vessels obey COLREGs and emergency
situations where as some obstacles make control decisions that increase the risk of collision. The
MPC-based collision avoidance method evaluates a combined predicted collision and COLREGs-
compliance risk associated with each obstacle and chooses the best way out of dangerous situations.
The results from the verification exercise in the North Sea show that the MPC approach is capable
of finding safe solutions in challenging situations, and in most cases demonstrates behaviours that
are close to the expectations of an experienced mariner. According to Deltares’ report, the sea
trials have shown that the technical maturity of autonomous vessels in practice is already further
developed than expected.

12

Figure 2.4: A test of the USV in the North Sea.

A paper written for an IEEE Conference in 2010 [7] describes experiments done in Australia of a
autonomous surface research vessel capable of navigating in complex inland waters. The vessel is a
16ft (4.9m) long solar powered catamaran designed to collect water column profiles while driving.
The size can be characterised as medium being several times larger than the largest of the compared
models in Figure 2.2. The catamaran is equipped with an unspecified laser scanner for detecting
obstacles. The control system utilises the input from the laser scanner to mathematically place
a repelling magnetic field around the obstacles. The repelling magnetic field gives input to the
control signal to steer the vessel around and away from the detected obstacles. Results show that
the vessel is able to autonomously operate in previously unmapped shallow water environments.
Despite the larger hull size of the vessel, the research still gives an indication that laser scanners
on smaller vessels can be a viable sensor solution for detecting obstacles.

Figure 2.5: Solar powered research USV.

13

2.2 Braitenberg

2.2.1 Braitenberg experiment

As touched upon in the Introduction, Valentino Braitenberg illustrates a very interesting thought
experiment on insect and animal behaviour explained in a simplistic way. Braitenberg wrote a book
called Vehicles: Experiments in Synthetic Psychology, which invites the reader to mentally build
progressively more complex machines [3]. Starting with the simplest of vehicles with one sensor and
one actuator. In an ideal environment, the vehicle would move only forward, but in the real world,
the vehicle is exposed to friction and external forces. The sometimes unknown external factors will
make the vehicle tend to deviate from driving in a straight line. And even more so if the vehicle is
a boat on a lake, where the behaviour would be more complex. Adding another sensor and another
actuator will increase the complexity of the behaviour as described in Section 1.1.

Adding even more sensors further increases the complexity. As the complexity increases, the vehicles
seem to exhibit more and more sophisticated behaviour, and even something that resembles feelings.
Adding only simple electro-mechanical components, Braitenberg motivates the vehicles towards
logic reason (via McCulloch-Pitts neurons [5, 13]).

Figure 2.6: A wheeled Braitenberg vehicle with more sensors.

As the complexity of the vehicles increases, shapes and objects are recognised and regularities are
represented. Hebbian associations [6] (actions that get stronger the more they are used) allows
for more robotic vehicle control concepts to emerge [21]. With more functionality implemented,
the vehicles can show signs of learning and memory. Causation (reaction to situations as constant
succession) and attention (as self-control over associations) can finally lead to behaviour that can
resemble trains of thoughts. At this point one can say that the human mind is born and all
Braitenberg must do is to add a system for social and moral skills.

Until this point, the amount of biological and neurophysiological implementation have only been
approximated, but these vehicles are easy to create and can achieve high levels of artificial environ-
mental recognition. Braitenberg’s thought experiment started development of an entire generation
of robots with various configurations and uses.

Even though the Braitenberg concept show simple explanations of animal behaviour, it is clear
that it springs roots and has connections to a deeper artificial intelligence. By starting with
simple vehicles, increasing the complexity as the system and control algorithms are developed, the
Braitenberg concept has the potential of giving robots and vehicles artificial intelligence.

When the foundation of a Braitenberg vehicle and control is laid, different sensors can be imple-
mented. For a USV, this could include water temperature sensors or water salinity sensor, and can
be used to have the USV follow a stream of water where the different measured values changes. All
together, a vehicle using the Braitenberg concept can navigate autonomously in an environment,
while doing other tasks along the way. And the behaviour can seem animalistic as an animal looking
for food.

14

2.2.2 Braitenberg and Bio-inspired robot control

One of the most common vehicles where the Braitenberg concept is being implemented is two-
wheeled robots. A student program called SyRoTek at the Czech Technical University in Prague
demonstrates robots navigating in an unknown environment using control algorithms based on the
Braitenberg concept [8, 37]. Here the robot is set to drive at a constant forward velocity and using
LiDAR to detect obstacles. The Braitenberg control algorithm is used to keep the robot at an
equidistance to any obstacle. This gives the robot the ability to drive in the middle of a hallway.
A simulation was made and compared to a real life test. The simulation shows that the robot was
able to navigate in an environment while avoiding obstacles. In comparison with the real robot,
tests show that the real robot tend to move closer to the obstacles and take sharper turns. This
indicates that the real navigation system is operating slower than in the simulation.

Figure 2.7: Robots in the SyRoTek program. Several robots are stacked on the left, ready for
over-the-air programming and testing.

Recent research has also been done on mechanical snake-like robots and the use of Braitenberg
algorithm as navigation control system. In order to move, the snake utilises the environment and
push itself forward using detected obstacles. The environmental awareness is therefore crucial
for an efficient forward motion [29]. Simulations have been done on a robot with passive wheels
and active joints using the Braitenberg algorithm to navigate towards a signal source. The snake
has two forward facing, symmetrically placed sensors at the head and is moving in a sinusoidal
movement. The results show trajectories that resembles the behaviour of a wheeled robot with
active wheels [20]. The research therefore shows the potential of using Braitenberg in other type
of robots.

15

a b

Figure 2.8: (a) shows a simulation of the perception based control where the snake uses the obstacles
to move forward. (b) a simulation of the snake with passive wheels and active joints. The snake is
attracted to the signal source on the right and is navigating using the Braitenberg algorithm.

The Braitenberg vehicles has also been combined with memristive neuromorphic circuits (MNCs).
A memristor is a memory resistor, and combined with neuromorphic circuit architecture, gives po-
tential of creating electronic chips great for AI robotics [26, 32]. A recent article where Braitenberg
is combined with MNCs shows that a two-wheeled robot can learn how to follow a line [38]. The
self-adapting navigation system shows a very short response latency (≈ 56ns) to input sensory
information. Using bio-inspired hardware together with bio-inspired control algorithm shows great
potential towards creating new robots with advanced AI technology.

Figure 2.9: A wheeled Braitenberg vehicle using bio-inspired hardware together with bio-inspired
control.

16

2.3 Review of previous projects

Developing a fully autonomous USV is complex and requires work in many different areas, such
as mechanical set up, software development, simulation and testing. Since the development of this
project is primarily student driven, several projects are established to divide the work load where
each project aims to create a piece of the puzzle towards the autonomous USV. Therefore, the work
in this thesis builds on two previous projects.

Firstly, a group of students from Kongsberg designed and built a physical robot during a summer
project in 2018 called AnSweR [10].

Figure 2.10: USV designed by AnSweR

The robot is approximately 40x60 cm and designed to operate in sheltered waters. Its tasks include
doing bathymetric measurements, scanning the bottom of a lake or a river using a 3D camera
attached to a clear piece of acrylic on the bottom of the robot. Other sensors attached are a GPS
module and a multi-sensor that offers depth, speed, and temperature measurement. A one-card
computer Odroid handles the 3D vision and sensor data while an Arduino Mega handles the control
and propulsion of the robot. Propulsion is made with two water jets, which would characterise the
vessel as underactuated. An underactuated vehicle is a vehicle that has a higher number of degrees
of freedom than the number of actuators. This vessel has three degrees of freedom. It can move in
the x and y direction and rotate around the z axis. Turning of the robot is done using differential
thrust. The motors are not able to do any reverse motion.

With its flat hull design, the robot can be considered a hybrid between a kayak and a catamaran.
This gives more stability compared to the traditional kayak and is more suitable for bathymetric
measurements. However, if the robot should capsize, all capability of manoeuvring is lost. The use
of a self-righting hull would therefore increase the robustness of the robot and should be investigated
in the future.

A ROS program was developed giving the possibility to remotely control the bot and read GPS
position and depth sensor data, all wirelessly. The program is available as a repository on GitHub.

Secondly, a master thesis made by Min Tang was completed by the end of 2019 where the aim was
to make a digital twin of the robot [33]. The digital twin was created in a ROS/Gazebo environment
and includes a simplified physical model with outer dimensions, weight and dynamics. Expanding
on the ROS program from AnSweR, the program allows for manual control of the robot and the
model in simulation. Part of this thesis was conducted in order to bring the level of autonomy up
to level 4 based on Table 1.1. Level 1 and 4 was considered achieved at that stage. The program
also allows for a ground station to be configured and used to control the digital twin and robot
while the robot is out on the water.

The thesis explains how to set up the necessary software on both the onboard computers and the
ground station. It also explains how to set up ROS and the Gazebo environment.

17

Figure 2.11: rqt_graph of ROS environment of the Digital Twin.

The ROS command rqt_graph can show how the ROS nodes and topics interact with each
other. Figure 2.11 shows the keyboard inputs publishing messages on the topic /cmd_vel. The
/twist2drive node subscribes to messages on /cmd_vel and generates drive messages on topic
/cmd_drive, which are sent to the Gazebo environment.

Figure 2.12: Simulation of the robot in ROS/Gazebo environment.

Using terminal windows, keyboard commands can be given in the /teleop_twist_keyboard window
while the drive command can be seen in another. Using the ROS command rostopicecho, one can
listen to messages being published in any of the topics. Operating the robot using the keyboard is
visualised in Gazebo.

18

Figure 2.13: Suggested control structure of the digital twin.

Furthermore, in the development of the GNC system, the thesis introduces a hierarchical layered
control structure as in Figure 2.13. This will be further used in this thesis to simulate more on the
sensors and actuators layer, in addition to exploring a new control algorithm at the path planning
layer. A low cost 360-degree LiDAR could be added for environmental awareness and obstacle
detection. ROS packages such as ”navsat− transform”, ”razor− imu− 9dof” and ”RPLiDAR”
could be added when using the sensors.

