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Preface

This work is submitted as a master thesis at the Department of Engineering Sciences at the
University of Agder (UiA). The thesis is a part of our Master of Science (MSc) degree. This
project thesis was carried out during the spring semester of 2020, and is entirely innovative,
which means it is not a continuation of any project thesis written in the fall of 2019.

This thesis is motivated by the demand for gathering marine litter, more specifically derelict
pots, to avoid utilizing human divers, and a great desire is to increase the level of autonomy in
subsea operations. This thesis is performed in conjunction with the Institute of Marine Research
(Havforskningsinstituttet).
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Abstract

This thesis investigates the opportunity of generating complementary technology devices for
existing remotely operated vehicles (ROVs) so that abandoned material can be collected and
retrieved, particularly from the bottom of the ocean.

According to World Wide Fund for Nature (WWF), over eight million tons of plastic end up
in the sea each year [13]. Furthermore, they claim that based on a survey of Northern fulmars
in the North Sea, as many as 9 out of 10 birds have plastic in their stomachs. However, plastic
is not the only issue regarding marine litter. A survey from the Institute of Marine Research
shows that accessories findings reported by divers in the bottom of the ocean contain a sig-
nificant number of derelict pots in addition to many other objects, which is a result of ghost
fishing [37]. This issue is given a high priority in this report.

The steps of this report were first to investigate existing solutions for deep-sea robotic ma-
nipulation. This paper will aim its focus on the development of an underwater robot arm,
which is to be mounted on a ROV. The center of interest will be only on the arm and not
the ROV. The robot arm’s main task is to attach a custom-made end-effector (containing a
carabiner and a balloon inside) unto derelict pots and then activate the balloon such that the
derelict pots are lifted up to the sea surface. This prototype was intended to be actuated by
seawater.
This project has been done in cooperation with Alf Ring Kleiven, a scientist from the Institute
of Marine Research. Kleiven presented their issues on a meeting, and the project could finally
be initiated with understandable and clear requirements. Based on their needs, the group could
design and generate a proposed robot arm with a custom-made end-effector such that the pro-
totype would satisfy their requirements. If their needs were able to be solved, the project would
be considered a success.
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Chapter 1

Introduction

1.1 Background and Motivation
As discussed in the meeting with the Institute of Marine Research, ghost fishing is a global
problem regarding entrapment of sea life by human-made fishing equipment after they are lost
or abandoned. Loss of such equipment causes trapping and eventually death of sea life. This
process may be further continued since the trapped species may act as bait for further catch
and therefore continue the cycle to cause a significant loss of possible marine resources [20].
An estimate for blue crabs lost due to derelict fishing equipment in Louisiana amounts to 12
million crabs annually with an approximated value of 4 million USD [2]. Current methods to
find and remove such equipment are limited to search by divers or removal by ROVs with an
attached manipulator arm. These searches are considered a shot in the dark due to the limited
sight under the sea surface and the different depths of which the equipment may be located.

1.2 State of the Art
The current state of the art methods to clear ghost fishing equipment will be presented in this
section.

Removal by Divers

Divers manually locate and attach a lifting bag which is inflated by the oxygen tank carried by
the divers. The bag lifts the equipment to the surface for it to be collected. This method is
not suitable for deep dives as diving is related to HSE issues such as decompression sickness,
arterial air embolism, nitrogen narcosis, and of course, drowning [6]. Other constraints are
legislative, which is governing the depths which the divers may legally dive. For depths up to
50m, the diver is required to have a diver’s license of class B while operating a lifting bag [21].
Diving beyond 50m requires other licenses and severely increases the risk of mentioned HSE
issues. Removing equipment by divers is therefore constricted by available personnel and poses
a significant health risk for the divers. Fig. 1.1 illustrates how this method is done in reality.
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Figure 1.1: Divers using a lift bag to carry a payload [44]

Removal by ROV

The second method is performed by utilizing ROVs with a cutter and a gripping arm. Human
operators manually operate them from an offshore vessel, with a low level of autonomy. This
method is indeed related to a high cost, and the operations rely on both human performance/-
experience and weather conditions. The operator maneuvering the ROV locates and brings
the equipment to the surface by gripping and cutting (if necessary). A problem regarding this
method is the available power since ROVs are powered by batteries with limited capacity. This
issue reduces the number of dives between each search since the ROV must dive and ascend
for each derelict equipment found. The ROV market is also expanding and becoming more
available for amateur use (similar to airborne drones). This may open an opportunity for the
removal of equipment by independent sources. Fig. 1.2 shows an illustration of this method.

Figure 1.2: ROV detecting equipment [37]

The clearly defined requirements proposed by Kleiven, (the group’s contact person and scientist
from the Institute of Marine Research), aimed to utilize removal by ROVmethod with additional
modifications. Their preference was to avoid lifting the ROV to the sea surface for each finding
of marine litter. To maintain the ROV submerged at all times, elements were needed to be
implemented on the ROV, which is the robot arm with a custom-made end-effector, and this
will be introduced and explained more thoroughly later. Furthermore, it is needed to initiate
movement of the derelict pots, so that only the derelict pots are ascending and not the ROV.
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1.2.1 Design and Prototyping

A prototype is an early version of a new product that is presented for testing and demonstration
of the product before further development. The new product can be a machine, instrument,
or computer system. A prototype is often just a preliminary and simplified version of the new
product, where the purpose is to demonstrate and test the features in realistic environments
so that faults and weaknesses can be revealed. A prototype has a significant advantage in the
design process, which is that it simulates the real and future product. It can aid in attracting
customers to invest in the product before assigning any resources needed for implementation.
Additionally, prototyping enables the ability to streamline the design development process,
concentrating on essential interface factors, and at an early stage, unnecessary elements can be
defined and indeed abandoned [23]. A prototype has economic advantages because it reduces
the amount of work in improving the project, which contributes to saving, for instance, a cus-
tomer’s money. In this case, the customer is the Institute of Marine Research.

Simulation is an essential tool for fast prototyping, and a standard method to develop and
function test a robotic system is to create a digital clone within a physics simulation. This is to
ensure the functionality and design to be sufficient for the design case. Advantages by utilizing
a digital clone are the ability to test and experiment with various algorithms/controllers in a
safe environment. Simulation has a great advantage concerning economics since it offers the
ability to develop new models at a lower cost compared to creating multiple physical prototypes.
Damages can also be avoided with a digital version.

There are multiple platforms for simulating real-time applications. One aspect which may
divide these into two main brackets is; Does it require a license? Examples that require a
license are MATLAB and SimulationX. On the contrary are frameworks like SOFA and ROS.
Both are open-source, which means they are maintained and developed by their respective com-
munities. SOFA was initially built to simulate medical procedures but has also proved to be
suited for soft robotics [41]. ROS is an open-source framework for designing and programming
robots [29]. The field of robotics is a wide field of study, with many researchers working on
their respective projects. The advantage of the ROS framework is that methods and shortcuts
are all gathered in one framework to help aid robotics projects for all of its users.

Gazebo is also an open-source simulator of a physical environment and is widely used in con-
junction with ROS due to its customizable environment and the ability to create customized
plug-ins. A plug-in is a part of a software that serves a feature and can be added to an ex-
isting program. It was decided upon to use ROS with Gazebo and MATLAB in this project
due to the growing use on the university and an available license provided by the University of
Agder for MATLAB.Although ROS was chosen for this project, SOFA could prove to be better
suited since it already has implemented fluid dynamics [41]. It is, however, difficult to know the
strengths of each framework without experience.

1.2.2 Selection of Actuators

An important aspect of designing the manipulator is the means of actuation. Conventional
methods are by electric rotational drives or by fluid-driven actuators, both linear and rotational.
An article from Joseph Coleman et al. [34] reviews the commercialized manipulators and how
they are actuated in great detail. However, since the budget of this project is in the lower end,
soft actuators emerged as a potential candidate due to the low cost of production and excellent
force-to-weight ratios. This led to the investigation of pneumatic artificial muscles (PAMs) as
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actuators. PAMs are contractile or extensional devices operated by pressurized air filling a
pneumatic bladder. Although the muscle is primarily pneumatically operated, there is nothing
that prevents the technology from being hydraulically operated as well [5]. Since seawater was
supposed to be utilized and not air, the group made two muscles for testing purposes; one with
air and the other with water operation. The pneumatic muscle was tested with a compressor
and functioned as intended. When the second was made, the group encountered issues due to
low water pressure and a leaking connection. This problem was something the group thought
could be fixed by utilizing a pump with a high-pressure source and low flow rate. Nevertheless,
selecting a suitable pump for this muscle proved more troublesome than expected. The group
discovered fluid-driven origami-inspired artificial muscles (FOAMs). Tab. 1.1 shows the different
artificial muscles compared to each other in different fields, where FOAMs dominate in each
aspect.

FOAMs McKibben PAMs
Cost estimate <$1 <$1 Unknown

Programmability Multi-DoF 1D contraction 1D contraction
Max force-to-weight ratio >10 kN/kg 8 kN/kg >50 kN/kg
Operation pressure Negative and positive High>100 kPa Low<10 kPa

Advantages Safe, large-contraction Simple, powerful Powerful, large-contraction
Limitations Buckling, skeleton failure Small ratio Bulky structure

Table 1.1: Comparison of different fluid-driven artificial muscles [38]

1.2.3 Selection of Sensors

Different sensors are required to be installed and implemented on the robot arm to design and
generate a physical prototype. Such are encoders, which should be mounted in the revolute
joints, and for each incrementation of the links, the encoder will provide feedback, and the pose
of the arm can be estimated. However, it is not realistic that the location of the derelict pot is
always known. For that reason, an idea might be to implement a collision detection sensor.
This kind of sensor can have different forms. Some sensors can serve as a tactile recognition
system, where if pressure is sensed on a surface, the robot will receive a signal to limit or stop its
motions [4]. In this case, the sensor might be a button that sends binary numbers (0 & 1) to the
robot’s interface as feedback. Whenever the carabiner has opened, the number 1, for instance,
should be displayed (meaning: the carabiner is now opened), and then, after a short time, the
number 0 should be displayed, i.e., stop the motion because the end-effector is inserted and the
carabiner is closed. The operation should not initiate before it is certain that the end-effector
is completely attached to the derelict pot, and the carabiner has closed.

If a gripper is to be utilized, a sensor providing feedback whenever the jaws in the gripper
are in contact would be of great importance. There are two options for this task: magnetic
field sensors and inductive proximity sensors. One of the primary differences between
these is the detection method that each option utilizes. The first mentioned uses an indirect
method by observing the mechanism that moves the jaws, not the jaws themselves. The second
one, however, uses a direct method that observes the jaws by detecting objects placed directly
in the jaws. The two options mentioned can be seen in Fig. 1.3a, and Fig. 1.3b.
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(a) Magnetic (b) Inductive

Figure 1.3: Robot gripper with magnetic field sensors and inductive proximity sensors [12]

Furthermore, each option has both advantages and disadvantages. If the magnetic option is
utilized, it is possible to detect, for instance, remarkably small piston strokes if placed directly
into extruded slots on the outside of an actuator. However, this option involves a magnet to
be placed in the piston, which requires that the cylinder walls are nonmagnetic. The induc-
tive proximity sensors enable the cylinder to be composed of any material without requiring
magnets to be placed. Nevertheless, proximity sensors need more space for installation, longer
setup time, and have other variables to consider. The basic sensors for robot grippers shown in
Fig. 1.3a and Fig. 1.3b are employed whenever hard robotics is sufficient. This is not always
desired. When operating with fragile objects, hard robotics may be an issue due to its material
properties. This is where soft robotics plays a significant role, more of this in Sec. 7.1.

1.3 Objectives
This research aims to clarify and propose structure/suggestions for the marine litter market to
achieve a product that the Institute of Marine Research can utilize in their work. This work
will aim to aid the gathering of marine litter by proposing a low-cost manipulator system. A
short presentation of FOAMs [38] is also presented as a possible candidate for a linear actuator
to accommodate the low-cost system.

The group had its primary intention to develop a physical and compact prototype. How-
ever, due to the unexpected COVID-19 pandemic, many limitations occurred along with several
changes concerning the project.

1.4 Research Questions
This thesis’s objective is to investigate further and develop a complementary technology device
for solving the marine litter problem. To achieve this, the research questions listed below have
been identified:

1. Can we design and control a low-cost and easy-to-manufacture robotic arm, which is to
be mounted on a ROV?

2. Can we design a custom-made end-effector that can be utilized for retrieving marine litter?

3. Can we create a digital clone that showcases the proposed design, and simulate its oper-
ation?
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Chapter 2

Theory and Tools

This chapter will present the theory and components used in this project for the design of the
end-effector, the overall system and the simulation. Furthermore, to design the manipulator
successfully, requisite considerations and calculations will also be introduced.

2.1 Requirements
The prototype is required to:

• Pick derelict pot(s) at a predetermined and particular location inside a water tank.

• Have at least 1 DOF

• Contain actuator(s) driven by seawater

The requirements presented above were originally intended for the prototype, which was a
robot arm mounted on a frame in a water tank (Sec. 2.6). Since a ROV would act as a free
and movable base for the manipulator, it was decided that 1 DOF could prove sufficient. As
a consequence, the arm was only thought of having 1 DOF. However, since the focus of the
project turned to focus more on simulation, the group decided to add more DOFs. The location
of the derelict pots is known in the simulation.

Again, the initial idea was to have the actuators driven by seawater. This could help reduce
the actuator’s weight since the surrounding seawater would act as a tank with the necessary
fluid, unlike mineral oil-driven systems, which would need an extra tank to separate the working
fluid from the environment. Another advantage would be if leakage occurred. Seawater leakage
would have had no impact on the environment. However, after investigations and a phone call
with Asker Hydraulikk, the group was told that they were not possible to get in Norway, and
most hydraulic cylinders were not designed to be driven by seawater. To allow for seawater,
they had to be customized in, for instance, England. Since the budget of the project is in the
lower end, this ruled out readily available seawater actuators as a means of actuation. Thus
leading to the investigation of the possibility to utilize a soft robotic actuator.
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2.2 Product Development Theory

Product development methods are imperative, and applying these methods correctly is key for
designing and fabricating a product in the best manner. Product development is an essential
aspect of creating something innovative or improving something existing. This section will
introduce the methods the group has found to be relevant.

2.2.1 Function-Means Tree

What it is

The function-means tree is an organizational and visual decomposition of a product’s main
function, divided into several layers of sub-functions. For each sub-function is the suggested
means to fulfill these. It is organized as a folder structure with a top-down focus [18].

Why apply it

A function-means tree is a tool for concept generation with a top-down approach to the design.
It is a creative process that can be compared to the approach of the morphological chart. A well-
defined tree will have several means for each function and several concepts for the solution [18].

How to apply it

The product to be designed has a main function. This function will be the basis from which one
will partition the sub-functions and corresponding means into sub-folders. For instance, a robot
can be a means for the function of strawberry picking. This robot requires several functions to
operate and to do its job. Functions such as locomotion, storage, power, and navigation are all
means to be fulfilled and may further have sub-functions with their means. A summary of the
function-means tree would be an enabler for creativity with a "top-down" focused design.

2.2.2 Morphological Chart

What it is

A morphological chart is a visual organization of ideas for product development in regards to
solving a product’s sub-functions. Included in the chart are the product’s drawing of means
paired with different ideas on which to realize these functions generated by the developers [24].

Why apply it

A morphological chart is an excellent tool for product development concerning concept genera-
tion. It is a way to give creativity a vessel on which it can unfold itself. Often may innovating
ideas spring to life during a session with the morphological chart, thus to be prompted during
the phase of concept generation [24].

How to apply it

First of all, the product needs to be specified. Furthermore, an evaluation on which sub-functions
the product needs to fulfill its duties must be conducted. These functions are organized such
that each and everyone will have a pool of ideas to choose from when solving the functionality.
Brainstorming is a helpful addition to this method of organizing ideas and concept generation.
Then, each concept is chosen with a combination of listed ideas to become ideas for a final
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solution. It is crucial to try and keep the ideas within the same generality or means as the
function it is supposed to solve. The last note would be to mention that this technique may be
used further than one level of sub-functions. If, for example, the function of a product should
be portable, then a new investigation by a morphological chart may be conducted to resolve its
placement as a portable product.

2.2.3 Evaluation

What it is

Evaluation is the assessment of how the generated concepts solve a set of design dimension
criteria [17].

Why apply it

The reason for applying this method is to organize several ideas concerning given weights and
to decide which concept is the overall best [17].

How to apply it

When designing a product, one must consider different design dimensions such as; area usage,
weight, simplicity, and so on in order to find suitable concepts. Each dimension is then given
a factor on how important it is in relation to the finished concept. Each concept and its
dimensions are evaluated by its factor on how it solved the design dimension. Finally, the
concepts are evaluated and given a final score.
The relative weighting is due to some concepts that may solve some lower weighed dimensions
exceptionally, meanwhile scoring poorly on higher valued design dimensions. The overall score
will, therefore, suggest the best solution according to the weighted design dimensions [17].
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2.3 Robotic Arm

The following subsections are related to the robot arm design and the types of equipment
that are needed. Furthermore, what would be used to design the robot arm physically is also
presented.

2.3.1 Mechanical Links

The function of the links is to attach the end-effector to the derelict pot from the ROV. Since
the links are exposed to seawater, they must be made of a non-corrosive material. Besides,
they are open to the underwater environment and, therefore, should be sturdy due to possible
impacts with the environment. The third moment is the weight of the links, as they are the
most significant contributor to the manipulator’s overall weight. The last points should be
costs as the budget for this project is limited and manufacturing. Tab. 2.1 shows the following
materials that have been evaluated based on the considerations above.

Material Weight Cost Mechanical Manufacture
Plastic +++ +++ - - - +++
Aluminum ++ 0 0 +
Stainless Steel 0 0 +++ +
Bronze ++ - - 0 ++

Table 2.1: Material Selection

Thermoplastics scores highly in the evaluation due to the possibility of additive manufacturing
(3D print), weight, and low costs. However, it is deemed unfit for the purpose, as the printers
constrict the actual size of the parts. It might be an option for an early prototype but not as a
demonstration prototype. The mechanical properties are not suited for a robust design, mainly
due to the limited sight provided by the ROV camera. Collisions can be expected and should,
therefore, be taken into consideration. The metals might, therefore, be a better fit for the links.

2.3.2 Hydraulic Design

Considerations and applications are made during the development of the manipulator system.
When deciding to implement control of the hydraulic system, the weighing of the layout has
been made to fit this purpose. The actuator on the arm is to be actuated by a working fluid
and therefore needs to be controlled by a component. The two main layouts of controlling a
hydraulic circuit are either by pump control or by servo valves.

Servo valves
Pros Easily controlled

Varied flow
Cons Expensive

Hard to get by for seawater
Increased complexity

Table 2.2: Evaluation of servo valves
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Pumps
Pros Easily controlled

Cons Expensive
Hard to get by for seawater

Table 2.3: Evaluation of pumps

Figure 2.1: Proposed hydraulic layout for the actuator

After a great effort of investigating which layout to utilize, the group finally decided that a
bi-directional pump with variable displacement, connected directly to the actuator was the best
choice. Servo valves proved too expensive. Pumps, however, were within the budget.

2.3.3 Pump

The pump should ideally run on seawater, function underwater, and work under pressure con-
ditions. However, off-the-shelf pumps with these properties are not easily found. Oil pumps
might be an option for prototyping, although these pumps are usually in need of lubrication,
which seawater does not provide. An oil pump may be subjected to abrasive corrosion, which is
mechanical deformation due to mechanical contact between movable parts. Since these pumps
are relatively cheap and readily available, they will serve as the pump of choice for prototyping.
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2.3.4 Artificial Muscle

In the market today, there are four main types of actuators: Hydraulic, pneumatic, electric, and
mechanical. Since it is predetermined that the actuator is to employ seawater as its working
fluid, the principle of hydraulic actuators is to be used. A hydraulic actuator consists typically
of a cylinder or fluid motor that utilizes hydraulic power to facilitate the mechanical procedure.
The mechanical movement gives an output in terms of rotary, linear, or oscillatory motion [51].
Motors are often bi-rotational, which is defined by a triangle on the motor. This means that
fluid is permitted to enter at either port. Some pumps can also be motors at the same time,
and further still, be bi-rotational. In this project, no valves will be utilized, and the fluid will
enter an artificial muscle directly instead of a cylinder. This artificial muscle is self-made and
is assembled using a zig-zag skeleton composed of thin 316 steel plates, a TPU film, and a hose
adapter made of plastic. These simple objects assembled correctly will be able to lift 1000x
their weight, according to John A. Paulson et al. [38]

Figure 2.2: Artificial Muscle

Fig. 2.2 shows the working principle of the muscle. The pump pumps water from the ocean
and enters the muscle, making the links move accordingly. In Fig. 2.3, the artificial muscle can
be shown in operation.

Figure 2.3: A water pump-driven hydraulic actuator pulls a fish for 3.5 cm in 20 s [38]
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Springs

The steel links will be driven by a self-made actuator, which utilizes water as its fluid. This
actuator can be made by utilizing a spring as the skeleton, or by zig-zag steel plates. For both
cases, the spring constant, k, must be estimated in order to predict the undeformed length of
the actuator.

F = kx (2.1)

Figure 2.4: Water-driven load lifting test using a spring-based muscle [38].

Fig. 2.4 shows an origami-inspired artificial muscle utilizing a spring as a skeleton. In this case,
the pump will create a suction that will contract the spring and then lift the payload.
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2.3.5 Modeling Theory

Kinematics is the knowledge of the geometric movement of a system, in this case, the arm. The
kinematics are necessary to control the arm in conjunction with the actuators. The kinematics
of the arm, as well as the actuator control for the arm and the theory for modeling of the robotic
arm, will be presented and described in this section. All formulas used in this subsection are
gathered from MAS414: Mechanical Systems 2, unless otherwise specified. The course is held
in Grimstad by Morten Kjeld Ebeesen, an associate professor at University of Agder.

