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Summary 
 

This Master thesis has been composed as part of the final year in the Master program of Civil and 

Constructional engineering at the University of Agder. This report was written during the spring 

semester of 2020. The background for the thesis was the need to analyze and investigate the 

changes in the properties for welded steel pipes after the changes to the ASME Code (ASME B31.3) 

for Pressure piping systems made in 2014. This study was conducted in collaboration with the leading 

provider of first-class drilling solutions MHWirth and the University of Agder (UiA). 

 

The objective of this study is to look further into the effect different procedures for post-weld heat 

treatment (PWHT) of welded steel pipes can affect strength and failure mechanisms. Simulations 

using the finite element software package Abaqus were employed to analyze the strength and 

damage initiation of the welded pipe segments with the different PWHT procedures.  

 

The importance of studying behavior and strength of post-weld heat treated steel structures and 

pipes in a wider perspective is also part of this study, as will be mentioned in the chapter 

 ‘’ Significance of the work ’’. The theory behind post-weld heat treatment is explained in this study, 

and the material behavior of steel subjected to welding and heat treatment is also explained. 

 

The method used is done by extracting experimental results for analyzing the welded part of the pipe 

and simulating the damage behavior until final failure using finite element analysis software for 

testing of strength and failure. Explicit analysis has been used for simulating the damage behavior of 

the welded pipe by calibration of the chosen damage model using the experimental material results. 

 

The study is done for AISI 4130 steel pipe and use two different approaches of extraction of material 

data for the numerical simulation in the chosen finite element software Abaqus. One approach has 

been performed using different material data taken from material hardness tests and material 

certificates, and post-processed by using numerical formulas for estimation of the proposed heat 

affected parts of the pipe. The second approach was performed using material data from 

experimental tensile tests of steel specimens applied with different heat treatment, simulating the 

material properties after different PWHT procedures. The reason for applying the first approaches 

was the uncertainty performing the experimental tests in the lab, due to the current virus 

restrictions. In this study there is one type of specimen that was tensile tested for extraction of 

material parameters for the welded and heat affected area as can be seen in the ‘’ Case ’’ chapter. 

 

Towards the end, there is a comparison between the different approaches and PWHT procedures 

including suggestions for further work. 
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1. Introduction 
 

Welding is an indispensable tool that allows for the construction and manufacture of piping, pressure 

vessels, pressure-containing parts and structural steel members. During this process, the molten pool 

often experiences sudden and extreme temperature increases. As it begins to cool, the metal will be 

subject to shrinking caused by the sudden thermal stress. This can have a negative impact on quality, 

and can chemically alter the structure of the steel. If this problem is not addressed, the weldment 

can fail to perform its function, potentially leading to disastrous effects. 

 

Post weld heat treatment (PWHT) after welding is used to improve the properties after welding, and 

the need for PWHT is driven by code and applications. For Process pipes in the oil and gas industry 

the ASME code (ASME B31.3) is used and followed in terms of PWHT, and in 2014 the procedures for 

PWHT were changed. The maximum temperature was lowered approximately 50˚C from 746-704˚C 

to 705-650˚C as the PWHT temperature range.  

 

The motivation behind this study is to investigate what effects this change may have had on the 

strength and integrity of welded pipes. This study is performed in collaboration with the leading 

provider of first-class drilling solutions MHWirth and the University of Agder (UiA) as a final master 

thesis in Civil and Construction Engineering. The specific case in this study is piping systems used for 

drilling fluid in the offshore drilling industry that have been subjected to different PWHT procedures.  

 

Experimental tensile and hardness tests were performed to characterize the AISI 4130 steel pipe 

under study when subjected to four different PWHT procedures. The procedure temperatures of 

600°C, 650°C, 705°C and 746°C were investigated. The results from these tests allowed for the 

derivation of material constants for constitutive modeling, and led to a better understanding of the 

damage behavior of the welded pipe and possible differences in the material due to different PWHT 

procedures. This study also builds on an earlier study conducted for Post weld heat treatment of 

welded low alloyed steel pipes, done by Dimitri Rybakov [1]. And as the same steel pipes are used in 

this study, the earlier results done for hardness testing are also used in this study.  

