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Abstract 

The transatlantic airline market is a significant part of the aviation industry. In 2008, the EU – 

U.S. Open Skies Agreement was implemented to liberalize this market. The aim of the 

agreement was to impose more competition on the transatlantic market. 

The objective of this thesis is to analyze the procompetitive effects of the EU – U.S. Open 

Skies Agreement to investigate if it has fulfilled its aim. Using quarterly time series data from 

1998 to 2018, this thesis analyzes the effect of the agreement on passenger traffic on three 

interhub routes, and the number of U.S. destinations offered from three EU airports. Through 

Johansen’s three-step procedure, two VEC models are formulated to empirically test these 

procompetitive effects of the agreement. The results show that the agreement did not have a 

significant impact on the passenger traffic on any of the interhub routes, meaning that 

passenger traffic has not increased because of the agreement. Considering the U.S. 

destinations offered, the results show that the agreement did have a significant and positive 

impact on all three EU airports, meaning that the agreement has led to an increase in U.S. 

destinations offered.   

These results indicate that the agreement struggles to influence markets where airline 

alliances have high market shares. Since the agreement also provides possibilities of antitrust 

immunity for these alliances, an ambiguity problem of the agreement may arise. Instead of 

entering these markets, new entrants may choose to operate different destinations. This will 

in turn increase the number of U.S. destinations offered.  
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1 Introduction 
 

 Background 

The transatlantic market is a significant part of the airline market. Traditionally, this market 

was highly regulated by bilateral agreements negotiated between the U.S. and sovereign 

states of Europe. However, in 2008, the EU – U.S. Open Skies Agreement was established to 

deregulate or “liberalize” this market. The aim of this agreement was to bring more  

competition into the market, and it laid the foundation of entrance to this segment by Low-

Cost Carriers (Button, 2009, p. 64). At the same time, the agreement also opens for airline 

alliances to enjoy antitrust immunity. Concerns have been expressed that these alliances may 

reduce the procompetitive effects that was intended from the EU – U.S. Open Skies 

Agreement on certain types of routes where these alliances have a high market share 

(Brueckner, 2001, pp. 1476-1477).   

 Aim of the thesis 

The aim of this thesis is to investigate the effects of the Open Skies Agreement on the 

competition in the transatlantic airline market. There are several markers of competition, such 

as lower prices, higher quality, and increased quantity. Higher quality is difficult to measure, 

and not necessarily applicable for the airline industry. The reason is that low-cost carriers 

(LCCs) have in recent years increased competition in the aviation industry. However, these 

airlines are known to offer a low level of quality. Thus, the quality level may not necessarily 

increase due to more competition in the airline market. The price level is generally a good 

marker of competition, as prices typically decrease with higher competition. However, 

getting access to price data for the transatlantic market is difficult. This point was also made 

by Pitfield (2009), where he discusses the expected outcomes of the agreement and the 

potential challenges on how to measure them (Pitfield, 2009, p. 308). Another good marker of 

competition is increased quantity level. Because the agreement allows for all EU-established 

airlines to operate between the EU and any point in the U.S., the number of transatlantic 

airlines is likely to increase (European Union, 2016). This is expected to lead to more 

passenger traffic and more U.S. destinations. Thus, we use passenger traffic and the number 

of U.S. destinations offered as our markers of competition.  

 Thesis contribution 

As we present in this thesis, multiple researchers have considered the effects of deregulations 

in the airline industry. Pitfield (2007) conjectures that the Open Skies Agreement, hereafter 
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referred to as the OSA, will not result in a significant growth in traffic. The reason is that the 

fluctuations in traffic volumes are mostly explained by other influences besides alliance 

formation and deregulations (Pitfield, 2007, p. 203). Furthermore, Button (2009) argues that 

the impacts are that many more can fly cheaper, greater variety of service and more jobs in 

the extended air transportation value chain (Button, 2009, p. 59) 

Morandi, Malighetti, Peleari, and Redondi (2014) compares transatlantic traffic before and 

after the implementation of the OSA. They find that the agreement did not increase either 

passenger traffic or the number of destinations. Rather, they surprisingly found a negative 

effect (Morandi, Malighetti, Paleari, & Redondi, 2014, p. 324). This result is interesting for 

our research. However, because the OSA was implemented at the same time as the global 

financial crisis, they are effectively comparing numbers before and after the recession. As we 

can see, relatively little research has examined procompetitive effects of the OSA using time 

series models. Thus, our thesis compliments the existing literature on the topic by performing 

a times series analysis. We also use a longer timespan to capture a potential late response to 

the agreement because of the financial crisis that happened at the same time as the 

implementation of the agreement.  

The main objective of the OSA was to impose more competition on the market. Thus, this 

research is also an investigation of whether or not the OSA fulfills it purpose of bringing 

more competition in the transatlantic airline market, by increasing the number of passengers 

and U.S. destinations offered. (European Commission & United States Department of 

Transportation, 2010, p. 2). By doing an empirically analysis, we contribute to the existing 

literature by examining quarterly data in the time period from 1998-2018, analyzing the 

procompetitive effects of the OSA. 

Based upon the above-mentioned aim and contribution of the thesis, the following research 

question is formulated: 

What are the effects of the EU-U.S. Open Skies Agreement on passenger traffic and the 

number of U.S. destinations offered in the transatlantic market?  

Three route segments are considered in this thesis. We consider route segments between the 

EU and U.S. that is sufficiently large enough to analyze and illustrate fluctuations in traffic 

volumes, number of destinations offered, as well as market share of the dominant airline 

alliance. Since we are considering fluctuations in Herfindahl-Hirschman Index, dominant 

airline alliance market share, traffic volumes and number of destinations offered, we need to 
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focus on large enough airports1 in the essence of competition and large traffic volumes. In 

this context we consider the three route segments:  

1. CDG – JFK (Charles de Gaulle, Paris – John F. Kennedy airport, New York) 

2. MAD – JFK (Madrid Barajas airport, Madrid – John F. Kennedy airport, New York) 

3. LHR – BOS (London Heathrow, London – Boston Logan airport, Boston) 

Our research shows that the OSA, had no significant impact on passenger traffic, while it 

shows that the OSA had a significant and positive impact on the number of U.S. destinations 

offered from CDG, MAD and LHR using Vector Error Correction Model (VECM). The 

intuition of this result is that the OSA has brought procompetitive effects in terms of more 

U.S. destinations offered, but not passenger traffic on the above routes. This could be because 

new airlines may find it more desirable to operate different routes than to enter routes where 

alliances have market power and potentially enjoy antitrust immunity. This result is 

interesting because it follows Pitfield’s (2007) conclusion that the OSA will not result in 

significant growth in airline traffic. Furthermore, the result contradicts Morandi et al. (2014), 

since the OSA has had a positive impact on the number of U.S. destinations offered. It also 

illustrates a potential ambiguity problem of the OSA. On the one hand the aim of the 

agreement is to impose more competition on the transatlantic market. On the other hand, it 

gives the possibility of code sharing and antitrust immunity, which according to Brueckner 

(2001), may give anticompetitive results. Thus, there are forces pulling in opposite directions.   

 Structure of the thesis 

We follow up the introduction by briefly explaining the major developments that has defined 

the structure of the transatlantic market in chapter 2. The literature review is presented in 

chapter 3. This provides an overview of the existing literature on the subject of airline 

competition and the effects of deregulations. Chapter 4 contains the theoretical framework on 

which we base our intuition and interpretation of our results. Next, in chapter 5, we describe 

our data, providing figures to better explain the developments over time.  

 
1 By this we mean routes with multiple carriers, both non-allied and in different airline alliances. These are 
often between airports with high demand, located close to big cities. This is to ensure more robust results. On 

routes with only a few carriers, smaller one-time events can cause significant changes in traffic levels. Hence, it 
is more likely that a relationship between the OSA and passenger traffic is actually caused by coincidence on 
smaller routes.  
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The methodology is explained in chapter 6. This chapter explains our variables in detail along 

with the statistical tests and their procedures used to determine the statistical model. Based on 

this chapter we develop and specify our statistical model in chapter 7.  

The empirical analysis is conducted in chapter 8, along with the results and their 

interpretations. In chapter 9, we present a discussion of the economic interpretation of the 

results in the light of the existing literature. We also briefly discuss the ethical dilemma of 

increased air traffic levels and its environmental impact, along with the limitations and 

potential weaknesses of our empirical research. Lastly, the thesis is summarized in chapter 10 

with concluding remarks.  
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2 Developments in transatlantic air traffic 
 

 Air traffic regulations 

Traditionally, the regulatory framework of the airline industry was a set of bilateral 

agreements between sovereign states that controlled the international air services. This was 

also the case for the transatlantic market. According to the European Commission and United 

States Department of Transportation (2010), these agreements created little scope for 

competition. In 1992, the Department of Transportation (DOT) in the U.S. launched an 

initiative to negotiate “open skies” agreements. These agreements were signed by several 

European nations with the U.S. These would provide open entry on all routes, unrestricted 

capacity and frequency, open rights to introduce air service between any point in the U.S. and 

any point in their partner country, rights of airlines to price their products and services 

without government restrictions, and open for code sharing (European Commission & United 

States Department of Transportation, 2010, p. 10). However, these agreements were 

individually negotiated between the U.S. and member countries of the EU, and even these 

Open Skies bilateral agreements contained operational and financial restrictions (Cosmas, 

2009, p. 15). Preexisting European bilateral agreements with the U.S. follows in table 1: 

Country Date of agreement 

Netherlands 14.10.1992 

Belgium 1.3.1995 

Finland 24.3.1995 

Denmark 26.4.1995 

Norway 26.4.1995 

Sweden  26.4.1995 

Luxembourg 6.6.1995 

Austria 14.6.1995 

Czech Republic 8.12.1995 

Germany 29.2.1996 

Italy 11.11.1998 

Portugal 22.12.1999 

Malta 12.10.2000 

Poland 31.5.2001 

France 19.10.2001 

Table 1: Preexisting bilateral agreements (Pitfield, 2009, p. 309). 
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In 2002, the EU laid the foundation for their initiative to liberalize the transatlantic airline 

market with the “open skies judgements” of the Court of Justice of the EU. Several member 

states had already entered with the U.S. in the Open Skies Agreements, but the new 

judgement meant that member states of the EU could not negotiate international air service 

agreements on their own. In 2003, the Council of the EU established a new legal framework 

for the air transport relationship between the EU and the rest of the world. Any bilateral 

agreement that were not in line with the 2002 judgement had to be revised to ensure that all 

EU airlines were on equal footing for flights from any member state of the EU to third 

countries (European Commission & United States Department of Transportation, 2010, pp. 

10-11). 

In 2008, possibly the most influential agreement in deregulating the transatlantic airline 

market, the EU – U.S. Air Transport Agreement, was established. Also known as the EU – 

U.S. Open Skies Agreement or OSA, this agreement introduced new commercial freedoms 

for EU and U.S. airlines, and a framework for regulatory cooperation in the field of 

transatlantic aviation. It replaced individual agreements and removed barriers for EU and 

U.S. airlines. A  joint committee was created to deal with issues relating to the interpretation 

and application of the agreement and reviewing its implementation (European Commission & 

United States Department of Transportation, 2010, pp. 11-12). The agreement provided all 

EU-established airlines with a right to operate services to the U.S. from any point in the EU. 

This meant that low-cost carriers could more easily enter the market, as it was no longer just 

for the national airlines with governmental support, typically referred to as “flag carriers”. 

According to the European commission and the U.S. Department of Transportation (2010). 

the most immediate aim was to introduce more competition in the transatlantic market 

(European Commission & United States Department of Transportation, 2010, p. 12). 

However, there are still some regulatory boundaries, for instance one that is prohibiting EU 

and U.S. carriers from merging (European Union, 2016). Thus, simply merging instead of 

creating an alliance is not an option. 

 Strategic Alliances 

A strategic alliance is when two or more firms share resources and activities to pursue a 

common strategy (Johnson, Whittington, Scholes, Angwin, & Regnér, 2017, p. 350). In the 

aviation industry, strategic alliances began to emerge in the 1990’s (Button, 2009, p. 66). 

Prior to this, airlines had started to organize their route network in a hub-and-spoke system. 

The idea was to have one main airport, around which the airline based its operations. In 
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addition, airlines started with frequent flyers programs, which gave benefits to loyal 

customers to give the airline a competitive advantage. As multiple airlines started developing 

their hubs, airlines then began to coordinate their operations between the hubs of the airlines. 

The alliance members coordinated their schedules, giving the passengers a single-airline 

feeling to increase the convenience of the passengers. This was a major benefit for the 

airlines because they were able to increase their route network and capacity, without having 

to invest in additional resources (Brueckner, 2001, p. 1476). When airline alliances first 

started to appear, they were also partly a solution to overcome the restrictions in the 

international aviation industry. The international airline market was previously largely 

dominated by bilateral agreements, restricting the entrance of new airlines on certain routes. 

An airline alliance was a method to circumvent these regulations. More recently, the airline 

market has become less deregulated thanks to agreements such as the OSA. Yet, airline 

alliances still exist, and a large share of international airlines belong to one of the three major 

airline alliances. The reason is that it brings greater convenience for passengers when they 

can travel with coordinated flights by allied airlines rather than by two non-allied carriers 

(Brueckner, 2001, p. 1476). The alliances focused on in this thesis are the three major global 

airline alliances Star Alliance, Oneworld, and SkyTeam. The following table shows the three 

major international airline alliances and their member airlines. Airlines operating direct 

routes between the U.S. and Europe are written in bold letters.  

Star Alliance, est. 1997 Oneworld, est. 1999 SkyTeam, est. 2000 

Aegean American Airlines Aeroflot 

Air Canada British Airways Aerolineas Argentinas 

Air India Cathay Pacific Aero Mexico 

Air New Zealand Finnair Air Europa 

ANA Iberia Air France 

Asiana Airlines Japan Airlines Alitalia 

Austrian Latam China Airlines 

Avianca Malaysia Airlines China Eastern 

Brussels Airlines Qantas Czech Airlines 

Copa Airlines Qatar Delta 

Croatia Airlines Royal Jordanian Garuda Indonesia 

Egypt Air S7 Airlines Kenya Airways 

Ethiopian Sri Lankan Airlines KLM 

Eva Air   Korean Air 

LOT Polish Airlines   Middle East Airlines 
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Lufthansa   Saudia 

SAS   Tarom 

Shenzen Airlines   Vietnam Airlines 

Singapore Airlines   Xiamen Air 

South African Airways     

Swiss     

TAP Air Portugal     

Thai Airways     

Turkish Airlines     

United Airlines    

Table 2: International Airline alliances. 

 Antitrust immunity 

The OSA provides possibilities of antitrust immunity for the development of airline alliances 

(European Commission, 2008). In most industries, firms operate under a set of antitrust laws, 

which enforces the prohibition of price-fixing agreements and ensure that the industries are 

competitive (Pepall, Richards, & Norman, 2014, p. 371). However, for many of the airlines 

within the three major international alliances, the U.S. Department of Justice has given them 

immunity from the U.S. antitrust laws (United States Department of Transportation, 2019). 

The immunization of airline alliances is controversial and has caused a lot of discussion. On 

the one side, the advocates for the immunization argues that it gives consumer benefits in 

terms of convenience and more destinations. Those against immunization argue that 

competition might be reduced, causing negative welfare effects (Gillespie & Richard, 2011, 

p. 1). A discussion paper from the Economic Analysis Group of the U.S. Department of 

Justice found evidence for loss of competition in non-stop transatlantic routes due to antitrust 

immunity (Gillespie & Richard, 2011, p. 20). The following table shows the alliances that 

enjoy antitrust immunity:  

SkyTeam Star Alliance Oneworld Other 

Delta/ Air France-KLM/ 

Alitalia/ Czech/ Korean 

United/ Air Canada/ 

Brussels/ Lufthansa/ 

Swiss/ Austrian/ SAS/ 

LOT/ TAP 

 

American/ Lan Airlines/ 

Lan Peru** 

 

SAS/ Icelandair 

Delta/ Virgin Atlantic*/ 

Air France-KLM/ 

Alitalia 

 

United/ Air New 

Zealand 

 

American/ British 

Airways/ Iberia/ Finnair/ 

Royal Jordanian 

 

Delta/ Virgin Australia 
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Table 3: Alliances with antitrust immunity  (United States Department of Transportation, 2019). 

*Not a member of SkyTeam 
**Affiliate of LAN but not a member of Oneworld  

 
From table 3, we see that the dominant alliances on the three route segments considered enjoy 

antitrust immunity. That is, Delta and Air France-KLM on the CDG-JFK route, Iberia and 

American Airlines on the MAD-JFK route, and British Airways and American on the LHR-

BOS route, all enjoy antitrust immunity.  

  

 United/ Asiana American/ Japan Air 

Lines 

 

 United/ All Nippon 

Airways 

  

 United/ COPA   
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3 Literature Review 
One of the most recognized researchers on the subject of competition in the airline industry is 

Jan K. Brueckner2. Bruckner & Whalen (2000) study strategic alliances in the airline industry 

and identify two market types based on how passengers are affected by the alliances. The first 

market type is the interline market, which is where passengers are dependent on both alliance 

airlines. Here, the alliance members can offer greater convenience for the passengers by 

coordinating their schedules to resemble a “single-airline” travel. Also, because the major 

alliances may enjoy antitrust-immunity they can engage in cooperative pricing on trips where 

the passengers are dependent on both carriers to get from A to B. This interline benefit can 

create lower fares than by using two non-allied carriers. The reason is that they can 

internalize negative externalities from the coordinate’s choice of sub fares, leading to lower 

overall fares. This will give increased traffic, which lowers the marginal cost and puts further 

downward pressure on fares. However, they also stress that alliances can cause 

anticompetitive behavior in some cases, where collusion can lead to higher fares which 

benefits the alliance (Brueckner & Whalen, 2000, p. 504). The situation in which 

anticompetitive effects may arise is in the so-called gateway-to-gateway or interhub market. 

That is a segment where both of the allied airlines operate between two allied hubs. Concerns 

have been made by regulators that collusive agreements in this segment results in higher fares 

for the passengers (Brueckner & Whalen, 2000, p. 505). This concern is of interest for our 

analysis as a large share of the EU – U.S. routes are interhub routes.  

Brueckner and Whalen thus identify two separate passenger groups, who are affected 

differently by airline alliances. Interhub passengers suffer a loss by collusive pricing, while 

interline passengers get benefits in terms of cooperation in pricing and scheduling. Thus, 

there is a welfare tradeoff between the two passenger groups. Because the route segments 

considered in our thesis are interhub markets, we do not expect to see a significant positive 

impact of the OSA on passenger traffic, based on Brueckner and Whalen’s intuition. 

Brueckner (2001) revisits the above research question where he analyzes the effect of airline 

alliances on fares, traffic levels, and welfare (Brueckner, 2001, p. 1475). Brueckner 

emphasizes that there is still a rationale for airline alliances even though markets are getting 

more deregulated. According to Brueckner, alliances were traditionally formed to overcome 

 
2 Bruckner & Whalen addressed the competitional effects of airline alliances and the concerns regarding 

collusive behavior in 2000. They explain that the deregulations of the airline market spurred the formation of 

international airline alliances. This paper as well as later publications from Bruckner have been cited in much of 

the research that has been done on the subject (Brueckner & Whalen, 2000, p. 503). 
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operating restrictions due to individual bilateral agreements, which would limit the entry of 

new carriers on certain routes. With markets becoming more deregulated, this problem is 

getting easier to overcome. However, airline alliances also allow carriers to expand their 

operations without investing in additional resources. Again, Brueckner addresses that 

cooperation between airlines can make them function as a single airline creating benefits for 

the interline passengers. Again, for the interhub market they express the concern for collusive 

behavior and anti-competitive effects (Brueckner, 2001, pp. 1476-1477). The paper finds that 

cooperative pricing in the interline market creates downward pressure on fares which creates 

benefits. However, because competition in the interhub market is reduced, fares tend to raise 

in this segment. Brueckner also finds that the welfare effects typically rise following 

formation of an alliance, despite the harm to the interhub passengers. Thus, his paper gives 

evidence that the positive effects of airline alliances may outweigh the harmful effects 

(Brueckner, 2001, p. 1494).  

Pitfiled (2007) investigates the effect of alliances on traffic levels, market shares and 

concentration levels on routes between European hubs and the U.S. His research covers the 

time period from 1990 – 2003 to study the effect from the introduction of airline alliances. 

Pitfield expects alliances to have a positive impact on traffic on a route as well as the shares 

of the alliance member. Furthermore, these effects will be stronger if the members operate 

hub-and-spoke systems based on both the origin and destination (Pitfield, 2007, p. 192). 

Pitfield uses data from the US Bureau of Transportation Statistics which is analyzed year by 

year, but the data is complex because capacity on the principal routes examined in the paper 

is changed by both the incumbent airlines and airlines leaving and entering the market, which 

causes traffic volumes to fluctuate. Autoregressive Integrated Moving Average Models 

(ARIMA) with Intervention Analysis is used in the analysis of this paper to identify both the 

size and the significance of influences on traffic by route. Pitfield analyzes transatlantic 

alliance routes to the U.S. from London Heathrow (LHR), Paris Charles de Gaulle (CDG), 

Amsterdam (AMS) and Frankfurt (FRA) along with minor complementary roles for London 

Gatwick (LGW) and Paris Orly (ORY) by looking at non-stop traffic. In the analysis, 

however, Pitfield uses time-series intervention analysis by route from FRA and CDG to 

different destinations in the U.S.   