Degrees of Freedom (DOF)

The number of DOF for a mechanical system is the same as the minimum number of coordinates
required to fully define the configuration of the system [25]. The general equation for a planar
system’s number of DOF is given in Eq. 2.2.

DOF = 3 · nb − 2 · nrj − 2 · ntj − 1 · nd (2.2)

Symbol Description
nb: Number of bodies
nrj : Number of revolute joints
ntj : Number of translational joints
nd: Number of driven joints

Other constraints imposed by different joints may also be included in Eq. 2.2 like gears or
revolute-revolute joints.

Joints and Links

In order to define a simplified model of a mechanical system, the links and joints of the system
must be defined accordingly. The links define the mechanical bodies of the system and may
have properties like mass, inertia, stiffness, and damping. A common practice is to align the
local coordinate system for each link with the mass center of gravity for the body.
Joints may connect the bodies of a system. Two types of joints are commonly used, and those
are; translational and revolute for planar motions. These are depicted respectively in Fig. 2.5
and Fig. 2.6.

Figure 2.5: Revolute joint and how it constrains two bodies relative to a global coordinate
system
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Figure 2.6: Translational joint and how it constrains two bodies relative to a global coordinate
system

Denavit-Hartenberg parameters

Jacques Denavit and Richard Hartenberg created a standardized form for finding the forward
kinematics of a robot system of succeeding joints and links. This method uses the length of
the links, and the angles of the joints to find the position of the tooltip on the end of the last
link [1]. By utilizing a very general mathematical notation, the pose of a n-joint robot can be
described by Eq. 2.3.

ζN = K(q; θ, d, a, α, σ) (2.3)

where:

Symbol: Description [unit]:
ζN - Pose
K - Kinematics (function)
q - Vector of the n-joint variables (angles, links[if sliding joint])
θ - Vector of joint angles
d - Vector of link offsets
a - Vector of link lengths
α - Vector of link twists
σ - Vector of joint types

σj =
{
R→ θj = qj

P → dj = qj
(2.4)

σ is a vector that contains factors that are either R or P, and they indicate whether the joint is
revolute or prismatic. In the case of a revolute joint, substitute the corresponding element of θ
from the corresponding element of q. However, for prismatic joints, substitute the corresponding
element of d from the corresponding element of q. All the other elements of d, θ, a and α are
constant [1].

Rotation matrices

When conducting an analysis, some elements can be generalized and reused.
One of these elements is the rotational matrix for planar movement, which describes the rotation
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of a body relative to a fixed reference frame.

A(φ) =
[
cos(φ) − sin(φ)
sin(φ) cos(φ)

]
(2.5)

Where:
φ is the rotation relative to the reference frame in [radians]

The A(φ) matrix can be time differentiated to obtain another useful element for velocity and
acceleration analysis:

B(φ) =
[
− sin(φ) − cos(φ)
cos(φ) − sin(φ)

]
(2.6)

The matrices A(φ) and B(φ) are useful in describing both the joints, revolute and translational,
and the constraints they impose, mathematically.

Jacobian and γ Matrices

The Jacobian matrix is the partially differentiated constraints matrix with the dependent coor-
dinates. It is also possible to derive some general entries into the Jacobian depending on which
joints are present. For revolute joints, the imposed constraints are:

Φ = ri +A(φi) · si −A(φj) · sj − rj = 0 (2.7)

Where:
ri and rj are the distance from the reference frame to the relative frames of the bodies
si and sj are the relative frames for each body

Eq. 2.7 is the mathematical formulation of the vectors depicted in Fig. 2.5. It is worth noting
that if the revolute is connecting a body to the ground, then the last two terms will not be
included in the constraint definition.
By differentiating the constraints in Eq. 2.7, the revolute inputs for the Jacobian can be
acquired.

Φ̇ = ṙi + φ̇iB(φi) · si − φ̇jB(φj) · sj − ṙj = 0 (2.8)

With all the elements thus far could a velocity analysis be conducted, although to conduct an
acceleration analysis, the entries of the Jacobian must be further differentiated.

Φ̈ = r̈i + φ̈iB(φi) · si − φ̇2
i ·A(φi) · si − φ̈jB(φj) · sj + φ̇2

j ·A(φj) · sj − r̈j = 0 (2.9)

As is evident from Eq. 2.9, two unique terms constitute the gamma (γ) matrix. These are
−φ̇2

i ·A(φi) · si and φ̇2
j ·A(φj) · sj . By rearranging, the entries for the γ matrix can be obtained.

A common practice is to put the γ matrix on the right-hand side of the equation, multiplying
the terms by −1.

γ = φ̇2
i ·A(φi) · si − φ̇2

j ·A(φj) · sj (2.10)

The same procedure may be applied to a longitudinal driver, where the driver constrains an
angle dependent on the driver’s length. The following describes the constraints imposed on the
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system by a longitudinal driver and its complimentary differentiated Jacobian entries as well as
the gamma entries. It is also convenient to introduce the length as a vector in order to shorten
the description of the constraints.

d = ri +A(φi) · si −A(φj) · sj − rj (2.11)

ḋ = ṙi + φ̇iB(φi) · si − φ̇jB(φj) · sj − ṙj (2.12)

d̈ = r̈i + φ̈iB(φi) · si − φ̇2
iA(φi) · si − φ̈jB(φj) · sj + φ̇2

iA(φi) · si − r̈j (2.13)

Taking advantage of the notation from Eq. 2.11, 2.12, and 2.13, the constraints for a longitudinal
driver can be written as:

Φ = d′d− (l(t))2 = 0 (2.14)

Where:
d′ is the transposed of the vector describing the driver
l(t) is the function of extension for the longitudinal driver

As Eq. 2.14 states; the longitudinal driver only controls one degree of freedom. Further differ-
entiation with the chain rule leads to the velocity and acceleration description of the constraint:

Φ̇ = ḋ′d+ d′ḋ− 2l(t) ˙l(t) = 0 (2.15)

Φ̈ = 2ḋ′ḋ− 2d′d̈− 2l̇(t) ˙l(t)− 2l(t) ¨l(t) = 0 (2.16)

The entries into the γ matrix might then be extracted:

γ = −2ḋ′ḋ− 2d′ · (−φ̇2
i ·A(φi) · si + φ̇2

j ·A(φj) · sj) + 2l(t) ¨l(t) (2.17)

A System of Unconstrained Bodies - 2D

Equations of motion for a 2D-system consisting of b unconstrained bodies can be written as:


M1

M2
. . .

Mb





r̈1
φ̈1
r̈2
φ̈2
...
r̈b
φ̈b


=



f1
n1
f2
n2
...
fb
nb


(2.18)

M q̈ = g

Eq. 2.18 can be written in compact form:
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Mq̈ = g (2.19)

It might be of interest to examine how mechanical bodies behave when they are unconstrained.
However, most of the time, we are interested in obtaining information about constrained bodies,
which will be introduced below.

A System of Constrained Bodies - 2D

The equations of motion for a 2D-system consisting of b bodies interconnected by kinematic
joints can be written as:

Mq̈ = gext + gc (2.20)

where gc is a vector containing the reaction forces in the constraints. How this vector is calcu-
lated will be illustrated below.

The b bodies in the system must satisfy the equations of motion, yet at the same time, they
must also satisfy a set of m = 3 · b independent constraint equations:

Φ = Φ(q) = 0 (2.21)

The vector q contains m coordinates. The coordinate systems utilized in relation to q and
gc must match. The derivation below for the vector gc containing the reaction forces in the
constraints is based on an energy consideration.

The system is exposed to a virtual displacement δq. It is assumed that the joints are fric-
tion less. The work done by the constraint forces during the displacement is zero as the forces
on the two bodies in the joint are of equal magnitude but opposite in direction and the two
bodies in the joint move the same distance:

gcT
δq = 0 (2.22)

The virtual displacement must be consistent with the constraints:

Φqδq = 0 (2.23)

This is based on a Taylor series:

Φ(q + δq) = Φ(q)︸ ︷︷ ︸
=0 from Eq. 2.21

+ Φqδq︸ ︷︷ ︸
=0

+higher-order terms︸ ︷︷ ︸
To be neglected

(2.24)
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Eq. 2.22 and Eq. 2.23 can be combined and merged into one equation:

gcT
δq = 0

Φqδq = 0
⇓[

gcT

Φq

]
︸ ︷︷ ︸

(m+ 1)×m

δq = 0︸︷︷︸
(m+ 1)× 1

(2.25)

The matrix Φq has the dimensions m ×m and is nonsingular as the constraint equations are
linear independent. Thereby gcT can be expressed as a linear combination of the rows in Φq,
which can be written as:

gc = ΦT
q λ (2.26)

where λ is a vector with the dimension m × 1 containing Lagrange multipliers, that are the
coefficients in the linear combination. This means that the constraint reaction forces can be
expressed by means of the Jacobian matrix and a set of Lagrangian multipliers.

System of Constrained Bodies

Equations of motion:

Mq̈ = gext + gc = gext + ΦT
q λ (2.27)

The constraint equations must also be satisfied:

Φ(q) = 0 (2.28)

Eq. 2.28 is satisfied since it is a kinematic analysis and Eq. 2.27 is rearranged in order to solve
for λ:

Mq̈ = gext + ΦT
q λ ⇓

λ = (ΦT
q )−1(Mq̈− gext) (2.29)
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2.3.6 Reusability

In this section, designing for the use of bolts according to proof load will be introduced. The
advantage of this is that plastic deformation on bolts can be prevented. Proof load is the limit
of the elastic range of a bolt. As long as a bolt is never exposed to radially or axially forces
beyond its specified proof load, one can be assured that it has maintained its original size and
shape and may be safely reused. Steel is an elastic material, and as tension is added, the bolt
stretches a certain amount. After reaching the yield strength, a bolt has become so permanently
deformed that it is generally accepted to no longer be safely reusable due to a loss of ductility
(when a solid material deforms under tensile stress without breaking) [40].
Fig. 2.7 shows the region of reusability.

Figure 2.7: A simplified illustration that shows only up to the yield point [40]

Bolts can come loose. Therefore, a bolt with a high proof load is vital. There are multiple
reasons for bolts to loosen, and some major reasons are [39]:

• Vibration. This can create relative transverse movement, which leads to self-loosening
of the nut.

• Relaxation. This occurs after tightening due to embedment or gasket creep.

• Temperature fluctuation of objects.
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2.3.7 PID Controllers

The PID controller is the most widely utilized controller type in the process industry and
automation. It is a type of controller that calculates an output value based on the mathematical
operations proportional gain (P), integral effect (I), and derivative effect (D) used on the input
signal. The user can decide how to combine these three parts and how much is used for each
part (tuning). Each part is summed to form the controller output signal u(t). The difference
between the setpoint (desired value), yset and the measurement, y(t) is called the regulation
deviation e(t), and this deviation should be as small as possible over time [15]. Fig. 2.8 shows
a block diagram of a PID controller in a feedback loop.

Figure 2.8: PID controller

P-part

In the P-part, a contribution that is proportional to the regulatory deviation we have at a
particular time is calculated. The P-part reacts a lot to large deviations and less to small ones.

Pout = Kpe(t) (2.30)

I-part

The I-part has to reset controllers (automatic reset). To integrate means to gather, and this is
how the I-part of the controller works as well. The I contribution is a result of the accumulated
average deviation; it only takes little account of the deviation at a certain time! The integrator
stops integrating when the deviation is zero; Then yset = y(t).

Iout =
∫ t

0
e(τ)dτ (2.31)
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D-part

The D-effect in the controller looks at changes in the deviation (or measurement) and contributes
to the output signal that is dependent on this change. If the change is zero (flat curve), then
the contribution from the D-part is also zero. This is why the D-part is not used alone, but
only in combination with the P and I parts.

Dout = Kd
de(t)
dt

(2.32)

Now, summarizing Pout, Iout, and Dout, a mathematical form of the equation u(t) can be
obtained in Eq. 2.33. However, it is advantageous to use the standard form of the equation (Eq.
2.36), because it includes the reset time (Ti) and the derivative time (Td). These parameters
have some understandable physical meaning. The Eqs. 2.34 and 2.35 show the substitutions to
convert from mathematical form to standard form.

u(t) = Kpe(t) +Ki

∫ t

0
e(τ)dτ +Kd

de(t)
dt

(2.33)

Ki = Kp

Ti
(2.34)

Kd = Td ·Kp (2.35)

As mentioned above, it is advantageous to use the standard form of the equation, Eq. 2.36.

u(t) = Kp

(
e(t) + 1

Ti

∫ t

0
e(τ)dτ + Td

de(t)
dt

)
(2.36)
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2.4 Custom-Made End-Effector
At the edge of the robot arm, the custom-made end-effector is to be installed appropriately. As
the word "custom-made" suggests, the end-effector is designed for the particular task, namely,
attaching it to a derelict pot. The different equipment utilized will be presented here.

2.4.1 Inflator Body

A release mechanism that is used in life jackets will be utilized, and its function is to fill a
lifejacket with air [49]. In this case, this will be used to fill the balloon with air and then lift
the derelict pot to the sea surface. This section will introduce what components were used and
how this approach has been made.

Figure 2.9: Lifejacket Rearming Kit for UML-5

Fig. 2.9 shows the mechanism which inflates a lifejacket. When the manual inflation lever is
pulled, the CO2 cylinder will be activated by a needle that is inside the inflator body, and then
the lifejacket will be filled with air (CO2). Another possibility to activate the CO2 cylinder is to
remove the water-sensing cartridge and the auto-firing indicator. If removed, a button formed
like an "H" can be seen, and if this button is pushed, the needle will activate the CO2 cylinder.
The last-mentioned method of activating is the one that will be utilized. In addition to this
mechanism, a carabiner will be included. The attaching of the box concept was selected along
with the carabiner. More of this will be introduced in Sec. 3.4
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2.4.2 Carabiner

Together with the inflator body, a carabiner is going to be used. This section will contain some
information about the carabiner

Figure 2.10: Carabiner

The amount of force required to open the carabiner is of high interest. The force is needed to
inject it onto the derelict pot and is obtained by experiments, which can be shown in Fig. 2.10.
After testing several masses, the one that opened the carabiner successfully was at approximately
3 kg. The pump chosen for this purpose needs to deliver enough pressure to the muscle such
that the muscle opens the carabiner.

Carabiner Materials

• Steel carabiners are perfect for industrial use, as they have enormous strength. However,
Croft [10] discourages to use these in seawater, because of their propensity to rust and
degrade.

• Aluminum carabiners are what should be used for underwater applications, according
to Croft [10]. They do not rust. However, if left in wet gear for an extended period, they
can corrode. After use, they should be cleaned. If they start corroding, then they will
eventually be weakened to the point of not being usable.

There might be other mechanisms that could have been used for the attaching of the end-
effector. However, the group has done a considerable investigation and considers a carabiner to
be sufficient for this project. The one shown in Fig. 2.10 is an aluminum carabiner, the sort of
type intended to be used in the end-effector.
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2.5 Buoyancy
An important contribution that will occur and needs to be taken into consideration is buoyancy.
Imagine holding a slightly heavy object by hand. Holding that same object in a container full
of water, it will feel lighter. See Fig. 2.11. That introduces the concept of buoyancy.

Figure 2.11: Illustration of an object in water

When an object is placed inside a fluid, the fluid pressure increases with depth. Since the
pressure increases, the deeper we go, the force exerted upward due to the pressure will be
greater than the force exerted on the top. This net upward force exerted on objects submerged
in fluids is called the buoyant force.
Buoyancy is the sum of the forces acting against the surface of an object when fully or partially
immersed in a liquid or gas. According to the Archimedes’ principle, the buoyancy is directed
vertically upwards and equal to the weight of the gas- or liquid amount displaced [27]:

B = ρfV g (2.37)

The net force on an object must be zero if it is to be a situation of fluid statics such that the
Archimedes principle is applicable. It is the sum of the buoyancy force and the object’s weight:

Fnet = 0 = mg − ρfV g (2.38)

where:

Symbol: Description [unit]:
B - Buoyant force [N ]
ρf - Density of the fluid [kg/m3]
V - Volume of the displaced body of liquid [m3]
g - The gravitational acceleration at the location in question [m/s2]
Fnet - The net force on object [N ]
m - Mass of object [kg]
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2.6 Underwater Testing
Since the mission was to design a prototype suitable for working underwater, this had to be
tested. Whenever reference is made to the water tank in the report, then it is referred to the one
shown in Fig. 2.12. Only the robot arm was supposed to be submerged into water. However,
the pump and other hardware were supposed to be placed outside the tank. Nevertheless, this
was not used due to unexpected circumstances (more of that in Discussion)

Figure 2.12: Water tank

2.7 Pressure Losses
As a first consideration, the plan was to place the pump and other hardware outside the water
tank. This action will, indeed, lead to a distance from the pump to the actuator. Increased
distance introduces pressure loss in lines/hoses. When fluid enters one end of a hose and leaves
the other, pressure drop, or pressure loss, take place. During operation, fluids, solids, liquids,
or gasses rubbing against the interior walls of the hose will cause friction. The pressure loss can
be estimated with engineering models using fluid type, assembly specifications, flow rate, and
more [9]. This subsection will contain the necessary operations done in order to minimize the
losses and formulas used to calculate them. All formulas used in this section are gathered from
MAS410: Hydraulic Components and Systems, unless otherwise specified.

Pressure Losses In Lines: Darcy-Weisbach equation

∆p = λ · L
d
· 1

2 · ρ · u
2 (2.39)
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Pressure Losses In Fittings (bends, turns, crossings etc.)

Figure 2.13: An illustration of fittings

If there are two different geometries, two different equations are necessary to utilize in order to
find the pressure loss, which are Eq. 2.39 and Eq. 2.40. Fig. 2.13 illustrates what is meant by
fittings.

∆p = ζ · 1
2 · ρ · u

2 (2.40)

where:

Symbol: Description [unit]:
∆p - Pressure difference [bar]
λ - Friction number [−]
L - Length of pipe/hose [m]
d - Diameter of pipe/hose [m]
ρ - Fluid density (seawater) [kg/m3]
u - Fluid velocity [m/s]
ζ - Empirical friction factor

As a final statement, the group calculated the pressure losses for this specific scenario (i.e.,
referring to if the pump and the other hardware were placed outside the water tank), yet an
actual and physical prototype would not have a considerable distance from the pump to the
actuator. The pump would have been installed in a suitable place in the ROV, i.e., there would
be a very short distance from the pump to the actuator. A short distance indicates very small
to none pressure loss.
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2.8 Simulation

ROS will in this project handle operations such as communication between the simulated envi-
ronment in Gazebo amongst other tasks. In order to give the reader a better understanding of
a typical ROS setup, the concepts: Nodes, Topics, Messages, URDF and Package will be
further explained in short.

Nodes

A node is an independent running executable which may be defined according to its desired
function of publishing, subscribing or both to a stream of data. An example of a node is the
input command to a controller, which then would be publishing the data of commands.

Topics

A topic is data which is published by a node. To continue the aforementioned example; The
topic is the command data from the node.

Message

A message is a definition of data which aids ROS to convert the data into different languages.
The two main languages which is used within the ROS framework is Python and CPP. A
message contains a field and a constant or a parameter.

URDF

URDF, or Unified Robot Description Format, is a XML based format for describing the robot.
The description may contain geometry and properties of the robot, description of sensors and
addition of custom plugins.

Package

A package is a structured directory in a catkin workspace containing the source code and
instructions like dependencies towards other packages. The most common practice is to save
packages in a catkin workspace similar to Fig. 2.14.

Figure 2.14: Description of a package and how it is organized within the workspace [31]
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Gazebo

Gazebo is a simulation environment popular among ROS users due to the possibility of creating
and integrating custom plugins. Gazebo-ROS packages are also relatively well developed and
are useful for connecting the two interfaces.
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Chapter 3

Methods

The procedure of how this project has been carried out is introduced in this chapter. During
the beginning of the project, a physical prototype was intended to be designed and generated.
However, later during the semester, some changes occurred, and the main focus on the project
became now simulation, which meant to focus more on software and not hardware.

3.1 Project Approach: Scrum Development Methodology
This method is the most widely favored, agile software development approach. Essentially,
this method is suitable for those development projects that are continually altering or too
developing requirements. To give a general overview of how this method works before going in
detail, it is merely a development model that initiates with transitory planning and conference
and completes a concluding review.

Figure 3.1: Scrum method [42]
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Key Roles

Three key roles are needed for the framework to work well. First: The product owner, which
is the person responsible for defining the features that are needed in the product. The product
owner has bright ideas that turn into products. The scrum master is a servant leader to the
team, responsible for protecting the team and the process, running the meetings, and keeping
things going. The team can consist of developers, testers, and anyone else that helps in building
the product [50]. In this case, the supervisors are the product owners and the scrum masters,
yet the team is the students.

Product Backlog

This is where the product owner generates a list of the bright ideas and features, which are known
as user stories, that could go into the product. Furthermore, the product owner prioritizes this
generated list, and then the top items are brought to the team.

Sprint Planning

In this phase, the product owner, scrum master, and the team meet to discuss the user stories
with top priority and estimate their relative sizes. What is approved to go into the next sprint
will be decided here.

Sprint Backlog

User stories are a method of describing a feature set that follows a specific format that allows
the product owner to specify the correct amount of detail for the team to approximate the size
of the task. This is a list of user stories [22] that have been committed to for the next sprint.
The team and the product owner have a great comprehension of what each of the user stories
involves based on the discussions from the sprint planning meetings [16].

Sprint Execution

Sufficient planning is done to start with building the minimal feature set. What was planned
is then build. Next, that small feature set is tested and reviewed, making it clear to "ship."
When that cycle is complete, this results in a potentially shippable product, as seen in Fig. 3.2.
This process typically occurs in 1-3 weeks, and this is repeated time and time, reducing the
time from planning to development to testing. Each time through the planning process, only
sufficient planning is done to complete the next incremental release. In the end, this results in
several incremental releases (sprints). A sprint takes typically from 1-3 weeks, and the sprints
are just repeated until the product is feature complete.

