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Abstract

This thesis expands upon the debate surrounding the paper of DeMiguel, Garlappi &

Uppal (2009). We investigate the performance of optimized strategies compared to the

naive 1/N rule while controlling for data-snooping. Using the Sharpe ratio and the

FFC4 alpha as performance measures, we investigate 10 basic portfolio strategies with

datasets from the US and Norwegian markets. We attempt to answer two weaknesses

of previous studies on the topic by accounting for data-snooping using White’s Reality

Check (WRC) and the Superior Predictive Ability (SPA) test. In addition, we include

the alpha measure in order to account for the established factor premiums present in the

datasets. When we conduct joint-tests on the US datasets, most of our findings show

little empirical evidence towards at least one active strategy significantly outperforming

the naive benchmark. In the joint-test results from the Norwegian datasets, we find

evidence towards at least one strategy significantly outperforming the benchmark. Our

study highlights the difference in capital markets while also calling into question the

value of asset allocation from optimized strategies.
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1. Introduction

Optimization is the method of finding the best possible solution from all feasible alter-

natives. Within finance, portfolio optimization is the paradigm of investors constructing

the optimal portfolio that has the best tradeoff between the reward and risk. Theorists

within this topic attempt to solve this by creating strategies that dictate how an investor

should allocate his wealth among a given set of alternatives. Strategies are often tested

against historical data, using this as a simulation for how it could perform in a present

or future scenario. Several academic papers have attempted portfolio optimization with

diverging results. Furthermore, the potential weaknesses of these studies have been

highlighted in more recent years, necessitating the need for additional research.

Within finance, portfolio optimization is a topic that has experienced changes through-

out the years. One of the first wealth allocation methods is dated back over 1500 years

ago. This allocation method stated that one should allocate one-third in land, one-third

in merchandise, and one-third as cash. This is one of the earliest example of the naive

diversification. The investor splits his wealth equally into the number of assets he wishes

to invest in. In this paper, this rule is used as a benchmark comparison for all optimized

strategies.

Through the years, there has been a considerable amount of scientific contribution,

developing additional strategies, each stating how to best invest wealth in the promise of

a future benefit. Most notably, Markowitz (1952) developed a method for constructing

an optimal mean-variance portfolio. His method emphasises on the mean and variance

of expected return, where the expected return is maximized at a given level of risk. This

contribution has become a prominent role in the modern investment theory framework,

and founded what is considered the modern portfolio theory (MPT). However, complica-

tions arose when applying this method to asset allocation. Researchers discovered that

wrongly estimating the parameters could consequently cause extreme portfolio reallo-

cation (Beast & Grauer, 1991) and poor out-of-sample performance (Michaud, 1989).
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In response to this, subsequent studies have proposed various methods for mitigating

these estimation errors and improve the performance of mean-variance based portfolios.

Amongst these attributions, we find the min-variance model (Roger Clarke, Harindra de

Silva, & Steven Thorley, 2006), the max-diversification (Choueifaty & Coignard, 2008),

the equal-weighted risk contribution (Maillard, Roncalli & Teiletche, 2010), risk parity

(Quian, 2011), reward-to-risk and volatility timing strategies (Kirby & Ostdiek, 2012).

DeMiguel et al. (2009) conducted a study where they wanted to evaluate the out-

of-sample performance of the sample-based mean-variance strategy, and its extensions

designed to mitigate the estimation error, relative to the naive benchmark. Out of

their 14 models evaluated across 7 empirical datasets, they find that none of their

strategies consistently outperformed the naive diversification. The study came to be

regarded as highly influential and has been cited in numerous articles, where financial

researchers have attempted similar studies in order to disprove the findings and defend

the optimization strategies viability. See; Kritzman, Page & Turkington (2010), Tu &

Zhou (2011), Kirby & Ostdiek (2012) and Banerjee & Hung (2013).

Even though the authors mentioned above have implemented improvements to the

mean-variance (MV) framework and provided evidence of its efficiency, the extent to

which their results are free from data-snooping bias remains unclear. Data-snooping

bias arises when researchers apply many empirical tests on the same dataset. White

(2000) explained that looking long and hard enough at any given dataset will produce

favorable results but that these are, in fact, useless. He thereby argues that data-

mining bias is present, when researchers evaluate strategies individually, not accounting

for other strategies being evaluated simultaneously. He presents a joint test, called

the White reality check (WRC), where potential data-mining bias is reduced. Hansen

(2005) proposes an improvement to this test, refereed to as the Superior predictive ability

(SPA) test. Yang et al. (2018) and Hsu et al. (2018) addresses the data-mining bias by

implementing both the WRC and SPA tests. Both papers conclude that by controlling

for data-mining, none of their optimized strategies significantly outperform the naive

diversification.

In addition to the data-snooping bias not being accounted for by earlier authors,

Zakamulin (2017) discusses an additional weakness in the approach of earlier research.

Firstly, he refers to Kritzman et al.; and Kierby & Ostediek for not accounting for the

low-volatility effect present in the data. This is also previously discussed by Haugen
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& Baker (1991) and Blitz & Van Vliet (2007). Secondly, he discusses the disadvantage

of using the Sharpe ratio as the only measurement-tool of performance. He gives a

cautionary note regarding the established factors premiums in the datasets of Kenneth

French. When controlling for the low-volatility effect, the optimized strategies no longer

outperformed the naive 1/N. Sharpe ratio does not take these factor premiums into

account when measuring performance.

This thesis attempts to further the discussion of portfolio optimization, where we

cover two weaknesses present in previous research on this topic: The presence of data-

mining bias and the usage of Sharpe ratio as the only performance measure. We attempt

to replicate the findings of both Yang et al. (2018) and Hsu et al. (2018), and also

extend it to the Norwegian market. Similarly to these papers, we include the WRC and

SPA tests in order to mitigate the data-mining bias. Additionally, we include a second

performance measure, the Fama-French-Carhart (FFC4) alpha (Carhart, 1997), as an

answer to the established factor premiums, like the low-volatility effect, present in close

to all datasets provided by the online library of Kenneth French (Zakamulin, 2017).

The following main null hypothesis is tested: The performance of the best optimized

strategy is not significantly better than that of the naive benchmark. If the WRC or SPA

tests provides a significant p-value, this signifies the rejection of the null. In this case

we see evidence towards the alternate hypothesis, where at least one optimized strategy

significantly outperforms the benchmark. A 5% significance level is employed. In this

study we apply 10 different portfolio optimization strategies to 16 different datasets

based on the US market, and 4 datasets on the Norwegian market. The US datasets

contains the period 1963 to 2019, and the Norwegian is for 1980 to 2018.

Our results mostly support that no optimized strategy outperforms the naive 1/N in

the US market, with some difference due to the different methodologies in the compu-

tations of the performance measures and joint test p-value. For the Norwegian market,

we find the opposite results, with the majority of tests pointing towards one or more

strategy outperforming the naive.

The remainder of the thesis is structured as follows: Chapter 2 presents a literature

review of existing theory. Chapter 3 addresses the methodology applied in the empirical

analysis. In Chapter 4, we present the data employed in the study. Chapters 5-6, covers

the presentation of the results and followingly, a discussion of these. Lastly, Chapter 7

concludes the thesis.
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2. Literature review

The introduction of the mean-variance theory by Markowitz (1952), also known as the

modern portfolio theory (MPT), is considered to be a keystone theory when looking at

finance and investment. The approach of portfolio optimization suggested by Markowitz

relies on estimation of the mean and covariance-variance matrix of a portfolio. With

these variables, it seeks to maximize the expected returns at a given level of risk.

Even though the mean-variance (MV) approach suggested by Markowitz has gained

much positive recognition, it is not without criticism. Michaud (1989) points out some

of the negative sides by applying the MV approach: (i) One of the fundamental problems

being that the level of mathematical sophistication required for the optimization is far

greater than the level of information in the input forecast. (ii) MV optimizers operate in

such a manner that they magnify the errors with the input estimation, Michaud himself

referring to the MV model as "error maximizers" due to the large errors following the

estimation of mean return and the covariance matrix. Where estimation will always be

a problematic aspect of portfolio optimization. He cautions readers of the results from

the MV model, as it treats the input variables as true, and not as estimators which

they are. Motivated by the inability to accurately predict mean returns, several authors

proposed alternative strategies that could reduce the impact of estimation error, briefly

mentioned below.

Clarke, De Silva, & Thorley (2006) proposed the minimum-variance portfolio. They

focused on risk diversification when developing the strategy, the purpose of the portfolio

optimization was to minimize the variance of returns. They applied this strategy to

US equity market data provided from the CRSP database, using a time period from

1968-2005. Comparing the performance of the minimum-variance to the market, they

provide evidence that the minimum-variance produced higher mean returns, and lower

standard deviation.
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Seeking to maximize diversification of risk, Maillard, Roncalli, & Teiletche (2009)

created a portfolio optimization approach that seeks to equalize the risk contribution

(ERC) from each component. Even though the ERC approach was not new, and had

already been discussed (Neurich [2008], and Qian [2005]), Millard et al. added new

features which focus on single and join risk contribution of the asset. By creating 4 risky

assets with 10%, 20%, 30%, and 40%, they applied the naive diversification, minimum

variance and the ERC strategies. The result showed that the ERC has lower volatility

than the naive diversification, but higher volatility than the minimum variance, but

demonstrate that the risk contribution from the minimum variance is less diversified

then the ERC. Making the ERC more balanced in terms of risk contribution. They also

provide evidence that the ERC produces the highest Sharpe ratio return.

Chaves, Hsu, Li & Sgakernia (2012) discussed the usage of risk-parity for equalizing

the risk allocation amongst all assets. Using the classical 60/40 market portfolio as

an example, they explain that the 40% containing stocks provide a significant amount

more volatility than the 60% containing bonds. They employed datasets provided from

S&P 500 from 1980 - 2010. They compared the performance of the risk parity to the

60/40 allocation, the US pension model portfolio (60/40 with anchor), equally-weighted

portfolio-, minimum variance- and mean-variance optimization. Their result showed that

the risk parity model produces a higher Sharpe ratio than the minimum variance and

mean-variance optimization, but fails to consistently outperform the equally weighted

portfolio and 60/40 equity bond portfolio. In addition, it has less volatile performance

characteristics. They noted that the risk parity is sensitive to the inclusion decision for

assets, where including more asset alternatives does not lead to better performance.

Choueifaty & Coignard (2008) wanted to investigate the properties of diversification

as a criterion for constructing a portfolio. They created the most diversified portfolio

strategy (also referred to as maximum diversification portfolio), which seeks to maximize

the diversification ratio of a portfolio — using the S&P 500 index and Dow Jones Euro

Stoxx Large Cap index data, covering 1990-2008 for the US and European markets,

respectively. They applied the minimum-variance portfolio, equal-weight portfolio, most

diversified portfolio towards a market-cap-weighted benchmark. Their results showed

that the most diversified portfolios produce a higher Sharpe ratio than the market cap,

lower volatility, and higher return in the long run.
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DeMiguel et al. (2009) assessed the out-of-sample performance of the sample-based

mean-variance model, and its extensions, relative to the naive diversification. Doing

so, they applied 14 different portfolio optimization strategies on 8 different datasets

provided by Kenneth French. The datasets contained monthly excess returns over the

90-days nominal US T-bill. To measure the performance of the active portfolios, they

employed 3 performance measurements: (i) the out-of-sample Sharpe ratio; (ii) the CEQ

(certainty-equivalent) return for the expected utility of a mean-variance investor; and

(iii) the turnover (trading volume) for each portfolio strategy. The first contribution

from their paper is that according to all three of their performance measures, none of

the optimized strategies consistently outperform the naive 1/N. Secondly, based on their

parameters calibrated to the US market, they showed that the estimated window needed

for the sample-based mean-variance strategy and its extensions to outperform the naive

diversification is around 3000 for a portfolio with 25 assets, and 6000 for a portfolio.

Their result started a "heated debate" on the subject of portfolio optimization, where

newer academic papers have attempted to test these findings, employing new allocation

methods and datasets, often in order to advocate for a specific strategies viability.

One of the earliest responses that sought to defend the value of optimization is from

Krietzman et al. (2009). They pointed out that the equally weighted diversification

strategy assumes the investor has no knowledge of the assets. Claiming that if there

is some information about the expected return, riskiness, and diversification properties,

then the performance gap between the optimized and the naive 1/N would decrease, and

the performance of the optimized increase. By using 13 datasets, they constructed more

than 50,000 optimized portfolios and evaluated their out-of-sample performance. They

showed that the optimized portfolios significantly outperform the naive 1/N, saying:

"We found that even without any ability to forecast return, optimization of the covari-

ance matrix by itself adds value." Krietzman et al. (2009) does not check if there is a

significant difference between the Sharpe ratios of the strategies, making their statement

of outperformance more of an arbitrage observation rather than empirical evidence.