19

Chapter 3

Methods

3.1 Braitenberg assumptions and hypotheses

The following section derives the mathematical model of a Braitenberg vehicle 2b as a set of
equations. The general equations are simplified for the case of a point like stimulus source, a
common configuration when using Braitenberg vehicles. A deterministic model is presented.

The robot in this project is designed as a surface vessel to be operated in calm waters where waves
are neglected. It is therefore assumed that the robot strictly moves on a flat surface. The state of
the robot can be completely represented by the position and orientation values (x, y, α0) such that
(x, y) ∈ < and α0 ∈ (0, 2π]. This means that the position values (x, y) can be both positive and
negative and the robot can freely operate in any of the quadrants of the coordinate system.

It is assumed that the robot will be equipped with sensors that can map the local environment and
place obstacles as coordinate points in the global frame. The position of the obstacles are purely
placed using the GPS and IMU data received from the simulation. These mapping sensors will
not be simulated. Instead, obstacles are placed in the global frame and an algorithm checks if the
robot is within the area where the mapping sensors can detect them. The position and direction
towards the obstacles are then compared to the position of the robot.

In addition, two fictional sensors will be simulated and placed at the two front corners of the robot,
left and right. The simulated sensors will use the positional data of the GPS and IMU as input
data and generate a signal considered the output of the sensors. The purpose is to determine which
of the corner points of the robot is closest to the waypoint or obstacle, then use this information
to steer the robot. The formula generating the output signal is called the stimulus function. The
stimulus function S is modelled as a smooth parabola function using position values (x, y) as input.
The control signal U for the thrust of the robot motors are calculated as U(S).

One of the goals for this project as a whole is to develop a surface vessel for research at sea, inland
lakes and rivers. Data sampling and re-sampling should be made possible over an extended period
of time. The control algorithm is therefore designed to track a set of waypoints and continues in
a loop until data sampling is done. A design choice is made to set the initial state of the robot
motors to maximum speed forward. The motor control function shall therefor subtract a control
value based on the stimulus function in order for the robot to turn and navigate. The standard state
of motor controls are set as UR,L = Umax, where Umax is the maximum speed control signal. Using
the stimulus value to subtract control signal from the right motor will make the robot turn right,
UR = Umax − U(SR). This will make the robot drive forward until a control signal is subtracted
from one of the motor signals making the robot turn. The driving behaviour can be compared to
a tank driving with tracks, a differential speed vehicle.

In order to have the robot avoid obstacles, the stimulus values will be cross-subtracted making the
robot turn the opposite direction, UL = Umax − U(SR). In addition, a combination of the two
modes attraction and avoiding will make the robot navigate while avoiding obstacles.

20

Obstacles are added as single coordinate points without extension or volume. LiDAR is a sensor
which creates a cloud of points where a classification system should be able to identify which of the
points are an obstacle and which are not. Based on the sensor information received from a LiDAR,
adding the obstacles as points seems reasonable.

3.2 Concept
The concept of the simulation and the model setup is based on a parabolic equation. The equation
is called the stimulus function. The function generates an output signal from the left and right
simulated sensor of the robot which senses the power magnitude of the signal source. The signal
source is placed at the global maximum of the stimulus function. Based on the output signal from
the sensors, a speed control signal can be computed to control the right and left motor on the
robot. The concept will be shown through a set of simulations where waypoints are reached and
obstacles are avoided. The waypoints are randomly placed in the environment as a list of known
points.

The stimulus function in its general form is

S(x, y) = g0 − a · x2 − b · y2, (3.1)

where

S is the stimulus value,

x and y are the position coordinates of the robot in meters,

g0, a and b are coefficients of the function.

Figure 3.1: Stimulus function around a global minimum at [0,0]. The z-axis gives the stimulus
value S(x, y).

Figure 3.1 visualises the stimulus function and how it behaves around a waypoint. Placing a robot
anywhere in the coordinate system will give the sensors negative input values. Using these sensor
values to subtract from the motor signal should make the robot be attracted to the waypoint or
deflect from an obstacle.

21

Figure 3.2: Stimulus function around a global minimum at [0,0] including the robot (black square)
heading towards the bottom right corner. It also shows the right sensor (green), left sensor (red)
and the waypoint (black circle). The sensors are placed on each side of the robot. The stimulus
value S for the left sensor will have a greater negative value than the right sensor. Using the S
value from the left sensor to subtract speed from the right motor will in this case make it turn
clockwise towards the waypoint.

X

Robot heading

Yr

Xr

R

L

b

Dwp

α0

Waypoint

Y

Xb

Yb

φ

γwp

Origin

Robot

Sensor

αR

Figure 3.3: Robot with sensors in the global coordinate system.

The angle α0 and position of the robot at b are read from the onboard IMU and GPS respectively.

22

The coordinates of the right and left sensor are then calculated as:

Rx = Xb +Xr = Xb + L1
2 · cos(αR) (3.2)

Ry = Yb + Y r = Yb + L1
2 · sin(αR) (3.3)

Lx = Xb +X l = Xb + L1
2 · cos(αL) (3.4)

Ly = Yb + Y l = Yb + L1
2 · sin(αL) (3.5)

where

Xb and Yb are the coordinates at point b on the robot,

L1 is the distance between the sensors,

αR is the angle towards the right sensor in radians, αR = α0 − π
2 ,

αL is the angle towards the left sensor in radians, αL = α0 + π
2 .

The position of the sensors are then passed to the stimulus function 3.1 which calculates the stimulus
values. In addition to the sensor values, the stimulus value for the centre of the robot at point b is
also calculated. Together with the coordinates of the next waypoint, the stimuli value is calculated
as:

S = g0 − a0 · (Xwp −Xb)2 − b0 · (Ywp − Yb)2 (3.6)

where

Xwp and Ywp are the global coordinates of the waypoint,

Xb and Yb are the global coordinates of the point where the S value must be found.

g0, a0 and b0 are coefficients of the parabola function.

Equation 3.6 uses the global position of the robot and the waypoint. This evaluates the position of
the robot compared to the waypoint. Using the global position of sensors together with the global
coordinates of the waypoint, gives the S value of the stimulus equation with a global minimum at
the waypoint centre. The S values are then used to control the two motors of the robot in order
to track the waypoint.

As shown in Figure 1.2, by switching the path of signal from sensor to motor, the algorithm can
also be used to deflect from a point. Once an obstacle is detected by the sensors, the navigation
switches to avoidance mode. The method of switching can be done either absolute or with a
weighted influence from both tracking and avoidance acting together. Using a weighted method
gives the behaviour that as the robot gets closer to an obstacle, the more it tries to avoid it.

23

Operator Navigation Waypoint

loop

[More Waypoints]

loop

[More Waypoints]

message(Start)

return(Done)

Find(next waypoint)

Place(obstacle)

return

return

ObstacleObstacle

loop

[Obstacle detected]

loop

[Obstacle detected]

parpar

Track

Avoid

Figure 3.4: Unified Modelling Language (UML) Sequence diagram of the process. The navigation
is running two parallel modes. While there are more waypoints, the navigation will track the next
waypoint. If there is an obstacle detected, the navigation will take this into consideration. When
the obstacle is no longer detected, the avoidance mode will terminate.

24

3.3 Proposed model

3.3.1 Reaching a waypoint, go to goal

The initial state of the robot includes setting both motors to maximum constant forward velocity.
In order to have the robot attract to a waypoint, each of the sensor readings must be passed to
the controller of the corresponding motor, right sensor to left motor controller, and left sensor to
right motor controller. Using equation 3.6, the right and left sensor readings SR, SL including the
centre Sb are used to calculate the motor control inputs as follows:

if SR < SL :

URW = SR − Sb
k ·Dwp

ULW = 0

(3.7)

if SR > SL :
URW = 0

ULW = SL − Sb
k ·Dwp

(3.8)

where

Dwp is the the distance to the waypoint,

k is a normalisation factor set to 2m. This makes URW and ULW unitless.

Dividing by Dwp makes the stimulus value less dependent on the distance between the robot and
the waypoint. This makes the robot behaviour more consistent when navigating on both short and
long distances.

The calculated values URW and ULW are then subtracted from the initial state of forward velocity.
Since the S values are already negative, the equations add the values.

ur = Umax + ULW (3.9)
ul = Umax + URW (3.10)

where

Umax is the control signal setting maximum speed of the motor.

In case of Figure 3.3, the right sensor has a greater value than the left sensor and equation 3.8 will
rule. The left motor will receive 0 input to subtract, while the right motor will receive a value that
is subtracted from the speed control signal. This should turn the robot clockwise. Note that the
right motor is taking the input of the left sensor and left motor is taking the input of the right
sensor. Driving the robot using these equations is considered tracking mode. In practice, this will
act as a controller which aims to turn the robot straight towards the waypoint.

25

When setting the robot to track a random waypoint in the environment, the expected result should
be similar to this:

X

WaypointY

Figure 3.5: Path to waypoint

26

3.3.2 Avoiding an obstacle

The method used for tracking a waypoint can also be used in a situation where the robot must
avoid an obstacle. It is assumed that the sensors can both determine at what direction the obstacle
is and measure the distance to it. The obstacle can then be placed in the global coordinate system.
The calculations for controlling the motors can be the similar to the track mode, but the control
signal must be passed from right sensor to right motor and left sensor to left motor. Then the
robot turns away from the obstacle, instead of towards it.

As described in section 3.3.1, the functionality of the tracking mode should keep the robot heading
straight towards the waypoint. The exact opposite case would make the robot run away from the
object, pointing the heading straight away. Using this method when avoiding obstacles would make
the robot want to turn away from the obstacle as soon as it is detected, even if the obstacle is not
obstructing a straight path to the waypoint. Another way of solving this is to have the heading
turn 90 degrees away from the obstacle. This will make the robot deflect to one of the sides of the
obstacle instead of running away from it.

Robot Obstacle

γ

b

Robot heading

when tracking

waypoint

Robot heading

when avoiding

obstacle

DC

Path when

avoiding

obstacle

Path when

tracking

waypoint

Figure 3.6: Robot behaviour when an obstacle is detected. How the robot deflects from the obstacle
depends on the exit angle β.

