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Abstract

The growing dependence on wind power in recent years has increased the demand for reliant
wind turbines. The pitch system of a wind turbine is one of the components with the highest
failure rates. The most common way of diagnosing pitch system faults is currently through
vibration analysis, which requires the installation of vibration sensors. This thesis presents
a non-intrusive method for fault detection of the planetary gearbox in an electric wind tur-
bine pitch system. The method is based on using the three-phase motor currents from the
induction motor of the pitch system to calculate a DC offset using Extended Park’s vector
approach (EPVA). Basic statistical formulas are used to extract features from both the time-
and frequency-domain of the DC offset, where fast Fourier transform (FFT) is used to find the
frequency-domain values. These features, along with the amplitudes of the characteristic fre-
quencies of the planetary gearbox and its bearing, are used in the principal component analysis
(PCA) to generate features that are used to train a support vector machine (SVM) classifier.
This method is validated by using labeled data from the induction motor of a pitch system test
bench to classify three health conditions. One of the health conditions are a healthy system,
and the two other are artificially seeded faults in the system’s two-stage gearbox. These faults
are a partially cracked tooth in one of the first stage planet gears, and an outer race fault in
the bearing at the input shaft. The results indicate that the proposed method is capable of
classifying each of the three health conditions.
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1 Introduction

Wind energy is one of the fastest-growing sources of renewable energy, due to its wide avail-
ability, low environmental impact, and low operating cost. The global wind energy capacity
exceeded 650 GW in 2019, according to the annual report on global wind industry by the
Global Wind Energy Council [1]. This report further states that in 2019, a total of 60.4 GW
of wind energy capacity was installed globally, which was an increase of 19% compared to 2018.
As the size and capacity of wind turbines (WTs) are steadily increasing, the downtime of each
turbine has substantially higher consequences and associated costs. A survey conducted by
the ReliaWind program [2], collected data on the downtime and maintenance of 350 WTs. The
study found that 15% of all failures were pitch system related, and further that these faults
were responsible for about 20% of the total downtime, as depicted in Fig. 1.

Fig. 1: Chart showing the distribution of cumulative downtime of 350 WTs.

Fault diagnosis based on vibration signals is currently the most commonly studied technique
for fault diagnosis of gearboxes, as vibration signals represent the dynamic behavior of ro-
tating machinery directly [3, 4, 5]. However, this requires vibration sensors to be installed,
which adds to the complexity of the system, and introduces another component that has the
potential to fail [6]. A non-intrusive method that has gained popularity in recent years is
motor current signal analysis (MCSA). This method can utilize the current-sensing ability of
the variable frequency drive already installed in the system, removing the need for additional
components [7]. This method has been proven to be a reliable method for detecting faults on
the induction motor (IM) of the pitch system, whereas using this method for fault detection
of other components of the system is still in the early phases of research [8].

Fault signatures in the motor current produced by mechanical faults are orders of magnitudes
smaller compared with fault signatures of vibration sensors. This has led to the rise in pop-
ularity of using machine learning to identify the minuscule changes in the current spectrum.
In recent years, support vector machine (SVM) classifiers have grown in popularity due to its
good classification performance and computational efficiency. For this reason, have it been
extensively used in classifications of induction motor faults, as well as other components [9].

1
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1.1 Problem definition

This thesis considers fault detection of the first stage of a two-stage planetary gearbox, which
is a part of a pitch system test bench. Calculations will be based on current-data from the
induction motor that supplies mechanical power to the system. This current-data is labeled
with the health condition of the gearbox. Three health conditions will be analysed, being an
outer race bearing fault, chipped tooth of the planet gear, and a healthy system. An SVM
classifier will be used to attempt to classify each condition correctly.

Based on this, has the following goal been established:

• Determine whether or not MCSA can be used in conjunction with an SVM classifier to
correctly classify faults in the two-stage planetary gearbox of a pitch system test bench.

Some sub-goals were established as a method to reach the main goal:

• Attempt to find good discriminatory features for classification.

• Determine if the characteristic frequencies of the planetary gearbox and the bearing can
be observed in the motor current.

• Attempt to identify artifacts in the current-spectrum that have the potential to indicate
the gearbox health condition.

The method for achieving these goals are laid out in the methodology section.

2
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1.2 Thesis structure

In this section, a summary of each section in the thesis will be presented.

• Section 1 - Introduction
This section presents an overall background for the proposed problem in this thesis.
Further on, the problem statement for this thesis is presented.

• Section 2 - Theoretical background
This section starts with a literature review to gain a scientific perspective on relevant
research on the subject, followed by a fundamental theoretical background for the thesis.
The theory describes the machine learning techniques used in his thesis. Characteristic
fault frequencies and statistical features were also presented.

• Section 3 - Method
This section describes the methodology of the thesis. The laboratory setup the data was
collected from is presented. The three health conditions of the planetary gearbox are
presented. The architecture of the data processing system is also described, along with
the SVM classifier.

• Section 4 - Results and Discussion
In this section, the results from the analysis and the fault diagnosis are presented. First, a
preliminary analysis was performed. The findings from this analysis were then compared
with the average value of all the samples. Last, the results from the principal component
analysis (PCA) and SVM are presented. The results from all these analyses are also
discussed in this section.

• Section 5 - Conclusion
In this section, the concluding remarks of the work are presented.

• Section 6 - Further work
In this section, recommendations for further work are presented.

3
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2 Theoretical background

2.1 Literature review

This thesis is an extension of the study by Kandukuri et al. [10], which studied a two-stage
fault detection and classification scheme for electric motor drives in WT pitch systems. In the
first stage of the fault detection and classification scheme, Extended Park’s vector approach
(EPVA) was calculated for each pitch system of the WT. Three characteristic frequencies
(CFs) were calculated along with several statistical features both on time- and frequency-
domain representation of the EPVA, which led to a total of 19 features. It was shown that the
characteristic fault frequency of the bearing was absent in the EPVA. However, the statistical
features were compared across four health conditions, where one of the findings was that the
3rd- and 4th-order moments of the frequency spectrum had substantially higher amplitudes
for a motor with a bearing fault, compared to a healthy one. This showed that statistical
features could be good features for the SVM classifier, which was the second stage of the fault
detection and classification scheme.

Fault diagnosis of a geared drive train system is usually based on vibration monitoring. How-
ever, this can be difficult to implement in planetary gearboxes due to the complexity of the
measured vibration signal. This is caused by the planet’s rotation around the sun gear, and
the varying phase angle [11]. Kar and Mohanty [12] studied MCSA as a replacement for vibra-
tion signature analysis, to detect faults in a conventional operating transmission gearbox, and
to measure its load fluctuations. Higher frequencies of steady current signals were analysed,
where discrete wavelet transform (DWT) was first applied, followed by a fast Fourier trans-
form (FFT) analysis of the decomposed signals. Continuous wavelet transform (CWT) was
also applied for comparison to DWT, where it was concluded that DWT was more effective
than CWT for detecting faults in the gearbox. Hong et al. [13] presented a new time-domain
fault detection algorithm based on MCSA for planetary gear faults. This method combined
fast dynamic time warping (DTW) and correlated kurtosis techniques to process the current
signals data to detect damaged planetary gears and to locate its position. By simulation
and analysis, the results showed that the method provided an effective and easy implemen-
tation of the time-domain approach. In another study, by Zhang et al. [14], the resonance
residual technique was applied for the first time to MCSA to detect planetary gearbox faults.
This approach was applied through both simulations and experiments on an electromechan-
ical drive train, consisting of a motor connected to a load generator through a back-to-back
planetary gearbox. The results from this study showed that the fault indicator, determined
by the approach, was more sensitive to the presence of gearbox faults compared to existing
MCSA-based approaches under different operating conditions. It was also pointed out that
the motor current-signals are complex, weak faults are challenging to identify, and CFs are
hard to extract, from complex components such as planetary gearboxes. Due to these com-
plicated modulation characteristics of the current signal, Suo et al. [15] proposed the use of
EPVA and a demodulation method based on three-phase current transformation for planetary
gearbox fault diagnosis. The proposed method was compared with traditional planetary gear-
box fault diagnosis methods through simulations and experiments. It was demonstrated that
the proposed method could utilize three-phase current signals comprehensively, and extract
modulated weak frequency components effectively. Lu et al. [16] analysed the principle of
using non-stationary stator current signals to detect faults in a multistage gearbox connected
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to a generator in varying speed conditions. Based on this analysis, the CFs of gear faults in
the frequency spectrum of the current signals were identified. An adaptive re-sampling algo-
rithm with fault feature extraction and fault detectors were added to the method to deal with
time-varying frequencies.

Gangsar and Tiwari [17] studied the prediction of mechanical and electrical faults in IMs
by vibration and current monitoring. The investigation concluded that an SVM was able
to successfully predict all mechanical faults with only the use of vibration signals. However,
for an effective prediction of electrical faults, it was more advantageous to use the current
signals alone to perform SVM classifications. Mehala and Dahiya [18] did a comparative
study for IM fault diagnostic analysis. The spectrum was obtained by using FFT, which was
performed on the signal under analysis. However, FFT may give inaccurate results in cases of
non-constant load torque. The paper proposed two other signal processing methods, namely,
Short Time Fourier Transform (STFT) and wavelet transform. In the STFT technique, a
spectrogram was used to estimate the frequency content of a signal. The wavelet transform
showed changes in harmonics amplitude and distribution. Wavelet transform allows signal
representation simultaneously in time- and frequency-domains.

Bearing faults are the main reason for failures in rotating machinery, where early fault detection
is crucial to prevent critical system failures. Senanayaka et al. [19] applied two SVM algorithms
for early detection and classification of bearing faults. The two SVM-classifiers applied were
a linear SVM and a quadratic SVM, where their comparison showed that both classifiers have
high accuracy. In another study, by Singh et al. [20], the detection of bearing faults in a
mechanical system using MCSA was investigated. FFT was first employed for the comparison
between a healthy and defective bearing. CWT was then used for the detection and occurrence
of outer race faults in the bearings through MCSA. For this, six wavelets were considered, out
of which three were real-valued, and the remaining three were complex-valued.
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2.2 Pitch system

The pitch system of a WT is crucial to ensure safe and efficient operation and is often subjected
to varying loads and unfavorable operational environments, which can lead to increased wear
on the system, and eventually, failure. In an electric pitch system, three failures that commonly
occur are control failures, electrical failures on the motor and converter, and mechanical failures
on the gearbox and drive train [21]. While operating, the control system of the WT adjusts the
pitch of the blades to keep the rotor speed within its operating limit. For example, in a high
wind speed area where the rotor speed limit is reached, the pitch can be controlled to keep the
rotor from exceeding its limit. If a failure is detected in one of the critical components of a
WT, the pitch system can act as an aerodynamic brake by pitching the blades to ensure that
the WT automatically stops. The blade pitch control system is essential for WT operation,
as pitching helps enhance energy capture, reducing operation load, stalling, and aerodynamic
braking [22].

The electric pitch drive system consists of six main components: electric motor, converter,
gearbox and drive pinion gear, rotor blade, blade rotary joint, and drive control unit [21]. The
drive control unit receives the desired pitch angle reference from the WT pitch control system,
which then calculates the motor’s drive signal. A pinion is mounted on the output shaft which
meshes with the teeth of the rotary joint of the blade [23]. A three-bladed WT with an electric
pitch system normally has a pitch drive for each blade, mounted in the hub, where each adjusts
the pitch independently [24]. A simplified scheme of the electric pitch system is shown in Fig.
2.