Tu & Zhou (2011) developed an alternative approach to beat the naive 1/N. They

proposed a portfolio strategy composed of the naive benchmark together with one of

four optimized strategies, where the weights are combined. They found that these com-

binations have a significant impact on the active strategies, improving the effectiveness

compared to their none-combined counterparts. Also, they showed that these combined
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strategies significantly outperform the naive 1/N, using the Sharpe ratio as a perfor-

mance measure.

Kirby & Ostdieks (2012) criticized DeMiguel et al. (2009) and suggested that the

high performance of the naive 1/N compared to the active portfolios in the out-of-sample

test, is due to their research design. They stated that the focus on portfolios that are

subject to high estimation risk and extreme turnover favors the naive 1/N strategy.

When applying their own model, they discovered that the mean-variance optimization

often outperforms the naive 1/N but see that turnover can erode its advantage in the

presence of transaction cost. Turnover is defined as how quickly company receives cash

from accounts receivable, or how quick they can sell its inventory. Solving this problem,

they developed two new methods of mean-variance portfolios, characterized by a low

turnover. The two new strategies are called volatility timing and reward-to-risk timing,

based on the earlier work of Fleming, Kirby & Ostdieks (2001, 2002). Some key features

of these strategies which give them an advantage are like those we can find in the naive

1/N. (i) No optimization, (ii) no covariance matrix inversion, and (iii) no short sales.

Implementing the two strategies shows that they outperform the naive 1/N portfolio.

Banerjee & Hung (2013) compared the active momentum trading versus the naive

1/N strategy, aiming to discover the merits and demerits of the momentum trading. By

looking at the time period from 1926 to 2005 and 100 randomly selected 10-year periods,

they implemented the active momentum trading versus the naive 1/N strategy. When

comparing the difference between the profits of momentum and the naive benchmark,

they find that there are no significant differences.

More recently, Zakamulin (2017) wrote a cautionary note regarding the usage of

Kenneth French’s datasets while applying the Sharpe ratio as a performance measure.

After examining earlier work related to the response of DeMiguel et al. (2009), Zaka-

mulin pointed out similarities amongst Kritzman et al. (2010), Tu and Zhou (2011)

and, Kirby and Ostdiek (2012). (i) They all implemented various portfolio optimization

methods using datasets provided by Kenneth French, and (ii) the usage of the Sharpe

ratio as a performance measurement without controlling for the risk-based explanation

of the superior performance of their optimized portfolios.

Zakamulin points out that the authors do not consider the possibility that some

profit anomalies may provide the superior performance of the optimized strategies seen

in some papers. Testing the 17 different datasets provided by Kenneth French, he proves
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the existence of low-volatility effects in virtually all of them. The alphas generated by

the CAPM-model returns statistically significant values in his findings. However, by

expanding upon the alpha, and adding the Fama-French HML factor to the model as

a way to control for the low volatility effect (Blitz, 2016), there appears no evidence

of the optimized strategies outperforming the naive. Therefore in order to accurately

measure and test for outperformance, the alpha measure should be used, either from the

Fama-French 3-factor model (FF3) or Fama-French-Carhart 4-factor model (FFC4).

Another criticism to Kritzman et al. (2010), Tu and Zhou (2011) and, Kirby and

Ostdiek (2012), is that these articles do not control for data-mining in their datasets.

Data-mining occurs when re-using the same dataset multiple times. When re-using the

dataset, there is a possibility that the satisfactory result is more chance, rather than from

a superior underlying methodology of the allocation strategy. White (2000) proposed

a method for countering the effect of data-mining bias, White’s Reality Check. With

the purpose of creating a method for testing the null hypothesis that the best model

encountered has no predictive data-mining bias superiority over a given benchmark.

This joint test allows with some degree of confidence, the conclusion that the results

are not from pure chance or luck, but rather true outperformance. The WRC test

incorporates all optimization models and datasets into one joint test, for a final p-value.

Hansen (2005) extended this model and proposed minor changes to increase its overall

adequacy; his extension is referred to as the SPA test for Superior Predictive Ability.

It differs from the WRC in that it normalizes the test statistic, and use a threshold for

the z-values, removes inferior performing strategies from the model altogether.

The article of Hsu, Han, Wu, & Cao (2018) in addition to the one by Yang, Cao,

Han & Wang (2018) both employed the joint SPA and WRC test to correct for the

data-mining issue present in earlier studies. Thus more accurately determining the

performance of some active trading strategies compared to a naive 1/N benchmark.

Hsu et al. (2018) applied 16 different strategies to 3 different datasets, finding limited

evidence that the active strategies outperform the naive. Cao et al. (2018) applied 11

different portfolio strategies to 4 different datasets, comparing the strategies to the naive,

where they similarly find little evidence of their tested strategies outperforming the

naive. They expand upon the joint tests by implementing step-wise iterations. Thereby

they can determine how many strategies potentially outperforms the naive. Both articles

highlight the significant impact data-mining bias has on the overall conclusion of a study.
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3. Methodology

3.1 Active strategies

This section provides a description of the methodology used in the empirical analysis

of the study. Presenting a framework for the strategies, joint tests, backtesting and

performance measures. In Table 3.1 we list the strategies used, with their abbreviations.

Table 3.1: Allocation strategies

# Model Abbreviation

Benchmark

0. 1/N NAIVE

Active strategies

1. Mean-variance MV

2. Minimum variance MVP

3. Volatility timing VT

4. Reward to risk timing RRT

5. Equal risk contribution ERC

6. Risk parity RP

7. Minimum tail dependent portfolio TD

8. Risk efficient portfolio RE

9. Maximum diversification MDIV

10. Maximum-decorrelation MDEC

Table 3.1 lists the various allocation strategies used. # denotes the strategy number, and the last

column the strategy abbreviation.
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This paper uses 10 portfolio optimization strategies in addition to the naive bench-

mark strategy. The strategies employ a combination of historical returns, variance-

covariance matrix, and the risk-free rate of return. These values are used in order to

compute the allocated weights for each asset i. The strategies, therefore, present an

optimization problem with regards to the weights, limited by two constraints. The first

constraint is that the total sum of weights equals to 1, and the second constrains is that

short sales are not allowed. Where 3.1 represents the sum of all the weights, and 3.2 the

short sale restriction.

w′1 = 1 (3.1)

wi ≥ 0, (3.2)

where wi is the wight of assets i in regards to the total portfolio weights w, w =

(w1, w2, ..., wN )

Throughout this section, we employ several symbols that are used repeatably for all

strategies. µ denotes the expected mean return of a portfolio, and σ is the standard

deviation. w′Σw is the variance of a portfolio, and Σ is the N ×N variance-covariance

matrix of returns. Matrices and vectors are bolded.

(0) 1/N benchmark

The naive diversification is a well-known investment strategy that has been used for

many years, often as a benchmark comparison (DeMiguel et al. 2009). Naive diversi-

fication, or sometimes referred to as 1/N rule, consists of dividing the wealth equally

amongst the N risky assets. It does not consider historical returns or risk, separating

itself from the other strategies by being the simplest strategy and having no optimiza-

tion. In this paper, the 1/N strategy is used as a benchmark for comparison against

active strategies.

wi = 1
N

(3.3)
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(1) Mean-variance

The mean-variance strategy analyses the risk against the expected return. This

strategy was proposed by Markowitz (1952). The strategy helps the investor find the

portfolio which give the highest return at a given level of risk. This is done by using the

estimated mean return and the variance-covariance matrix of the returns.

The strategy relies on investors behaving rationally, that an investor choosing be-

tween two portfolios with similar returns, but different variance, will choose the portfolio

with the lowest risk. The asset weights of the strategy is found by maximizing the ex-

pression below:

max
w

µ− λw′Σw s.t. w′1 = 1 , wi ≥ 0, (3.4)

where λ is the parameter which measures how risk averse an investor is, it is set at:

0.89. There is no general solution to this problem, and it is solved with the use of a

quadratic solver from the package "optimalPortfolio"(2020) in R.

(2) Minimum variance portfolio

The mean-variance portfolio, amongst other "optimized" portfolios, is constructed

upon estimated risk and return. Estimated returns will inevitably become subject to

estimation error to a higher degree than estimated risk (Michaud, 1989). The minimum

variance only depends on the covariance matrix and is, therefore, less exposed to esti-

mation errors. The MVP is located on the left-most area of the efficient frontier, where

risk in the form of variance is minimized. It was shown by Clarke, DeSilva, and Thorley

(2006) that the MVP strategy achieves both low risk and a high Sharpe ratio marking

the strategy as attractive for investors.

In order to estimate the MVP portfolio, one needs to calculate the weights of each

asset i. In this paper, the weights are calculated with short sales restrictions. The

following minimization problem is presented in order to compute the weights:

min
w

w′Σw s.t. w′1 = 1 , wi ≥ 0 (3.5)

The problem is solved by using the "optimalPortfolio" package in R.
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(3) Volatility timing

Kirkby and Ostdiek (2012) proposed a set of timing strategies where the investors

consider mean returns µ constant and equal: µi = µj = µ. The weights are there-

fore determined by the conditional covariance matrix, not the expected return. They

find that the volatility timing strategy (VT) overall outperforms mean-variance efficient

portfolios. The weights of asset i are given:

wi =

(
1
σ2

i

)η
∑N
i=1

(
1
σ2

i

)η , (3.6)

where σ2
i is the i − th standard deviation asset i. η > 0 is a tuning parameter,

measuring the timing aggressiveness of the strategy; in other words, how sensitive the

weights are to volatility changes.

In this paper η = 4, this in accordance with Zakamulin (2017) and the findings of

Kirby & Ostdiek (2012). The latter, who discovered that setting η > 1 should help

compensate for the information loss caused by ignoring the correlations.

According to Kirby & Ostdiek (2012), 4 notable features characterize the VT strat-

egy: (i) First, it does not require optimization, (ii) Second; it does not require covariance

matrix inversion, (iii) Third, they do not generate negative weights, (iv) Fourth, through

volatility changes, the sensitivity of the portfolio weights can be adjusted with a tuning

parameter.

(4) Reward to risk timing

Kirby & Ostdiek (2012) also propose a more general timing strategy that incor-

porates the expected return µ and thus attempting to better capture all factors in

the optimization. Similarly to VT, reward-to-risk timing (RRT) ensures non-negative

weights of asset i. The weights are given by:

wi =

(
µ+
i

σ2
i

)η
∑N
i=1

(
µ+
i

σ2
i

)η , (3.7)

where µ+
i is the estimated mean of the returns subtracted the risk-free rate, with
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the limitation that the result is positive, assuring non-negative weights. The tuning

parameter is like the VT strategy set at 4 in this paper. σ2
i is the variance of asset

returns. The reward to risk strategy includes returns in its calculations. These are often

estimated with less precision than the variance. In order to reduce this effect, the mean

excess returns in the formula above are limited in only positive returns; µ+
i = max(µi, 0).

The strategy is computed in R.

(5) Equally risk contribution portfolios

Equal Risk Contribution (ERC) is a risk-balanced portfolio proposed by Maillard,

Roncalli & Teiletche (2008). When an asset produces significantly higher risk than

another, the weight of the high-risk asset will get scaled down so that the relative risk

contribution will be on an even level compared to the less risky. This requires the

estimation of the covariance matrix for computation of the weights. The relative risk

contribution (RRC) is normalized and shows the risk contribution of asset i in the

portfolio:

RRCi = wi(Σw)i
w′Σw , (3.8)

where (Σw)i denotes the element i of vector (Σw) Satisfying that the sum of all

RRC is equal to 1.

The overall goal of the ERC is to equalize the relative risk contribution amongst N

assets such that:

RRCi = 1
N

(3.9)

The ERC portfolio equalizes RRC amongst all assets and presents itself as an optimiza-

tion problem:

min
w

N∑
i=1

N∑
i=1

(
wi(Σw)i − wj(Σw)j

)2
s.t. w′1 = 1 , wi ≥ 0 (3.10)

It is solved using an SQP (sequential quadratic programming) algorithm, from the

R package FRAPO (2016).
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(6) Risk parity

The risk parity model is a simplified version of the ERC model, proposed by Asness,

Frazzini, & Pedersen (2012). This strategy does not use the variance-covariance matrix

when calculating weights. Instead, it relies on the standard deviation of the returns as

a measure of risk. Assuming zero correlation between the assets ρij = 0, the weights are

calculated as shown:

wi =
1
σi∑N
i=1

1
σi

(3.11)

Due to the equal distribution of risk, less risky assets are therefore overrepresented

relative to the market portfolio, reducing the overall risk of the risk parity portfolio.