Figure 3.2: Illustration of sprints
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During the sprint, the Daily Scrum occurs. This is a brief stand-up meeting, where the team
discusses what they have completed since the previous meeting, what they are working on, and
as well as any blocked items. The outcome is a Potentially Shippable Product, which means
that the product owner can decide if it is ready to ship or any additional features needed before
it finally ships.

Sprint Review & Sprint Retrospective

The Sprint Review and Sprint Retrospective meeting occurs at the end of the sprint. The
first mentioned is where the team showcases their work to the product owner, and the last
mentioned is where the team discusses what they can do to improve their process.

For each sprint, repeat the workflow shown in Fig. 3.1.
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3.2 Product Development Approach
This section will contain different design approaches, which have been made by the aid of the
product development methods. Besides, the advantages, disadvantages, and the application of
the different concepts will be introduced. Afterward, they will be graded based upon simplicity,
time consumption, efficiency, and other factors, which can be shown in Tab. 3.1. The one with
the highest points will be chosen. All concepts are designed in SolidWorks.

3.2.1 Function-Means Tree

Figure 3.3: Function-Means Tree

Fig. 3.3 shows a function-means tree (FMT) and its purpose is to generate a graphical overview
of the functions the end-effector should have to solve the main task of gathering derelict pots.
Since the end-effector has a vital task, the group team members considered the material to be
used, as well as production and storage, to mention a few.

3.2.2 Morphological Chart

The group did some thoroughly thinking of concepts for this assignment and took into consid-
eration their functionality. Furthermore, some hand sketches were made to convey ideas easily
and later SolidWorks was utilized to obtain more detailed and professional concepts. Based on
the FMT, concepts were designed. These concepts are illustrated below.
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Object Storage

(a) Complete figure (b) Close view of gripper

Figure 3.4: Object Storage

Fig. 3.4a shows a simple illustration of the first concept considered. This concept uses the
principle that whenever a derelict pot (or any other object for that matter) is detected, the arm
will grasp it by utilizing a self-made gripper and store it in a container attached to the ROV.
The container should be mounted on the top of the ROV. Otherwise, the arm would require
more DOF.

Inserting Box

Figure 3.5: Inserting Box

Fig. 3.5 illustrates the second method considered. This concept works in such a manner that a
customized arm will insert a self-made box (containing a balloon) inside the derelict pot. The
ROV has an opening (not visible on the figure), which allows for the sliding mechanism to slide
back and forth. The box functions as a hand grenade, i.e., it will be triggered after release.
A possibility here is to have a detonator inside the box, which the user steering the ROV can
activate. A camera mounted on the ROV is required to show the user that the box is inside the
crab pot. The balloon will then start expanding and thus lifting the crab pot to the sea surface.
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Attaching Box

This concept is a simplification of the previous concept, yet the principle is precisely the same.
The mission is to lift the derelict pots to the sea surface. Instead of inserting the box inside the
derelict pot, a carabiner will be used to initiate the box to activate and expand.

Figure 3.6: Attaching Box

Fig. 3.6 shows a simple illustration of how the assembly of the robot arm works. The figure
shows neither the ROV nor the balloon inside the box. The artificial muscle will ensure that
the links are expanded and contracted.

3.2.3 Evaluation of the Concepts

Since evaluation without system can be difficult, the method described in Sec. 2.2.3 was used.
To determine the best suitable concept for the task, a table, weighting each concept up against
each other on their ability to satisfy the criteria, is made.

Requirement Object Storage Inserting Box Attaching Box
Ability to steer + - +
Design - + +
Assembly 0 + +
Price 0 0 0
Mass 0 0 0
Safety + - +
Efficiency 0 0 +
Load capacity 0 0 0
Total score 1 0 5

Table 3.1: Concept evaluation
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The Attaching Box concept is chosen for further development, as this design seems to be best
suited for the task. The Object Storage concept could defeat its purpose of saving battery time
since the derelict pots are carried by the ROV. Besides, to be able to gather many derelict pots,
a great amount of space is required. The Inserting Box concept could be a great solution, yet
the insertion of the box would demand camera vision and very precise insertion, as one would
need to get inside the potholes. Now that the concept is chosen, the derelict pot is assumed to
be in a fixed and known distance from the arm.

Figure 3.7: Simplified drawing of concept

Fig. 3.7 shows a simplified drawing of the concept for the manipulator with its components. The
figure shows how the concept primarily was intended to look like, but later during the semester,
the group added one more actuator and expanded the amount of DOF. Hence a revolute joint
between the ROV and the first link (link 1).
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3.3 The Robotic Arm
In this section, will the components of the manipulator, as well as the required theory to control
the manipulator, be presented.

3.3.1 Encoders

An encoder is, in simple terms, an electromechanical feedback device that provides info about
position, speed, count, and direction. They produce signals that are received by a control device
in order to perform a specific function. Absolute and incremental are two main categories of
encoders. The last-mentioned provide a steady stream of high and low pulses that indicate
movement from one position to the next. It does not indicate its position, only the change
in position. However, absolute encoders, indicate both that the position has changed and the
location of that position with respect to shaft rotation. It provides a digital word (bit) for
each increment of rotation. Absolute encoders are the best choice for applications where exact
position needs to be known [8].

Encoders are to be utilized and mounted in the revolute joints. When the robot links move,
the encoder will provide us information about how much it has turned. Then, it is possible
to calculate the position of the end-effector. Fig. 3.8 shows a rotary encoder knob that can
be rotated unlimited times. It has a flat sided shaft and has a built-in push button under the
shaft. It is very lightweight (6.43 g), so it will not affect the movement of the arms.

Figure 3.8: Encoder
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3.3.2 Actuators

As mentioned in Sec. 1.2.2, the group fabricated two actuators. This section will introduce how
they were constructed and an explanation of the muscles. The idea behind the muscles/actuators
is that one end is attached to the first link, and the other end of the actuator is attached to the
second link. Same for the second muscle, which is to be attached to the ROV and the first link.

Pneumatic Artificial Muscle

The reason why these muscles were created in the 1950s was because of orthotics [11]. They
have several benefits, e.g., being lightweight, uncomplicated to manufacture, self-limiting (i.e.,
have a maximum contraction), and have load-length curves similar to the human muscle. The
muscles are assembled of an inflatable inner tube/bladder inside a braided mesh, clamped at
the ends. When the inner bladder is pressurized and expands, the geometry of the mesh acts
like a scissor linkage and translates this radial expansion into linear contraction. In general
terms, the artificial muscle contracts up to a maximum of typically 25% in a linear motion [28].
Furthermore, it is possible to achieve contractions around 40% though different materials and
construction. Technically speaking, they can be designed to be lengthened as well, yet buckling
may occur. Their operation stages can be shown respectively in Fig. 3.9a and Fig. 3.9b

(a) Relaxed (b) Pressurized, contraction

Figure 3.9: Pneumatic artificial muscle (PAM)
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Hydraulic Artificial Muscle

When the pneumatic artificial muscle was made, the group was content with the results. Then,
it was decided to manufacture another muscle actuated by water since this was one aspect of
the master’s thesis. However, this proved to be more demanding than expected, and the reason
was, the group believed, the low water pressure from the tap combined with leakage from the
water hose connection. Pressure from tap water is typically set to be between 2-6 bar. From
Fig. 3.10a, and 3.10b, it can be seen that there is barely any contraction when the inner bladder
is pressurized by water. In Fig. 3.10b, a significant amount of leakage from the water hose was
present. The group discussed this issue and thought that if the hose was near leakage-free, the
problem would be solved.

However, the pressure from the water hose was not high enough to create the contration,
the group concluded that this artificial muscle would not fit this purpose and could not be
used unless a pump capable of delivering enormous pressure was utilized. As mentioned earlier,
finding a suitable pump for this purpose proved to be very challenging. After a great effort of
researching and attempting to solve this issue, the FOAM was discovered. This was an excellent
method since it did not require a lot of pressure nor flow rate, yet it was able to lift 1000x its
own weight [38]. The group finally realized how the actuator was supposed to be designed, and
now it was time to order the necessary elements to manufacture it.

(a) Relaxed (b) Pressurized, barely any contraction

Figure 3.10: Hydraulic artificial muscle

These actuators were fabricated before the school’s lockdown, and before the items that the
group ordered for the project arrived. When the items finally arrived, the group did not have
access to the schools utilities nor the items.
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3.3.3 System Analysis

In order to continue the mechanical design of the manipulator, a kinematic analysis must be
conducted. The links are made of 316 steel, have a mass of 4 kg, and a diameter of 40mm. The
idea is to mount the first body (body 1) to the ROV with a revolute joint. Two linear actuators
will ensure that the links are actuated according to the requirements of the end-effector.

Figure 3.11: Simplified analysis of the arm

The following constraints are present:

• A revolute joint between the ROV (ground) and body 1 (= 2 constraints)

• A revolute joint between body 1 and body 2 (= 2 constraints)

• A longitudinal driver between the ROV and body 1 (=1 constraint)

• A longitudinal driver between body 1 and body 2 (=1 constraint)

Both longitudinal drivers are, in fact, artificial muscles (Sec 2.3.4), yet behave precisely as a
hydraulic actuator, and are therefore modeled and simulated as such.

The longitudinal driver/artificial muscle between the ROV and body 1 is defined as:

1. d1(t) = 0.2m+ 0.05 m
s · t

while the one between body 1 and body 2 is defined as:

1. d2(t) = d1(t)

To summarize, there are in total six constraints (four kinematic and two drivers) that correspond
to the six Cartesian coordinates assigned to the two bodies. The next pages will show the Φ,
Φ̇, and Φ̈ constraints, and later a more thorough explanation will be introduced by showing
step-by-step calculations and how the Jacobian and γ entries are obtaining for the constraints.
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The mathematical formulation of the constraint is:

Φ =
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The time derivative of the constraint is:

Φ̇ =



φ̇1 ·B1

[
−0.5 · L1

0

]
+ ṙ1
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= 0

The second time derivative of the constraint is:
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= 0

A longitudinal driver controls the distance between two points located on two individual
bodies. The length is specified in the function l(t) and a longitudinal driver controls one DOF.
In order to calculate the kinematic constraints, the driver needs to be replaced by a vector d,
illustrated in Fig. 3.12.

Figure 3.12: Longitudinal driver

The following vectors are defined and substituted for respectively driver 1 (from ROV to body
1) and driver 2 (the driver between body 1 and body 2):
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[
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]
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Furthermore, the vector variables are differentiated with respect to time.

ḋ1 = ṙ1 + φ̇1 ·B1

[
0

0.08

]
(3.1)

ḋ2 = ṙ2 − φ̇2 ·B2

[
0

0.08

]
− ṙ1 + φ̇1 ·B1

[
0

0.08

]
(3.2)

Now that the vectors have been differentiated with respect to time, the Φ constraint for the
first longitudinal driver is:

Φ = (d1)Td1 − (d1(t))2 = 0 (3.3)

Φ̇ = ˙(d1)Td1 + (d1)T ˙(d1)− 2d1(t)ḋ1(t)

= 2(d1)T ˙(d1)− 2d1(t)ḋ1(t) = 0

= 2(d1)T
(
ṙ1 + φ̇1 ·B1

[
0

0.08

])
︸ ︷︷ ︸

Substituting with Eq. 3.1

−2d1(t)ḋ1(t) = 0 ⇓

[
2(d1)T 2(d1)TB1

[
0

0.08

]]
︸ ︷︷ ︸

Entries in Jacobian matrix

[
ṙ1
φ̇1

]
= 2d1(t)ḋ1(t) (3.4)

Eq. 3.4 shows the entries that define the Jacobian matrix for the first driver. It is of in-
terest to obtain the gamma matrix as well. In order to so, the Φ̇ and Eqs. 3.1 and 3.2 need to
be differentiated with respect to time to obtain the acceleration matrix.

d̈1 = r̈1 + φ̈1 ·B1

[
0

0.08

]
− φ̇2

1 ·A1

[
0

0.08

]
(3.5)

d̈2 = r̈2 − φ̈2 ·B2

[
0

0.08

]
+ φ̇2

2 ·A2

[
0

0.08

]
− r̈1 + φ̈1 ·B1

[
0

0.08

]
− φ̇2

1 ·A1

[
0

0.08

]
(3.6)

Φ̈ = 2 ˙(d1)T ˙(d1) + 2(d1)T ¨(d1)− 2ḋ1(t)ḋ1(t)− 2d1(t)d̈1(t)

= 2 ˙(d1)T ˙(d1) + 2(d1)T
(
r̈1 + φ̈1 ·B1

[
0

0.08

]
− φ̇2

1 ·A1

[
0

0.08

])
︸ ︷︷ ︸

Substituting with Eq. 3.5

−2
(
ḋ1(t)

)2
− 2d1(t)d̈1(t) = 0 ⇓
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[
2(d1)T 2(d1)TB1

[
0

0.08

]]
︸ ︷︷ ︸

Entries in Jacobian matrix

[
r̈1
φ̈1

]
=

2
(
ḋ1(t)

)2
+����

��:0
2d1(t)d̈1(t)︸ ︷︷ ︸
d̈1(t) = 0

+ 2(d1)T
(
φ̇2

1 ·A1

[
0

0.08

])
− 2 ˙(d1)T ˙(d1)︸ ︷︷ ︸

Entries in γ matrix

(3.7)

Now for driver 2, the operation is done in the same procedure.

Φ = (d2)Td2 − (d2(t))2 = 0 (3.8)

Φ̇ = ˙(d2)Td2 + (d2)T ˙(d2)− 2d2(t)ḋ2(t)

= 2(d2)T ˙(d2)− 2d2(t)ḋ2(t) = 0

= 2(d2)T
(
ṙ2 − φ̇2 ·B2

[
0

0.08

]
− ṙ1 + φ̇1 ·B1

[
0

0.08

])
︸ ︷︷ ︸

Substituting with Eq. 3.2

−2d2(t)ḋ2(t) = 0 ⇓

[
−2(d2)T 2(d2)TB1

[
0

0.08

]
2(d2)T −2(d2)TB2

[
0

0.08

]]
︸ ︷︷ ︸

Entries in Jacobian matrix


ṙ1
φ̇1
ṙ2
φ̇2

 = 2d2(t)ḋ2(t) (3.9)

Φ̈ = 2 ˙(d2)T ˙(d2) + 2(d2)T ¨(d2)− 2ḋ2(t)ḋ2(t)− 2d2(t)d̈2(t)

= 2 ˙(d2)T ˙(d2) + 2(d2)T
(
r̈2 − φ̈2 ·B2

[
0

0.08

]
+ φ̇2

2 ·A2

[
0

0.08

]
− r̈1 + φ̈1 ·B1

[
0

0.08

]
− φ̇2

1 ·A1

[
0

0.08

])
︸ ︷︷ ︸

Substituting with Eq. 3.6

−2
(
ḋ2(t)

)2
−���

���:
0

2d2(t)d̈2(t)︸ ︷︷ ︸
d̈2(t) = 0

= 0 ⇓

[
−2(d2)T 2(d2)TB1

[
0

0.08

]
2(d2)T −2(d2)TB2

[
0

0.08

]]
︸ ︷︷ ︸

Entries in Jacobian matrix


ṙ1
φ̇1
ṙ2
φ̇2

 =
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2
(
ḋ2(t)

)2
+ 2(d2)T

(
φ̇2

1 ·A1

[
0

0.08

])
− 2(d2)T

(
φ̇2

2 ·A2

[
0

0.08

])
− 2 ˙(d2)T ˙(d2)︸ ︷︷ ︸

Entries in γ matrix

(3.10)

Now, the revolute joints are addressed. First the one between ROV and body 1, then the one
between body 1 and body 2. A revolute joint, which is shown in Fig. 3.13, is a hinge between
two bodies. The points P and Q must have the same position, velocity, and acceleration for the
joint to be satisfied.

Figure 3.13: Revolute joint

Φ = r1 +A1

[
−0.5 · L1

0

]
= 0 (3.11)

Φ̇ = ṙ1 + φ̇1 ·B1

[
−0.5 · L1

0

]
= 0 ⇓

 I︸︷︷︸
Identity matrix

B1

[
−0.5 · L1

0

]
︸ ︷︷ ︸

Entries in Jacobian matrix

[
ṙ1
φ̇1

]
= 0 (3.12)

Φ̈ = r̈1 + φ̈1 ·B1

[
−0.5 · L1

0

]
− φ̇2

1 ·A1

[
−0.5 · L1

0

]
= 0 ⇓

[
I B1

[
−0.5 · L1

0

]]
︸ ︷︷ ︸
Entries in Jacobian matrix

[
r̈1
φ̈1

]
= φ̇2

1 ·A1

[
−0.5 · L1

0

]
︸ ︷︷ ︸

Entries in γ matrix

(3.13)

Now for the second revolute joint, the operation is executed in the same procedure.

Φ = r1 +A1

[
0.5 · L1

0

]
−A2

[
−0.5 · L2

0

]
− r2 = 0 (3.14)

Φ̇ = ṙ1 + φ̇1 ·B1

[
0.5 · L1

0

]
− φ̇2 ·B2

[
−0.5 · L2

0

]
− ṙ2 = 0 ⇓
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[
I B1

[
0.5 · L1

0

]
−I −B2

[
−0.5 · L1

0

]]
︸ ︷︷ ︸

Entries in Jacobian matrix


ṙ1
φ̇1
ṙ2
φ̇2

 = 0 (3.15)

Φ̈ = r̈1 + φ̈1 ·B1

[
0.5 · L1

0

]
− φ̇2

1 ·A1

[
0.5 · L1

0

]
− φ̈2 ·B2

[
−0.5 · L2

0

]

+φ̇2
2 ·A2

[
−0.5 · L2

0

]
− r̈2 = 0 ⇓

[
I B1

[
0.5 · L1

0

]
−I −B2

[
−0.5 · L1

0

]]
︸ ︷︷ ︸

Entries in Jacobian matrix


r̈1
φ̈1
r̈2
φ̈2

 =

φ̇2
1 ·A1

[
0.5 · L1

0

]
− φ̇2

2 ·A2

[
−0.5 · L2

0

]
︸ ︷︷ ︸

Entries in γ matrix

(3.16)

Now that all the necessary constraints have been addressed, the solving of these equations and
the reaction forces is done in MATLAB, and the scripts can be found in Appendix B.10. The
reaction forces are solved with the method presented in Sec. 2.3.5: A System of Constrained
Bodies - 2D. Fig. 3.14 illustrates the points of action, which are needed for understanding the
figures showing the reaction forces. The skeletons for these scripts were provided by Morten
Kjeld Ebbesen as a part of the course MAS414: Mechanical Systems 2.

Figure 3.14: Explanation

The figures below show how the reaction forces behave during a timespan of 4 seconds.
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Figure 3.15: Reaction forces on the first link (body 1)
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Figure 3.16: Reaction forces on the second link (body 2)
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Figure 3.17: Pose for the two links.
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Figure 3.18: Velocities for the two links
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Figure 3.19: Accelerations for the two links
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3.3.4 Actuator and Pump Design

This subsection will illustrate what calculations need to be done for the actuator to work ade-
quately. In addition, equations to be utilized for selecting a sufficient pump will also be shown.
For many applications used in industry, an open-loop (OL) hydraulic circuit is not adequate,
because it is impossible to control the flow going into an actuator. Closed-loop systems (CL) are
utilized in such cases. The pump can define the main difference. The OL draws all of its flow
from a reservoir and delivers the majority of it back to the reservoir, after executing a specific
function. However, the CL draws most of the flow directly from the outlet of an actuator(s).
When changing the circuit from OL to CL, this implies that the command signal for the servo
valve(s) and the variable pump(s) will be changed from a command signal to a position signal.
This leads to another behavior compared to using an open-loop because now the position will
be controlled and not the signal [35]. However, servo valves are not used for this project. The
only variable to control is the pump. The maximum forces, i.e., the worst-case scenario, the
actuators require are computed in MATLAB and are respectively:

• Fdriver1 = 7.56N &

• Fdriver2 = 12.06N

According to John A. Paulson et al. [38], a 1 kg weight can be effortlessly lifted in the air by a
cylindrical muscle using water as the internal fluid (flow rate: 80mL/min). Furthermore, they
claim that air is the most reachable fluid for making a lightweight artificial muscle, and the
surrounding water can be directly used for actuation in an underwater environment.

The artificial muscles are going to be controlled by Pump Control, and the method is ob-
tained from MAS410: Hydraulic Components and Systems. This is based on controlling the
flow into the actuator. This is a suitable method because it has:

• No power losses (pP = pA and QP = QA)

• Constant velocity

The pump which is to be used is variable and bi-rotational. The process has two operations:

1. Moving downwards to insert the end-effector to the derelict pot

2. Returning to a desired position, depending on the operator maneuvering the ROV and
the arm (the overall system)

In this case, only point 1 is considered. Depending on how much force the actuator requires, a
suitable pump and cylinder can be selected. To clearly illustrate and clarify how the cylinder
is modeled, an ISO schematic of the hydraulic circuit is shown in Fig. 3.20.

49



In order to increase the flexibility of the system by having the opportunity to adjust the piston
velocity during extension easily, the use of flow control valves (FCVs) should be considered.
However, the group finds it of higher importance to complete the given task, instead of control-
ling the velocity.

Figure 3.20: Circuit

Fig. 3.20 shows the hydraulic circuit. The following equations are utilized:

A = π

4 · (dbore)
2 (3.17)

Arod = π

4 · (drod)
2 (3.18)

a = A−Arod (3.19)

The table below lists the known parameters of the system.