Putting all together, the concluding remarks from this paper suggests that fluctuations in 

traffic has more to do with the so-called “ceteris paribus” (meaning holding all other 

variables constant), which is an assumption that there are many other influences on traffic 
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volumes and market shares besides alliance formation and development, e.g. focus on U.S. 

carriers on non-hub EU routes with smaller aircraft types, than with alliance formation and 

development. Further, Pitfield conjectures that the OSA will not result in a significant growth 

in traffic or increased competition (Pitfield, 2007, p. 203). This is a very interesting result for 

us as we can now analyze if the OSA has had any significant effect or not on the competition 

measured by traffic levels and destinations offered. Pitfield expresses his concern prior to the 

OSA. Thus, our thesis can further contribute to his discussion and test whether these concerns 

holds or not after the implementation of the OSA.  

Button (2009) provides an overview of the economics of the transatlantic situation where he 

gives insights to the reasons behind its development. He explains how the transatlantic 

market has been changed by deregulations in both the U.S. and EU (Button, 2009, p. 59). The 

article explains the institutional background for international air transportation, different 

deregulations that have been implemented, different bilateral agreements, and the removal of 

economic regulations in both the U.S. and in the EU. Button also explains much of what have 

already been introduced in the articles mentioned above, but he focuses more on a broader 

overview with no explicit model or analysis. In the conclusion, Button argues that not 

everyone has gained from the deregulated international airline market. However, the negative 

effects have been far outweighed by the positive impacts. The results/impacts are that many 

more can fly cheaper, greater variety of service, more jobs in the extended air transportation 

value chain (Button, 2009, p. 70). The article concludes that the OSA would provide much of 

the same general outcome, and that the European Union would benefit by this agreement, 

although there may be additional gains in extending it to a full Open Aviation Area of the 

type found within the US and the EU.  

Pitfield (2009) also provides an overview of the main features of the OSA and some of its 

consequences, one year after its implementation. His findings indicate that consumer choice 

has broadened due to supply side adjustments after the agreement (Pitfield, 2009, p. 308). 

According to Pitfield however, there is still a need for an analysis of impacts on fares, costs 

and passengers. The paper emphasizes some challenges related to the methodology of such 

studies. The first is the challenge of receiving the appropriate data. The next challenge is to 

choose a methodology in which we can single out the effect of the OSA (Pitfield, 2009, pp. 

311-312). His points are relevant for our thesis. We address his encouragement to perform an 

empirical analysis on the effects on passengers. Furthermore, as described in chapter 5, the 

data needed is comprehensive, and as we will discuss in chapter 6, the methodology needed 
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to measure the effect of the OSA requires extensive assessment and statistical testing. Pitfield 

also suggests that the transatlantic traffic from LHR is of particular interest to study. As 

around 40% of the transatlantic traffic from Europe came from LHR prior to the OSA, he 

indicates that the liberalization will significantly affect this airport (Pitfield, 2009, p. 309). 

Because of his regards, we have chosen LHR as one of the airports in the analysis. 

Surprisingly however, our data show that the OSA has had little impact on passenger traffic 

here.   

Furthermore, Pitfield (2011) uses time series analysis to investigate the consequences of the 

OSA, after highlighting the main features of the agreement in the paper from 2009. This 

paper uses ARIMA modelling to empirically test the effect of the OSA on passenger traffic. 

Furthermore, he considers four U.S. routes offered from LHR. In none of the routes does he 

find any evidence of a significant impact on passenger traffic from the OSA (Pitfield, 2011, 

p. 186). There were found no boost or discontinuity in passenger numbers that could not be 

explained by aircraft size, airlines’ choice of frequency or fare setting. Furthermore, Pitfield 

explains that a longer data series would be preferable to provide more observations to allow 

the impact of the OSA to emerge, as the result may be partially masked by the concurrent 

recession of the financial crisis (Pitfield, 2011, p. 195). This result is interesting in our case, 

as we focus on a larger data series such that the effect of the financial crisis will play a 

smaller role in our time series.  

Morandi, Malighetti, Paleari, and Redondi (2014) presents an analysis of traffic levels and 

competition in the transatlantic market before and after the implementation of the OSA. 

Specifically, they investigate the impact of the OSA on competition between airlines, 

alliances, and hub airports. They also examine whether the agreement has led to increased 

choices for transatlantic travelers (Morandi et al., 2014, p. 305). Morandi et al. address that 

the EU and U.S. governments had expectations of procompetitive effects such as more 

competition, increased route offerings and lower fares from the OSA. Yet, few insights are 

available of the actual impact of the OSA (Morandi et al., 2014, pp. 308-309). Like Button 

(2009) their analysis does not use any advanced empirical models. Rather they compare 2007 

data with 2010 data, and provide an overview of how the market has changed in terms of 

number of flights, seats offered, destinations, alliance market shares and concentration ratios 

(Morandi et al., 2014, pp. 310-321). Their results find that the number of routes offered 

declined after the implementation of the OSA. In addition, they argue that competition 

between transatlantic airlines actually decreased as a result fewer players and consolidation of 
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market shares after the implementation of the OSA. They also observe that there is a lack of 

new entrants to routes with a predominant airline and enhanced coordination within alliances 

(Morandi et al., 2014, pp. 324-326). Their results are a big contrast to the above-mentioned 

results of Button (2009). Thus, there is a discussion about the actual effects of an agreement 

such as the OSA. Our research aims to contribute to this debate. We investigate much of the 

same elements as Morandi et al., through a more complex empirical framework, using time 

series models to test the effect of the OSA. We also use more observations, since simply 

comparing 2007 data and 2010 can lead to results affected by the global financial crisis. As 

mentioned, it is possible that the airline industry had not fully recovered from the downturn in 

the economy, and hence a late response to the OSA is likely. 

Other researchers on the topic of EU-U.S. OSA such as Fu, Oum and Zhang (2010), Cristea, 

Hummels and Roberson (2012), and Alves and Forte (2015) have also analyzed the impact of 

the deregulation. They all conjecture that an open skies agreement leads to an increase in the 

number of airlines in the market. In turn, it leads to an increase in competition in the air 

transport market. Further, this increase will be followed with a decrease of market 

restrictions, which should cause a restructuring of the air transport market, allowing new 

airlines to enter the deregulated segments of the market. Already existing airlines will then, 

according to Fu et al. (2010), restructure and optimize their networks, becoming viable to 

operate routes between locations that were not available or possible before due to the small 

number of passengers for that route (Fu, Oum, & Zhang, 2010, p. 32). Intuitively, this 

restructuring will increase the competition in those market segments because of the increase 

of possible number of routes and destinations (Alves & Forte, 2015, p. 133). In turn, 

following a rational point of view, this increased competition will lead to more airlines in the 

market segment which will lead to more passengers travelling transatlantic. This will further 

be analyzed in the empirical analysis. According to Cristea et al. (2012) evidence is found 

from their estimation results that outbound air traffic is 60 percent higher in liberalized 

markets compared to other markets that are still regulated, however, they argue that 

passenger traffic have not significantly increased before 5 years into the new agreement 

(Cristea, Hummels, & Roberson, 2012, p. 5). One reason for this might be that people have to 

adapt to the new agreement and new potential airlines to travel with. Another explanation can 

be that the financial crisis may have had an impact. As we present in our thesis, we see that 

passenger traffic have increased comparing traffic numbers pre and post the OSA3. Thus, this 

 
3 Based on description of data in table 4. 



15 
 

is not a significant result. It only describes passenger data pre and post the OSA, not 

considering if the increase is due to the OSA. According to Alves & Forte (2015), it takes 

time to see the full effect of such an agreement as the OSA. Their empirical result indicates 

that after the implementation of the agreement, prices will be decreased, and consumer 

surplus will increase due to the effect of double marginalization (Alves & Forte, 2015, p. 

133).  
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4 Theoretical framework 
 

 Competition 

In almost any industry, competitiveness is often crucial to both stay in a market and to get the 

upper hand on the rivals in the market that a company operates in. We say that a market is 

purely or perfectly competitive if each player in the market assumes that the market price is 

independent of its own level of output. That is, each player can only sell its good at one price: 

the market price (Varian, 2010, p. 396). At the other end we have monopoly, where a single 

firm is the only supplier of a good or service. Because this firm is the only supplier, it can 

influence the price in this market because its choices alter the total supply (Pepall et al., 2014, 

pp. 24-25). Perfect competition is viewed as positive, while monopoly is often judged 

negatively. The reason is that perfect competition is said to be efficient. By efficient means 

that it is impossible to find a small change in the allocation of capital, labor, goods, or 

services that may improve the well-being of one individual without harming others. To 

measure the efficiency, one use consumer surplus and producer surplus. Consumer surplus is 

the difference between the consumer’s maximum willingness to pay and the amount the 

consumer actually pays. Similarly, producer surplus is the difference between the amount the 

seller receives and the cost of producing it. Because perfectly competitive firms take market 

prices as given, price equals marginal revenue. As a result, the price is set equal to marginal 

cost. This implies that this market is efficient because it maximizes the sum of producer and 

consumer surplus (total surplus). Monopoly on the other hand does not yield an efficient 

outcome. The reason is that the firm produces less and charges a higher price. This reduces 

consumer surplus. The monopolist’s gain is less than the consumer’s loss, resulting in lower 

total welfare (Pepall et al., 2014, pp. 28-31).  

In the airline industry a healthy level of competition is important to maintain the best services 

for the lowest possible price. However, it does not always ensure the stability of an industry. 

To understand the competition in this industry it is crucial to understand what drives the 

competition. In the airline industry, typical drivers of competition are quality and cost. The 

airline can either focus on a cost leadership strategy or offer differentiation in terms of better 

quality (Johnson et al., 2017, p. 211 & 215). 

Normally an airline has a combination of high fixed- and low variable costs, and they attempt 

to spread their fixed costs across many units (e.g., tickets). This will then create an incentive 

for the airline to grow very large, so they can spread these costs out on the number of tickets, 



17 
 

hence, passengers. We then have economies of scale and the result is a few very large 

companies dominating the industry (Wolla & Backus, 2018, p. 3). 

Competition can be divided into different market structures. As discussed, two outer points 

are perfect competition and monopoly. Often however, markets tend to lie somewhere in 

between these two. Examples of these are oligopoly, which is classified more towards 

monopoly, and monopolistic competition, which is classified more towards perfect 

competition. Wolla and Backus (2018) summarize these market structures in figure 1 below 

(Wolla & Backus, 2018, p. 2). As seen in the figure, an oligopoly moves towards perfect 

competition as the number of firms increases.  

 

Figure 1: The Market Structure Continuum. From “The Economics Of Flying: How Competitive Are 

The Friendly Skies?,” by A.S. Wolla and C. Backus, 2018, Federal Reserve Bank of St. Louis, p. 2.  

 Oligopolistic competition 

Oligopoly is a market structure which is dominated by a few large producers or suppliers of a 

homogenous or differentiated product or service. In that sense, the airline industry can be 

characterized as an oligopoly. Often there are number of competitors in the market, but not so 

many that they have negligible effect on price (Varian, 2010, p. 497). Generally, when there 

are between three to six companies that have almost all market share, we can be sure it refers 

to an oligopolistic industry (McConnel, Brue, & Flynn, 2009, p. 229). As we will present in 

5.2, every route segment considered possess a high Herfindahl-Hirschman index, indicating 

that the much of the total market share belongs to only a few firms. Hence, it indicates that 

the market is oligopolistic. Although the main service of airlines, air transportation from A to 

B, is the same regardless of airline, they differ in service levels across the world. Price 

strategies are also different between airlines with focus on comfort and service and LCCs. It 

is therefore unreasonable to expect one grand model for oligopolistic competition since many 

different behavior patterns can be observed in the real world (Varian, 2010, p. 497).  
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In this industry, the companies dominate the market with a high market share. New entrants 

are faced with strong barriers, including high startup costs and economies of scale. This 

allows larger companies to produce more output at even lower average costs. Sometimes 

firms collude to maintain their high prices (Wolla & Backus, 2018, p. 2). As mentioned 

previously, collusion is often prohibited via antitrust laws. However, the OSA gives the 

possibility of antitrust immunity to some airline alliances. From a consumer perspective this 

can lead to complications in several ways. When there are fewer companies in the market it 

means that the competition is less fierce, and the bigger airlines can raise their prices more 

easily without the threat of losing a lot of customers. Further, because of the high startup 

costs and the strong entry barriers it can be tough to enter an oligopolistic industry, although 

new entrants have greater potential gains from entering a less-competitive market (Wolla & 

Backus, 2018, p. 3). 

 Cournot competition 

In general, there exists three prominent models of oligopolistic competition: Cournot, 

Bertrand and Stackelberg. As mentioned, our marker of competition is increased quantity in 

the form of passenger traffic and number of U.S. destinations offered. This rules out the 

Bertrand model, since it considers price as the strategic variable. The difference between the 

Cournot and Stackelberg model is the timing. In the Cournot model, all firms select their 

output quantity simultaneously (Pepall et al., 2014, pp. 222-223). The Stackelberg model is a 

two-stage game, in which one firm (the market leader) chooses its output quantity first. The 

other firms (followers) then select their quantity after observing the market leader’s choice  

(Pepall et al., 2014, p. 265). According to Alves and Forte (2015), the appropriate theoretical 

model for interpretation of the OSA is the Cournot model.  

Put simply, the Cournot best response of each firm when there are N firms, is to choose an 

output equal to 𝑞∗ =
(𝐴−𝑐)

2𝐵
−

(𝑁−1)𝑞∗

2
. The Nash equilibrium quantity for each firm is then 

𝑞∗ =
(𝐴−𝑐)

(𝑁+1)𝐵
. This gives a total industry output of 𝑄∗ =

𝑁(𝐴−𝑐)

(𝑁+1)𝐵
, and a market price of 𝑃∗ =

𝐴

(𝑁+1)
+

𝑁

(𝑁+1)
c (Pepall et al., 2014, pp. 228-229).  

The above equations of the Cournot-Nash equilibrium illustrate that the output increases as 

the number of firms increases, and the price decreases. In other words, they illustrate the 

dynamics of the market structure continuum in figure 1. Since the OSA allows for EU airlines 

to operate between any point in the EU to the U.S. and vice versa, it opens for new airlines to 
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enter the transatlantic market and for existing airlines to expand their transatlantic route 

network. With more players in the transatlantic market, the N will increase, and in theory, 

increase the output and lower the price of transatlantic air travel. This is in line with the aim 

of the agreement and the expectations of the governments. Alves and Forte (2015) conclude 

that the Cournot model is an appropriate model to measure the impact of the OSA. However, 

the Cournot model fails to catch some important aspects of the competition in the airline 

market. As mentioned in section 4.1, the competition in this industry is multi-dimensional. 

This means that there are several drivers of the competition. The Cournot model assumes that 

the products or services offered by the competing firms are perfect substitutes (Pepall et al., 

2014, p. 223). In theory the idea of perfect substitution in the airline industry may be 

reasonable since the same “core” service, air transportation from A to B, is offered regardless 

of airline. Being able to offer the same core service, but at a significantly reduced price, is 

indeed one of the key elements behind the formation of LCCs. In reality however, different 

air travel offerings are most likely not perfect substitutes. First of all, airlines themselves are 

offering different services by typically separating between economy, business and first class. 

There are also significant differences between airlines with a high-quality focus and airlines 

offering cheaper no-frills tickets. Other differences are related to convenience in terms of 

departure times, additional services, frequent flyer programs, code-sharing agreements, etc.  

Thus, although the Cournot model is recognized as a sufficient model to interpret the impact 

of the OSA by Alves and Forte (2015), the assumption of perfect substitution may be 

unrealistic. As a consequence it lacks the ability to capture the multi-dimensional competition 

in the market. However, it still provides an explanation of the market dynamics one might 

expect after the introduction of the OSA. It also shows that the expectations from the U.S. 

and EU governments are anchored in the economic theory. This thesis empirically tests 

whether the aim of the agreement and the Cournot prediction of higher output in terms of 

passenger traffic and the number of destinations holds.  

 Market Concentration and the Herfindahl-Hirschman Index 

A common measure of market concentration is the Herfindahl-Hirschman Index (HHI). It is a 

measure often used to examine competition and the impact of mergers and alliances on 

market share and competition. The index is given by: 

𝐻𝐻𝐼 =  𝑆1
2 + 𝑆2

2 + 𝑆3
2 + ⋯ + 𝑆𝑛

2 = ∑ 𝑆𝑖
2𝑁

𝑖=1 , where 𝑆𝑖
2 represents the squared market share of 

airline 𝑖 (Pepall et al., 2014, p. 49).  
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In section 5.2, we calculate the HHI quarterly using market shares which we calculate from 

the traffic figures from the DOT T-100 database for the non-stop direct segment. By doing 

this, we can examine the trend in the market concentration for the time period of the study. 

One advantage of the HHI is that it reflects the combined influence on both unequal firm 

sizes and the concentration of activity in a few large firms. That is, instead of just reflecting a 

single point on the concentration curve, the HHI tells something about the shape of the curve. 

(Pepall et al., 2014, p. 49). In this matter, concentration curves are a useful illustrative device 

that permits one to get a sense of how industry production is allocated across firms from a 

visual inspection. It is called a concentration curve because it describes the extent of 

concentrated output of just a few firms (Pepall et al., 2014, pp. 47-48).  

 Brueckner’s model of airline network structure 

Brueckner (2001) presents the following model of a network for airlines. The figure is used to 

illustrate the two-firm case (Brueckner, 2001, p. 1479).  

 

Figure 2: Network Structure. From “The economics of international codesharing: an analysis of airline 

alliances,” by J.K. Brueckner, 2001, International Journal of Industrial Organization, 19, p. 1479. 

In Figure 2, airline 1 operates at hub H, with domestic routes to A and B and international 

route to K. K is the hub for airline 2, with domestic routes to D and E and international route 

to H (Brueckner, 2001, pp. 1479-1480). In the context of our analysis, H represents a hub for 

a U.S. carrier while K represents the hub for a European carrier. The segment H – K, thus 

illustrates the transatlantic market. A and B are destinations in the U.S. while D and E are 

destinations in the EU. The model illustrates one of the benefits of an airline alliance. If the 

two airlines are cooperating, airline 1 can expand its capacity with destinations D and E 

without investing in additional resources. Airline 2 will then operate the flights to D and E, 

and the two allied airlines will share the profits from A to D, A to E, etc. This strategy also 
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makes it convenient for passengers if the two airlines are cooperating in their scheduling, 

giving a single-airline feeling. This illustrates a competitional aspect that the Cournot model 

fails to catch. These kind of routes, where the passengers are dependent on both carriers, are 

typically referred to as interline trips (Brueckner, 2001, p. 1477). The opposite, where both 

carriers operate (H – K segment), is referred to as the gateway-to-gateway, or interhub 

market. The concern about antitrust immunity has been raised around the latter. The concern 

is that the two airlines in the interhub market engage in collusive conduct to increase their 

market share and to lower the competition. One thing to notice in this model is the possibility 

of fare arbitrage. For instance, if 𝑝𝐴𝐻 + 𝑝𝐻𝐵  <  𝑝𝐴𝐵, then a passenger in the 𝐴𝐵 market 

would benefit of purchasing two round-trip tickets, one from A to H and one from H to B 

instead of purchasing a direct 𝐴𝐵 round-trip ticket (Brueckner, 2001, p. 1481). By symmetry 

we can have 𝑝𝐷𝐾 + 𝑝𝐾𝐸  <  𝑝𝐷𝐸  in the case of airline 2.  

 The EU – U.S. Open Skies Agreement’s regulatory impact 

The OSA allowed EU airlines to operate flights to the U.S. from any airport in the EU, and 

U.S. airlines to operate flights to the EU. In addition EU and U.S. airlines can operate routes 

beyond the EU and the U.S. without restrictions on number of flights or type of aircraft. The 

agreement also allows for free pricing for the airlines. At the same time, the agreement opens 

for unlimited code-sharing and opportunities for EU carriers to provide aircrafts with crew to 

U.S. airlines on international routes (European Union, 2016). The access to unlimited code-

sharing has raised concerns regarding possible collusive or anti-competitive behavior. As 

Brueckner pointed out, this can indeed be beneficial to the consumers on routes where they 

are dependent on both carriers. However, on routes where both carriers operate, like the 

transatlantic market, it may result in a reduction of the procompetitive effects of the 

agreement. The specific terms or “freedom rights” that was given by the 2008 OSA were 

according to the European Union (2016) the following: 

3rd freedom rights: the right to put down traffic coming from the home country of the carrier 

4th freedom rights: the right to take on traffic destined for the home country of the carrier 

5th freedom rights: the right to put down and take on traffic coming from or going to a non-

EU country 

7th freedom rights: the right of transporting traffic between the territory of the granting 

country and any non-EU country. This does not require the service to connect to or be an 

extension of any service to/from the home country of the carrier (European Union, 2016).  
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Some member countries of the EU already had bilateral agreements with the U.S., introduced 

in table 1. These agreements would let EU airlines fly to any point in the U.S. without 

restrictions, but only from their home countries. In other countries, such as the UK, air 

services were restricted to a certain weekly frequency or a certain number of airlines. This 

significantly reduced the scope for competition in these markets (European Commission, 

2008). The new agreement in 2008, would put each member country of the EU on equal 

footing by providing a uniform agreement for the whole of the EU, in addition to some non-

EU members such as Norway (European Commission, 2008). The fact that there were no 

longer restrictions on prices and number of airlines on each route made it possible for LCCs 

to enter the transatlantic market. The agreement was first signed 30. April 2007, but was not 

operational until the year after, 30th March 2008. This first agreement lasted until 25th March 

2010 before the second phase of the agreement was agreed through eight rounds of 

negotiations which built upon the success of the signed EU-U.S. OSA of 2007. The 

negotiations on phase 2 began just 60 days after the OSA entered into force. The negotiations 

took a long time which could indicate that the parties struggled to reach an agreement. Thus, 

one might expect airlines to wait until the negotiations were finished and the OSA was 

further cemented before changing their operations or entering the market. Cristea, Hummels, 

and Roberson (2012) also pointed out that one would not expect airlines to immediately 

change their behavior in response to the OSA. The second phase was more focused on the 

environment, agreeing on a close collaboration on environmental matters. The goal was to 

reduce the cost of climate change for consumers and measures in the aviation industry. Both 

U.S. and EU also committed to have close cooperation with each other in terms of “green” 

technologies, air traffic management innovation, fuels and to address the climate change 

impact of international air services (European Commission, 2010). The second phase also 

focused on increasing the transparency of the cooperation between the competition 

authorities concerning transatlantic airline alliances. It created a link between the first phase 

of the agreement by creating additional opportunities of both sides of the market by 

deepening the cooperation on issues that were of common interest in the industry. (European 

Commission, 2010)  
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5 Data 
 

 Data collection 

This thesis uses secondary data to empirically test the effect of the OSA on passenger traffic 

and the number of U.S. destinations offered. Our primary source of data is the T-100 database 

created by the U.S. Bureau of Transportation Statistics. The dataset T-100 international 

segment (all carriers) contains data on the international non-stop segment reported by both 

U.S. and foreign air carriers. The dataset provides information on airline, origin, destination, 

departures, and passengers transported when at least one point of service is in the United 

States or one of its territories. The data ranges from 1990 to 2019. However, the 2019 data 

ends in August (U.S. Bureau of Transportation Statistics, 2019). From the dataset, we have 

downloaded data on traffic levels in terms of number of passengers carried by each airline in 

the market segment and number of destinations offered from the three airports in EU 

considered, namely Charles de Gaulle (CDG) in Paris, Madrid Barajas (MAD) in Madrid, and 

Heathrow (LHR) in London. This data has been used to calculate the market share for airline 

alliances, which have used to identify the dominant alliance. This is again used to determine 

the market concentration, measured by the Herfindahl-Hirschman Index. The market share is 

calculated based on the number of passengers carried. That is, alliance i’s passenger traffic 

divided by the total passenger traffic each quarter. To distinguish between airlines of different 

alliances, in addition to non-allied and allied airlines, we used table 2 as our main tool.  