The strategy is computed in R

(7) Minimum tail dependent portfolio

The Minimum Tail Dependent (MTD) portfolio is a non-parametric portfolio estima-

tion strategy where the variance-covariance matrix is replaced by a matrix of the lower

tail dependence coefficients (Adame-Garcia, Fernandez Rodriguez, & Sosvilla-Rivero,

2017). Instead of minimizing volatility as in the MVP portfolio, the MTD portfolio at-

tempts to minimize tail dependence. Tail dependence is an expression of the dependence

of the relationship between extreme returns of N assets. In other words, it is a measure

of external dependence on the returns. With lower tail dependence, we are considering

extreme negative returns (Schmidt, Stadtmuller, 2006). The overall weights optimiza-

tion is akin to the method used in the global minimum variance portfolio, differing in

the matrix used.

min
w

w′TDw s.t. w′1 = 1 , wi ≥ 0, (3.12)

where TD is the tail dependence matrix of the returns. This minimization problem

is solved using the R package FRAPO (2016) FRAPO uses a non-parametric estimation

provided by Schmidt et al. (2006) in order to compute the lower tail dependence.

(Nelsen, Quesada-Molina, Rodriguez-Lallena & Ubeda-Flores, 2000).
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(8) Risk efficient portfolio

Developed by Amenc, Goltz, Martellini, & Retkowsky, (2011), they propose to con-

struct a maximum Sharpe ratio portfolio with the assumption that a stock’s expected

return is a deterministic function of its semi-deviation, and the cross-sectional distribu-

tion of semi-deviations. The following maximization problem is presented:

max
w

w′Jξ√
w′Σw

s.t. w′1 = 1 , wi ≥ 0, (3.13)

where J is a (N × 10) matrix of zeroes who’s (i, j)th element is 1 when the semi-

deviation of asset i belongs to decile j. For each decile j; ξ ≡ (ξ1, ..ξ10)‘ the mean

semi-deviation is then calculated and used as the expected return. Instead of using

expected returns in the optimization, this strategy creates decile portfolios with regards

to the stocks semi-deviation.

(9) Maximum Diversification

Choueifaty and Coignard (2008) suggested the most diversified portfolio strategy. It

seeks to maximize a portfolio’s diversification. The strategy implements the diversifica-

tion ratio proposed by Choueifaty (2006), defined as the ratio of the portfolio’s weighted

average volatility to its overall volatility.

DR (w) = w′σ√
w′Σw

(3.14)

We maximize the ratio with regards to w in order to compute the portfolio weights:

max
w

w′σ√
w′Σw

s.t. w′1 = 1 , w ≥ 0, (3.15)

where σ is a vector of asset volatilities: (σ1...σN ). A DR ratio of a long-only portfolio

is greater or equal to one, due to " the volatility of a long-only portfolio of assets is

less than or equal to the weighted sum of the assets’ volatilities" (Choueifaty, Froidure,

Reynier, 2011). The DR ratio is maximized with regards to the weights and computed

with R package "RiskPortfolios" (2020). ‘
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(10) Maximum-decorrelation

Christoffersen et al. (2012) presented an approach where the portfolio volatility

is minimized under the assumption that individual asset i variance is identical. This

approach only relies on the asset’s correlations, attempting to exploit the connection

between correlation and the asset volatility in order to minimize overall risk through

decorrelation. The maximum-decorrelation strategy is a direct application of this ap-

proach, and suggested by Goltz & Sivasubramanian (2018).

Therefore, assuming equal volatilities across all assets; σi = σj = σ Where σ is

assumed to be constant. The Σ covariance matrix is replaces with the correlation matrix

of the assets, R in the minimization problem. The expression for optimal weights is then

derived, minimizing the expression:

min
w

w′Rw s.t. w′1 = 1 , w ≥ 0, (3.16)

where R is the correlation matrix of the assets. The weights form this optimization

problem is estimated with the "optimalPortfolio"(2020) package in R.

3.2 Backtesting

Backtesting, also called out-of-sample simulation, is the process of applying trading

strategies to historical data and also measuring their performance. Doing so it simulates

how the strategies would have performed in ”real-life”. An investor has at the current

time t information about historical data up to present time t, but not the future t + 1

and beyond. Using the data available from time period 1 to t, one can estimate the

weights and followingly the returns of the various allocation strategies employed in the

simulation. At the current time t historical data before time t is employed to predict

future data t+ 1, t+ 2...t+N This corresponds to respectively "in-sample" and "out-of-

sample" time windows. The "out-of-sample" estimation becomes the future forecast of a

portfolio manager’s weight optimization.

The rolling window estimation method uses the "in-sample" and "out-of-sample"

windows to calculate parameters. For each new time period added to the estimation,

t + 1, t + 2...t + N , the rolling window estimation removes the earliest period. Thus
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a rolling window refers to the movement of the "in-sample". For the whole dataset,

a continually shifting "in-sample" window calculates "out-of-sample" results, weights,

returns and the variance-covariance matrix. This process is continued until we have

estimated out-of-sample returns for the T − M period. Where M is the lookback,

period and T is the total timespan.

In this thesis, a rolling window of 60 months is used (lookback period). This value

is chosen to correspond with the findings of DeMiguel et al. (2009), where they find

that a time window of 60 months does not produce largely different results than a time

window of 120 months.

3.3 Performance measures

In order to measure the performance of our chosen portfolio strategies, we consider two

distinct measures: The FFC4 alpha model, and the Sharpe ratio. For each individual

strategy, we measure the performance corresponding to the number of datasets. There-

after, the performance measures of the active strategies are compared to those of the

naive 1/N. The Sharpe ratio is included in this thesis on the basis of DeMiguel et al’s.

(2009) paper, allowing easy comparison of results. In addition, the alpha measure is

included based on Zakamulin’s (2017) response to Kritzman et al. (2010) and Kirby

& Ostdiek (2012), where he points out the weakness of having the Sharpe ratio as the

single performance measure.
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Sharpe ratio

The Sharpe ratio was introduced by Sharpe (1996) and is a risk-adjusted performance

measurement often used by financial researchers to evaluate portfolio strategies. It

compares the performance of an investment compared to a risk-free asset, after adjusting

for the portfolio risk. As a performance measure, the Sharpe ratio is a quick and easy

method of comparing different risk exposed portfolios. The simplicity and ability to

compare performance makes it a favorable technique. The formula is given by:

Sharpe Ratio = µp − rf
σp

, (3.17)

where µp is the return of portfolio strategy p, rf is the risk-free rate and σp the total

risk.

While being a widely employed measure, the Sharpe ratio has some argued draw-

backs. Firstly, the Sharpe ratio is accentuated by portfolios that do not have a normal

distribution. This is due to the model not differentiating between downside and upside

risk (volatility), leading to the ratio presenting a misleading image of the performance,

where abnormal distribution skews the ratio as more favourable than in reality. An

example of this being hedge funds. Secondly, it does not consider the risk-based expla-

nations of the performance.

The Sharpe ratios are compared to each other, testing if the optimized strategies

ratios SRj are statistically distinguishable from the naive benchmarks ratios SR 1
N
. It

is tested statistically under the following null hypothesis:

H0 : SRj ≤ SR 1
N

(3.18)

With the test statistic:

z =
SRj − SR 1

N√
1
T

[
2 (1− ρ) + 1

2

(
SR2

j + SR2
1
N

− 2SRjSR 1
N
ρ2
)] , (3.19)

where ρ is the correlation coefficient, and T is the sample size. Estimating the p-

values, we employ a 5% significance level. Rejecting the null if the p-value is below the

α.
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Alpha FFC4

Zakamulin (2017) points out the disadvantage of using the Sharpe ratio as the only

measurement-tool of performance. The main reason is that a high measured Sharpe

ratio may be the result of some known return anomalies. Leading to a performance

measure that does not accurately describe the overall performance. His paper provided

evidence that the low-volatility effect is present in almost every dataset provided by the

online data library of Kenneth French.

Another performance measure to complement the Sharpe ratio is the alpha. It is an

independent variable that captures the effect of some known return-anomalies. In order

to capture as much as possible of the abnormal market return, the Four-Factor-Carhart

(FFC4) model is applied in the thesis.

Rpt = αp + β1Mkt− rf + β2SMBt + β3HMLt + β4MOMt + εt, (3.20)

where, E[ε] = 0.

This model is a further extension of the Fama & French FF3 model (Carhart, M,

1997), and includes the additional factors added by this model compared to the simpler

CAPM, or the FF3 model (Fama & French, 1993). In addition, it includes a momentum

factor, where the original alpha is expanded to now include four factors to better capture

the abnormal performance compared to a benchmark market. Explained, Rpt is the

expected return on the portfolio strategy p. α is the intercept capturing the abnormal

performance of the tested strategies. The first of the 4 factors are Mkt − rf , which

is the excess market risk premium. SMB which is the expected return of the value

factors. The SMB factor stands for Small Minus Big (market capitalization), and reflect

the average returns from the three smallest portfolios minus the average returns from

the three largest. HML is the expected return on the size factors. The HML factor

stands for High Minus Low and accounts for the spread in returns between value stocks

and growth stocks. Lastly MOM is the expected return on the momentum factors, it is

described as the tendency of a stock to continue increasing if it is going up, and continue

declining if it is going down. This phenomenon can be measured by subtracting the

equally-weighted average of the "losing" stocks from the equal-weighted "wining" stocks.

The beta coefficients β1, β2,β3 and β4 denoted the exposure to the respective factors.

In an adequate model, these factors will explain the performance accurately such that
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the alpha measures only measure the abnormal performance of an allocation strategy.

A high alpha signifies the strategy beating the market and is desirable.

We employ the alpha measure in a test, whether it is statistically different from the

naive. Calculating the alpha for both the optimized strategies and the naive benchmark

and testing for the difference. Formulated as a hypothesis:

H0 : αj ≤ α 1
N
, (3.21)

where αj denoted the alpha for the optimized strategy j, and α 1
N

denoted the alpha

for the naive 1/N benchmark. If the p-value is below a significance level of 5% we reject

the null and conclude in a significant difference between the measure. With the test

statistic:

z =
αj − α 1

N√
1
T (σ2

j − 2ρσjσ 1
N

+ σ2
1
N

)
, (3.22)

where ρ is the correlation coefficient, and T is the sample size. σ is the standard

deviation.

The low-volatility effect present with the Sharpe ratio has been found to disappear

when measuring performance with a multi-factor alpha. Specifically, Scherer (2011)

concludes that the High Minus Low (HML) factor from Fama & French explains some

of the superior performance seen in an optimized portfolio. Zakamulin (2017) further

discusses this phenomenon, stating that the HML factor controls for the low volatility-

effect presented in datasets.

Both the Sharpe ratio and alpha offers a way to measure expected return on a

risk-adjusted basis. An aspect of the alpha is that it a useful measurement tool when

measuring performance in relation to the market. If αi is equal to 1, then the active

strategy measured beats the market by 100 %.
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3.4 Data-mining bias

Data-mining is the process of finding the best trading strategy among a great number

of alternatives. The strategy selected is the one with the best-observed performance in

the backtest. An issue with data-mining is that the best strategy rule systematically

overestimates the true performance of the strategy. Referred to as a data-mining bias,

it is linked to the randomness of returns estimated in the backtest. If we define re-

turns as performance, it can be separated into two components, true performance and

randomness:

Observed performance = true performance+ randomness (3.23)

The random component in the equation can manifest as either "good luck" or "bad

luck". Where the true outperformance benefits from "good luck" and diminishes from

"bad luck". Suppose that the true performance of the active trading strategy is equal to

that of the benchmark. Then the expression would become:

Observed outperformance = 0 + randomness (3.24)

Where it is the randomness factor that now defines the optimized strategies and

outperformance compared to the naive, this however, presents the data-mining-issue. If

true performance = 0, then outperformance = randomness. It is found that when data-

mining for the best strategy in a backtest, the strategy selected is systematically the one

with the highest positive randomness — in other words, attributed to luck (Zakamulin,

2017).

When analyzing a single strategy from the backtest, and determining if the measured

performance is significant, the p-value is given:

pS = Prob (z > z1−α) , (3.25)

where z1 − α is the 1 − α quantile of the standard distribution. In our thesis we

have set the significance level at α = 0.05, then pS = 5%. This means that there is
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a 5% chance of false a discovery in a single test. The problem arises when analyzing

several strategies in several datasets. The 5% chance is applied to each test, but when

performed N times, the chance for the type 1 error goes up when looking at all datasets

and strategies combined.

