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Abstract 

This thesis is a case study of a wind and gas hybrid system, based on data from an existing oil and gas 

(O&G) platform field with seven gas turbines connected to a fictitious wind farm for a monthly time 

period for six years. The thesis uses the Python programming language to implement a genetic 

algorithm (GA) to optimize three different scenarios. The first scenario is to find the optimal number 

of wind turbines to gain the minimum total cost while meeting the load demand. The second scenario 

is to find the optimum number of wind turbines that give the optimum total cost if the O&G industry 

should contribute to cut 50 % of the total CO2 emissions by 2050 in Norway (gas turbines at O&G 

installations accounted for 84.6 % of the direct CO2 emissions from platforms in 2018). The third 

scenario is to find the minimum total cost and number of wind turbines while meeting the load 

demand, assuming the LCOE for floating offshore wind decreases by 30 % in 2030. From the results 

obtained from the GA, it shows from scenario 1, that the optimum number of wind turbines that gives 

the lowest total cost is 10 wind turbines. For scenario 2, it shows that it is needed to implement at 

least 7 wind turbines to gain the desired CO2 reduction. From scenario 3, it shows that if the LCOE for 

floating offshore wind decreases with 30 %, the total cost is 249.818 mill USD, which is less than the 

total cost without wind turbines. From the obtained results from the GA, it is clear that floating 

offshore wind with today's LCOE prices is an expensive investment, but if the LCOE prices in the future 

reduce the total cost can be even cheaper than the cost without the wind turbines. Nevertheless, wind 

energy is intermittent by nature and needs other energy sources or storage to cover days with no or 

low wind. In this study are all costs based on research and findings due to limited time and much 

confidential material. For further work, it is recommended to do all calculations, such as LCOE, based 

on real numbers and get load profile, and costs and emissions for the specific model of gas turbines 

used on the O&G platform. It is also recommended to obtain the data on a daily or hourly basis to 

achieve more accurate results. For the optimization, it is also recommended to test other methods to 

compare the results.  
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1 Introduction 

For Norway to meet its sustainability goals to reduce emissions by at least 50 % by 2030 (compared 

to 1990 level), it becomes necessary to replace more fossil fuel energy sources with renewables [1]. 

From 1990 to 2018, the emissions from O&G recovery increased from 8.2 mill tons yearly to 14.2 mill 

tons annually, respectively, the O&G industry's share of total emissions has thus increased from 15.9 

% to 27.2 % in the period [2]. As the O&G industry is the main responsible for greenhouse gas 

emissions in Norway, especially from the burning of gas in the gas turbines, it is necessary to find 

solutions to reduce their emissions to meet Norway's sustainability goals. 

Several O&G companies have started to invest in the renewable energy sector. An example of this is 

the energy company Equinor, who is going to power offshore O&G platforms with floating offshore 

wind turbines off the coast in Norway scheduled to start producing electricity at the end of 2020. 

Using renewable wind power to reduce emissions and cost of carbon dioxide (CO2) taxes at O&G 

installations, can look tempting, but is the price of implementing an offshore wind farm profitable? 

This study presents a case study of using a wind turbine farm as a supplement to an existing offshore 

O&G field.  

In this research, wind speed and production data were retrieved from an O&G installation located in 

the North Sea. The study aimed to find the optimum total cost of a hybrid system consisting of 

offshore wind and gas turbines. For finding the optimum solution, a genetic algorithm (GA) was 

implemented.  

GA is inspired by Charles Darwin's theory, where the fittest individuals survive and reproduce to the 

next generation. The algorithm is a proficient method for solving complex optimization problems 

fast. 

The study is structured as follows: Chapter 2 provides a theoretical background. Chapter 3 provides 

the methodology used for each step of the progress on the model; Chapter 4  provides and discusses 

the results from the optimization. Chapter 5 concludes the work; Chapter 6 recommends further 

work. 

1.1 Problem Definition 
The main objective of this thesis is to minimize the total cost for a hybrid renewable and gas system, 

while always meeting the load demand.  

The hybrid system consists of seven gas turbines and a varied number of 8 MW offshore wind 

turbines.  Three different scenarios for the hybrid system is studied. To do the optimization of the 

system, a GA is implemented.  

The goal of the thesis is divided into the following: 

• Gain knowledge in offshore wind, O&G platforms, hybrid systems, optimization methods, 

and genetic algorithms. 

• Gain knowledge in what methods have been used previously for optimizing hybrid systems 

by studying previous work. 
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• Implement a genetic algorithm for optimizing of the hybrid system. 

• Find the number of wind turbines to gain the minimum total cost while meeting the load 

demand. 

• Find how many wind turbines should be implemented if O&G contributes to cut 50 % of the 

CO2.  Thereby, find out how O&G installations can cut direct CO2 emissions from O&G 

installations (gas turbines accounted for 84.6 % of the direct CO2 emissions from O&G in 

2018). 

• Find the minimum total cost and number of offshore wind turbines, while meeting the load 

demand, assuming the LCOE for offshore wind decreases with 30 % in 2030. 

• Evaluate the results obtained from the GA. 

 

1.2 Limitations and Assumptions 
Several limitations and assumptions were made in this thesis in order to achieve the desired goals. 

The method chapter provides a more in-depth explanation of the limitations and assumptions, while 

this section introduces the main limitations and assumptions. The primary limitations and 

assumptions are as following: 

• The case study is based on a monthly time period for six years, so the results can only be 

seen as a rough estimate. For more accurate results, a daily or hourly time interval would be 

preferred, and an intraday analysis should have been implemented to address the high 

variability of the wind resources and its impact on always meeting the load. 

 

• Due to the load profile from the O&G platform is confidential and it was not able to access in 

the amount of time for the thesis, the load profile is based on the O&G production from the 

platform and the average generation from seven gas turbines.  

 

• The power from the wind by the wind turbine is based on the power curve, which is provided 

by the manufacturer. The power curve is created under standard conditions and might not 

be 100 % representative of this scenario. Nor does the wind power consider losses or 

downtime. It is also used average wind speeds for each hour, using average can smooth out 

fluctuations that can affect wind energy production.  

 

• LCOE for the offshore wind turbine is based on an already calculated LCOE from another 

report based on data from Spain.  The calculation of LCOE needs investment cost, operation, 

and maintenance cost, discount rate, and other costs in the lifetime of the wind turbine, 

which is numbers that are hard to access in a limited amount of time, and without 

connection to someone who can share this type of information. The LCOE for the gas 

turbines is also based on average available numbers, and not for this specific scenario.  

 

• The amount of CO2 emissions per MWh from the gas turbines is based on an average from 

available numbers. 
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•  The GA generates population randomly, so the results vary a bit for every simulation.  
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2 Theory 

In this chapter, a brief explanation of the essential characteristics of wind, different components of a 

renewable hybrid system, the optimization process, and a literature review is presented. 

2.1 Oil and gas platforms 
An offshore O&G platform usually consists of facilities such as drilling, accommodation, processing, 

exporting, and injection. These are facilities that are very energy consuming, platforms at the 

Norwegian Continental Shelf (NCS) usually have a consumption ranging from 10 MW to several of 

GW [3].  

In Norway, the production of O&G started in 1971 [4]. The petroleum industry is Norway's most 

important industry, and since the production began, it has given Norway a value creation of 

approximately 14 000 billion NOK, measured in today's currency [5]. Numbers from 2017 shows that 

the Norwegian petroleum sector, both directly and indirectly, employs 225 000 [6]. There is no doubt 

that the petroleum industry will continue to be an important industry for Norway. Several industries 

have started to look at other possible energy resources, and companies have gone from calling 

themselves for petroleum companies to energy companies. There is no doubt that the future will 

depend on energy from fossil resources, but that there will be an increased number of renewable 

sources. 

2.1.1 Energy supply (load) 

The load demand at O&G platforms is very high and requires good energy sources for covering it. 

Currently, the O&G platforms are supplied with energy from gas turbines, which are operated by 

combusting natural gas or diesel oil. The primary source of emissions to the air on the O&G platforms 

comes from burning the natural gas/diesel oil [7]. In 2018 were the gas turbines responsible for 84.6 

% of the direct CO2 and 68 % of the nitrogen oxide (NOx) emissions directly to air from O&G 

installations [7]. Due to increased focus on reducing greenhouse gas (GHG) emissions, electrification 

by replacing parts of the fossil fuel power source with renewable energy on the O&G platforms is 

necessary. Electrification can be done by either lay cables and get power from shore or replace parts 

of the gas turbines with renewable energy power. Another solution is to implement carbon capture 

and storage. 