Since we want to control for the effect of the GDP level on passenger levels, we are 

additionally using data from the Federal Reserve Bank of St. Louis on the average of real 

GDP from the U.S. and the EU as a control variable, which is further explained in the 

description of data. We are not using the average real GDP of the specific country on each 

route and the U.S. as a control variable. The reason for this is that we instead use the average 

real GDP of EU and U.S. since we want to capture Brueckner’s network structure model. 

That is, it is possible to travel from another place in EU e.g. ARN (Arlanda, Stochholm) to 

CDG and then JFK in the U.S. with an allied partner. Then, not only France’s GDP will 

explain the demand, but also Sweden’s GDP.  

According to the Federal Reserve bank of St. Louis, real GDP for the EU is retrieved from 

Eurostat, where GDP is at market prices in millions of 2010 euros, seasonally adjusted. They 

set GDP equal to the sum of gross value added by all resident producers in the economy plus 
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any product taxes and minus any subsidies not included in the value of the products (Eurostat, 

2020). 

 Description of data 

From the data retrieved from the T-100 database, we present the development of passenger 

traffic, the number of U.S. destinations offered, market share of the dominant airline 

alliances, market concentration, and the real GDP on our three route segments considered. 

Seasonal fluctuations in the offer and demand of air transport is a natural and frequent 

phenomenon, as it is affected by higher demand by tourists in the third quarter during the 

summer months. The demand for tourist destinations makes the demand for the other quarters 

relative smaller. We therefore witness a fluctuation in passenger traffic on the route segments 

we consider, which can describe the trend less obvious and making the pattern of an upward 

trend less visible. Seasonality is a form of non-stationarity which can lead to spurious 

correlations if the variables are correlated due to the seasonal fluctuations and not necessarily 

a causal relationship (Brooks, 2014, p. 694). In our thesis, we deal with the challenges of 

seasonality through the vector error correction model (VECM) since the VECM uses first 

differenced variables. As seen in Appendix A, the first-differenced variables appear to be 

stationary. This is supported by the Augmented-Dickey Fuller test for the first-differenced 

variables in table 7.2, 8.2, and 9.2.  

5.2.1 Charles de Gaulle – John F. Kennedy International Airport 

This route segment is a very busy transatlantic route with a high volume of passenger traffic 

along with a high level of market share of the dominant airline alliance. 
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5.2.1.1 Passenger Growth – CDG - JFK  

 

Figure 3.1: Passenger growth CDG – JFK, quarterly 

Figure 3.1 shows graphically that it is an increasing trend in the number of passengers. That 

is, the number of passengers travelling from Charles de Gaulle to John F. Kennedy Airport 

has been increasing since the year 2000. The red, dotted vertical line indicates the signing of 

the OSA. It does not appear to have affected the number of passengers. The graph does not 

indicate that the incumbent airlines changed their behavior in terms of quantity in the 

anticipation of the OSA entering into force. The solid red line indicates the OSA entering into 

force and will in the empirical analysis be referred to as implementation of the agreement. 

The OSA does not appear to have had an immediate impact of passenger traffic when it was 

first signed. However, after the second phase was agreed in the second quarter of 2010, 

indicated by the black, dotted line, it appears to be an increasing trend in passenger traffic. 

5.2.1.2 Dominant Alliance Share – CDG - JFK 

As previous research has pointed at concerns towards alliances reducing the procompetitive 

effects of the OSA and that it may affect the output. Thus, we want to investigate the 

development of airline alliances on the route segment and see whether it has changed after 

the implementation of the OSA. The following graph illustrates the development of the 

market share of the dominant alliance SkyTeam on this route segment, since the alliance was 

created in June 2000.   
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Figure 3.2: Market share of the dominant alliance CDG – JFK, quarterly 

From figure 3.2, we observe that the market share of SkyTeam increased quite rapidly in the 

first two years after the alliance was established in 2000. Their market share leveled off 

around 2003. The signing of the OSA in 2007 does not appear to have had an impact on the 

alliance market share in anticipation of the agreement entering into force. That is, SkyTeam 

did not increase their market share to further deter entry. SkyTeam’s market share has 

decreased since the OSA entered into force inn 2008. However, we see that the change has 

been only minor. Despite that the non-allied carrier XL Airways entered the market in 2009, 

SkyTeam appeared to maintain their market share level on the route segment. In 2016, the 

LCC Norwegian Air Shuttle also entered the market. This event appears to have had a 

negative impact on SkyTeam’s market share. In 2018, they carried more passengers on the 

route than Air France’s alliance partner Delta. All in all, however, the changes appear to be 

only minor and SkyTeam have been able to continue to have a high market share on this 

route segment. With XL Airways ceasing operations in 2019, they are likely to strengthen 

their strong position.  

5.2.1.3 Herfindahl-Hirschman Index – CDG - JFK 

One would expect that the formation of the SkyTeam alliance and the establishment of the 

OSA to have an impact on the market concentration. As mentioned in the theory section, a 
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common measure for market concentration is the Herfindahl-Hirschman Index (HHI). The 

following graph shows the development in market concentration since 1998.  

 

Figure 3.3: Herfindahl-Hirschman Index CDG – JFK, quarterly 

Figure 3.3 shows that it appears to be an upward trend in market concentration after the 

SkyTeam alliance was created. Furthermore, the OSA does not appear to have an immediate 

effect on the market concentration, measured by the HHI. In fact, the HHI continues to 

increase after the OSA enters into force, and phase 2 is signed. From around 2011 however, 

the market concentration is decreasing. This late reaction may be due to a significant decrease 

in passenger traffic on this route by alliance partner Delta during the global financial crisis. It 

also took some time before XL Airways’ passenger traffic became relatively large. Thus, 

during the financial crisis, the vast majority of passengers on this route were carried by either 

Air France or American Airlines. This will give a high market concentration. After the 

financial crisis, the passenger numbers of XL Airways and Delta started to increase again, 

giving lower market concentration. Thus, the peak in market concentration during the 

financial crisis appears to be explained by Delta’s very limited operation in this period.  

5.2.1.4 Number of destinations – CDG 

To detect the presence of increased competition after the OSA, it can be helpful to look at the 

number of destinations offered from the airports considered to the transatlantic market.  
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Figure 3.4: Number of destinations, CDG, quarterly 

As we can observe, the number of U.S. destinations offered from CDG has to some extent 

fluctuated. However, the pattern is not constant so seasonality does not seem to be any issue 

because the fluctuations are not by the same quarterly intervals. We observe that the number 

of U.S. destinations increases drastically after the signing and implementation of, before it 

stabilizes itself after the second phase of OSA. This is a crude way to analyze the impact of 

the OSA, and it will be more thoroughly examined in the empirical analysis. However, it is a 

good way to get an overview of the data and its development. 

5.2.2 Madrid Barajas International Airport – John F. Kennedy International Airport 

Madrid Barajas international airport is the main international airport serving Madrid in Spain. 

It is dominated mainly by the airline alliance Oneworld but has in recent time been 

introduced to more airlines, causing market concentration to decrease which we will describe 

even further in figure 4.3.  



29 
 

5.2.2.1 Passenger Growth – MAD-JFK 

 

Figure 4.1: Passenger growth MAD – JFK, quarterly 

This figure shows that it appears to be an overall positive trend in number of passengers as in 

the previous route analyzed. That is, the number of passengers between Madrid Barajas 

international airport and John F. Kennedy has been increasing overall from the year 1998. 

However, as it is seen from the figure, there was a stagnation in total passengers in the years 

between 1999-2002 before the growth began again. An explanation of this fascinating result 

may be the attacks of 9/11 in 2001, shocking the airline market and leading to a decrease in 

transatlantic air traffic measured by number of passengers. The signing of OSA does not 

appear to have had any immediate effect on passenger growth. The implementation of the 

OSA indicates, however, that passenger traffic increased compared to previous years, here 

described as active. This trend appears to strengthen in phase 2. Furthermore, although the 

growth in passenger traffic looks to be more significant than the route segment CDG-JFK, it 

must be noted that the value from the y-axis is quite different on the two similar graphs. As it 

can be seen, first graph for CDG-JFK ranges from 5000-25000, while for MAD-JFK it ranges 

from 0-15000. This might be misleading by first sight.  
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5.2.2.2 Dominant Alliance Share – MAD-JFK 

 

Figure 4.2: Market share of dominant alliance MAD – JFK, quarterly 

Figure 4.2 describes the changes of the market share for Oneworld as the dominant alliance 

on this route segment. We can see that the dominant market share grew a lot after 2000. This 

appears to be a result of American Airlines acquiring the non-allied carrier Trans World 

Airlines (TWA) in 2001. Before this year they operated as competitors, making the dominant 

market share much lower than after the acquiring. After implementation of the OSA we can 

see that the market share decreases quite a lot before increasing again after phase 2. 

Immediately, one would believe that this was caused by the OSA. However, the increase 

appears from the introduction of an additional Oneworld member, American Airlines, 

carrying almost as many passengers as Delta, which is part of SkyTeam. This introduction 

increased the market share for Oneworld. Furthermore, in 2018 we can see from the figure 

that the dominant market share appears to decrease. The explanation for this may come from 

more passenger traveled for Air Europa, which is part of SkyTeam, but also for the 

introduction of the LCC, Norwegian Air Shuttle in the third quarter of 2018.  

5.2.2.3 Herfindahl-Hirschman Index – MAD-JFK 

One would expect that the formation of Oneworld and the deregulation of the OSA to 

influence the market concentration at this route segment. As described previously, this is 
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measured through the Herfindahl Hirschman Index (HHI) and can be interpreted in figure 4.3 

below. 

 

Figure 4.3: Herfindahl-Hirschman Index MAD – JFK, quarterly 

After the creation of Oneworld the market concentration appears to have an upward trend 

until the implementation of the OSA. From this point the market concentration decreases 

quite a lot before it stabilizes itself from 2011 until beginning of 2018. The OSA appears to 

have a significant effect on market concentration which is an interesting result. As it is seen 

from figure 4.2, the dominant alliance market share decreased a lot in the years after the 

implementation of OSA until 2011 before it stabilized. The same can be seen in this figure 

where market concentration stabilizes itself to a quite low level of under 4000, while it had 

levels of approximately 6000 before the implementation of the OSA. It appears that the 

reason for this is that the route segment went from having only two airline carriers in the 

market, to introducing Air Europa and American Airlines splitting the passengers into four 

different airline carriers, hence, the market concentration decreased. Passengers had now the 

possibility to choose from different airline carriers, which could also be an effect on growth 

in passenger traffic. 
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5.2.2.4 Number of destinations – MAD 

We also explain the developments of number of destinations offered from MAD to the U.S. 

in figure 4.4 below. 

 

Figure 4.4: Number of destinations, MAD, quarterly 

It is obvious that number of destinations offered have increased after both the signing, 

implementation, and the second phase of the OSA. This visual assessment strongly suggests 

that the OSA has had an impact on the number of destinations, by that, also competition on 

this specific airport. If this result is based solely on the OSA or if it is only a contribution to 

the increase in destinations, will be interesting to further analyze empirically.  

 

5.2.3 London Heathrow – Boston Logan International Airport 

London Heathrow Airport is one of the world’s busiest airports measured by international 

passenger traffic and the busiest in Europe in 2018 according to Statista (Statista, 2020). 

British Airways and American Airlines are the main alliances serving this route. British 

Airways has its main hub in Heathrow while American Airlines operates with its hub in 

Boston, hence, we have an interhub route segment.  
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5.2.3.1 Passenger Growth – LHR-BOS 

 

Figure 5.1: Passenger growth LHR – BOS, quarterly 

From figure 5.1 we observe a lot of seasonal fluctuations of passenger travelling in this route 

segment. By an overall view of the graph, we can see that neither the signing, 

implementation, nor the second phase of the OSA appear to have had an immediate effect on 

the number of passengers carried. Passenger traffic does not seem to increase but looks to be 

stationary along the timespan. As Heathrow is such a large airport, it has operational 

constraints, environmental capacity and economic capacity that needs to be taken care of in 

order to increase growth of passengers travelled. There are also other competing airports in 

London, such as Gatwick, Stansted, London City, Luton and Southend which can lead to 

constraints in terms of passenger growth. The environmental constraints at Heathrow are 

related to noise and land use, which affect runway capacity by restricting the use of runways 

to achieve maximal operational capacity. All these constraints makes it hard for Heathrow to 

increase passenger growth, compared to the two other route segments considered (Janic, 

2004, pp. 7-8). As this route is an interhub market, British Airlines and American Airlines 

dominate the market. However, Virgin Atlantic and Delta Airlines do also operate in this 

route segment along with United Airlines. These airlines carried the majority of passengers in 

our timespan.  
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5.2.3.2 Dominant Alliance Share – LHR-BOS 

 

Figure 5.2: Market share of dominant alliance LHR – BOS, quarterly 

The dominant alliance on the route LHR-BOS is Oneworld. Furthermore, we have Star 

Alliance with United Airlines, SkyTeam with Delta and non-allied airlines with Virgin 

Atlantic being the biggest non-allied carrier on this specific route. From figure 5.2 we 

observe that the route segment is clearly dominated by Oneworld in 2000, but in 2002 we 

have a low point of approximately 0,59 or 59% market share to Oneworld. By observing the 

data, the reason for this appears to be the introduction of Virgin Atlantic. From the figure, we 

observe that the introduction of the OSA and the implementation of the OSA does not seem 

to have any significant effect on the dominant market share of Oneworld. However, after the 

second phase of the OSA we can see a strong reduction on the graph. This may be a 

coincidence, or that the second phase have a stronger effect than the first phase. Again, it may 

also be a late response due to the financial crisis. 
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5.2.3.3 Herfindahl-Hirschman Index – LHR-BOS 

 

Figure 5.3: Herfindahl – Hirschman Index LHR-BOS, quarterly 

Figure 5.3 shows that the HHI decreases dramatically from 1998 to 2002 before increasing 

again when the OSA is signed and the first phase becomes active. By observing this graph, it 

appears that the signing and implementation of the first phase does not influence the HHI. 

However, after the initiation of the second phase in 2010, the index increases drastically. This 

can be explained by fewer airlines flying on this route segment. From the data it can be 

observed that British Airlines increased significantly in passengers traveled, while American 

Airlines stopped flying from Heathrow to Boston, leading to a great increase in the HHI in 

figure 5.3. That is, the market becomes more concentrated with British airways as the most 

leading airline. This fluctuations in data induces that effects on HHI may have little to do 

directly with the OSA. 
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5.2.3.4 Number of destinations – LHR 

 

Figure 5.4: Number of destinations, LHR, quarterly 

From this figure we observe a structural break in the number of destinations offered from the 

LHR airport. Number of destinations has very clearly increased after the implementation of 

the OSA. This is an interesting result, as it describes evidence of increased routes from LHR 

in the transatlantic market. This can again introduce more competition in the transatlantic 

airline industry, making more carriers able to fly transatlantic with fewer restrictions. This 

will further be analyzed so that we can determine if this increase is in fact due to the OSA. 

 Real GDP development 

The real GDP variable used in this thesis is an average between the real GDP of the U.S. and 

the EU (28 countries). By doing this, we get to include both sides of the market, as the 

majority of the passengers in this market are likely to be of American or European origin. 

The GDP data for both the U.S. and EU was gathered from the database of the federal reserve 

bank of St.Louis. Since European real GDP was reported in euros it had to be converted into 

dollars. The data was in chained 2010 euros. To convert it into dollar amounts, we therefore 

used the 2010 rate of purchasing power parity (PPP). The PPP is taken from the database of 

OECD. According to them, PPPs are rates of currency conversion that try to equalize the 

purchasing power of different currencies. It does so by eliminating the differences in price 

levels between the countries (OECD Data, 2020).  
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Figure 6: Average real GDP between the U.S. and EU in billion U.S. Dollars. 

From Figure 6, we observe that the average real GDP has been increasing. The exception is 

the period between 2008 and 2009, which was the period of the global financial crisis. We 

see that the financial crisis happened around the same time as the OSA entered into force. As 

mentioned, a late response to the OSA in terms of passenger traffic or U.S. destinations 

offered may be explained by the decrease in the real GDP. After the crisis, the real GDP was 

increasing again, and appears to be increasing at a steady rate around the time of the signing 

of the second phase of the OSA. Besides a downturn during the financial crisis, it appears to 

have been a positive trend in the real GDP for our period of research.  

 Comparison of passenger traffic, real GDP, and destinations 

It is first and foremost important to detect if there has been any change in passenger traffic 

and destinations pre and post the OSA. This is the same approach that is used by Morandi et 

al. (2014). As described in the previous graphs of passenger growth of our three segments, we 

can see that passenger growth appears to be present, however, they are quite different in 

volumes. To get a broader overview of passenger traffic, we can compare the numbers of 

passenger traffic pre and post the OSA for our three segments on average quarterly. This will 

show the differences more clearly. 
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Route segment Avg. quarterly 

passengers pre OSA 

Avg. quarterly 

passengers post OSA 

Percent change 

CDG – JFK 143 525 185 722 29,40% 

MAD – JFK 49 693 85 450 71,09% 

LHR – BOS 118 803 120 557 1,48% 

Table 4: Summary of passenger traffic pre and post OSA 

Table 4 shows the differences in average quarterly passenger traffic pre and post the OSA. 

We observe that the average number of passengers carried is larger for the period with the 

OSA for all of the segments, however, we observe that LHR-BOS have quite small increase 

compared to the other two routes. Passenger traffic has increased the most in the route 

segment CDG-JFK in numbers. However, the percentage change have been largest on MAD-

JFK. An interesting part is that LHR-BOS have such small increase. As descried briefly 

earlier, this is likely due to constraints at the Heathrow airport, but also because JFK is a 

bigger airport compared to Boston and therefore have a greater potential of growing in 

number of passengers. This is of course a crude way to analyze the impact of the OSA, but it 

demonstrates that there has been an increase in passenger traffic after the OSA for all the 

three routes, although the increase for LHR is only minor. Further empirical analysis will 

investigate whether the increase in passenger traffic can be attributed to the OSA, or if it is 

mostly due to the overall economic conditions measured by the real GDP. 

This can be compared with average real GDP pre OSA and post OSA for the three route 

segments. This is to compare the percentage change of passengers to the change in real GDP 

and number of destinations offered. As previously described, we use the same average real 

GDP for all our route segments. 

Time period Average real GPD growth 

Pre OSA 1,09% 

Post OSA 0,72% 

Table 5: Average GDP pre and post OSA 

As we mentioned earlier, the late response of higher traffic levels may be due to the financial 

crisis and the reduced growth of real GDP. From this table we see that the average real GDP 

growth has in fact been reduced. Comparing this GDP growth to growth of passengers in 

table 4 above and number of destinations offered in table 6 below, we observe that average 
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real GDP growth are reduced post OSA. This is the opposite of passenger growth and 

destinations, where we observe an increase in the same period. 

Route segment Avg. quarterly U.S. 

destinations pre 

OSA 

Avg. quarterly U.S. 

destinations post 

OSA 

Percent change 

CDG 25 29 16% 

MAD 10 16 60% 

LHR 20 31 55% 

Table 6: Summary of destinations offered pre and post OSA 

In table 6 above, we observe that number of U.S. destinations have increased in all airports 

considered. By percentage change, we can see that MAD have increased the most, as it did in 

the growth of passengers. Furthermore, by only looking at the increase in number of U.S. 

destinations, we see that LHR have increased by 9 more destinations compared to 6 more for 

MAD. However, the percentage change is not that significant because of a higher base in the 

pre period of OSA. Although we saw that number of passengers from LHR did not increase 

by the same level as the other routes on the route to BOS, we observe, on the contrary, that 

number of destinations have increased the most from this airport. Following figure 5.4, the 

reason for this increase appears to be explained by the OSA and its effect of more 

competition in the market, leading to increased number of U.S. destinations offered. 
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6 Methodology  
As described in the previous chapter, we use secondary data retrieved from the U.S. Bureau 

of Transportation Statistics. This is raw data that we retrieve directly from the source and, so 

it needs to be coded specifically for our research in order to answer our research question. 