If we assume the test statistics of the N strategies are independent, and that for all

strategies true outperformance equals to zero; The probability that when testing several

strategies, at least one p-value is below the significance level of 5% is given by:

pN = 1− prob
(
zj < z1−α; z 1

N
...; zN < z1−α

)
= 1− (1− pS)N , (3.26)

where zi, is the value of test statistic i, tested against the test statistic z 1
N
, with a

significance level z1 − α. Note that the p-value PN , is one minus the probability that

in all the independent test, the p-values are less than α. This is because a single test

pS = (zi < z1 − α) = 1− Ps and all test are independent when finding the probability

of N independent test, and all p-values are less than α equals (1− pS)N .

The result of this equation is that when testing several strategies as in this thesis,

and assuming a true outperformance of 0, the chance for at least one of these being

below our significance level is very high. This is then attributed to the randomness

factor of the outperformance, meaning that the luckiest strategy is presented as the

winner. The chance of finding at least one strategy which "outperforms" the benchmark

increases with adding more strategies, N . Using N = 10 gives 1− (1− 0.05)10 = 0.401.

40.1% chance of at least finding one strategy that "outperforms". If N = 100, then

1 − (1 − 0.05)100 = 0.994. This implies that there is a probability close to 100% of

finding at least one strategy that "outperforms". In order to combat the data-mining

bias we implement a combined significance test on the performance measures instead of

several independent ones, reducing the chance of incorrectly rejecting the null.
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3.5 Combined test

The two performance measures alpha, and Sharpe needs to be tested to determine if the

values are statistically significant. Individual tests investigate the significance of opti-

mized strategies against the naive, performing a null-hypothesis versus an alternative-

hypothesis on all the strategies for each of the datasets. This however, gives way to a

data-mining issue as discussed in the relevant section above. In this thesis, we addi-

tionally employ the use of two statistical testing methods where the combined excess

returns from all strategies and datasets are tested. This ensures that data-mining bias

is minimized.

Bootstrap

Bootstrapping is a method of recreating datasets. What the bootstrap does is quanti-

fying the uncertainty by estimating confidence intervals, standard errors, and performing

significance tests. Compared to more traditional methods of estimation, the bootstrap

requires fewer assumptions and, in general, produce results with greater accuracy. These

assumptions are, for instance, that the datasets must be normally distributed, and the

number of observations must be more than 30. The bootstrap method is a popular tool

since it does not require any parametric assumptions on the random variables and can

be applied to smaller datasets (less than 30). However, in this thesis, the data size will

not be a problem since the US dataset contains over 600 observations and the Norwegian

over 432 observations.

The bootstrap-method studies the statistical inference of variables. Statistical in-

ference is based on the sampling distribution of a sample statistic. When conducting

statistical inference on an estimator (random variable), a requirement is to know its

probability distribution. By knowing the distribution of a random variable, one can

further estimate its standard errors and confidence intervals. The procedure for boot-

strapping a sample is done by firstly creating k new samples, which we will refer to as

resamples. This is done by sampling with replacement. By taking the original sample,

we randomly extract a variable and use this for our new sample. Each variable can be

extracted multiple times. The process is repeated until our resample is the same size

as the original sample, and our first resample is complete. The process is repeated k

amount of times, where a larger k provides more accurate results. The statistics for each

resample is then calculated; this is called a bootstrap distribution. It gives information
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about the center, shape, and spread of the random distribution (Hestenberg, Monaghan,

Moore, Clipson & Epstein, 2005).

This method is applied to our calculated t-statistics. By resampling our statistics

and creating a bootstrap distribution for both the Alpha and Sharp values, we will,

with a certain degree of confidence, know if one active strategy outperforms the naive

benchmark. White (2000) recommends using a moderately large number of resamples,

approximately 500 or 1000. His recommendation has been considered, and the k value

(amount of resamples) in our calculation is set equal to 10 000. Increasing the number

of resamples will produce a better estimate of the sampling distribution and a more

reliable estimation of the standard error.

WRC - White’s Reality Check

White (2000) addresses the possibility that any satisfactory result obtained from

data-mining may be a result of chance/luck. Solving this problem, he created a method

for testing the null hypothesis that the best model encountered in a specific search, has no

predictive superiority over a benchmark model. The alternative hypothesis consequently

being that there is at least one strategy with greater predictive ability relative to the

benchmark model. With the alternate hypothesis that there is at least one strategy with

an excess return greater than the benchmark.

Suppose we want to test the performance of N strategies against a given benchmark.

Our purpose is to determine if one of our N strategies could consistently outperform the

benchmark, at a given confidence level. Using the Sharpe ratio performance measure as

an example, the WRC test tests for outperformance.

Outperformance is defined as the excess performance of a strategy j when subtracting

the performance of a benchmark. Our thesis compare 10 active trading strategies to the

naive 1/N, denoted fj .

fj = SRj − SR 1
N
, (3.27)

where fj is the measured outperformance. SRj is the Sharpe ratio of allocation

strategy j, and SR 1
N

the benchmark.
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The model/strategy with the highest outperformance measure fj is furthermore

chosen, and this models outperformance is denoted f .

f = max
j=1,...,N

fj (3.28)

We want to apply f to determine the following null hypothesis: The best model is

not better than the benchmark. The alternate hypothesis being that the best model is

better than the benchmark:

Ho : f ≤ 0 V S H1 : f > 0 (3.29)

A geometric bootstrap method is used to compute the resampled outperformance mea-

sures. This is done because f is a random variable, and for statistical inference, we need

to know its distribution. Doing so, we can estimate its standard error and confidence

intervals, which is necessary for construction of the null and alternative hypothesis. A

joint sample is conducted of the excess return to the strategies and the naive benchmark.

After the bootstrap, the resampled optimized strategies returns are denoted r∗k,j and the

benchmark; r∗
k, 1

N

. Subscript k implies the k − th iteration of the bootstrap, which is

performed k times. Subscript j denotes the optimized strategy number, in this paper a

number between 1-10

For each iteration of the bootstrap, the resampled Sharpe ratio for all strategies is

estimated using the new returns. Thereafter we compute the outperformance; this is

done by subtracting the benchmark Sharpe ratio from the optimized strategy ratio:

f∗k,j = SR∗k,j − SR∗k, 1
N
, (3.30)

where f∗k,j is the resampled outperformance of the model j of iteration k, and SR∗k,j −

SR∗
k, 1

N

is the Sharpe ratio of the active strategy subtracted by the Sharpe ratio of the

benchmark strategy.

Thirdly, after computing the resampled outperformance measures for each strategy

j, we chose the best-observed outperformance for each iteration of k:

f∗k = max
j=1,...,N

(
f∗k,j − fj

)
, (3.31)
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where f∗k is the best outperformance measured, and the bootstrapped test statistic.

In order to comply with the null hypothesis that no optimized strategy outperforms

the naive, the computed outperformance f∗j is adjusted by subtracting the originally

observed outperformance. Thereafter the maximum value is chosen. The collection of

f
∗
k gives the distribution of f .

The next step is to test whether the chosen maximum outperformance is significantly

different from 0. The p-value of the test is computed by counting the number of times

f
∗
k is greater than f , within the k iterations of the bootstrap.

PWRC =
k∑
k=1

I
(
f
∗
k > f

)
k

, (3.32)

where PWRC is the observed p-value of the test, I denotes the indicator function that

takes the value of one if the condition is satisfied.

Finally, this gives enough information to check the null hypothesis:

H0 : f ≤ 0 (3.33)

Thereby testing whether outperformance of the optimized strategies used in this

thesis outperforms the naive by a significant amount. The significance level is set at 5

%.

SPA - Hansen’s test for superior predictive ability

Hansen (2005) suggested two improvements to White’s reality check. The first sug-

gestion is that the test statistic should be normalized/studentized. This changes the

value of the outperformance fj , by scaling it down by its standard deviation σf,k. The

test statistic is given by:

zk →
fk
σf,k

(3.34)
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The second suggestion is the removal of poor performing strategies. Hansen suggests

that a threshold value should be introduced, excluding the values below. This value is

calculating by the equation:

A = −
√

2 ln (ln (n)) , (3.35)

where A denoted the threshold value, and n is the number of observations in the

datasets. The following threshold values for the US and Norwegian market are presented

in Table 3.2 below.

Table 3.2: Threshold values

Datasets Observations Threshold (A)

US 618 -1.928

Norwegian 366 -1.884

Table 3.2 reports the threshold values sorted by the US and Norwegian datasets.

The datasets measured are divided between US and Norwegian datasets. We list

the number of observations we have for each dataset, and the threshold value (A) is

the cutoff calculated in Equation 3.35 for bad strategies. By comparing the z-stats

calculated for each dataset (f) to the threshold value, we remove all strategies on the

US dataset which are below zk < −1.928, and for the Norwegian zk < −1.884.
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4. Data

The data employed to investigate the performance of the selected optimized strategies

comes from two sources. For the US data, we downloaded our datasets from the online

data library of Kenneth French1. He supplies a wide range of dataset which are formed

on different criteria and are frequently updated. They employ data from NYSE, AMEX,

and NASDAQ stock indexes. These datasets are similar to those used by DeMiguel et

al. (2009), Kritzman et al. (2010), and Zakamulin (2017). The Norwegian datasets are

downloaded from the online data library of Ødegaard2. His datasets are created from the

Oslo stock exchange data service. The primary data downloaded from these sources are

value-weighted portfolio returns formed on different criteria, presented monthly. Several

datasets are employed in order to improve the validity of our findings, attempting to

emulate real trading markets. Both the US and Norwegian data is used for the purpose

of investigating potential similarities and differences in the trading markets.

In this chapter, we present the datasets employed for both markets, 16 for the US

and 4 for Norway. The significant difference in the number of datasets analyzed comes

from the reduced availability of developed datasets in Norway.

1http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
2http://finance.bi.no/ bernt/financialdata/oseassetpricingdata/index.html
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The US data uses inputs from stocks on the NYSE, AMEX, and NASDAQ exchanges,

where the stocks are sorted into decile portfolios based on univariate sorts. A total of

16 different datasets are used, with a varying initial starting point in time. We adjust

the datasets such that the starting point for all, is July 1963 and ending December

2019. This time period is chosen in order to conform the datasets to each other, with

an identical starting and ending point. This is also consistent with the starting point of

previous literature investigating the topic.

Table 4.1: US datasets

# Data and source Abbreviation Time period

1 Portfolios formed on Size SIZE 7 / 1926 - 12 /2019

2 Portfolios formed on Book-to-Market BM 7 / 1926 - 12 /2019

3 Portfolios formed on Operating Profitability OP 7 / 1926 - 12 /2019

4 Portfolios formed on Investment INV 7 / 1926 - 12 /2019

5 Portfolios formed on Earnings / Price EP 7 / 1951 - 12 /2019

6 Portfolios formed on Cashflow / Price CP 7 / 1951 - 12 /2019

7 Portfolios formed on Dividend Yield DIV 7 / 1927 - 12 /2019

8 Portfolios formed on Momentum MOM 7 / 1927 - 12 /2019

9 Portfolios formed on Short-Term reversal SHORT 7 / 1926 - 12 /2019

10 Portfolios formed on Long-Term reversal LONG 7 / 1931 - 12 /2019

11 Portfolios formed on Accruals ACR 7 / 1963 - 12 /2019

12 Portfolios formed on Market Beta BETA 7 / 1963 - 12 /2019

13 Portfolios formed on Net Shares issued NSI 7 / 1963 - 12 /2019

14 Portfolios formed on Variance VAR 7 / 1963 - 12 /2019

15 Portfolios formed on Residual Variance RV 7 / 1963 - 12 /2019

16 Portfolios formed on 10-Industry IND 7 / 1926 - 12 /2019

Table 4.1 contains the datasets downloaded from the online data library of Kenneth French for the US

market. Here the name of the dataset, it’s abbreviation and the time span is listed.
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The Norwegian data formed from the Oslo stock exchange consists of 4 cross-sectional

portfolios. Due to limitations of the data, we employ a different starting point than for

the US portfolios. Namely, we set the common starting point in July 1981, ending

December 2018.

Table 4.2: Norwegian datasets

# DATA AND SOURCE Abbreviation TIME PERIOD

1 Portfolios formed on Size SIZE 1 / 1980 - 12 /2018

2 Portfolios formed on book-to-market BM 1/ 1981 - 12 /2018

3 Portfolios formed on Momentum MOM 1 / 1980 - 12 /2018

4 Portfolios formed on Spread SPREAD 1 / 1981 - 12 /2018

Table 4.2 contains the datasets downloaded from the online data library of Ødegaard. It contains the

name of the dataset, it’s abbreviation and the time span.