Fig. 2: Three single electric pitch drive mounted to the WT hub [21].
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2.3 Characteristic fault frequencies

Bearing elements in the industry often operate under non-ideal conditions and are exposed to
ambient vibrations, incorrect lubrication, overheating, moisture, shaft overload, misalignment,
etc. Bearings exposed to these conditions may get small defects, such as micro cracks and dents.
These defects may develop into significant flaws, which can generate detectable vibrations and
increase the noise level. Bearings are an important component in rotary machines as they
reduce the friction between moving parts, and can reduce the axial or radial loads on the
shaft. Bearing faults can be classified as inner raceway, outer raceway, ball defect, and cage
defect, which are the main sources for machine vibration [25]. One common way to detect the
type of bearing fault is to see if the characteristic fault frequencies are present in the frequency
spectrum of the current or the vibration signal. The CFs are given by:

fbpir =
Nb

2
(1 +

Bd
Pd
cosθ)fin (1)

fbpor =
Nb

2
(1− Bd

Pd
cosθ)fin (2)

fbsf =
Pd
2d

(1−
B2
d

P 2
d

cos2θ)fin (3)

fftf =
1

2
(1− Bd

Pd
cosθ)fin (4)

where fbpir is the ball pass inner race fault frequency, fbpor is the ball pass outer race fault
frequency, fbsf is the ball spin frequency and fftf is the fundamental train frequency. fin is
the input shaft frequency, Nb is the number of rolling elements in the bearing, Bd is the ball
diameter, Pd is the pitch diameter of the bearing and θ is the contact angle.

The CFs of the sun gear (fs1), carrier plate (fc1), fundamental gear mesh (fm1) and planet
gear (fp1) of a single-stage planetary gearbox are defined in Table. 1. zs and zr are the number
of gear teeth on the sun gear and the ring gear respectively, and Np is the number of planet
gears.

Table 1: Characteristic fault frequencies of a planetary gearbox.

Parameter Value

Sun gear (s1) fs1 =
Npzr

(zs+zr)
fin

Carrier plate (c1) fc1 = zs
zs+zr

fin

Fundamental gear mesh fm1 = zrzs
zs+zr

fin = zrfc1

Planet gear (p1,i, i = 1, 2, 3) fp1 = 4zszr
z2r−z2s

fin = 4zr
zr−zs fc1

These equations are also valid for a two-stage planetary gearbox. However, the frequency of
the first stage planet carrier fc1 replaces the shaft frequency fin on the second stage.
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2.4 Statistical features

Determining the characteristic features of a signal is a type of feature extraction, which is an
essential preprocessing technique used for fault diagnosis. Motor currents can be contaminated
by inverter harmonics and exogenous disturbances from the power supply, which may cause the
diagnostic decision not to be reliable [10]. Statistical features may be extracted additionally
to the CFs for more reliable fault diagnosis. The statistical features can be extracted from
current and vibration signals, and are often calculated on both the time- and frequency-
domain. Some common time-domain features are RMS (t1), standard deviation (t2), variance
(t3), 3rd order central moment (t4), skewness (t5), kurtosis (t6) and crest factor (t7). Similar
statistical features can also be extracted from the frequency-domain (f1 − f7). Equations of
these statistical features are summarized in Table 2.

Table 2: Statistical features derived from the time-domain and frequency-domain of signals.

Time-domain Frequency-domain

t1 =
√∑N

n=1x(n)2/N f1 =
√∑K

k=1s(k)2/K

t2 =
√∑N

n=1(x(n)− x)2/N f2 =
√∑K

k=1(s(k)− s)2/K

t3 =
∑N

n=1(x(n)− x)2/N f3 =
∑K

k=1(s(k)− s)2/K

t4 =
∑N

n=1(x(n)− x)3/N f4 =
∑K

k=1(s(k)− s)3/K

t5 =
∑N

n=1(x(n)−x)3
(N−1)t32

f5 =
∑K

k=1(s(k)−s)3
(K−1)f32

t6 =
∑N

n=1(x(n)−x)4
(N−1)t42

f6 =
∑K

k=1(s(k)−s)4
(K−1)f42

t7 = max(|x(n)|)
t1

f7 = max(|s(k)|)
f1

where x(n) is the signal time series, where s(k) is the frequency spectrum,
n = 1, 2, ...N and x is the mean. k = 1, 2, ...K and s is the mean.

Moments are defined as the specific quantitative measure of the shape of a function. If this
function is a probability distribution, the second-order central moment of the distribution is
known as variance, which is a measure of how far each value in the data set is from the mean.
Standard deviation is a measure of how far the signal fluctuates from the mean and is simply
the positive square root of the variance. The standard deviation of current measurements
only measures the AC portion of a signal. The RMS value measures both the AC and DC
components, so if a signal has no DC components, the RMS value is identical to the standard
deviation. The crest factor corresponds to the ratio between the RMS value and the peak
value of a signal. Central moments normalized by the standard deviation raised to the order
of the considered moment is known as standardized moments [26]. The 3rd order standardized
moment, usually referred to as skewness, is a measure of symmetry, or more precisely, the lack
of symmetry of a signal. The 4th order standardized moment, also referred to as kurtosis,
is a measure that describes the shape of a distribution’s tail relative to the tail of a normal
distribution.
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2.5 Extended Park’s vector approach

The traditional Park’s Vector Approach (PVA) relies on the monitoring of the three-phase
currents (ia, ib, ic) of the motor. By performing a Park transformation, the time-domain
components of a three-phase system in an abc reference frame is converted to direct and
quadrature (dq) components in a rotating reference frame, as shown in Fig. 3. The trans-
formation converts AC signals into DC signals, which reduces the computational effort and
simplifies control design and analysis of three-phase machines. The advantage of using the
PVA is that sinusoidal signals with angular frequency will be seen as constant signals in the
dq reference frame.

Fig. 3: The two reference frames in a Park’s transformation.

The motor current’s Park’s vector components, id and iq, are calculated by:

id =

√
2

3
ia −

√
1

6
ib −

√
1

6
ic

iq =

√
1

2
ib −

√
1

2
ic

(5)

The Extended Park’s vector approach relies on the spectral analysis of the AC level of the PVA.
Under healthy conditions, the EPVA signature will be clear from any spectral component, that
is, only a DC value is present in the current Park’s vector approach [27]. The modulus of the
quadrature axis current-space vector, where ip is a DC offset under healthy conditions [28],
the EPVA is given by:

ip = |id + jiq| =
√
i2d + i2q (6)

Under abnormal conditions, for instance, in the presence of bearing faults, ip will no longer
be a DC offset, because the EPVA signature will contain spectral components. The EPVA is
beneficial for diagnostics because it automatically eliminates the fundamental supply frequency
fs, which is the major frequency component of the line current [10].
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2.6 Machine learning

Over the years, there has been developed a wide range of different machine learning algorithms
for various applications. There are essentially three types of machine learning algorithms: su-
pervised, unsupervised, and reinforced learning algorithms. Supervised learning is when the
training data is labeled, where an example of this could be blood samples from patients,
where the labels could be cancerous or non-cancerous patients. Two subclasses within super-
vised learning are classification and regression. In regression, an unknown value is predicted
based on trends in the data, and in classification, the class of an unknown data point is pre-
dicted. Unlike supervised learning, unsupervised learning does not have labeled data, and the
goal is to find underlying structures in the data. Two subclasses within unsupervised learning
are clustering and dimension reduction. Dimensionality reduction makes the data more inter-
operable by extracting useful data from large data sets, or by creating new parameters which
are a combination of numerous other parameters. In clustering, the goal is to find parameters
that have similar attributes. In reinforcement, an algorithm is trained by rewarding actions
in an environment to maximize a cumulative reward. An overview of these base types can be
seen in Fig. 4, as well as some typical use cases.

Supervised Learning Reinforecement LearningUnsupervised Learning

Classification

Fraud Detection
Email Spam Detection
Fault Diagnostics
Image Classification

Regression

Risk Assessment
Score Prediction

Clustering Dimensionality
Reduction
Text Mining
Face Recognition
Big Data Visualization
Image Recognition

Biology
City Planning
Targeted Marketing

Gaming
Finance sector
Manufacturing
Robot Navigation
Inventory Management

Fig. 4: Diagram of the three basic machine learning types, as well as their sub types and some use
case examples.

In machine learning are training sets, testing sets, and validation sets common terminology
used to describe the parts of the data and its intended use. The training set is the data used
for training an algorithm, while the testing set is the data often held out of the training set
and used only to validate the algorithm’s performance. The validation set is often a subset of
the training data used to optimize the performance of the algorithm during training.

Overfitting and underfitting are two common challenges during training, where a graphical
depiction of what the terms describe are shown in Fig. 5. Overfitting refers to a model that
fits the training data too well, often resulting from an overly complicated model. When a
model fits more data than it needs, it will start learning from the noise and inaccuracies of
the data set, which will negatively impact the model’s ability to generalize. An overfitted
model has good performance on the training data ,and poor performance on the test set since
the model will memorize the training data instead of learning from it. Underfitting refers to
a model that can neither model the training data nor the new data, which often is a result
of a too simple model. Signs of underfitting is poor performance on the training data and
poor predictions on new data sets. Underfitting is often not discussed as an underfit model
will have poor performance on the training data, making it easy to detect. Overfitting, on the
other hand, is not that easy to detect and sometimes goes unnoticed, which leads to unrealistic
prediction accuracy [29].

11



Fault Diagnosis of Gearbox Based Pitch Drives in Wind Turbines

Fig. 5: Shows an example of underfitting, overfitting and a good fit [30].

2.6.1 Support vector machine

An SVM is a supervised learning model developed by Vladimir Vapnik, and the method
described in this section is derived from his paper on the subject [31]. An SVM is a binary
classifier, meaning that it can only distinguish between two different classes. The classification
of a sample is defined by its position relative to an n-dimensional hyperplane, H, called the
decision boundary, where n is the number of features of the sample. H is defined as the set of
points ~x that satisfies the following equation:

H(~w, b) = ~w · ~x+ b = 0 (7)

where ~w is the n-dimensional normal vector of the plane, and b is the planes offset from the
origin along ~w. Training an SVM is the process of finding the values for ~w that creates the
largest margin between the two classes of samples in the training data, referred to as positive
and negative samples in this section. The separation of the two classes is defined by two
parallel hyperplanes called the marginal planes, as seen in Fig. 6. The marginal planes are
bound by the following equations:

~w · ~x+ b ≥ 1 for positive samples
~w · ~x+ b ≤ 1 for negative samples

(8)

These equations can be combined to get Eq. (9) by introducing a labeling variable, yi, which
is ±1 corresponding to the class of the i-th sample. The equations also exclude any samples
in the training data from being within the marginal lines. However,this can be allowed by
introducing a slack variable, ξi. The variable describes the normal distance of a sample with
respect to its corresponding marginal hyperplane. It only describes the distance of samples on
the wrong side of the marginal planes, as it is limited to be a positive number, which is also
illustrated in Fig. 6.

yi ( ~wi · ~xi + b) ≥ 1− ξi, ξi ≥ 0 (9)
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~w · ~x
+ b = 1

~w · ~x
+ b = 0

~w · ~x
+ b = −1

+1

−1M =
1
‖~w‖

ξ
∗
1

=
ξ1
‖~w‖

ξ
∗
2

=
ξ2
‖~w‖

Fig. 6: Illustration showing how samples are divided by the decision boundary, where positive samples
are represented by red dots, and negative samples by blue dots.

The margin, which is the distance between the marginal planes, is inversely proportional to
the magnitude of ~w. This gives the following optimization problem, subject to the constraint
in Eq. (9):

min
~w,b,ξ

{
1

2
‖~w‖2 + C

N∑
i=1

ξi

}
(10)

where C is the penalty strength for samples being on the wrong side of the marginal planes. It
determines the balance between the allowed number of misclassifications in the training data
and the magnitude of the margin. A large value creates a stiff model prone to overfitting,
and a small value makes a less accurate model. This parameter is typically tuned using
hyperparameter optimization.