In avoidance mode the heading is rotated and position of sensors are calculated as follows:

Rx = Xb +Xr = Xb + L1
2 · cos(αR + β) (3.11)

Ry = Yb + Y r = Yb + L1
2 · sin(αR + β) (3.12)

Lx = Xb +X l = Xb + L1
2 · cos(αL + β) (3.13)

Ly = Yb + Y l = Yb + L1
2 · sin(αL + β) (3.14)

where

β is either π
2 or −π

2 depending on the heading towards the obstacle.

27

Then γ gives the direction that the heading is rotated.

if γ < 0 : β = π

2 (3.15)

if γ > 0 : β = −π2 (3.16)

where

γ is the angle between the heading of the robot and the direction towards the obstacle.

These positions are then passed to the stimulus function and the motor signals are calculated in
the same way as equations 3.7 and 3.8.

if SR < SL :

URO = SR − Sb
k ·Dc

ULO = 0

(3.17)

if SR > SL :
URO = 0

ULO = SL − Sb
k ·Dc

(3.18)

where

Dc is the the distance to the obstacle,

k is a normalisation factor set to 2m.

The calculated motor signals are then subtracted from the initial state of forward velocity. Since
the S values are already negative, the equations add the values as before.

ur = Umax + URO (3.19)
ul = Umax + ULO (3.20)

28

In addition, the field of view of the sensors can be set using ω.

Robot

Obstacle

DC

w

Sensor field

of view

Figure 3.7: Field of view of the robot sensors.

If the robot has passed the obstacle or the obstacle is outside the field of view of the sensors, the
obstacle can be ignored.

When robot is avoiding a detected obstacle, the expected result should look like this:

X

Y
Obstacle

Area covered
by sensors

Area where
obstacle is
detectable

Figure 3.8: Avoiding an obstacle

29

3.3.3 Reaching a waypoint while avoiding an obstacle

Combining the two methods described above will give the robot the capability of navigating around
an obstacle to reach a waypoint. The mapping sensors will have a certain range of detection and
an obstacle will only be detected when the obstacle is within this range.

Once an obstacle is detected while tracking a waypoint, the navigation switches to avoidance mode.
Switching between the two modes using a weighted method where both tracking and avoidance
mode are acting together gives control over the transition between the two modes.

ur = Umax + c · ULW + (1− c) · URO (3.21)
ul = Umax + c · URW + (1− c) · ULO (3.22)

where

c is the weighing factor dependent on the distance to the obstacle.

c = Dc

2 ·Os
(3.23)

where

Dc is the distance to the closest obstacle,

Os is the range of the sensors in meters.

0

20

40

60

80

100

0 1 2 3 4 5 6 7

A
m

o
u

n
t

o
f

co
n

tr
ib

u
ti

o
n

, c
 [

%
]

Distance from obstacle [m]

Weighted contribution

Track Waypoint

Avoid Obstacle

Figure 3.9: Weighted contribution function of c. By setting Os = 5m and the denominator to 2 ·Os,
the weighted contribution will look as shown. As the robot approaches an obstacle, the tracking
mode will switch to a 50-50 contribution from the two modes, followed by a linear decreasing
contribution from track mode with equally linear increasing contribution from avoiding mode.

The weighting factor c is also used to ignore the obstacle when the obstacle is outside the sensors
field of view. If γ > ω then c = o instead of following equation 3.23.

30

Expected result:

X

WaypointY

Obstacle

Area covered
by sensors

Area where
obstacle is
detectable

Figure 3.10: Path to waypoint while avoiding an obstacle

31

3.3.4 Navigate through multiple waypoints with multiple obstacles

The functionality of navigation system in the scenarios described above can at this point be used
to have the robot track through several waypoints and at the same time avoid obstacles on the
way. When the robot reaches within a certain distance of a waypoint, it can switch to the next set
of waypoints looping back to the start.

Expected result:

X

Waypoint

Y

Obstacle

Area covered
by sensors

Area where
obstacle is
detectable

Figure 3.11: Navigating in an environment with obstacles

3.4 Manual override
The navigation system is set up to also receive control input from a human operator. This is
implemented as a feature for two reasons.

1. To override the navigation system in case it does not navigate as intended. If a sensor is
faulty then the operator can navigate on his own.

2. If there is a slight change in the mission planning, operator can divert to a different location
before returning to the autonomous navigation.

The operator can at any point manually drive the robot, overriding the input from the Braitenberg
controller and navigation system.

32

Chapter 4

Tools and implementation

4.1 Implementation

4.1.1 ROS and Gazebo

The main simulation tools used during this thesis is Robot Operating System (ROS) together
with a 3D visualisation plugin called Gazebo. ROS is an open source program intended to set
the framework for writing robot software. In short, ROS creates an environment where different
software packages called nodes, communicate together. A node can be a program that performs a
specific task and it can publish the result as a message to a topic. Another node can subscribe to
this topic and receive the result from the first node. Any node can publish to any number of topics
and any node can also subscribe to any number of topics. The Braitenberg navigation controller
is configured as a separate node in the ROS environment. More information on ROS can be found
in previous report [31, 33] and on the ROS website [24].

ROSCORE

Topic 1

Node 2

Topic 2

Node 1 Node 3

Registration

Publishing
message

Subscribing
message

Figure 4.1: ROS environment

Gazebo is a plugin for ROS that can visualise a 3D environment. ROS can communicate with
Gazebo and receive information about the environment and any object placed in the environment.
The Gazebo world was set up as described in a previous thesis [33]. See section 2.3.

33

The robot is spawned in the Gazebo environment. In this environment, Gazebo is capable of
simulating a GPS system and onboard IMU sensor. These sensor data are published on topics in
the ROS framework where any other node can subscribe to the topics.

Figure 4.2: Gazebo environment with the blue robot, green waypoints and red obstacles. The
origin of the coordinate system is shown by the blue line (z-axis).

Since the Braitenberg controller is using positional data to navigate, it is important that the
controller can handle both positive and negative coordinate data. This makes the robot able to
navigate in all the quadrants of a coordinate system. The origin of the coordinate system can then
be placed anywhere on earth while the controller is still able to use the data to navigate. Therefore,
the origin is placed in the centre of the Gazebo world and simulations can be done in all quadrants.

4.1.2 Controller

The ROS node of the Braitenberg controller consists of a script written in Python. The following
code is described as pseudo-code to give an overview of the steps. The complete script and step by
step explanation can be found the Appendix A and B.

Firstly, placement of waypoints and obstacles are defined together with constants and variables
used for geometries and sensor specifications. For all the simulation steps described in Section 3.3,
the following parameters have been used:

1 L1 =0.2 # Distance between sensors [m]
2 u_max =0.25 #Max speed of the motors [unitless]
3 Dacc =0.8 # Accuracy when reaching waypoint [m]
4 Os=5 #Range of obstacle avoidance sensor [m]
5 w=100 #Field of view of the sensor [deg]
6 beta =90 #Exit angle from obstacle [deg]

Listing 4.1: Parameters

34

First objective is to have the robot track a waypoint. The position of the robot (Xb, Yb) and the
orientation α0 is read using the navCallback() function.

Algorithm 1 Tracking a waypoint without any obstacle
1: Read global position of robot incl. orientation
2: Calculate distance to waypoint (Dwp)
3: Calculate global position of sensors (Rx,Ry),(Lx,Ly)
4: if tracking then
5: Calculate stimulus values (Sb, SR, SL)
6: if sensor.right < sensor.left then
7: URW = (SR− Sb)/(2 ·Dwp)
8: ULW = 0
9: else

10: URW = 0
11: ULW = (SL− Sb)/(2 ·Dwp)
12: end if
13: Set motor control:
14: ur = umax + ULW
15: ul = umax + URW
16: end if

Within the mode of tracking, the control signal URW uses the difference between the stimulus value
of the centre of the robot minus the stimulus value of the right sensor. Similarly, the left control
signal uses the left sensor stimulus value. When the control signal is added to the maximum motor
speed signal umax it gives the motor control signals ur and ul. Since it is in tracking mode, ULW
is added to ur and URW is added to ul.

Algorithm 2 Avoiding an obstacle
1: Read global position of robot incl. orientation
2: Calculate distance to obstacle (Dc)
3: Calculate global position of sensors (Rx,Ry),(Lx,Ly)
4: if Dc < Os then
5: if avoiding then
6: Calculate stimulus values (Sb, SR, SL)
7: if sensor.right < sensor.left then
8: URO = (SR− Sb)/(2 ·Dc)
9: ULO = 0

10: else
11: URO = 0
12: ULO = (SL− Sb)/(2 ·Dc)
13: end if
14: Set motor control:
15: ur = umax + URO
16: ul = umax + ULO
17: end if
18: end if

The algorithm for avoiding an obstacle is very similar to the algorithm for tracking a waypoint.
The only exception is that when calculating the motor control speeds, URW is added to ur and
ULW is added to ul. This switches the behaviour from attracting to avoiding.

35

Algorithm 3 Tracking a waypoint while avoiding an obstacle
1: Read global position of robot incl. orientation
2: Calculate distance to waypoint (Dwp)
3: Calculate distance to obstacle (Dc)
4: Calculate global position of sensors (Rx,Ry),(Lx,Ly)
5: if Dc < Os then
6: if avoiding then
7: Same as Algorithm 2 but with the addition of:
8: if abs(gammaO) > w then
9: c = 1

10: else
11: c = Dc/(2 ·Os)
12: end if
13: end if
14: else
15: URO = 0
16: ULO = 0
17: c = 1
18: end if
19: if tracking then
20: Same as Algorithm 1 but with the addition of:
21: Set motor control:
22: ur = umax + c · ULW + (1− c) · URO
23: ul = umax + c · URW + (1− c) · ULO
24: end if

When combining the two modes together, the weighting factor c is introduced following the Equa-
tion 3.23. ur and ul are calculated by adding the contribution from tracking mode and avoidance
mode together using c.

Algorithm 4 Navigating through a set of waypoints in a continues loop
1: Same as Algorithm 3 with the addition of:
2: if Dwp < Dacc then
3: Nwp = Nwp+ 1
4: end if
5: if Nwp > numberofwaypoints− 1 then
6: Nwp = 0
7: end if

In order to have the robot track each of the waypoints in a loop, Nwp is added to keep track of
which is the next waypoint. Every time the robot comes within the set accuracy of the system
Dacc, Nwp is increased by one.

36

Using the ROS command rqt_graph shows the ROS environment when the Braitenberg controller
is running. Running ROS, Gazebo and the controller from Algorithm 4 uses the following nodes,
topics and messages.