Furthermore, it is important that we define the right scale type for our data analysis. Since we 

are going to do an empirical analysis based on time series with traffic numbers, market share 

values from alliances and number of destinations, we would classify it as ratio scale4 

(Sekaran & Bougie, 2016, p. 279).  

To best describe the effects of the OSA, the choice of the appropriate statistical model for our 

empirical analysis is important. According to Sekaran & Bougie (2016), this largely depends 

on the number of independent and dependent variables that we are examining and the scale of 

our variables. Furthermore, since we are examining multiple variable relationships, we use a 

multivariate statistical technique in our statistical model to capture any effect on passenger 

traffic and destinations offered (Sekaran & Bougie, 2016, p. 302). Since we are going to 

analyze effects over time, we would classify our data in a time series before we analyze it. As 

introduced in the data collection section, the T-100 database is a very common resource in 

analyzing effects of passenger traffic levels and number of destinations, which is the strategic 

variables that we are investigating.  

 Unit of analysis 

The unit of analysis refers to the level of aggregation of the data that we have retrieved 

during our data analysis. In our case this is the procompetitive effects which is measured by 

the traffic level and the number of destinations offered. These are again measured by 

individuals travelling transatlantic in our segments and number of destinations offered from 

the three EU airports to the U.S. It is important that we state our unit of analysis because the 

data collection methods, sample size and even the variables included in the framework may 

be determined by the individual analysis level (Sekaran & Bougie, 2016, pp. 102-103). In our 

case it is best to use a time series approach study, because we will analyze data by measuring 

the OSA through time by a dummy variable and other control variables. We use a 

multivariate time series approach since we consider models for the stochastic process of 

several series simultaneously to improve our forecasts (Verbeek, 2004, p. 309). This dummy 

variable considers the implementation of the OSA, also referred to as the first phase in the 

 
4 Ratio scale is a measurement scale that has an absolute zero origin, and hence indicates not only the 

magnitude, but also the proportion, of the differences (Sekaran & Bougie, 2016, p. 395).  
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description of data. This is to see if the agreement had any significant impact on the traffic 

levels and destinations offered at our timespan. Another way to do this would be to simply 

focus on two time periods before and after the agreement to look at the effect, however, time 

series regression depicts the development better by including the implementation of the OSA 

as a dummy variable. 

 Variables 

The dependent variable is the variable we want to examine. We want to examine the variation 

in the dependent variable given a change in the independent variables (Sekaran & Bougie, 

2016, p. 73). The two dependent variables are the number of passengers carried in each of the 

EU – U.S. non-stop route segments considered, and the number of U.S. destinations offered 

from the three airports considered in the EU. From the theory section above, we know that 

the output, which in this case is the available seats for passengers and number of U.S. 

destinations, is expected to increase as the market becomes more competitive. Thus, if 

competition increases in the transatlantic market due to the deregulation of the OSA, one 

would expect the passenger traffic and U.S. destinations to increase. These variables are then 

considered to capture two procompetitive effects from the OSA. 

Independent variables are the variables that are expected to influence the dependent variables 

in either a positive or a negative way (Sekaran & Bougie, 2016, p. 74). Our first independent 

variable is the market share of the dominant alliance in each route segment. The dominant 

alliance is here defined as the alliance with the highest market share out of the three major 

global alliances mentioned earlier. This is included to capture the effect of airline alliances on 

expected passenger traffic and the number of U.S. destinations offered. Based on Brueckner’s 

(2001) findings, we expect the market share of the dominant alliance to influence both 

passenger traffic and U.S. destinations.  Typically, the dominant alliance is the alliance of the 

two airlines serving the interhub market. For instance, on the CDG – JFK route segment Air 

France and Delta are the largest carriers in terms of passengers. They both belong to the 

SkyTeam alliance and the segment is an interhub because Delta use JFK as their main 

transatlantic hub, while CDG serves as Air France’s main hub. Air France – KLM and Delta 

also enjoy antitrust immunity (United States Department of Transportation, 2019). Based on 

the theory section above, collusion between firms to give them market power may have a 

negative effect on competition. Higher market power increases their ability to restrict output 

and charge higher prices. Thus, one would expect that alliances with a high market share 

would have a negative impact on passenger traffic and the number of U.S. of destinations. 
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Furthermore, as we will analyze the effect on both passenger traffic and number of 

destinations offered, the market share of the dominant alliance will be different for the two 

dependent variables. When analyzing the number of destinations offered, the first 

independent variable will be the market share of the dominant alliance from one of the 

airports considered to the U.S, e.g. CDG – U.S. For all airports considered, the alliance which 

is dominant for passenger traffic will still be the same dominant alliance when considering 

number of destinations.  

To capture the effect of the OSA on passenger traffic and destinations offered, we have 

included a dummy variable in our analysis. Dummy variables are binary variables often 

included to see the effects of an event on the dependent variable (Wooldridge, 2013, p. 359). 

The event we want to capture is the OSA. Previously, we identified three stages of the OSA. 

However, as we noted in section 4.2, there was little evidence of any reaction from the 

incumbent airlines shortly after the signing of the OSA in 2007. We are able to see some 

changes from the OSA becoming active in 2008, which became clearer from 201 0, as the 

second phase was agreed. Thus, to capture the effect of the OSA on passenger traffic and the 

number of destinations, we use a dummy variable that takes the value 0 from 1998 to the 

OSA entering into force in 2008, and 1 from it entering into force to the end of our sample 

period. That way, we capture the portion of our sample period where the OSA is active and 

are able to see if there are any significant differences in traffic levels and destinations with 

one dummy variable. One may also consider using two dummies to capture the effect of each 

stage of the OSA. However, if we do this, we encounter problems with collinearity. To avoid 

collinearity issues, we use only one dummy variable to capture the effect of the OSA.  

As Pitfield pointed out in his paper, fluctuations in traffic may have more to do with the so-

called “ceteris paribus” effects, which is that there are many other influences on traffic 

volumes besides alliances (Pitfield, 2007,  p. 201). Because of his remarks, we have included 

the real GDP as an additional independent variable. This additional variable is included to 

capture the effect of the underlying economic conditions on passenger traffic and the number 

of destinations offered in the transatlantic airline market. The reason is that one would expect 

the demand for passenger traffic to correlate with the real GDP. The reasoning is simple. 

When GDP is high, people will have more disposable income and are more willing to travel. 

By the same principle, when GDP is low, consumers have less disposable income causing 

less demand for air travel. The same goes for number of destinations offered in the market. 

When GDP is high/low, it will affect the carriers to fly to more/fewer destinations. We are 
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interested in seeing whether the OSA and the alliance market share will have a significant 

effect on the expected passenger traffic and destinations offered even with the real GDP in 

the model. Real GDP is also an important variable in this research of the OSA because the 

agreement entered into force at the same time as the global financial crisis was harming both 

the U.S. and the European economy. Thus, a late change in the passenger traffic on 

transatlantic route may be explained by the then ongoing financial crisis.    

 Time series  

Since we are studying multiple route segments and are looking at how passenger numbers are 

affected by the variables introduced earlier over time, we are clearly facing time series data. 

Before going into the analysis, it is important to know exactly what time series data is and 

what we need to consider before analyzing the time series regression. 

Time series data is data that has temporal ordering. A sequence of random variables indexed 

by time is called a stochastic process or time series process. When we collect the time series 

dataset on air traffic, we obtain one possible outcome of the stochastic process. Furthermore, 

we can only use one regression because we cannot go back in time and start the process 

again. If we did, we would generally obtain a different realization for the stochastic process. 

Thus, we think of time series data as the outcome of random variables. The sample size for a 

time series is set to the number of time periods over which we observe the variables of 

interest (Wooldridge, 2013, pp. 345, 346). In our case, the sample size is 84 quarters in the 

period from 1998-2018.  

 Stationarity 

When predicting and analyzing the effect of the OSA in the time series, there are several 

complex points that need to be considered before we can run the regression directly. Multiple 

facets can be at play simultaneously. One of the main features that needs to be considered to 

predict the model using time series data is stationarity. In order to state anything about the 

effect or result of the regression, it is critical that the forecasting model works well. Most of 

the data collected in research tends to follow a trend. This means that the data follows a non-

stationary trend. If this applies, the data needs to be transformed into stationary data, which 

will be further discussed. Analyzing non-stationary time series will lead to results that is not 

applicable and will represent the data poorly (Manuca & Savit, 1996, p. 134). Assessing the 

stationarity is the starting point of a time series analysis. Based on the results from the 

stationarity testing, we select the model and method that should be used for the specific time 

series (Shrestha & Bhatta, 2018, p. 88).  
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A stationary time series means that the statistical properties such as the mean, variance and 

covariance do not change over time. When these hold, predictions in the analysis can be done 

and the results will represent the data better (Wooldridge, 2013, pp. 381-382). Generally 

speaking, we can separate between three types of stationarity: strict stationarity, trend 

stationarity, and difference stationarity. Strict stationarity is typically what one refers to as 

stationarity. It is when the time series has a mean, variance and covariance that are not a 

function of time.  Trend stationarity is when the mean trend is deterministic. We can estimate 

this trend and remove it from the data. The result is a residual series that is a stationary 

stochastic process (Wooldridge, 2013, p. 396). Difference stationarity is when the mean trend 

is stochastic. If  a series is difference stationary, we can difference the series 𝑑 times, and get 

a stationary stochastic process (Verbeek, 2004, p. 270).  

Making the variables stationary is crucial when we are estimating or testing. When variables 

are non-stationary and not fluctuating around a constant mean, they may cause an arbitrary 

high R-squared, highly autocorrelated errors, and falsely significant regressors. This occurs 

because the two series are spuriously related due to the fact that they are both trended, and 

not necessarily because there exists a causal relationship between them. Such regressions are 

referred to as spurious regressions (Verbeek, 2004, p. 313).  

6.4.1 Unit Root 

Consider the simple one-lagged autoregressive (AR(1)) model: 𝑦𝑡 = 𝜌𝑦𝑡−1 + 𝑒𝑡. Many 

economic time series are characterized with 𝜌 = 1. Then the model can be written as 𝑦𝑡 =

𝑦𝑡−1 + 𝑒𝑡 . The process described by this equation is called a random walk. This is a process 

where 𝑦 at time 𝑡 is found by starting at the previous value, 𝑦𝑡−1, and adding a zero mean 

random variable that is independent of 𝑦𝑡−1. A random walk is a special case of a unit root 

process. It is called a unit root from the fact that 𝜌 = 1 in the AR(1) model. The key feature 

of a unit root process is that the 𝑦 of today is highly correlated with 𝑦 in the future and past 𝑦. 

Such models are called persistent. One important aspect of persistence is autocovariances. 

Autocovariances are the covariances between 𝑦𝑡  and its previous values 𝑦𝑡−𝑘. In general, the 

joint distribution of all values of 𝑦𝑡  is characterized by these autocovariance (Verbeek, 2004, 

p. 257). Another aspect is autocorrelations. Autocorrelations are correlations between  𝑦𝑡  and 

its previous values 𝑦𝑡−𝑘. The autocorrelations considered as a function of k is referred to as 

the autocorrelation function (ACF). This plays a major role in modelling dependencies 

among observations, as it characterizes the process describing the evolution of covariances 

between 𝑦𝑡  and its previous values 𝑦𝑡  over time. The ACF can help determining the extent to 
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which on value is correlated to a previous value, and thus the length and strength of the 

memory of the process (Verbeek, 2004, p. 259). One thing to note is that a series can be 

persistent and not trending, but often a persistent series contains a trend. One such model is a 

random walk with a drift:  𝑦𝑡 = 𝛼 + 𝜌𝑦𝑡−1 + 𝑒𝑡. This model is very similar to the above 

model, but we include the parameter 𝛼. This is included to represent the drift term. According 

to this type of series, the value of 𝑦 at time t is found from adding a constant(𝛼) and a random 

noise (𝑒𝑡) to the previous value (𝑦𝑡−1). A random walk with a drift is an example of a unit 

root because it is an AR(1) process with 𝜌 = 1. The difference is that is has an intercept. If a 

time series has a unit root, it shows a systematic pattern, which can cause problems when 

making predictions (Wooldridge, 2013, pp. 393-395). We use the concept of unit roots when 

we are assessing the stationarity of the variables. As described in 5.4.3 and 5.4.4, we can use 

statistical tests to detect the presence of a unit root.  

6.4.2 Differencing and integration order 

A common method to transform non-stationary variables into stationary variables is the 

method of differencing. This is a method to remove the temporal dependence of the time 

series. Differencing can help to stabilize the mean of a time series and eliminate the trend and 

seasonality. To put it simply, differencing is performed by subtracting the previous 

observation of the variable from the current observation. Mathematically, the process can be 

described in the following way: 

∆𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1  

The number of times a variable needs to be differenced in order to become stationary, 

determines the variable’s order of integration (Wooldridge, 2013, p. 396). As mentioned, a 

series of differences (d) can transform the non-stationary time series into a stationary one. If 

non-stationary time series becomes stationary by taking the first difference, it is said to be of 

integration order 1. More generally, if the non-stationary time series becomes stationary after 

differencing it 𝑑 times, it is said to be of integration order 𝑑. This process is denoted I(d), 

where 𝑑 is the order of integration (Baffes, 1997, p. 69). Knowing the order of integration is 

critical when we are selecting our statistical test. As we will describe in more detail in 5.5, the 

variables may be cointegrated if they are I(1). Thus, if we have that the variables are I(1), we 

might have a long-term relationship between the variables.  
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6.4.3 Dickey Fuller and Augmented Dickey-Fuller test 

The Dickey-Fuller test is a statistical method to test for the presence of a unit root in a time 

series (Dickey & Fuller, 1979). Consider the following autoregressive model: 

𝑦𝑡 = 𝛼 + 𝜌𝑦𝑡−1 + 𝑒𝑡 ,  𝑡 = 1,2, …, 

If 𝑦𝑡  follows the above model, it is said to have a unit root if 𝜌 = 1. From this, we get the 

following null hypothesis: 

𝐻0: 𝜌 = 1 

That is, the null hypothesis is that 𝑦𝑡  has a unit root. A convenient way to carry out the test of 

a unit root is to subtract 𝑦𝑡−1 on both sides of the equation above and define 𝜃 = 𝜌 − 1. We 

then get: 

 ∆𝑦𝑡 = 𝛼 + 𝜃𝑦𝑡−1 + 𝑒𝑡 

The null hypothesis is then 𝐻0: 𝜃 = 0. The issue with this is that under the null, the time 

series is of order I(1). Dickey and Fuller showed that the t-statistic for the null hypothesis 

does not have a t-distribution. Although we cannot use the usual critical value, we can use the 

t-statistic for 𝜃 in the above equation5. The reason is that appropriate asymptotic critical 

values have been tabulated over time, from Dickey and Fuller’s original work in 1979. This 

test is what is referred to as the Dickey-Fuller (DF) test for a unit root. The critical values 

tabulated by Dickey and Fuller are used in the way that we reject the null hypothesis 𝐻0: 𝜃 =

0 when 𝑡�̂� < 𝑐, where c is a negative value from the tabulated critical values (Wooldridge, 

2013, pp. 639-641). The Dickey-Fuller test generally takes three forms: 

1) ∆𝑦𝑡 = 𝜃𝑦𝑡−1 + 𝑒𝑡 

2) ∆𝑦𝑡 = 𝛼 + 𝜃𝑦𝑡−1 + 𝑒𝑡 

3) ∆𝑦𝑡 = 𝛼 + 𝛽𝑡 + 𝜃𝑦𝑡−1 + 𝑒𝑡 

The first version is a “simple” test for a unit root in the sense that it does not include a time 

trend or a constant. This version may be unrealistic for economic data. The second version 

includes a constant (𝛼) and is used for series with a drift, while the third version includes a 

time trend (𝛽𝑡) (Baltagi, 2011, p. 380).  

 
5 �̂� is the estimate of 𝜃. 
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The Dickey-Fuller test has been extended to be able to test for unit root in more complex 

models. This extended version is referred to as the augmented Dickey Fuller (ADF) test. This 

is done by including an additional term in the above equation: 

∆𝑦𝑡 = 𝛼 + 𝜃𝑦𝑡−1 + ∑ 𝛾𝑖∆𝑦𝑡−1

𝜌 

𝑖=1

+ 𝑒𝑡  

Where |𝛾𝑖| > 1, which ensures that ∆𝑦𝑡  follows a stable AR(1) model under the null 

hypothesis. The augmented version allows us to add 𝜌 lags to ∆𝑦𝑡  to account for the 

dynamics in the process. Again we carry out the t-test on 𝜃,  and the same decision criteria is 

used (Wooldridge, 2013, pp. 641-642). The test can be used to determine how many times the 

variable needs to be differenced to become stationary. If we cannot reject the null hypothesis 

of a unit root, we can perform the same test with the first-difference of the variable. If we 

then can reject the null hypothesis, we know that the variable can be transformed to stationary 

by taking the first difference. We then typically say that the variable is non-stationary in 

levels, but stationary in differences. The variable is then of integration order of 1, or I(1). If 

we still cannot reject the null hypothesis, we repeat the process.  

6.4.4 KPSS test 

Another common unit root test is the KPSS test (Kwiatkowski, Phillips, Schmidt, & Shin, 

1992). As opposed to the ADF test, the null hypothesis is here that the series is trend 

stationary and the alternative hypothesis is non-stationarity – or better – a unit root series 

(Hadri & Rao, 2009, p. 1187). The model can be interpreted as follows, where Kwiaitkowsky 

et al (1992) assume that the series can be decomposed into the sum of a deterministic trend, a 

random walk and a stationary error:  

 𝑦𝑡 = 𝜉𝑡 + 𝑟𝑡 + 𝜖𝑡  

Here, 𝑟𝑡  is a random walk with 𝑟𝑡 = 𝑟𝑡−1 + 𝑢𝑡 where 𝑢𝑡 are independent and identically 

distributed random variables 𝑁(0, 𝜎𝑢
2). Under the null hypothesis, 𝜎𝑢

2 = 0, indicating that the 

variance is equal to 0, the initial value 𝑟0  is treated as fixed unknown and act as an intercept. 

Furthermore, the 𝜖𝑡 is assumed to be stationary, under the null hypothesis  𝑦𝑡  is trend 

stationary. If we have that 𝜉𝑡 = 0, 𝑦𝑡  will be stationary around a level (Kwiatkowski et al., 

1992, p. 162). To get a broader picture, we can categorize the hypotheses in an easier way as 

follows: 

𝐻0: The series is trend stationary 
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𝐻𝑎: The series has a unit root (series is non-stationary) 

In order to test these hypotheses, one uses the one-sided lagrange multiplier (LM) test 

statistics for the test. If the LM statistic is greater than the critical value, then the null 

hypothesis is rejected, hence, the series is non-stationary. If the LM statistic is lower, we have 

the opposite result with a stationary time series (Kwiatkowski et al., 1992, pp. 162-163). If 

we fail to reject the null hypothesis, we have evidence that the series is trend stationary. 

Recall from section 5.4 that trend stationarity is when the mean trend is deterministic, that we 

can remove this trend from the data once we have estimated it. The result is a residual series 

that is a stationary stochastic process. A disadvantage for KPSS, however, is that it has a high 

rate of type 1 errors. A way to deal with this disadvantage is to combine this KPSS test with 

an ADF test, described above. If the result from both tests suggest that the time series is 

stationary, then we have a stronger case of stationarity.  

 Cointegration  

The concept of cointegration was formally treated by Engle and Granger (1987). They 

discuss whether a meaningful regression can be performed when variables are I(1)  (Engle & 

Granger, 1987, p. 251). The general rule is that using non-stationary variables when 

estimating, will lead to spurious results. The exception to this rule is when the variables have 

the same stochastic trend in common. This means that if the variables are integrated of order 

I(1) and share the same stochastic trend, there exists a linear relationship between them that is 

integrated of order I(0). When that is the case, the variables are said to be cointegrated 

(Verbeek, 2004, pp. 314-315). Thus, if we find our variables to be non-stationary, we need to 

make sure that they are integrated of order I(1) and test whether they are cointegrated so that 

we can determine if there exists a relationship between them.  

6.5.1 Engle & Granger 2-step approach 

Engle and Granger proposed a two-step approach to modelling non-stationary and 

cointegrated variables. The first step is to make sure all variables are I(1) and cointegrated. 

To test whether the variables are cointegrated, we can use the Engle-Granger test. The null 

hypothesis of this test is that there is no cointegration. If the null hypothesis is true, we are 

running a spurious regression. The test compares the t-statistic with an asymptotic critical 

value. If the t-statistic is below the critical value, we reject the null hypothesis. When this is 

the case, we say that we have evidence that the variables are cointegrated (Wooldridge, 2013, 

pp. 646-648). When this is done, we can use OLS to estimate the cointegrating regression. 
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From this regression, we store the residuals, and test if they are I(0), by performing an ADF 

test as described above. If the residuals are indeed I(0), we proceed to the second step. 

In the second step, we use the stationary residuals we obtained from the first step in the error 

correction model (ECM). The intuition behind this model is that variables of integration order 

I(1) have a long-run relationship, and that there is some force that is pulling the equilibrium 

error towards zero. The ECM describes how the variables behave in the short-run consistent 

with a long-run cointegrating relationship (Verbeek, 2004, p. 318).  

∆𝑦𝑡 = 𝛽0 + 𝛽1∆𝑥𝑡 + 𝛽2(�̂�𝑡−1) + 𝑣𝑡 

Where �̂�𝑡−1 = 𝑦𝑡−1 − 𝛽0−𝛽1𝑥𝑡−1 = 𝑦𝑡−1 − �̂�𝑡−1 

The stationary linear combination of non-stationary variables is referred to as the 

cointegrating vector. Any linear transformation of the cointegrating vector will also be a 

cointegrating vector. Since all variables in this model are stationary, it is now valid to 

interpret the parameters (Brooks, 2014, p. 378).  