According to the International Renewable Energy Agency (IRENA) roadmap to 2050, electricity will, 

by 2050, become a significant energy carrier, growing from a 20 % share of final consumption to 

around 50 % share in 2050, where renewable power supplies two-thirds of the final energy [8].  

2.1.2 Gas turbines 

The efficiency of the gas turbines varies with the different models. The efficiency of modern gas 

turbines is around 36 to 37 % at full load [9]. At reduced load, modern gas turbines have an efficiency 

of about 30 to 36 %, giving an average efficiency of around 33 %. 

The case study in this thesis is based on GE's LM2500 PE combined cycle gas turbine. The LM2500 PE 

is an aero-derivative gas turbine, a derivative of the General Electric CF6 aircraft engine. The LM2500 

series is specially designed to serve the O&G industry as it is a light and compact version for 

generating electricity. Aeroderivative gas turbines also have the advantage over other typical 

industrial machines that it is more flexible to handle changes in the load more and that it has a short 

shutdown time [10]. These types of gas turbines also have cleaner emissions and better heat rates 
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compared to other gas turbines.  The LM2500 models are also designed to achieve a low level of 

emissions and do not exceed 15 ppm NOx emissions [11]. The LM2500 PE has a total capacity of 23 

MW and an operation time of 4000 hours [12].  

2.1.3 GHG Emissions 
By replacing all or parts of carbon-emitting fuel-based energy sources with renewable energy 

sources, air pollutions such as CO2 and other GHG can be reduced substantially. GHG emissions are 

the main contributor to the greenhouse effect, which again contributes to global warming. 

Since most countries have goals to reduce environmental emissions to become more sustainable, 

there has been a significant focus on electrification with among other renewable energy. In Norway, 

around 80 % of GHG emissions are taxed and/or regulated through the European Emissions Trading 

System (EU ETS)[13]. The EU ETS limits the total emissions among the joint countries by setting a 

quota for the companies. If the companies exceed the given quota, the companies have to purchase 

quotas from other companies. Vica versa can the companies with surplus quota, sell their remaining 

quota to other companies. The EU ETS is annually reduced to achieve the emission target.  

The petroleum sector has to pay both the EU ETS, which is around NOK 200/tons CO2 and the 

Norwegian CO2 taxes, which is currently around NOK 500/tons CO2 [13]. The taxation rate for fossil 

energy in Norway is among one the highest in the world [14]. Norway also has integrated 

environmental and climate considerations in its petroleum industry policy [15].  

The combustion of natural gas and diesel in the turbines at the O&G platforms is the primary 

polluter, resulting in emissions such as CO2, NOx, methane (CH4), sulfur dioxide (SO2), and non-

methane volatile organic compounds (NMVOCs). About a quarter of Norway's GHG emissions comes 

from petroleum activities, and in 2018 around 13.4 million tonnes CO2 equivalent was emitted from 

petroleum activities [15]. 
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2.2 Offshore wind power 
Offshore wind technology has, over the last decade, developed rapidly poised to make a significant 

difference in future energy systems, growing almost 30 % per year between 2010 and 2018 [16]. In 

2018, turbines with record-level rated capacities ranging from 10 MW to 12 MW had been 

announced by manufacturers to be available for commissioning after 2020 [17]. 

The advantage of implementing offshore wind power to O&G platforms is that the average wind 

speeds are high, the turbulence intensity and wind shear are low compared to onshore wind power 

[3]. The wind speeds near offshore platforms on the NCS an average wind speeds 9-11 m/s. As 

offshore platforms on the NCS usually are at water depths exceeding 60 m, the traditional fixed-

bottom offshore wind installations are not economically attractive [16]. At these water depths, 

floating offshore wind foundations are suitable and can harness the untapped wind resources. The 

wind power from floating wind could, according to the International Energy Agency (IEA), in 2040 

meet the world's total electricity demand 11 times [16].  

2.2.1 Floating offshore wind 
The most mature offshore foundations are the monopile and the jacket; these are both currently 

restricted to waters less than 60 meters deep. The water depth restriction is a significant limitation 

as the wind resources are more abundant in deeper waters. Vibrant water sites also have some of 

the markets with considerable wind power potential [18]. For deeper waters, floating foundations 

can be applied and has in recent years, been maturing fast, and there have been significant 

technological developments. By 2050 floating wind farms could potentially cover around 5-15 % of 

the world's offshore wind installed capacity, according to IRENA [18]. The three main tested concepts 

for floating foundations are spar-buoy, semi-submersible, and tension leg platforms. Figure 1 

illustrates the floating foundations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Floating wind foundation 

Currently, there are mainly just demonstration and pre-commercial projects for floating offshore 

wind, but in 2017 Equinor's 30 MW Hywind project in Scotland commissioned being the world's first 
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multi-unit installation of floating offshore wind. Equinor has also gotten approval for a 200 MW, and 

an 88 MW project. For the project off the coast of Norway, offshore wind turbines supplies power to 

five O&G platforms (Snorre and Gullfaks field) and accounts for around 35 % of the power supply 

[19]. Other demonstration projects are the 2 MW Floatgen in France and the 3 MW Hibiki in japan.   

2.2.2 Wind Energy 
Wind turbines create mechanical power by converting the kinetic energy in the wind. The kinetic 

energy in the wind is given as: 

 
𝐸 =  

1

2
𝑚𝑣2 

 

Eq. 1 

Where m is the mass [kg], v is the mean wind speed [m/s]. 

 

For a horizontal wind turbine, the mass is the contained volume that flows through the rotor (volume 

of a cylinder).  For a wind turbine, the mass is air flowing; it is convenient to use mass per second 

(�̇�)[20], the kinetic energy per second (�̇�) is the same as the theoretical power P: 

 
�̇� = 𝑃 =

1

2
𝜌𝐴𝑣𝑣2 =

1

2
𝜌𝐴𝑣3 

 

Eq. 2 

Where �̇� is the kinetic energy per second [J/s], P is the theoretical power of the wind [W], ρ is the 

density at a standard value of 1.25 [kg/m3], A is the cross-section area [m2], and v is the mean wind 

speed [m/s]. 

2.2.3 Power in the wind 
The maximum theoretical amount of power that any wind rotor can extract is 59.3 % and is known as 

the Betz limit. The overall efficiency for most three-bladed rotors is around 50 % [20]. The maximum 

power extracted from the power available is also known as the power coefficient (cp). The power 

extracted from the wind must, therefore, be factored in equation (for �̇�) and the power extracted 

from the wind is expressed as: 

 
𝑃 =  

1

2
𝜌𝐴𝑣3𝑐𝑝 

 

Eq. 3 

Where cp is the power coefficient. 

 

The power coefficient is not constant and varies with the tip speed ratio (𝜆) of the turbine.  
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Figure 2: Typical wind turbine power curve 

 
The electrical power output from the wind turbine from the different wind speeds can be shown in a 
power curve, see Figure 2.  The three other parameters describe the power curve; cut-in speed, 
rated-speed, and cut-out speed. The cut-in speed typically ranges from 3 to 5 m/s; the rated speed 
typically ranges from 11.5 to 15 m/s, and the cut-out speed for most wind turbines generally is 25 
m/s [20].  
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2.3 Cost of components 
Experience together with the shift to deeper water, larger turbines, and better wind resources, the 

cost of offshore wind has, in the last decade, started to decline. For a wind turbine farm, the 

paramount price is the turbines, foundations, grid connection to shore, and the installation cost. The 

total installation cost for offshore wind projects commissioned from 2010-2018 has over the period 

had a 5 % cost reduction [21]. With wind farms moving from waters close to shore to deeper waters, 

the capacity factor for offshore wind increased up to 43 % in 2018, compared to 38 % in 2010 [18]. 

The wind resources at the deeper shore are often better and more stable, this together with the 

development of the wind turbine sizes, a better capacity factor has been achieved. 