Figure 4.3: rqt_graph of ROS environment. The circles represent operating ROS nodes. The
nodes publish messages to topics /cmd_vel, /cmd_drive and /p3d_odom. The controllerNode
is running the Braitenberg algorithm and uses GPS and IMU data from Gazebo to generate and
publish motor drive messages.

37

Chapter 5

Results

As described through Chapter 3, the navigation simulation consists of several levels of functionality.
By going through the different levels adding more functionality for each step, it gives a better
understanding of how the navigation system works. The different levels are:

1. Tracking a waypoint.

2. Avoiding an obstacle.

3. Avoiding an obstacle on the way to a waypoint.

4. Tracking several waypoints in succession in an environment with randomly placed obstacles.

Each of the points are verified using a separate program file containing a controller node, each made
to solve the different steps. Separating the steps makes is easily accessible for later development
at each step of the program. Results are recorded using the rosbag command. Positional data is
then exported, plotted and overlaid with multiple simulations.

38

5.1 Tracking a waypoint
The first step is to have the robot track a waypoint. The motor speeds are initially set to maximum
speed forward and the sensor data is used to subtract and lower the control signal going to the
motors.

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4

Y
[m

]

X [m]

Tracking a Waypoint

Waypoint

Path 1

Path 2

Path 3

Path 4

Figure 5.1: The figure shows four simulations where the robot starts at a random position and
orientation. All four simulations shows that the robot takes a path that ends at the waypoint.

We can see from Figure 5.1 that the robot is quick to find the correct heading and go straight
for the waypoint. Path 3 shows the robot with an initial heading away from the way point and is
taking a slower turn before heading straight towards the waypoint.

Another observation is that there seem to be no overshoot when the robot is heading towards
the waypoint. There is no sinusoidal movement. If this controller would be compared to a PD
controller, one can estimate that the robot driving on water is a critically damped or overdamped
system.

The result corresponds with that which was expected.

39

5.2 Avoiding an obstacle
The next step is to add an obstacle. The motor speeds are initially set to maximum speed forward.
When the robots sensors detect an obstacle the navigation system should make the robot deflect
from the obstacle.

-2

-1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

-13-12-11-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Y
[m

]

X [m]

Avoiding an obstacle

Obstacle

Obstacle in
range of sensor

Path 1

Path 2

Path 3

Path 4

Figure 5.2: Four simulations of the robot starting at a random position. The robot is driving
forward until the obstacle is detected.

Figure 5.2 shows how the robot reacts to an obstacle depending on the position of the obstacle.
Path 1 shows that when robot is heading straight for the obstacle, then the deflection is large and
the behaviour resembles an insect running away from danger. If the obstacle is detected further
out in the vicinity as Path 4 shows, then the deflection is minor.

40

5.3 Reaching a waypoint while avoiding an obstacle
Combining the two features from Section 5.1 and 5.2, a simulation can be done to see how the
robot reacts when it is obstructed by an obstacle while tracking a waypoint.

-2

-1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Y
[m

]

X [m]

Avoiding an obstacle towards a waypoint

Waypoint

Obstacle

Obstacle in range
of sensors

Path 1

Path 2

Path 3

Path 4

Figure 5.3: The simulations show the robot starting at four different positions. Path 1 shows the
robot taking a path straight towards both the waypoint and the ahead obstacle. On Path 4 the
robot is only slightly detecting the obstacle as the robot is passing by.

As seen in Figure 5.3, combining the method of tracking a waypoint while also avoiding an obstacle
works. While the obstacle is in front of the robot and the robot is close to the obstacle, the
avoidance mode is dominant. Where the robot is at a distance further away from the obstacle, the
tracking mode is dominant.

41

5.4 Navigate through multiple waypoints and obstacles
When the two modes of tracking and avoidance are combined in a navigation system, the robot
can handle more complex environments.

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

-11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1

Y
[m

]

X [m]

Avoiding obstacles towards a waypoint

Waypoint

Obstacle

Obstacle in range
of sensors

Path 1

Path 2

Path 3

Path 4

Figure 5.4: Simulation shows the robot placed at four random locations. The robot is tracking a
waypoint located behind a series of obstacles. The obstacles can resemble a straight wall.

When following a line of obstacles, the robot keeps a certain distance to the obstacles. We can see
from Figure 5.4 that Path 1 and Path 2 quickly follow each other even though the robot is entering
the area where the first obstacle is detectable at different places.

We can also see that once the robot has passed the first obstacle, all three Path 1, 2 and 3 has a
slight angle towards the obstacles. They are not completely parallel.

42

When the robot is following a line of obstacles, or a wall, it seems that the robot will eventually
collide with the wall. To amplify the effect, a simulation was done where the waypoint was moved
further behind the wall. This increases the contribution from the tracking mode compared to the
avoidance mode.

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9

Y
[m

]

X [m]

Avoiding obstacles towards a waypoint

Waypoint

Obstacle

Obstacle in range
of sensors

Path 1

Path 2

Path 3

Figure 5.5: Simulation of three robots tracking a waypoint behind a wall. Robot taking Path 1
starts at a position where the first obstacle is already detectable and therefore has no forward
momentum at the start. Robot taking Path 2 has a momentum going into the area where the first
obstacle is detectable and therefore reaches a closer distance to the obstacles.

From Figure 5.5 we can see that the robots follow a steeper angle towards the obstacles compared
to Figure 5.4.

43

An even more challenging simulation was done where the robot tracks a waypoint directly behind
a wall. The robot is then forced to manoeuvre so that the distance to the waypoint is increasing
and therefore the pull towards the waypoint will increase. The robot must keep a safe distance
even though the pull towards the waypoint increases.

-7
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Y
[m

]

X [m]

Avoiding a wall of obstacles towards a waypoint

Waypoint

Obstacle

Obstacle in range of
sensors

β = 90°

β = 80°

β = 70°

β = 60°

β = 50°

Figure 5.6: Simulation of robots heading towards a wall of obstacles, tracking a waypoint behind
it. The different paths are done with different exit angle β in the avoidance mode. An anomaly is
placed at [10, 0] to interfere with the choice of path. This acts as a hole in the wall.

We can see from Figure 5.6 that the exit angle β is influencing the behaviour of the robot. The
anomaly in the wall is simulating a crack or hole in the wall where the robot should not enter. It
can also be interpreted as a faulty sensor reading giving the robot another challenge to navigate
around.

Keeping β = 90◦ makes the robot collide after following the wall for a few meters. Decreasing β
forces the robot to deflect from the obstacles more. For β = 80◦ and β = 70◦, the hole in the wall
causes the robot to close in on the wall significantly. The robot is not able to keep a safe distance
to the wall over a longer distance. Adjusting to β = 60◦ and β = 50◦ makes the robot drive at an
angle outwards from the wall. Even when driving passed the hole in the wall, it initially decreasing
the distance, but the robot soon drives away from the next detected obstacle.

44

Then the last step in verifying the functionality was to simulate how the robot will navigate in
an unknown environment. A track was set by placing four waypoints in the global coordinate
system. The robot is set to track one at the time. When reaching a waypoint, the navigation
system switches to the next waypoint and makes the robot drive in a loop. Several obstacles were
randomly placed in the environment, some obstructing a direct path between the waypoints.

A
B

C

D

1

2

3

4

5

6

7

89

-5

0

5

10

15

20

25

-20 -15 -10 -5 0 5 10 15 20 25 30

Y
 [

m
]

X [m]

Tracking waypoints in a loop and avoiding obstacles

Waypoint

Obstacle

Start of simulation recording

β = 50°

β = 90°

Figure 5.7: Simulation of the robot driving around counter clockwise in a loop, tracking four
waypoints in sequence starting at A. Obstacles are placed to interfere or obstruct the robot in its
path. Two simulations with different β angle shows the difference in behaviour.

We can see from Figure 5.7 that the robot reached all waypoints going around the track. We can
also see how the obstacles influence the path of the robot. Starting from waypoint A, the robot first
detect obstacle 1 on its way to waypoint B. With β = 50◦ the robot is taking more aggressive turns
when avoiding obstacles. This can also be seen at obstacle 2, 4 and 7. Even though the obstacles
are not obstructing the direct path, the sensors detect the obstacles and tries to avoid them.

We can also see that when the robot approaches obstacle 3, the distance to the obstacle is very
short. Depending on the sensor accuracy and the extent of the obstacle, this might be a near miss
in the real world.

45

(a) (b)

(c) (d)

(e) (f)

Figure 5.8: Still images of the simulation in the Gazebo environment. Starting from (a), the blue
robot is heading straight for the green waypoint (A) at the top of the image, coming from (D) as
seen in Figure 5.7. When the robot gets withing 5m of a red obstacle, the obstacle is detected and
the robot is navigating around the obstacles.

46

Figure 5.9: Plot of motor control signal during the avoidance sequence shown in Figure 5.8. X-axis
is time in seconds and Y-axis is control signal. As the robot is driving towards the waypoint,
without detecting an obstacle, both motors receive the same signal. As soon as an obstacle is
detected on the left side, the right motor slows down making the robot take a right turn.

47

5.5 Manual override
The last step in the process is to simulate a manual override during an autonomous operation. A
simulation is done using the same environment as in Figure 5.7 with exit angle β = 90◦.

A
B

C

D

1

2

3

4

5

6

7

89

-5

0

5

10

15

20

25

-20 -15 -10 -5 0 5 10 15 20 25 30

Y
 [

m
]

X [m]

Manual override during an autonomous operation

Waypoint

Obstacle

Start of simulation

recording

Autonomous Control

Manual Override

New Autonomous

Trajectory

Figure 5.10: Simulation of the robot driving around counter clockwise in the same course as in
Figure 5.7. The robot does one complete round before control is taken over by an operator at two
occasions. The robot then navigates to the next waypoint by taking a new route.

We can see from Figure 5.10 with manual override, an operator can at any time take control of the
robot and drive it top a new position. Once the operator lets go of the control, the autonomous
control resumes the navigation. The robot is able to find a new path to the next waypoint.