One of the weaknesses of Engle & Granger’s 2-step approach is that it can at most find one 

cointegrating relationship, even though there might be multiple cointegrating relationship. 

Because we have multiple variables, we may also have multiple cointegrating relationship 

(Brooks, 2014, p. 379). A method that is able to find more than one cointegrating 

relationships is the Johansen 3-step approach. Hence, this is the model we will use in our 

analysis. 

6.5.2 Johansen’s 3-step approach 

The first step of Johansen’s approach is to estimate the vector autoregressive (VAR) model. 

The VAR model describes the evolution of multiple variables from their common history 

(Verbeek, 2004, p. 322). A VAR is a systems regression, meaning that there is more than one 

independent variable. The structure is that each variable is a linear function of past lags of 

itself and past lags of the other variables. We can write the VAR model of order 𝑝 

(VAR(𝑝))in the following way: 

𝑦𝑡 = 𝐴0 + 𝐴1𝑦𝑡−1 + 𝐴2𝑦𝑡−2 + ⋯ + 𝐴𝑝𝑦𝑡−𝑝 + 𝑢𝑡 

Where 𝑦𝑡  is a vector of variables, 𝐴𝑖  is a matrix of coefficients, and 𝑢𝑡 is a vector of random 

error terms (Lütkepohl, 2005, p. 13).  
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Once we have estimated the above VAR model with potentially non-stationary variables, the 

next step we need to perform is to test whether we have any cointegrating relationships 

between the variables. We do this by using the Johansen test for cointegration. To perform 

the test, we first need to write the above equation as a vector error correction model (VECM) 

of the form: 

∆𝑦𝑡 = Π𝑡−𝑝 + Γ1∆𝑦𝑡−1 + Γ2∆𝑦𝑡−2 + ⋯ + Γ𝑝−1∆𝑦𝑡−(𝑝−1) + 𝑢𝑡 

Where Π𝑡−𝑝 = (∑ 𝐴𝑖) − 𝐼𝑔
𝜌 
𝑖=1  and Γ𝑖 = (∑ 𝐴𝑗) − 𝐼𝑔

𝑖 
𝑗=1  

This VAR has g variables in first-difference form on the left-hand side and 𝑝 − 1 lags of the 

differences on the right-hand side. The Johansen test can be affected by the lag length 

selected for the VECM. Thus, it is important to find the optimal lag length for the analysis 

(Brooks, 2014, p. 386). This will be described in detail in section 6.5.3. The Johansen test can 

be viewed as an examination of the Π matrix. This matrix may be interpreted as a long-run 

coefficient matrix, since in equilibrium, all ∆𝑦𝑡−𝑖 will be zero. If we set the error terms to 

their expected value of zero, it will give Π𝑦𝑡−𝑝 = 0. The test for cointegration between the 

variables is done by looking at the rank of the Π matrix via its eigenvalues. The rank of the 

matrix is equal to the number of eigenvalues that are significantly different from zero. The 

eigenvalues are denoted by 𝜆𝑖  and must be less than one in absolute values. If the rank of the 

Π matrix is not significantly different from zero, the variables are not cointegrated. The 

Johansen test considers two test statistics: 

𝜆𝑡𝑟𝑎𝑐𝑒(𝑟) = −𝑇 ∑ ln (1 − �̂�𝑖

𝑔

𝑖=𝑟+1

) 

and 

𝜆𝑚𝑎𝑥(𝑟, 𝑟 + 1) = −𝑇 ln (1 − �̂�𝑟+1) 

Where r is the number of cointegrated vectors under the null hypothesis and �̂�𝑖  is the 

estimated value of the 𝑖th ordered eigenvalue of the Π matrix. An eigenvalue that is 

significantly different from zero, indicates that the cointegration vector is significant.  

𝜆𝑡𝑟𝑎𝑐𝑒  is a joint test that test the null hypothesis that the number of cointegration vectors is 

less than or equal to r, against the alternative hypothesis that there are more than r 

cointegration vectors.  
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𝜆𝑚𝑎𝑥 conducts separate tests on each eigenvalue. It tests the null hypothesis that the number 

of cointegration vectors is r against the alternative hypothesis that the number if cointegration 

vectors is r+1 (Brooks, 2014, p. 387).  

The decision rule for both test statistics is that we reject the null hypothesis if the test statistic 

is greater than the critical value found from Johansen’s table. The testing is conducted 

sequentially. This means that if we reject first the null hypothesis, that r=0, we can conclude 

that the variables are cointegrated, but we do not know how many cointegration vectors that 

exist. Thus, the process is continued until we no longer can reject the null (Brooks, 2014, p. 

388). Both test statistics have the same power of indicating if there is a cointegration 

relationship between the variables. However, the method of maximum-eigenvalue statistic, 

𝜆𝑚𝑎𝑥, is used less often than the trace statistic method because no solution to the multiple-

testing problem has yet been found (StataCorp, 2019, pp. 904-906). That is, the trace statistic 

is today judged most reliable. 

Once we have performed the Johansen test for cointegration and concluded that there exists 

one or more cointegrations between our variables, we move forwards to the third step, which 

is estimating the vector error correction model. The VECM is an extension to the VAR model 

explained above. The VECM includes first difference terms and a cointegrating variable. The 

model can be written as: 

∆𝑦𝑡 = Γ1∆𝑦𝑡−1 + Γ2∆𝑦𝑡−2 + ⋯ + Γ𝑝−1∆𝑦𝑡−(𝑝−1) + Π𝑦𝑡−1 + 𝑢𝑡 

Where Π𝑦𝑡−1 represents the error-correction component and explains the long-term 

relationship (Lütkepohl, 2005, pp. 247-248).  

6.5.3 Lag-order selection criterions 

Generally, there are two methods in selecting the lag order in VAR models. It can either be a 

sequence of likelihood ratio tests or a likelihood-based information criterion (Nielsen, 2006, 

p. 93). The information criterions are a useful instrument to determine the optimal lag order 

in different VAR models. In our case, these selection criterions will help us to determine how 

many lags we should interpret in our model in the empirical analysis. 

We will now introduce these methods, explaining the sequence of likelihood ratio and the 

four information criterions and their formulas. For the likelihood ratio test, three approaches 

are available. However, we focus on the first approach, namely the log likelihood ratio test. 
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This log likelihood (LL) for a VAR was introduced by Hamilton and can be further defined 

below (Hamilton, 1994, pp. 295-296). Here, the likelihood log (LL) can be written as: 

𝐿𝐿 = − (
𝑇

2
) {ln(|Σ̂|) + 𝐾𝑙𝑛(2𝜋) + 𝐾}, 

where T is the number of observations, K denotes number of equations, and Σ̂ is the 

maximum likelihood estimate of [utut´], where ut is a K x 1 vector of disturbances. With the 

LL, we may estimate the likelihood ratio (LR), by letting LL(j) be the value of the LL with j 

number of lags which produces the LR statistic for lag order j (Hamilton, 1994, pp. 295-296): 

𝐿𝑅(𝑗) = 2[𝐿𝐿(𝑗) − 𝐿𝐿(𝑗 − 1)] 

The four information criterions considered are the final prediction error (FPE), Akaike’s 

information criterion (AIC), Schwartz’s Bayesian information criterion (SBIC) and the 

Hannan and Quinn information criterion (HQIC). FPE is the model-order statistic that may be 

presented as (Lütkepohl, 2005, p. 147): 

𝐹𝑃𝐸 = |Σ𝑢| (
𝑇 + 𝐾𝑝+1

𝑇 − 𝐾𝑝−1
)

𝐾

 

Considering the other three information criterions, we observe similarity, but they are 

computed by including a constant term from the LL. They may be written as: 

𝐴𝐼𝐶 =  −2 (
𝐿𝐿

𝑇
) +

2𝑡𝑝

𝑇
 

𝑆𝐵𝐼𝐶 = −2 (
𝐿𝐿

𝑇
) +

ln (𝑇)

𝑇
𝑡𝑝 

𝐻𝐵𝐼𝐶 = −2 (
𝐿𝐿

𝑇
) +

2ln [ln(𝑇)]

𝑇
𝑡𝑝 

Here, p is the number of lags and 𝑡𝑝 is the total number of parameters considered in the 

model. These information criterions are computed and the lag-length that has the lowest value 

are suggested by the corresponding information criterion. The optimal lag-length are chosen 

to be the lag-length that has the highest number of suggestions. A reasonable strategy is to 

estimate a VAR model for different values of p and then select it based on Akaike or 

Schwartz information criteria described above (Verbeek, 2004, p. 324). For VECM one 

should select number of lags based on the same information criteria as for a VAR model. 

Normally SBIC is good for explanatory modelling, while Akaike should be used if the model 
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is intended for forecasting (Winker & Maringer, 2004, pp. 4-6). When selecting the lag length 

based on these information criterions, the model may suffer from autocorrelation. It is 

therefore important that we choose enough lags to get a more robust model.  
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7 Model selection 
 

 Model selection 

We are performing a multivariate statistical analysis since we are analyzing how the OSA, 

dominant alliance market share, and real GDP influence passenger traffic and the number of 

destinations offered. We can write the linear models as:  

 

Model 1:  𝑙𝑛𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠𝑡 = 𝛽0 + 𝛽1𝑙𝑛𝐴𝑙𝑙𝑖𝑎𝑛𝑐𝑒𝑅𝑜𝑢𝑡𝑒𝑡 + 𝛽2𝑂𝑆𝐴𝑡 + 𝛽3𝑙𝑛𝐺𝐷𝑃𝑡 + 𝑒𝑡  

Model 2:  𝑙𝑛𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠𝑡 = 𝛽0 + 𝛽1𝑙𝑛𝐴𝑙𝑙𝑖𝑎𝑛𝑐𝑒𝑈𝑆𝑑𝑒𝑠𝑡𝑡 + 𝛽2𝑂𝑆𝐴𝑡 + 𝛽3𝑙𝑛𝐺𝐷𝑃𝑡 + 𝑒𝑡  

 

We must use different variables for the dominant alliance market share for the two linear 

models. When we look at the passenger traffic, we observe the development at a specific 

transatlantic route. Hence, the dominant alliance market share has to be route specific as well. 

In model 2, we use the dominant alliance between a specific European airport and the U.S. as 

a whole, since we are observing the developments in the number of U.S. destinations offered. 

Also note that we use the natural logarithm of the variables. When we have the natural 

logarithm on both sides, the coefficients can be interpreted as elasticities. That way, we can 

see how a 1% change in independent variable affects the expected dependent variable.  

 VAR model 

As mentioned in 6.5.2, the first step of Johansen’s approach is to estimate the VAR(𝑝) model. 

We use the notation presented in section 6.5.2 and select the lags using the selection 

criterions presented in 6.5.3 to select the optimal lag length. The selection criterions give an 

optimal lag length of p, which varies across our two models in the three route segments. We 

develop the following models, where the model for lnPassengers is referred to as model 1, 

and the model for lnDestinations as model 2: 

 

𝑙𝑛𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠𝑡 = 𝐴0 + ∑ 𝐴𝑖

𝑝

𝑖=1

𝑙𝑛𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠𝑡−𝑖 + ∑ 𝐴𝑗

𝑝

𝑖 =𝑗

𝑙𝑛𝐴𝑙𝑙𝑖𝑎𝑛𝑐𝑒𝑅𝑜𝑢𝑡𝑒𝑡−𝑗 + ∑ 𝐴𝑘

𝑝

𝑘=1

𝑙𝑛𝐺𝐷𝑃𝑡−𝑘 + 𝐴𝑚 𝑂𝑆𝐴𝑡 + 𝑢𝑡  

𝑙𝑛𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠𝑡 = 𝐴0 + ∑ 𝐴𝑖

𝑝

𝑖=1

𝑙𝑛𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠𝑡−𝑖 + ∑ 𝐴𝑗

𝑝

𝑖=𝑗

𝑙𝑛𝐴𝑙𝑙𝑖𝑎𝑛𝑐𝑒𝑈𝑆𝑑𝑒𝑠𝑡𝑡−𝑗 + ∑ 𝐴𝑘

𝑝

𝑘=1

𝑙𝑛𝐺𝐷𝑃𝑡−𝑘 + 𝐴𝑚 𝑂𝑆𝐴𝑡 + 𝑢𝑡  
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As mentioned, the notation is similar to what we presented in 6.2.2. The difference is that we 

use the operator ∑ to shorten it. The operator is used to denote the lag levels of the different 

variables. This is not used in front of the dummy variable for the OSA, because we must treat 

this variable as exogenous6 since this only indicates the presence or absence of the OSA 

(Jiang & Liu, 2011, p. 973).  

 VEC model 
Once the VAR(𝑝) model is developed, the next step is to test whether the variables are 

cointegrated by using Johansen’s test for cointegration. If we can conclude that there is one or 

more cointegrating relationship, we will develop and estimate a VEC model. Since the VEC 

model contains first-differenced terms of the VAR model, the lag length will be one period 

shorter, i.e. the VECM has lag order 𝑝 − 1. Then, we can develop the VECM which we will 

estimate in the empirical analysis. Again, the model for lnPassengers is referred to as model 1 

and the model for lnDestinations as model 2.  

 

∆𝑙𝑛𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠𝑡 = 𝐴0 + ∑ 𝐴𝑖

𝑝−1

𝑖 =1

∆𝑙𝑛𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠𝑡−𝑖 + ∑ 𝐴𝑗

𝑝−1

𝑗=1

∆𝑙𝑛𝐴𝑙𝑙𝑖𝑎𝑛𝑐𝑒𝑅𝑜𝑢𝑡𝑒𝑡−𝑗 + ∑ 𝐴𝑘

𝑝−1

𝑘=1

∆𝑙𝑛𝐺𝐷𝑃𝑡−𝑘 + 𝐴𝑚 𝑂𝑆𝐴𝑡

+ 𝜌𝜇𝑡−1 + 𝑢𝑡  

∆𝑙𝑛𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠𝑡 = 𝐴0 + ∑ 𝐴𝑖

𝑝−1

𝑖 =1

∆𝑙𝑛𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠𝑡−𝑖 + ∑ 𝐴𝑗

𝑝−1

𝑗=1

∆𝑙𝑛𝐴𝑙𝑙𝑖𝑎𝑛𝑐𝑒𝑈𝑆𝑑𝑒𝑠𝑡𝑡−𝑗 + ∑ 𝐴𝑘

𝑝−1

𝑘=1

∆𝑙𝑛𝐺𝐷𝑃𝑡−𝑘 + 𝐴𝑚 𝑂𝑆𝐴𝑡

+ 𝜌𝜇𝑡−1 + 𝑢𝑡  

 

As we can see from the equations, the VECM is similar to the VAR. The difference is that the 

VECM contains first-differenced terms and an error correction component (𝜌𝜇𝑡−1). Again, 

we treat the dummy for the OSA as exogenous.  

Now that we have described the data, methodology and specified the model, we proceed with 

the empirical analysis in which we perform the statistical tests and present our results. 

  

 
6 A variable that exerts an influence on the cause-and-effect relationship between two variables and are 
uncorrelated with the error term (Sekaran & Bougie, 2016, p. 391). 
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8 Empirical analysis 

 

 Stationarity Assessment 

Assessing the stationarity of a time series is often recognized as the starting point of a time 

series analysis. As mentioned in the methodology section, we can use unit root tests to assess 

the stationarity of each variable. We want to determine whether the variables are stationary or 

not, and what order of integration they are.  

If the unit root tests give significant evidence that all variables are of integration order I(0), 

one can use traditional methods such as OLS and VAR. However, this is considered to be 

unrealistic in economic time series (Shrestha & Bhatta, 2018, p. 71). If the variables are non-

stationary, we perform the unit root test for the first differenced variable to determine 

whether it is of integration order I(1). If we find the variables to be I(1), we can proceed with  

the Johansen test for cointegration. We will now perform a stationarity assessment of the 

variables. We will start with a visual assessment followed by unit root tests for each of the 

variables and determine the order of integration.   

8.1.1 CDG-JFK stationarity assessment 

We perform the visual assessment for the route segment by presenting time series plots for 

each of the variables: 

 

Figure 7.1: LnPassengers, CDG-JFK, quarterly        Figure 7.2: LnDestinations, CDG, quarterly 
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Figure 7.3: LnAllianceRoute, CDG-JFK, quarterly            Figure 7.4: LnAllianceUSdest, CDG, quarterly          

 

Figure 7.5: LnGDP, average of U.S. and EU. 

 From the graph of lnPassengers, we observe that there appears to be an upward trend. That 

is, there appears that the mean is increasing with time. For lnDestinations the trend is less 

obvious. However, it appears to be increasing somewhat from around the time of the signing 

of the OSA through the next five years or so. The natural logarithm of the market share of the 

dominant alliance does not appear to have a clear trend on the route CDG-JFK. For the 

dominant alliance on U.S. destinations however, there appears to be an upward trend until 

approximately 2009 before it stabilizes and decreases towards 2018. LnGDP appears to be 

increasing with time, with the exception of the period around the global financial crisis. 

These plots are of course a very crude way to analyze stationarity, but it gives an overview of 

how the variables have developed with time. Next, we will go through more formal statistical 

methods to assess the stationarity as described in the methodology. 

We begin with the KPSS test. The test was described in the methodology section, and we had 

the following null hypothesis for the test: 
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𝐻0: The series is trend stationary 

𝐻1: The series has a unit root (series is non-stationary) 

The test statistics from the KPSS test are listed in the table below. The second part of the 

table, provides an overall conclusion of whether or not to reject the null hypothesis of trend 

stationarity. 

10% critical value: 0.119 

5% critical value: 0.146 

1% critical value: 0.216 

 

Test statistic at lag order 

Variable 0 1 2 3 

LnPassengers 0.0668 0.0602 0.0976 0.137* 

LnDestinations 0.391*** 0.284*** 0.244*** 0.204** 

LnAllianceRoute 0.615*** 0.453*** 0.438*** 0.391*** 

LnAllianceUSdest 1.142*** 0.763*** 0.534*** 0.415*** 

LnGDP 1.190*** 0.606*** 0.414*** 0.319*** 

Table 7.1 KPSS test CDG-JFK. 1%*** significance level, 5%** significance level, 10%* 

significance 

The results from the KPSS test show that for four of the five variables, we reject the null 

hypothesis that the series is trend stationary. This provides evidence for a trend in these time 

series. What is perhaps surprising is that we do not reject the null hypothesis for 

lnPassengers, despite the time series plot giving indication of a trend. As we discussed in the 

methodology however, this gives evidence that the trend we observe in the plot is 

deterministic.  

Moving forwards, we also apply the ADF test. Because the visual assessment show that there 

appears to be a trend in most of our variables, we perform the ADF test with a trend. We also 

include lags to the test, chosen according to the lag order selection criteria described in the 

methodology section. Recall from the methodology section that we had the following null 

hypothesis for the ADF test: 

𝐻0: The series has a unit root 

The results of the tests are summarized in the following table: 

Variable lnPassengers lnDestinations lnAllianceRoute lnAllianceUSdest lnGDP 

Result Do not reject 𝐻0  Reject 𝐻0 Reject 𝐻0 Reject 𝐻0 Reject 𝐻0 
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ADF level, with trend. Lags selected according to selection criterions 

Variable Test statistic P-value 

LnPassengers -2.739 0.2203 

LnDestinations -1.551 0.8109 

LnAllianceRoute -1.134 0.9232 

LnAllianceUSdest -0.405 0.9867 

LnGDP -2.482 0.3372 

ADF first differences, with trend. Lags selected according to selection criterions 

Variable Test statistic P-value 

D.lnPassengers -6.589 0.0000 

D.lnDestinations -7.812 0.0000 

D.lnAllianceRoute -6.928 0.0000 

D.lnAllianceUSdest -3.712 0.0216 

D.lnGDP -3.740 0.0199 

   

Table 7.2: ADF test CDG – JFK 

The test shows that we cannot reject the null hypothesis of a unit root for any of the variables 

at level. This provides evidence of a unit root. In other words, none of the variables appear to 

be I(0). However, we notice that lnPassengers appears to be a borderline case as whether or 

not we reject the null hypothesis depends on the number of lags we include in the test. With 3 

lags included, we cannot significantly reject the null hypothesis. The next step is to take the 

first difference of the variables and run the test again. If we then reject the null hypothesis, 

we have evidence that the variable is I(1). If not, we repeat the exercise until we reject the 

null hypothesis. The procedure yields the following result for the order of integration: 

Variable lnPassengers lnDestinations lnAllianceRoute lnAllianceUSdest lnGDP 

Result I(1) I(1) I(1) I(1) I(1) 

Table 7.3: Order of integration CDG – JFK 

8.1.2 MAD-JFK stationarity assessment 

We follow the same procedure as with the CDG – JFK route segment to assess the 

stationarity in the time series. We begin by presenting the time series plots of the variables. 
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Since the variable for real GDP is the same as in the previous route segment, we do not 

present this plot again.  

 

 Figure 8.1: LnPassengers, MAD-JFK, quarterly        Figure 8.2: LnDestinations, MAD, quarterly 

 

Figure 8.3: LnAllianceRoute, MAD-JFK, quarterly             Figure 8.4: LnAllianceUSdest, MAD, quarterly 

The time series graph for lnPassengers indicates that there is an upward trend in passenger 

traffic. The graph for lnDestinations shows that the number of destinations from MAD 

increased quite rapidly from around the time of the implementation of the OSA. We observe 

that the market share of the dominant alliance grew rapidly in the beginning of the 2000’s. 

After this however, it appears to be relatively stable.  

When we interpret the formal tests, we once again start with the KPSS test for trend 

stationarity. Below we have summarized the KPSS test results.  