Symbol: Description [unit]: Value:
dbore - Bore side diameter [m] 30e-3
drod - Cylinder rod diameter [m] 15e-3
v - Piston velocity [m/s] 0.05
A - Area of bore side [m2] 7.069e-4
Arod - Area of rod [m2] 1.767e-4
a - Area of rod chamber [m2] 5.301e-4

By using Newton’s second law, the following can be obtained:

∑
F = m ·��7

0
ẍ︸ ︷︷ ︸

d̈1(t) = d̈2(t) = 0

⇓
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Since the only operating condition under investigation is the piston extension with resistant
load, then the pressure due to the external load is defined as:

pP ·A−��>
0

pa · a︸ ︷︷ ︸
pa = 0

= Fdriver ⇓

pP = Fdriver
A

(3.20)

Furthermore, Eq. 3.21 − Eq. 3.25 are necessary equations for finding a suitable pump:

αP = DP

DPMax

(3.21)

Qth,P = (αP ·DPMax
) · nP (3.22)

Tth,P = (αP ·DPMax
) ·∆pP

2π (3.23)

QP = Qth,P · ηvP (3.24)

TP = Tth,P
ηhmP

(3.25)

where:

Symbol: Description [unit]: Value
αP - Displacement setting. For "standard" units → 0.25 ≤ α ≤ 1 [−]
Qth,P - Max theoretical flow. Obtained from datasheet [L/min]
nP - Max speed. Obtained from datasheet [RPM ]
Tth,P - Theoretical torque. Obtained from datasheet [Nm]
∆pP - Pressure pump. Obtained from datasheet [bar]
QP - Max required flow by pump [L/min]
ηvP - Volumetric efficiency [−]
TP - Pump torque [Nm]
ηhmP - Hydro mechanical efficiency [−]

From Eq. 3.20, the amount of pressure needed from the pump can be calculated. After this
value is obtained, a suitable pump that delivers this pressure can be found by using catalogs.
Even if the pump delivers more flow than required by the cylinders, it can be adjusted by the
displacement setting. The displacement setting, α, is adjusted in order to change both the
direction of the flow and the amount.

Since the procedure is only going to be simulated, selecting specific pumps and actuators is
not presented here, only the necessary calculations. The flow needed from the pump can be
calculated based on the actuator’s speed. With this information, it can be concluded that for
the first actuator, a pump with the following characteristics can be used:
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• QP1 = v ·A = 3.534 · 10−5m3/s = 2.12L/min

• pP1 = Fdriver1/A = 10693.7Pa = 0.10 bar

while for the other actuator, the pump need to have (same procedure):

• QP2 = 2.12L/min

• pP2 = 0.17 bar

The plan was to design, fabricate, and utilize an artificial muscle as presented in Sec. 3.3.2.
However, due to the difficulties of access to the university, the group needed to make a simula-
tion of the gathering procedure, more of this in the Discussion. Consequently, the soft artificial
muscle was not implemented in the simulation. For that reason, a traditional hydraulic cylinder
needed to be employed. So, to summarize this subsection, the following has been done:

First, an actuator with a bore side diameter of 30mm and a rod diameter of 15mm was
determined to be used. Then, calculations whether this was sufficient or not were done. To be
certain that the selection of the actuator is correct, the following equation is used:

A >
Fdriver,x
pMax

(3.26)

where:

Symbol: Description [unit]: Value
A - Piston-side area [m2] 30e-3
Fdriver1 - Max required force from 1st actuator [N ] 7.559
Fdriver2 - Max required force from 2nd actuator [N ] 12.06
pMax - Max pressure delivered from pump. Using relative small pumps [Pa] 6e5

From Eq. 3.26, it can be obtained that the higher the maximum pressure delivered by the pump
is, the smaller the overall value in the fraction. This means that the actuator with the chosen
specifics is acceptable.
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Figure 3.21: The behavior of both actuators

The behaviour of the actuators can be seen in respectively Fig. 3.21a and Fig. 3.21b.
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3.3.5 Joint Examination for Reusability

It might be of interest to examine whether the revolute joint between the two links is in the
danger zone of being no longer reusable after a short while. A calculation will be performed
on the area where the bolts experience the highest forces. The mechanical links are 40mm in
diameter, so choosing a M20 8.8 bolt, with the purpose to find out how much this bolt can
handle. The bolt functions as a revolute joint. Fig. 3.22 shows the link with the joint that has
the worst-case scenario, i.e. highest forces occur in revolute joint between body 1 and body 2.
This is where the calculation will be performed.

Figure 3.22: Second link of the robot arm

Applying the Pythagorean theorem:

R2 =
√

(R2,x)2 + (R2,y)2 (3.27)

The only forces acting on the bolt is R2 and now it is possible to examine if the bolt will be
overloaded or if it will handle this force. The bolt is as mentioned 20mm.

τ = R2
2A (3.28)

τ = R2
2πr2

where:
Symbol: Description [unit]: Value:
r - Radius of the bolt [mm] 10
R2,x - Force along the X-axis in hole [N ] 38.78
R2,y - Force along the Y-axis in hole [N ] 224.20
R2 - Diagonal force, the force acting on the bolt [N ] 227.53
τ - Shear stress on the bolt [MPa] 0.36
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Since a 8.8 bolt is used, the yield strength is given from the last number ⇒ σF = 800 · 0.8 =
640MPa. The shear stress is far below the yield strength. In order to investigate if the bolt is
in the region of usability, a section from an ISO Metric table is shown below:

Nominal Diameter Of Thread d [mm] Pitch P [mm] Nominal Stress Area As [mm2] Proof Load [N ]
20 2.50 245 147000

Table 3.2: An ISO Metric table which illustrates information about bolts [14]

With the information gathered from Tab. 3.2, it is certain that the bolt will handle the force
R2 = 227.53N . The proof load is 147000N for a 8.8 bolt and this means that the bolt can
handle a force up to this value. If this limit is exceeded, the bolt can not be reused.

3.3.6 Buoyancy Investigation

For the reason that everything will occur underwater, buoyancy should be investigated, (see
Sec. 2.5 for theory). It is of interest to examine whether the links will struggle to perform the
necessary operations due to buoyant force.

Fbuo = ρfV g (3.29)

mtot = mee +msteel (3.30)

Fnet = mtotg (3.31)

where:

Symbol: Description [unit]: Value:
Fbuo - Buoyant force [N ] 5.07
ρf - Density of seawater [kg/m3] 1029
V - Volume of the displaced body of liquid [m3] 5.0265e-4
g - The gravitational acceleration [m/s2] 9.81
mtot - Total mass [kg] 6
mee - Mass of end-effector [kg] 2
msteel - Mass of steel [kg] 4
Fnet - The net force [N ] 58.86

Since Fnet > Fbuo, buoyancy will not be an issue. However, in the simulation part, buoyancy
is not taken into consideration. Although buoyancy will not be an issue, it is undoubtedly a
factor contributing to creating deviations in the simulation. More of this in Discussion
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3.4 End-Effector Model Description
The push-button will have one DOF, allowing for movement inwards and outwards. Same for
the carabiner, which is rotating around a pivot point. All the other elements in the end-effector
are to be considered passive.

3.4.1 Assembly

The end-effector is composed of the inflator body assembled with the carabiner, a CO2 cylinder
and a self-made box. In Sec. 3.2.2, the box was not visually shown in a detailed perspective.
Designing the end-effector in such a manner that when the carabiner opens, activation of the
balloon is one of the main objectives in this project, referring to the second research question
"Can we design a custom-made end-effector that can be utilized for retrieving marine litter?"
Several methods were designed and investigated its functionality, and those are introduced here.
All concepts are designed in SolidWorks.

Method 1

Figure 3.23: Method 1

Fig. 3.23 shows how the first method was considered. The sliding object will have the ability to
slide back and forth since one end is attached to the carabiner. When the carabiner opens, the
sliding object will be moved to the left, and the tip of the sliding object will push the button,
which will activate the CO2 cylinder. Then the balloon (not shown in the figure) will expand,
and the derelict pot will be lifted to the sea surface.
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(a) Back view (b) Front view

Figure 3.24: Method 2

Method 2

Fig. 3.24 shows both the back and front view of the second method. Neither the box nor the
balloon is displayed. The principle behind this method is that an "A-form" object is welded
on the carabiner. When the carabiner opens, the button will be pushed by the welded object.
Another object (also welded) is present to ensure that the carabiner is fastened and will not
slide. Fig. 3.25 shows the complete release mechanism.

Figure 3.25: Method 2 complete
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Method 3

Figure 3.26: Method 3

Fig. 3.26 shows method 3 without the pipe and the raising balloon. It is quite similar to
method 2, except for some modifications that have been done. The carabiner has been cut in
order to avoid using the C-shaped profile. Here the carabiner is pressed onto the box. The com-
plexity of method 1 and the unnecessary component of method 2 led to the selection of method 3.

Problems occurred when method one was tested. The sliding object used to get stuck at
times and did not work very well. An additional pipe has been added, and its function is to
send the air from the CO2 cylinder through the inflator body to the party balloon (not shown
in Fig. 3.26). However, the balloon must have a discharge valve/release valve so that air is
released when pressure is reduced on the way up. A simple party balloon does not have this
accessory. The idea of this selected method is to ensure that the carabiner is connected to the
box via "press-fit." The carabiner will not slide sideways due to the tracks. Besides, to prevent
the carabiner from sliding, the box has been cut in such a manner that no object will collide
with it.

3.4.2 Collision Detection Sensor

As mentioned in Sec. 1.2.3, there are different types of this kind of sensor. The one shown in
Fig. 3.27 is microcontroller compatible and can be used for robot collision detection or touch
collision detection. This is a simple, yet effective solution that may be utilized. Some kind
of mechanism/object needs to be designed in such a manner that when the carabiner opens,
the red button will be pushed by this mechanism, and hence provide feedback. This detection
sensor functions in such a manner that when a collision is detected, output=0; when the switch
is released, output=1. The information can then further be interpreted whether the end-effector
has been attached or not.
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Figure 3.27: Collision crash sensor detector

3.5 Overall Control of the System
When considering the system as a whole, it has been assumed that the ROV can be controlled
by itself; therefore, the focus will be on the manipulator and how to control it. The ROV
is consequently considered as ground, as has been done in the kinematics section where the
reference frame is set at the center of the revolute joining the ROV and the first link together.
The idea for the actuation of the two revolute joints was to be actuated by elongation of a
hydraulic cylinder. With these considerations in mind, the goal is to control the position of
the end-effector. This can be done following the conversion in Fig. 3.28 where ’Y ’ and ’Z’
are the desired position in the plane of operation, ’q0’ and ’q1’ are the desired joint angles
to accommodate this position and ’L1’ and L2’ are the cylinder lengths required to achieve
these angles. Fig. 3.28 shows the conversion from desired Cartesian coordinates to end-effector
position by cylinder length control.

Figure 3.28: Conversion

Figure 3.29: Simplified geometry
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The method, shown in Fig. 3.28, would be applied on the manipulator geometry in Fig. 3.29.
Fig. 3.29 shows a simplified geometry where the red line represents the first link, the blue line
the second link, the purple lines represent each driver, the labeled coordinate system represents
the reference frame and the two unlabeled represent each links’ local coordinate system. The
units on both axes are in meters.

3.5.1 Inverse Kinematics

Following the structure in Fig. 3.28 is the conversion from the end-effector position to joint
angles, the first to be conducted. Take note that the end-effector local coordinate frame has
not been added to Fig. 3.29, although it is supposed located at the end of link 2. Taking this
into consideration, the position of the end-effector can be represented by the configuration of
the two angles ’φ0’ and ’φ1’,

Yee = L1 · cos(φ0) + L2 · cos(φ0 + φ1) (3.32)

Zee = L1 · sin(φ0) + L2 · sin(φ0 + φ1) (3.33)

Where:
Yee is the y-coordinate of the end-effector [m]
Zee is the z-coordinate of the end-effector [m]
φ0 is the angle between the reference frame and the first link [rad]
φ1 is the angle between the frame of the first link and the second link [rad]
L1 is the length of the first link [m]
L2 is the length of the second link [m]

Having two equations with two unknowns and applying the identity of addition for two angles,
can the configuration of the joint angles in order to reach the desired end-effector position, be
calculated.

φ1 = cos−1
(
Y 2
ee + Z2

ee − L2
1 − L2

2
2 · L1 · L2

)
(3.34)

φ0 = tan−1
(
Z2
ee

Y 2
ee

)
− tan−1

(
L2 · sin(φ1)

L1 + L2 · cos(φ1)

)
(3.35)

3.5.2 Actuator Kinematics

From the inverse kinematics are the joint angles required to reach the desired Cartesian point
defined. Since the two driven angles are actuated by linear actuators, the conversion from joint
angles to actuator lengths must be conducted. The proposed geometries are the lengths defining
the simplified geometry in Fig. 3.29. The vectors derived in Sec. 3.3.3, which represent the
length of each actuator, may be described solely by φ0 and φ1 by substituting the r1 and r2
vectors by the first and second row of the Φ matrix.

d1 = A(φ0)
[
L1
2
0

]
+A(φ0)

[
0

0.08

]
−
[

0
0.25

]
(3.36)
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d2 = A(φ0)
[
L1
0

]
+A(φ1)

[
L2
2
0

]
−A(φ1)

[
0

0.08

]
−A(φ0)

[
L1
2
0

]
+A(φ0)

[
0

0.08

]
(3.37)

Both Eq. 3.36 and Eq. 3.37 are the vector description of the cylinders. It is therefore required
to convert these vectors into absolute lengths. The simplified description of the absolute lengths
are the following:

l1(t) =
√
d′1d1 (3.38)

l2(t) =
√
d′2d2 (3.39)

Where:
d′1 and d′2 are the transpose of each respective vector
l1(t)′ and l2(t)′ are the command signal for each cylinder

The command signals to each cylinder can now be calculated using Eq. 3.38 and 3.39 from
the inverse kinematics according to the desired Cartesian coordinates, and therefore the arm’s
tooltip can be controlled. However, it is important to keep in mind that this analysis and the
forward kinematics are considering the end of link 2, not including the end-effector. For the
idea of a fixed position of the end-effector relative to the end of link 2, the calculations and
methods can be modified to control, e.g., the position of the midpoint on the movable hook by
adding the constant displacement from the relative coordinate frame of link 2.
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3.6 Modeling and Simulation
This section describes the applied methods in ROS and the structure of the simulation. It is
highly recommended to investigate the resources and tutorials provided by the ROS community
in order to understand ROS’s capabilities. The workspace in which the package development
has to be set up correctly according to the conventions for a catkin workspace (click here for
further information).

3.6.1 Packages

All the packages which the simulated arm depends on are listed in Tab. 3.3. The amount can
be significantly reduced, as many of them are convenience tools. How they depend on each
other can be seen by running the command:

rqt_dep

when the corresponding path to the package of interest is sourced. However, with this many
dependencies, the graphical overview can be quite complex. Running the command:

rosdep install --from-paths src --ignore-src -r -y

will install all the packages which a package depends upon [32].

media_export rosservice rosout
geometry_msgs message_generation genlisp
image_transport roswtf rosparam
sensor_msgs rosbuild gennodejs
visualization_msgs actionlib_msgs rosunit
joint_state_publisher rosconsole geneus
interactive_markers rostest roslaunch
orocos_kdl std_msgs gencpp
angles actionlib topic_tools
rosconsole_bridge rosgraph_msgs message_runtime
laser_geometry tf2_msgs roslz4
class_loader xmlrpcpp roscpp_serialization
nav_msgs tf2 rosbag_storage
pluginlib roscpp roscpp_traits
map_msgs tf2_py std_srvs
urdf rosgraph rostime
python_qt_binding tf2_ros rosbag
kdl_parser ros_environment cpp_common
resource_retriever tf rostopic
message_filters rospack genpy
rviz tf2_kdl rosnode
rosclean roslib genmsg
xacro robot_state_publisher rosmsg
rosmaster rospy catkin

Table 3.3: Package dependencies

The software required to follow this method is listed in Tab. 3.4.
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Software
OS Ubuntu LTS 18.04.4 LTS

(Bionic Beaver)
Physics Engine Gazebo
Modeling ROS Melodic
Communication /
interface

ROS Melodic

Table 3.4: Software required

3.6.2 Unified Robot Description Format

After configuring the workspace and installing all the relevant packages, the process of creating
a simulated robot may commence. The URDF is where the model is defined. The term model
includes all the links and simulated hardware which constitutes the robot. The URDF is written
in XML language, a markup language which can define a format for how an element should be
described [45].

Listing 3.1: Link example
1 <!−−Fi r s t_ l i nk−−>
2 <l i n k name=" f i r s t_ l i n k ">
3 <v i s u a l>
4 <geometry>
5 <cy l i nd e r l ength=" ${ l en } " rad iu s=" ${

rad iu s } " />
6 </geometry>
7 <o r i g i n xyz=" 0 ${ l en /2 + rad iu s } 0 " rpy=" ${

p i /2} 0 0 " />
8 <mate r i a l name=" grey " />
9 </ v i s u a l>

10 <c o l l i s i o n>
11 <geometry>
12 <cy l i nd e r l ength=" ${ l en } " rad iu s=" ${

rad iu s } " />
13 </geometry>
14 <o r i g i n xyz=" 0 ${ l en /2 + rad iu s } 0 " rpy=" ${

p i /2} 0 0 " />
15 </ c o l l i s i o n>
16 <xac ro :de f au l t_ ine r t i a_rod masse=" 3 " />
17 </ l i n k>

From the code snippet in Listing 3.1, it can be seen how rigid links are defined. Line 2 states
that we are to define a link in the URDF. This leads to all the subtags of modifiable parameters
within the link initiation tag and the end of link tag. The three main elements of a link
definition are: visuals, collision and physical properties. The visual definition of the link is
self-explanatory. The collision tag defines the space of the link and how it should interact if in
collision with an other link. The final tag specifies the physical properties of the link such as
weight and inertia. As can be seen in line 16, is a macro used in order to assign the elements
within the physics tag for a massive rod. By constructing macros, the amount of written code
can be reduced and thus make the URDF more clean.
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Listing 3.2: Xacro example
1 <!−−I n e r t i a and mass o f massive rod−−>
2 <xacro:macro name=" de fau l t_ ine r t i a_rod " params="masse ">
3 <i n e r t i a l>
4 <mass value=" ${masse} " />
5 <i n e r t i a ixx=" ${ ine r t i aH } " ixy=" ${ ine r t i aH } "

i x z=" ${ ine r t i aH } "
6 iyy=" ${ ine r t i aH } " i y z=" ${ ine r t i aH } "
7 i z z=" ${ i n e r t i aL } " />
8 </ i n e r t i a l>
9 </xacro:macro>

In order to create a macro like the one in Listing. 3.2, the package ’xacro’ must be added to
the workspace of the package [33]. This macro takes the parameter of masse and fills in the
tags for the inertial definition of the link. The parameters in the inertia tag is calculated based
on the inertia of a massive cylinder with another xacro feature; the property function.

Listing 3.3: Property example
1 <!−−I n e r t i a a long ’ hard ’ ax i s , massive c y l i nd e r−−>
2 <xacro :p rope r ty name=" ine r t i aH " value=" ${mass∗ rad iu s ∗ rad iu s

/2} " />

The xacro property feature is used to define a single data type unlike the macro feature which
can assign multiple. Listing. 3.3 depicts the calculation of the inertia for the ’hard’ axis of a
massive cylinder.

Listing 3.4: Joint example
1 <!−−Revolute j o i n t Gnd to Link 1−−>
2 <j o i n t name=" rev_to_f i r s t_ l ink " type=" r evo lu t e ">
3 <parent l i n k=" base_l ink " />
4 <ch i l d l i n k=" f i r s t_ l i n k " />
5 <o r i g i n xyz=" 0 0 .27 0 " />
6 <ax i s xyz=" 1 0 0 " />
7 <l im i t e f f o r t=" 1000 .0 " lower=" −0.548 " upper=" 0 .548 "

v e l o c i t y=" 0 .5 " />
8 </ j o i n t>

The next building block of the model is the addition of joints. In Listing. 3.4 is the definition of
the revolute joint connecting the first link to the ROV (or ground), as the ROV is defined. First
of all is the type of joint defined. This specifies the elements which have to be defined in order to
create the proper joint. The parent link is the reference frame for which the joint will place the
child link frame and is done in the origin tag in the joint definition. The frames are the origins
defined for each of the respective links. The axis tag specifies which axis is unconstrained in
the child link. As for the revolute in Listing. 3.4, the unconstrained axis is the x-axis. Limits
can also be imposed to effort (force/torque), movement (in radians) and velocity.
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Listing 3.5: Actuation example
1 <!−−F i r s t Revolute−−>
2 <transmi s s i on name=" r ev_ f i r s t_ l i nk ">
3 <type>t ran sm i s s i on_ in t e r f a c e / SimpleTransmiss ions</ type>
4 <actuator name=" $motor_rev_joint ">
5 <mechanicalReduction>1</mechanicalReduction>
6 </ actuator>
7 <j o i n t name=" rev_to_f i r s t_ l ink ">
8 <hardware Inte r face>hardware_inter face /

E f f o r t J o i n t I n t e r f a c e</ hardware Inte r face>
9 </ j o i n t>

10 </ transmi s s i on>

The final building block of the URDF file is the actuation of relevant joints. The actuators
are defined in the URDF as is shown in Listing. 3.5. Line 3 specifies a transmission type.
For simple one joint and one actuator is ’SimpleTransmission’ sufficient [48]. This type can
represent actuators by reduction or amplification of the transmission, or as it is defined here;
a 1:1 [48]. In line 7 and 8 is the joint to be actuated specified and the means of which it is
controlled stated, respectively. Position, velocity and effort control are supported. The scheme
in Fig. 3.30 illustrates the hardware_interface where the simulated actuators are defined in the
loop.

3.6.3 ROS Control

ROS control is a cluster of packages that provide generalized PID controllers and ensures com-
munication from external nodes all the way to the simulation, be it custom made or pre-built
controllers [47].

Figure 3.30: Data flow for the package ros_control [7].
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The description of control setup will follow the structure in Fig. 3.30. In order for this setup to
work, the custom plugin gazebo_ros_control must be added in the URDF description within
the robot tag.

Listing 3.6: Gazebo-ROS Control Plugin example
1 <!−−Gazebo−ROS plug in−−>
2 <gazebo>
3 <plug in name=" gazebo_ros_control " f i l ename="

l ibgazebo_ros_contro l . so ">
4 <robotNamespace>/uw_arm</robotNamespace>
5 </plug in>
6 </gazebo>

A simplified scheme of the data flow for each controller is depicted in Fig. 3.31. The actuator
definition is included in the Gazebo model, although to give a more conventional description of
the data flow, it is separated from the model. The joints are actuated by torque as is defined
in line 8 of Listing 3.5

Figure 3.31: Control scheme for the controllers.