A short demonstration video on some of the simulations can be found on YouTube on this link:
https://youtu.be/dvXg_25bLAc

48

https://youtu.be/dvXg_25bLAc

Chapter 6

Discussions

6.1 State of level of autonomy regarding small USVs
Part of this thesis was dedicated to explore the state of the art of USVs. Although recent research
and development show improvement on the level of autonomy, the development must be separated
into different parts. The majority of the autonomous systems that are closing in on becoming fully
autonomous tend to be developed for medium to larger sized vessels. Whereas the smaller USVs
still have their challenges.

The large USVs have the possibility to utilise complex sensor technology. The smaller USVs lack the
same potential. It is necessary to develop sensor technology that is both inexpensive and accurate
enough to be used in a navigation system on a small vessel. From the literature study, such a package
either is not yet developed or it is not commercially available. Since the proper sensor technology
has yet to be implemented in smaller USVs, a navigation system including obstacle avoidance
has yet to be fully developed. However, simulating a navigation system gives the possibility to
neglect the lack of accurate sensors and therefore focus on the software algorithm needed for a
fully autonomous system. Adequate sensor packages can be developed in parallel and merged with
software at a later stage. This applies to both a simulated model of the sensors and the real world
sensor package. Implementation of more realistic sensors in the simulation would improve the
accuracy of the simulation compared to a real world test.

6.2 Simulated model
The main objective of this thesis was to develop and simulate a navigation system for a small
size USV. An existing simulation model was further developed. The simulation includes a robot,
obstacles and waypoints. The navigation system utilises positional data from a simulated GPS, pose
state from a simulated IMU and navigates through the environment. The Braitenberg algorithm
was used as a basis for the navigation where the behaviour of the robot could resemble the behaviour
of an animal or insect.

When navigating in an open environment tracking only one waypoint, results show that the robot
quickly navigates its way towards the waypoint as in Figure 5.1. Compared to the distance of the
path covered, the robot uses a small area to find the correct heading towards the waypoint. This
indicates that the behaviour is aggressive and very attracted to the waypoint.

Furthermore, as expected when an obstacle is detected, the algorithm is switched to avoidance
mode and the behaviour switches completely as shown in Figure 5.2. The robot shows behaviour
of fear of the obstacle and the robot tends to want to escape from the location of the obstacle.
This corresponds to the behaviour of animals and follows the mindset of Braitenberg through his
thought experiment.

49

However, the method of combining these two modes is not described in Braitenberg’s book [3,
19] and leaves the developer of the navigation system with the possibility for interpretation. The
implemented weighting factor c seems to handle the merging of the two modes well. There is an
abrupt change in behaviour where the obstacle is just within detection range at 5m giving a sense
of surprise when the obstacle is detected in the first place. It also seemed necessary compared to
have a smoother and complete linear transition between the two modes. Through experiments,
having a smoother transition seemed to slow down the reaction time of the navigation system to a
point where the robot often collided with the obstacle. The dynamics and the speed of the robot
implied that a sharper transition was needed. The resulting behaviour shows that instead of an
escaping behaviour, the robot tends to avoid and navigate around the obstacles. This behaviour is
more suited for a navigation system.

Through experimentation of the Braitenberg controller, some unwanted behaviours arose. As the
controller is currently configured, there is a singularity when the waypoint is located directly behind
the robot, when the desired heading is exactly 180◦ from current heading. In this case, the two
sensors will interpret the stimulus value with equal magnitude. Since the initial state of the robot
is set to maximum speed forward the robot will continue to drive straight forward, away from the
waypoint. However, in practice and as experienced in the simulation, this would only mean that
the robot will be slower at turning towards the waypoint. Due to external forces and inaccuracy in
GPS signal, the desired heading would never be exactly 180◦ from current heading and the robot
would eventually choose a direction to turn. The effect can be seen to some extent in Figure 5.1
where the initial orientation of path 4 shows a desired heading is close to 180◦ from initial heading.
The robot initially drives away from the waypoint, but eventually turns around heading for the
waypoint.

A similar situation could occur when heading straight towards an obstacle. But for the same
reasons, the heading would never be interpreted as completely dead on and the robot will choose
a side to turn. As a precaution to this situation, instead of setting the weighting factor c to a
one-step function, a two-step function could be implemented. A second area, closer to the obstacle,
could be classified as restricted area. Here, avoidance mode would be weighted 100% if the robot is
closer then i.e. 2m to the obstacle. In addition, the escape angle β could be set to 0◦. This could
prevent collision in a dead on situation.

In the end, results from Figure 5.7 show that navigating using the Braitenberg algorithm as basis,
can make it possible for the robot to navigate around in an environment where only the waypoints
are known. As an additional feature, should a dangerous situation occur, an operator by the ground
station can always remotely take manual control of the robot. Furthermore, the control algorithm
can be set up as separate nodes in ROS, where the desired functionality can be selected. A new node
can be added, taking in sensor data from other type of sensors and deciding the behaviour. A new
node using temperature sensors can be set to either be attracted to areas with higher temperatures
or deflect from them.

Compared to the autonomy classification system ATRA in Table 1.1, the robot with the current
navigation system can be characterised to have achieved level 6, with one exception regarding
optimal path planning. In order for the robot to be able to autonomously choose the optimal path,
knowledge of the area between current position all the way to desired position must be acquired.
If the sensors meant for mapping the environment is unable to map this entire area, then the robot
can only navigate using the local surroundings. The optimal path might be undetectable for the
sensors.

50

Chapter 7

Conclusions and future work

7.1 Conclusions

In this thesis, literature study was done on the current state of the art regarding level of autonomy
of smaller Unmanned Surface Vehicles (USVs). In addition, a bio-inspired Braitenberg control
algorithm has been designed, implemented and simulated using a previously designed robot.

The purpose of the literature study was to gain knowledge about the current state of small USVs
and how development is progressing in making fully autonomous USVs. The study shows that,
although larger USVs are closing in on becoming fully autonomous, smaller USVs lack the proper
sensor packages and computational power. Both suitable sensor packages and navigation software
must be developed. Once an adequate sensor package can be utilised, the Braitenberg algorithm
can provide a simple control algorithm and still navigate with complex behaviour.

The second purpose of this thesis was to develop and simulate a control algorithm intended for
smaller USVs in order to increase the level of autonomy. As seen from the literature study, the
development is highly motivated and necessary to increase the usability of USVs. The bio-inspired
control algorithm from Braitenberg’s thought experiment has inspired many researchers to develop
autonomous land vehicles with success. However, the algorithm has not yet been used on sea going
vehicles. It was therefore interesting to use the Braitenberg algorithm to explore the following:

• Simulate a USV in a 3D environment using GPS (global positioning system) and IMU (inertia
motion unit) data, to be attracted to a waypoint and repelled from an obstacle.

• Develop a program that simulates the robot navigating around a track without colliding with
randomly placed obstacles.

• Implement a manual override so that an operator could manually take control over the robot
at any time.

The navigation software was designed using a parabola function as basis for the bio-inspired Brait-
enberg algorithm. The algorithm was used both as a tracking mode for finding a waypoint and
as an avoidance mode for avoiding obstacles along the way. Implementing the controller step-wise
showed how the behaviour of the robot changed by adding more control features. Using the control
algorithm, the robot is able to track any number of waypoints, avoid obstacles, navigate parallel to
obstacles resembling a wall and navigate through a course of waypoints while avoiding obstacles.
Assuming a good GPS system and sensors for mapping the local area is in place, the robot should
be able to autonomously navigate in closed areas like rivers and lakes, as well as on the open sea.

The simulation shows that the simple Braitenberg algorithm can give small USVs autonomous
functionality.

51

7.2 Future work
For further development of this project the following tasks can be explored.

Hardware:

• A crucial point is to develop an adequate sensor package or software such that low-cost LiDAR
can be utilised on this type of robot.

• Redesign the hull to be self-righting.

Simulation:

• The ROS/Gazebo can be further utilised. A standardised node can be created where type of
sensor input is selected and the desired behaviour is selected, attraction, deflection or follow.
For a research vessel, this feature could be handy where new data is to be gathered.

• Simulate a LiDAR or equivalent sensor in Gazebo and add more complex environments. Add
external factors as waves, wind or water currents. LiDAR simulation could be visualised in
RVIZ giving the ability to see what the robot sees.

• Moving obstacles can be added and proper anti-collision algorithm implemented.

Additional software:

A user interface should be developed giving the ability to add waypoints and show the robot position
on a map. Manual control of the robot and viewing live sensor data should be possible.

52

References

[1] World Maritime Affairs. Learn about Waterjet Propulsion System. Mar. 2019. url: https:
//www.worldmaritimeaffairs.com/learn-about-waterjet-propulsion-system/.

[2] Martin John Baker. Maths - Quaternion to AxisAngle. May 2020. url: https : / / www .
euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/
index.htm.

[3] Valentino Braitenberg. Vehicles: Experiments in Synthetic Psychology. first. ISBN: 0-262-
02208-7 (hard). The MIT Press, 1986.

[4] M. Caccia. “Autonomous Surface Craft: prototypes and basic research issues.” In: 2006 14th
Mediterranean Conference on Control and Automation. 2006, pp. 1–6.

[5] Snehashish Chakraverty, Deepti Moyi Sahoo, and Nisha Rani Mahato. “McCulloch–Pitts
Neural Network Model.” In: Concepts of Soft Computing: Fuzzy and ANN with Programming.
Singapore: Springer Singapore, 2019, pp. 167–173. doi: 10.1007/978-981-13-7430-2_11.
url: https://doi.org/10.1007/978-981-13-7430-2_11.

[6] Yoonsuck Choe. “Hebbian Learning.” In: Encyclopedia of Computational Neuroscience. Ed.
by Dieter Jaeger and Ranu Jung. New York, NY: Springer New York, 2013, pp. 1–5. isbn:
978-1-4614-7320-6. doi: 10.1007/978-1-4614-7320-6_672-1. url: https://doi.org/10.
1007/978-1-4614-7320-6_672-1.

[7] M. Dunbabin and A. Grinham. “Experimental evaluation of an Autonomous Surface Vehicle
for water quality and greenhouse gas emission monitoring.” In: 2010 IEEE International
Conference on Robotics and Automation. 2010, pp. 5268–5274.

[8] Jan Faigl et al. “Syrotek a robotic system for education.” In: (Jan. 2010).
[9] W. Guan et al. “Unmanned surface vessels concise robust course control based on planning

and control scheme.” In: Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering
University 40.11 (2019), pp. 1801–1808. doi: 10.11990/jheu.201807036.