10% critical value: 0.119 

5% critical value: 0.146 

1% critical value: 0.216 

 

Test statistic at lag order 

Variable 0 1 2 3 



61 
 

LnPassengers 0.177** 0.142* 0.164** 0.168** 

LnDestinations 0.701*** 0.445*** 0.347*** 0.291*** 

LnAllianceRoute 1.210*** 0.682*** 0.494*** 0.390*** 

LnAllianceUSdest 0.345*** 0.207** 0.160** 0.135* 

LnGDP 1.190*** 0.606*** 0.414*** 0319*** 

Table 8.1 KPSS test MAD-JFK. 1%*** significance level, 5%** significance level, 10%* 

significance 

Table 8.1 shows that we can reject the null hypothesis that the variable is trend stationary for 

all of the variables and at every lag order at the 5% level, except lnPassengers at lag order 1. 

Because we have evidence that most of the variables are not trend stationary, we once again 

include a trend in the ADF test. The results of the ADF tests are summarized in the following 

table: 

ADF level, with trend. Lags selected according to selection criterions 

Variable Test statistic P-value 

LnPassengers -3.000 0.1320 

LnDestinations -2.067 0.5643 

LnAllianceRoute -2.293 0.4377 

LnAllianceUSdest -3.167 0.0911 

LnGDP -2.482 0.3372 

ADF first differences, with trend. Lags selected according to selection criterions 

Variable Test statistic P-value 

D.lnPassengers -4.147 0.0054 

D.lnDestinations  -7.156 0.0000 

D.lnAllianceRoute -4.572 0.0011 

D.lnAllianceUSdest -5.047 0.0002 

D.lnGDP -3.740 0.0199 

Table 8.2: ADF test MAD – JFK 

The results in table 8.2 are similar to those of the CDG – JFK route segment. We cannot 

significantly reject the null hypothesis that there exists a unit root for any of the variables. 

When we fail to reject the null hypothesis, it gives support to the alternative hypothesis of a 

unit root. Next, we must determine what order of integration each variable is. Based on the 

Variable lnPassengers lnDestinations lnAllianceRoute lnAllianceUSdest lnGDP 

Result Reject 𝐻0  Reject 𝐻0 Reject 𝐻0 Reject 𝐻0 Reject 𝐻0 
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ADF test of the first differenced variables, we can conclude on the following order of 

integration for the variables:  

Variable lnPassengers lnDestinations lnAllianceRoute lnAllianceUSdest lnGDP 

Result I(1) I(1) I(1) I(1) I(1) 

Table 8.3: Order of integration MAD – JFK 

We see that the results from the tests are very similar to those from the CDG – JFK route 

segment. When we perform the ADF test with the first difference, we can reject the null 

hypothesis of a unit root.  

8.1.3 LHR-BOS stationarity assessment 

 

Figure 9.1: LnPassengers, LHR-BOS, quarterly         Figure 9.2: LnDestinations, LHR, quarterly 

 

Figure 9.3: LnAllianceRoute, LHR-BOS, quarterly             Figure 9.4: LnAllianceUSdest, LHR, quarterly 

The graph for lnPassenger does not show signs of a trend. Like for the other routes however, 

there appears to be seasonal fluctuations, which can cause it to be non-stationary. For 

lnDestinations, there appears almost to be a structural break around the time of the OSA 

entering into force. There appears to have been a rapid increase in the number of destinations 

offered from LHR, further followed by a positive trend. For lnAllianceRoute we observer that 



63 
 

the market share of the dominant alliance appears to have decreased during the period. 

Although it has decreased, there is no obvious negative trend in lnAllianceRoute. For 

lnAllianceUSdest we observe fluctuating levels, which does not appear to follow a specific 

trend. 

The following table summarizes the results of the KPSS tests: 

10% critical value: 0.119 

5% critical value: 0.146 

1% critical value: 0.216 

 

Test statistic at lag order 

Variable 0 1 2 3 

LnPassengers 0.127* 0.113 0.177** 0.226*** 

LnDestinations 0.219*** 0.174** 0.161** 0.142* 

LnAllianceRoute 0.361*** 0.207** 0.155** 0.130* 

LnAllianceUSdest 0.255*** 0.171** 0.138* 0.117* 

LnGDP 1.190*** 0.606*** 0.414*** 0319*** 

Table 9.1 KPSS test LHR-BOS. 1%*** significance level, 5%** significance level, 10%* 

significance 

Table 9.1 shows we cannot reject the null hypothesis of trend stationarity for lnPassengers at 

lag order 0 and 1. For lnAllianceUSdest we observe that we can only reject the null 

hypotheses at the 10% level at lag order 2 and 3. This is also the case for lnDestinations and 

lnAllianceRoute at lag order 3. For all other, we can reject the null hypothesis at the 5% level. 

Rejecting the null hypothesis gives evidence of non-stationarity. Although this is the case for 

most of the variables, the results are somewhat less clear than in the previous two route 

segments. Next, we move to the ADF test to see if this provides clearer evidence. The test 

results are summarized in the following table:  

ADF level, with trend. Lags selected according to selection criterions 

Variable Test statistic P-value 

LnPassengers -2.869 0.1729 

LnDestinations -2.359 0.4019 

LnAllianceRoute -3.701 0.0223 

LnAllianceUSdest -2.495 0.3305 

LnGDP -2.482 0.3372 

Variable lnPassengers lnDestinations lnAllianceRoute lnAllianceUSdest lnGDP 

Result Do not reject 𝐻0  Reject 𝐻0 Reject 𝐻0 Reject 𝐻0 Reject 𝐻0 
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ADF first differences, with trend. Lags selected according to selection criterions 

Variable Test statistic P-value 

D.lnPassengers -6.589 0.0000 

D.lnDestinations -6.907 0.0000 

D.lnAllianceRoute -9.427 0.0000 

D.lnAllianceUSdest -5.455 0.0000 

D.lnGDP -3.740 0.0199 

Table 9.2: ADF test LHR-BOS 

From Table 9.2, we observe that we can reject the null hypothesis of a unit root for 

lnAllianceRoute. This is the only variable in the analysis where this is the case. From figure 

9.3 we observe that the values are decreasing over time. This is the only plot where we 

observe this development. Recall that the rationale behind including a trend term in the ADF 

test is that the majority of the series show evidence of a positive trend. Since lnAllianceRoute 

for LHR does not have a positive trend, we rerun the ADF test without a trend term and 

constant. When we exclude this, it indicates that the series is a random walk without a drift 

under the null hypothesis. We can no longer reject the null hypothesis of a unit root with this 

version of the test. Thus, we have evidence that the variable is non-stationary. We still have 

evidence that the first difference is stationary. Thus, we have evidence that lnAllianceRoute 

is also I(1). For the other variables, we have significant evidence of non-stationarity at levels 

and stationarity at first differences when a trend is included. We can summarize the order of 

integration of each variable below: 

Variable lnPassengers lnDestinations lnAllianceRoute lnAllianceUSdest lnGDP 

Result I(1) I(1) I(1) I(1) I(1) 

Table 9.3: Order of integration LHR-BOS 

 Johansen test for cointegration 

Now that we have evidence of non-stationary variables that are integrated of order one, we 

proceed with the Johansen test for cointegration. We perform the test for each model at every 

route segment.  

8.2.1 CDG-JFK Johansen test 

Hypotheses Model (1), 𝒑 = 𝟓 

𝐻0 𝐻𝐴 Eigenvalue 𝜆𝑡𝑟𝑎𝑐𝑒  5% Critical value 𝜆𝑚𝑎𝑥  5% Critical value 

𝑟 = 0 𝑟 = 1 0.2508 43.4727 42.44 22.8141 25.54 

𝑟 ≤ 1 𝑟 = 2 0.1995 20.6586* 25.32 17.5641 18.96 

𝑟 ≤ 2 𝑟 = 3 0.0384 3.0945 12.25 3.0945 12.52 

Table 10.1: Johansen test for cointegration in model(1), CDG-JFK 
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From table 10.1, we observe that the test statistic 𝜆𝑡𝑟𝑎𝑐𝑒  exceeds the critical value, while 

𝜆𝑚𝑎𝑥 test statistic is lower than the critical value. Based upon our explanation in the 

methodology section, we can reject the null hypotheses of 𝑟 = 0 since the test statistic 𝜆𝑡𝑟𝑎𝑐𝑒  

exceed the critical value. However, we fail to reject the null hypothesis 𝑟 ≤ 1 because neither 

of the test statistics exceed their respective critical value. As the Johansen test method accepts 

the first r for which the null hypothesis cannot be rejected, we accept that r=1(StataCorp, 

2019, p. 852). This indicates that the variables are cointegrated and that there exists a long-

run relationship between them.  

Hypotheses Model (2), 𝒑 = 𝟏 

𝐻0 𝐻𝐴 Eigenvalue 𝜆𝑡𝑟𝑎𝑐𝑒  5% Critical value 𝜆𝑚𝑎𝑥  5% Critical value 

𝑟 = 0 𝑟 = 1 0.51119 72.2188 29.68 59.4106 20.97 

𝑟 ≤ 1 𝑟 = 2 0.13630 12.8082* 15.41 12.1619 14.07 

𝑟 ≤ 2 𝑟 = 3 0.00776 0.6430 3.76 0.6463 3.76 

Table 10.2: Johansen test for cointegration in model(2), CDG-JFK 

From table 10.2, we observe the same result as the previous table. For both the test statistic 

𝜆𝑡𝑟𝑎𝑐𝑒  and 𝜆𝑚𝑎𝑥 we can reject the null hypothesis 𝑟 = 0. We fail to reject the null hypothesis 

𝑟 ≤ 1 since neither of the test statistics exceed their respective critical value. As previously, 

we accept that r=1. We achieve the result of cointegrated variables, that there exists a long-

run relationship between the variables in model (2).  

8.2.2 MAD-JFK Johansen test 

Hypotheses Model (1), 𝒑 =5 

𝐻0 𝐻𝐴 Eigenvalue 𝜆𝑡𝑟𝑎𝑐𝑒  5% Critical value 𝜆𝑚𝑎𝑥  5% Critical value 

𝑟 = 0 𝑟 = 1 0.3077 47.2731 42.44 29.0466 25.54 
𝑟 ≤ 1 𝑟 = 2 0.1196 18.2265* 25.32 10.0595 18.96 

𝑟 ≤ 2 𝑟 = 3 0.0982 8.1671 12.25 8.1671 12.52 

Table 11.1: Johansen test for cointegration in model(1), MAD-JFK 

Based upon the same intuition and explanations above on the route CDG-FJK, we get 𝜆𝑡𝑟𝑎𝑐𝑒  

and 𝜆𝑚𝑎𝑥 with test statistics higher than their respective critical value. Hence, we can reject 

the null hypothesis 𝑟 = 0, but cannot reject with 𝑟 ≤ 1. This indicates that the variables are 

cointegrated and there exist a long-run relationship between them in model (1) of MAD-JFK, 

observed from table 11.1 above. 

Table 11.2: Johansen test for cointegration in model(2), MAD-JFK 

Hypotheses Model (2), 𝒑 = 𝟏 

𝐻0 𝐻𝐴 Eigenvalue 𝜆𝑡𝑟𝑎𝑐𝑒  5% Critical value 𝜆𝑚𝑎𝑥  5% Critical value 

𝑟 = 0 𝑟 = 1 0.3431 54.0436 29.68 34.9178 20.97 

𝑟 ≤ 1 𝑟 = 2 0.1906 19.1258 15.41 17.5480 14.07 

𝑟 ≤ 2 𝑟 = 3 0.0188 1.5778* 3.76 1.5778 3.76 
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Unlike the previous tables of cointegration relationship, table 11.2 in model (2) of MAD-JFK 

shows that we get can reject the null hypothesis for 𝑟 = 0 and for 𝑟 ≤ 1. Furthermore, we fail 

to reject the null hypothesis of 𝑟 ≤ 2, since neither of the test statistics exceeds the critical 

value at this point. Hence, we have that the variables have 2 cointegration equations, 

indicating 2 long-run relationships between the variables in this model. 

8.2.3 LHR-BOS Johansen test 

Hypotheses Model (1), 𝒑 =4 
𝐻0 𝐻𝐴 Eigenvalue 𝜆𝑡𝑟𝑎𝑐𝑒  5% Critical value 𝜆𝑚𝑎𝑥  5% Critical value 

𝑟 = 0 𝑟 = 1 0.2782 48.1676 42.44 26.0823 25.54 

𝑟 ≤ 1 𝑟 = 2 0.1653 22.0854* 25.32 14.4551 18.96 

𝑟 ≤ 2 𝑟 = 3 0.0910 7.6303 12.25 7.6303 12.52 

Table 12.1: Johansen test for cointegration in model(1), LHR-BOS 

From table 12.1 we observe that we can reject the null hypothesis of 𝑟 = 0, but we fail to 

reject the null with 𝑟 ≤ 1. This can be concluded since the test statistic 𝜆𝑡𝑟𝑎𝑐𝑒  and 𝜆𝑚𝑎𝑥 

exceeds the critical value when the null hypothesis is 𝑟 = 0. This indicates a long-run 

relationship between the variables in model (1) of the route segment LHR-BOS. 

Hypotheses Model (2), 𝒑 =5 

𝐻0 𝐻𝐴 Eigenvalue 𝜆𝑡𝑟𝑎𝑐𝑒  5% Critical value 𝜆𝑚𝑎𝑥  5% Critical value 

𝑟 = 0 𝑟 = 1 0.4052 64.4239 29.68 41.0430 20.97 
𝑟 ≤ 1 𝑟 = 2 0.2556 23.3810 15.41 23.3132 14.07 

𝑟 ≤ 2 𝑟 = 3 0.0009 0.06770* 3.76 0.0677 3.76 

Table 12.2: Johansen test for cointegration in model(2), LHR-BOS 

As we observed in table 11.2 on the route segment MAD-JFK, we observe the same result 

and follow the same explanation in table 12.2 above. We reject the null hypothesis for 𝑟 = 0 

and for 𝑟 ≤ 1. We fail to reject the null hypothesis of 𝑟 ≤ 2. This indicates that we in model 

(2) of route segment LHR-BOS have 2 cointegration equations, indicating 2 long-run 

relationships between the variables. 

 VECM results 

Now that we have evidence that there exists at least one cointegrating relationship between 

the variables, we can estimate the VEC model. We use the same number of lags as the 

underlying VAR model, which was also used in the Johansen test for cointegration.   
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8.3.1 CDG-JFK VECM results  

Variables ∆ lnPassengers P-values 

∆𝑙𝑛𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠𝑡−1 0.2517 0.204 

∆𝑙𝑛𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠𝑡−2 -0.1281 0.449 

∆𝑙𝑛𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠𝑡−3 -0.1648 0.192 

∆𝑙𝑛𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠𝑡−4 0.3916*** 0.001 

∆𝑙𝑛𝐴𝑙𝑙𝑖𝑎𝑛𝑐𝑒𝑅𝑜𝑢𝑡𝑒𝑡−1 0.0947 0.741 

∆𝑙𝑛𝐴𝑙𝑙𝑖𝑎𝑛𝑐𝑒𝑅𝑜𝑢𝑡𝑒𝑡−2 0.2038 0.476 
∆𝑙𝑛𝐴𝑙𝑙𝑖𝑎𝑛𝑐𝑒𝑅𝑜𝑢𝑡𝑒𝑡−3 0.2115 0.460 
∆𝑙𝑛𝐴𝑙𝑙𝑖𝑎𝑛𝑐𝑒𝑅𝑜𝑢𝑡𝑒𝑡−4 0.2146 0.420 

∆𝑙𝑛𝐺𝐷𝑃𝑡−1 0.4579 0.844 

∆𝑙𝑛𝐺𝐷𝑃𝑡−2 0.8588 0.741 

∆𝑙𝑛𝐺𝐷𝑃𝑡−3 4.1347 0.111 

∆𝑙𝑛𝐺𝐷𝑃𝑡−4 -1.1268 0.642 

OSA(dummy) -0.0077 0.765 

Error correction -0.8702*** 0.000 
Intercept 0.0009 0.980 

Cointegrating equation Coefficient P-values 

𝑙𝑛𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠 1  
𝑙𝑛𝐴𝑙𝑙𝑖𝑎𝑛𝑐𝑒𝑅𝑜𝑢𝑡𝑒 -0.0073 0.983 

𝑙𝑛𝐺𝐷𝑃 -0.8385*** 0.000 

Intercept -4.2135  
Table 13.1: VECM results for model (1), CDG-JFK. 1%*** significance level, 5%** significance 

level, 10%* significance 

The first part of table 13.1 contains the estimates of the short-run parameters along with their 

respective p-value. The output of the calculations indicates that the dummy for the OSA has a 

non-significant negative impact on passenger traffic. This provides evidence that the OSA 

has not led to increased passenger traffic on this route segment. The error correction 

coefficient is the adjustment parameter for the model and explains the rate at which the model 

adjusts itself towards its long-run equilibrium. In table 13.1, we see that the error correction 

parameter is negative and significant at 1% level. It suggests that a deviation from the long-

run equilibrium is rapidly corrected for at a speed of 87.02 %.  

The second part of table 13.1 contains the estimates of the parameters in the cointegrating 

vector along with their p-values. To interpret the results of the long-run coefficients, we need 

to reverse the signs (Sanchez & Zavarce, 2012). The results indicate the following 

cointegrating equation: 

𝑙𝑛𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠 − 0.0073𝑙𝑛𝐴𝑙𝑙𝑖𝑎𝑛𝑐𝑒𝑅𝑜𝑢𝑡𝑒 − 0.8385𝑙𝑛𝐺𝐷𝑃 − 4.2135 

lnPassengers is then described as: 

𝑙𝑛𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠 = 0.0073𝑙𝑛𝐴𝑙𝑙𝑖𝑎𝑛𝑐𝑒𝑅𝑜𝑢𝑡𝑒 + 0.8385𝑙𝑛𝐺𝐷𝑃 + 4.2135 
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Hence, the output shows that in the long-run there is a positive impact of the real GDP on the 

number of passengers carried in this route segment. The coefficient is statistically significant 

at the 1% level. The results also indicate that the market share of the dominant alliance on the 

CDG-JFK route segment has a non-significant impact on the passenger traffic in the long-run. 

Since we have a large p-value, it indicates that the passenger traffic level has a relatively low 

impact by the dominant market share of this route segment. 

Next, we interpret the results of the VEC model for model(2) in the following table, 

following the same procedure as in model(1) in table 13.1.  

Variables ∆ lnDestinations P-values 

OSA(dummy) 0.1398*** 0.000 

Error correction -0.9296*** 0.000 

Intercept -0.0004 0.983 
Cointegrating equation Coefficient P-values 

𝑙𝑛𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 1  

𝑙𝑛𝐴𝑙𝑙𝑖𝑎𝑛𝑐𝑒𝑈𝑆𝑑𝑒𝑠𝑡 1.1750*** 0.000 

𝑙𝑛𝐺𝐷𝑃 -0.3247** 0.021 

Intercept -0.2656  
Table 13.2: VECM results for model (2), CDG-JFK. 1%*** significance level, 5%** significance 

level, 10%* significance 

The output of the first part of table 13.2 indicates that the coefficient for dummy variable for 

the OSA is positive and significant at the 1% level. Thus, the OSA has had a positive impact 

on the number of U.S. destinations offered from CDG. This differs from the result above 

where we found that the OSA did not have a significant impact on the passenger traffic 

between CDG-JFK. This is in line with Brueckner’s theory (2001) since CDG-JFK is an 

interhub market. Since the OSA gives airlines the opportunity to operate between any two 

points in the U.S. and EU, we expect that new airlines want to operate different U.S. routes 

from CDG that are less competitive. Hence, the OSA will give an increase in the number of 

destinations offered, but not necessarily passenger traffic on interhub markets.  

The adjustment parameter is negative and statistically significant at the 1% level. This 

indicates that a deviation from the equilibrium value is corrected for at a convergence speed 

of 92.96%. In the second part of table 13.2, we see that there is a negative relationship 

between the market share of the dominant alliance and the number of destinations offered. 

This is statistically significant at the 1% level. It is also a positive relationship between the 

real GDP and the number of destinations offered, which is significant at the 5% level. The 
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positive relationship between the real GDP and the number of destinations is expected, 

because higher GDP gives the consumers higher disposable income, which results in higher 

demand for air travel, and hence demand for new destinations. The negative long-run 

relationship between the market share of the dominant alliance and the number of U.S. 

destinations offered from CDG may be because the new airlines do not want to operate from 

CDG to the U.S. if the dominant alliance serves much of this market. As Button (2009) 

mentions, the allied airlines may have easier and cheaper access to resources on CDG, 

advantages in slot times, etc. Then, non-allied carriers may find it unprofitable or undesirable 

to operate U.S. destinations from CDG.  