2.3.1 Levelized Cost of Energy (LCOE) 
Levelized Cost of Energy (LCOE) refers to all the cost of generating electricity for a power plant's 

lifetime. The LCOE includes the cost of construction, operation and maintenance, fuel costs, taxes, 

and insurances. The LCOE is then found by dividing all the costs by the power plant's total lifetime 

energy production (MWh). 

According to IRENA, offshore wind projects completed in 2018, had an average global capital cost of 

4353 U.S dollar (USD)/kW with an average capacity factor of 43 % [16][22]. Capital investment 

(including costs of the turbine, foundation, internal cabling, substation, and offshore transmission 

assets) accounted for almost half of the LCOE for completed projects in 2018 [16]. Financing cost 

accounts for the other half. For the offshore wind in Europe, recent strike prices have indicated that 

there will be cost reductions in the nearest future. According to IEA, the new offshore wind turbines 

with rated capacities ranging from 10-12 MW planned commissioned after 2020 are to be auctioned 

at bids ranging from 55-75 USD/MWh [16][17]. IRENA has also predicted that the average installation 

cost for offshore wind projects could drop to between 1700-3200 USD/kW by 2030 and between 

1400-2800 USD/kW by 2050 [18]. The average LCOE for offshore wind is around 0.115-0.127 

USD/kWh [23][24][18]. IRENA has predicted that the average LCOE of offshore wind drops to an 

average between 0.05-0.09 USD/kWh by 2030 and 0.03-0.07 USD/kWh by 2050 [18][25].  

The LCOE of floating offshore wind is higher than the LCOE for offshore wind, as it is a relatively new 

technology. A study done by Anders Myhr et al. [26] has analyzed and compared the LCOE of 

different floating wind turbine concepts. The study found that the LCOE for floating offshore wind 

was very dependent on the distance to shore and the depth at the chosen location. For wind farms 

with a longer length to shore, longer export cables are needed, and for wind farms at deep waters, 

the mooring costs increase. The study found that for an optimal site, the LCOE for floating offshore 

wind could range between 82.0-236.7 Euro/MWh, which is equal to 109.06-314.811 USD/MWh. 

Another study done by Laura Castro-Santos et al. [27] has also analyzed the economic aspects of 

floating offshore wind for the location of Galicia (Spain). The study shows that the LCOE for floating 

offshore wind varies with the installed MW of wind turbines. From the study the LCOE for a 100 MW 

wind farm varies from 117.05 to 1282.4 €/MWh; 200 MW wind farm varies from 100.31-1012.7 

€/MWh; 300 MW wind farm varies from 96.29 to 944.33 €/MWh; a 400 MW wind farm varies from 

93.70 to 902.28 €/MWh; 500 MW wind farm varies from 92.69 to 765.82 €/MWh; and a 600 MW 

wind farm will vary from 91.74 to 867.73 €/MWh. As one can see from the results, the LCOE will 

decrease for the higher MW installed of power. 

The Norwegian Water Resources and Energy Directorate (NVE) collects cost figures for different 

technologies and has calculated the average LCOE for several plants in Norway. NVE has made an 
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interactive solution to get an overview of the LCOE for the other technologies. From the interactive 

solution, it is possible to look at the development from 2018 to 2040 and the LCOE for investment, 

operation, and fuel. For wind power, it is only LCOE prices for land-based as Norway only has one 

offshore wind turbine at sea per today. Table 1 shows the average LCOE for land-based wind power 

and gas-fired combined cycle plant in 2018. The average LCOE for land-based wind power in 2018 for 

an average wind farm of 506 MW is 0.3439 NOK/kWh. By 2040, the expected LCOE is 0.2132 

NOK/kWh. The average investment cost for wind power is 10687 NOK/kW, the average fixed 

operating and maintenance costs are 0.0 NOK/kW/year, the average variable operating, and 

maintenance costs are 0.10 NOK/kWh. For the gas-fired combined cycle power plant, the average 

LCOE for 2018 was 0.8206 NOK/kWh with a size of 450 MW, and the average investment cost was 

7365 NOK/kW. Comparing these two, the average LCOE for wind is much lower, while the average 

investment cost for wind is much higher. 

Table 1: Average calculated LCOE of technologies obtained from the Norwegian market, source: NVE [28] 

Technology LCOE 2018 
[NOK/kWh] 

LCOE 2040 
[NOK/kWh] 

Investment 
cost 

[NOK/kW] 

Fixed operating 
and 

maintenance 
costs 

[NOK/kW/year] 

variable 
operating 

and 
maintenance 

costs 
[NOK/kWh] 

Fuel Cost 
[NOK/kWh] 

Wind 
power 
(land-
based) 

 

 
0.3439 

 
0.2132 

 
10687 

 
0.0 

 
0.100 

 
0.0 

gas-fired 
combined 

cycle 
power 
plant 

 
0.8206 

 
0.7796 

 
7365 

 
181 

 
0.0210 

 
0.6975 

 
 

Depending on the size and model, and the amount of fuel burned, a gas-fired combined cycle power 

plant emits around 350-500 g CO2/kWh electricity generated [29][30][31]. The petroleum sector 

must pay both the EU ETS price and the Norwegian CO2 taxes, which is currently around NOK 

200/tons CO2 and NOK 500/ton CO2, respectively. The CO2 taxes and EU ETS gives a total of 700 

NOK/tons CO2, which is equivalent to 84.848 USD/tons CO2, using the exchange rate for USD in 2019. 

Combined cycle gas turbines have an average LCOE of 36 USD/MWh [23][24]. 
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2.4 Hybrid systems 
Offshore petroleum installations where gas turbines feed large loads directly, cannot be electrified by 

cables from shore, as this is too costly and difficult to implement [32]. One possible solution is to 

implement an offshore wind power park near the platform instead. The wind turbines are 

intermittent by nature and will, therefore, not alone be able to meet the energy needs; the gas 

turbines can consequently be used as a backup when the installed wind turbines are not able to meet 

the load demand. 

When combining multiple sources of power generation or combined with storage, it is called a hybrid 

system. Linking wind- and gas turbines make it possible to save fuel by declutching and stopping the 

gas turbines when the wind turbines exceed the load demand. A disadvantage of implementing a 

hybrid wind system is the high initial cost of the wind turbines. 

A hybrid system is often used in remote and isolated areas to provide a 100 % secure energy supply. 

The optimum solution for a hybrid system is dependent on the specific situation depending on 

different factors. Figure 3 illustrates an example of a hybrid wind and gas system. Examples of 

factors that are important for finding the optimum solution are existing generation assets, market 

structure, and transmission and distribution infrastructure [33].  

 

 
Figure 3:  A hybrid wind-gas system 
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2.5 Optimization 
An optimization problem consists of a group of variables, an objective function, constraints to limit 

the values of the variables and boundaries. An optimization problem is solved by finding the variables 

that result in the best (largest or smallest) value of the objective function within the given 

constraints. Solving an optimization problem requires to have an efficient optimization algorithm or 

an efficient search. There is a wide variety of algorithms. The algorithms are classified according to 

the goal of the optimization and characteristics of the algorithm. 

2.5.1 Objective function 
The task of the objective of an optimization problem is to minimize (or maximize) a numerical value. 

The value could be the cost of a project, an amount of a product, the weight of a product, etc. To be 

able to optimize the objective function, a vector minimizes (or maximizes) the value desired to be 

optimized. Generally, the following function describes an objective function: 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑜𝑟 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 =  ∑ 𝑐𝑖𝑋𝑖

𝑛

𝑖=1

 

 

Where 𝑐𝑖  is the objective function coefficient equivalent to the ith variable and 𝑋𝑖  is the ith decision 

variable. The coefficients of the objective function specify the value of the objective function of one 

unit of the corresponding variable, i.e., for cost optimization, 𝑐𝑖  is the cost of using one unit of 

resource i. The decision variables are the variables that need to be determined to gain an optimized 

solution. The decision variable is the amount of resource i used to reach the optimized solution. 

2.5.2 Decision variable 
When formulating the optimization problem, establishing the decision variables are needed. The 

decision variables indicate what value the variables should have to gain the best result. Usually, the 

decision variables are presented as: 

𝑋1, 𝑋2, … , 𝑋𝑛  

Where 𝑛 is variables. 

 

The decision variables are defined by setting upper and lower bounds, also known as the boundaries. 