[10] Erlend Helgerud et al. AnSweR. Material in posession of Filippo Sanfilippo. July 2018.
[11] Farid Kendoul. “Towards a unified framework for uas autonomy and technology readiness

assessment (atra).” In: Autonomous Control Systems and Vehicles. Springer, 2013, pp. 55–71.
[12] D.K.M. Kufoalor et al. “Autonomous maritime collision avoidance: Field verification of au-

tonomous surface vehicle behavior in challenging scenarios.” In: Journal of Field Robotics
(2019). doi: 10.1002/rob.21919.

[13] Akshay Chandra Lagandula. “McCulloch-Pitts Neuron—Mankind’s First Mathematical Model
Of A Biological Neuron.” In: Towards Data Science [online].[cit. 2019-04-25]. Dostupné z:
https://towardsdatascience. com/mcculloch-pitts-model-5fdf65ac5dd1 (2019).

[14] Jan Henrik Lenes. “Autonomous online path planning and path-following control for complete
coverage maneuvering of a USV.” MA thesis. NTNU, 2019.

[15] Zhixiang Liu et al. “Unmanned surface vehicles: An overview of developments and challenges.”
In: Annual Reviews in Control 41 (2016), pp. 71–93.

[16] Kongsberg Geoacoustics LTD. GEOSWATH USV. Data Sheet. Kongsberg, Oct. 2017.

53

https://www.worldmaritimeaffairs.com/learn-about-waterjet-propulsion-system/
https://www.worldmaritimeaffairs.com/learn-about-waterjet-propulsion-system/
https://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm
https://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm
https://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm
https://doi.org/10.1007/978-981-13-7430-2_11
https://doi.org/10.1007/978-981-13-7430-2_11
https://doi.org/10.1007/978-1-4614-7320-6_672-1
https://doi.org/10.1007/978-1-4614-7320-6_672-1
https://doi.org/10.1007/978-1-4614-7320-6_672-1
https://doi.org/10.11990/jheu.201807036
https://doi.org/10.1002/rob.21919

[17] Kenzo Nonami et al. “Autonomous control systems and vehicles.” In: Intelligent Systems,
Control and Automation: Science and Engineering 65 (2013).

[18] Mark CL Patterson, Anthony Mulligan, and Fernando Boiteux. “Safety and security applica-
tions for micro-unmanned surface vessels.” In: 2013 OCEANS-San Diego. IEEE. 2013, pp. 1–
6.

[19] I. Rañó. “A model and formal analysis of Braitenberg vehicles 2 and 3.” In: 2012 IEEE
International Conference on Robotics and Automation. 2012, pp. 910–915.

[20] Ignacio Rano, A Gómez Eguíluz, and Filippo Sanfilippo. “Bridging the gap between bio-
inspired steering and locomotion: A braitenberg 3a snake robot.” In: 2018 15th International
Conference on Control, Automation, Robotics and Vision (ICARCV). IEEE. 2018, pp. 1394–
1399.

[21] Iñaki Rañó. “A systematic analysis of the Braitenberg vehicle 2b for point-like stimulus
sources.” In: Bioinspiration & biomimetics 7.3 (2012), p. 036015.

[22] Clear Path Robotics. Heron. 2020. url: https://clearpathrobotics.com/heron-unmanned-
surface-vessel/.

[23] Maritime Robotics.OTTER Unmanned Surface Vehicle [USV]. Data Sheet. Maritime Robotics,
2020.

[24] Open Robotics. ros.org. May 2020. url: https://www.ros.org/.
[25] Sea Robotics. SR Survayor M1.8. Data Sheet. Sea Robotics Corporation, 2020.
[26] G. S. Rose, R. Pino, and Q. Wu. “A low-power memristive neuromorphic circuit utilizing

a global/local training mechanism.” In: The 2011 International Joint Conference on Neural
Networks. 2011, pp. 2080–2086.

[27] J. Rowley. “Autonomous Unmanned Surface Vehicles (USV): A Paradigm Shift for Harbor
Security and Underwater Bathymetric Imaging.” In: OCEANS 2018 MTS/IEEE Charleston.
2018, pp. 1–6.

[28] Filippo Sanfilippo, Min Tang, and Sam Steyaert. “Aquatic Surface Robots: the State of the
Art, Challenges and Possibilities.” In: Accepted for publication to the Proc. of the 1st IEEE
International Conference on Human-Machine Systems (ICHMS 2020), Rome, Italy. 2020.

[29] Filippo Sanfilippo et al. “Perception-driven obstacle-aided locomotion for snake robots: the
state of the art, challenges and possibilities.” In: Applied Sciences 7.4 (2017), p. 336.

[30] sea-machines.com. Top Capabilities Sea Machines Adds to Commercial Surface Vessels. Feb.
2020. url: https://sea-machines.com/top-8-capabilities-sea-machines-adds-to-
commercial-surface-vessels.

[31] Thomas Stenersen. “Guidance system for autonomous surface vehicles.” MA thesis. NTNU,
2015.

[32] Changhyuck Sung, Hyunsang Hwang, and In Kyeong Yoo. “Perspective: A review on memris-
tive hardware for neuromorphic computation.” In: Journal of Applied Physics 124.15 (2018),
p. 151903.

[33] Min Tang. “Digital Twin of an Aquatic Surface Robot with ROS and Gazebo.” MA thesis.
University of South-Eastern Norway, Nov. 2019.

[34] Naval Technology. Sea Hunter ASW Continuous Trail Unmanned Vessel (ACTUV). 2016.
url: https://www.naval-technology.com/projects/sea-hunter-asw-continuous-
trail-unmanned-vessel-actuv/.

[35] theexplorer.no. The world’s first zero-emission autonomous container ship. May 2020. url:
https://www.theexplorer.no/solutions/yara-birkeland--the-worlds-first-zero-
emission-autonomous-container-ship/.

[36] tu.no. Yara Birkeland: Leveres fra Vard Brattvaag etter sommeren. Feb. 2020. url: https:
/ / www . tu . no / artikler / yara - birkeland - leveres - fra - vard - brattvaag - etter -
sommeren/484547.

54

https://clearpathrobotics.com/heron-unmanned-surface-vessel/
https://clearpathrobotics.com/heron-unmanned-surface-vessel/
https://www.ros.org/
https://sea-machines.com/top-8-capabilities-sea-machines-adds-to-commercial-surface-vessels
https://sea-machines.com/top-8-capabilities-sea-machines-adds-to-commercial-surface-vessels
https://www.naval-technology.com/projects/sea-hunter-asw-continuous-trail-unmanned-vessel-actuv/
https://www.naval-technology.com/projects/sea-hunter-asw-continuous-trail-unmanned-vessel-actuv/
https://www.theexplorer.no/solutions/yara-birkeland--the-worlds-first-zero-emission-autonomous-container-ship/
https://www.theexplorer.no/solutions/yara-birkeland--the-worlds-first-zero-emission-autonomous-container-ship/
https://www.tu.no/artikler/yara-birkeland-leveres-fra-vard-brattvaag-etter-sommeren/484547
https://www.tu.no/artikler/yara-birkeland-leveres-fra-vard-brattvaag-etter-sommeren/484547
https://www.tu.no/artikler/yara-birkeland-leveres-fra-vard-brattvaag-etter-sommeren/484547

[37] Lhotský Vojtěch. Demonstration Tasks for the SyRoTek System. 2014. url: https://cyber.
felk.cvut.cz/theses/detail.phtml?id=516.

[38] Cong Wang et al. “A Braitenberg Vehicle Based on Memristive Neuromorphic Circuits.” In:
Advanced Intelligent Systems (2019). DOI: 10.1002/aisy.201900103.

[39] H. Xu et al. “Deep reinforcement learning-based path planning of underactuated surface
vessels.” In: Cyber-Physical Systems 5.1 (2019), pp. 1–17. doi: 10.1080/23335777.2018.
1540018.

55

https://cyber.felk.cvut.cz/theses/detail.phtml?id=516
https://cyber.felk.cvut.cz/theses/detail.phtml?id=516
https://doi.org/10.1080/23335777.2018.1540018
https://doi.org/10.1080/23335777.2018.1540018

Appendix A

Code with explanations

The ROS node of the Braitenberg controller consists of a script written in Python. The node must
first be initialised before subscribing to the ROS topic where sensor data is published. The sensor
data on position and orientation of the robot is published on the ROS topic p3d_odom on the
message pose.

1 def Braitenberg ():
2 rospy. init_node ('controllerNode ', anonymous =True)
3 rate = rospy.Rate (10)
4

5 rospy. Subscriber ('p3d_odom ',Odometry , navCallback)
6

7 while not rospy. is_shutdown ():
8

9 rate.sleep ()
10

11 if __name__ == '__main__ ':
12

13 try:
14 Braitenberg ()
15 except rospy. ROSInterruptException :
16 pass

Listing A.1: Initial setup of node.

This gives the node a unique anonymous ID number and sets the refresh rate of the node to 10Hz.

Then the pose data can be read using the navCallback function.

1 def navCallback (msg):
2 Xb = msg.pose.pose. position .x
3 Yb = msg.pose.pose. position .y
4

5 Quat_x = msg.pose.pose. orientation .x
6 Quat_y = msg.pose.pose. orientation .y
7 Quat_z = msg.pose.pose. orientation .z
8 Quat_w = msg.pose.pose. orientation .w

Listing A.2: Reading sensor position data.

The x and y position data is given in meters and defines the position of the robot in the global
frame. The position in z axis is neglected as the robot is floating on a flat water without any wind
or wave disturbance. The orientation however is given in Quaternion rotation coordinates. This is
a three dimensional rotational system that is cumbersome to use if only a two dimensional system
is evaluated. The Quaternions are therefore converted to Cartesian angle magnitude [2].

56

1 def quat2angle (qx , qy , qz , qw):
2 angle = 2* math.acos(qw)
3 s = math.sqrt (1-qw **2)
4 x = (angle*qx/s)*180/ math.pi
5 y = (angle*qy/s)*180/ math.pi
6 z = (angle*qz/s)*180/ math.pi
7 return (x, y, z)
8

9 pose_angle = quat2angle (Quat_x , Quat_y , Quat_z , Quat_w)
10

11 alpha_0_temp = pose_angle [2]

Listing A.3: Calculate rotation angle.