8.3.2 MAD-JFK VECM results 
Variables ∆ lnPassengers P-values 

∆𝑙𝑛𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠𝑡−1 -0.3068** 0.028 

∆𝑙𝑛𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠𝑡−2 -0.4363*** 0.001 

∆𝑙𝑛𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠𝑡−3 -0.4278*** 0.000 

∆𝑙𝑛𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠𝑡−4 0.4413*** 0.000 
∆𝑙𝑛𝐴𝑙𝑙𝑖𝑎𝑛𝑐𝑒𝑅𝑜𝑢𝑡𝑒𝑡−1 0.0879 0.704 

∆𝑙𝑛𝐴𝑙𝑙𝑖𝑎𝑛𝑐𝑒𝑅𝑜𝑢𝑡𝑒𝑡−2 -0.1210 0.593 

∆𝑙𝑛𝐴𝑙𝑙𝑖𝑎𝑛𝑐𝑒𝑅𝑜𝑢𝑡𝑒𝑡−3 0.0058 0.979 

∆𝑙𝑛𝐴𝑙𝑙𝑖𝑎𝑛𝑐𝑒𝑅𝑜𝑢𝑡𝑒𝑡−4 -0.0675 0.745 

∆𝑙𝑛𝐺𝐷𝑃𝑡−1 4.8953 0.141 

∆𝑙𝑛𝐺𝐷𝑃𝑡−2 -1.0661 0.762 
∆𝑙𝑛𝐺𝐷𝑃𝑡−3 2.5917 0.462 
∆𝑙𝑛𝐺𝐷𝑃𝑡−4 -6.9101** 0.034 

OSA(dummy) 0.1215 0.1115 

Error correction -0.2171 0.075* 

Intercept 0.0016 0.977 
Cointegrating equation Coefficient P-values 

𝑙𝑛𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠 1  

𝑙𝑛𝐴𝑙𝑙𝑖𝑎𝑛𝑐𝑒𝑅𝑜𝑢𝑡𝑒 0.6591** 0.022 

𝑙𝑛𝐺𝐷𝑃 -5.8467*** 0.000 

Trend 0.0435 0.000 

Intercept 41.1289  
Table 14.1: VECM results for model (1), MAD-JFK. 1%*** significance level, 5%** significance 

level, 10%* significance 

As in the other output tables from 8.3.1, table 14.1 represents the short-run and the long-run 

estimates we got from constructing the VECM. The first part indicates that the coefficient for 

the dummy variable for the OSA is positive, but non-significant. To explain this, we revisit 

the paper of Pitfield (2007) where he explained that the growth of passengers had more to do 
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with ceteris paribus effect7. This result indicates that there is no short-run effect of the OSA 

on passenger traffic on MAD-JFK in our time period and follows the same explanation as 

presented from Brueckner (2001) in previous table. The adjustment parameter is negative and 

statistically significant at 7,5% level. This indicates that a deviation from the equilibrium 

value is corrected for at a convergence speed of 21.71%. 

The second part of table 14.1 contains the estimates of the parameters in the cointegrated 

vector along with their p-values. We follow the same interpretation as we did in table 13,1, 

reversing the signs to evaluate the impact of our variables on passenger traffic. The long-run 

output indicates that there is a positive impact of the real GDP on the number of passengers at 

this route segment as well. The coefficient is statistically significant at the 1% level. The 

result also indicates that the market share of the dominant alliance has a negative and 

significant impact on passenger traffic at 5% significance level8. 

Variables ∆ lnDestinations P-values 

OSA(dummy) 0.2748*** 0.000 

Error correction 1 -0.5469*** 0.000 

Error correction 2 -0.1116 0.659 

Intercept -0.0001 0.997 
Cointegrating equation 1 Coefficient P-values 

𝑙𝑛𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 1  

𝑙𝑛𝐺𝐷𝑃 0.1299 0.625 

Intercept -0.3800  
Cointegrating equation 2 Coefficient P-values 

𝑙𝑛𝐴𝑙𝑙𝑖𝑎𝑛𝑐𝑒𝑈𝑆𝑑𝑒𝑠𝑡 1  

𝑙𝑛𝐺𝐷𝑃 -0.2553* 0.086 

Intercept 2.7585  
Table 14.2: VECM results for model (2), MAD-JFK. 1%*** significance level, 5%** significance 

level, 10%* significance 

In the first part of table 14.2 we see that the coefficient for the dummy variable representing 

the OSA is positive and statistically significant at the 1% level. This indicates that the OSA 

has had a positive impact on the number of U.S. destinations offered from MAD, which is the 

same result that got from CDG. Since this model has two cointegrating relationships, we also 

have two adjustment parameters. The first one is negative and statistically significant at the 

1% level. The second is also negative, but not statistically significant.  

 
7 Recall Pitfield (2007) from literature review, where he explains that there are many other influences on traffic 

volumes. Pitfield conjectures that the OSA will not result in a significant growth in traffic or increased 

competition. 
8 Follows the intuition described in section 6.2, where this independent variable would be expected to have a 

negative impact on passenger traffic based on Brueckner (2001). 
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From the second part of table 14.2, we get the following cointegrating equations: 

𝑙𝑛𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 = −0.1299𝑙𝑛𝐺𝐷𝑃 + 0.38 

𝑙𝑛𝐴𝑙𝑙𝑖𝑎𝑛𝑐𝑒𝑈𝑆𝑑𝑒𝑠𝑡 = 0.2553𝑙𝑛𝐺𝐷𝑃 − 2.7585 

However, since the second adjustment parameter is non-significant, the second cointegration 

equation is not assumed to have a long-term causality (StataCorp, 2019, pp. 854-856). The 

first cointegration equation on the other hand is assumed to have a long-term causality since 

the first adjustment parameter is significant. We see that the real GDP does not significantly 

contribute to the explanation of the number of destinations offered from CDG in this case. 

The result is surprising because as we see in figure 4.4, the number of U.S. destinations 

offered from MAD has increased significantly, while the real GDP has also increased as seen 

in figure 6. However, the increase in destinations happened rather suddenly after the OSA. 

During the same period, the real GDP was decreasing because of the global financial crisis.  

8.3.3 LHR-BOS VECM results  

Variables ∆ lnPassengers P-values 

∆𝑙𝑛𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠𝑡−1 -0.3181*** 0.006 

∆𝑙𝑛𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠𝑡−2 -0.8456*** 0.000 
∆𝑙𝑛𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠𝑡−3 -0.4388*** 0.000 

∆𝑙𝑛𝐴𝑙𝑙𝑖𝑎𝑛𝑐𝑒𝑅𝑜𝑢𝑡𝑒𝑡−1 0.0672 0.676 

∆𝑙𝑛𝐴𝑙𝑙𝑖𝑎𝑛𝑐𝑒𝑅𝑜𝑢𝑡𝑒𝑡−2 -0.5240*** 0.001 

∆𝑙𝑛𝐴𝑙𝑙𝑖𝑎𝑛𝑐𝑒𝑅𝑜𝑢𝑡𝑒𝑡−3 -0.4152** 0.012 

∆𝑙𝑛𝐺𝐷𝑃𝑡−1 2.4343 0.196 

∆𝑙𝑛𝐺𝐷𝑃𝑡−2 -2.3747 0.250 

∆𝑙𝑛𝐺𝐷𝑃𝑡−3 2.7798 0.152 

OSA(dummy) 0.0256 0.267 
Error correction -0.1986*** 0.008 

Intercept -0.0134 0.616 
Cointegrating equation Coefficient P-values 

𝑙𝑛𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠 1  

𝑙𝑛𝐴𝑙𝑙𝑖𝑎𝑛𝑐𝑒𝑅𝑜𝑢𝑡𝑒 -0.7838 0.128 

𝑙𝑛𝐺𝐷𝑃 0.2105 0.623 

Intercept -13.5890  
Table 15.1: VECM results for model (1), LHR-BOS. 1%*** significance level, 5%** significance 

level, 10%* significance 

The output of the first part of table 15.1 indicates that the coefficient for the OSA is positive 

and non-significant. The interpretation of this result follows the same explanation as in table 

13.1 and 14.1. We observe that there is no short-term effect of the OSA on passenger traffic 

on the route segment LHR-BOS in the time period considered. In the short-run, only its own 

lagged values and the alliance market share at lags 2 and 3, appear to significantly impact 

passenger traffic. The adjustment parameter is negative and statistically significant at 1% 
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level. Furthermore, this indicates that a deviation from the equilibrium value is corrected for 

at a convergence speed of 19,86% according to table 15.1.  

The second part of the table follows the same interpretation as we did in the previous tables 

from the VECM results of 8.3. The long-run output indicates that there is a negative impact 

of real GDP on passenger traffic, meaning that number of passengers decreases when the real 

GDP increases in this route segment. This is the opposite result of the other two route 

segments described, however, it is non-significant. This means that we cannot say with 

certainty that an increase in real GDP will negatively influence the number of passengers 

travelled on this route. The reason why we observe a contradictory result compared to the 

other routes, may be described by the description of our data. In figure 5.1 we observed that 

passenger traffic actually had a decreasing trend from around 2011 until 2018, while GDP 

increased in this period. This development of passenger traffic may be due to the different 

constraints and competitive environment around LHR, as described in section 5.2.3.1. 

The output also indicates a long-run positive impact of the dominant alliance market share in 

this route which is non-significant. We observe in our time period that the dominant alliance 

share has decreased in figure 5.2, while passenger traffic also decreased. This makes our 

model indicate that there is a positive impact. The reason may instead be due to the 

competitional constraints from other airports described in section 5.2.3.1. 

Variables ∆ lnDestinations P-values 

∆𝑙𝑛𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠𝑡−1 -0.1591 0.358 

∆𝑙𝑛𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠𝑡−2 -0.3569** 0.030 
∆𝑙𝑛𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠𝑡−3 -0.2726* 0.057 

∆𝑙𝑛𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠𝑡−4 -0.1423 0.199 

∆𝑙𝑛𝐴𝑙𝑙𝑖𝑎𝑛𝑐𝑒𝑈𝑆𝑑𝑒𝑠𝑡𝑡−1 -0.1591 0.358 

∆𝑙𝑛𝐴𝑙𝑙𝑖𝑎𝑛𝑐𝑒𝑈𝑆𝑑𝑒𝑠𝑡𝑡−2 -0.3569** 0.030 

∆𝑙𝑛𝐴𝑙𝑙𝑖𝑎𝑛𝑐𝑒𝑈𝑆𝑑𝑒𝑠𝑡𝑡−3 -0.5411 0.256 

∆𝑙𝑛𝐴𝑙𝑙𝑖𝑎𝑛𝑐𝑒𝑈𝑆𝑑𝑒𝑠𝑡𝑡−4 -0.2190 0.600 

∆𝑙𝑛𝐺𝐷𝑃𝑡−1 -3.4847 0.179 
∆𝑙𝑛𝐺𝐷𝑃𝑡−2 2.1912 0.403 

∆𝑙𝑛𝐺𝐷𝑃𝑡−3 -2.0703 0.431 

∆𝑙𝑛𝐺𝐷𝑃𝑡−4 5.1540** 0.028 

OSA(dummy) 0.3761*** 0.000 

Error correction 1 -0.8313*** 0.000 

Error correction 2 1.4333*** 0.007 

Intercept 0.0003 0.993 
Cointegrating equation 1 Coefficient P-values 

𝑙𝑛𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 1  

𝑙𝑛𝐺𝐷𝑃 -0.3415*** 0.003 
Intercept 0.1581  
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Cointegrating equation 2 Coefficient P-values 
𝑙𝑛𝐴𝑙𝑙𝑖𝑎𝑛𝑐𝑒𝑈𝑆𝑑𝑒𝑠𝑡 1  

𝑙𝑛𝐺𝐷𝑃 -0.2954*** 0.000 

Intercept 3.1718  
Table 15.2: VECM results for model (2), LHR-BOS. 1%*** significance level, 5%** significance 

level, 10%* significance 

The first part of table 15.2 indicates that the coefficient for the dummy variable representing 

the OSA is positive and statistically significant at the 1% level. Thus, there is significant 

evidence that the OSA has had a positive impact on the number of U.S. destinations offered 

from LHR. This is the same result that we got from CDG and MAD. What is different from 

the two previous airports, is that the number of U.S. destinations from LHR has increased 

despite having competing airports in relatively close proximity. The increase in U.S. 

destinations can be seen in figure 5.4 and happens suddenly after the OSA. Although LHR 

has close competitors, it still has the advantage of their closeness to the city of London and 

the fact that it is the largest in terms of passengers. Thus, it is still an attractive airport for 

airlines to serve. Since the OSA allows for new airlines to operate between this popular 

airport and any point in the U.S., the number of U.S. destinations increase.   

The first part of the table also shows that both adjustment parameters are statistically 

significant at the 1% level. The first adjustment parameter is negative and the second is 

positive. Because only the first adjustment parameter is both negative and statistically 

significant, only the first cointegrating equation is assumed to have a long-run causality. 

From this we see that the coefficient for real GDP is positive and statistically significant at 

the 1% level. Thus, the long-run model suggests that there is a positive relationship between 

the real GDP and the number of U.S. destinations offered from LHR. This is expected based 

on the macroeconomic theory explained in 8.3.1.  

 Model diagnostics 

Now that we have estimated the VEC models, we perform diagnostic tests to assess the 

validity of each model. We perform the Lagrange-multiplier test to test for residual 

autocorrelation and the Jarque Bera test to test for normality in residuals. To perform 

estimation and inference in the VECM, it is necessary that there is no autocorrelation in the 

residuals. Although one can derive many of the asymptotic properties without the assumption 

of normally distributed residuals because parameter estimates may still be consistent, the 

assumption is still often tested (StataCorp, 2019, pp. 858-860).  
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CDG - JFK 

Lagrange-multiplier test  

 

Lag 

Model 1 Model 2 

Chi-square P-value Chi-square P-value 

1 7.9599 0.538 14.2062 0.115 

2 14.2188 0.115 15.3336 0.082 

Jarque Bera test for normality 

Variable Model 1 Model 2 

Chi-square P-value Chi-square P-value 

lnPassengers 1.987 0.370 ― ― 

lnAllianceRoute 0.597 0.742 ― ― 

lnDestinations ― ― 1.641 0.440 

lnAllianceUSdest ― ― 32.132 0.000 

lnGDP 137.405 0.0000 75.427 0.000 

Table 16.1: Model diagnostics, CDG-JFK 

The first part of the table contains the chi-square statistics from the LM test along with their 

corresponding p-values. The null hypothesis of the test is that no autocorrelation is present at 

lag order. For both models and for both lag orders, we fail to reject this null hypothesis. 

Therefore, we have evidence that both models are free of the problem of residual 

autocorrelation. The second part of the table contains the chi-square statistics with their p-

values from the Jarque Bera test. The null hypothesis is that the residuals of the variables are 

normally distributed. For model 1, we see that the only variable that carries the problem of 

normality is lnGDP. For lnPassengers and lnAllianceRoute, we fail to reject the null 

hypothesis of normally distributed residuals. In model 2, lnDestinations is the only variable 

for which we fail to reject the null hypothesis. Thus, both lnAllianceUSdest and lnGDP 

appear to carry the problem of normality.  

 

MAD – JFK 

Lagrange-multiplier test 

 

Lag 

Model 1 Model 2 

Chi-square P-value Chi-square P-value 

1 4.0172 0.910 15.6238 0.075 

2 8.1540 0.519 11.8746 0.220 

Jarque Bera test for normality 

 

Variable 

Model 1 Model 2 

Chi-square P-value Chi-square P-value 

lnPassengers 31.778 0.000 ― ― 

lnAllianceRoute 0.728 0.695 ― ― 

lnDestinations ― ― 0.520 0.771 

lnAllianceUSdest ― ― 0.346 0.841 

lnGDP 66.735 0.000 21.952 0.000 

Table 16.2: Model diagnostics, MAD-JFK 
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Following the same procedure as in table 16.1, we observe from table 16.2 that there appears 

to be no problem of residual autocorrelation. Based on the Jarque Bera test for model 1, we 

observe that lnPassengers and lnGDP have a normality problem. Thus, we reject the null 

hypothesis. In model 2, the only variable that appears to have a normality problem is lnGDP. 

This is the only variable where we can reject the null hypothesis. 

 

Table 16.3: Model diagnostics, LHR-BOS 

There appears to be no problem of autocorrelation for either of the models on this route. 

From the Jarque Bera test, we reject the null hypothesis of normality for all variables in 

model 1, indicating that this model has a normality problem. In model 2, we fail to reject the 

null hypothesis for lnDestinations at the 5% level, and lnGDP at the 1% level. However, there 

is significant evidence of a normality problem for the variable lnAllianceUSdest. 

Based on these diagnostic tests, we observe normality problems in some variables. These are 

further pointed out and considered in our discussion below.  

 

 

  

LHR – BOS 

Lagrange-multiplier test 

 

Lag 

Model 1 Model 2 

Chi-square P-value Chi-square P-value 

1 5.1709 0.819 8.7557 0.460 

2 8.1855 0.516 7.8067 0.554 

Jarque Bera test for normality 

 

Variable 

Model 1 Model 2 

Chi-square P-value Chi-square P-value 

lnPassengers 15.239 0.001 ― ― 

lnAllianceRoute 244.184 0.000 ― ― 

lnDestinations ― ― 1.683 0.431 

lnAllianceUSdest ― ― 21.316 0.000 

lnGDP 64.548 0.000 6.131 0.047 



76 
 

9 Discussion 

 Discussion  

We have used time series analysis to investigate the impact of the OSA on both passenger 

traffic and the number of U.S. destinations offered. The choice of the route segments for the 

analysis of passenger traffic is based on Brueckner’s (2001) result, that airline alliances are 

likely to bring negative competitive effects in interhub markets (Brueckner, 2001, pp. 1476-

1478). The route segments CDG-JFK, MAD-JFK, and LHR-BOS are all interhub markets, 

where the origin airport serves as a hub for one of the alliance members, and the destination 

airport serves as a hub for the other alliance member. By using this kind of market, we 

examine whether the agreement is influential enough to bring procompetitive effects even in 

markets where alliances have significant market power. Since we investigate three markets, 

our conclusions are more valid and reliable than focusing on a single route. It helps 

preventing the conclusion from being drawn by coincidence. To investigate the effect of the 

OSA on the number of destinations, we have used the number of U.S. destinations offered 

from the three EU airports CDG, MAD, and LHR. These are airports where traditionally the 

national flag carrier offered a large share of the transatlantic flights. We wanted to investigate 

whether entrance of new airlines after the OSA have increased the competition in the form of 

more destinations after the introduction of the OSA.  

According to the European Commission, the aim of the OSA was to introduce more 

competition in the transatlantic market (European Union, 2016). We have used passenger 

traffic and the number of U.S. destinations to measure the procompetitive effects. Our 

analyses show that the OSA does not appear to have a significant effect on the passenger 

traffic in the three route segments considered. This is in line with Brueckner’s (2001) theory 

that these markets can bring anticompetitive effects since airline alliances have a relatively 

high market share and, in our case, enjoy antitrust immunity. Thus, it appears that it is 

challenging for the OSA to have a significant positive effect on passenger traffic in these 

interhub markets. For the number of U.S. destinations offered from CDG, MAD, and LHR 

our analyses show that the OSA has had a significant positive effect. Thus, it appears that 

although the passenger traffic on interhub routes have not significantly increased as an effect 

of the OSA, there has been a procompetitive effect in the form of increased number of U.S. 

destinations offered. This supports our intuition that the OSA have opened for new carriers to 

enter the transatlantic market. Hence, number of destinations have increased. Based on 

economic theory of competition, entering a market such as an interhub market may not be 
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attractive since the alliance members have high market power and may even enjoy antitrust 

immunity. This means that competition will be fierce for the new entrant or they may be 

deterred from entering all together. Thus, for the new entrants, operating routes that are less 

concentrated may be more preferable. The OSA allows the new carriers to operate such 

routes, as it allows EU airlines to operate between any two points between the EU and U.S.   

Based upon self-intuition and Pitfield (2011), we expected the real GDP to have a positive 

relationship between passenger traffic and destinations. Our results indicate that the real GDP 

did have a significant positive relationship on both passenger traffic and U.S. destinations in 

our markets, except on passenger traffic between LHR and BOS. The reason why we observe 

this contradicting result on the last route segment, is that passenger traffic did not increase 

significantly after the implementation of the OSA. This follows the overview presented in 

table 4 and what we discussed under our results of table 15.1, in terms of increased number of 

destinations offered, in the empirical analysis. By having a higher real GDP and hence more 

disposable income, people would be more willing to travel, causing higher demand for 

passenger tickets and increasing number of destinations offered.  

Morandi et al. (2014), found that the OSA had a negative impact on the number of EU – U.S. 

connections. This is in great contrast to our results. For all EU hubs considered in the 

analysis, we find that the OSA had a significant positive impact on the number of U.S. 

destinations offered. Morandi et al. explain that this could be due to the lack of new entry 

(Morandi et al., 2014, p. 326). Recall that they study a time period that is largely affected by 

the global financial crisis. Hence, expanding their route network was likely undesirable for 

airlines during this downturn in the economy due to less demand. In fact, our descriptive 

presentation of the data shows that the market share of the dominant alliance at CDG-JFK 

and LHR-BOS does not decrease until after 2010. This suggests that a response to the OSA 

was delayed, possibly due to the recession.  

Throughout this thesis, we have viewed increased competition in the form of more     

destinations and passenger traffic as positive. This is based on the economic theory of 

efficiency presented in the theory section of the thesis, and the fact that the aim of the OSA 

was to impose more competition on the transatlantic market. From the theoretical economic 

perspective, we know that more competition may provide consumers with more options due 

to increased quantity, which again may result in lower prices and higher consumer welfare. In 

recent years however, a contradictory view has developed. Concerns have been raised 
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regarding the environmental impact of the increasing aviation activity. This means that our 

thesis faces an ethical dilemma where there is a tradeoff between consumer welfare and 

environmental concerns. Although our thesis is an economic research which is theoretical by 

nature, it is important to address this conflict as it illustrates that the OSA does not only bring 

economic benefits but may also cause negative externalities.  

 Limitations 

Throughout this thesis, we have faced problems and limitations to our model selection that 

deserves to be mentioned. We will mention the most predominant weaknesses and limitations 

in terms of our model selection.  

The data available from the T-100 database contained the number of passengers for each 

airline on a given route and the destinations served by each airline from a given airport. Thus, 

the analysis required us to manually count the number destinations and calculate the market 

shares and HHI. We also had to calculate the average GDP between the EU and U.S., which 

included converting euros into dollars using purchasing power parity. This work is not only 

time consuming, but manual calculations will always be a potential source of error. 

Through our work with the empirical analysis, we observed that the significance and model 

adequacy vary across different lag lengths and trend terms. Suggested lags varied across our 

route segments and models, and we decided to choose the number of lags that was necessary 

to make our model robust. These decisions were however based on the selection criterions 

described in the methodology. We mainly base our choice of whether to include a trend term 

or not on the KPSS test together with the model diagnostic tests. For most cases, we found no 

evidence of a deterministic trend in the KPSS tests. Thus, we did not include a trend term in 

the model. This also resulted in the best results with respect to the assumption of 

autocorrelation. The exception was model 1 in the MAD-JFK route segment, where we got an 

autocorrelation problem. The problem was corrected for by including a trend term. However, 

this indicates that the model adequacy may be dependent on the choice of lag length and the 

interpretation of the trend.  