The optimization problem, shown in Eq. (10), is solved with the use of Lagrangian multipliers,
giving the following equation:

max f(α1...αn) =

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

(αiαjyiyj (~xi · ~xj))

subject to:
n∑
i=1

(αiyi) = 0, and 0 ≤ ai ≤ C
(11)

where ai are the Lagrangian multipliers. This equation can be efficiently solved with a
quadratic programming algorithm [32]. It can also be seen that the penalty parameter C
determines the upper bound of the multipliers. This is why the parameter is often referred to
as the box constraint, as it confines the Lagrangian multipliers to be within 0 to C.
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~w =

n∑
i=1

(αiyi ~xi) (12)

Eq. (12), found by taking the partial differential of the Lagrangian function, shows that
~w can be represented as a sum of linear equations dependent on ai. Most of the Lagrangian
multipliers have a maximum of zeros, so ~w is defined by only a few samples. It is these samples
with non-zero Lagrangian multipliers that are referred to as the support vectors. By using
these support vectors, and the definition of the decision boundary, an unknown sample can be
classified by checking the sign of Eq. (13), where ~u is an n-dimensional vector containing the
features of the unknown sample.

n∑
i=1

(αiyi ~xi) · ~u+ b (13)

The method described above is only able to produce a linear decision boundary, making the
classifier unsuitable for classifying non-linearly separable data. However, with the use of a
kernel function, shown in Eq. (14), SVMs can be used to separate non-linearly separable
samples as well. This works by using a transform function, φ(), to transform the samples
from what is referred to as input space into feature space where the points become linearly
separable. The kernel function returns the dot product of the two vectors from feature space
without having to transform the vectors into that space.

K(~xi, ~xj) = ϕ(~xi) · ϕ( ~xj) (14)

One of the simplest kernels is the polynomial kernel shown in Eq. (15), where r is the coefficient
of the polynomial, and d is the polynomial degree.

K(~xi, ~xj) = (~xi · ~xj + r)d (15)

A common kernel to use is the Gaussian kernel, also known as the radial basis function (RBF)
kernel, shown in Eq. (16), where σ is a free parameter. This kernel is commonly used because
it compares the relationship between two points in infinite dimensions. This can be proven by
taking the Taylor series expansion of the function with the kernel scale, γ, set to 0.5, this is
shown in Appendix D. It can then be seen that each term in the Taylor series is equivalent
to a polynomial kernel, shown in Eq. (15), with the parameter r being set to 1 and d ranging
from zero to infinity.

K(~xi, ~xj) = e−γ‖~xi− ~xj‖
2

, γ =
1

2σ2
(16)
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Normally, it is only possible to use an SVM to distinguish between two classes as it is a binary
classifier, however, it can also be used for multiclass classification by using it in an error-
correcting output codes (ECOC) model. ECOC is a way to solve a multiclass problem by
splitting the problem into multiple binary classification problems so that an SVM or another
binary classifier can be used. Different ways of splitting up the multiclass problem have been
devised, with the most common being one vs. all (OVA) and one vs. one (OVO) [33]. Both
methods work by constructing a k-by-l matrix, where k is the number of classes, and l is the
number of SVMs. When using OVO, the matrix is filled such that each column contains one
positive class while the others are negative, as shown in Fig. 7a. When using OVA, the matrix
is filled such that each column contains one positive and one negative class, while the others
are ignored, as shown in Fig. 7b.

l1 l2 l3 l4

k1

k2

k3

k4

(a)

l1 l2 l3 l4 l5 l6

k1

k2

k3

k4

(b)

Fig. 7: Showing the class matrix for (a) OVA and (b) OVO, where the white squares represent a
positive label, the black represents a negative label, and the gray squares are ignored.

The class of a new sample can be assigned by using Eq. (17), where k̂ is the predicted class,
mk,l is the (k, l) element of the matrix, sl is the prediction score of a positive class of SVM l,
and g is the binary loss function. The binary loss function is most commonly a quadratic loss
function [34].

k̂ = argmin
k

L∑
l=1

|mk,l| g(mk,l, sl)

L∑
l=1

|mk,l|
(17)
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2.6.2 Cross-validation

Cross-validation is an important part of training a machine learning algorithm. Cross-validation
ensures that the algorithm is trained on multiple combinations of the data to fully utilize the
variation in the data and to minimize the risk of overfitting. There are multiple ways to
perform cross-validation. One method is leave-one-out cross-validation, which explores all
possible combinations of training and testing data. However, this is rarely a viable option, as
the computational load quickly rises with the number of samples. K-fold cross-validation is a
more common method, where the data is split into sets of samples called folds. This is done
by first randomizing the data and then splitting it into k number of equally sized folds. One of
these folds is treated as the testing data, and the rest is treated as the training data. This is
repeated until all the k folds have been used as a test set. The accuracy of the algorithm is de-
termined by the average of the accuracy of all the runs. The simplest form of cross-validation
is holdout-cross-validation, where the data is simply divided into a test and a training set. A
common ratio is 70/30 for training and testing, respectively [35]. A more versatile approach is
a combination of holdout and k-fold, where the data is first divided into a test and a training
set, and then the algorithm is trained on the training set using k-fold [36].

2.6.3 Hyperparameter optimization

In machine learning are parameters that determine the learning behavior of the model called
hyperparameters. These hyperparameters can affect the model’s accuracy, training time, risk
of overfitting, etc. For an SVM are the hyperparameters, the box constraint, and the kernel
scale. The kernel function and multiclass method are also hyperparameters, but these are
usually determined beforehand and kept constant for the optimization. The most common
optimization strategies are grid search, random search, and Bayesian optimization. Grid and
random searches are simple models that distribute a number of points where the coordinates
of the points correspond to the values of the hyperparameters, as seen in Fig. 8. The SVM
is tested with the hyperparameters of each point, and the one with the highest accuracy is
chosen. Bayes optimization is an adaptive model that distributes points based on the results
of the previous points. This generally gives a better model than grid and random search [37].
It also allows for the optimization of additional aspects such as training time and improvement
rate, as it is an iterative process.

Fig. 8: Figure comparing grid search, random search, and Bayesian optimization. Each point corre-
sponds to a set of hyperparameters. The color of the contour plot is the classification accuracy of the
classifier, with warmer colors indicating higher accuracy [38].
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2.6.4 Principal component analysis

PCA is a data transformation technique commonly used for dimensionality reduction and as a
preprocessing step for machine learning [39]. PCA is performed by separating the features of
the data into principal components (PCs), where the first PC contains most of the variance in
the data, and each succession contains less variance. The PC with the most variance tends to
be the most useful when trying to cluster or classify the data. It can, therefore, be beneficial
to remove the last PCs to reduce the number of features. It is common to exclude the last
PCs, after the cumulative variance of the first PCs reaches 90% [40]. In a strongly correlated
data set, as shown in Fig. 9, where most of the variance is present in PC1, one could remove
PC2 and reduce the data set from a 2-D to a 1-D data set without a substantial loss in useful
information in the data.

x1

x2 PC2

PC1

PC2

PC1

PCA Transformation

Fig. 9: Illustrating the concept of PCA transformation.

All data must be standardized before it is used in PCA, so the mean of all features has to be
centered around zero. This is done to ensure that the first PC describes the direction of most
variance and not just the mean of the data, and to minimize the root mean square [41].

The PCs are found by first creating a covariance matrix denoted as Σ, seen in Eq. (18), where
(Cov) is the covariance between the n features. The variance of each feature can be found
along the diagonal. The eigenvalues and eigenvectors are then calculated for the matrix. The
eigenvalues indicate the magnitude of the spread in the data, and the eigenvectors indicate
the direction. The first PC is the eigenvector with the largest eigenvalue. The eigenvectors
will always be orthogonal to each other since they come from a symmetrical matrix.

Σ =


Cov(x1, x1) Cov(x1, x2) . . . Cov(x1, xn)
Cov(x2, x1) Cov(x2, x2) . . . Cov(x2, xn)

...
...

. . .
...

Cov(xn, x1) Cov(xn, x2) . . . Cov(xn, xn)

 (18)
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2.6.5 Receiver operating characteristic curve

A receiver operating characteristic (ROC) curve is used to compare the true positive rate
(TPR) and false positive rate (FPR) as the criterion changes for binary classifiers. Each point
on a ROC curve represents a threshold and the calculated TPR and FPR of the threshold.
The formulas for TPR and FPR are shown in equations (19) and (20), respectively, where
TP is the number of true positives, FN is the number of false negatives, FP is the number of
false positives, and TN is the number of true negatives. Starting from the right of the ROC
plot, shown in Fig. 10, the threshold is set low, such that all samples are classified as positive.
This means that all the positive samples are classified correctly giving a TPR of 1, which also
means that all negative samples are classified incorrectly giving an FPR of 1. The threshold
is then increased towards the left of the plot until the threshold is set so high that all samples
are classified as negative. This means that all positive samples are classified incorrectly giving
a TPR of 0. It also means that all negative samples are classified correctly giving an FPR of
0. The plot is useful to determine what the decrease in accuracy would be, for example, if it
was more important for the classifier to have a false negative or false positive rate of close to
zero. This is, for instance, useful when classifying a disease where the rate of false negatives
is more important than overall classification accuracy. The curve is also a good indicator of
the overall performance of the classifier. A perfect classifier would have a curve that lies on
the upper horizontal and left vertical axis, and a random guess would produce a curve close to
the diagonal of the plot. This means that the area under the curve (AUC) is a good indicator
of a classifier’s performance [42].

TPR =
TP

TP+FN
(19) FPR =

FP
FP+TN

(20)

Fig. 10: Example of an ROC curve.
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3 Method

3.1 Laboratory setup

A laboratory setup was built to study faults in the motor and planetary gearbox of the pitch
system. A schematic representation of the laboratory setup, where the main components are
the ’pitch drive’, ’load’, and data acquisition equipment, is shown in Fig. 11. This schematic
is based on the research of Kandukuri et al. [43]. The ’pitch drive’ system consists of a 1.1
kW three-phase 4-pole IM, referred to as the pitch motor, which is coupled with a two-stage
planetary gearbox with a gear ratio of 1:48.1. The design parameters of this gearbox are shown
in Table 3. The gearbox has a single-row rolling element bearing of type ’SKF 16012’ at the
input shaft with 17 rolling elements, 77.495 mm pitch diameter, 7.938 mm rolling element
diameter, and a 0° contact angle. For control of the pitch motor, a commercial variable
frequency drive (VFD) with field oriented control (FOC) is connected to the pitch motor.
Three Hall-effect current sensors are connected to the cable from the VFD to the pitch motor
for motor diagnostics. The key specifications for the current sensors are shown in Table A.1
in Appendix A. The ’load’ system consists of a prime-mover, referred to as the ’load motor’,
coupled with a bevel-planetary-helical (BPH) gearbox with a gear ratio of 1:27.1. The BPH
gearbox is coupled with the pitch drive, and is used to apply variable load torque on the pitch
drive. The ’load’ system consists of a 3 kW three-phase 8-pole IM, which is also controlled
using a commercial VFD with FOC. Further specifications for the pitch and load motor can
be found in Table A.2 in Appendix A. The signals from the frequency drives and the signals
from the current sensors were measured with a 6211 National Instruments data acquisition
board (NI DAQ) and logged with a PC running Matlab. A 5 V power supply was used to
supply the sensors, since the current rating of the 5 V output of the DAQ was insufficient to
drive multiple sensors.

Table 3: Parameters of the two-stage planetary gearbox.

Parameter Value
No. of stages 2
No. of planets per stage 3
No. of ring gear teeth (zr) 95
No. of planet gear teeth (zp) 38
No. of sun gear teeth (zs) 16
Gear ratio per stage 6.9375
Overall gear ratio 48.1289
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Fig. 11: A schematic representation of the laboratory setup showing the scaled pitch drive and the
load along with the current sensors.