In addition to the portfolios formed on equity market returns, we employ factor data

when computing the performance measures on the optimized portfolio strategies. We

utilize the FFC4 factor model for both the US data and the Norwegian data. Both

FFC4 models are downloaded from the respective online data library.
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5. Empirical Results

This section is dedicated to presenting the empirical result. First, we present the results

of the individual tests. For each dataset, 10 optimized strategies are tested against the

null hypothesis, whether the performance of the active strategies on the applied portfo-

lio compared to the naive is statistically different. We also present the overall values of

the alphas and the Sharpe ratios. In order to compare performance results, the descrip-

tive tables are divided between US and Norwegian computations and between the two

performance measures respectively. Secondly, we present an overview of the correlation

between the optimized strategies and the benchmark. Lastly, the main findings of the

study are presented. Here we present the overall results of the SPA and WRC tests, and

whether any optimized strategies beat the naive benchmark when looking at all datasets

for the respective markets as a whole.
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5.1 Individual test results

Tables 5.1-5.2 presents the individual performance measure values for each strategy on

the US data. Beneath these values, the results of a one-sided t-test, measuring the

significance of the difference between the optimized strategy and the naive are provided.

In Table 5.1, we observe a few cases where the alpha is significantly better from the

naive 1/N, even expanding to a 10% significance level from the 5% used. Due to the low

values of the alpha measurements, these are reported as percentages not as decimals,

which is the case for the Sharpe ratio measurements. The results show that all of the

active strategies do differ from the benchmark in some cases. Specifically, 22, (13.75%)

of the combinations show significant evidence towards the strategies outperforming from

the naive. All strategies have at least one case of significant difference, and at most 4

significant differences from a total of 16 possible. Risk parity and volatility timing are

the two best performing strategies from this table, with 4 values significantly different

from the naive, each. Nevertheless, this is only in 4 out of 16 datasets, corresponding to

25% of the total. Overall, we observe few significant differences, indicative of an overall

conclusion of no optimized strategies outperforming the naive 1/N when employing the

joint SPA and WRC tests.

Table 5.2 presents the same overview of the Sharpe ratios with US data. A major

difference is that we here observe 49 (26.25%) significant values of the whole. Looking at

specific strategies we similarly as in Table 5.4, observe risk parity and volatility timing

as the best performing strategies. Significantly outperforming the benchmark in 12 of

the 16 total datasets. The ERC strategy is close with 11 of 16 significant values higher

than the naive. Together these three strategies all outperform the naive in the majority

of the datasets. This indicates an overall conclusion that one or more of these three

outperform the naive when performing the combined SPA/WRC tests. An important

distinction of the Sharpe ratios compared to the alphas in Table 5.1, is that the Sharpe

ratios are not presented in percentage. The values reported are therefore not directly

comparable.
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Table 5.3 gives the individual Sharpe ratios measurements for the Norwegian data in

decimals, and the corresponding p-values for a significant difference from the bench-

mark. With 4 datasets in total, the source data are less expansive than for the US. We

nevertheless observe several strategies with one or more cases outperforming the naive,

most notably the Maximum decorrelation and Maximum diversification with 3 (75%)

cases each. In total, observe 12 (30%) where the optimized strategy outperforms the

naive 1/N.

Table 5.3: Sharpe ratio - Norway

STRATEGY MOMENTUM BOOK SPREAD SIZE

Naive 0.637 0.771 0.655 1.312

ERC 0.625 0.780 0.693 1.338

0(.912) (0.205) (0.001) (0.050)

MVP 0.500 0.768 0.788 1.267

(0.986) (0.516) (0.043) (0.712)

MDEC 0.727 0.759 0.773 1.473

(0.006) (0.619) (0.019) (0.008)

MDIV 0.716 0.763 0.784 1.445

(0.014) (0.567) (0.015) (0.022)

MV 0.595 0.696 0.809 1.378

(0.659) (0.739) (0.135) (0.342)

RE 0.625 0.752 0.698 1.283

(0.621) (0.662) (0.150) (0.761)

RP 0.621 0.777 0.661 1.303

(0.960) (0.256) (0.240) (0.900)

RRT 0.615 0.672 0.919 1.474

(0.646) (0.915) (0.012) (0.029)

TD 0.632 0.785 0.885 1.523

(0.574) (0.330) (0.000) (0.000)

VT 0.581 0.789 0.0676 1.267

(0.969) (0.301) (0.248) (0.869)

The table reports annualized Sharpe ratios in percentage for all tested strategies. Beneath the respective

optimized strategies are the p-values for the outperformance of the Sharpe ratios values from each

strategy to that of the benchmark. All p-values are in percentage and parentheses. p-values that are

below the 5 % significance level are bolded.
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Table 5.4, reports the individual alpha measurements for the Norwegian data. We

observe much higher alpha values compared to the US data, with values as high as

19.443% and as low as -5.779%. This highlights the difference in the overall markets

where the factors in the FFC4 model alpha seemingly better capture the performance

anomalies for the US data, or on the other hand, the optimized strategies might provide

more abnormal market return in the Norwegian market. Similarly to the results from

the Sharpe ratio, we observe the MDEC and MDIV strategies as the ones with the most

significant p-values. Each, having three out of four (75%) significant. In total, observe

12 instances (30%) where the optimized strategy outperforms the naive 1/N.

Table 5.4: Alpha values - Norway

STRATEGY MOMENTUM BOOK SPREAD SIZE

Naive -5.35 0.771 -5.258 5.416

ERC -5.375 0.673 -4.722 5.547

(0.863) (0.039) (0.005) (0.523)

MVP -6.05 3.137 -2.718 5.35

(0.488) (0.052) (0.035) (0.961)

MDEC -3.407 1.167 -2.018 8.543

(0.003) (0.266) (0.000) (0.002)

MDIV -3.468 1.448 -2.004 7.746

(0.014) (0.172) (0.000) (0.015)

MV -5.303 1.583 2.013 19.443

(0.621) (0.652) (0.007) (0.000)

RE -4.654 1.16 -4.237 5.151

(0.621) (0.287) (0.152) (0.716)

RP -5.438 0.510 -5.302 5.055

(0.548) (0.128) (0.729) (0.048)

RRT -5.779 -1.096 1.699 10.438

(0.688) (0.392) (0.000) (0.000)

TD -5.448 0.179 -1.228 8.468

(0.838) (0.403) (0.000) (0.000)

VT -5.6 1.421 -5.311 4.53

(0.607) (0.079) (0.910) (0.226)

The table reports annualized alphas in percentage for all tested strategies. Beneath the respective

optimized strategies are the p-values for the outperformance of the alpha values from each strategy to

that of the benchmark. All p-values are in percentage and in parentheses. p-values that are below the

5 % significance level are bolded.
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5.2 Correlation values

In order to compare the similarity in performance for allocation alternatives tested, we

calculate the correlation between them. From this, we can establish which strategies are

close to identical, and which differs the most. A high correlation will affect the individual

optimized strategies and the outperformance tests against the naive: formulae 3.19 and

3.22. In addition the SPA joint test is negatively affected by high correlation, where it

can produce potentially misleading results in the final p-value.

The correlation is presented in Tables 5.5 and 5.6. For both the US and Norwegian

markets, the results are similar with major correlation amongst all strategies. The

correlation values are calculated means from all datasets in the respective markets.

While not reported the corresponding p-values for the correlation test are significant

at the 1% level in all cases. We observe ERC, risk parity and volatility timing, being

highly correlated with each other and the naive benchmark, where they are reported

close to 100% correlation at the three decimal level. Other strategies follow closely but

with somewhat lower correlation.

Table 5.5: Correlation US

NAIVE RP MVP MDIV MV VT ERC RRT MDEC RE TD

NAIVE 1 0.999 0.972 0.989 0.928 0.997 0.999 0.935 0.986 0.991 0.998

RP 0.999 1 0.975 0.988 0.930 0.998 0.999 0.936 0.984 0.992 0.996

MVP 0.972 0.975 1 0.964 0.918 0.982 0.975 0.929 0.954 0.977 0.967

MDIV 0.989 0.988 0.964 1 0.923 0.984 0.988 0.931 0.998 0.986 0.992

MV 0.928 0.930 0.918 0.923 1 0.931 0.930 0.936 0.915 0.923 0.935

VT 0.997 0.998 0.982 0.984 0.931 1 0.998 0.937 0.978 0.992 0.992

ERC 0.999 0.999 0.975 0.988 0.930 0.998 1 0.936 0.984 0.992 0.996

RRT 0.935 0.936 0.929 0.931 0.936 0.937 0.936 1 0.931 0.936 0.936

MDEC 0.987 0.984 0.955 0.998 0.915 0.978 0.984 0.925 1 0.982 0.989

RE 0.991 0.992 0.977 0.986 0.923 0.992 0.992 0.931 0.982 1 0.988

TD 0.997 0.995 0.966 0.991 0.935 0.992 0.995 0.936 0.989 0.987 1

Table 5.5 reports the average correlation for all the strategies in the 16 US datasets.
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Table 5.6: Correlation Norway

Naive RP MVP MDIV MV VT ERC RRT MDEC RE TD

NAIVE 1 0.998 0.940 0.979 0.834 0.985 0.998 0.946 0.979 0.974 0.989

Rp 0.998 1 0.953 0.978 0.824 0.992 0.999 0.943 0.976 0.981 0.916

MVP 0.940 0.952 1 0.929 0.743 0.978 0.952 0.878 0.917 0.961 0.970

MDIV 0.979 0.978 0.929 1 0.828 0.965 0.98 0.944 0.998 0.975 0.970

MV 0.834 0.8246 0.743 0.828 1 0.797 0.826 0.912 0.787 0.835

VT 0.985 0.992 0.977 0.965 0.797 1 0.992 0.927 0.957 0.983 0.967

ERC 0.998 0.999 0.952 0.981 0.826 0.991 1 0.944 0.978 0.982 0.986

RRT 0.946 0.943 0.877 0.944 0.912 0.927 0.944 1 0.945 0.924 0.935

MDEC 0.979 0.975 0.917 0.998 0.842 0.957 0.978 0.945 1 0.967 0.973

RE 0.975 0.981 0.961 0.975 0.787 0.984 0.982 0.924 0.9671 1 0.957

TD 0.989 0.986 0.917 0.971 0.835 0.967 0.936 0.935 0.973 0.957 1

Table 5.6 reports the average correlation for all the strategies in the 4 Norwegian datasets.

5.3 Results from joint test

The SPA test operates with a threshold criterion (A) for the z-statistics from each op-

timized alternative, we have earlier determined this to be -1.928 for the US data, and

-1.884 for the Norwegian. From the Tables, A1-A4 and A10 found in the Appendix,

pertaining to the SPA test, we observe several z-statistics below these threshold values.

In order to correctly perform the SPA test, these will need to be removed due to the

major infeasibility of the strategies. In Tables 5.7-5.8, we present the number of strate-

gies removed for the US and Norwegian datasets. For the US data, we remove a total of

8 strategies due to across all datasets with the alpha measure, and 11 strategies across

all datasets with the Sharpe measure. In the Norwegian datasets we remove 1 strategy

with the Sharpe ratio and 0 with the alpha. Thus, in both markets, more strategies are

removed for the Sharpe ratio performance measure.
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Table 5.7: Number of strategies removes for the US datasets

Dataset Alpha Sharpe

Portfolios formed on Size 0 1

Portfolios formed on Book-to-Market 0 0

Portfolios formed on Operating Profitability 0 0

Portfolios formed on Investment 0 1

Portfolios formed on Earnings / Price 0 1

Portfolios formed on Cashflow / Price 1 1

Portfolios formed on Dividend Yield 1 1

Portfolios formed on Momentum 0 0

Portfolios formed on Short-Term reversal 0 0

Portfolios formed on Long-Term reversal 1 0

Portfolios formed on Accruals 0 0

Portfolios formed on Market Beta 2 2

Portfolios formed on Net Shares issued 0 0

Portfolios formed on Variance 3 3

Portfolios formed on Residual Variance 0 1

Portfolios formed on 10-Industry 0 1

Strategies removed in total 8 11

Table 5.7 contains the number of strategies removed for each of the 16 US datasets, according to the

z-stat calculated from the alpha or Sharpe ratio.

Table 5.8: Number of strategies removes for the Norwegian datasets

Dataset Alpha Sharpe

Portfolios formed on Size 0 1

Portfolios formed on Book-to-Market 0 0

Portfolios formed on Operating Profitability 0 0

Portfolios formed on Investment 0 0

Strategies removed in total 0 1

Table 5.8 contains the number of strategies removed for each of the 4 Norwegian datasets, according to

the z-stat calculated from the alpha or Sharpe ratio.
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The maximum z-value from each strategy is utilized to compute the combined test p-

value. A significant p-value pertains to at least one strategy outperforming the bench-

mark. The p-values calculated for the different performance measures are listed in Table

5.9 below. The corresponding test statistic distribution for each test are shown in Figure

5.1-5.4.