Controller Manager and Controller

The controllers are initialized by the Controller Manager package [30]. This must be specified
in a launch file.

Listing 3.7: Controller_Launch example
1 <!−− Load j o i n t c o n t r o l l e r c on f i g u r a t i o n s from YAML f i l e to

parameter s e r v e r −−>
2 <rosparam f i l e=" $( f i nd uw_arm_control ) / c on f i g /

c o n t r o l l e r_ i n s t r u c t i o n s . yaml " command=" load " />
3

4 <!−− load the c o n t r o l l e r s −−>
5 <node name=" contro l l e r_spawner " pkg=" contro l ler_manager " type="

spawner " respawn=" f a l s e "
6 output=" sc r e en " ns=" /uw_arm" args=" j o i n t 1_po s i t i o n_con t r o l l e r

j o i n t 2_po s i t i o n_con t r o l l e r j o i n t_ s t a t e_con t r o l l e r " />
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In Listing 3.7, the initialization of the controllers and the call to the ’controller_manager’ can
be seen. In line 2 are parameters such as Kp , Ki , Kd and update_rate for each respective
controller and the ’joint_state_publisher’, uploaded to a ros parameter server. Those param-
eters are then acquired by the spawned controllers which are initiated in line 5 and 6. The
usage of the YAML file is to store parameters in order to avoid setting them manually for each
run of a simulation. After calling the controller_manager and loading the controllers, the PID
controllers are ready to control each of the driven joints and the joint_state_publisher is ready
to publish the joint states for the joints (acting as a sensor).

Set Point

The set points should be given remotely in order to control the manipulator by an operator.
The package ’teleop_twist_keyboard’ from Bence Magyar et al. [3] has been used as a basis for
the tele operation node in this project. Joint1 is rotated by keyboard inputs ’1’ and ’2’ while
Joint2 is rotated with the inputs ’q’ and ’w’. The pairs of keys represent a given amount of
rotation in clockwise and counter clockwise direction. The key inputs may be chosen arbitrarily,
as has been done with the amount of rotation for each press of the bound keys. Increments of
approximately 5 deg has been chosen as suitable.
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Chapter 4

Results

This chapter features the resulting design of the robotic manipulator as well as the resulting
behaviour of the Gazebo Model with control system implemented. The behaviour of the Gazebo
Model considering how well it responds to the corresponding input values are illustrated in
waveform charts.

4.1 The Complete Manipulator
The end-effector can be considered a passive object, but the carabiner and the button are the
components with one DOF. To maneuver the robot arm so that the end-effector is inserted
onto the derelict pots, the actuators need to extend or contract the arm’s links. The amount of
extension or contraction depends on the flow that the pumps send to the actuators. Depending
on the forces the actuator requires, the amount of pressure and consequently the amount of flow
can be determined.

From the video simulation, it can be seen that the links are moving to the derelict pot and
are performing an insertion. The cylinder’s operation can be more clearly illustrated in the
MATLAB simulation. The simulation in MATLAB simulates the first operation, which is to
move downwards and insert the end-effector to the derelict pot. Here, the extension of the
cylinders can be seen moving with a constant velocity. This is because the group chose to
utilize the Pump Control method described in Sec. 3.3.4. Since the movement of the cylinders
is constant, this indicates that the method has been applied correctly.

Referring to the first research question, which is: "Can we design and control a low-cost and
easy-to-manufacture robotic arm, which is to be mounted on a ROV?", the group considers it
appropriate to say that this has been accomplished to a certain extent. There is nothing that
suggests that the robot links can not be designed in the way introduced in this report. However,
if the group had managed to make the prototype work well with hard robotics, further devel-
opment would be conducted. The developed prototype would then be designed and fabricated
to be categorized as a soft robotic. The second question, "Can we design a custom-made end-
effector that can be utilized for retrieving marine litter?" can also be said to have been finished,
since the design allows for relatively easy fabrication of the end-effector. The parts are off-the-
shelf products, and nothing suggests that the end-effector will not work. The third question
"Can we create a digital clone that showcases the proposed design, and simulate its operation?"
makes it slightly difficult to determine whether it has been accomplished or not. This is because,
in the simulation, the actual ascending is not visualized. Therefore, there remain two options
left. One is to build the complete prototype and perform underwater physical experiments. The
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second is to develop further the simulating part, which then includes water impacts and other
necessary sensors. To further ensure that this would work, the group would focus on developing
a physical prototype of what has been introduced in this report. The reason is that simulation
and real-life tend to deviate. In other words, if something works perfectly in the simulation, it
is not granted that it will work similarly in a real-life scenario.

Controller Performance

Two PID controllers are implemented for the two driven joints of the manipulator. ’Joint1’ is
the revolute joint between the yellow ROV and the first link. Consequently is ’Joint2’ the joint
between the first link and the second link.

Figure 4.1: The step response for PID, joint1
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Figure 4.2: The step response for PID, joint2

The performance of the two manually tuned controllers can be seen in Fig. 4.1 and Fig. 4.2.
In Fig. 4.3 and Fig. 4.4, the propagated disturbance when moving the other joint can be seen.
A step input of 0.09 rad has been used. Characteristics of the two controllers are listed in Tab.
4.1.

Parameters Joint1 Joint2
Rise time [s] 0.2 0.2

Settling time [s] 0.48 0.95
Overshoot [%] 22.2 16.6

Table 4.1: Characteristics of the final controllers
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Figure 4.3: The propagated disturbance on joint1 from moving joint2

Figure 4.4: The propagated disturbance on joint2 from moving joint1
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4.2 Custom End-Effector

Figure 4.5: Isometric view

Fig. 4.5 shows an isometric view of the prototype designed in SolidWorks, without the artificial
muscle nor the other electrical components. The end-effector is designed to be attached to the
rigid bars of the derelict pots, and inflate a balloon to ascend the pot to the surface.
It is a combination of the two already existing methods; lifting bags attached by divers and
ROV operation.
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4.3 The Complete Simulation
A short video of the robotic manipulator in action can be seen here.
Furthermore, shown below are screenshots of the sequence of events. The simulation and the
screenshots from it is showing the principle of operation.

Figure 4.6: Close-up of the end-effector

In Fig. 4.6, the main components of the end-effector are visible with the light, grey box rep-
resenting the exploded view of the end-effector. The green component is the hook attached
by a passive revolute joint, the red square above it is the button. The button is also passive,
although modeled with a translational joint.

Figure 4.7: Object placed beneath the arm in its workspace
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In Fig. 4.7, the arm loaded together with a rigid box, which is placed within reach of the
manipulator can be seen. The two windows on the left-hand side represent the joint positions,
while the upper right-hand side graphs represent the hook and the button. In the lower right
corner, the required nodes are running in each respective terminal;

1. teleop

2. 2x RQT

3. ros_underwater_simulator

4. uw_arm_control

The ’teleop’ node is the executable which reads the users key inputs, the two ’RQT’ nodes
run each of the graphical representation of the joint positions, ’ros_underwater_simulator’ is
the launch file loading the URDF into the Gazebo world, while ’uw_arm_control’ loads the
controllers along with the ’joint_state_publisher’.

Figure 4.8: The arm interacting with the rigid object

In Fig. 4.8, the end-effector is interacting with the rigid box. This is further visualized by the
graphs representing the hook and the button in the upper right corner. The red graph displays
the button displacement within its line of translation, while the blue graph displays the amount
of rotation in radians for the revolute joint at the hook.
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Chapter 5

Discussion

The Institute of Marine Research desired that the group should make a physical prototype, yet
the challenges of the COVID-19 pandemic made it difficult for the group to access necessary
equipment and other elements due to the lockdown of the schools. Therefore, it was decided
to change perspective and focus on simulation. However, a simplification in this project was
done, which was that the impact of water was not accounted for. In a real scenario, this would
occur and cause more disturbances and complications in the simulation. Regardless, further
improvements for transferring the knowledge between different domains are necessary for the
simulated model to be feasible in industrial applications.

5.1 Simulation
The ROS-Gazebo framework was decided upon at a late stage of the project due to the ongoing
circumstances, and the resulting simulation reflects this. A proper simulation would have real
models of sensors included in the manipulator model. Adding simplified water dynamics would
also be a major improvement. The barrier for increasing the quality of the simulation occurred
due to interfacing between Gazebo and ROS. In order to implement actuator kinematics and
end-effector position control, then data must be read from the model in Gazebo by a ROS node.
This is done in the Gazebo-ROS control plugin, albeit the collective effort of its contributors. An
experienced Gazebo-ROS/Cpp/Python user would pass this barrier with ease. It is, however,
an act of balance since the intended simulation should run in real-time. These boundaries are
far from tested and therefore is this version a mere starting point for further development.

5.2 End-Effector
The custom end-effector is the result of a combination of the current methods investigated in
section 1.2. The problem the Institute of Marine Research addressed was the inefficiency of
the multiple ascends and descends during search missions. This end-effector is a first draft idea
with a simplistic but presumed mode of operation. However, there is no way to confirm that
it will function correctly if not tested on an actual mechanical model. Consequently, a physical
model would play a crucial part. However, the main problem with this design might be inflation
without proper ’hooking’ of the derelict pots’ rigid bar since it inflates on a certain amount of
opening. A major improvement would be to add some sort of spring-loaded mechanism which
would load the spring during the opening and push the button on the closing of the hook. Two
other mechanisms are neglected during the design process; the release from the manipulator
and a magazine holding and loading multiple of the proposed end-effector.
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Chapter 6

Conclusion

As a primary stage, the idea was to design and generate a physical prototype. Due to the
unexpected circumstances (the COVID-19 pandemic), which led to a lockdown of pretty much
everything in the society, the focus was shifted to simulation. The research questions stated
whether the group was able to design and create a low-cost and easy-to-manufacture robotic
arm together with a custom-made end-effector to be mounted on the ROV, which was to be
utilized as an ocean cleaner for marine litter. Furthermore, simulating this operation was to be
executed. The ROV was not in the scope of interest. A model of the prototype and the other
components was built in SolidWorks. Besides, a simplified model of the prototype was built in
ROS/Gazebo, and, for testing purposes, it was verified through simulations before testing the
SolidWorks components on the ROS/Gazebo interface.

The movement of the robotic arm, along with the end-effector, proved to work adequately
fine in the simulation. It is fairly acceptable to say that the model built is correctly designed;
however, water buoyancy has not been accounted for and is something that should be added
in a simulation. The group is certain that simulating with buoyancy would result in small
deviations such as delays. Objects submerged in water can not move as fast as they do on
land. However, the priority was to ensure that the simulation worked, and the group focused
on implementing all other necessities, like mechanical properties of the components, limita-
tions, and control theory. Furthermore, the group is content with the tuning of the controller
parameters, shown in Fig. 4.1 and Fig. 4.2. In general, tuning of parameters can always be
improved, yet the amount of time required makes it impractical to improve more than necessary.

As a final statement, the group is partially satisfied with the overall achievements because
the group members can conclude with high confidence that more could have been achieved if
access to the University was possible during this semester. The work has been conducted with
a practical point of view, i.e., the multiple types of equipment were intended to be simple yet
effective. It can be concluded that the research is essential outside academia because ghost
fishing is a global issue, and this paper aims to solve this exact issue. It is vital to mention that
simulation and in practice does not always agree. Consequently, the group intended to employ
an artificial muscle, as mentioned in Sec. 2.3.4, yet was obliged to utilize a standard hydraulic
cylinder. Implementing the artificial muscle on a real robotic arm consisting of steel links will
result in deviation when compared with the results obtained when calculating for a standard
cylinder.
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Chapter 7

Future Work

There would be enough amount for improvements if further work regarding this project was
conducted. If the group was given more time, a focus would be aimed at implementing soft
robotics instead of their counterparts, which is hard robotics.

7.1 Soft Robotics vs Hard Robotics

This section will introduce the fundamental differences between soft and hard robotics, and
some areas where the different robotic end-effectors are utilized in the industry. Furthermore,
the advantages and disadvantages of them will be presented.

Competitions in the industry is a well-defined subject and are something that will continue
as long as technology develops. Chris Rahn et al. [46] state that modern researchers have been
profoundly inspired by the marvelous capabilities of soft animal and plant structures. This
inspiration has led to the development of hard robots that imitate soft structures and, besides,
soft robots that utilize electroactive polymer (EAP) and pneumatic artificial muscle (PAM)
actuators. The majority of soft robots developed are based on these two technologies. However,
recent developments have been done by substituting air (pneumatic) with seawater. The ad-
vantages of utilizing seawater instead of air is that while the robot is underwater, it has access
to virtually unlimited seawater.

Figure 7.1: Capabilities of hard and soft robots: (a) dexterous, (b) able to monitor and control
position, (c) able to manipulate and (d) to load objects. [46]

76



Fig. 7.1(a) illustrates how soft robots and standard hard robots utilize distinct mechanisms
to allow for delicate mobility. Furthermore, it is normally desired to have the ability to sense
and control the contour of a soft robot. However, this is demanding, since their contour is
continuous, so the accurate measurement of the shape and tip position is tricky. Determining
what needs to be measured and how to utilize the measurements to control mobility is diffi-
cult. However, hard robots operate differently. They measure the position of each joint with a
high-resolution encoder (where θ1, θ2 and θ3 are the joint angles respectively), as shown in Fig.
7.1(b) [46]. If, for instance, a hard robot is used, the joint positions can be processed by utilizing
forward kinematics to precisely determine the contour and tip position of the robot. Likewise,
by using the inverse kinematics, the joint positions that provide the desired tip position can be
calculated. This is done by measuring the joint positions with the encoders and then comparing
those values with the desired positions. The desired positions are computed with the inverse
kinematics, and then the artificial muscles ensure that the errors converge to zero.

Soft robots act reciprocally with the surroundings differently in comparison to hard robots.
The contour is exposed to loads by the surroundings, which can be either distributed loading,
for instance, gravity or by direct contact. It can be seen from Fig. 7.1(d) that loading causes
the soft joints in a hard robot to change position. However, the rigid links remain straight.
This change in position is, as mentioned, measured by encoders. A controller is utilized to
either compensate for the loading or recognize that the robot has come in contact with the
surroundings [46]. The contour and the tip position can be precisely defined in both cases.
In soft robots, however, gravity and contact loading cause continuous deformation. This may
not be observable or controllable from the limited sensors or actuators. So in this scenario, it
should be utilized more advanced sensors. Soft robotics grasp and handle objects of varying
sizes by using whole arm manipulation and this can be seen in Fig. 7.1(c). The arm wraps
itself around the object, and a tight grasp and a high-friction contact allow the arm to lift the
object. Hard robots, however, grasp and handle objects with a specialized end-effector that is
generally designed for a particular size and type of object [46].

7.1.1 Grippers

An end-effector, to put in simple terms, is a device/tool connected to the end of a robot arm.
The nature of the end-effector depends on the intended task.

(a) Soft gripper [43] (b) Hard gripper

Figure 7.2: Hard robot gripper and soft robot gripper
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Fig. 7.2a shows a pneumatic mGrip soft robotic gripper tailored for the food and beverage and
packaging industries. As can be seen from the figure, the gripper is soft at such a level that
the bread is not "crushed". According to the company, which has designed and generated this
gripper, this gripping system conforms to an object and picks it without the need for sensors,
machine vision, or numerical computation [43]. In Fig. 7.2b, a typical hard gripper can be seen.
This is a spectacular gripper to utilize when not dealing with fragile objects, and as such, it can
be seen from the figure that this gripper is grasping steel profiles. In this project, derelict pots
are not to be considered fragile objects, that is why hard robotics were first utilized. However,
to add flexibility and other benefits, employing soft robotics is on the safe side, since there is a
possibility that there can be trapped animals inside. In addition to employing soft robotics in
future work, the end-effector is also an object that would require modifications, as mentioned
in Sec. 5.2. There are limitations in a project, and it is impossible to solve everything.

7.2 Autonomous Operation
Technological evolution is developing with an exponential speed [19]. As a result, the demand
for precise localization systems in subsea operations is continuously rising. To increase the level
of autonomy in subsea operations, the group would invest a great effort of applying machine
learning. This section describes and introduces the reader to the necessary software to work
with machine learning, which may be utilized to detect derelict pots autonomously.

7.2.1 Pose Estimation with Machine Learning

The current procedure of gathering derelict pots at the bottom of the ocean is to have an op-
erator on a ship steering and controlling a ROV. A camera will be necessary to be mounted on
the ROV such that the operator can obtain visualization. How about if the ROV was able to
detect the derelict pots almost all by itself? However, completely autonomous operations are
not necessarily an aim in itself, yet an increased level of autonomy from what is seen today is
wanted. Schjølberg et al. [36] propose shared control, a control regime where certain modes
are performed autonomously, and others are performed by the operator. The human operator
needs to remain in the loop and can interrupt any actions initiated by the autonomous system
at any given time. To increase the level of autonomy in ROV operations, localization systems
are vital. Localization refers to an object’s understanding of its position and attitude relative
to the surroundings.

ROVs can be utilized in many areas, e.g., executing manipulation tasks on subsea installments,
which requires exceptionally accurate steering of the ROV, to avoid collisions and damages on
subsea equipment. Such failures can lead to huge expenses, yet even worse, they can cause leak-
ages of petroleum to the surrounding environment. Consequently, very accurate localization
systems are crucial for an increased level of autonomy in inspection, maintenance, and repair
(IMR) operations. This leads to the need for a real-time algorithm with great accuracy.

There are several ways to handle the localization problem. Map-based localization is achiev-
able in static surroundings if a precise map is available. However, this is rarely the case in
underwater environments. Another approach is to localize relative to a particular coordinate or
a particular object. Prior knowledge of the structure where the ROV is operating is imposed by
this method, as one or more reference points for relative localization is necessary. A third ap-
proach to the localization problem is simultaneously localization and mapping (SLAM), which
simultaneously localizes a vehicle with respect to a map while updating the map on the go [26].
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Appendix A

Text files

A.1 - Read Me for Gazebo-ROS sim



A.1 Read Me for Gazebo-ROS sim

Figure/ICT/README.txt

How to run the simulation
-------------------------------------------------------------------------------------------------------
Setup:

The simulation runs on the following software: Ubuntu 18.0.4, ROS Melodic and Gazebo 9.0.
The mentioned programs can be downloaded and installed by following the instructions in these urls:

-Ubuntu 18.0.4 https://www.linuxtechi.com/ubuntu-18-04-lts-desktop-installation-guide-screenshots/
-ROS Melodic http://wiki.ros.org/melodic/Installation/Ubuntu
-Gazebo 9.0 http://gazebosim.org/tutorials?tut=install_from_source&cat=install

Alternatively could a virtual machine be setup to run Ubuntu on another OS, but the simulation is
not tested for this case.

Note: Before starting this simulation should the user either have some experience with ROS and Gazebo
or atleast have a look at the beginner tutorial for ROShttp://wiki.ros.org/ROS/Tutorials and then
move on to more advanced tutorials including Gazebohttp://gazebosim.org/tutorials

First create a catkin workspaceSee ROS beginner tutorials and source the ROS environment using the
command in a terminalCTRL+ALT+t:

$ source /devel/setup.bash

This should ensure that ROS commands can be used. If everything got installed successfully, copy
the two packages from this repository:

https://github.com/aasmub14/ROS_simulation.git

into the /src/ folder in the catkin workspace. Then navigate to the /src/ folder in the terminal
and run the command:

$ rosdep install PACKAGE_NAME

for each of the packages found in the repository. This will then find and install the necessary
dependencies, other packages, needed to run the simulation.
-------------------------------------------------------------------------------------------------------
Start up:

Open a terminal and find the location of /ros_underwater_simulatorroscd and
run the command:

$ roslaunch ros_underwater_simulator controllable.launch model:=urdf/uw_arm_control_ee.urdf

A Gazebo window should pop up with the model of the robot.

Next open another terminal and find the same package, but change directory to /nodes/. Then
run the command:

$ python teleop_final.py

to launch the command node. This node takes the inputs from keybindings; ’1’,’2’,’Q’ and ’W’
to control the two driven joints.