For condition monitoring of the two-staged planetary gearbox, two artificially seeded fault
conditions and a healthy condition were chosen. One of the artificially seeded fault conditions
was an outer race fault in the bearing at the input shaft, where a 2 mm hole was drilled through
the outer race of the bearing, as depicted in Fig. 12a. An outer race fault was chosen, as it is
more likely for damage to occur on the outer race than the inner race. This is because the inner
race of the bearing is rotating while the outer race is fixed, which causes a centrifugal force
acting on the roller elements, pushing them towards the outer race [10]. The other artificially
seeded fault condition chosen for monitoring was a partially cracked tooth in one of the first
stages of the planet gear, as illustrated in Fig. 12b. This was chosen because planet gears
are among the components with a high failure rate, which also experiences the most complex
motion. Two planetary gearboxes were used for the condition monitoring, one healthy gearbox
where the healthy bearing could be exchanged with the artificially seeded faulty bearing, and
one gearbox with a planet gear fault. These health conditions will be referred to as HLT,
BRG, and PLT for healthy, bearing fault and planet gear fault, respectively.
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(a) (b)

Fig. 12: Shows the artificially seeded fault in (a) the bearing and (b) the planet gear [44].

3.2 Data acquisition

The planetary gearbox with healthy conditions was tested at various steady speeds, from 600
to 1425 RPM at the pitch motor, and constant loads ranging 3 to 83% of the pitch motor
rated load. The tests on the healthy gearbox were performed with a sampling frequency of 20
kHz where the data for each case was collected for a period of 240 seconds.

The two artificially seeded fault conditions, mentioned in Section 3.1, were tested similarly
to the healthy gearbox. The gearbox with bearing fault was tested at various steady speeds,
ranging from 1050 to 1400 rpm at the pitch motor and constant loads ranging from 0 to 50%
of the rated motor load. The gearbox with planet gear fault was tested at various steady
speeds, ranging from 800 to 1400 RPM at the pitch motor and constant load ranging from
25 to 65% of the rated motor load. Both of the gearboxes with an artificially seeded fault
condition were tested with a sampling frequency of 30 kHz, where the data for each case was
collected for a period of 60 seconds. For the gearboxes with a fault condition, most tests were
performed with a constant load of 25% of the rated motor load. However, the constant loads
for the healthy gearbox were chosen randomly. The speeds for healthy and fault conditions
were chosen evenly within the operational limits.

3.3 Data overview

A flowchart representing the data processing system is shown in Fig. 13. The outline of the
boxes represent the structure of the data being used, where dashed outlines are complete run
files, solid outlines are samples, and dotted outlines are features. The flowchart is divided into
three sections, where each section represents how the data is being processed. In the data
preparation section, which will be described further in Section 3.4, raw data was collected,
standardized, and divided into samples for calculations. In the calculation and feature selection
section, additional time- and frequency-domain parameters were calculated for each sample,
which is described in greater detail in Section 3.5. The collected features from all the samples
were used in PCA and then split into testing and training sets before being used to train the
SVM in the SVM model section. This will be further explained in Section 3.6.
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Fig. 13: Flowchart with three sections representing the data processing system.

3.4 Data preparation

The raw data collected using the method described in Section 3.2 was imported into Matlab
to standardize its structure to make it easier to manipulate. The standardized data was then
divided into 5-second samples, with a total of nearly 800 samples. The distribution of samples
for each health condition is shown in Table 4. The sample time of 5 seconds was chosen to
include at least one rotation of the output shaft of the gearbox. Since the slowest rotational
speed for the tests was 600 rpm, and given the gearing ratio for each step in the two-stage
gearbox, the output shaft rotational speed was 0.2 rev/s, or 4.8 s/rev. The sample time also
gave an adequate frequency resolution of 0.2 Hz, which was found by dividing the sampling
frequency by the number of samples. The data was then analysed to look for missing or
erroneous data, as well as outliers. It was found that some runs had an uneven operating
speed at the start of the run, as can be seen in Fig. 14. This led the start of some runs to have
wildly different values than the rest of the run, as shown in Fig. 15. The samples highlighted
in the figure were removed from the data set.

Fig. 14: Plot showing the the difference be-
tween the frequency readout from the motor
drive in samples 1 and 2.

Fig. 15: Plot showing the RMS value of ip of
samples 1 to 350 with vertical lines indicating
when a new run begins.

Health condition Number of samples

PLT 121
BRG 88
HLT 585

Table 4: Showing the number of samples per health condition.
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3.5 Feature selection

The flowchart shown in Fig. 16, illustrates how features were chosen through an iterative
process. Methods from selected papers of the literature review were tested on a set of prelim-
inary samples. This was done as it would otherwise be difficult to compare health conditions,
because the current spectrum changes with speed and load. The samples chosen for the pre-
liminary samples had an operating speed of 1200 RPM, and a load of 25% for the two fault
conditions. The healthy sample had the same operating speed, but a load of 16%, as this
was the closest matching. The results from the preliminary analysis were compared with the
results from all samples to see if the features gave consistent results.

Extract
feature(s)

Preliminary
analysis

Train and
test SVM EndStart

Yes

No

Correlation

SVM accuracy

Literature
review < 0.3 ≈ 95%

Yes

No

Remove
feature(s)

Fig. 16: Flowchart of the feature selection process.

The following paragraphs describe how the features were extracted from the data in the ’Ex-
tract feature(s)’ node of the flowchart. The ip of each sample was calculated using the EPVA
method described in Section 2.5. EPVA was used as it achieves multiple operations at once.
It acts as a notch filter, removing the fundamental supply frequency of the motor drive, as
well as removing the modulation of the motor drive on the CFs. This was beneficial as some of
the CFs lie close to the drive frequency, and would otherwise be lost in the noise surrounding
the drive frequency. EPVA also works as a form of dimensionality reduction, capturing the
information of the three phases into one variable.

FFT was used to find the frequency spectrum of ip of the samples in the preliminary study,
which were further analysed to look for differences between the three health conditions. The
harmonics of the motor drive was compared with the spectrum to see if they were present in
ip, and to what degree. The CFs corresponding to the operating speed were calculated, and
compared with the peaks of the frequency spectrum, to see if the origin of some of the peaks
could be attributed to the CFs. The statistical features listed in Table 2, were also calculated
for ip of the three samples, to see if there were any differences. It was early discovered that
the energy in the spectrum of the healthy sample was substantially lower than the faulty
ones, by comparing the spectrums of the three health conditions. This was expected based
on the literature review [10]. The majority of the analysis was, for this reason, focused on
finding differences to distinguish between the two faulty conditions. The methods used in the
preliminary analysis were repeated for all samples to see if the findings could be generalized
for all samples. The magnitude of the CFs was captured using a series of narrowband filters,
each centered around a CF, where each narrowband had a width of 1.5 Hz to accommodate
for inaccuracies in the shaft speed readings. This was also done for the harmonics of the motor
drive.
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It was important to ensure that features used in the SVM were independent of load and speed,
as the motor running at a specific load or RPM does not indicate a fault. None of the healthy
runs were performed with loads equal to the faulty runs, and only some of the speeds were
similar, this can be seen in the overview of the runs, seen in Table C.1 in Appendix C. An
SVM classifier could, therefore, distinguish between a healthy and faulty sample, based solely
on RPM and load. A correlation matrix was used to ensure that the chosen features had a low
correlation with load and speed. Any features with a more than weak correlation, meaning
a correlation coefficient greater than 0.3, were discarded [45]. This is illustrated as the first
decision node on the flowchart in Fig. 16. A Pearson correlation matrix was used, as it was
assumed that a feature’s correlation with load and speed would be linear.

The list of features was relatively large compared to the number of samples, introducing the
risk of overfitting [46]. Therefore, PCA was used to remove the least useful features by using
only the first PCs responsible for 90% of the variance. These PCs were then used to train and
test the SVM classifier, where the goal was to achieve an accuracy of around 95%.

3.6 SVM model

The training of the SVM was performed by using two cross-validation methods, holdout and
k-fold. Holdout cross-validation was used to create a training and testing set, with the split
being 70/30. This was done by first randomizing the features and then selecting 70% for train-
ing, while the rest was used for testing. K-fold cross-validation was also used during training
to create test and validation sets for hyperparameter optimization. The hyperparameter opti-
mization was performed using Bayesian search to optimize the coding matrix, box constraint,
and kernel scale.

Not all the samples from the healthy runs were used in the training, as there was a dispropor-
tionate amount of healthy samples compared to faulty ones. A subset of 90 healthy samples
was, therefore, randomly chosen to be used in the training instead. As mentioned earlier,
it was discovered that the SVM could easily classify healthy samples. The main focus was,
therefore, finding features that distinguished the two fault conditions.

The relatively small amount of data became a problem during the training of the SVM, as
the problem of overfitting the model to the run became apparent because samples from the
same run were almost identical, meaning that samples in the training and testing set were
very similar. All samples from at least one of the runs were held out of the training set to
make sure the model is not overfitted to the data. The low number of samples meant that
almost 50% of the test set would consist of samples from one run, which is not optimal either.
An alternative solution was chosen to overcome this issue, where all samples from one run
of the HLT and PLT health conditions were held out from the training set, as there were
more samples available compared to BRG. A mix of the two was then used in the test set
to get an even distribution of samples from all runs. There would be a clear unevenness in
misclassifications of PLT compared to BRG if the model was, in fact, overfitted due to this
issue. It was thought unlikely that this would affect the misclassification of HLT because the
fault condition was so easy to classify.
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4 Results and discussion

4.1 Preliminary analysis

This section will present and discuss the results from the preliminary analysis.

4.1.1 Frequency spectrum overview

The plot shown in Fig. 17a shows the frequency spectrum of the three samples chosen for the
preliminary analysis. It is apparent in the plot that the frequency spectrum of the healthy
sample has a significantly lower amplitude across all frequencies, while the two faulty samples
are almost indistinguishable. It would be reasonable to assume that this could be due to the
load of the healthy sample being lower than the faulty samples. However, Fig. 17b shows that
this is not the case, as it displays a HLT sample with an operating speed of 1425 RPM and a
load of 69%, and the amplitude is still lower. Even though the overall amplitude is noticeably
larger compared with the 16% sample, is it still significantly lower than the amplitude of the
faulty samples, despite the load being more than doubled. The spectrum of the healthy sample
has a frequency range of 0 and 10 kHz, while the faulty samples have a frequency range of 0 to
15 kHz. This is due to the difference in sampling frequencies between the healthy and faulty
samples, where the healthy sample has a sampling frequency of 20 kHz, and the fault samples
have a sampling frequency of 30 kHz.

(a) (b)

Fig. 17: Plots showing the FFT of ip of the three samples, where (a) is the three samples of the
preliminary analysis, and (b) is the two faulty samples compared with an HLT sample with a load of
69%.

4.1.2 Motor drive harmonics

The frequency spectrums of ip of the two faulty samples are compared in Fig. 18, where the
plot displays a section ranging from 0 to 400Hz. The harmonics of the motor drive is overlaid
on the plot indicated by the black lines. The vertical axis of the BRG plot is reversed so that
the spectrums are easier to compare, as it would otherwise be hard to distinguish the two,
due to the peaks overlapping. It can be observed that the motor drive harmonics are visible
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up to the 6th harmonic, where five of the harmonics have an associated peak. The amplitude
of the harmonics in the PLT sample has a slightly higher amplitude, than the BRG sample,
with the exception of the 2nd harmonic. This is better illustrated in Fig. 19, which compares
the amplitude at the harmonics of the three samples. A single peak can be seen around 300
Hz, which is close to the first stage fundamental meshing frequency, fm1. However, it is not
believed that this CF is the cause of the peak, as it is present on other runs regardless of
load and speed parameters. It is for this reason believed that the peak stems from extraneous
noise. A potential source is thought to be ripple currents from the 5V DC power supply used
to power the current sensors.