Table 5.9: Joint test computation US & Norway

US dataset

Test Performance measure P-value

SPA Alpha 0.6436

SPA Sharpe 0.0053

WRC Alpha 0.9155

WRC Sharpe 0.2311

Norwegian dataset

Test Performance measure P-value

SPA Alpha 0.000

SPA Sharpe 0.000

WRC Alpha 0.001

WRC Sharpe 0.638

Table 5.9 contains the different p-values calculated by the join test. The results are composed of

the US and Norwegian datasets. Within each of these, the p-values for the SPA and WRC are sorted

by the respective performance measures Alpha and the Sharpe ratio.

For the US data, we observe a divide between the two performance measures in the

SPA test. When testing the alpha values from each strategy, the results are conclusive

in that we cannot reject the null hypothesis of equality between the optimized strategies

and the benchmark, with a reported p-value above a 10% significance level. When

testing the Sharpe ratio values, we observe the opposite results, with a p-value beneath

the 1% rejecting the H0 and providing evidence towards at least one of the strategies

beating the benchmark. Looking at the WRC test, we observe that both performance

measures provide p-values above a significance level of 10%. For the alpha measure, this

p-value is close to 100%. Therefore, we can not reject the null hypothesis of equality in

both cases.
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The Norwegian data is handled in the same manner as the US, and joint tests are

conducted. The SPA test is conclusive for both methods at the 1% significance level.

We therefore reject the null hypothesis of equally performing strategies compare to the

naive. The results of the WRC test are more diverging, we observe one significant value

Alpha and one non-significant Sharpe ratio.

5.4 Distribution of the maximum z-statistics

These distribution Figures 5.1-5.4 correspond to the highest z-statistics f of the respec-

tive p-values from the join test. The joint test results are found by bootstrap the data

10,000 times. The position of the red line in relation to the distribution in suggests if

the test finds at least one outperforming strategy or not. The red line represents the

maximum z-statistic. If the distribution is below, it suggests a p-value which is below

the significant value of 0.05. The distribution of the maximum z-stat for the alpha SPA

suggests that the calculated p-value is above the 0.05 significant level. The Sharpe SPA

suggests that the p-value is below the 0.05 significant level. This corresponds with the

results from the joint-test.

The distribution of the maximum z-statistic of the US dataset illustrates that SPA

Sharpe is the only one that pertains significant joint test p-value, see Figure 5.1B. This

is corresponding with the result from the joint test found in Table 5.9. The maximum

z-distribution formed on alphas are listed on the left side, while the once formed on the

Sharpe ratios are listed on the right side.

Figure 5.1: Distribution of f - SPA US

(a) Alpha SPA (b) Sharpe ratio SPA
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Figure 5.2: Distribution of f - WRC US

(a) Alpha WRC (b) Sharpe ratio WRC

The distribution of the Norwegian maximum z-statistic differs from the US. We see

three distribution illustrating significant joint test p-values; see Figure 5.2A, 5.2B, and

5.3a. This is corresponding with the result of the joint test in Table 5.9. The maximum

z-distribution formed on alphas are listed on the left side, while the once formed on the

Sharpe ratios are listed on the right side.

Figure 5.3: Distribution of f SPA Norway

(a) Alpha SPA (b) Sharpe ratio SPA

Figure 5.4: Distribution of f WRC Norway

(a) Alpha WRC (b) Sharpe ratio WRC
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6. Discussion

The results of this thesis are primarily based on the computations from the two joint

tests found in Table 5.9, not on the individual p-values for each strategy, as reported in

Tables 5.1-5.4. Consequently, this chapter is mostly focused on discussion around these

joint p-values and results.

For the US data, the alpha measure is non-significant in both tests. When testing

with the Sharpe ratio measurement, the SPA test provides a significant p-value, and the

WRC tests returns a non-significant value. This highlights the overall differences in our

performance measure, as well as that of the underlying joint tests. The similar results

for both tests with the alpha measure can partially be explained in the low alpha values

observed in Table 5.1. Most of these values are found to be not only non-significant

in their difference towards the naive, but also so low that they in themselves are non-

significant. Therefore, any differences in the computation of the final p-values from the

SPA and WRC tests will become marginalized by the overall insignificant alpha values

used.

The low alphas observed in the US data is notable and may indicate that the alpha

model employed in this thesis is a good fit. It expands upon the Fama-french three-factor

model by including the proposed momentum factor by Carhart (Carhart, 1997). While

not reported in the empirical results, the addition of the momentum factor drastically

lowers the overall alphas measured.

When employing the joint tests on the Norwegian data, we observe an opposite result

from the alpha estimates compared to the US data. Here we find highly significant p-

values from both tests. Indicating that the best strategy, as measured by the FFC4

alpha, significantly outperforms the naive. This result can also be seen in the individual

alphas measured from each optimized strategy, where they are much higher compared

to the US data, and more often are found to significantly outperform the benchmark

on an individual basis as seen in Table 5.4. Regarding the Sharpe ratio, both tests are
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similar in their results compared to the respective tests for the US data. Where the SPA

Sharpe ratio test finds significance, and the WRC Sharpe ratio does not. Consequently,

this indicates that the Sharpe ratio measure produces more similar results across the

two markets.

The difference in the result when estimating with the performance measures accen-

tuates the diverging methodologies of SPA and WRC tests. The SPA test is argued as

an improvement over the WRC due to the removal of irrelevant strategies and the test

statistic being normalized/studentized (Hansen, 2005). Combined, these two features

explain the difference in results from the joint tests we observe in Table 5.9. However,

high correlation amongst the alternative strategies might skew the results of the SPA

test (Hansen, 2005). As shown in Table 5.5 and Table 5.6 there is an overall high cor-

relation between the strategies and the naive diversification, in addition the strategies

are highly correlated against each other with values close to 100%.

Using the US SPA Sharpe ratio results as an example, the high correlation between

the strategies becomes apparent. By studying Table 5.2, we observe that the ERC,

risk parity and volatility timing strategies produce promising results, outperforming the

naive 1/N in the majority of the cases. However, these strategies are all highly correlated,

and as presented in Table 5.5, close to 100% We observe that the Sharpe ratios (Table

5.2) for these strategies are only marginally different. For example, when looking at

the performance calculated in the dataset "OP- operating profitability", the naive 1/N

produces a Sharpe ratio of 0.389 ERC of 0.402, RP of 0.403 and VT of 0.431. These

differences are all however, statistically significant at the 1% level. When performing the

SPA test, these high correlation values of the strategies lowers the final p-value of the

test. A statistically significant outcome might therefore not be economically significant.

The high correlation is observable amongst all strategies for both performance mea-

sures and in both markets. It might partially explain the difference we observe when

comparing the two joint tests for the Sharpe ratio performance measure. The WRC test

does not exhibit the correlation problem and therefore produces opposite results, not

rejecting the null for both markets. Interestingly we observed similar results when em-

ploying the alpha performance measure, concluding in non-significance for the US data

and in significance for the Norwegian. Therefore the tests only differ in their conclusion

when employing the Sharpe ratio.
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The difference in the performance measures is another reason for the dissimilarity in

the joint test. In the SPA test, we had to remove more strategies which were measured

by Sharpe ratio than for the FFC4 alpha. For the Norwegian datasets we removed one

strategy when measuring with the Sharpe ratio and none with the FFC4 alpha, and in

the US removed 8 measured by alpha and 11 measured by Sharpe. While not conclusive,

this indicates a discrepancy in the performance measures. Noting this, we refer to the

article by Zakamulin (2017) discussed in the literature review, arguing alpha as a more

expansive and encompassing measure, and that the Sharpe ratio is incomplete when

explaining the source of performance gains. The Sharpe ratios might therefore not

accurately measures the difference in performance for our strategies tested. A more

comprehensive study of different results obtained would be interesting, highlighting the

potential discrepancy in quality.

In total, there are 8 different joint tests produced in this thesis. If we consider

them all together, the major divide of our results lies in the two markets analyzed, US

and Norwegian data. With 3 out of 4 tests concluding in non-significance for the US

datasets, and 3 out of 4 concluding in significance for the Norwegian datasets. Because

of the high correlation amongst the alternate strategies, and the negative effect it has

on the SPA test, the results from the WRC appear more valid. This is despite SPA

being proposed as an improvement to the WRC test. If we then compare our WRC

results to the findings of DeMiguel et al. (2009), that overall an optimized strategy

does not outperform the naive. We reach the same conclusion for our US datasets when

considering the results from both performance measures. Interestingly our results differ

somewhat when considering the Norwegian datasets, indicating that the Norwegian

market behaves/operate differently than the US, producing opposite results with the

alpha measure. These differences may be present due to the market efficiency varying

across the markets and time period. The US market might be argued as more efficient

and "competitive" than the Norwegian.

A similar picture can be seen by comparing the articles by Hsu et al. (2018) and Yang

et al. (2018) to our findings. Both articles preformed joint tests with the Sharpe ratio

and alpha measure. These articles found little evidence towards any active strategies

significantly outperforming the naive. This is similar to our findings for the US market,

but opposite to our results for the Norwegian.

In this thesis we only investigate whether there exists one strategy which outperforms
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the naive benchmark. This is due to the tests employing only the maximum z-stat from

all available in their computation. While the joint tests on the US data are primarily

insignificant in their results, the Norwegian results suggests overall significance. We

observe that two strategies stand out for the Norwegian data; maximum-decorrelation

and most diversified. This suggests that more than one strategy might outperform.

Observing the correlation Table 5.6, the two strategies have a somewhat high correlation

towards the naive compared to all 11 alternatives, and the overall correlation value is

closing on 100%. Thus, even though the individual p-values from Table 5.1-5.2 and the

final joint test p-values from Table 5.9 are statistically significant, they might not be

economically significant, any difference being marginal in a market setting.

When estimating the excess returns of all our allocation strategies, we do not take

into account transaction costs that would be present in reality. For the optimized strate-

gies that require constant rebalancing of weights in order to follow their weight rules,

such transaction costs would be substantially higher than for the naive benchmark.

Therefore, any conclusion of such strategies outperforming the naive, as seen in the

Norwegian data, would be suspect. Depending on the degree of transaction costs, this

conclusion could be reversed overall. It would be relevant to further include such costs

and study the effect on the allocation alternatives in further studies.
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7. Conclusion

The paper of DeMiguel et al. (2009) started a heated debate on the viability of optimized

trading strategies. They show that none of the tested strategies outperforms the naive

diversification. Several authors later claim to defend the viability of optimized strategies

(Kriztman et al. (2010), Tu & Zhou (2011), Kirby & Ostdiek (2012) and Banerjee &

Hung (2013)). However, White (2000) showed that the superior performance found

might not be due to actual performance, but rather pure chance, due to data-mining

bias. Furthermore, Zakamulin (2017) criticizes the use of the Sharpe ratio as the single

performance measure. Where any measured superior performance of the optimized

strategies instead might come from one or more profit anomalies, and not from real

genuine outperformance.

More recently, two papers by Hsu et al. (2018) and Yang et al. (2018) attempts to

account for data mining bias by including the WRC (White, 2000) and SPA (Hansen,

2005) joint tests. They find that there is little evidence of any optimized strategies

outperforming the naive diversification. In this thesis, we attempt to replicate their

results, and expand the study with additional datasets, and to the Norwegian market.

We compare the performance of 10 active trading strategies against the naive di-

versification, accounting for potential data-snooping bias (White, 2000). We seek to

address this by using two advanced econometric methods called SPA and WRC test.

However, the SPA test is weakened by a high correlation amongst our optimized strate-

gies. Therefore, the results from the WRC tests are overall more valid. Additionally,

alpha has been included as a performance measure in response to Zakamulin’s (2017)

criticism of employing Sharpe ratio as the single performance measure. Due to argued

weaknesses of the Sharpe-ratio performance measure, we base the overall conclusion of

the thesis on the alpha performance measure.
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Our results from the US market shows little empirical evidence towards any active

trading strategies significantly outperforming the naive diversification. This is in agree-

ment with the overall findings of DeMiguel et al. (2009), and provide counter-evidence

towards the criticism of Kriztman et al. (2010), Tu & Zhou (2011), Kirby & Ostdiek

(2012) and Banerjee & Hung (2013).

In contrast, the Norwegian results show that most tests provide empirical evidence

of the best active trading strategy significantly outperforming the naive diversification.