It is essential to set reasonable boundaries to the decision variables so that the optimization 

algorithm does not waste time on finding solutions that are not useful. 

2.5.3 Constraints 
Constraints in an optimization problem define the values of the variables and represent the 

maximum or minimum of what the values can be. Usually, this function describes the constraints: 

∑ 𝑎𝑗,𝑖𝑋𝑖 ≤ 𝑏𝑗   𝑗 = 1,2, … , 𝑚

𝑛

𝑖=1

 

 

Where 𝑗 is an index corresponding to a constraint,  𝑎𝑗,𝑖  is a coefficient that shows the amount of 

resource j is used for the unit of resource i, for the decision variable 𝑋𝑖. The constraint 𝑏𝑗 is the 

remaining amount of resource j available. Constraints can also be written as greater-than-or-equal, 

as you can multiply by -1 and get less-than-or-equal constraint and vice versa. Constraints can also be 

written as inequalities, one greater-than-or-equal and a less-than-or-equal.  
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2.5.4 Genetic algorithm (GA) 
A genetic algorithm is a widely used stochastic algorithm for solving optimization problems. 

Stochastic algorithms are referred to as metaheuristics. The word heuristic means to find or to 

discover by trial and error, and meta means beyond or higher level [34]. The trade-off in 

randomization and local search is apparent in all metaheuristic algorithms to a certain degree [34]. In 

1960, John Holland introduced the algorithm based on Charles Darwin's theory of evolution, and in 

1989 it was further developed by his student David E. Goldberg [34] [35]. The algorithm is based on 

the natural selection process where the fittest survive and reproduce.  

Figure 4 shows the process of a GA. The optimization process using GA begins with generating an 

initial population. The initial population consists of individuals, which is defined by variables. In a GA 

optimization, the variables are commonly known as the genes. The genes function in the same way 

as for the human body; they form a string that together creates a chromosome. Gene can be seen as 

the recipe and chromosome as the book of recipes. In this context, the chromosome is the solution 

to the optimization. Usually, the strings forming the chromosome is in binary values. Figure 5 gives a 

simple picture of how genes, chromosomes, and populations are linked together.  

The fittest individual is then selected by a fitness function that gives each individual a fitness score. 

The two with the best fitness score, also known as the parents, are then used to pass on the genes to 

the next generation.  

  

Figure 4: Flow chart showing the process of a genetic algorithm 
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The algorithm then chooses a crossover point in the string of the genes from the parents. The next 

generation is formed by the mix of the genes from the parents within the crossover point, see Figure 

6. 

 
Figure 6: How genes are transmitted from parents to the next generation in genetic algorithm 

 Mutations with a low random probability can occur in the genes of the new offspring; this is to 

create variation in the population. If the next generation has converged, the algorithm should be 

terminated, and the optimization problem has gained a solution. 

Optimization using GA has many advantages. The most useful advantages are the algorithm's ability 

to handle very complex problems fast, and its ability to run in parallel [36]. That the algorithm runs in 

parallel means that the algorithms are not dependent on each other, running the algorithm in 

parallel can avoid it being stuck in a local optimal solution. Optimization using GA does also have 

some disadvantages. One disadvantage of GA is that it might not give the most local optimum [36]. 

Figure 5: Initial population of a genetic algorithm 
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The reason why the GA does not always give the local optimum is due to the population is generated 

each time randomly, but compared to the time it takes to compute all possible outcomes, it is a 

proficient method. 
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2.6 Previous studies 
Several studies have been investigating the hybrid system optimization matter. The most widely used 

methods for the optimization of hybrid systems are classical techniques and metaheuristic 

techniques [37]. Classical optimization algorithms find the optimum solution by utilizing differential 

calculus [37]. Examples of classical optimization are linear programming (LP), dynamic programming 

(DP), and nonlinear programming (NLP). Metaheuristic optimization is nature-inspired and usually 

uses stochastic operations in the search process [38][37]. Examples of metaheuristic optimization 

methods are generic algorithm (GA), particle swarm optimization (PSO), simulated annealing (SA), 

and ant colony (AC) algorithm.  

Linear programming has been used for several hybrid renewable system optimization studies, as this 

method has the availability to perform reliability and economic analysis. An example of studies that 

have used this method is the study done by Saif et al. [39]. The study is a multi-objective capacity 

planning of a photovoltaic (PV)-Wind-Diesel-battery Hybrid power system. It has two objectives: 

minimizing the total cost and minimizing total CO2 emissions while limiting the expected unserved 

energy. The study is based on a case study that involves designing a hybrid power system for a city 

with 50,000 inhabitants. The data used in the model were extracted from the real environment and 

technical data. The results from the study were used to construct a Pareto front, which represented 

the best trade-off between cost and emissions under different reliability conditions. 

Another study that has used linear programming for optimization is the study done by Nagabhushana 

et al.[40]. The study utilizes linear programming to minimize the present worth of capital and 

operating costs of a hybrid renewable energy system by using MATLAB software. The constraints 

used in the study are the energy demand, components of the system, technological options, cost of 

components, satisfying battery autonomy hours, and keeping a limit on renewable energy resources. 

This has been done to find the optimum generation capacity and storage needs for a stand-alone 

hybrid wind/PV system for three specific locations in Karnataka (India). 

The nonlinear programming model is when both the objective functions and the constraints or one of 

them contain nonlinear part. An example of a study that has used NPL for the optimization of hybrid 

systems is the study done by Ashok [41]. The study investigates the optimal combination of energy 

components for a typical rural community with the objective is to minimize the life cycle costs while 

having a reliable system operation. The study is based on a case study of a typical farming village of 

Western Ghats in Kerala, India. The optimization model that is developed in the study has used the 

hourly load profile of the town and found the optimal number of different renewable energy units 

and the optimal schedule by using a quasi-newton algorithm. The three other renewable sources 

considered are micro-hydro, wind, and solar PV. 

A genetic algorithm is an evolutionary population-based algorithm to find the optimal solution for a 

given problem [37]. The genetic algorithm is implemented to a variety of different programming 

tools, such as MATLAB, Python, and java. Several additional studies have used this method for the 

optimization of hybrid systems. An example of a study that has used GA for optimization is the study 

published by Riboldi et al. [42]. The study investigates the possibilities to integrate a wind farm into 

an offshore combined cycle power plant. The study has used a multi-objective optimization with 

three objective functions; the cumulative CO2 emissions, the total cost to supply energy to the plant, 

and the weight of the onsite power cycle. The study is based on existing wind turbine technologies 

and relative wind speeds. The wind speeds obtained were initially in a 20-minute resolution. It was 
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desirable to increase the resolution to 1 minute. This was done by generating average wind speeds 

instances using a distribution function for 10 minutes variations. Increasing the resolution to 1 min 

was then accomplished using linear interpolation. It was desirable to find the optimal environmental 

and economic performances of the study case. The methodology used in the study was to summarize 

the annual CO2 emissions of the plant's lifetime and meausure the total cost to supply energy to the 

plant. The results from the study showed that the installation of an offshore wind farm was 

economically challenging, but it was possible to reduce the CO2 emissions.  

Another study that has used GA for optimization is the study done by Bilala et al. [43]. The study 

studies a stand-alone PV-wind-diesel-battery system, where the objective is to minimize the 

Levelized cost of energy and CO2 emissions by using GA. Solar radiation, wind speed, and 

temperature data used in the model are extracted from the specific site Gandon, Senegal. The 

obtained results were used to present an optimal Pareto front. 

Another example of GA optimization has been done by Dufo-López et al. [44]. The study has applied 

a strength Pareto evolutionary algorithm to the multi-objective optimization of a stand-alone PV-

wind-diesel system with battery storage. The objective of the study is to minimize the Levelized cost 

of energy and the equivalent carbon dioxide life cycle emissions.  

Katsigiannis et al. [41] have in a study used GA to optimize a hybrid system consisting of solar PV, 

wind turbines, batteries, and diesel generators where the objective function is to minimize the 

system's cost of energy. The chosen constraints for the study are total initial cost at the beginning of 

the system's lifetime, the annual unmet load, the yearly capacity shortage fraction, fuel availability, 

minimum renewable fraction, and the size of each system's component. For the case study, the 

project's lifetime is assumed to be 25 years, and the meteorological data used is from the Chania 

region in Crete, Greece. The method used in the study determines the optimum configuration and 

the system's cost of energy. 