Fig. 18: Showing a plot of the FFT of ip of the two fault conditions in the region 0-400 Hz, where the
black dashed lines show the position of the motor drive harmonics.

Fig. 19: Bar plot comparing the amplitudes of the motor drive harmonics of the preliminary samples.

4.1.3 Characteristic frequencies

The plot in Fig. 20 displays the same section as Fig. 18, but with the CFs, shown in Table
5, overlaid on the plot. A closeup of the region 0 to 15 Hz is also shown to display the low
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frequency CFs. It can be seen that none of the unidentified peaks can be attributed to the CFs
of neither the gearbox nor the bearing, besides the peak around 8 Hz. This was expected as
the torque ripples produced by the bearing are small, and it was believed that they would be
lost in the noise of the signal [47]. There can be observed two peaks that lie close to the CFs of
both the first stage planetary gear, fp1, and the second stage carrier gear, fc2. The difference
between these two CFs is 0.2 Hz which is close to the frequency resolution of the spectrum. A
higher frequency resolution spectrum was created by increasing the sample size to 15 seconds,
to identify if these peaks were a combination of the two CFs. The higher resolution plots can
be seen in Figs. 21a, b, and c. The figures indicate that CF fp1, and the 1st and 4th motor
drive harmonic are the cause of the peaks, as their values are the closest to the peaks. In
the case of the motor drives are their position known with a greater degree of certainty than
the CFs, as the frequency of the motor drive is present in the data, while the shaft speed is
assumed from the test run description, further supporting this. Additionally, the double peak
that would be present if there were two frequencies overlapping is not visible, indicating that
there is only one cause for the peaks.

Fig. 20: Showing a plot of the FFT of ip of the two fault conditions in the region 0-400 Hz. The black
dashed lines indicate the position of the CFs shown in Table. 5.

(a) (b) (c)

Fig. 21: Sections of Fig. 20 in the region of: (a) fp1 and fs1, (b) the 1st harmonic and fm2, and (c)
fbpor and the 4th harmonic.
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A bar graph, shown in Fig. 22, visualizes the differences in amplitudes of the peaks discussed
in the previous paragraph. The similarities in the peaks of fp1 and fs1 are due to their similar
values as mentioned earlier, leading to an overlap in the reading of the measured amplitudes.
It can be seen that the fp1 amplitude of the BRG sample is almost twice the amplitude of the
PLT sample, which seems counter-intuitive, as it would be expected that a fault in the planet
gear would lead to an increased amplitude at the CF of the planet gear.

Characteristic frequency Symbol Value (Hz)

Second stage carrier frequency fc2 0.450
Second stage planet frequency fp2 2.163
First stage carrier frequency fc1 3.120
First stage planet frequency fp1 7.802
Second stage sun frequency fs2 8.011
Fundamental train frequency fftf 9.714
Second stage meshing frequency fm2 42.724
First stage sun frequency fs1 55.575
Ball spin frequency fbsf 104.547
Ball pass outer race frequency fbpor 165.137
Ball pass inner race frequency fbpir 202.828
First stage meshing frequency fm1 296.400

Table 5: Showing the values of the CFs when the operating speed is 1200 RPM, arranged in descending
order.

Fig. 22: Bar plot showing the amplitudes of the CFs of the samples in the preliminary analysis.
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4.1.4 Statistical features

The statistical features calculated on the preliminary samples are shown in Figs. 23a and
23b, which display the time- and frequency-domain results, respectively. The results from the
statistical features, t3−5 and f3−6, have been scaled so the statistical features can be more
easily compared. A clear distinction between the healthy and faulty samples can be observed,
as also seen in previous results. However, there are few distinctions between the PLT and
BRG sample, with the exception of ft4, ff6, and ff7. The similarities in relative amplitude of
f3−4 and t3−4 was expected as they are central moments with different orders.

(a) (b)

Fig. 23: Bar graph showing the values of the statistical features of the samples used in the preliminary
analysis in (a) the time-domain and (b) the frequency-domain.

4.1.5 High-frequency spectrum analysis

The full frequency range of the two faulty preliminary samples is compared in Fig. 24a, where
some differences in the position of the higher frequency peaks can be seen in the spectrum.
These higher frequency peaks are changing over time, as seen in Fig. 24b and 24c, where the
color indicates the amplitude at a specific frequency, with blue being a weak amplitude and
yellow being a strong amplitude. The figure shows the FFT of all samples of the two runs
containing the preliminary samples. This essentially works as an STFT with a window of 5
seconds and zero overlaps. The drift of the peaks can be difficult to spot due to the broad
frequency range. However, it is clearly visible in the close-up section of the plot, displayed
in Fig. 25, that shows the peak at 4.1 kHz drifting almost 50 Hz during the 60-second run.
The exact cause of this is undetermined, but it can possibly be due to the temperature of
the motor, gearbox, lubricant, and/or the capacitor bank of the VFD. These peaks, therefore,
contribute little to the classification of the fault condition of the sample. However, their
relative position to one another might be a good indicator, as well as their amplitude, but this
was not investigated further.
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Fig. 24: Plot comparing the high-frequency peaks of the preliminary samples, where the two fault
conditions are compared in (a), and where (b) and (c) are the STFT of the all the samples in the PLT
and BRG runs, respectively.

Fig. 25: Close-up of the 4 kHz region of Fig. 24.

4.1.6 Summary of the preliminary results

The preliminary analysis found substantial differences between the frequency spectrum of the
healthy and faulty samples. It was also found that the harmonics of the motor drive is visible
up to the 6th harmonic, and that the amplitude is higher for the PLT sample compared with
the BRG sample, with the exception of the 2nd harmonic. The CFs of neither the bearing
nor the gearbox are visible in the spectrum, except for the first stage planet gear (fp1), which
was found to be the most likely cause for the peak at 8 Hz. The results from the statistical
calculations suggest that the time-domain calculations of 3rd order central moment (t4), and
the frequency-domain calculations of kurtosis (f6) and crest factor (f7) are good discriminatory
features.
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4.2 Results calculated using all samples

This section compares the findings from the preliminary analysis with the mean of all samples.

4.2.1 Feature correlation

The chart displayed in Fig. 26 shows a portion of the correlation matrix, which presents the
feature’s correlation coefficients with speed and load. The complete correlation matrix can
be seen in Fig. B.1 in Appendix B. The red dashed line marks the threshold of 0.3, where
features with a value above it will be discarded. The correlation of the load and speed are
displayed on top of each other, because whether or not the correlation coefficient is above 0.3
is more important than the value of the correlation coefficient. It can be seen that 8 out of the
32 features are above the threshold and are, for this reason, not used to train or test the SVM.
None of the features that were deemed as ’good’ features during the preliminary analysis, were
above the threshold.

Fig. 26: Bar plot displaying all the features average correlation with speed and load.

4.2.2 Mean motor drive harmonics and characteristic frequencies amplitudes

The mean amplitudes of the CFs across all samples, shown in Fig. 27, are significantly higher
for the HLT samples compared with the samples used in the preliminary analysis. This is
likely due to the majority of HLT samples having a higher operating load than the sample
used in the preliminary analysis. The amplitude of the CFs fs1, fm1, fp1, fs2, ffrf , and fbsf
seems relatively unchanged compared with the results from the preliminary analysis. The
mean amplitude of the CF, fc1, of the PLT samples is slightly higher compared with the
preliminary sample. This might be due to the relatively high correlation to load, and the
fact that the average load of the PLT samples is higher than the BRG samples. The same
phenomenon might explain why the amplitudes of fm1, fp2, and fbpor of the PLT samples are
lower than the preliminary analysis, as the PLT data contains three runs that have an RPM
of 800, and the BRG does not. It seems that fp1 is the only feature that consistently shows a
difference between the fault conditions. However, all the CFs are still included, as there might
be underlying relationships useful for classification.
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Fig. 27: Bar plot showing the average amplitudes of the CFs of all samples.

A similar rise in amplitude of the HLT samples compared with the preliminary analysis can
be seen in the bar plot showing the average amplitude of the harmonics, shown in Fig. 28.
It can be seen that the difference in amplitude between the two faulty health conditions is
still present in the 2nd harmonic. However, the generally higher amplitude of the PLT sample
does not seem to be present. This might be because the average load of the PLT samples is
different from the average load of the BRG samples.

Fig. 28: Bar plot comparing the average amplitudes of the motor drive harmonics of all samples.

4.2.3 Mean statistical features of all samples

The results of the average amplitude of the statistical features, shown in Fig. 29a and Fig. 29b,
agree with the findings from the preliminary analysis, as the relationship between the health
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conditions is similar to the ones seen in the preliminary analysis. The major difference is that
the amplitude of the statistical features for HLT are larger than the ones in the preliminary
analysis, as also seen with the mean of the other features.

(a) (b)

Fig. 29: Bar graph of the average values of (a) the time-domain and (b) frequency-domain statistical
features of all samples.

4.3 PCA

The plot displayed in Fig. 30 shows the results from the PCA, where the blue line shows
the portion of the variance of the data contained in each PC, and the orange line shows the
cumulative variance. The horizontal axis corresponds to the PC number. It can be seen that
almost half of the variance in the data is obtained by the first two PCs. As mentioned in
Section 3.5, it was decided to discard the PCs responsible for the last 10% of the cumulative
variance. This cut-off point is shown as a dashed red line on the plot. The cut-off point was
at 9.7, so this was rounded up to 10 as the number of PC has to be an integer number.

Fig. 30: Plot showing the variance of each PC, and the cumulative variance of the PCs. The red
dashed line indicate where the cumulative variance reaches 90%.
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4.4 SVM Results

The results from repeated hyperparameter optimizations gave fairly consistent values of the
hyperparameters, finding that the best coding matrix was OVA, meaning that there would
be one binary classifier for each fault condition. The box constraint and kernel scale was
consistently given the value of around 121 and 0.27. These results are summarized in Table 6.
The performance of the SVM classifier trained with these hyperparameters and the features
from the PCA, are shown in the confusion matrices in Figs. 31a and 31b. Confusion matrices
are commonly used to display the performance of a classifier. The predicted classes of the
classifier are given on the horizontal axis, while the true classes are given on the vertical axis.
Correctly classified classes are displayed along the diagonal, while the off-diagonal displays the
misclassified samples. The percentage of correctly and misclassified samples are shown on the
right side of the plot. The purpose of showing the performance of the training set is to identify
whether or not the model is overfitted to the training data. If the performance of the training
data differs greatly from the performance of the test data, then that is a strong indicator that
the model is overfitted.

Table 6: Showing the hyperparameters used for the SVM.

Hyperparameter Value

Coding matrix OVA
Kernel scale 0.273
Box Constraint 121.321

The confusion matrix showing the performance of the training set, seen in Fig. 31a, shows
an accuracy of 96%. The accuracy of the classification of HLT samples is 100%, while the
classification accuracy of the BRG and PLT classification being 96.9% and 91.1%, respectively.
The confusion matrix of the test set shown in Fig. 31b, shows a slightly worse accuracy of
93.7%, which is to be expected as the classifier is optimized to the testing set. The classification
accuracy of the HLT samples was the same as the accuracy in the training set, supporting
the claim that the classifier is good at distinguishing between healthy and faulty samples.
The performance of the BRG classification is slightly worse than on the testing set, with an
accuracy of 80%. The classification of the PLT samples shows better accuracy than on the
training set, which was unexpected because there were samples in the PLT training data from
a run that was not included in the training data. The lower accuracy of the classification
of BRG compared with PLT in the testing data, might be because of the lower number of
samples. However, if that was the case, it would be expected to see a similar performance
difference on the training set. It should be noted that the data was performed with close to
ideal conditions. There were few sources for external vibration as the test setup was ruggedly
set up, and bolted to a concrete floor. In a real-world environment is there expected to be
some extraneous vibrations from other components, such as the generator system. The load
in the test were constant and stable. In a real-world setup, it would be expected to see load
fluctuation as the blades are pitched, due to turbulence from the wind [48]. These factors will
most likely contribute to lower real-world performance.
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(a) (b)

Fig. 31: Confusion matrix of (a) the training set and (b) the testing set.