The Norwegian results are, however, difficult to compare to previous findings due to

limited academic studies in the market. Furthermore, the datasets and data period

analyzed is shorter than for the US results.

Overall, we find that there is little empirical evidence of the active trading strategies

significantly outperforming the naive diversification in the US data. In the Norwegian

data, we provide empirical evidence of at least one of the 10 active trading strategies

significantly outperforming the naive diversification, when measuring with the alpha

measure.
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A.2 SPA alpha - US

The following Tables A.1 - A.8 contains maximum z-statistics calculated from the US

datasets, using the SPA method. A.1 - A.4 contains the statistics calculated from

alphas, and A.5 - A.8 contains the statistics calculated from the Sharpe ratios. The

strategies are listed on the left-hand side, while the maximum z-statistic and its

p-value for the dataset are listed on the top of the table. The datasts follows the

notation given in table 4.1

Table A.1: SPA alpha US data 1:4

Strategy z-OP p-OP z-SIZE p-SIZE z-BETA p-BETA z-BM p-BM

RP 4.306 0.000 2.082 0.019 3.263 0.001 2.571 0.005

MVP 3.560 0.000 1.460 0.072 2.188 0.015 0.697 0.243

MDIV -0.597 0.725 -0.192 0.576 1.219 0.112 -0.468 0.680

MV 0.356 0.361 0.359 0.360 0.544 0.293 0.272 0.393

VT 4.257 0.000 2.244 0.013 2.946 0.002 2.262 0.012

ERC 4.274 0.000 2.127 0.017 3.129 0.001 2.475 0.007

RRT 1.148 0.126 1.244 0.107 0.689 0.246 0.922 0.178

MDEC -1.781 0.962 -0.584 0.720 -0.557 0.711 -1.212 0.887

RE -0.294 0.616 0.545 0.293 2.010 0.022 3.097 0.001

TD 0.953 0.171 0.059 0.477 1.155 0.124 0.366 0.357
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Table A.2: SPA alpha US data 2:4

Strategy z-DIV p-DIV z-VAR p-VAR z-INV p-INV z-CP p-CP

RP 1.442 0.075 3.863 0.000 2.292 0.011 -0.176 0.570

MVP 0.194 0.423 2.379 0.009 0.049 0.481 -0.706 0.760

MDIV -1.128 0.870 -1.422 0.922 -0.510 0.695 -0.362 0.641

MV -1.563 0.941 -0.113 0.545 0.451 0.326 0.508 0.306

VT 1.393 0.082 3.452 0.000 1.585 0.057 -0.521 0.699

ERC 0.848 0.198 3.470 0.000 2.266 0.012 -0.536 0.704

RRT 0.096 0.462 1.545 0.061 1.593 0.056 1.241 0.108

MDEC -1.293 0.902 -4.825 1.000 -0.587 0.721 -0.425 0.665

RE 0.318 0.375 0.392 0.348 0.623 0.267 -1.133 0.871

TD -0.864 0.806 -0.030 0.512 -3.186 0.999 -0.338 0.632

Table A.3: SPA alpha US data 3:4

Strategy z-EP p-EP z-NSI p-NSI z-ACR p-ACR z-RV p-RV

RP -0.191 0.576 2.756 0.003 2.995 0.001 3.968 0.000

MVP -0.926 0.823 0.830 0.203 1.887 0.030 3.012 0.001

MDIV 0.137 0.446 2.176 0.015 0.739 0.230 -2.214 0.986

MV -0.481 0.685 4.194 0.000 1.859 0.032 0.038 0.485

VT -0.416 0.661 2.417 0.008 2.744 0.003 3.890 0.000

ERC -0.649 0.742 2.752 0.003 3.136 0.001 3.699 0.000

RRT 0.742 0.229 3.049 0.001 1.726 0.042 2.430 0.008

MDEC 0.059 0.477 1.969 0.025 -0.154 0.561 -5.733 1.000

RE -0.131 0.552 1.973 0.024 0.266 0.395 -0.505 0.693

TD 0.554 0.290 -2.115 0.983 0.403 0.344 0.784 0.217
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Table A.4: SPA alpha US data 4:4

n z-MOM p-MOM z-SHORT p-SHORT z-LONG p-LONG z-IND p-IND

RP 2.876 0.002 1.422 0.078 1.702 0.045 2.459 0.007

MVP 2.028 0.021 0.541 0.294 1.436 0.076 1.477 0.070

MDIV 0.888 0.188 -2.897 0.998 -0.804 0.789 0.974 0.165

MV 3.123 0.001 1.476 0.070 -0.266 0.605 2.009 0.022

VT 2.897 0.002 1.470 0.071 1.522 0.064 1.988 0.024

ERC 2.624 0.004 0.818 0.207 1.722 0.043 2.221 0.013

RRT 3.237 0.001 2.640 0.004 1.374 0.085 1.577 0.058

MDEC -0.145 0.557 -3.242 0.999 -1.202 0.885 0.366 0.357

RE 0.309 0.379 -0.584 0.720 1.215 0.112 2.573 0.005

TD 2.007 0.023 -3.127 0.999 -0.832 0.797 1.904 0.029
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A.3 SPA Sharpe US

Table A.5: SPA Sharpe US data 1:4

Strategy z-OP p-OP z-SIZE p-SIZE z-BETA p-BETA z-BM p-BM

RP 4.041 0.000 1.237 0.108 3.052 0.001 1.778 0.038

MVP 3.244 0.001 0.039 0.484 1.576 0.057 0.083 0.467

MDIV -1.578 0.943 -0.429 0.666 1.237 0.108 -1.703 0.956

MV -0.500 0.692 -0.395 0.654 -0.662 0.746 0.021 0.492

VT 3.855 0.000 1.030 0.151 2.584 0.021 1.666 0.021

ERC 3.947 0.000 1.159 0.123 3.029 0.001 1.342 0.090

RRT 0.422 0.337 0.376 0.354 -0.013 0.505 0.732 0.232

MDEC -2.693 0.996 -0.864 0.806 -0.625 0.734 -2.179 0.985

RE -0.123 0.549 0.580 0.281 1.631 0.051 2.582 0.021

TD -0.681 0.752 -0.175 0.569 1.004 0.158 -1.391 0.918

Table A.6: SPA Sharpe US data 2:4

Strategy z-DIV p-DIV z-VAR p-VAR z-INV p-INV z-CP p-CP

RP 2.699 0.003 3.717 0.000 3.464 0.000 0.949 0.171

MVP 0.785 0.216 1.811 0.035 1.022 0.153 -0.489 0.687

MDIV -0.335 0.631 -1.520 0.936 -0.082 0.533 -0.729 0.767

MV -2.643 0.996 -1.448 0.926 -0.369 0.644 0.211 0.416

VT 2.478 0.007 3.086 0.001 2.815 0.002 0.530 0.298

ERC 2.233 0.013 3.459 0.000 3.479 0.000 0.448 0.327

RRT -0.676 0.750 0.643 0.260 1.152 0.125 1.299 0.097

MDEC -0.825 0.795 -4.808 1.000 -0.745 0.772 -1.170 0.879

RE 0.347 0.364 0.307 0.379 1.141 0.127 -0.308 0.621

TD 0.027 0.489 0.116 0.454 -4.282 1.000 -1.515 0.935
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Table A.7: SPA Sharpe US data 3:4

Strategy z-EP p-EP z-NSI p-NSI z-ACR p-ACR z-RV p-RV

RP 0.724 0.234 3.252 0.001 3.429 0.000 3.715 0.000

MVP -0.832 0.797 0.941 0.173 2.012 0.022 2.190 0.014

MDIV -0.662 0.746 2.326 0.010 0.747 0.227 -2.637 0.996

MV -0.747 0.772 2.874 0.002 0.875 0.191 -0.790 0.785

VT 0.358 0.360 2.850 0.002 3.161 0.001 3.352 0.000

ERC -0.102 0.540 3.254 0.001 3.525 0.000 3.520 0.000

RRT 0.930 0.176 2.349 0.009 1.226 0.110 1.675 0.047

MDEC -1.071 0.858 2.110 0.017 -0.461 0.678 -5.814 1.000

RE -0.232 0.592 2.186 0.014 0.834 0.202 -0.271 0.607

TD -0.402 0.656 -1.671 0.953 -0.177 0.570 0.566 0.286

Table A.8: SPA Sharpe US data 4:4

Strategy z-MOM p-MOM z-SHORT p-SHORT z-LONG p-LONG z-IND p-IND

RP 2.851 0.002 1.360 0.087 1.872 0.031 2.653 0.004

MVP 1.813 0.035 0.129 0.449 1.347 0.089 0.946 0.172

MDIV 0.412 0.340 -3.034 0.999 -1.242 0.893 0.410 0.341

MV 1.367 0.086 0.875 0.191 -0.877 0.810 -0.829 0.796

VT 2.790 0.003 1.302 0.096 1.691 0.045 1.988 0.023

ERC 2.538 0.006 0.744 0.228 1.893 0.029 2.390 0.008

RRT 2.131 0.017 1.875 0.030 0.929 0.176 -0.387 0.651

MDEC -0.556 0.711 -3.244 0.999 -1.481 0.931 -0.571 0.716

RE -0.272 0.607 -1.029 0.848 0.947 0.172 2.234 0.013

TD 0.875 0.191 -3.441 1.000 -2.307 0.989 1.212 0.113
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A.4 SPA Sharpe and alhpa - Norway

The following Tables A.9 and a.10 contains maximum z-statistics calculated from the

US datasets, using the SPA method. A.10 contains the statistics calculated from

alpha, and A.9 contains the statistics calculated from the Sharpe ratios. The strategies

are listed on the left-hand side, while the maximum z-statistic and it’s p-value for the

dataset are listed on the top of the table. The datasts follows the notation given in

table 4.2

Table A.9: SPA Sharpe Norwegian data 1:1

Strategy z-MOM p-MOM z-SIZE p-SIZE z-SPREAD p-SPREAD z-BM p-BM

RP -1.756 0.960 -1.285 0.901 0.705 0.240 0.655 0.256

MVP -2.218 0.987 -0.558 0.712 1.712 0.043 -0.042 0.517

MDIV 2.172 0.015 2.009 0.022 2.158 0.015 -0.171 0.568

MV -0.411 0.659 0.405 0.343 1.103 0.135 -0.643 0.740

VT -1.870 0.969 -1.124 0.870 0.680 0.248 0.521 0.301

ERC -1.357 0.913 1.643 0.050 3.015 0.001 0.824 0.205

RRT -0.375 0.646 1.884 0.030 2.246 0.012 -1.375 0.915

MDEC 2.472 0.007 2.427 0.008 2.067 0.019 -0.304 0.619

RE -0.310 0.622 -0.709 0.761 1.034 0.151 -0.419 0.662

TD -0.187 0.574 4.635 0.000 4.879 0.000 0.439 0.330
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Table A.10: SPA Alpha Norwegian data 1:1

Strategy z-MOM p-MOM z-SIZE p-SIZE z-SPREAD p-SPREAD z-BM p-BM

RP 0.024 0.491 -1.870 0.969 0.266 0.395 1.872 0.031

MVP -0.277 0.609 0.042 0.483 2.381 0.009 2.287 0.011

MDIV 2.537 0.006 2.567 0.005 3.489 0.000 1.680 0.047

MV 0.134 0.447 3.830 0.000 2.839 0.002 0.506 0.307

VT 0.099 0.461 -1.091 0.862 0.357 0.361 2.052 0.020

ERC 0.240 0.405 0.700 0.242 3.182 0.001 2.451 0.007

RRT 0.031 0.488 3.489 0.000 4.021 0.000 -0.499 0.691

MDEC 2.399 0.008 3.258 0.001 3.380 0.000 1.322 0.093

RE 1.065 0.144 -0.347 0.636 1.536 0.063 1.381 0.084

TD -0.537 0.704 5.395 0.000 6.215 0.000 1.584 0.057
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A.5 Correlation of the active strategies towards the banch-

mark

Table A.11: Correlation of optimized strategies against the naive, US.