Hongxing et al. [45] have utilized GA to find the minimized annualized cost of the system and an 

optimal model for designing a hybrid system consisting of PV array, wind turbine, battery bank, 

inverter, controller, and other accessory devices and cables. The study has modeled the individual 

components in the hybrid system. It is used hourly meteorological data on an annual basis from the 

year 1989 in Hong Kong as the studied project is close to Hong Kong, China.  

Particle swarm optimization is an optimization based on the method a swarm moves to find food in a 

specific area [37]. This is an efficient method for solving problems within optimization and scattering. 

An example of studies that have used this method for the optimization of hybrid systems is, for 

example, the study done by Hakimi et al. [46]. In the study, it is found the optimal sizing of a wind-

fuel cell hybrid. The study is based on the Khanoum site in south-east Iran. The aim is to minimize the 

total cost of the system by optimizing the capital costs, replacement costs, operation, and 

maintenance cost of all the components of the system, as well as efficiency, lifetime of components, 

and a lifetime of the project.  

Another study using PSO for the optimization of hybrid renewable energy systems is the study done 

by Amer et al. [47]. The study has used the PSO algorithm to reduce the Levelized Cost of energy 

while taking into consideration the losses between production and demand sides. The algorithm 

structure in this study is built by using the MATLAB software. The study focuses on the cost of the 
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equipment, the total cost of the installed project (including fixed financing costs), and the Levelized 

cost of energy. 

Boonbumroong et al. [48] have used PSO to minimize the total life-cost of a stand-alone hybrid 

power system consisting of PV, wind turbines, and diesel. For reference, an existing hybrid power 

system has been used from Chik Island, Thailand.  The simulated hybrid system results from the 

study were compared with the reference system. The general constraint chosen in this study is that 

the hourly energy demand must be satisfied by the energy generation units. Other studies that have 

used PSO to minimize the system cost is the study done by Bashir et al. [49] and Ardakani et al. [50]. 

A study done by Mohamed et al. [51] have modeled, optimized, and simulated a hybrid renewable 

system integrated with the smart grid using both PSO and GA. The objective function is to minimize 

the total present cost of the entire system and maximize system reliability. The system consists of 

wind turbines, diesel generator, main load, dummy load, PV array, and a battery bank. The proposed 

algorithm in the study ensures that the total energy generated from the hybrid renewable energy 

system satisfies the load requirements. If not, it should increase the size of the wind energy system 

or/and PV system by a particular value, and opposite. The study has used a year of hourly wind speed 

data, solar radiation, and ambient temperature for a couple of different sites. It is also used ten 

different types of wind turbines (onshore) from other manufacturers. For meeting the load 

requirements of the different locations, the study has also used a 10 % penetration ratio (ratio of 

wind generation to the total renewable generation). By using the minimum Levelized energy cost, 

the study was able to determine the optimum penetration. The software used for optimization in this 

study is also MATLAB. The study was able to find an optimum solution of site, wind turbine, the most 

effective penetration ratio, and PV area that gave the lowest total present cost. The study concluded 

with finding the optimum solution was quicker and more precise when using PSO compared to GA. 

Other studies have investigated the possibility of operating an offshore wind farm in parallel with gas 

turbines at an offshore O&G rig. One example of studies is a study published by Korpås et al. [52]. 

The study is based on a case study of an offshore platform in the North Sea. The electricity demand 

for the case-study oil platform is supplied by two gas turbines (with one in backup, which is not being 

considered in this study). The gas turbines both have a capacity of 23 MW and share the load equally. 

The power consumption for the oil rig varies between 20 MW and 35 MW over the year. For the case 

study, 4 x 5 MW wind turbines with 4500 utilization hours are integrated. For the combined wind-gas 

power system, a quasi-steady-state MATLAB model was employed. The chosen time step size for the 

simulation was set to 1 minute, and the system was simulated for one year (2009). The study 

investigates two different scenarios: default operating and fuel saving.  

Another similar study has been done by Aardal et al. [53]. This study investigates a system consisting 

of five interconnected oil platforms connected to a 100 MW offshore wind farm. The platforms are 

assumed to have a constant load of 147 MW in total. For backup, each of the platforms should have 

two gas turbines working in parallel, but the wind turbines should always have the priority to supply 

the load. The study has done a one-year simulation and then compared it with a simulation without 

wind turbines to find the overall reduction in fuel consumption. Then the gas savings yield revenues 

were used to the break-even cost for the wind farm investment. Another study done by He et al. [54] 

has done a case study of integrating an offshore wind farm with an offshore O&G platform and with 

an onshore electrical grid. The study has studied three different cases compromising wind farms 

rated at 20 MW, 100 MW, and 1000 MW with a focus on reducing CO2 and NOx emissions, electrical 
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grid stability, and technical implementation feasibility. This study has also used data for one year 

with real load data from the platform. 

From studying previous studies, it is clear that optimizing a hybrid system with offshore wind and gas 

is challenging but a relevant topic. To perform the task, GA seems to be a useful optimization model 

as it seems to be easy to implement, is sufficient for solving nonlinear complex engineering 

optimization problems. 
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3 Method 

This chapter will show the methods used for the thesis. The method describes each step of the 

progress of the work on the thesis. First, the case study is presented along with the data utilized for 

the model, and then the optimization method is presented.  

3.1 Case study description 
The case study is based on an existing platform field connected to a fictitious wind farm, see Figure 

7, where it is desirable to minimize the total LCOE of the system. The platform field consists of three 

oil platforms, in which two of the platforms together have seven GE gas turbines of the type LM2500 

PE. The objective is to gain the optimum LCOE while meeting the load demand and reducing CO2 

emissions, and therefore the gas turbines are used as a backup for the wind turbines when there is 

little or no wind. The model is based on a monthly interval for six years (2012-2018). The number of 

wind turbines varies to find the optimal solution.  

 

 
Figure 7: Illustration of the case study with a wind farm coupled with three O&G platforms 

 
For the hybrid system, it is desirable to study three different scenarios. The scenarios are further 

explained in subsections  3.1.1, 3.1.2, and 3.1.3. 

 

3.1.1 Scenario 1 
The first scenario is to find the lowest LCOE and the number of wind turbines while meeting the load 

demand from the O&G platform. 

3.1.2 Scenario 2 
The second scenario is to find how many wind turbines it is needed to implement at the O&G 

platform if Norway wants to reduce their CO2 emissions with 50 % within 2030 if gas turbines at O&G 

installations account for 86.4 % of the direct CO2 emissions from platforms. For finding how many 

percent CO2 emissions the O&G platforms need to reduce, the following calculation is applied: 

 

(84.6 % ∙ 𝑥) + 15.4 % = 50 % 
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Where 84.6 % is the total amount of direct CO2 emitted from O&G turbines, 15.4 % is the remaining 

CO2 emissions, and 50 % is the desired CO2 emissions reduction. Solving for 𝑥, the desired CO2 

emissions from the O&G platforms are found to be 34.6 %; this is a reduction of 59 %. 

3.1.3 Scenario 3 
In the third scenario, it is desired to find the minimum LCOE and number of offshore wind turbines, 

while meeting the load demand, assuming the LCOE for offshore wind will decrease with 30 % in 

2030. 

3.2 Wind and Load Data 
The wind data used in this study is obtained from the Norwegian Meteorological Institute (MET) [55]. 

The Norwegian MET has historical data and real-time observations from stations both onshore and 

offshore. It is chosen to obtain historical data from the year 2012 to 2018. For this study, it is decided 

to use an 8 MW Vestas V164 wind turbine. The power curve for the Vestas V164 can be seen in 

Figure 8. The wind turbine has a cut-in speed at 4 m/s and a cut-out speed at 25 m/s. At 13 m/s, the 

wind turbine archives its rated power 8000 kW [56]. It is important to note that the power curve for 

the wind turbine is supplied by the manufacturer and is created under standard conditions and may 

not be 100 % representative for the chosen site. The data extracted is given with a time interval of 10 

minutes. For simplicity, it is decided to look at a monthly time interval for the six years for the model. 