As discussed in our VECM results, the Jarque Bera test suggests that we face normality 

problems in some of the variables. This may indicate model deficiencies, such as structural 

breaks. It is normal that this test may indicate non-normality with small data samples and 

suggests a limitation of our model selection. Although it is a limitation, non-normality will 

not have implications on the validity of the VECM as the diagnostic test for autocorrelation is 
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far more important in this model. Furthermore, in appendix B, we see that the normality plots 

of the residuals from each model suggests no large deviations from the normality assumption.  

As mentioned, structural breaks and shocks may be a reason for the non-normality we 

observe. The airline market is prone to suffer from shocks like the attacks of 9/11, the global 

financial crisis, and most recently, the covid-19 pandemic. Our model may fail to single out 

the effect of these kind of shocks. Thus, for further research it would be interesting to 

examine how these shocks have impacted the passenger traffic and the number of 

destinations offered, and whether they affect the procompetitive effects of the OSA.  

By using the same approach as our thesis, it would also be interesting to analyze the same 

effects on other route segments, and possibly compare interhub and non-interhub route 

segments. This to see whether the OSA has affected the two market types differently or not.   
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10 Conclusion 
The aim of this thesis was to analyze the effects of the OSA on passenger traffic and the 

number of U.S. destinations offered. We can now answer the following research question that 

we previously defined: 

What are the effects of the EU-U.S. Open Skies Agreement on passenger traffic and the 

number of U.S. destinations offered in the transatlantic market?    

Our research shows that the OSA has had no significant impact on the passenger traffic on 

three interhub routes. This indicates that the OSA did not result in a significant growth in 

passenger traffic in terms of number of passengers. This also follows Pitfield’s (2011) 

findings. He found that any change in passenger traffic had more to with the “ceteris paribus” 

effect. This thesis also shows that there is a significant long-run relationship between the real 

GDP and passenger traffic for two of the three route segments considered. Thus, we can draw 

a similar conclusion as Pitfield (2011), that the growth in passenger traffic has more to do 

with the overall economic conditions. Since passenger traffic did not increase in these 

interhub markets, it also supports Brueckner’s (2001) concerns regarding collusive 

agreements. Although the market share of the dominant alliances has decreased with time, the 

impact of the OSA has still been limited on these interhub markets. Based on these findings 

and the above discussion of this thesis, a potential drawback of the OSA may be that it 

provides possibilities for antitrust immunity for alliance members, while aiming to impose 

increased competition in the transatlantic market.   

Our findings show that the OSA did have a significant and positive impact on the number of 

U.S. destinations offered from CDG, MAD and LHR. This is contradictory to the results of 

Morandi et al. (2014). They identified the lack of entry by new airlines as the main reason for 

their result. However, we consider a larger timespan after the implementation of the OSA. 

Our data suggests that the response to the OSA was not immediate, possibly due to the 

financial crisis. Although the OSA did not have a significant effect on passenger traffic in the 

interhub markets we considered, we can conclude that it has brought procompetitive effects 

in terms of more U.S. destinations offered from CDG, MAD, and LHR. 
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Appendices 

Appendix A: First-differenced time series plots 
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Appendix B: Normality plots 

CDG-JFK, model (1):     CDG model (2): 

 

MAD-JFK, model (1) :    MAD model (2): 

 

LHR-BOS, model (1) :    LHR model (2): 
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Appendix C: Stata do-file 

 

 

  

dfuller D1.lnGDP, lags(#) trend // # = no. of lags from varsoc //
dfuller D1.lnAllianceUSdest, lags(#) trend // # = no. of lags from varsoc //
dfuller D1.lnAllianceRoute, lags(#) trend // # = no. of lags from varsoc //
dfuller D1.lnDestinations, lags(#) trend // # = no. of lags from varsoc //
dfuller D1.lnPassengers, lags(#) trend // # = no. of lags from varsoc //
 //ADF for first-differences//
dfuller lnGDP, lags(#) trend // # = no. of lags from varsoc //
dfuller lnAllianceUSdest, lags(#) trend // # = no. of lags from varsoc //
dfuller lnAllianceRoute, lags(#) trend // # = no. of lags from varsoc //
dfuller lnDestinations, lags(#) trend // # = no. of lags from varsoc //
dfuller lnPassengers, lags(#) trend // # = no. of lags from varsoc //
/* Augmented Dickey-Fuller (ADF) test */

varsoc lnGDP
varsoc lnAllianceUSdest
varsoc lnAllianceRoute
varsoc lnDestinations
varsoc lnPassengers
/* Lag order selection for indiv. variables */

kpss lnGDP
kpss lnAllianceUSdest
kpss lnAllianceRoute
kpss lnDestinations
kpss lnPassengers
/* KPSS test */

tsline HHI 
tsline lnGDP
tsline lnAllianceUSdest
tsline lnAllianceRoute
tsline lnDestinations
tsline lnPassengers
/* Time series plots */

replace OSA = 1 if tin(2008q2,2018q4)
gen OSA =0
        // Dummy //
gen lnGDP = ln(AvgGDP)
gen lnAllianceUSdest = ln(AllianceUSdest)
gen lnAllianceRoute = ln(AllianceRoute)
gen lnDestinations = ln(Destinations)
gen lnPassengers = ln(Passengers)
        // log variables //
/* Generate variables */

tsset qdate
format qdate %tq
gen qdate = quarterly(Date,"YQ") //quarterly data//
/* Declare time series */

/* Master thesis do-file */
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pnorm v // normality plot model(2) //
pnorm e // normality plot model(1) //
predict v, res //residuals model(2) //
predict e, res // residuals model(1) //
vecnorm, jbera // Jarque-Bera test for normality //
veclmar, mlag(#) // test for autocorrelation //
/* Model diagnostics */

vec lnDestinations lnAllianceUSdest lnGDP, lags(#) si(OSA) rank(#) // treating OSA as exogenous // 
vec lnPassengers lnAllianceRoute lnGDP, lags(#) si(OSA) rank(#) // treating OSA as exogenous //
/* Vector error correction model (VECM) */

vecrank lnDestinations lnAllianceUSdest lnGDP, lags(#) si(OSA) max // treating OSA as exogenous //
vecrank lnPassengers lnAllianceRoute lnGDP, lags(#) si(OSA) max // treating OSA as exogenous //
/* Johansen cointegration test */

varsoc lnDestinations lnAllianceUSdest lnGDP, exog(OSA) maxlag(5) // treating OSA as exogenous // 
varsoc lnPassengers lnAllianceRoute lnGDP, exog(OSA) maxlag(5) // treating OSA as exogenous // 
/* Lag order selection for models */
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Appendix D: Reflection note 1 

Nyhus, Espen 

 
Main findings 

This master thesis has been an empirical research of the effects of the 2008 EU – U.S. Open 

Skies Agreement (OSA) on the competition in the transatlantic airline market. There are many 

different markers of competition in the airline industry, but we focused on increased quantity. 

More specifically, passenger traffic and the number of U.S. destinations offered from EU 

airports. The thesis takes a time series approach to empirically test effect of the OSA. Included 

in the model are also variables to measure the effect of the real GDP and the market share of 

the dominant alliance. The reason is that the service level in the transatlantic market is likely 

to affected by the overall economic conditions, and the market power of the dominant alliance. 

The research required considerable processing of the data. The data on the passenger traffic 

and the number of U.S. destinations was relatively easily accessible from the U.S. department 

of transportation’s database. From the data we had to identify every airline, and the alliance to 

which they belong. Then we were able to find the dominant alliance, and their market share. 

This process was repeated for every route segment. Once the data was gathered, we assessed 

the stationarity of every variable and reached the conclusion that there was evidence of non-

stationary variables. These variable were integrated of order I(1) and cointegrated based on the 

Johansen cointegration test. On the basis of these results, we found that a vector error correction 

model (VECM) was the most appropriate time series model. With this model, we find the short-

run impact of the OSA, real GDP, and the market share of the dominant alliance, in addition 

the long-run relationship between passenger traffic and the number of U.S. destinations offered. 

The results show the OSA did not have a significant impact on the passenger traffic on the 

routes considered. This means that the OSA has not brought procompetitive effects in the form 

of increased passenger traffic on these interhub routes. The results are in line with Brueckner’s 

(2001) theory that airline alliances may cause anticompetitive effects. However, the results 

showed that the OSA did have a positive and significant effect on the number of U.S. 

destinations offered. Thus, although it has not caused passenger traffic to increase on the 

interhub routes, it has created procompetitive effects in the form of more destinations. This 

may indicate that new airlines may choose to operate different routes, than entering the routes 

where the alliance members have a large market share. In addition, the OSA makes it easier for 

existing airlines to expand their route networks with new destinations.  
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International 

The airline industry is international by nature, and our research reflects this by looking at how 

an international deregulation agreement affects the passenger traffic and the number U.S. 

destinations offered from large European airports. It is not only international deregulations and 

economic laws that affect the airline market. We include a variable that is an average of the 

European and the American GDP to capture the overall economic condition. That way, the 

international economy is directly included in our research. For many of the markets considered, 

we found that the average GDP level contributed significantly to the explanation of the 

passenger traffic and the number of destinations. Thus, international trends and shocks in the 

economy has an effect on the demand for air travel. For instance, for all markets in our research, 

passenger traffic did not increase during the global financial crisis. In addition, there may be 

international shocks that affects the airline industry such as the attacks of 9/11, “Brexit” and 

the recent covid-19 pandemic.  

Because of the international nature of the airline industry, the research on the subject also spans 

across the world. Thus, our thesis is a contribution to a international field of research on 

competition and market dynamics in the airline industry. This makes our thesis also of interest 

internationally.  

Innovation 

Innovation is a key concept in the aviation industry and it has in many ways been decisive in 

how airlines compete. Much of the competition is due to innovations in technology as well as 

innovations in organizational structure, cost-savings, etc. Our thesis mentions that one of the 

early and significant innovations to the international airline market, was the hub-and-spoke 

system that was developed in the 1990’s. This was a new way of organizing an airline to 

improve efficiency, expand its reach and save costs. Then in the early 2000’s, airlines began to 

cooperate operations between their respective hubs. This coordination of activity was very 

much the beginning of the formation of airline alliances. Our thesis incorporates airline 

alliances by including it as a variable in our long-run models. The airlines and airline alliances 

also started with “frequent flyer programs”, which provides benefits to frequent customer in 

order to improve customer loyalty. More recently, we have seen the introduction of low-cost 

carriers (LCCs) to the international airline market, including the transatlantic market. This 

innovating take on air travel, typically includes airlines offering “no-frills” tickets at a low 

price, and charging extra for additional services. LCCs often operate one or a few fuel-efficient 

aircraft types, to reduce maintenance and operating costs. This caused pressure on existing 
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airlines since the new airlines could offer the same core product, travel from a to b, but at a 

significantly lower cost. This is one of the key aspects of our thesis, because the OSA opens 

up for LCCs to enter the transatlantic market. Hence, we expected passenger traffic and the 

number of destinations to increase as an effect of the OSA.  

Innovation is not only an important aspect in our topic, but it is also central for our 

methodology. Modelling with non-stationary variables is an innovation to time series analysis, 

and the field has witnessed a lot of improvements in recent time. Engle and Granger (1987), 

recognized that a long run relationship between non-stationary variables may exist. They 

developed a two-step approach to sufficiently make estimations with non-stationary variables. 

However, numerous weaknesses were identified to this approach, where one of the most 

important one was that it can at most examine one cointegrating relationship. In reality 

however, and as we saw in our thesis, multiple cointegrating relationships may exist. This issue 

was solved by Johansen (1992), where he allows for more than one cointegrating relationship 

to be analyzed. The result was an error correction model based on the vector autoregressive 

model (VAR), called vector error correction model (VECM). This is the methodology that we 

use in our thesis. Thus, our research compliments a relatively new field of time series research. 

In addition, we are using an extension to the VECM by including an exogenous dummy 

variable. Although there has been multiple research with this approach, we found little 

empirical research on the aviation industry using this methodology.  

Responsibility 

Our thesis touches upon the subject of collusive behavior between firms. This is a subject that 

has caused a lot of debate, but the general take is that collusion is not allowed. This is protected 

by antitrust laws. However, our thesis mentions that the OSA allows for immunity from these 

antitrust laws. This creates a potential ambiguity problem with the agreement, because it may 

create anticompetitive behavior, whilst the aim of the agreement was to impose more 

competition. It also creates an ethical concern, because the anticompetitive effects of a 

collusive agreements can harm consumer welfare, and prevent markets from becoming 

efficient.  

Another ethical dilemma that arises in our thesis, is between the economic welfare theory and 

environmental policy. On the one hand economic theory views increased competition as 

positive because it increases consumer welfare by increasing the quantity offered, which in 

turn lowers the price. On the other hand, increased air traffic has raised concerns due to its 
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environmental impact. Environmental matters have received increased attention in recent 

years, and many industries have experienced increased pressure to operate sustainable and 

responsible. The aviation industry is no exception. Although, aircrafts have become more fuel 

efficient and environmental friendly, it still imposes negative externalities. Since our thesis is 

an economic research and is based on theoretical principles, increased passenger traffic is 

viewed as positive. In addition, we are testing to see if the agreement fulfills its aim of imposing 

more competition on the market. However, it is important to emphasize that the increased 

competition in the airline industry also creates negative externalities.   

Conclusion 

This reflection note has discussed our master thesis with respect to the three concepts 

international, innovation and responsibility. The airline industry is international by nature and 

is prone to suffer from international shocks and disturbances. This means that the empirical 

research on the field also spans across countries. Innovation is a key aspect in gaining a 

competitive advantage in the airline industry, and our thesis mentions some of the innovations 

that has defined much of the market dynamics. The methodology of the research itself is also 

contributing to a relatively recent method of analyzing time series data. From what we 

experienced, little of the previous literature on the aviation industry has taken this scientific 

approach. Our thesis also addresses an ethical dilemma that arises. From the economic welfare 

theory, increased competition is viewed as positive because the markets are getting more 

efficient. Recently however, increased concerns have been made about the environmental 

impact of air travel. Increased passenger traffic and number of U.S. destinations will thus not 

only increase total welfare, but also bring negative externalities.  

 

Kristiansand, 31.May 2020  

 

__________________ 

Espen Nyhus 
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Appendix E: Reflection note 2 

Mossestad, Jonas 

 

This reflection note presents the objective and findings of the master thesis we have written. 

In addition to this, it is written to create a link to the three themes of internationalization, 

innovation, and responsibility to the topic we have worked on. Internationalization, 

innovation, and responsibility are key concepts in the School of Business and Law’s mission 

statement and strategy and are therefore important to consider when evaluating our work in 

this reflection note. Along with the master thesis, these key concepts have also been highly 

emphasized in the learning outcomes for the whole study program of business administration 

at the University of Agder and are therefore natural to consider at the ending part of our 

master program. 

Main findings 

This thesis had the objective to analyze the procompetitive effects of the EU – U.S. Open 

Skies Agreement to investigate if it has fulfilled its aim. We have investigated this by using 

quarterly times series data to analyze the effect of the agreement on passenger traffic and 

number of U.S. destinations offered on three interhub routes. By using advanced 

econometrics and time series data, we found that the agreement has not had any significant 

impact on passenger traffic on our unit of analysis on any of the considered interhub routes. 

This means that our findings suggest that passenger traffic have not increased because of the 

EU – U.S. Open Skies Agreement. We also found that the U.S. destinations offered have 

increased because of the EU – U.S. Open Skies Agreement positively and significantly on all 

the unit of analysis considered. This further means that our findings suggest that the U.S. 

destinations offered have increased because of the agreement. It is important to highlight that 

we have only considered interhub routes and therefore must consider this when evaluating 

our results. This is further discussed in our discussion of the thesis. We have also mentioned 

that it would be of interest to consider other routes that are not interhub routes, to see if the 

agreement has changed the competition, hence, passenger traffic and U.S. destinations 

offered, differently. 

Although there have been several researchers considering the topic of bilateral agreements, 

airline alliances and the broad topic of the airline industry as a whole, there have been few 

researchers considering advanced econometrics and time series regression in their discussions 

of procompetitive effects. This made us more interested. We also wanted to use our 
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knowledge from Industrial Organization and econometric courses in practice to broaden our 

understanding in a practical study.  

International 

The concept of internationalization have a direct connection with our topic of an empirical 

analysis of the effects on competition, regarding the EU – U.S. Open Skies Agreement of 

2008. The airline industry we consider in our thesis are international by nature, especially 

since we consider the computational effects of the transatlantic airline market regarding the 

agreement of 2008. By considering airports and markets that operate all over the globe, our 

thesis contributes to the concept of internationalization in terms of international behavior in 

passenger traffic and airline industry competition by analyzing three different airline 

segments operating in France, Spain and England. These airports and route segments may 

react to the concept of internationalization, as more and more passengers travel from one 

country to another.  

In our thesis we have introduced several well-known researchers on the topic of the airline 

industry. Pitfield, Bruckener, Button, etc. These researchers have also highlighted that this 

industry is of interest to several countries all over the globe. That is, it is naturally of interest 

internationally, considering competitive effects that can influence other countries as well as 

the countries where the airports originate. Since the topic is naturally of international interest, 

there will be many actors that can react to our suggested findings in the literature, making our 

contribution more relevant for other researchers. By considering the airline industry and 

relevant time series approaches in our analysis, we believe that other researchers can benefit 

from our study worldwide. 

Innovation 

Innovation is a concept that drives much of the competition in the airline industry today. 

Therefore, it is also a highly relevant concept in our master thesis. An airline can choose to 

operate in different ways by either considering a hub-and-spoke model, enjoying antitrust 

immunity, operate in an alliance, non-alliance or operate as a low-cost carrier (LCC). All 

these approaches to operate, needs to be looked upon as different innovations in this market. 

This reflects the competition differently according to what type of innovation strategy the 

airline focuses on. For example, the entrance of low-cost carriers in the airline market has 

increased the competitiveness of the airline industry, causing high specialization to segments 

and differentiate from their competitors. This innovation strategy has caused a redefinition of 
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their business models, simplifying their organization, and focusing only on their profitable 

strengths. With such measures, companies would emphasize upon innovation as their way to 

add value to the company.  

Although our topic is highly related to innovation, we have not been that innovative in 

collecting data directly from the airports or route segments considered, because it is very 

restricted and hard to get hands on. For that reason, we used the T-100 database from the U.S. 

department of transportation, which offered data from 1990-2019. This way of attracting data 

may have ways of improvements. However, since much of the data are collected by private 

companies, it costs a lot to obtain and will therefore be expensive to buy. To improve this 

collecting of data, a possibility would be to hand out questionnaires to the relevant airports. 

That way, we could attract data directly from the source, which we could further analyze. 

However, we would most likely have had a problem of too little data and low hit-rate on our 

questionnaires because of the COVID-19 pandemic. Furthermore, we would most likely not 

have retrieved the same detailed data and not nearly as much data. This would again have 

made our analysis hard to conduct, because of the need for a lot of data on a long time period. 

We believe that our methodology by using Johansen’s three-step procedure and formulating 

two VEC models to empirically test the procompetitive effects, have explored other ways to 

conduct a thorough analysis for this well-known industry. Previously researchers have not 

implemented the same approach as we have, to analyze the procompetitive effects. Indeed, 

other time series approaches have been conducted as we have discussed in the literature 

review, but not using VECM. 

To implement and manage innovation processes in a complex international setting can be 

difficult to highlight in a master thesis. We believe we have managed this by including an 

econometric approach that we have not seen anybody else use in this international industry. 

We have also been critical, finetuning our work by asking for guidance from our supervisor 

along with thorough analyzing of other relevant papers. 

Responsibility 

When analyzing the procompetitive effects throughout this thesis, we have viewed increased 

competition in the form of more destinations and passenger traffic as positive. We believe 

that this is positive for the consumers, capturing higher consumer welfare. However, as we all 

know, the airline industry plays a huge role regarding environmental issues of increased 

emissions. This means that our thesis faces an ethical dilemma where there is a tradeoff 
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between consumer welfare and environmental concerns. It is important for us to highlight that 

this thesis is an economic research, however, it is important to address this issue. As we 

discuss, this environmental issue has further been considered in phase 2 of the Open Skies 

Agreement. Because of collinearity issues, we decided to analyze the main agreement of the 

Open Skies Agreement to describe the effects of competition. Thus, it can be of interest to 

conduct a similar research by mainly considering the more environmentally friendly phase 2. 

Another ethical dilemma for this topic is that the agreement allows alliance members to enjoy 

antitrust immunity. This means that the competition will be fierce for new entrants in the 

industry or may even deter them from entering. This may be a potential drawback of the 

agreement.  

Conclusion 

As I have discussed, all the three concepts of internationalization, innovation and 

responsibility are highly relevant in analyzing the transatlantic airline industry. 

Internationalization have been the most prominent concept of the three, as it is an 

international topic by nature. Furthermore, through my reflection, I have learned that 

innovation plays an important role by considering the different ways an airline can operate. 

The industry is also capable to quickly respond to consumer demands, providing innovative 

solutions to deliver either flexible tickets, better service, lower costs etc. Last, but not least, 

responsibility have become more important than ever in this industry. The industry faces 

ethical and environmental issues that needs to be considered. In our investigation, phase 2 of 

the agreement depicts some of these challenges. This phase would be an interesting 

agreement to analyze in the future, contributing to our results regarding to the environmental 

issues of high emissions in the industry. 

 

Kristiansand, 31.May 2020 

  

____________________ 

Jonas Mossestad  

 