Then pose_angle[2] gives the pose angle of the robot around the z axis in degrees with reference
to the x axis of the global frame. The Quaternion system gives the pose angle in the range from
−360◦ to +360◦. This is converted to a range of 0◦ − 360◦ before giving the actual angle α0. This
angle is used as the heading of the robot in the global frame.

Next, the position of the two sensors mounted on the robot is calculated before passing the positions
to the stimulus function. Here shown with the code for tracking mode.

1 Rx=Xb+(L1 /2)*math.cos(math. radians (alpha_R))
2 Ry=Yb+(L1 /2)*math.sin(math. radians (alpha_R))
3 Lx=Xb+(L1 /2)*math.cos(math. radians (alpha_L))
4 Ly=Yb+(L1 /2)*math.sin(math. radians (alpha_L))
5

6 Sb= stimvalue (Xb , Yb , Xwp , Ywp)
7 SR= stimvalue (Rx , Ry , Xwp , Ywp)
8 SL= stimvalue (Lx , Ly , Xwp , Ywp)

Listing A.4: Calculate the robot sensor positions in the global frame.

This defines the position of the sensors with respect to the global frame. When passing these
position along with the coordinates of the next waypoint at [Xwp, Ywp] to the stimulus function, it
returns the stimulus value S with respect to the waypoint.

57

1 def stimvalue (Xb , Yb , Xwp , Ywp):
2 S=g0 -a*(Xwp -Xb)**2 -b*(Ywp -Yb)**2
3 return S

Listing A.5: Calculating stimulus value.

The values of S is the used to calculate the amount of control signal that should be subtracted
from each of the motors. Here shown with the code for tracking mode.

1 if SR < SL:
2 U_RW= (SR -Sb) / (2* Dwp)
3 U_LW= 0
4 else:
5 U_RW= 0
6 U_LW= (SL -Sb) / (2* Dwp)

Listing A.6: Calculating control signal using the stimulus values

The equations of listing A.6 can give high values of control signal when the distance to the waypoint
is long. The signal is therefore limited to the maximum setting of the motors.

1 if U_RW < -u_max:
2 U_RW = -u_max
3

4 if U_LW < -u_max:
5 U_LW = -u_max

Listing A.7: Setting maximum control signal.

If an obstacle is detected, then the script also calculates the stimulus values in avoidance mode.

1 if Dc < Os:
2 print " Obstacle detected "
3

4 # Equations for avoidance mode
5

6 else:
7 U_RO = 0
8 U_LO = 0
9 c = 1

Listing A.8: If an obstacle is detected.

The equations used in avoidance mode are described in 3.3.2. They are set up in a similar way to
the equations in tracking mode. When the controller is running in avoidance mode, only the closes
obstacle is taken into account. This distance is Dc and will change to whatever obstacle is closest.

The two control signals from tracking mode and avoidance mode are then combined. Since the
control values U are negative, they are added with plus sign when combined.

1 ur = u_max + c*U_LW + (1-c)*U_RO
2 ul = u_max + c*U_RW + (1-c)*U_LO

Listing A.9: Combining tracking mode and avoidance mode.

The last step is to publish the control signal to the message which in the end drives the motors.

58

1 drivemsg .right = ur
2 drivemsg .left = ul
3

4 publisher . publish (drivemsg)

Listing A.10: Publish to drivemsg.

A list of the parameters are defined at the start of the script together with a list of waypoints and
a list of obstacles.

1 Nwp =0 # Setting next waypoint to the first in the list
2

3 L1 =0.2 # Distance between sensors [m]
4

5 # Constants in stimulus function
6 g0=0
7 a=1
8 b=a
9

10 u_max =0.25 #Max speed of the motors [unitless]
11

12 Dacc =0.8 # Accuracy when reaching waypoint [m]
13

14 Os=5 #Range of obstacle avoidance sensor [m]
15

16 w=100 #Field of view of the sensor [deg]
17

18 beta =90 #Exit angle from obstacle [deg]

Listing A.11: Parameters

The parameter umax sets the maximum speed of the motors. This is a unitless value but can be
normalised to a specified speed when compared to the real life robot.

1 wp1 = [0.0 , 0.0]
2 wp2 = [25.0 , -1.0]
3 wp3 = [20.0 , 7.0]
4 wp4 = [-15.0 , 20.0]
5

6 wps = [wp1 , wp2 , wp3 , wp4]

Listing A.12: Defining position of waypoints

1 obstacles = []
2 obstacles . append (("o1", 8.0, -1.0));
3 obstacles . append (("o2", 5.0, 10.0));
4 obstacles . append (("o3", -9.0, 4.0));
5 obstacles . append (("o4", -1.0, 12.0));
6 obstacles . append (("o5", -7.0, 8.0));
7 obstacles . append (("o6", 15.0 , 5.0));
8 obstacles . append (("o7", 1.0, 19.0));
9 obstacles . append (("o8", -20.0, 25.0));

10 obstacles . append (("o9", -1.0, 6.0));
11 obstacles . append (("o10", -7.0, 6.0));

Listing A.13: Defining position of obstacles

59

Using the ROS command rqt_graph shows the ROS environment when the Braitenberg controller
is running.

Figure A.1: rqt_graph of ROS environment

60

Appendix B

Complete Code of Braitenberg
Controller

1

2 #!/ usr/bin/env python
3 '''
4 Using instances of the pypid Pid class to control yaw and velocity
5 '''
6 # Python
7 import sys
8 import math
9 import numpy as np

10

11 # ROS
12 import rospy
13 import tf
14 from nav_msgs .msg import Odometry
15 from asr_msgs .msg import Drive
16

17

18 # defining waypoints :
19 wp1 = [0.0 , 0.0]
20 wp2 = [25.0 , -1.0]
21 wp3 = [20.0 , 7.0]
22 wp4 = [-15.0 , 20.0]
23

24 wps = [wp1 , wp2 , wp3 , wp4]
25

26 # defining obstacles :
27 obstacles = []
28 obstacles . append (("o1", 8.0, -1.0));
29 obstacles . append (("o2", 5.0, 10.0));
30 obstacles . append (("o3", -9.0, 4.0));
31 obstacles . append (("o4", -1.0, 12.0));
32 obstacles . append (("o5", -7.0, 8.0));
33 obstacles . append (("o6", 15.0 , 5.0));
34 obstacles . append (("o7", 1.0, 19.0));
35 obstacles . append (("o8", -20.0, 25.0));
36 obstacles . append (("o9", -1.0, 6.0));
37 obstacles . append (("o10", -7.0, 6.0));
38

39 # setting next waypoint to the first in the list
40 Nwp =0
41

42 # distance between sensors [m]
43 L1 =0.2
44

45 # constants in stimulus function
46 g0=0

61

47 a=1
48 b=a
49

50 #Max speed of the motors [?]
51 u_max =0.25
52

53 # Accuracy when reaching waypoint [m]
54 Dacc =0.8
55

56 #Range on obstacle avoidance sensor , for example 5 [m]
57 Os=5
58

59 #Field of view of the sensor [deg]
60 w=100
61

62 #Angle of deflection from obstacle [deg]
63 beta =90
64

65

66

67 # Stimulus function
68 def stimvalue (Xb , Yb , Xwp , Ywp):
69 S=g0 -a*(Xwp -Xb)**2 -b*(Ywp -Yb)**2
70 return S
71

72 # convert from quaterinon coordinates to angle magnetude
73 def quat2angle (qx , qy , qz , qw):
74 angle = 2* math.acos(qw)
75 s = math.sqrt (1-qw **2)
76 x = (angle*qx/s)*180/ math.pi
77 y = (angle*qy/s)*180/ math.pi
78 z = (angle*qz/s)*180/ math.pi
79 return (x, y, z)
80

81 # Euclidean distance to next waypoint :
82 def distance (x1 , y1 , x2 , y2):
83 dx = x1 - x2
84 dy = y1 - y2
85 return math.sqrt ((dx **2+ dy **2))
86

87 def angle(x1 , y1 , x2 , y2):
88 a_temp = math.atan2(y1 -y2 ,x1 -x2)*180/ math.pi
89 if a_temp < 0:
90 a = 360+ a_temp
91 else:
92 a = a_temp
93 return a
94

95 def navCallback (msg):
96 publisher = rospy. Publisher ('cmd_drive ',Drive , queue_size =1)
97 drivemsg = Drive ()
98

99 Xb=msg.pose.pose. position .x
100 Yb=msg.pose.pose. position .y
101

102 print ""
103 print ""
104

105 print "Robot position : [x = %s, y = %s]"%('%.2f'%Xb , '%.2f'%Yb)
106

107 global Nwp
108

109 numberofwaypoints = len(wps)
110 numberofobstacles = len(obstacles)
111

112

113 #reset waypoint counter when last waypoint is reached

62

114 if Nwp > numberofwaypoints -1:
115 Nwp = 0
116

117 #print "Next WayPoint : %s"%(wps[Nwp])
118

119 goal = wps[Nwp]
120 Xwp = goal [0]
121 Ywp = goal [1]
122

123 Dwp = distance (Xb , Yb , Xwp , Ywp)
124

125 #print " Distance to next WayPoint [%s]"%('%.2f '%Dwp)
126

127 print "Next Waypoint is WP%s at %s, [%s] meters away"%(Nwp +1, wps[Nwp], '%.2f'%
Dwp)

128

129 # Finding distance to closest obstacle :
130 closest_ob = None
131 Dc = None # Distance to closest obstacle
132 for o_name , l_x , l_y in obstacles :
133 dist= distance (Xb , Yb , l_x , l_y)
134 if Dc is None or dist < Dc:
135 closest_ob = o_name
136 Dc = dist
137 Xobs=l_x
138 Yobs=l_y
139

140

141

142

143 Quat_x =msg.pose.pose. orientation .x
144 Quat_y =msg.pose.pose. orientation .y
145 Quat_z =msg.pose.pose. orientation .z
146 Quat_w =msg.pose.pose. orientation .w
147