The mean wind speed per hour is therefore calculated and correlating power output from the power 

curve collected. This process is repeated for every sample MET has produced and summed up into 

days. For each day, the process completes, it sums up for a month. As it is only necessary to calculate 

this once, the data is saved as a separate CSV file. 

 
Figure 8: Power curve for Vestas V164-8.0 [56]  

Assuming that there are no losses and downtime for the wind turbine(s), using the mean wind speed 

for each hour with the power curve for the Vestas wind turbine, the monthly theoretical wind power 

produced can be seen in Figure 10. 
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Due to the load demand profile for O&G platforms are confidential and hard to access, it is based on 

an average generation from seven LM2500 PE gas turbines and assumed that the load is correlated 

to the O&G production. The LM2500 PE gas turbines each have a total capacity of 23 MW, an 

operation time of 4000 hours, and an annual power generation of 56 000 MWh, which gives an 

average yearly generation of 392 000 MWh [57] [58]. The O&G production from the platform is 

obtained from the Norwegian Petroleum Directorate [59]. Figure 11 shows the monthly O&G 

production from 2012 to 2018. 

 

 
Figure 11: Monthly oil and gas production in Sm3 from the platform from 2012 to 2018 

Figure 10: Monthly theoretical wind power produced from one 8MW Vestas V164 wind 
turbine 
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If looking away from housing and other electricity need at the platforms, extracting oil and gas 

requires large amounts of energy, and it is assumed in this report that the load profile is correlated to 

the production of O&G. Eq. 4 shows the load factor for the platform. 

 

 
𝐿𝑜𝑎𝑑 𝑓𝑎𝑐𝑡𝑜𝑟 =  

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑦𝑒𝑎𝑟𝑙𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑜𝑖𝑙 𝑎𝑛𝑑 𝑔𝑎𝑠
 

 

Eq. 4 

 

Where the average yearly generation is in MWh, and the produced oil and gas is in millions (mill) 

standard cubic meters (Sm3). It is used the average yearly O&G production from the platform from 

the year 2012-2018 to get a more accurate load factor. Multiplying the load factor with the monthly 

produced O&G then gives the average monthly load profile for the platform. Figure 12 shows the 

average monthly load profile for the platform from 2012 to 2018.  

 
Figure 12: Load profile O&G platform from 2012-2018 assuming the oil and gas production correlates to the generation 

The load profile data, as the wind power data, is saved as a separate CSV file to avoid running the 
script every time. 
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3.3 Cost of system components 
The cost of the components is based on the average of numbers from newly published reports. For 

the floating offshore wind power, the LCOE is obtained from a previous study that has calculated the 

LCOE for floating offshore wind at the location Galicia (Spain)[27]. Using LCOE for floating offshore 

wind in Spain is a limitation as it will not be 100 % representative of this study with location off the 

coast in Norway, but it is assumed that the LCOE does not vary that much and probably be lower as 

for this case it is not needed grid connections to shore. LCOE is calculated with the assumption that 

all of the energy produced is used over its lifetime. When it is decided not to use this energy (exceeds 

load), the LCOE gets higher as the total cost of installation is the same, but the power used is lower. 

Therefore, the cost is the same but uses less power. That means the LCOE is raised when the excess 

power is not used. It is implemented a fix where it is also needed to pay for the excess MW/h; the 

LCOE stays the same, but the total cost increases as it also is needed to "pay" for the excess energy. 

According to IRENA, the LCOE for offshore wind is assumed to drop by around 30-60 % by the year 

2030. 

For the gas turbines, the LCOE is based on the average LCOE for gas-fired combined cycle power 

plant of the Norwegian market, which recent data shows the LCOE was 0.8206 NOK/kWh, which is 

with the exchange rate for  2018 equal to 0.10 USD/kWh. From the Norwegian petroleum 

directorate, the emission factor from gas turbines of used energy is 638 tons CO2 emissions/GWh, 

and the price for EU ETS price and the Norwegian CO2 taxes is 84.848 USD/tons CO2. Using the 

emission factor and the taxes for emissions, it gives a cost of 54.133 USD/MWh for emissions from 

the gas turbines. 

3.4 Energy cost optimization for offshore wind farm implemented to O&G platforms 
For this research, it is desirable to find the optimum LCOE of the hybrid system. This section 

describes the implemented optimization algorithm. 

3.4.1 Objective function 
For the optimization process, it is essential to choose the appropriate objective function. In this case, 

the objective function is to minimize the total cost of the system based on the LCOE and the price for 

CO2 emission taxes. The objective function is expressed as: 

𝑚𝑖𝑛 𝐶𝑜𝑠𝑡 = (𝑁𝑤𝑡 ∙ 𝐸𝑊𝑇
𝑠𝑖𝑛𝑔𝑙𝑒

(𝑡) ∙ 𝐶𝑤𝑡) + (𝐸𝑔𝑡(𝑡) ∙ 𝐶𝑔𝑡) + (𝐸𝑔𝑡(𝑡) ∙ 𝐶𝐶𝑂2) 

Where 𝐸𝑤𝑡 and 𝐸𝑔𝑡 is the monthly energy produced from one wind turbine and the gas turbines, 

respectively, in MWh. 𝐶𝑤𝑡 and 𝐶𝑔𝑡 is the LCOE for offshore (floating) wind turbines and gas turbines, 

respectively, in NOK/MWh. 𝐶𝐶𝑂2 is the cost for CO2 emission taxes and 𝑁𝑤𝑡 is the number of wind 

turbines. 

3.4.2 Decision variable 
The decision variables are the number of wind turbines, 𝑁𝑤𝑡 . 

 

𝑥1 =  𝑁𝑤𝑡 

 

And the known constants are the LCOE for wind turbines and gas turbines, 𝐶𝑤𝑡 and 𝐶𝑔𝑡 and the CO2 

emission taxes, 𝐶𝐶𝑂2. 

𝑐1 = 𝐶𝑤𝑡 
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𝑐2 =  𝐶𝑔𝑡 

𝑐3 =  𝐶𝐶𝑂2 

 

3.4.3 Constraints 
To make sure the system always meets the load demand, a constraint can be included in the 

calculation of the optimization problem. The sum of the power produced by the gas turbines and the 

wind turbines should not be smaller than the energy demand of the oil platform, 𝐸𝑙𝑜𝑎𝑑,𝑜𝑝 (𝑡) , hence 

the constraint: 

𝐸𝑙𝑜𝑎𝑑,𝑜𝑝 (𝑡) ≤  𝐸𝐺𝑇(𝑡) + 𝐸𝑊𝑇(𝑡) ∙ 𝑁𝑤𝑡  

 

Nor can the excessive wind power produced be used: 

 

𝐸𝑊𝑇
 (𝑡) = {

𝐸𝑙𝑜𝑎𝑑,𝑜𝑝(𝑡)𝑖𝑓 𝑁𝑤𝑡 ∙ 𝐸𝑤𝑡(𝑡) >  𝐸𝑙𝑜𝑎𝑑,𝑜𝑝 (𝑡)

𝑁𝑤𝑡 ∙ 𝐸𝑤𝑡(𝑡)𝑖𝑓 𝑁𝑤𝑡 ∙ 𝐸𝑤𝑡(𝑡) <  𝐸𝑙𝑜𝑎𝑑,𝑜𝑝 (𝑡)
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3.5 Genetic algorithm implementation 
The programming and scripting language python were used to implement the model. External 

libraries were used in the model, pandas, and matplotlib [60] [61]. Pandas is used to import data 

from excel sheets, and matplotlib presents data visually. Wind data is extracted from METs excel with 

pandas and then sorted into three arrays. One array contains sample-date information while the 

second array holds corresponding wind speed values. The third array represents the Vestas power 

curve.  

  

3.5.1 Initial Population 
The first step of the GA optimization is generating an initial population, see Figure 13. The 

parameters for a population are the size of the population (number of individuals), lower and upper 

boundaries for how many wind turbines an individual may have. This is accomplished with the 

initial_population (pop_size, wturbines_bounds) function. The function returns an array with 

individuals (a population) where the number of turbines is set using the external random [src 

random] library. 