The plot displayed in Fig. 32 shows the reason for the good classification accuracy of the HLT
samples in both the training and testing set. The plot displays the decision boundary of an
SVM classifier trained on the first two PCs from the PCA. The decision boundary is displayed
in the plot as colored regions, where the color corresponding to the class of samples within
that region. Although the classification accuracy of this classifier was significantly lower than
the SVM trained with more than two PCs, it still had an accuracy of 100% for HLT. The
reason for this is apparent when looking at the plot, as the cluster of HLT samples, shown in
red, are far from away the cluster of faulty samples, shown in green and blue, representing
BRG and PLT samples, respectively.

Fig. 32: Plot showing decision boundaries of an SVM trained on the first two PCs, and the clustering
of the samples with the same health condition.
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The plot shown in Fig. 33 displayed the ROC curves of the three binary SVM classifiers that
were used to classify the health conditions. It can be seen that the ROC of the HLT classifier
has an AUC of 1, indicating a perfect classifier. This is because there were no misclassified HLT
samples in the test set nor the training set. The ROC of both the PLT and BRG classifiers
also indicates good performance as they both have AUCs of close to 1. It can also be seen
that the TPR remains 1 up until around a FPR of 0.1, and does not start to rapidly decline
before approximately 0.05.

Fig. 33: ROC curve of the test set. The red diagonal line indicates the performance of random
classification.

4.5 Discussion

There were challenges in pinpointing whether or not a change was due to different fault con-
ditions, or different operation parameters, as multiple parameters were changes for each run.
A preferred strategy would be to have a large data set with constant operating parameters
that could be used to identify changes in the current spectrum. The SVM could then be
trained on these features, and then tested on a testing set of new data with random operating
parameters. This would limit the possibility of the SVM being trained on underlying features
that are correlated with the speed and load of the motor. It could then be easier to draw
conclusions about the SVMs actual ability to classify fault, and not the operating parameters
of the motor.
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5 Conclusion

The results show that the use of MCSA and an SVM classifier is a viable method for classifying
faults in the input shaft bearing and the first stage planet gear of a pitch system. The classifier
had an accuracy exceeding 90% on the test data, which included data from one run that
was excluded from the training data. However, the classifier’s real-world performance is not
expected to be as good as what was observed in this thesis, as the test setup was a best-case
scenario, with little external noise. Great care was put into making sure that the classifier only
classified faults and not operating conditions of the test. However, it can not be completely
ruled out that some of the performance of the classifier can be attributed to this, as all features
had some correlation to load and speed. There were 8 out of 32 features in total that had
to be discarded due to their high correlation with load and speed, as the different operating
conditions of the test meant that the classifier could classify a fault condition based on load
and speed alone. There were not enough samples to concretely conclude how realistic the
performance of the classifier was.

The analysis found that healthy samples had a vastly different spectrum compared with the
faulty samples, where the faulty spectrums had a lot higher average amplitudes. It was found
that the only CF that was clearly visible in the spectrum was the first stage planet gear
(fp1). It was deemed as a good feature to distinguish between the two fault conditions, as
the amplitude of the BRG fault was almost twice as large as the PLT fault. The higher
frequency section of the spectrum was analysed using STFT, but no discriminatory features
were identified, due to the low number of samples with similar operation conditions that were
needed for comparison. The statistical features with consistently different values for each fault
condition, and therefore, deemed good discriminative features were: time-domain 3rd order
central moment (t4), and frequency-domain kurtosis (f6) and crest factor (f7).

Hyperparameter optimization found that the classifier performed best using OVA as the coding
matrix, and a value of 0.273 and 121.321 for kernel scale and box constraint, respectively. The
SVM classifier performed well on both the training set and test set, with an accuracy of 96%
for the training set, and 93.7% for the test set. The discriminatory ability of the classifier
was tested using ROC, which indicated good discriminatory ability, with the AUC of the HLT
classifier being 1 and the AUC of the PLT and BRG classifiers being close to 1.

The final conclusion of this thesis is that the performance of the classifier is most likely
unrealistic in a real-world environment, with only the basic features used. However, the
results indicate that an SVM classifier has the potential to be used for the classification of
externally connected machinery, which is in agreement with the findings from the literature
review. More advanced filtering and additional features might be needed to distinguish between
specific faults, such as a bearing fault or a planet gear fault. However, the results indicate
that the classification between a faulty and healthy system is possible with the use of basic
features alone.
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6 Further Work

Some topics to be further studied can be summarized accordingly.

• The proposed method in this thesis only deals with constant load and speed operation,
and could not be used for samples with changing operating parameters. Therefore, future
research should be conducted in more realistic settings, perhaps where the load motor
is used to simulate real-life torque fluctuations caused by blade turbulence.

• Similarly to the recommendation above, future research could look at real-world data
and analyse the extraneous vibration from other components. These findings could be
used to get a more realistic test bench.

• An interesting topic for future work could be to look at changes between varying sizes
of the pitch drive system, as this thesis only studied a scaled model of the pitch system.

• A study into the requirements for sampling rates and sensor accuracy might be beneficial
for the real-world implementation of the proposed method.

• Expanding the range of possible fault conditions to accommodate other components
with high rates of failure, such as the sun gear, carrier plate, etc., is also required for
real-world implementations.

Several additional points of interest were originally found to be explored in this thesis. How-
ever, they were unable to be explored due to the inaccessibility of the test bench due to
COVID-19. These points are summarized accordingly:

• A peak around 300 Hz was found in the frequency spectrum. A further investigation of
the background noise of the test setup would have been interesting, in order to locate
the source of this peak.

• Further improvements to the proposed method could be achieved with the use of more
samples, as the number of samples was relatively low compared to the number of features.

• Further analysis of the higher frequency artifacts was intended to be carried out, where
a single variable could be changed each time to analyse the changes in the spectrum.
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Appendices

A Specifications

Table A.1: Current sensor specifications.

Type Name Specification Value

Current sensor LEM LTS-6NP

Supply voltage 5V
Nominal current 6A
Accuracy ± 0.2%
Range 0 ± 20

Table A.2: Specifications of the pitch and load motor.

Quantity Pitch Motor Load Motor
Model ABB M3AR 90S4 ABB M3AA 132M8
Rated speed (rpm) 1420 715
Rated torque (Nm) 7.5 40
Rated current (A) 2.6 7.7
Voltage (V) 400, Y 400, Y
Ventilation self-ventilated external cooling fan

45



Fault Diagnosis of Gearbox Based Pitch Drives in Wind Turbines

B Additional results

Fig. B.1: Showing the complete correlation matrix for all variables. The colorbar indicated the absolute
value of the correlation coefficient.
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C Overview of raw data

Table C.1: Overview of the raw data.

FileName Type Time(s) NumDataPoints NumVariables RPM Load% NumSamples FS sampling freq

Data-Cur-Freq-04102017_1050rpm_25L1.mat PLT 60 1801802 4 1050 25 12 30030
Data-Cur-Freq-04102017_1200rpm_25L2.mat PLT 60 1801802 4 1200 25 12 30030
Data-Cur-Freq-04102017_1200rpm_25L3.mat PLT 60 1801802 4 1200 25 12 30030
Data-Cur-Freq-04102017_1300rpm_25L1.mat PLT 60 1801802 4 1300 25 12 30030
Data-Cur-Freq-04102017_1300rpm_25L2.mat PLT 60 1801802 4 1300 25 12 30030
Data-Cur-Freq-04102017_1400rpm_25L1.mat PLT 60 1801802 4 1400 25 12 30030
Data-Cur-Freq-04102017_1400rpm_25L2.mat PLT 60 1801802 4 1400 25 12 30030
Data-Cur-Freq-04102017_1400rpm_25L3.mat PLT 60 1801802 4 1400 25 12 30030
Data-Cur-Freq-04102017_800rpm_25L1.mat PLT 60 1801802 4 800 25 12 30030
Data-Cur-Freq-04102017_800rpm_50L1.mat PLT 60 1801802 4 800 50 12 30030
Data-Cur-Freq-04102017_800rpm_65L1.mat PLT 60 1801802 4 800 65 12 30030
Data-Cur-Freq-21092017_1050rpm_0L1.mat BRG 60 1801802 4 1050 0 12 30030
Data-Cur-Freq-21092017_1050rpm_25L3.mat BRG 60 1801802 4 1050 25 12 30030
Data-Cur-Freq-21092017_1200rpm_25L4.mat BRG 60 1801802 4 1200 25 12 30030
Data-Cur-Freq-21092017_1200rpm_50L1.mat BRG 60 1801802 4 1200 50 12 30030
Data-Cur-Freq-21092017_1300rpm_25L1.mat BRG 60 1801802 4 1300 25 12 30030
Data-Cur-Freq-21092017_1400rpm_25L2.mat BRG 60 1801802 4 1400 25 12 30030
Data-Cur-Freq-21092017_1400rpm_25L3.mat BRG 60 1801802 4 1400 25 12 30030
Data-Cur-Freq-21092017_1400rpm_25L4.mat BRG 60 1801802 4 1400 25 12 30030
Data-Test_1155rpm_39p2Hz_1.mat HLT 90 2250000 4 1125 Unknown 18 25000
Data-Test_1155rpm_39p2Hz_2.mat HLT 90 2250000 4 1125 Unknown 18 25000
Data-Test_1350rpm_45p5Hz_1.mat HLT 90 2250000 4 1350 Unknown 18 25000
Data-Test_1350rpm_45p5Hz_2.mat HLT 90 2250000 4 1350 Unknown 18 25000
data_21p3Hz_600rpm_83Load.mat HLT 240 4800000 4 600 83 48 20000
data_27p9Hz_800rpm_76Load.mat HLT 240 4800000 4 800 76 48 20000
data_33.6Hz_1000rpm_3p3Load.mat HLT 240 4800000 4 1000 3 48 20000
data_34.5Hz_1000rpm_65Load.mat HLT 240 4800000 4 1000 65 48 20000
data_34p3Hz_1000rpm_15Load.mat HLT 240 4800000 4 1000 15 48 20000
data_34p5Hz_1000rpm_72Load.mat HLT 240 4800000 4 1000 72 48 20000
data_40.2Hz_1200rpm_3p4Load.mat HLT 240 4800000 4 1200 3 48 20000
data_41Hz_1200rpm_15Load.mat HLT 240 4800000 4 1200 15 48 20000
data_47.7Hz_1425rpm_3p6Load.mat HLT 240 4800000 4 1425 4 48 20000
data_48.5Hz_1425rpm_16Load.mat HLT 240 4800000 4 1425 16 48 20000
data_48p6Hz_1425rpm_69Load.mat HLT 240 4800000 4 1425 69 48 20000
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D Calculations

Proof of RBF kernel comparing sample relationships in infinite dimensions

~xi and ~xj have been replaced with a and b, respectively, for simplicity in this section.

Expansion of the RBF kernel:

K(~a,~b) = e−γ‖a−b‖
2

= e−γ(a
2+b2−2ab) = e−γ(a

2+b2)eγ(2ab) (D.1)

The RBF kernel with kernel scale, γ, set to 0.5:

K(~a,~b) = e−
1
2
(a2+b2)eab , γ =

1

2
(D.2)

Taylor series of eab:
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Formula for polynomial kernel with r set to zero:

K(~a,~b) = (ab)d = adbd , r = 0 (D.4)

Infinite sum of polynomial kernels with r set to zero:
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The dot product of the Taylor series expansion of Eq. (D.2) is given by the following equation:
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Eq. (D.7) can be simplified by introducing s, as follows:
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It can be seen that the Taylor expansion of eab shown in Eq. (D.3) is the same as the infinite
sum of the polynomial kernel with r = 0, shown in Eq. (D.5). These calculations prove
that the dot product of the RBF kernel, shown in Eq. (D.8), is given by an infinite sum of
polynomial kernels multiplied with s.
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E Codes

Listing 1: Code used for standardizing the runs
1 function [Data] = myLoadData()

2
3 PLT = ls('Data\PLT');

4 BRG = ls('Data\BRG');

5 HLT = ls('Data\Healthy');

6
7 PLT = PLT(3:end,:);

8 BRG = BRG(3:end,:);

9 HLT = HLT(3:end,:);

10
11 %Loading files contaiong the load and speed of each run.