Then open a third terminal and find the package /uw_arm_control/. This package contains the
controller instructions and is started by running the command:

$ roslaunch uw_arm_control controller.launch



Now should the manipulator be controllable by the aforementioned key inputs.
-------------------------------------------------------------------------------------------------------
Running:

In order to monitor the controllers and the joints can a terminal be opened and enter the
command:

$ rqt

This opens a GUI where ROS topics can be plotted by selecting ’plugins->visualization->plot’ and
then select the topic of interest.
The same can be done in Gazebo by selecting ’window->plot’ and select the Gazebo topic of interest.
-------------------------------------------------------------------------------------------------------
Disclaimer:

We are by no means experts with this framework and the model is far from representing the
idea of an underwater manipulatorNo water physics would tip this off, but feel free to send questions
and improve on it.
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MATLAB-scripts



B.1 Phi

1 f unc t i on Fi = Phi (q , t )
2

3 % Geometry
4 l 1 = 0 . 5 ;
5 l 2 = 0 . 5 ;
6 rev = 0 . 0 8 ;
7 %Driver dummy va lue s
8 i n i t_ l eng th1 = 0 . 2 ;
9 cmd1 = 0.05∗ t ;

10 i n i t_ l eng th2 = 0 . 2 ;
11 cmd2 = 0.05∗ t ;
12 %Constant ve c t o r s
13 b1 = [ l 1 /2 ; 0 ] ;
14 b2 = [ l 2 /2 ; 0 ] ;
15 rev1 = [ 0 ; rev ] ;
16 rev2 = [ 0 ; rev ] ;
17 rov = [ 0 ; 0 . 2 5 ] ;
18 % Cartes ian coo rd ina t e s
19 r1 = q ( 1 : 2 , 1 ) ;
20 phi1 = q (3 , 1 ) ;
21 r2 = q ( 4 : 5 , 1 ) ;
22 phi2 = q (6 , 1 ) ;
23 % Constra int vec to r as a func t i on o f q and t
24

25 %Rev GND − Body 1
26 Fi ( 1 : 2 , 1 ) = A( phi1 ) ∗b1 − r1 ;
27 %Rev Body1 − Body2
28 Fi ( 3 : 4 , 1 ) = r1 + A( phi1 ) ∗b1 + A( phi2 ) ∗b2 − r2 ;
29 %Long i tud ina l d r i v e r ROV−B1
30 d1 = r1 + A( phi1 ) ∗ rev1 − rov ;
31 Fi (5 , 1 ) = d1 ’∗ d1 − ( in i t_ l eng th1 + cmd1) ^2;
32 %Long i tud ina l d r i v e r B1−B2
33 d2 = r2 − A( phi2 ) ∗ rev2 − r1 + A( phi1 ) ∗ rev1 ;
34 Fi (6 , 1 ) = d2 ’∗ d2 − ( in i t_ l eng th2 + cmd2) ^2;



B.2 Jacobi

1 f unc t i on J = Jacobi ( q )
2 % Proper notat ion f o r the coo rd ina t e s f o r each body
3 r1 = q ( 1 : 2 , 1 ) ;
4 phi1 = q (3 , 1 ) ;
5 r2 = q ( 4 : 5 , 1 ) ;
6 phi2 = q (6 , 1 ) ;
7

8 % Geometry
9 l 1 = 0 . 5 ;

10 l 2 = 0 . 5 ;
11 rev = 0 . 0 8 ;
12 %Constant ve c t o r s
13 b1 = [ l 1 /2 ; 0 ] ;
14 b2 = [ l 2 /2 ; 0 ] ;
15 rev1 = [ 0 ; rev ] ;
16 rev2 = [ 0 ; rev ] ;
17 rov = [ 0 ; 0 . 2 5 ] ;
18

19 % I n i t i a l i z a t i o n o f the jacob ian matrix
20 J = ze ro s (6 , 6 ) ;
21 % Revolute j o i n t between body 1 and ground
22 J ( 1 : 2 , 1 : 3 ) = [−eye (2 ) , Brot ( phi1 ) ∗b1 ] ;
23 % Revolute j o i n t between body 1 and 2
24 J ( 3 : 4 , 1 : 6 ) = [ eye (2 ) , Brot ( phi1 ) ∗b1 , −eye (2 ) , Brot ( phi2 ) ∗b2 ] ;
25 % Long i tud ina l d r i v e r between ROV and Body 1
26 d1 = r1 + A( phi1 ) ∗ rev1 − rov ;
27 J ( 5 , 1 : 3 ) = [2∗ d1 ’ , 2∗d1 ’∗ Brot ( phi1 ) ∗ rev1 ] ;
28 % Long i tud ina l d r i v e r between body 2 and body 1
29 d2 = r2 − A( phi2 ) ∗ rev2 − r1 + A( phi1 ) ∗ rev1 ;
30 J ( 6 , 1 : 6 ) = [−2∗d2 ’ , 2∗d2 ’∗ Brot ( phi1 ) ∗ rev1 , 2∗d2 ’ , −2∗d2 ’∗ Brot ( phi2 ) ∗

rev2 ] ;



B.3 γ

1 f unc t i on g = Gamma(q , qd , t )
2 % Proper notat ion f o r the coo rd ina t e s f o r each body
3 r1 = q ( 1 : 2 , 1 ) ;
4 phi1 = q (3 , 1 ) ;
5 r2 = q ( 4 : 5 , 1 ) ;
6 phi2 = q (6 , 1 ) ;
7

8 r1d = qd ( 1 : 2 , 1 ) ;
9 phi1d = qd (3 , 1 ) ;

10 r2d = qd ( 4 : 5 , 1 ) ;
11 phi2d = qd (6 , 1 ) ;
12

13 % Geometry
14 l 1 = 0 . 5 ;
15 l 2 = 0 . 5 ;
16 rev = 0 . 0 8 ;
17 %Driver dummy va lue s
18 i n i t_ l eng th1 = 0 . 2 ;
19 cmd1dd = 0 ;
20 i n i t_ l eng th2 = 0 . 2 ;
21 cmd2dd = 0 ;
22 %Constant ve c t o r s
23 b1 = [ l 1 /2 ; 0 ] ;
24 b2 = [ l 2 /2 ; 0 ] ;
25 rev1 = [ 0 ; rev ] ;
26 rev2 = [ 0 ; rev ] ;
27 rov = [ 0 ; 0 . 2 5 ] ;
28

29 % I n i t i a l i z a t i o n o f the gamma−vec to r
30 g = ze ro s (6 , 1 ) ;
31 % Revolute j o i n t between body 1 and ground
32 g ( 1 : 2 , 1 ) = − phi1d^2∗A( phi1 ) ∗b1 ;
33 % Revolute j o i n t between body 1 and 2
34 g ( 3 : 4 , 1 ) = − phi1d^2∗A( phi1 ) ∗b1 − phi2d^2∗A( phi2 ) ∗b2 ;
35 % Long i tud ina l d r i v e r between body 1 and ground
36 d1 = r1 + A( phi1 ) ∗ rev1 − rov ;
37 d1d = r1d + phi1d∗Brot ( phi1 ) ∗ rev1 ;
38 g (5 , 1 ) = −2∗(d1 ’ ∗ ( phi1d^2∗A( phi1 ) ∗ rev1 ) − d1d ’∗ d1d + cmd1dd) ;
39 % Long i tud ina l d r i v e r between body 2 and ground
40 d2 = r2 − A( phi2 ) ∗ rev2 − r1 + A( phi1 ) ∗ rev1 ;
41 d2d = r2d − phi2d∗Brot ( phi2 ) ∗ rev2 − r1d + phi1d∗Brot ( phi1 ) ∗ rev1 ;
42 g (6 , 1 ) = 2∗(d2 ’ ∗ ( phi2d^2∗A( phi2 ) ∗ rev2 − phi1d^2∗A( phi1 ) ∗ rev1 ) + d2d

’∗ d2d − cmd2dd) ;



B.4 Newton Raphson Solver

1 f unc t i on b = NewtonRaphson (FunFcn , x , p , to l , r e l a x )
2 % NewtonRaphson (FunFcn , x , p , to l , r e l a x )
3 %
4 % NewtonRaphson So lve s a s e t o f f unc t i on s ( l i n e a r or non l i n e a r ) by

means o f
5 % Newton−Raphson i t e r a t i o n .
6 % FunFcn i s a s t r i n g ho ld ing name o f func t i on
7 % x i s i n i t i a l guess on v a r i a b l e s
8 % p i s a s e t o f f i x ed parameters
9 % to l i s the t o l e r an c e to be met in i t e r a t i o n

10 % re l ax i s the r e l a x a t i o n f a c t o r f o r the change in the coord inate
vec to r

11 %
12 % Michael Rygaard Hansen
13 % Aalborg Univers i ty , 1999
14 %
15 % modi f i ed by
16 % Nie l s L . Pedersen 2003
17 %
18 % Explanation added by
19 % Morten Kjeld Ebbesen 2005
20

21 % I n i t i a l i z a t i o n
22 i f narg in < 4 | isempty ( t o l ) , t o l = 1e−10; end
23 i f narg in < 5 | isempty ( r e l ax ) , r e l a x = 1 . 0 ; end
24

25 % Get rank o f problem
26 n = length (x ) ;
27

28 % Set per turbat i on
29 pert = 1e−10;
30

31 % I n i t i a l i z e counter
32 i = 0 ;
33

34 % I n i t i a l r e s i d u a l vec to r computation
35 b = f e v a l (FunFcn , x , p ) ;
36 n2 = length (b) ;
37

38 % Do Newton−Raphson i t e r a t i o n procedure . Stop when counter = 100 or
39 % to l e r an c e met .
40 whi le norm(b)>t o l & i <100
41

42 % Increment counter
43 i = i +1;
44

45 % Generate jacob ian



46 f o r j =1:n
47 temp=x( j ) ;
48 i f x ( j )==0
49 x ( j ) = x ( j )+pert ;
50 de l t a=pert ;
51 e l s e
52 x ( j ) = x ( j ) ∗(1.0+ pert ) ;
53 de l t a = pert ∗temp ;
54 end
55 bPert = f e v a l (FunFcn , x , p ) ;
56 x ( j ) = temp ;
57 f o r k=1:n
58 jacob (k , j )=(bPert ( k )−b(k ) ) / de l t a ;
59 end
60 end
61

62 % Do co r r e c t i o n
63 x = x − r e l a x ∗( jacob \b) ;
64 b = f e v a l (FunFcn , x , p ) ;
65 c = norm(b) ;
66 end
67 b = x ;



B.5 NewtonR

1 f unc t i on b = NewtonR(Phi , Jacobi , x , t , to l , r e l a x )
2 % func t i on b = NewtonR(Phi , Jacobi , x , t , eps , k1 , k2 )
3 %
4 % Phi er en s t r eng indeholdende navnet pÃ funkt ionen
5 % indeholdende b i nd i n g s l i g n i n g e rn e Phi (x , p )
6 % Jacobi er en s t r eng indeholdende navnet pÃ funkt ionen
7 % indeholdende j a cob imat r i c e Jacobi (x , p )
8 % x er en vektor med s t a r t gÃ t t e t f o r de va r i a b l e koord inate r
9 % p er en vektor med mulige konstanter . Hvis ingen konstanter

10 % ek s i s t e r e r s Ã t t e s p t i l e t 0 i f unk t i on ska ld e t
11 % re l ax er en r e l a x a t i o n s f a k t o r f o r Ã ndr ingen a f koord inatvektoren
12 % i Newton−Raphson i t e r a t i o n e n . Den bÃ¸r som standard s Ã t t e s
13 % t i l 1 i f unk t i on ska ld e t .
14 %
15 % Output f r a NewtonR er en vektor med koord inater , der

t i l f r e d s s t i l l e r
16 % det o p s t i l l e d e l i gn ing s sy s t em
17 %
18 %
19 % Morten Ebbesen , Aalborg Univers i ty , 2005
20

21 i f narg in < 5 | isempty ( t o l ) , t o l = 1e−10; end
22 i f narg in < 6 | isempty ( r e l ax ) , r e l a x = 1 . 0 ; end
23

24 nmax = 150 ;
25 % er r o r = norm( f e v a l ( Phi , x , t , k1 , k2 ) ) ;
26 e r r o r = norm( f e v a l ( Phi , x , t ) ) ;
27 i = 0 ;
28 whi le ( e r ror>t o l & i<nmax)
29 i = i + 1 ;
30 % de l tax = f e v a l ( Jacobi , x , k1 ) \ f e v a l ( Phi , x , t , k1 , k2 ) ;
31 J = f e v a l ( Jacobi , x ) ;
32 P = f e v a l ( Phi , x , t ) ;
33 de l tax = J\P;
34 % de l tax = f e v a l ( Jacobi , x ) \ f e v a l ( Phi , x , t ) ;
35 e r r o r = norm( de l tax ) ;
36 x = x − r e l a x ∗ de l tax ;
37 % x = x − de l tax ;
38 end
39 b = x ;



B.6 FZEROS

1 % func t i on b = Newton (FunFcn , x , p )
2 f unc t i on b = fzerom_par (FunFcn , x , p )
3 %FZEROS So lve s s e t o f f unc t i on s ( l i n e a r or non l i n e a r ) by means o f
4 % Newton−Raphson i t e r a t i o n .
5 % FunFcn i s a s t r i n g ho ld ing name o f func t i on
6 % x i s i n i t i a l guess on v a r i a b l e s
7 % p i s a s e t o f f i x ed parameters
8 % to l i s the t o l e r an c e to be met in i t e r a t i o n
9 %

10 % Michael Rygaard Hansen
11 % Aalborg Univers i ty , 1999
12 %
13 % I n i t i a l i z a t i o n
14 i f narg in < 4 | isempty ( t o l ) , t o l = 1e−10; end
15 i f narg in < 5 | isempty ( r e l ax ) , r e l a x = 1 . 0 ; end
16

17 % % Set t o l e r an c e
18 % to l = 1e−5;
19 %
20 % %se t r e l a x a t i o n
21 % re l ax = 1 . 0 ;
22

23 % Get rank o f problem
24 n = length (x ) ;
25

26 % Set per turbat i on
27 pert = 1e−10;
28

29 % I n i t i a l i z e counter
30 i = 0 ;
31

32 % I n i t i a l r e s i d u a l vec to r computation
33 b = f e v a l (FunFcn , x , p ) ;
34 n2 = length (b) ;
35

36 % Do Newton−Raphson i t e r a t i o n procedure . Stop when counter = 100 or
37 % to l e r an c e met .
38 whi le norm(b)>t o l & i <100
39

40 % Increment counter
41 i = i +1;
42

43 % Generate jacob ian
44 f o r j =1:n
45 x ( j ) = x ( j )+pert ;
46 bPert = f e v a l (FunFcn , x , p ) ;
47 x ( j ) = x ( j )−pert ;



48 f o r k=1:n
49 jacob (k , j )=(bPert ( k )−b(k ) ) / per t ;
50 end
51 end
52

53 % Do co r r e c t i o n
54 x = x − r e l a x ∗( jacob \b) ;
55 b = f e v a l (FunFcn , x , p ) ;
56 c = norm(b) ;
57 end
58 b = x ;



B.7 Coordinate System 2D

1 f unc t i on M = CoordSys2D ( la , l t , va )
2

3 M = [ [ l a+l t ∗ cos ( pi−va ) , l t ∗ s i n ( pi−va ) ] ’ , . . .
4 [ la , 0 ] ’ , . . .
5 [ l a+l t ∗ cos ( p i+va ) , l t ∗ s i n ( p i+va ) ] ’ , . . .
6 [ la , 0 ] ’ , . . .
7 [ 0 , 0 ] ’ , . . .
8 [ 0 , l a ] ’ , . . .
9 [ l t ∗ cos (3∗ pi/2−va ) , l a+l t ∗ s i n (3∗ pi/2−va ) ] ’ , . . .

10 [ 0 , l a ] ’ , . . .
11 [ l t ∗ cos (3∗ pi/2+va ) , l a+l t ∗ s i n (3∗ pi/2+va ) ] ’ ] ;

B.8 Body Plot

1 f unc t i on BodyPlot ( t ,D, n , tt , h )
2

3 f i g u r e (h)
4 f o r i =1:n
5 subplot (2 , n , i )
6 hold on
7 p lo t ( t ,D( : , i ∗3−2) , ’b− ’ )
8 p lo t ( t ,D( : , i ∗3−1) , ’ r− ’ )
9 hold o f f

10 g r id on
11 box on
12 l egend ( [ ’x_{ ’ , num2str ( i ) , ’ , ’ , tt , ’ } ’ ] , [ ’y_{ ’ , num2str ( i ) , ’ , ’ , tt , ’

} ’ ] )
13

14 subplot (2 , n , i+n)
15 hold on
16 p lo t ( t ,D( : , i ∗3) , ’m− ’ )
17 hold o f f
18 g r id on
19 box on
20 l egend ( [ ’ \phi_{ ’ , num2str ( i ) , ’ , ’ , tt , ’ } ’ ] )
21 end



B.9 RHvel

1 f unc t i on a = RHvel (q , t )
2

3 %Driver dummy va lue s
4 cmd1 = 0 . 0 5 ;
5 cmd2 = 0 . 0 5 ;
6 % I n i t i a l i z a t i o n o f the r i gh t hand s i d e
7 a = ze ro s (6 , 1 ) ;
8 % Long i tud ina l d r i v e r Gnd Body 1
9 a (5 , 1 ) = 2∗cmd1 ;

10 % Long i tud ina l d r i v e r Body2 Body 1
11 a (6 , 1 ) = 2∗cmd2 ;



B.10 Main

1 c l e a r a l l
2 c l o s e a l l
3 c l c
4

5 % Geometry
6 l 1 = 0 . 5 ;
7 l 2 = 0 . 5 ;
8 rev = 0 . 0 8 ;
9

10 %Phys i ca l p r op e r t i e s
11 g = −9.81; % grav i ty a c c e l e r a t i o n
12 m1 = 3 ; % mass o f body 1
13 J1 = 0 . 0625 ; % mass moment o f i n e r t i a f o r body 1
14 m2 = 3 ; % mass o f body 2
15 J2 = 0 . 0625 ; % mass moment o f i n e r t i a f o r body 2
16 M = diag ( [m1,m1, J1 ,m2,m2, J2 ] , 0 ) ; % mass matrix f o r the system
17 Fgrav = M∗ [ 0 , g , 0 , 0 , g , 0 ] ’ ; % ex t e rna l f o r c e s
18

19 % I n i t i a l guess f o r the c a r t e s i a n coo rd ina t e s f o r the bod ie s in the
20 % mechanism at T = 0
21 T = 0 ;
22 q = [ l 1 /2 0 0 ( l 1 +l2 /2) 0 0 ] ’ ;
23

24 s o l u t i o n = NewtonRaphson ( ’ Phi ’ , q ,T) %NewtonRaphson (FunFcn , x , p , to l ,
r e l a x )

25

26 % Time f o r the an a l y s i s
27 tmin = 0 ;
28 tmax = 4 ;
29 N = 500 ;
30 t = l i n s p a c e ( tmin , tmax ,N) ’ ;
31

32 % I n i t i a l i z a t i o n o f the data ar rays
33 Y = ze ro s (N, 6 ) ; % Pos i t i on matrix
34 Yd = ze ro s (N, 6 ) ; % Ve loc i ty matrix
35 Ydd = ze ro s (N, 6 ) ; % Acce l e r a t i on matrix
36 Reac1 = ze ro s (N, 8 ) ; % Reaction f o r c e s on body 1
37 Reac2 = ze ro s (N, 4 ) ; % Reaction f o r c e s on body 2
38 Fdr iver1 = ze ro s (N, 1 ) ; % The l o n g i t ud i n a l d r i v e r Gnd−Body1
39 Fdr iver2 = ze ro s (N, 1 ) ; % The l o n g i t ud i n a l d r i v e r Body1−Body2
40 q = so l u t i o n ;
41

42 f o r i =1:N
43 % q = NewtonRaphson ( ’ Phi ’ , q , t ( i , 1 ) ) ;
44 q = NewtonR( ’ Phi ’ , ’ Jacobi ’ , q , t ( i , 1 ) ) ; % Pos i t i on ana l y s i s us ing

the ana l y t i c j acob ian matrix
45 J = Jacobi ( q ) ; % Computing the jacob ian matrix



46 Jtrans = J ’ ; % ! ! Computation o f the i nv e r s e o f the Jacobian
matrix

47 qd = J\RHvel (q , t ( i , 1 ) ) ; % Ve loc i ty ana l y s i s
48 qdd = J\Gamma(q , qd , t ( i , 1 ) ) ; % Acce l e r a t i on ana l y s i s
49 lambda = J ’ \ (M∗qdd − Fgrav ) ; % Conmputation o f the l ag rang ian

mu l t i p l i e r s f o r the r e a c t i on f o r c e s
50 Y( i , : ) = q ’ ; % Stor ing po s i t i o n data
51 % Y1( i , 1 : 6 ) = q1 ’ ;
52 Yd( i , : ) = qd ’ ; % Stor ing v e l o c i t y data
53 Ydd( i , : ) = qdd ’ ; % Stor ing a c c e l e r a t i o n data
54 % Reaction f o r c e s
55 % revo lu t e Gnd−B1 revo lu t e B1−B2
56 Reac1 ( i , 1 : 8 ) = [ Jtrans ( 1 : 2 , 1 : 2 ) ∗ lambda ( 1 : 2 , 1 ) ; Jt rans ( 1 : 2 , 3 : 4 ) ∗

lambda ( 1 : 2 , 1 ) ; Jt rans ( 1 : 2 , 5 ) ∗ lambda (3 , 1 ) ; Jt rans ( 1 : 2 , 6 ) ∗
lambda (6 , 1 ) ] ’ ;

57 % revo lu t e B1−B2 l on g i t ud i n a l
d r i v e r 2 ( ex tens i on )

58 Reac2 ( i , 1 : 4 ) = [ Jtrans ( 4 : 5 , 3 : 4 ) ∗ lambda ( 4 : 5 , 1 ) ; Jt rans ( 4 : 5 , 6 ) ∗
lambda (6 , 1 ) ] ’ ;

59 % long i t ud i n a l d r i v e r 1
60 Fdr iver1 ( i , 1 ) = s i gn ( lambda (3 , 1 ) ) ∗norm( Jtrans ( 1 : 2 , 3 ) ∗ lambda (3 , 1 )

) ;
61 % long i t ud i n a l d r i v e r 2
62 Fdr iver2 ( i , 1 ) = s i gn ( lambda (6 , 1 ) ) ∗norm( Jtrans ( 4 : 5 , 6 ) ∗ lambda (6 , 1 )

) ;
63 end
64

65

66 % Numerical d e r i v a t i on
67 dt = t (2 , 1 )−t ( 1 , 1 ) ;
68 Ydnum = ze ro s (N−2 ,6) ;
69 Yddnum = ze ro s (N−2 ,6) ;
70 f o r i =1:N−2 % Numerical d e r i v a t i on f o r v e l o c i t y an a l y s i s
71 Ydnum( i , : ) = (Y( i +2 , : )−Y( i , : ) ) /(2∗ dt ) ;
72 end
73 f o r i =1:N−2 % Numerical d e r i v a t i on f o r a c c e l e r a t i o n ana l y s i s
74 Yddnum( i , : ) = (Yd( i +2 , : )−Yd( i , : ) ) /(2∗ dt ) ;
75 end
76

77 %Plo t t i ng data
78 f i g u r e (1 )
79 subplot ( 2 , 2 , 1 )
80 hold on
81 p lo t ( t , Reac1 ( : , 1 ) , ’ r− ’ )
82 p lo t ( t , Reac1 ( : , 2 ) , ’b− ’ )
83 hold o f f
84 g r id on
85 box on
86 l egend ( ’R_{1Ax} r evo lu t e j o i n t Gnd−B1 ’ , ’R_{1Ay} r evo lu t e j o i n t ’ )