 
Initial_population() is the first function to be called in the genetic algorithm script. Parameters are 

population size equal to ten, minimum turbine amount is one, and the maximum number of turbines 

set to 40.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.5.2 Fitness Function 
The fitness function, see Figure 14, takes one parameter, a dictionary containing all the information 

about an individual: number of turbines and CO2 waste reduction percentage. LCOE_wind function is 

called, which returns LCOE in relation to the number of MW installed. Before calculating fitness for 

Figure 13: initial_population(pop_size, wturbine_bounds) 
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the given individual, it checks whether an exact copy has been calculated before. If it has been 

calculated before, it will return that fitness instead of calculating it again. 

 
 
 
 
 
 
 

 
 
 
 
If the individual is unique, objective_calculation (num_of_winturbines, potential_windpower, load) is 
called. [obj_func expl], which returns how much excessive wind power there is and the cost for the 
current hybrid system, x number of wind turbines, and gas turbines. Fitness of the hybrid system is 
then calculated from a total cost perspective, wasted wind power included. This is because the LCOE 
is calculated with the assumption that all power is used.  The fitness calculated for this individual is 
appended to an array, so it is not necessary to calculate for this exact number of turbines again. 
Finally, the fitness variable is elevated with minus one and returned. It is elevated with minus one, as 
it is desired to gain the best fitness to reflect the lowest cost. 

 

3.5.3 Selection 
Selection, see Figure 15, in this code, is structured so that individuals with better fitness have a 

higher probability of being selected for the mating process.  A random float number between zero 

and one is generated using the random library [62]. Fitness is then calculated for the first individual 

in the generation, that individuals' probability for mating is determined by dividing fitness on the sum 

of all the individuals' fitness in the generation. If the selected individuals' probability is higher than 

the randomly generated floating number, the individual is selected for mating. Otherwise, the 

probability of that individual is added to an accumulated variable, and the same process is repeated 

Figure 14: fitness_function(individual) 
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for the next individual. In the next round, that individual's probability is summed with the previous 

individual(s) probability, increasing its chance for mating. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.5.4 Mating 
The mating function, see Figure 16, is responsible for creating a new child from two parents' 

individuals. This is achieved with a simple yet effective solution. Return value for mating function is 

the mean of two "parent" individuals. 

 
 
 
 
 
 
 
 
 
 

Figure 15: selection(sorted_by_fitness, fitness_sum) 

Figure 16: mating(individual_a, individual_b) 
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3.5.5 Mutation 
The mutation function, see Figure 17, in this script takes two arguments, an individual to mutate and 

at how often an individual should mutate. A random float number between zero and one is 

generated, and if the randomly generated float number is equal to or less than mutation_rate, the 

mutation will commence. The mutation is usually not a huge variation of the original individual, but 

with a little experimentation and testing, the best results came from an entirely new generated 

individual. The individual generated has the same lower and upper boundaries as the first 

generation's individuals.  

 

 

 
 
 
 
 
 
 

3.5.6 Structure of the algorithm 
Figure 18 is the loop performing the algorithm. It is a while True loop, which breaks if the number of 

generated generations is equal to the "generations" variable. It then enters a for loop, setting each 

individual equal to generation[index]. It performs the fitness_function for each individual and stores 

fitness value in temp_progress.  

 

Furthermore, temp_progress is evaluated if it is better than the best_generated individual if it is the 

"new best individual" is stored as such. Every individual's cost/fitness is appended to an array 

alongside with the number of turbines. These values are used for plotting, making it easier to 

interpret the results, as the best generated individual is already stored.  

Figure 17: mutate(individual, mutation_rate) 
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Figure 18: Structure of the algorithm 
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4 Results and discussion 

The different scenarios are tested and recorded with the GA presented in section 3.5. In this chapter, 

the results from the different scenarios are provided and discussed.  

 

4.1.1 Scenario 1 
In scenario 1, the lower boundary for the number of the wind turbine is set to 1. The upper boundary 

is set to 50. It is believed pre-study that the optimum number of wind turbines for a hybrid system 

falls within this range. Population size is set to 20; this is also believed to be a sufficient number of 

individuals to reach a good result. Generations are set to 200, which should yield enough data to 

read. The mutation rate is set to 5 %. All numbers are generated in the floating-point spectrum, and 

no rounding is done for the calculations. This is to demonstrate the algorithm's ability to find a 

solution. Table 2 shows an overview of the algorithm settings. Rounded off results are included in 

section 4.1.4.  

 
Table 2: Algorithm settings 

Parameter Configuration 

Lower boundary 1 

Upper boundary 50 

Population size 20 

Number of 

generations 

200 

Mutation rate 0.05 

 
The blue dots in Figure 19 represent all individuals generated. The red dot represents the set of wind 

turbines, which results in the lowest cost. The black dot is the cost of operating without wind power 

for the six years period. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 Figure 19: Total cost in relation to the  number of installed wind turbines for scenario 1 
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In this case, the number of turbines that yields an optimum cost of operation is 9.62820762844231 

wind turbines. Implementing this number of wind turbines gives a total cost of 333 936 

050.28897613 USD. Table 3 shows the optimum number of wind turbines, excessive wind power, 

emissions, waste reduction, and the total cost for the scenario for the six years.  
Table 3: Results from scenario 1 

Number of turbines Excessive 

wind power 

[MW/h] 

Emission 

[Tons CO2] 

Waste reduction [%] Cost [Mill USD] 

 

9.62820762844231 

 

190524.6843 

 

297183.8735 

 

81.1031 

 

333.936 

 

 

Table 4 shows the difference in total cost with and without wind turbines (red and black dot). For 

this scenario, it is 8 696 786 USD more expensive with wind turbines compared to without wind 

turbines. 

 
Table 4: Cost of operation [USD] with and without wind turbines 

Scenarios Cost of operation [mill USD] 

With wind turbines  333.936 

 

Without wind turbines 

 

325.239 

 
 

4.1.2 Scenario 2 
In this scenario, most of the algorithm settings are the same as in the first scenario, such as 

population size, generations, and boundaries (see Table 2). But in this case, it is calculated what the 

minimum number of wind turbines is needed if this platform is to reach the CO2 reduction goal. From 

Figure 20, the green dotted line represents, at which point, the CO2 reduction is reached. Everything 

to the right of the green line will suffice in reaching the climate goal.  

 

The lowest number of turbines installed, which accomplishes this, is shown in Table 5. Table 5 also 

shows excessive wind power, emissions, waste reduction, and total cost for the six years. From Table 

5, to gain a CO2 reduction of at 59 %, the O&G platform needs to at least install 6. 4083680181856( ≈ 

7 wind turbines). Reducing the CO2 emissions by 59 % results in an emission of 621333 tons CO2. 

 

 

 



35 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 5: Results from scenario 2 

Number of turbines Excessive 

wind power 

[MW/h] 

Emissions 

[Tons CO2] 

Waste reduction [%] Cost [Mill USD] 

6.424286812196558 4334.8 619289 59.5 369.786  

 

4.1.3 Scenario 3 
In scenario 3, algorithm settings are the same as in the first and second scenarios, see Table 2. But in 

this scenario, it is assumed that in 2030 the LCOE for floating offshore wind turbines decreases by 30 

%. It is important to note for this scenario, it would be desired to make a predicted weather forecast 

for the wind speed as it is a future scenario, but due to limited time, it is used the same wind speeds 

as for the other scenarios, which are based on historical data. From Figure 21, the blue dots 

represent all individuals generated, and the red dot the number of wind turbines that result in the 

lowest cost for the six years. 

Figure 20: LCOE in relation to wind turbines and the CO2 reduction goal 
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Figure 21: Total cost  in relation to the wind turbines with LCOE for wind reduced by 30 % 

 

In this scenario, the number of turbines that yields an optimum cost of operation is 

11.11281897311095 wind turbines. This number of wind turbines gives a total cost of 249.783 mill 

USD. Table 6 shows the optimum number of wind turbines, excessive wind power, emissions, waste 

reduction, and the total cost of the scenario. Compared to the total cost without wind turbines (black 

dot), it is 75.456 mill USD less expensive with wind turbines (red dot).  

 
Table 6: Results from scenario 3 

Number of turbines Excessive 

wind power 

[MW/h] 

Emissions 

[Tons CO2] 

Waste reduction [%] Cost [Mill USD] 

11.11281897311095 368268.0204 208382.348 86.8643 249.783 

 

A number of 11.11281897311095 wind turbines gives an excessive wind power of 368268.0204 

MW/h, a CO2 reduction of 208382.348 tons, which is equal to 86.8643 %. 