12 load('Data\LoadSpeedData.mat');

13
14 %Loding a file that contains the frequency of the HLT runs, as the hlt

15 % runs did not contain VFD frequency info as the PLT and BRG did

16 load('Data\HLTFreq.mat');

17
18 %% Loading Data

19 disp("Loading PLT...")

20
21 PLT_load=run_load(:,1);

22 PLT_RPM=run_spees(:,1);

23
24 % Adding the data the raw data to a structure called Data with the

25 % structure [Data,Type,FileName,RPM,Load]

26 for i=1:size(PLT,1)

27 SampleName=strcat("RunNr",num2str(i));

28
29 Data.(SampleName)= load(strcat('Data\PLT\',PLT(i,:)));

30 Data.(SampleName).Type = "PLT";

31 Data.(SampleName).FileName = PLT(i,:);

32 Data.(SampleName).RPM =PLT_RPM(i);

33 Data.(SampleName).Load =PLT_load(i);

34
35 end

36
37 disp("Loading BRG...");

38
39 currSize=size(fieldnames(Data),1);

40 BRG_load=run_load(:,2);

41 BRG_RPM=run_speed(:,2);

42
43 for i=1:size(BRG,1)
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44 SampleName=strcat("RunNr",num2str(i+currSize));

45
46 Data.(SampleName)= load(strcat('Data\BRG\',BRG(i,:)));

47 Data.(SampleName).Type = "BRG";

48 Data.(SampleName).FileName = BRG(i,:);

49 Data.(SampleName).RPM =BRG_RPM(i);

50 Data.(SampleName).Load =BRG_load(i);

51
52 end

53
54 disp("Loading HLT...")

55 currSize=size(fieldnames(Data),1);

56
57 HLTfreq=run_hltfreq;

58 HLTfreq=(HLTfreq+0.3287)/25.16; %converting to voltage so it is similar to

59 % the PLT and BRG runs.

60 HLT_load=run_load(:,3);

61 HLT_RPM=run_speed(:,3);

62
63 for i=1:size(HLT,1)

64 SampleName=strcat("RunNr",num2str(i+currSize));

65
66 Data.(SampleName)= load(strcat('Data\Healthy\',HLT(i,:)));

67 Data.(SampleName).data(:,4)=HLTfreq(i);

68 Data.(SampleName).Type = "HLT";

69 Data.(SampleName).FileName = HLT(i,:);

70 Data.(SampleName).RPM =HLT_RPM(i);

71 Data.(SampleName).Load =HLT_load(i);

72
73 end

74
75 disp("Done.")

76
77 end
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Listing 2: Code used for dividing the runs into samples
1 clear;close all;

2
3 %% Load Data

4 Data = myLoadData;

5
6 %% Devide into Samples

7 clearvars −except Data

8 timePerSample = 5; % Setting the amount of time per samples

9
10 disp("Deviding into Samples");

11
12 for c=1:size(fieldnames(Data))

13
14 % Fining the number of datapoint corresopnds to the sample time

15 totTime = (Data.("RunNr"+num2str(c)).time(end));

16 numOfSamples= totTime/timePerSample;

17 dataPointsPerSample = uint32(floor(length(Data.("RunNr"+num2str(c)).data)/

numOfSamples));

18
19 if c == 1

20 totSample = 0;

21 else

22 totSample = length(fieldnames(Samples_all));

23 end

24
25 % Finding where the data from the run should be split to make

26 % the samples.

27 for i = 1:numOfSamples

28 sampNr= i+totSample;

29 dataA = 1+dataPointsPerSample*(i−1);
30 dataB = dataPointsPerSample*i;

31
32 Samples_all.("Sample"+num2str(sampNr)).Data =...

33 Data.("RunNr"+num2str(c)).data(dataA:dataB,:);

34
35 Samples_all.("Sample"+num2str(sampNr)).Time =...

36 Data.("RunNr"+num2str(c)).time(dataA:dataB)...

37 −Data.("RunNr"+num2str(c)).time(dataA);
38
39 % Saving the samples in a new structure

40 Samples_all.("Sample"+num2str(sampNr)).Type = Data.("RunNr"+num2str(c))

.Type;

41 Samples_all.("Sample"+num2str(sampNr)).FileName = Data.("RunNr"+num2str

(c)).FileName;
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42 Samples_all.("Sample"+num2str(sampNr)).RPM = Data.("RunNr"+num2str(c)).

RPM;

43 Samples_all.("Sample"+num2str(sampNr)).Load = Data.("RunNr"+num2str(c))

.Load;

44
45 % Overview of the running condition of the samples

46 switch Data.("RunNr"+num2str(c)).Type

47 case "PLT"

48 Type_id= 1;

49 case "BRG"

50 Type_id= 2;

51 otherwise

52 Type_id= 3;

53 end

54
55 % Generationg a file contaiong the information in each sample

56 % with the structure [Type,RPM,Load,SampleNumber]

57 Samples_info(sampNr,1)=Type_id;

58 Samples_info(sampNr,2)=Data.("RunNr"+num2str(c)).RPM;

59 Samples_info(sampNr,3)=Data.("RunNr"+num2str(c)).Load;

60 Samples_info(sampNr,4)=c;

61 end

62 end

63 %% Removing erroneous samples

64
65 rm_samples=[1,34,56,89,122,166]; % Sample number that are to be removed

66 rm_samples_idx=setdiff(1:length(fieldnames(Samples_all)),rm_samples);

67
68 % Creating a new structure without the erroneous samples

69 for i = 1:length(rm_samples_idx)

70 Samples.("Sample"+num2str(i))=Samples_all.("Sample"+num2str(rm_samples_idx(

i)));

71 Samples_info(i)=Samples_info(rm_samples_idx(i));

72 end

73 Samples_info((length(rm_samples_idx)+1):end,:)=[];

74
75 clearvars −except Samples Samples_info

76 %% Adding Additional parameters

77 f=waitbar(0,'Processing');

78
79 %Bearing Specifications

80 bearing_N=17;

81 bearing_bd=7.938;

82 bearingfff_pd=77.495;

83
84 %Gear Specifications
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85 N_p = 3;

86 Z_r = 95;

87 Z_p = 38;

88 Z_s = 16;

89
90 for i = 1:length(fieldnames(Samples))

91 waitbar(i/length(fieldnames(Samples)),f,'Processing');

92
93 % Convert from voltage to frequency

94 sample_f =Samples.("Sample"+num2str(i)).Data(:,4);

95 freq= 25.16* sample_f−0.3287; % Convertion

96 freq=movmean(freq,7); % Taking the moving averige

97
98 % Data from each sample

99 type=Samples.("Sample"+num2str(i)).Type;

100 t=Samples.("Sample"+num2str(i)).Time;

101 ia=Samples.("Sample"+num2str(i)).Data(:,1);

102 ib=Samples.("Sample"+num2str(i)).Data(:,2);

103 ic=Samples.("Sample"+num2str(i)).Data(:,3);

104 RPM =Samples.("Sample"+num2str(i)).RPM;

105
106 % Alpha Beta Transformation

107 Ialpha=2/3*(ia−0.5*ib−0.5*ic);
108 Ibeta=2/3*(sqrt(3)/2*ib−sqrt(3)/2*ic);
109
110 % dq Transformation

111 Iphase=atan(Ibeta./Ialpha);

112 Ip=sqrt(Ialpha.^2+Ibeta.^2);

113
114 % Saving Iq,Id,Ip

115 Samples.("Sample"+num2str(i)).Id=Id;

116 Samples.("Sample"+num2str(i)).Iq=Iq;

117 Samples.("Sample"+num2str(i)).Ip=Ip;

118
119 % Calculationg FFT

120 Fs=1/(t(2)−t(1)); %Finding sampeling frequency

121 [FFT_f,FFT_y]=myFFT(ip,Fs); %FFT iP

122 [FFT_f_ia,FFT_y_ia]=myFFT(ia,Fs); %FFT ia

123
124
125 % Finding the peaks in the FFT (Peaks larger than 4 x mean)

126 Cutoff=(mean(FFT_y)*4);

127 [pks1,pks2]=findpeaks(FFT_y,'MinPeakDistance',5,'MinPeakHeight',Cutoff);

128 FFT_peaks=zeros(length(FFT_y),1);

129 FFT_peaks(pks2)= 1;%pks1

130
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131 Samples.("Sample"+num2str(i)).FFT_peaks=FFT_peaks;

132 Samples.("Sample"+num2str(i)).FFT_f=FFT_f;

133 Samples.("Sample"+num2str(i)).FFT_y=FFT_y;

134 Samples.("Sample"+num2str(i)).FFT_max_ia=FFT_f(find(FFT_y_ia==max(FFT_y_ia)

));

135
136 % Calculation Characteristic Frequencies

137 f_in=RPM/60; %Shaft speed

138
139 f_s1= (N_p*Z_r)/(Z_s+Z_r)*f_in;

140 f_c1= (Z_s/(Z_s+Z_r))*f_in;

141 f_m1= (Z_r*Z_s)/(Z_r+Z_s)*f_in;

142 f_p1= ((Z_s*Z_r)/((Z_s+Z_r)*Z_p))*f_in;

143
144 f_s2= (N_p*Z_r)/(Z_s+Z_r)*f_in*(Z_s/(Z_s+Z_r));

145 f_c2= (Z_s/(Z_s+Z_r))*f_in*(Z_s/(Z_s+Z_r));

146 f_m2= (Z_r*Z_s)/(Z_r+Z_s)*f_in*(Z_s/(Z_s+Z_r));

147 f_p2= (4*Z_s*Z_r)/(Z_r^2−Z_s^2)*f_in*(Z_s/(Z_s+Z_r));
148
149 f_bpfo= bearing_N*f_in/2*(1−bearing_bd/bearingfff_pd);
150 f_bpfi= bearing_N*f_in/2*(1+bearing_bd/bearingfff_pd);

151 f_bptf= f_in/2*(1−bearing_bd/bearingfff_pd);
152 f_bpbf= f_in*bearingfff_pd/(bearing_bd*2)*(1−(bearing_bd/bearingfff_pd)^2);
153
154
155 characteristic_freqs=[f_s1,f_c1,f_m1,f_p1,f_s2,f_c2,f_m2,f_p2,f_bpfo,f_bpfi

,f_bptf,f_bpbf];

156 Samples.("Sample"+num2str(i)).characteristic_freqs=characteristic_freqs;

157
158 end

159 close(f);

160 clearvars −except Samples Samples_info
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Listing 3: Code used for calculating features
1 % Preallowcating for the features

2 feature= zeros(length(fieldnames(Samples)),33);

3 Load=zeros(length(fieldnames(Samples)),1);

4 RPM=zeros(length(fieldnames(Samples)),1);

5 feature_label= strings(length(fieldnames(Samples)),1);

6 p_range=0.75;

7
8 for i=1:length(fieldnames(Samples))

9
10 %Loading data from the sample structure

11 FFT=Samples.("Sample"+num2str(i)).FFT_y;

12 FFT_f=Samples.("Sample"+num2str(i)).FFT_f;

13 feature_label(i)= Samples.("Sample"+num2str(i)).Type;