87

88 subplot ( 2 , 2 , 2 )
89 hold on
90 p lo t ( t , Reac1 ( : , 3 ) , ’ r− ’ )
91 p lo t ( t , Reac1 ( : , 4 ) , ’b− ’ )
92 hold o f f
93 g r id on
94 box on
95 l egend ( ’R_{1Bx} r evo lu t e j o i n t B1−B2 ’ , ’R_{1By} r evo lu t e j o i n t ’ )
96

97 subplot ( 2 , 2 , 3 )
98 hold on
99 p lo t ( t , Reac1 ( : , 5 ) , ’ r− ’ )

100 p lo t ( t , Reac1 ( : , 6 ) , ’b− ’ )
101 hold o f f
102 g r id on
103 box on
104 l egend ( ’R_{1Bx} Long i tud ina l d r i v e r 1 Gnd−B1 ’ , ’R_{1By} d r i v e r j o i n t ’

)
105

106 subplot ( 2 , 2 , 4 )
107 hold on
108 p lo t ( t , Reac1 ( : , 7 ) , ’ r− ’ )
109 p lo t ( t , Reac1 ( : , 8 ) , ’b− ’ )
110 hold o f f
111 g r id on
112 box on
113 l egend ( ’R_{1Bx} Long i tud ina l d r i v e r 2 B1−B2 ’ , ’R_{1By} d r i v e r j o i n t ’ )
114

115 f i g u r e (2 )
116 subplot ( 1 , 2 , 1 )
117 hold on
118 p lo t ( t , Reac2 ( : , 1 ) , ’ r− ’ )
119 p lo t ( t , Reac2 ( : , 2 ) , ’b− ’ )
120 hold o f f
121 g r id on
122 box on
123 l egend ( ’R_{2Bx} Revolute j o i n t B1−B2 ’ , ’R_{2By} r evo lu t e j o i n t ’ )
124

125 subplot ( 1 , 2 , 2 )
126 hold on
127 p lo t ( t , Reac2 ( : , 3 ) , ’ r− ’ )
128 p lo t ( t , Reac2 ( : , 4 ) , ’b− ’ )
129 hold o f f
130 g r id on
131 box on
132 l egend ( ’R_{2Bx} Long i tud ina l d r i v e r 2 B1−B2 ’ , ’R_{2By} d r i v e r j o i n t ’ )
133

134 f i g u r e (3 )



135 hold on
136 p lo t ( t , Fdr iver1 ( : , 1 ) , ’ r− ’ )
137 hold o f f
138 g r id on
139 box on
140 l egend ( ’F_{ dr i v e r1 } ’ )
141

142 f i g u r e (4 )
143 hold on
144 p lo t ( t , Fdr iver2 ( : , 1 ) , ’ r− ’ )
145 hold o f f
146 g r id on
147 box on
148 l egend ( ’F_{ dr i v e r2 } ’ )
149

150

151 BodyPlot ( t ,Y, 2 , ’ ’ , 50)
152 BodyPlot ( t ,Yd, 2 , ’d ’ , 51)
153 BodyPlot ( t ,Ydd, 2 , ’ dd ’ ,52)
154

155 BodyPlot ( t ( 2 :N−1 ,1) ,Ydnum, 2 , ’d ’ ,61)
156 BodyPlot ( t ( 2 :N−1 ,1) ,Yddnum, 2 , ’ dd ’ ,62)
157 % Animation
158 l a = 0 . 0 8 ;
159 l t = 0 . 0 4 ;
160 va = 30/180∗ pi ;
161 NC = 100 ; %Number o f po in t s on the c i r c l e s
162 tc2 = l i n s p a c e (0 ,2∗ pi ,NC) ;%Draws a c i r c l e with NC as input
163 RC1 = 0 . 0 2 ; %Radius c i r c l e 1
164 LW1 = 3 ;
165 LW2 = 2 ;
166 % FS1 = 16 ;
167 Coord = CoordSys2D ( la , l t , va ) ;
168 body1 = [[− l 1 / 2 ; 0 ] , [ l 1 / 2 ; 0 ] ] ;
169 body2 = [[− l 2 / 2 ; 0 ] , [ l 2 / 2 ; 0 ] ] ;
170 c i r c l e 1 = [− l 1 /2+RC1/2∗ cos ( tc2 ) ;RC1/2∗ s i n ( tc2 ) ] ;
171 c i r c l e 2 = [ l 1 /2+RC1/2∗ cos ( tc2 ) ;RC1/2∗ s i n ( tc2 ) ] ;
172 c i r c l e 3 = [RC1/2∗ cos ( tc2 ) ;RC1/2∗ s i n ( tc2 ) ] ;
173 f i g u r e (100)
174 s e t (100 , ’ Units ’ , ’ Centimeter ’ ) % SÃ t t e r arbejdsenheden t i l

cm
175 % se t (100 , ’ Units ’ , ’ Normalized ’ )
176 % se t (100 , ’ PaperPosit ion ’ , [ 0 0 bplot hp lot ] ) ;
177 % se t (100 , ’ Pos i t ion ’ , [ 0 0 1 1 ] ) ; %5 5 14 9 ] ) ;
178 s e t (100 , ’ Po s i t i on ’ , [ 1 1 18 18 ] ) ;
179

180 f o r i =1:1 :N
181 c l a
182 A1 = A(Y( i , 3 ) ) ;



183 r1 = Y( i , 1 : 2 ) ’ ;
184 A2 = A(Y( i , 6 ) ) ;
185 r2 = Y( i , 4 : 5 ) ’ ;
186 %Plo t t i ng Body 1
187 body1Plot = A1∗body1 ;
188 body1Plot ( 1 , : ) = r1 (1 , 1 ) + body1Plot ( 1 , : ) ;
189 body1Plot ( 2 , : ) = r1 (2 , 1 ) + body1Plot ( 2 , : ) ;
190 %Plo t t i ng rev gnd−b1
191 c i r c l e 1P l o t = A1∗ c i r c l e 1 ;
192 c i r c l e 1P l o t = [ r1 (1 , 1 ) + c i r c l e 1P l o t ( 1 , : ) ; r1 (2 , 1 ) + c i r c l e 1P l o t

( 2 , : ) ] ;
193 %Plo t t i ng Body 2
194 body2Plot = A2∗body2 ;
195 body2Plot ( 1 , : ) = r2 (1 , 1 ) + body2Plot ( 1 , : ) ;
196 body2Plot ( 2 , : ) = r2 (2 , 1 ) + body2Plot ( 2 , : ) ;
197 %Plo t t i ng rev Body1−Body2
198 c i r c l e 2P l o t = A1∗ c i r c l e 2 ;
199 c i r c l e 2P l o t = [ r1 (1 , 1 ) + c i r c l e 2P l o t ( 1 , : ) ; r1 (2 , 1 ) + c i r c l e 2P l o t

( 2 , : ) ] ;
200 C1 = A1∗Coord ;
201 C1 ( 1 : 2 , : ) = [ r1 (1 , 1 ) + C1 ( 1 , : ) ; r1 (2 , 1 ) + C1 ( 2 , : ) ] ;
202 %Plo t t i ng d r i v e r s
203 Line1 = [ r1 + A1 ∗ [ 0 ; rev ] , [ 0 ; 0 . 2 5 ] ] ;
204 Line2 = [ r1 + A1∗ [0;− rev ] , r2 − A2 ∗ [ 0 ; rev ] ] ;
205 C2 = A2∗Coord ;
206 C2 ( 1 : 2 , : ) = [ r2 (1 , 1 ) + C2 ( 1 , : ) ; r2 (2 , 1 ) + C2 ( 2 , : ) ] ;
207

208

209 hold on
210 p lo t ( body1Plot ( 1 , : ) , body1Plot ( 2 , : ) , ’ r− ’ , ’ LineWidth ’ ,LW1)
211 p lo t ( c i r c l e 1P l o t ( 1 , : ) , c i r c l e 1P l o t ( 2 , : ) , ’ r− ’ , ’ LineWidth ’ ,LW1

/2)
212 p lo t ( body2Plot ( 1 , : ) , body2Plot ( 2 , : ) , ’b− ’ , ’ LineWidth ’ ,LW1)
213 p lo t ( c i r c l e 2P l o t ( 1 , : ) , c i r c l e 2P l o t ( 2 , : ) , ’ r− ’ , ’ LineWidth ’ ,LW1

/2)
214 p lo t (C1 ( 1 , : ) ,C1 ( 2 , : ) , ’ k− ’ , ’ LineWidth ’ ,LW2)
215 p lo t (C2 ( 1 , : ) ,C2 ( 2 , : ) , ’ k− ’ , ’ LineWidth ’ ,LW2)
216 p lo t ( Line1 ( 1 , : ) , Line1 ( 2 , : ) , ’m− ’ , ’ LineWidth ’ ,LW1)
217 p lo t ( Line2 ( 1 , : ) , Line2 ( 2 , : ) , ’m− ’ , ’ LineWidth ’ ,LW1)
218 hold o f f
219 s e t ( gca , ’ Units ’ , ’ Centimeter ’ , ’ Po s i t i on ’ , [ 1 , 1 , 1 6 , 1 6 ] )
220 % ax i s equal
221 box on
222 g r id on
223 ax i s ( [−0.3 1 −0.65 0 . 6 5 ] )
224 t i t l e ( [ ’ t = ’ , num2str ( t ( i ) ) ] )
225

226 i f ( i==1)
227 pause



228 end
229 pause ( 0 . 0 01 )
230 end



Appendix C

ROS



C.1 URDF, links and joints



world

fix

xyz: 0 0 0 
rpy: 0 -0 0

base_link

rev_to_first_link

xyz: 0 0.27 0 
rpy: 0 -0 0

first_link

rev_to_second_link

xyz: 0 0.34 0 
rpy: 0 -0 0

second_link

box_to_second_link

xyz: 0 0.34 0 
rpy: 0 -0 0

box_back

boxB_to_boxF

xyz: 0 0.115 0 
rpy: 0 -0 0

boxL_to_boxB

xyz: 0.0375 0.0575 0.01 
rpy: 0 -0 1.508

button_to_boxB

xyz: 0 0.0625 -0.07 
rpy: 0 -0 0

hook_to_boxB

xyz: 0 0.0281 -0.1079 
rpy: 1.508 -0 0

box_front box_side_left button hook

push_to_hook

xyz: 0 0.0175 -0.04175 
rpy: 1.309 -0 0

pusher



C.2 Node setup



C.3 Teleop_keyboard

Listing C.1: tele_op
1 #!/ usr /bin /env python
2

3 import rospy
4

5 from std_msgs .msg import Float64
6

7 import sys , s e l e c t , termios , t ty
8

9 msg = " " "
10 Jo int Control
11 −−−−−−−−−−−−−−−−−−−−−−−−−−−
12 Revolute 1 :
13 Rotation by 5 degree s in p o s i t i v e d i r e c t i o n : p r e s s ’1 ’
14 Rotation by 5 degree s in negat ive d i r e c t i o n : p r e s s ’2 ’
15 Revolute 2 :
16 Rotation by 5 degree s in p o s i t i v e d i r e c t i o n : p r e s s ’ q ’
17 Rotation by 5 degree s in negat ive d i r e c t i o n : p r e s s ’w ’
18 CTRL−C to qu i t
19 " " "
20 #Read key pr e s s func t i on
21 de f getKey ( ) :
22 t ty . setraw ( sys . s td in . f i l e n o ( ) )
23 r l i s t , _, _ = s e l e c t . s e l e c t ( [ sys . s td in ] , [ ] , [ ] , 0 . 1 )
24 i f r l i s t :
25 key = sys . s td in . read (1 )
26 e l s e :
27 key = ’ ’
28

29 termios . t c s e t a t t r ( sys . s td in , te rmios .TCSADRAIN, s e t t i n g s )
30 re turn key
31

32

33

34 i f __name__=="__main__" :
35 s e t t i n g s = termios . t c g e t a t t r ( sys . s td in )
36

37 #Creat ing the node f o r t e l e op and the two pub l i s h e s
38 rospy . in it_node ( ’ teleop_keyboard ’ )
39 pub = rospy . Pub l i sher ( ’ /uw_arm/ j o i n t 1_po s i t i o n_con t r o l l e r /

command ’ , Float64 , queue_size=1) #This t op i c should match the
top i c o f the model which one wishes to con t r o l

40 pub2 = rospy . Pub l i sher ( ’ /uw_arm/ j o i n t 2_po s i t i o n_con t r o l l e r /
command ’ , Float64 , queue_size=1) #This t op i c should match the
top i c o f the model which one wishes to con t r o l

41 f loat_msg = Float64 ( )
42



43 accumulated_f i r s t = 0
44 accumulated_second = 0
45 d i r e c t i o n_ f i r s t = 0
46 d i rec t ion_second = 0
47

48 t ry :
49 pr in t (msg)
50 whi le (1 ) :
51 accumulated_f i r s t = accumulated_f i r s t
52 accumulated_second = accumulated_second
53 key = getKey ( )
54 i f key == ’ 1 ’ :
55 pr in t ( ’ key 1 pre s sed ’ )
56 d i r e c t i o n_ f i r s t = 0 .09 #This ensure s that key input

’1 ’ sends a command to ro t a t e the j o i n t approx 5
deg in p o s i t i v e d i r e c t i o n

57 e l i f key == ’ 2 ’ :
58 pr in t ( ’ key 2 pre s sed ’ )
59 d i r e c t i o n_ f i r s t = −0.09 #This ensure s that key input

’2 ’ sends a command to ro t a t e the j o i n t approx 5
deg in negat ive d i r e c t i o n

60 e l i f key == ’q ’ :
61 pr in t ( ’ key q pres sed ’ )
62 d i rec t ion_second = 0.09 #This ensure s that key input

’1 ’ sends a command to ro t a t e the j o i n t approx 5
deg in p o s i t i v e d i r e c t i o n

63 e l i f key == ’w ’ :
64 pr in t ( ’ key w pres sed ’ )
65 d i rec t ion_second = −0.09 #This ensure s that key

input ’2 ’ sends a command to ro t a t e the j o i n t
approx 5deg in negat ive d i r e c t i o n

66 e l s e :
67 d i r e c t i o n_ f i r s t = 0
68 d i rec t ion_second = 0
69 i f ( key == ’ \x03 ’ ) :
70 break
71

72 #Calcu l a t i on o f p o s i t i o n f o r the f i r s t r evo l u t e
73 accumulated_f i r s t = d i r e c t i o n_ f i r s t + accumulated_f i r s t
74 i f accumulated_f i r s t > 0 . 5 4 8 :
75 accumulated_f i r s t = 0.548
76 f loat_msg . data = accumulated_f i r s t
77 pub . pub l i sh ( float_msg )
78 pr in t ( ’ Exceeding j o i n t l im i t s ! ’ )
79 e l i f accumulated_f i r s t < −0.548:
80 accumulated_f i r s t = −0.548
81 f loat_msg . data = accumulated_f i r s t
82 pub . pub l i sh ( float_msg )
83 pr in t ( ’ Exceeding j o i n t l im i t s ! ’ )



84 e l s e :
85 f loat_msg . data = accumulated_f i r s t
86 pub . pub l i sh ( float_msg )
87

88 # float_msg . data = accumulated_f i r s t
89 # pub . pub l i sh ( float_msg )
90 #Calcu l a t i on o f p o s i t i o n f o r the second r evo lu t e
91 accumulated_second = direc t ion_second +

accumulated_second
92 i f accumulated_second > 0 . 5 4 8 :
93 accumulated_second = 0.548
94 f loat_msg . data = accumulated_second
95 pub2 . pub l i sh ( float_msg )
96 pr in t ( ’ Exceeding j o i n t l im i t s ! ’ )
97 e l i f accumulated_second < −0.548:
98 accumulated_second = −0.548
99 f loat_msg . data = accumulated_second

100 pub2 . pub l i sh ( float_msg )
101 pr in t ( ’ Exceeding j o i n t l im i t s ! ’ )
102 e l s e :
103 f loat_msg . data = accumulated_second
104 pub2 . pub l i sh ( float_msg )
105

106 except Exception as e :
107 pr in t ( e )
108

109 f i n a l l y :
110 pub . pub l i sh ( float_msg )
111 pub2 . pub l i sh ( float_msg )
112

113 termios . t c s e t a t t r ( sys . s td in , te rmios .TCSADRAIN, s e t t i n g s )



C.4 URDF/XACRO

Listing C.2: robot_description
1 <?xml ve r s i on=" 1 .0 " ?>
2 <robot name=" twoDOF_manipulator " xmlns :xacro="www. ros . org /wik i / xacro

">
3

4 <!−−Xacro cons tant s−−>
5

6 <!−−Numerical−−>
7 <xacro :p rope r ty name="mass " va lue=" 3 .0 " />
8 <xacro :p rope r ty name=" l en " va lue=" 0 .3 " />
9 <xacro :p rope r ty name="boxDim" value=" 0 .5 " />

10 <xacro :p rope r ty name=" pi " va lue=" 3 .1416 " />
11 <xacro :p rope r ty name=" damping " value=" 0 .2 " />
12 <xacro :p rope r ty name=" f r i c t i o n " value=" 0 .1 " />
13 <xacro :p rope r ty name=" rad iu s " va lue=" 0 .02 " />
14 <!−−Box p r op e r t i e s−−>
15 <xacro :p rope r ty name="boxB" value=" 0 .06 0 .01 0 .18 " />
16 <xacro :p rope r ty name=" boxS " value=" 0 .115 0 .01 0 .18 " />
17 <xacro :p rope r ty name=" boxMass " va lue=" 0 .18 " />
18 <!−−S t r i ng s−−>
19

20 <!−−Xacro math−−>
21

22 <!−−I n e r t i a a long ’ easy ’ ax i s , massive c y l i nd e r−−>
23 <xacro :p rope r ty name=" i n e r t i aL " va lue=" ${(mass∗ rad iu s ∗ rad iu s

/4) + (mass∗ l en ∗ l en /12) } " />
24 <!−−I n e r t i a a long ’ hard ’ ax i s , massive c y l i nd e r−−>
25 <xacro :p rope r ty name=" ine r t i aH " value=" ${mass∗ rad iu s ∗ rad iu s

/2} " />
26

27 <!−−Xacro macros−−>
28

29 <!−−I n e r t i a and mass o f massive rod−−>
30 <xacro:macro name=" de fau l t_ ine r t i a_rod " params="masse ">
31 <i n e r t i a l>
32 <mass value=" ${masse} " />
33 <i n e r t i a ixx=" ${ ine r t i aH } " ixy=" ${ ine r t i aH } "

i x z=" ${ ine r t i aH } "
34 iyy=" ${ ine r t i aH } " i y z=" ${ ine r t i aH } "
35 i z z=" ${ i n e r t i aL } " />
36 </ i n e r t i a l>
37 </xacro:macro>
38 <!−−Defau l t l i n k c r e a t i on−−>
39 <xacro:macro name=" l i nkage " params=" enumeration append ">
40 <l i n k name=" ${ enumeration}_link ">
41 <v i s u a l>
42 <geometry>



43 <cy l i nd e r l ength=" ${ l en } "
rad iu s=" ${ rad iu s } " />

44 </geometry>
45 <o r i g i n xyz=" 0 0 ${ l en /2} " rpy=" 0 ${

p i /2} 0 " />
46 <mate r i a l name=" grey " />
47 </ v i s u a l>
48 <c o l l i s i o n>
49 <geometry>
50 <cy l i nd e r l ength=" ${ l en } "

rad iu s=" ${ rad iu s } " />
51 </geometry>
52 <o r i g i n xyz=" 0 0 ${ l en /2} " rpy=" 0 ${

p i /2} 0 " />
53 </ c o l l i s i o n>
54 <xac ro :de f au l t_ ine r t i a_rod masse=" 3 " />
55 </ l i n k>
56 <!−−Jo int c r e a t i on f o r the macroed l i n k−−>
57 <j o i n t name=" rev_to_${ enumeration}_link " type="

r evo lu t e ">
58 <parent l i n k=" base_l ink " />
59 <ch i l d l i n k=" ${ enumeration}_link " />
60 <o r i g i n xyz=" ${boxDim/2 + rad iu s +.01 +

append ∗( l en+rad iu s ) } 0 0} " />
61 <ax i s xyz=" 1 0 0 " />
62 </ j o i n t>
63 </xacro:macro>
64

65 <!−−Color d e f i n i t i o n s−−>
66 <mate r i a l name=" ye l low ">
67 <co l o r rgba=" 1 1 0 1 " />
68 </mate r i a l>
69

70 <mate r i a l name=" black ">
71 <co l o r rgba=" 0 0 0 1 " />
72 </mate r i a l>
73

74 <mate r i a l name=" grey ">
75 <co l o r rgba=" 0 .5 0 .5 0 .5 1 " />
76 </mate r i a l>
77 <l i n k name=" world " />
78 <!−−ROV/base l i n k−−>
79 <l i n k name=" base_l ink "><!−−The base l i n k i s where the

r e f e r e n c e frame i s s e t−−>
80 <v i s u a l>
81 <geometry>
82 <box s i z e=" ${boxDim} ${boxDim} ${boxDim} " />
83 </geometry>
84 <mate r i a l name=" ye l low " />



85 </ v i s u a l>
86 <c o l l i s i o n>
87 <geometry>
88 <box s i z e=" ${boxDim} ${boxDim} ${

boxDim} " />
89 </geometry>
90 </ c o l l i s i o n>
91 <i n e r t i a l>
92 <mass value=" ${100.00} " />
93 <i n e r t i a ixx=" ${ ine r t i aH } " ixy=" ${ ine r t i aH } "

i x z=" ${ ine r t i aH } " iyy=" ${ ine r t i aH } " i y z=
" ${ ine r t i aH } " i z z=" ${ i n e r t i aL } " />

94 </ i n e r t i a l>
95 </ l i n k>
96

97 <j o i n t name=" r e f e r e n c e " type=" f i x ed ">
98 <o r i g i n xyz=" 0 .0 0 .0 1 " />
99 <parent l i n k=" world " />