 

4.1.4 Scenario 1,2 and 3 rounded numbers 
This algorithm was calculated with different parameters. From previous results, the lower boundary 
for the wind turbine is set to 1 and upper to 20. All generated individuals have integer values, and the 
wind turbine number is rounded in the mating process. Figure 22 represents the results for 
scenarios 1 and 2. 
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Figure 22: Total cost in relation to wind turbines and CO2 reduction goal in integer values 

Figure 23 represents the rounded number of wind turbines in relation to the total cost for scenario 3 

for the six years. The following results from scenario 1,2, and 3 with a rounded number of wind 

turbines, and the total cost for the scenario without wind turbines (only gas turbines) are given in 

Table 7. 

 

 
Figure 23: Total cost in relation to the number of wind turbines, with LCOE for wind turbines reduced by 30% 
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Table 7: Rounded results from scenario 1,2, and 3 and without wind turbines 

Scenario Number of 
Wind turbines 

Excess wind 
power 

[MW/h] 

Emissions 
[Tons CO2] 

Waste 
Reduction [%] 

Cost  
[mill USD] 

 
#1 

 
10 

 
231 262.1984 

 
272011.7031 

 
82.74676 

 
334.046 

 
#2 

 
7 

 
16 994.5291 

 
548141.8039 

 
64.2826 

 
354.535 

 
#3 11 355 434.890 213622.9224 86.5279 249.818 

 
Without wind 

turbines 

 
0 

 
- 

 
1500576.0 

 
- 

 
325.239 

 

Figure 24 represents how efficient each wind turbine is as the number of wind turbines increases. 

The payoff reduces exponentially, as emission reduction percentage increases minimally, and the 

efficiency reduces drastically. Both from an economical and an environmental point of view, it does 

not seem reasonable to go beyond the black line. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24: Emission reduction efficiency by turbine 
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When comparing the results from the different scenarios in Table 7, there is no doubt that it is that 

scenario 3 is most profitable as it has a reduced LCOE of 30 %, which represents a significantly lower 

total cost compared to the other scenarios. Scenario 3 is also the only scenario that has a lower total 

cost than without wind turbines. It is important to note that the total cost without wind turbines is 

based on the average LCOE for gas-fired combined cycle power plant of the Norwegian market. 

Scenario 2 is one of the three with less excess wind power, but has a higher emission of CO2, 

compared to the other. The higher amount of CO2 emissions for scenario 2 can be explained by the 

fact that scenario 1 and 3 has a higher number of wind turbines and therefore provides a greater 

production of wind power. This again gives scenarios 1 and 3 a much higher excess wind power than 

scenario 2. Nevertheless, all of the scenarios have a significant amount of excess wind power. Energy 

storage such as batteries could store this excess power and be dispatched when periods with low 

wind speeds occur. Comparing the results from scenario 1 and 2, the total cost for scenario 2 is 

higher than for scenario 1. This is because LCOE decreases as more windturbines are installed, but 

excessive also increases as more windturbines are installed, and that needs to be taken into account. 

Either by directly increasing the LCOE as the xcessive energy is not used, or "pay" for the excessive 

energy which yields the same result.  

 

A lot was learned about programming during this research, and Python programming especially. In 

retrospect, the GA is utilized on an optimization problem, which in reality could have been tested for 

an individual by individual, increasing wind turbines by one and selecting the one with the lowest 

cost. But the experience gained from setting up a GA, constructing it, and watching it work was 

excellent. The GA would have been more fit for a problem with more chromosomes. This could be 

further expanded upon quite feasibly with the existing code for this thesis. That would take full 

advantage of the algorithm's possibilities. For example, there could have been a second chromosome 

with solar panels. More inputs showcase the use case of the GA. Even so, the results conducted 

during the research are intriguing. 
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5 Conclusion 

The main objective of this thesis is to minimize the total cost for a hybrid renewable and gas system, 

while always meeting the load demand. The hybrid system consists of seven gas turbines located at 

an O&G installation implemented with a varied number of 8 MW offshore wind turbines. The 

optimization method used for this thesis is GA. For all of the scenarios, the algorithm settings that 

gained the optimum solution were; the population size should be 20; the number of generations 

should be 200; the mutation rate should be 5 %; the lower boundary set to 1 and the upper to 50. 

The optimal solution was found for three different scenarios for the hybrid system. The first scenario 

was to find how many wind turbines should be implemented to gain the minimum total cost while 

meeting the load demand. The number of wind turbines that gave the optimal solution for this 

scenario was 10 wind turbines. 10 wind turbines give the total cost of 334.046 mill USD. For scenario 

2 it was desirable to find how many wind turbines should be implemented to the hybrid system to 

reduce the direct CO2 emissions by 59 %, the algorithm found that the optimal solution was 7 wind 

turbines. As LCOE increases by the number of installed wind turbines, the total cost of implementing 

7 wind turbines gives a total cost of 354.535 mill USD. For scenario 3, the LCOE for wind turbines 

were decreased by 30 %. The algorithm found that the optimal number of wind turbines that gave 

the lowest cost, while meeting the load demand for this scenario was 11 wind turbines. The total 

cost for this number of wind turbines with a decreased LCOE for wind turbines of 30% was 249.818 

mill USD. The total cost for scenario 3 is lower than the total cost without wind turbines, which were 

found to be 325.239 mill USD. Scenario 3 is the only scenario that had a total cost lower than without 

wind turbines. 

From the obtained results from the algorithm, it is clear that implementing floating offshore wind 

turbines still is an expensive technology to implement, but if the cost of the technology starts to 

decrease as the technology starts to mature as it has shown to do for bottom fixed wind turbines for 

the last years and the years to come. As shown for scenario 3 in this study, the total cost can even be 

cheaper than the cost without the wind turbines, making floating offshore wind an attractive energy 

source to replace some of the fossil energy and reduce GHG emissions. But as wind energy is 

intermittent as it is dependent on the right wind resources, it could never replace 100 % of the fossil 

fuels by itself. Implementing other energy sources like PV and energy storage, such as batteries, can 

help to reduce the use of fossil fuels. 
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6 Recommendations 

Due to lack of time, there is further work to be done in this study to get more realistic results. In this 

study, assumptions were used for the load profile of the O&G platform, as this was confidential 

material. For future work, retrieving correct data for the load profile of the O&G platform is 

recommended. For future scenarios in this study, it is used historical wind data, for further work, it is 

proposed to implement weather forecasting to predict wind for future scenarios. 

 

This study case is also based on a monthly time period for six years due to the limited data for the 

load. For further work, it would be more accurate to have data for an hourly- or daily time scale. 

Using a daily time scale and do an intraday analysis would make it possible to address the high 

variability of the wind resources and its impact on always meeting the load demand. 

 

In this study, LCOE is based on previous work and average figures; for future work, it is 

recommended to do a study on all costs, including installation cost, operation, and maintenance, 

decommission, etc. for floating offshore wind and create an LCOE based on the findings. In this study, 

the possibility of implementing batteries has not been considered; for future work, this may be an 

essential factor for storing excess wind energy for days without wind. 

 

For future work, the GA should further implement more chromosomes, and not only include wind 

turbines, but implement other chromosomes with, for example, solar panels and batteries. 

Implementing multiple chromosomes in the algorithm makes the algorithm more fit, and the 

algorithm's full potential could be achieved. For further work, other optimization methods, such as 

PSO or SA, should also be tested for comparing the results.  
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Appendix A 
 
 

Python Scripts 
 
optimizationAlgorithm.py is the main script with the genetic algorithm. It loads the CSV 
files in the beginning, which are created in create_csv_files.py.  Load.py calculates the 
load profile used in this thesis, and which is referenced as load throughout the thesis. 
Create_csv_files.py creates both the load.csv and potential_windpower.csv. It also 
calculates potential wind power using the wind data from MET and power curve from 
vestas. Power_output _wt.py contains most of the core functions and calculations used in 
the optimization algorithm, and the efficiency_of_windturbines.py. 
Efficiency_of_windturbines is used to calculate and plot Figure 23, which represents how 
efficient each wind turbine is at reducing CO2 emission. 
 
Credit for the LCOE_wind.py script to my supervisor, Joao Leal. 
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