148 pose_angle = quat2angle (Quat_x , Quat_y , Quat_z , Quat_w)
149

150 alpha_0_temp = pose_angle [2]
151

152

153 #set angle range 0-360, instead of -360 -> +360
154 if alpha_0_temp < 0:
155 alpha_0 = 360+ alpha_0_temp
156 else:
157 alpha_0 = alpha_0_temp
158

159

160 # Coordinates of sensors
161 alpha_R =alpha_0 -90
162 alpha_L = alpha_0 +90
163

164 theta = angle(Xb , Yb , Xwp , Ywp)
165

166 gamma_wp_temp = -(alpha_0 - (180 + theta))
167

168 if gamma_wp_temp > 180:
169 gamma_wp = -(alpha_0 + (180 - theta))
170 else:
171 gamma_wp = gamma_wp_temp
172

173 print "Angle to rotate (gamma_wp): [%s]"%('%.1f'% gamma_wp)
174

175

176

177 # avoidance stimuli :
178 if Dc < Os:
179 print " Obstacle detected "

63

180 print " Closest obstacle is %s, [%s] meters away"%(closest_ob , '%.2f'%Dc)
181

182 #angle towards obstacle , global
183 theta_O =angle(Xb , Yb , Xobs , Yobs)
184

185 #angle towards obstacle in regards to heading of robot
186 gamma_O_temp = -(alpha_0 - (180 + theta_O))
187

188 if gamma_O_temp > 180:
189 gamma_O = -(alpha_0 + (180 - theta_O))
190 else:
191 gamma_O = gamma_O_temp
192

193 # Turning heading 90 degrees
194 if gamma_O < 0:
195 y=beta
196 else:
197 y=-beta
198

199 Rx=Xb+(L1 /2)*math.cos(math. radians (alpha_R +y))
200 Ry=Yb+(L1 /2)*math.sin(math. radians (alpha_R +y))
201 Lx=Xb+(L1 /2)*math.cos(math. radians (alpha_L +y))
202 Ly=Yb+(L1 /2)*math.sin(math. radians (alpha_L +y))
203

204 Sb= stimvalue (Xb , Yb , Xobs , Yobs)
205 SR= stimvalue (Rx , Ry , Xobs , Yobs)
206 SL= stimvalue (Lx , Ly , Xobs , Yobs)
207

208 # convert stim value to control signal
209 if SR < SL:
210 U_RO= (SR -Sb) / (2* Dc)
211 U_LO= 0
212 else:
213 U_RO= 0
214 U_LO= (SL -Sb) / (2* Dc)
215

216 #limit signal to v_max
217 if U_RO < -u_max:
218 U_RO = -u_max
219

220 if U_LO < -u_max:
221 U_LO = -u_max
222

223 # ignore obstacle if it is behind the robot
224 if abs(gamma_O) > w:
225 c=1
226 else:
227 c=Dc /(2* Os)
228

229

230 else:
231

232 U_RO = 0
233 U_LO = 0
234 c = 1
235

236 print c
237

238 # tracking stimuli :
239 Rx=Xb+(L1 /2)*math.cos(math. radians (alpha_R))
240 Ry=Yb+(L1 /2)*math.sin(math. radians (alpha_R))
241 Lx=Xb+(L1 /2)*math.cos(math. radians (alpha_L))
242 Ly=Yb+(L1 /2)*math.sin(math. radians (alpha_L))
243

244 Sb= stimvalue (Xb , Yb , Xwp , Ywp)
245 SR= stimvalue (Rx , Ry , Xwp , Ywp)
246 SL= stimvalue (Lx , Ly , Xwp , Ywp)

64

247 #print "Stim values : [SL = %s, Sb = %s, SR = %s]"%('%.3f '%SL , '%.3f '%Sb , '%.3f '%
SR)

248

249 if SR < SL:
250 U_RW= (SR -Sb) / (2* Dwp)
251 U_LW= 0
252 else:
253 U_RW= 0
254 U_LW= (SL -Sb) / (2* Dwp)
255

256

257 #print "Motor subtractions 1: [V_RW = %s, V_LW = %s]"%('%.3f '%V_RW , '%.3f '%V_LW)
258

259 if U_RW < -u_max:
260 U_RW = -u_max
261

262 if U_LW < -u_max:
263 U_LW = -u_max
264

265

266

267 #motor setpoints :
268 ur = u_max + c*U_LW + (1-c)*U_RO
269 ul = u_max + c*U_RW + (1-c)*U_LO
270

271

272 drivemsg .right = ur
273 drivemsg .left = ul
274

275 publisher . publish (drivemsg)
276

277 print "Motor setpoints : [ur = %s, ul = %s]"%('%.3f'%ur , '%.3f'%ul)
278

279 if Dwp < Dacc:
280 Nwp = Nwp + 1
281

282

283

284 def Braitenberg ():
285 rospy. init_node ('controllerNode ', anonymous =True)
286 rate = rospy.Rate (10)
287

288 rospy. Subscriber ('p3d_odom ',Odometry , navCallback)
289

290 while not rospy. is_shutdown ():
291

292 rate.sleep ()
293

294 if __name__ == '__main__ ':
295

296 try:
297 Braitenberg ()
298 except rospy. ROSInterruptException :
299 pass
300

Listing B.1: Braitenberg controller node.

65

Appendix C

Digital twin ROS/Gazebo Setup

This is a guide on how to set up ROS and Gazebo on an already running linux PC.

Create the workspace on the ground station by entering each of the lines of code, one by one:

mkdir -p ~/catkin_ws/src
cd ~/catkin_ws/src
catkin init workspace
catkin_make

To avoid repeating source on the workspace when a new terminal is opened, do

sudo gedit ~/.bashrc

The .bashrc is opened. Add the following content in the end of the bashrc-file

source ~/catkin_ws/devel/setup.bash

save and exit.

Go to /catkin_ws/src

Download teleop_twist_keyboard plugin by

git clone https://github.com/ros-teleop/teleop_twist_keyboard.git

Copy the ASR files to the /catkin_ws/src folder from Bitbucket either download direclty from
https://bitbucket.org/dtofasr/asr/src/master/ or use git command (Repo has to be cloned to your
own bitbucket account. Change USERNAME to your bitbucket account name)

git clone https://USERNAME@bitbucket.org/dtofasr/asr.git

and then compile by

catkin_make

Open 4 terminals using tmux and start roscore in 1st terminal

roscore

Spawn the robot model in gazebo in 2nd terminal by

roslaunch asr_gazebo base_gazebo.launch

Start the node twist2drive in 3rd terminal by

rosrun asr_utils twist2drive.py

Start the node teleop_twist_keyboard in 4th terminal by

rosrun teleop_twist_keyboard teleop_twist_keyboard.py

66

Now click on the teleop terminal window and use the keyboard to drive the ASR.

u i o (full speed on right motor / both motors / left motor)

j k l (slow speed on right motor / stop / slow speed on left motor)

m , . (slow speed backwards right motor / slow backwards / slow backwards left motor)

67

Appendix D

Setup of the Braitenberg controller
node

Follow instructions from digital twin.

Install 3 missing packages. Find them on the ROS wiki as the catkin_make errors occur.

Install pypid (several versions of pypid, this is the correct one)

cd ~/WorkingCopies (or repos or downloads)
git clone git@github.com:bsb808/pypid.git
cd pypid
sudo python setup.py develop

Use tmux to open several terminal windows.

Launching simulator in 1st terminal:

roscore

Start Gazebo in the 2nd terminal:

roslaunch asr_gazebo base_gazebo_launch.launch

In terminal 3: To drive the bot with keyboard (in addition to the controller):

rosrun asr_utils twist2drive.py

Then in terminal 4:

rosrun teleop_twist_keyboard teleop_twist_keyboard.py
(click inside this terminal to control boat)

In terminal 5: Run the Braitenberg controller node

rosrun asr_control braitenberg_control_loop.py

In terminal 6: To spawn obstacles, change directory into where the urdf file is located (/catkin_ws/src/asr/asr_gazebo/urdf)

rosrun gazebo_ros spawn_model -file Obstacle.urdf -urdf -z 5 -model obstacle

In the same terminal, spawn waypoints:

rosrun gazebo_ros spawn_model -file Waypoints.urdf -urdf -z 5 -model waypoint

To record posision data: use rosbag data logger. (ex: <filename> = 1_1)

mkdir ~/bagfiles
cd ~/bagfiles
rosbag record -O <filename> /p3d_odom

68

Press ctrl-c in the terminal to stop recording.

Convert .bag file to .csv format. (ex: <bag_file_name.bag> = 1_1.bag). Change directory into
folder with bag files that was recorded.

rostopic echo /p3d_odom -b <bag_file_name.bag> -p > <csv_file_name.csv>

View bag file in PLotJuggler. Open PlotJuggler and go to

File -> Load Data. Choose your bag file

Choose which messages to import, cmd_drive, fix_velocity, p3d_odom etc. Drag and Drop vari-
ables to plot. Select both x and y with shift, drag and drop, to plot position as x-y plot.

To stop roscore during an error:

killall -9 roscore

All controller nodes of the different steps in the result can be found in:

~/catkin_ws/src/asr/asr_control/nodes

All urdf models of waypoints and obstacles can be found in:

~/catkin_ws/src/asr/asr_gazebo/urfd

69

	Introduction
	Background
	Motivation
	Objectives
	Assumptions and Prerequisites
	Disposition

	Related works
	State of the art
	Mechanical design
	Sensors
	Related control methods

	Braitenberg
	Braitenberg experiment
	Braitenberg and Bio-inspired robot control

	Review of previous projects

	Methods
	Braitenberg assumptions and hypotheses
	Concept
	Proposed model
	Reaching a waypoint, go to goal
	Avoiding an obstacle
	Reaching a waypoint while avoiding an obstacle
	Navigate through multiple waypoints with multiple obstacles

	Manual override

	Tools and implementation
	Implementation
	ROS and Gazebo
	Controller

	Results
	Tracking a waypoint
	Avoiding an obstacle
	Reaching a waypoint while avoiding an obstacle
	Navigate through multiple waypoints and obstacles
	Manual override

	Discussions
	State of level of autonomy regarding small USVs
	Simulated model

	Conclusions and future work
	Conclusions
	Future work

	References
	Code with explanations
	Complete Code of Braitenberg Controller
	Digital twin ROS/Gazebo Setup
	Setup of the Braitenberg controller node