100 <ch i l d l i n k=" base_l ink " />
101 </ j o i n t>
102 <!−−Fi r s t_ l i nk−−>
103 <l i n k name=" f i r s t_ l i n k ">
104 <v i s u a l>
105 <geometry>
106 <cy l i nd e r l ength=" ${ l en } " rad iu s=" ${

rad iu s } " />
107 </geometry>
108 <o r i g i n xyz=" 0 ${ l en /2 + rad iu s } 0 " rpy=" ${

p i /2} 0 0 " />
109 <mate r i a l name=" grey " />
110 </ v i s u a l>
111 <c o l l i s i o n>
112 <geometry>
113 <cy l i nd e r l ength=" ${ l en } " rad iu s=" ${

rad iu s } " />
114 </geometry>
115 <o r i g i n xyz=" 0 ${ l en /2 + rad iu s } 0 " rpy=" ${

p i /2} 0 0 " />
116 </ c o l l i s i o n>
117 <xac ro :de f au l t_ ine r t i a_rod masse=" 3 " />
118 </ l i n k>
119 <!−−Jo int c r e a t i on f o r the macroed l i n k−−>
120 <j o i n t name=" rev_to_f i r s t_ l ink " type=" r evo lu t e ">
121 <parent l i n k=" base_l ink " />
122 <ch i l d l i n k=" f i r s t_ l i n k " />
123 <o r i g i n xyz=" 0 ${(boxDim/2) + rad iu s } 0 " />
124 <ax i s xyz=" 1 0 0 " />
125 <l im i t e f f o r t=" 1000 .0 " lower=" −0.548 " upper=" 0 .548 "

v e l o c i t y=" 0 .5 " />



126 <dynamics damping=" 0 .2 " f r i c t i o n=" 0 .2 " />
127 </ j o i n t>
128

129 <!−−second_link−−>
130 <l i n k name=" second_link ">
131 <v i s u a l>
132 <geometry>
133 <cy l i nd e r l ength=" ${ l en } " rad iu s=" ${

rad iu s } " />
134 </geometry>
135 <o r i g i n xyz=" 0 ${ l en /2 + rad iu s } 0 " rpy=" ${

p i /2} 0 0 " />
136 <mate r i a l name=" grey " />
137 </ v i s u a l>
138 <c o l l i s i o n>
139 <geometry>
140 <cy l i nd e r l ength=" ${ l en } " rad iu s=" ${

rad iu s } " />
141 </geometry>
142 <o r i g i n xyz=" 0 ${ l en /2 + rad iu s } 0 " rpy=" ${

p i /2} 0 0 " />
143 </ c o l l i s i o n>
144 <xac ro :de f au l t_ ine r t i a_rod masse=" 3 .0 " />
145 </ l i n k>
146 <!−−Jo int c r e a t i on f o r the macroed l i n k−−>
147 <j o i n t name=" rev_to_second_link " type=" r evo lu t e ">
148 <parent l i n k=" f i r s t_ l i n k " />
149 <ch i l d l i n k=" second_link " />
150 <o r i g i n xyz=" 0 ${ l en + 2∗ rad iu s } 0 " />
151 <ax i s xyz=" 1 0 0 " />
152 <l im i t e f f o r t=" 1000 .0 " lower=" −0.548 " upper=" 0 .548 "

v e l o c i t y=" 0 .5 " />
153 <dynamics damping=" 0 .1 " f r i c t i o n=" 0 .1 " />
154 </ j o i n t>
155

156 <!−−Box end e f f e c t o r−−>
157

158 <!−−Back−−>
159 <l i n k name=" box_back "><!−−The base l i n k i s where the

r e f e r e n c e frame i s s e t−−>
160 <v i s u a l>
161 <geometry>
162 <box s i z e=" 0 .06 0 .01 0 .18 " />
163 </geometry>
164 <mate r i a l name=" ye l low " />
165 </ v i s u a l>
166 <c o l l i s i o n>
167 <geometry>
168 <box s i z e=" 0 .06 0 .01 0 .18 " />



169 </geometry>
170 </ c o l l i s i o n>
171 <i n e r t i a l>
172 <mass value=" ${boxMass} " />
173 <i n e r t i a ixx=" ${0.01} " ixy=" ${0 .0} " i x z="

${0 .0} " iyy=" ${0.01} " i y z=" ${0 .0} " i z z="
${0.01} " />

174 </ i n e r t i a l>
175 </ l i n k>
176

177 <!−−Fix to second l i n k−−>
178 <j o i n t name=" box_to_second_link " type=" f i x ed ">
179 <parent l i n k=" second_link " />
180 <ch i l d l i n k=" box_back " />
181 <o r i g i n xyz=" 0 ${ l en + 2∗ rad iu s } 0 " />
182 </ j o i n t>
183

184 <!−−Front−−>
185 <l i n k name=" box_front "><!−−The base l i n k i s where the

r e f e r e n c e frame i s s e t−−>
186 <v i s u a l>
187 <geometry>
188 <box s i z e=" 0 .06 0 .01 0 .18 " />
189 </geometry>
190 <mate r i a l name=" ye l low " />
191 </ v i s u a l>
192 <c o l l i s i o n>
193 <geometry>
194 <box s i z e=" 0 .06 0 .01 0 .18 " />
195 </geometry>
196 </ c o l l i s i o n>
197 <i n e r t i a l>
198 <mass value=" ${boxMass} " />
199 <i n e r t i a ixx=" ${0.01} " ixy=" ${0 .0} " i x z="

${0 .0} " iyy=" ${0.01} " i y z=" ${0 .0} " i z z="
${0.01} " />

200 </ i n e r t i a l>
201 </ l i n k>
202

203 <!−−Fix to back part−−>
204 <j o i n t name="boxB_to_boxF" type=" f i x ed ">
205 <parent l i n k=" box_back " />
206 <ch i l d l i n k=" box_front " />
207 <o r i g i n xyz=" 0 0 .115 0 " />
208 </ j o i n t>
209

210 <!−−Side−−>
211 <l i n k name=" box_side_le f t ">
212 <v i s u a l>



213 <geometry>
214 <box s i z e=" 0 .125 0 .01 0 .16 " />
215 </geometry>
216 <mate r i a l name=" ye l low " />
217 </ v i s u a l>
218 <c o l l i s i o n>
219 <geometry>
220 <box s i z e=" 0 .125 0 .01 0 .16 " />
221 </geometry>
222 </ c o l l i s i o n>
223 <i n e r t i a l>
224 <mass value=" ${boxMass} " />
225 <i n e r t i a ixx=" ${0.01} " ixy=" ${0 .0} " i x z="

${0 .0} " iyy=" ${0.01} " i y z=" ${0 .0} " i z z="
${0.01} " />

226 </ i n e r t i a l>
227 </ l i n k>
228

229 <!−−Fix to back part−−>
230 <j o i n t name="boxL_to_boxB" type=" f i x ed ">
231 <parent l i n k=" box_back " />
232 <ch i l d l i n k=" box_side_le f t " />
233 <o r i g i n xyz=" 0 .0375 0 .0575 0 .01 " rpy=" 0 0 ${ p i /2} " />
234 </ j o i n t>
235

236 <!−−Hook with pusher−−>
237 <l i n k name=" hook ">
238 <v i s u a l>
239 <geometry>
240 <cy l i nd e r l ength=" 0 .045 " rad iu s=" 0 .0045 " />
241 </geometry>
242 <o r i g i n xyz=" 0 0 ${−0.0225 − 0 .009} " rpy=" 0

0 0 " />
243 <mate r i a l name=" ye l low " />
244 </ v i s u a l>
245 <c o l l i s i o n>
246 <geometry>
247 <cy l i nd e r l ength=" 0 .045 " rad iu s="

0 .0045 " />
248 </geometry>
249 <o r i g i n xyz=" 0 0 ${−0.0225 − 0 .009} " rpy=" 0

0 0 " />
250 </ c o l l i s i o n>
251 <i n e r t i a l>
252 <mass value=" ${boxMass} " />
253 <i n e r t i a ixx=" ${0.01} " ixy=" ${0 .0} " i x z="

${0 .0} " iyy=" ${0.01} " i y z=" ${0 .0} " i z z="
${0.01} " />

254 </ i n e r t i a l>



255 </ l i n k>
256

257 <l i n k name=" pusher ">
258 <v i s u a l>
259 <geometry>
260 <cy l i nd e r l ength=" 0 .027 " rad iu s=" 0 .005 " />
261 </geometry>
262 <o r i g i n xyz=" 0 0 0 .0085 " rpy=" 0 0 0 " />
263 <mate r i a l name=" ye l low " />
264 </ v i s u a l>
265 <c o l l i s i o n>
266 <geometry>
267 <cy l i nd e r l ength=" 0 .027 " rad iu s="

0 .007 " />
268 </geometry>
269 <o r i g i n xyz=" 0 0 0 .0085 " rpy=" 0 0 0 " />
270 </ c o l l i s i o n>
271 <i n e r t i a l>
272 <mass value=" ${boxMass} " />
273 <i n e r t i a ixx=" ${0.01} " ixy=" ${0 .0} " i x z="

${0 .0} " iyy=" ${0.01} " i y z=" ${0 .0} " i z z="
${0.01} " />

274 </ i n e r t i a l>
275 </ l i n k>
276

277 <!−−Fixed to hook−−>
278 <j o i n t name=" push_to_hook " type=" f i x ed ">
279 <parent l i n k=" hook " />
280 <ch i l d l i n k=" pusher " />
281 <o r i g i n xyz=" 0 0 .0175 −0.04175 " rpy=" ${ p i /2 − pi /12}

0 0 " />
282 </ j o i n t>
283

284 <!−−Revolute at box−−>
285 <j o i n t name="hook_to_boxB" type=" r evo lu t e ">
286 <parent l i n k=" box_back " />
287 <ch i l d l i n k=" hook " />
288 <o r i g i n xyz=" 0 0 .0281 −0.1079 " rpy=" ${ p i /2} 0 0 " />
289 <ax i s xyz=" 1 0 0 " />
290 <dynamics damping=" 0 .01 " f r i c t i o n=" 0 .01 " />
291 <l im i t e f f o r t=" 1000 .0 " lower=" −0.17 " upper=" ${ p i /4} "

v e l o c i t y=" 0 .5 " />
292 </ j o i n t>
293

294 <!−−Button−−>
295 <l i n k name=" button ">
296 <v i s u a l>
297 <geometry>
298 <box s i z e=" 0 .013 0 .013 0 .004 " />



299 </geometry>
300 <o r i g i n xyz=" 0 0 0 " rpy=" 0 0 0 " />
301 <mate r i a l name=" ye l low " />
302 </ v i s u a l>
303 <c o l l i s i o n>
304 <geometry>
305 <box s i z e=" 0 .013 0 .013 0 .004 " />
306 </geometry>
307 <o r i g i n xyz=" 0 0 0 " rpy=" 0 0 0 " />
308 </ c o l l i s i o n>
309 <i n e r t i a l>
310 <mass value=" ${boxMass} " />
311 <i n e r t i a ixx=" ${0.01} " ixy=" ${0 .0} " i x z="

${0 .0} " iyy=" ${0.01} " i y z=" ${0 .0} " i z z="
${0.01} " />

312 </ i n e r t i a l>
313 </ l i n k>
314

315 <!−−Pri smat ic at box−−>
316 <j o i n t name=" button_to_boxB " type=" pr i smat i c ">
317 <parent l i n k=" box_back " />
318 <ch i l d l i n k=" button " />
319 <o r i g i n xyz=" 0 0 .0625 −0.07 " rpy=" 0 0 0 " />
320 <ax i s xyz=" 0 0 1 " />
321 <l im i t e f f o r t=" 1000 .0 " lower=" 0 .0 " upper=" 0 .004 " v e l o c i t y="

100 .0 " />
322 </ j o i n t>
323

324

325 <!−−Gazebo−ROS plug in−−>
326 <gazebo>
327 <plug in name=" gazebo_ros_control " f i l ename="

l ibgazebo_ros_contro l . so ">
328 <robotNamespace>/uw_arm</robotNamespace>
329 </plug in>
330 </gazebo>
331

332 <!−−Transmiss ions−−>
333 <!−−F i r s t r evo l u t e−−>
334 <transmi s s i on name=" r ev_ f i r s t_ l i nk ">
335 <type>t ran sm i s s i on_ in t e r f a c e / SimpleTransmiss ions</ type>
336 <actuator name=" $motor_rev_joint ">
337 <mechanicalReduction>1</mechanicalReduction>
338 </ actuator>
339 <j o i n t name=" rev_to_f i r s t_ l ink ">
340 <hardware Inte r face>hardware_inter face /

E f f o r t J o i n t I n t e r f a c e</ hardware Inte r face>
341 </ j o i n t>
342 </ transmi s s i on>



343

344 <!−−Second r evo lu t e−−>
345 <transmi s s i on name=" rev_second_link ">
346 <type>t ran sm i s s i on_ in t e r f a c e / SimpleTransmiss ions</ type>
347 <actuator name=" $motor_rev_two_joint ">
348 <mechanicalReduction>1</mechanicalReduction>
349 </ actuator>
350 <j o i n t name=" rev_to_second_link ">
351 <hardware Inte r face>hardware_inter face /

E f f o r t J o i n t I n t e r f a c e</ hardware Inte r face>
352 </ j o i n t>
353 </ transmi s s i on>
354

355 <!−−Adding gazebo a t t r i b u t e s−−>
356 <gazebo r e f e r e n c e=" button ">
357 <grav i ty>f a l s e</ grav i ty>
358 <s e l f C o l l i d e>true</ s e l f C o l l i d e>
359 <mate r i a l>Gazebo/Red</mate r i a l>
360 <mu1>0.2</mu1>
361 <mu2>0.2</mu2>
362 </gazebo>
363

364 <gazebo r e f e r e n c e=" pusher ">
365 <grav i ty>f a l s e</ grav i ty>
366 <s e l f C o l l i d e>true</ s e l f C o l l i d e>
367 <mate r i a l>Gazebo/Green</mate r i a l>
368 <mu1>0.2</mu1>
369 <mu2>0.2</mu2>
370 </gazebo>
371

372 <gazebo r e f e r e n c e=" hook ">
373 <grav i ty>f a l s e</ grav i ty>
374 <s e l f C o l l i d e>true</ s e l f C o l l i d e>
375 <mate r i a l>Gazebo/Green</mate r i a l>
376 <mu1>0.2</mu1>
377 <mu2>0.2</mu2>
378 </gazebo>
379

380 <gazebo r e f e r e n c e=" second_link ">
381 <grav i ty>f a l s e</ grav i ty>
382 <s e l f C o l l i d e>true</ s e l f C o l l i d e>
383 <mate r i a l>Gazebo/Grey</mate r i a l>
384 <mu1>0.2</mu1>
385 <mu2>0.2</mu2>
386 </gazebo>
387

388 <gazebo r e f e r e n c e=" f i r s t_ l i n k ">
389 <grav i ty>f a l s e</ grav i ty>
390 <s e l f C o l l i d e>true</ s e l f C o l l i d e>



391 <mate r i a l>Gazebo/Grey</mate r i a l>
392 <mu1>0.2</mu1>
393 <mu2>0.2</mu2>
394 </gazebo>
395

396 <gazebo r e f e r e n c e=" base_l ink ">
397 <grav i ty>f a l s e</ grav i ty>
398 <mate r i a l>Gazebo/Yellow</mate r i a l>
399 </gazebo>
400 </ robot>



C.5 Launch file URDF

Listing C.3: Launch file URDF
1 <launch>
2 <!−−Sets g l oba l cons tant s ( or s t r i n g s ) f o r s c r i p t−−>
3 <arg name="model " d e f au l t=" $( f i nd ros_underwater_simulator ) / urdf /

uw_arm_control_ee . urdf " /><!−−Path to urdf model−−>
4 <arg name=" gui " d e f au l t=" t rue " /><!−−GUI togg l e−−>
5 <arg name=" head l e s s " d e f au l t=" f a l s e " />
6 <arg name=" debug " d e f au l t=" f a l s e " />
7 <arg name=" paused " d e f au l t=" f a l s e " />
8 <arg name=" use_sim_time " d e f au l t=" t rue " />
9

10 <param name=" robot_desc r ip t i on " command=" $( f i nd xacro ) / xacro $( arg
model ) " /><!−−model i s l i nked to the s p e c i f i e d path and

executed both as xacro and urdf−−>
11 <param name=" use_gui " va lue=" $( arg gui ) " />
12

13 <!−−Loads Gazebo r e l a t e d e lements−−>
14 <inc lude f i l e=" $( f i nd gazebo_ros ) / launch/empty_world . launch ">
15 <arg name=" debug " va lue=" $( arg debug ) " />
16 <arg name=" gui " va lue=" $( arg gui ) " />
17 <arg name=" paused " value=" $( arg paused ) " />
18 <arg name=" use_sim_time " value=" $( arg use_sim_time ) " />
19 <arg name=" head l e s s " va lue=" $( arg head l e s s ) " />
20 </ inc lude>
21

22 <!−−Loads the URDF with the arg conta in ing the path to s p e c i f i e d
URDF−−>

23 <node name=" urdf_spawner " pkg=" gazebo_ros " type=" spawn_model " args
="−z 0 −unpause −urdf −model robot −param robot_desc r ip t i on "
respawn=" f a l s e " output=" sc r e en " />

24

25 <!−−Rviz load ing ( Optional )−−>
26 <!−−<node name=" r v i z " pkg=" r v i z " type=" r v i z " args="−d $( arg

r v i z c o n f i g ) " />−−>
27

28 <!−−Loads c o n t r o l l e r s−−>
29 <!−− <rosparam f i l e=" $( f i nd ros_underwater_simulator ) / c o n t r o l l e r /

c o n t r o l l e r_ i n s t r u c t i o n s . yaml " command=" load " ns="
f i r s t_ r e v_con t r o l l e r " />

30 <node name=" contro l l e r_spawner_f i r s t_rev " pkg=" contro l ler_manager "
type=" spawner " args=" f i r s t_ r e v_con t r o l l e r " /> −−>

31

32 <!−−Loads c o n t r o l l e r s−−>
33 <!−− <rosparam f i l e=" $( f i nd ros_underwater_simulator ) / c o n t r o l l e r /

cont ro l l e r_ ins t ruc t i ons_second_rev . yaml " command=" load " ns="
second_rev_contro l l e r " />

34 <node name=" control ler_spawner_second_rev " pkg=" contro l ler_manager



" type=" spawner " args=" second_rev_contro l l e r " /> −−>
35

36 <!−−Ca l l s and loads the j o i n t s t a t e c o n t r o l l e r which pub l i s h e s the
j o i n t s t a t e s−−>

37 <!−− <rosparam f i l e=" $( f i nd ros_underwater_simulator ) / c o n t r o l l e r /
j o i n t S t a t e s . yaml " command=" load " ns=" j o i n t_s t a t e_con t r o l l e r " />

38 <node name=" jo int_state_contro l l e r_spawner " pkg="
contro l ler_manager " type=" spawner " args=" j o i n t_s t a t e_con t r o l l e r
" /> −−>

39

40 <!−−Ca l l s and loads the robot s t a t e pub l i s h e r−−>
41 <!−− <param name=" my_robot_description " t e x t f i l e=" $( f i nd

ros_underwater_simulator ) / urdf /uw_arm_control_ee . urdf " /> −−>
42 <!−− <node pkg=" robot_state_publ i sher " type=" robot_state_publ i sher

" name=" rob_st_pub " >
43 <remap from=" robot_desc r ip t i on " to=" robot_desc r ip t i on " />
44 <remap from=" j o i n t_s t a t e s " to=" d i f f e r e n t_ j o i n t_ s t a t e s " />
45 </node> −−>
46 </ launch>



C.6 Launch Controllers

Listing C.4: Launch fiel for controllers
1 <launch>
2

3 <!−− Load j o i n t c o n t r o l l e r c on f i g u r a t i o n s from YAML f i l e to
parameter s e r v e r −−>

4 <rosparam f i l e=" $( f i nd uw_arm_control ) / c on f i g /
c o n t r o l l e r_ i n s t r u c t i o n s . yaml " command=" load " />

5

6 <!−− load the c o n t r o l l e r s −−>
7 <node name=" contro l l e r_spawner " pkg=" contro l ler_manager " type="

spawner " respawn=" f a l s e "
8 output=" sc r e en " ns=" /uw_arm" args=" j o i n t 1_po s i t i o n_con t r o l l e r

j o i n t 2_po s i t i o n_con t r o l l e r j o i n t_ s t a t e_con t r o l l e r " />
9

10 <!−− convert j o i n t s t a t e s to TF trans forms f o r rv i z , e t c −−>
11 <node name=" robot_state_publ i sher " pkg=" robot_state_publ i sher "

type=" robot_state_publ i sher "
12 respawn=" f a l s e " output=" sc r e en ">
13 <remap from=" / j o i n t_s t a t e s " to=" / robot / j o i n t_s t a t e s " />
14 </node>
15

16 </ launch>



C.7 YAML controllers

Listing C.5: YAML
1 uw_arm:
2 # Publ ish a l l j o i n t s t a t e s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3 j o i n t_ s t a t e_c on t r o l l e r :
4 type : j o i n t_ s t a t e_con t r o l l e r / Jo i n tS t a t eCon t r o l l e r
5 pub l i sh_ra te : 50
6

7 # Pos i t i on Con t r o l l e r s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
8 j o i n t 1_po s i t i o n_con t r o l l e r :
9 type : e f f o r t_ c o n t r o l l e r s / J o i n tPo s i t i o nCon t r o l l e r

10 j o i n t : r ev_to_f i r s t_ l ink
11 p i d : { p : 100 .0 , i : 0 . 01 , d : 10 .0}
12 j o i n t 2_po s i t i o n_con t r o l l e r :
13 type : e f f o r t_ c o n t r o l l e r s / J o i n tPo s i t i o nCon t r o l l e r
14 j o i n t : rev_to_second_link
15 p i d : { p : 15 . 0 , i : 0 . 1 , d : 1 .0}
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