Dataset Mean Median Maximum Minimum Most correlated Least correlated

Size 0.965 0.983 0.999 0.905 ERC/RP GVM

BM 0.974 0.985 0.999 0.900 ERC/RP MV

OP 0.980 0.991 1 0.928 ERC/RP MV

INV 0.978 0.992 1 0.922 ERC/RP MV

EP 0.975 0.986 1 0.904 ERC/RP MV

CP 0.972 0.986 1 0.892 ERC/RP MV

DY 0.958 0.978 0.999 0.871 RP MV

MOM 0.952 0.975 0.998 0.804 ERC/RP MV

SHORT 0.976 0.988 0.999 0.916 ERC/RP RRT

LONG 0.972 0.984 0.999 0.904 ERC/RP MV

ACR 0.979 0.993 0.999 0.932 ERC/RP MV

BETA 0.951 0.972 0.997 0.822 ERC/RP MVP

NSI 0.976 0.989 1 0.923 ERC/RP RRT

VAR 0.943 0.957 0.956 0.803 ERC/RP MVP

RVAR 0.958 0.971 0.999 0.866 ERC/RP MVP

10IND 0.922 0.957 0.998 0.734 ERC/RP MV

Table A.11 reports the correlation of the optimized strategies against the naive for the 16 datasets em-

ployed. Column 2-4 reports the mean, median, maximum and minimum correlation values respectively.

Lastly column 5-6 report the highest and lowest correlating strategies. All values are in percentages.
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Table A.12: Correlation of optimized strategies against the naive, Norwegian

Dataset Mean Median Maximum Minimum Most correlated Least correlated

Spread 0.920 0.958 0.999 0.691 ERC/RP MV

Size 0.926 0.958 0.998 0.672 ERC/RP MV

MOM 0.963 0.980 0.999 0.835 ERC/RP MV

BTM 0.949 0.972 0.999 0.790 ERC/RP MV

Table A.12 reports the correlation of the optimized strategies against the naive for the 4 employed.

Column 2-4 reports the mean, median, maximum and minimum correlation values respectively. Lastly

column 5-6 report the highest and lowest correlating strategies. All values are in percentages.
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A.6 Reflection notes

Reflection note, Andreas Wehus.

In a few weeks I will deliver my masters thesis and complete my master’s degree in

economics and administration, with a specialisation within finance. Alongside

delivering my masters, the university of Agder have asked me to write this reflection

note regarding my thesis and the knowledge I’ve obtained during my studies. This

reflection note will begin with a recap of my study, followed by some key concept I

believe played a prominent role, and lastly, I will talk about my master’s.

During my study at the university of Agder I have completed a bachelor’s in business

administration (accounting) and a master’s as civil economist, with specialisation in

finance The subjects I took during my bachelor focused on subjects regarding law,

accounting, organization theory and finance. Combined, these subjects have widened

my perspective on the economy works both in a microeconomics and macroeconomics

sense. During this period, I had certain topics which I found intriguing and lead to my

choice of studying finance as a masters. These subjects surrounded quantitative

analysis surrounding businesses, projects stocks etc. It started with theoretical

mathematics, given a solid foundation. This was later put into use with quantitative

finance, computational finance, econometrics and advanced econometrics continued

this foundation. Quantitative finance heavily focused on the calculation of key values

of stocks such as expected return, standard deviation and applied these to form

portfolios and measure its performance. While this was done by pen and paper,

computational finance used the statistical program R to quantify these calculations

and making it possible to learn how to research on a much wider scale, using real

numbers and historical data as a simulation. Econometrics and advanced econometric

also applied statistical computer programming to apply methods on regression using

STATA. This helped us learn how a dependent variable change in accordance with the

size of the coefficient when an independent variable change. These are the subjects I

believe made it possible for me to write such a quantitative master thesis, specially

since its rellies heavily on my competence within the statistical programs.

During my five years of studying I have acquired a lot of knowledge regarding

economics. I’ve learned that economics is not strictly about numbers, but also

organizations, international relationships, ethics, innovation, marketing, management
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and the list goes on. The combination of these subjects changes the perception one has

one the economy. One acronym which I learned on my first year, which I still

remember very well is the acronym CSR. CSR stands for corporate social

responsibility and is a theory that the corporations have a social responsibility towards

the social. Social being the community, world, people etc. The more I thought about

it, the more I liked the idea of corporation having a responsibility to improve the world

around it. Of course, this is not a demand, but a proposal. A business who is

performing well financially could use some of it profit and put it to good use without

financial gains. Examples of this could be to donate money, sponsor local sports team

or invest more environmental solution for your business.

Alongside corporate social responsibility, the understanding of business across boarders

was also an interesting subject. How businesses expand to other countries, outsources,

imports or exports goods. Some businesses choose to move some of their production to

other countries to save money on labour and taxes. This a regular occurrence and a lot

of businesses are international. Preparing us for a world where businesses are

international or expands to other countries, organizational theory helps us understand

that there exist different entry barriers making expanding across boarders challenging.

When studying we learned how to deal with these international businesses when it

comes to accounting. Using IFRS, International Financial Reporting Standard, which

is a common set of rules that makes the financial statements consistent, transparent

and usable around the world. This makes it easier for companies to compare financial

statements from companies operating in different countries.

The world is constantly changing, and how one adapts to these changes can play a

major difference in the survival of businesses. Inventors, given that they are successful,

can be the first adaptors and reap the benefits and outcompeting their competitors,

while the last to adapt may face bankruptcy. I have learned that paying attention to

how the market operate is key to surviving. Starting projects, gathering founding and

creating a financial plan to discover the net present value of investing is something I’ve

learned throughout my studies. After learning different methods of planning, funding

and creating a financial plan, our knowledge was tested. We were tasked to invent a

product, show how we will fund it, creating a financial plan and estimating the worth

of the project. This was both challenging and exciting. Testing your knowledge in a

simulated scenario is a lot different. Here you must combine all you have learned to

63



create something which was more challenging than separating the process and only

doing the individual parts alone. Reminiscing back to my studies, I feel like I have

learned a great lot about internationalisation, innovation and responsibility, which I

believe will affect me in my future career.

My master’s thesis is about portfolio optimization. Portfolio optimization is the

process of finding the optimal portfolio combination out of a given set. Financial

researchers have discovered different strategies which tells the investor how to best

allocate your wealth into different portfolios to best maximize returns. These

strategies are referred to as "active trading strategies", which require one to look at

historical data and calculate the covariance-variance and expected returns. This

method of portfolio optimization is called the modern portfolio theory (MTP) and was

created by Markowitz (1952). DeMiguel et.al (DeMiguel 2009) wanted to test the

performance of an active trading strategy against a naive-diversification. A naive

diversification divides your wealth equally amongst all investment object, giving the

expression 1/N. Doing so, he discovered that none of the active trading strategies

could significantly outperform the naIve diversification.

This started a heated debate and financial researchers tried to provide counterevidence

to their findings. See; Kirby Ostediek (2011) and Krietzman, Page & Turkington

(2010) for examples. Later studies have shown that the results of these studies are not

significant, since the methods they applied makes the result invalid. Bad usage of

performance measure, few datasets and not accounting for data-snooping bias was

mentioned in the critique to Krietzman et al. (2010), see: Zakamulin (2017)

Our research question is "Does any active trading strategy outperform the naIve

diversification", where we improve the method of previous literature to give a more

accurate result than previous researchers have. To figure this out, we apply 10 active

trading strategies as well as the naIve, to 16 different datasets. The data generated

from this is then loaded into a joint-test-program. Here, we apply two different test

and bootstrap the data, resampling it 10.000 times before we jointly calculate if there

are significant differences between the naive diversification and the active strategies.

These joint in accordance to the method of Hansen (2005) and White’s (2000) SPA

test and WRC test, respectively. This is also done with Norwegian datasets, but it’s

however limited due to only four datasets being available on Norwegian dataset.

Summarized, our results mostly support that no optimized strategy outperform the
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naive in the US market. For the Norwegian market we find the opposite results, with

most tests pointing towards one or more strategy outperforming the naive.

Reflection note, Sindre Tjetland.

As a part of our final master thesis, The School of Business and Law at University of

Agder requires that we write an individual reflection note with a brief summary of our

thesis, alongside how our work relates to three key concepts of; International,

innovative and responsible

In this thesis I have alongside my fellow student Andreas Wehus explored the topic of

portfolio optimization. We have attempted to answer the question whether an

optimized statistical strategy of asset allocation, can beat a naive strategy of equal

distribution of funds in the assets.

In order to expand upon previous literature, we have attempted to incorporate

additional statistical methods in our econometric estimation. Traditionally, the success

of portfolio optimization has been measured in Sharpe-ratio (Sharpe, W. 1966) While

this performance measure is employed in this thesis for ease of comparison, we

additionally include a second performance measure; Alpha. Specifically we refer to our

supervisor’s paper on the topic, Zakamulin(2017) Where he discusses the weaknesses of

the Sharpe-measure, and compares it to a form of alpha measure developed by Fama &

French (1993) We employ this FF3 alpha in order to better capture abnormal

performance in our optimized strategies. Overall, it is theorized that this makes for a

superior performance measure.

Employing the FFC4 alpha measure, we further expand upon previous literature by

incorporating a joint test to test all our individual alpha measures from each optimized

strategy and their respective datasets. We employ two such join tests in this thesis,

the original novel WRC test developed by White (2000) and its expansion the SPA

test developed by Hansen ( 2005)

These tests are then performed in conjunction with a form of monte Carlo analysis,

where we bootstrap the excess return data from the optimized strategies.

We perform these calculations for both US and Norwegian data. Our findings

potentially highlight an overall difference of the underlying trading rules in the two

markets. For the US datasets there is a majority evidence of no optimized strategy
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beating the naive allocation method, especially when considering the argued alpha

performance measure. For the Norwegian data we conclude in the opposite. Here most

of the joint test results and especially the alpha provide evidence towards one or more

of the optimized strategies beating the naive.

A potential weakness of our study is the difficulty of comparing the two distinct

markets. We employ datasets constructed on US and Norwegian returns, formed on

different criterions. There is however a difference in datasets available for each market,

where we employ 16 datasets in the US, and only 4 in the Norwegian market. This

weakens the overall significance of the Norwegian results and taints an attempted

comparison.

I will now attempt to cover how our thesis relates to the three key concepts. As a part

of our 2-year masters, all but one course has been taught in English, and most of our

professors /associate professors teaching has been of foreign stature. Especially two

courses have contributed to our master’s thesis: Advanced econometrics (1 and 2) and

Computational Finance and Portfolio Management.

Both courses were focused on internationalized trends when teaching and made for a

natural starting point for our masterâTMs thesis. In our thesis we employ American

data alongside Norwegian for our estimations and findings. This is done in order for

our findings to be relevant not only in Norway, but also in the US where the results

can more easily be relevant for the rest of the world. Overall, our thesis is majorly

influence by previous American research. Many of the optimization strategies and

further methodology has been developed by American professors / academics. These

tests and methodologies have become increasingly relevant for the international stage

beyond the direct comparison to US data. The global trade has become increasingly

interlocked in the last century, and the trend is only increasing. Capital markets and

functions are interlocking and becoming co-dependent on each other. This makes an

analysis employed on US or Norwegian data relevant for additional markets around the

world, which behave increasingly similar. Our comparison also highlights how far this

similarity has come; were we observe dissimilar results from our two markets.

Innovation is a concept which all academic papers attempt to incorporate. We attempt

to expand upon previous literature by incorporating additional tests and measure.

Additionally, we have attempted to perform a comparison between the Norwegian and

American markets. Most significantly we include the WRC and SPA joint tests which
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have not been performed on such a large section of datasets for the US market, and to

our knowledge never in the Norwegian market. In addition, we have developed an

understanding of modern statistical programs such as STATA and especially R. These

programs lay at the forefront of econometric analysis, simplifying estimations which

previously would have taken significantly more work.

Lastly, I will explore upon how the concept of responsibility has been present in our

work on the master’s thesis. Portfolio optimization is the process of optimizing a

portfolio depending on a set of assets. In its traditional form it does not consider the

specific characteristics of the assets in question. Only the statistical properties. This

raises the dilemma of the potential to invest in companies which promotes

irresponsible actions, whether these should be regarding climate emissions, child labor,

or promoting warfare. It is possible to construct portfolios which takes ethical

dilemmas and responsibility into account, and such a portfolio would potentially

benefit from the increased sustainability as a result.

Furthermore, the naÃ¯ve diversification strategy is considered cheaper to implement

compared to following an optimized strategy rule. This rule suffers increased

transaction costs as it is required to constantly estimate and rebalancing portfolio

weights. It can therefore be argued that using portfolio optimization does not add any

value, producing unnecessary and irresponsible additional costs.

Overall, I feel this thesis majorly incorporates the topics of international and

innovative. It is conducted with both US and Norwegian data, as well as incorporating

the newest scientific literature on the topic. The thesis could expand more upon the

concept of responsibility with for example including datasets which specifically exclude

companies regarded as ethically questionable. While this would have been ideal, such

datasets does not currently exist and would have to be constructed from scratch,

which lies outside the scope of this study. Both me and my writing partner is gracious

towards both our supervisor and The School of Business and Law at UiA for helping

and motivating us to complete this thesis.
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