14
15 %Statistical Features Time

16 input_data= Samples.("Sample"+num2str(i)).Ip;

17
18 feature(i,1)=rms(input_data);

19 feature(i,2)=var(input_data);

20 feature(i,3)=std(input_data);

21 feature(i,4)=kurtosis(input_data);

22 feature(i,5)=peak2rms(input_data);

23 feature(i,6)=skewness(input_data);

24 feature(i,7)=moment(input_data,3);

25
26 %Statistical Features Frequency

27 input_data= Samples.("Sample"+num2str(i)).FFT_y;

28
29 feature(i,8)=rms(input_data);

30 feature(i,9)=var(input_data);

31 feature(i,10)=std(input_data);

32 feature(i,11)=kurtosis(input_data);

33 feature(i,12)=peak2rms(input_data);

34 feature(i,13)=skewness(input_data);

35 feature(i,14)=moment(input_data,3);

36
37 % Motor Dirve Harmonics

38 f_s= Samples.("Sample"+num2str(i)).FFT_max_ia;

39 harmonics= (1:6)*f_s;

40
41 feature(i,15)= bandpower(FFT,FFT_f,[harmonics(1)−p_range harmonics(1)+

p_range],'psd');

42 feature(i,16)= bandpower(FFT,FFT_f,[harmonics(2)−p_range harmonics(2)+

p_range],'psd');
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43 feature(i,17)= bandpower(FFT,FFT_f,[harmonics(3)−p_range harmonics(3)+

p_range],'psd');

44 feature(i,18)= bandpower(FFT,FFT_f,[harmonics(4)−p_range harmonics(4)+

p_range],'psd');

45 feature(i,19)= bandpower(FFT,FFT_f,[harmonics(5)−p_range harmonics(5)+

p_range],'psd');

46 feature(i,20)= bandpower(FFT,FFT_f,[harmonics(6)−p_range harmonics(6)+

p_range],'psd');

47
48 %Characteristic Frequancy Features

49 cf= Samples.("Sample"+num2str(i)).characteristic_freqs;

50 feature(i,21)= bandpower(FFT,FFT_f,[abs(cf(1)−p_range) cf(1)+p_range],'psd'

);

51 feature(i,22)= bandpower(FFT,FFT_f,[abs(cf(2)−p_range) cf(2)+p_range],'psd'

);

52 feature(i,23)= bandpower(FFT,FFT_f,[abs(cf(3)−p_range) cf(3)+p_range],'psd'

);

53 feature(i,24)= bandpower(FFT,FFT_f,[abs(cf(4)−p_range) cf(4)+p_range],'psd'

);

54 feature(i,25)= bandpower(FFT,FFT_f,[abs(cf(5)−p_range) cf(5)+p_range],'psd'

);

55 feature(i,26)= bandpower(FFT,FFT_f,[abs(cf(6)−p_range) cf(6)+p_range],'psd'

);

56 feature(i,27)= bandpower(FFT,FFT_f,[abs(cf(7)−p_range) cf(7)+p_range],'psd'

);

57 feature(i,28)= bandpower(FFT,FFT_f,[abs(cf(8)−p_range) cf(8)+p_range],'psd'

);

58 feature(i,29)= bandpower(FFT,FFT_f,[abs(cf(9)−p_range) cf(9)+p_range],'psd'

);

59 feature(i,30)= bandpower(FFT,FFT_f,[abs(cf(10)−p_range) cf(10)+p_range],'

psd');

60 feature(i,31)= bandpower(FFT,FFT_f,[abs(cf(11)−p_range) cf(11)+p_range],'

psd');

61 feature(i,32)= bandpower(FFT,FFT_f,[abs(cf(12)−p_range) cf(12)+p_range],'

psd');

62
63 RPM(i)=Samples.("Sample"+num2str(i)).RPM;

64 Load(i)=Samples.("Sample"+num2str(i)).Load;

65 end

66 corrmat=[feature RPM Load]; %Adding load and speed to the corrMat

67
68 CM= abs(corr(corrmat)); %Finding the absoulte liniar correlation

69 CM=CM([end−1 end],:); % Removing the self correlation of load and speed

70
71 % Removing the features that have a correlation coefficient greater than

72 % 0.3
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73 rm_features=unique([find(CM(1,:)>0.3) find(CM(2,:)>0.3)]);

74 feature_idx=setdiff(1:size(feature,2),rm_features);

75 feature=feature(:,feature_idx);

76
77 %% Names of the included features

78 featureNames=["RMS\_t","Var\_t","STD\_t","Kurt\_t","Crest Factor\_t"...

79 ,"Skewness\_t","3rd Order Moment\_t",...

80 "RMS\_f","Var\_f","STD\_f","Kurt\_f","Crest Factor\_f"...

81 ,"Skewness\_f","3rd Order Moment\_f",...

82 "1st Harmonic","2nd Harmonic","3rd Harmonic",...

83 "4th Harmonic","5th Harmonic","6th Harmonic",...

84 "f\_{s1}","f\_{c1}","f\_{m1}","f\_{p1}","f\_{s2}","f\_{c2}",...

85 "f\_{m2}","f\_{p2}","f\_{bpfo}","f\_{bpfi}","f\_{bptf}","f\_{bpbf}"];

86 featureNames=featureNames(feature_idx);

87
88 clearvars −except featureNames feature Samples Samples_info feature_label
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Listing 4: Code used for training and testing the SVM
1 %% Load Features

2 FeatureExtraction;

3
4 %% Creating test and train sets

5 X=feature;

6 Y=feature_label;

7
8 [coeff,score,~,~,explained,mu] = pca(X);

9
10 i=0; % Finding how many PCs are requrded to get <90% variance

11 while totVar < 0.9

12 i=i+1;

13 totVar=sum(explained(1:i));

14 end

15
16 %Making making the PCs the features

17 X=score(:,1:i);

18
19 %% Finding index od the run which is held out

20 % Find idx of PLT samples

21 holdout_idx = find(Samples_info(:,1) == 1);

22 % Find idx of PLT samples with speed of 1200

23 holdout_idx = find(Samples_info(holdout_idx,2) == 1200);

24 % Find index of PLT run with speed = 1200 and load = 25

25 holdout_idx = find(Samples_info(holdout_idx,3) == 25);

26
27
28 % Devide into eavanly sized collections of samples of the same type

29 plt_idx = [find(Y =="PLT",1,'first') find(Y =="PLT",1,'last')];

30 %Removing the holdout samples from the plt idx

31 plt_idx_mod = setdiff(plt_idx,holdout_idx);

32
33
34 brg_idx = [find(Y =="BRG",1,'first') find(Y =="BRG",1,'last')];

35 hlt_idx = [find(Y =="HLT",1,'first') find(Y =="HLT",1,'last')];

36
37 % Randomizing the data

38 plt_idx = randperm(plt_idx(2)−plt_idx(1))+plt_idx(1)−1;
39 brg_idx = randperm(brg_idx(2)−brg_idx(1))+brg_idx(1)−1;
40 hlt_idx = randperm(hlt_idx(2)−hlt_idx(1))+hlt_idx(1)−1;
41
42 % Resizing the sample sets

43 X = X([plt_idx(1:115),brg_idx(1:85),hlt_idx(1:120)],:);

44 Y = Y([plt_idx(1:115),brg_idx(1:85),hlt_idx(1:120)]);
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45
46 rand_num=randperm(size(X,1));

47
48 %Deviding into trainig and testing data 70/30 split

49 train_idx = rand_num(1:round(0.7*length(X)));

50 test_idx=rand_num((round(0.7*length(X)))+1:length(X));

51
52 % Finding the plt samples of the test set

53 test_plt_idx=find(Y(test_idx)=="PLT");

54 %Number of sample to be replaced with the PLT in the holdout set

55 numOfHoldout=round(0.5*length(test_plt_idx));

56
57 %Replacing the indexes with half of the holdout indexes

58 test_plt_idx_holdout(1:numOfHoldout) =holdout_idx(randperm(numOfHoldout));

59
60 % Replacing the PLT indeces in of the test indexes

61 test_idx(test_plt_idx)=test_plt_idx_holdout;

62
63 % Relabeling the test and training sets.

64 X_train=X(train_idx,:);

65 Y_train=Y(train_idx);

66
67 X_test=X(test_idx,:);

68 Y_test=Y(test_idx);

69
70 %% Train SVM

71 % Deviding the training data into testing and validation sets using k−fold
72 % cross−validation with 5−folds
73 c = cvpartition(X_train,'k',5);

74
75 %Options for the traioning of the classifier

76 options = statset('UseParallel',true);

77 t= templateSVM('KernelFunction','gaussian');

78
79 %Training the classifier

80 Mdl= fitcecoc(X_train,Y_train,'Learners',t,'CVPartition',c,'ClassNames',...

81 {'PLT','BRG','HLT'},'Options',options,'OptimizeHyperparameters','auto',...

82 'HyperparameterOptimizationOptions',struct('AcquisitionFunctionName',...

83 'expected−improvement−plus'));
84
85 close all;

86 %% Training set confution matrix

87 f1=figure;

88 %Predicting the lable of the training data

89 pred_lable= predict(Mdl,X_train);

90
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91 test_acc= sum(((grp2idx(pred_lable)−grp2idx(cellstr(Y_train))))...
92 ~=0)/length(Ytrain);

93
94 %Plotting confusion matrix

95 ConfMat = confusionchart(cellstr(Y_train),pred_lable,'RowSummary'...

96 ,'total−normalized');
97
98 title("SVM Train Set (accuracy = "+num2str(100*(1−test_acc))+"\%)");
99
100 %% Test set confution matrix

101 f2=figure;

102
103 %Predicting the lable of the test data

104 pred_lable= predict(Mdl,X_test);

105
106 %Finding the total accuracy

107 test_acc= sum(((grp2idx(pred_lable)−grp2idx(cellstr(Y_test))))...
108 ~=0)/length(Y_test);

109
110 %Plotting confusion matrix

111 ConfMat = confusionchart(cellstr(Y_test),pred_lable,'RowSummary',...

112 'total−normalized');
113 title("SVM Test Set (accuracy = "+num2str(100*(1−test_acc))+"\%)");
114
115 %% ROC Curve

116 f3=figure;

117 [~,~,score_svm] = predict(Mdl,X(:,fs));

118
119 Y_log=grp2idx(cellstr(Y)); % True lables

120
121 plt_y_grp=Y_log(find(Y=="PLT",1,'first'));

122 brg_y_grp=Y_log(find(Y=="BRG",1,'first'));

123 hlt_y_grp=Y_log(find(Y=="HLT",1,'first'));

124
125
126 [Xsvm1,Ysvm1,~,ACU1] = perfcurve(Y_log,score_svm(:,1),plt_y_grp);

127 [Xsvm2,Ysvm2,~,ACU2] = perfcurve(Y_log,score_svm(:,2),brg_y_grp);

128 [Xsvm3,Ysvm3,~,ACU3] = perfcurve(Y_log,score_svm(:,3),hlt_y_grp);

129
130 plot(Xsvm1,Ysvm1)

131 hold on

132 plot(Xsvm2,Ysvm2)

133 plot(Xsvm3,Ysvm3)

134
135 plot([0 1],[0 1],'r','LineStyle','−−')
136
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137 legend("PLT \ AUC = "+num2str(ACU1),"BRG AUC = "+num2str(ACU2)...

138 ,"HLT \ AUC = "+num2str(ACU3),"Random Classification",...

139 'Location','southeast')

140
141 xlabel('False positive rate'); ylabel('True positive rate');

142 title('\textbf{ROC Curves of the Test Set}')

143
144 %% Save figures

145 saveas(f1,'Plots/ConfMat_TrainSet.png');

146 saveas(f2,'Plots/ConfMat_TestSet.png');

147 saveas(f3,'Plots/ROC_Curve.png');
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