 

In order to determine and investigate the effects that different PWHT procedures haves on a pipe, a 

pipe segment has been modeled and analyzed numerically. The material data extracted from the 

earlier hardness tests and the experimental tensile tests done in this study have been plotted 

numerically for verification of the different procedures. This has been achieved through data 

processing, with the final result in the form of input parameters for the material constitutive models 

in the finite element software Abaqus/Explicit. Implementation of the proposed damage behavior of 

internal pressure has been done by testing of the strength and integrity through a set of simulations 

to failure. A pressure check has also been performed for the welded pipe according to ASME B31.3 to 

see if there are any concerns in terms of highest allowed pressure. 

 

The results of the numerical simulations done for the two different approaches of extraction of 

material data that were used are compared, in addition to the strength and behavior of the pipe 

when subjected to the different PWHT procedures. 
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2. Significance of the work 
 

Welding is one of the most important techniques in the fabrication industries to join metals of 

different geometries and sizes with cost-effective and reliable assembly. The development of modern 

welding technology began in the latter half of the nineteenth century when electrical energy became 

commercially available [2].  Welding is a reliable and efficient joining process in which the 

coalescence of metals is achieved by fusion. The use of a welded structure, whether a crane 

structure, ship or pipeline, involves consideration of residual stresses and the effects of this factor in 

terms of load-bearing capacity of the structure in addition to the general consideration of stresses 

and strength. Localized heating during welding, followed by rapid cooling, can generate residual 

stresses in the weld and in the base metal [2]. 

 

The nature of residual stresses in welded structures is discussed in terms of their magnitude, 

directionality, spatial distribution, range and variability. The effects of the following factors on the 

residual stresses are considered [3]: material properties, material manufacture, structural geometry, 

fabrication procedure, welding procedure, post-weld treatments, and service conditions. These 

illustrate the different magnitudes and distributions of residual stress that can be found in different 

joint geometries, and demonstrate the effects of the mechanical, thermal and metallurgical 

properties of the constituent materials and the sensitivity of residual stresses to the pass sequence 

and to the restraints applied during welding [3]. Typical examples for the common case of 

circumferential butt welds in pipes and pressure vessels are used to illustrate the extent of residual 

stresses as a function of distance from the weld and the effects of post-weld heat treatment [3].  

 

A high level of residual stresses can occur in weldment due to restraint by the parent metal during 

weld solidification [4, 5]. The stresses may be as high as the yield strength of material itself [4]. In 

order to ensure the material strength of a part is retained after welding, a process known as Post 

Weld Heat Treatment (PWHT) is regularly performed. PWHT can be used to reduce residual stresses, 

as a method of hardness control, or even to enhance material strength [4, 5]. If PWHT is performed 

incorrectly, or neglected altogether, residual stresses can combine with load stresses to exceed a 

material’s design limitations. This can lead to weld failures, higher cracking potential, and increased 

susceptibility to brittle fracture [4, 5]. 

 

PWHT encompasses many different types of potential treatments; two of the most common types 

are post heating and stress relieving [4, 5]: 

 

• Post Heating: Hydrogen-induced cracking (HIC) often occurs when high levels of ambient 

hydrogen permeate a material during welding. By heating the material after welding, it is 

possible to diffuse hydrogen from the welded area, thus preventing HIC. This process is 

known as post heating and should begin immediately after the weld is completed. Rather 

than being allowed to cool, the material needs to be heated to a certain temperature 

depending on the type and thickness of the material. It should be held at this temperature 

for a number of hours dependent on the thickness of the material. 
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• Stress Relieving: By the time it is complete, the welding process can leave a large number of 

residual stresses in a material, which can lead to an increased potential for stress corrosion 

and hydrogen induced cracking. PWHT can be used to release these residual stresses and 

reduce this potential. This process involves heating the material to a specific temperature 

and then gradually cooling it. 

 

 
Figure 1: Criteria for hydrogen induced cracking (HIC) [5]. 

The need for PWHT is driven by code and application requirements as well as the service 

environment. In general, when PWHT is required, the goal is to increase the resistance to brittle 

fracture and relaxing residual stresses. Other desired results from PWHT may include hardness 

reduction, and material strength enhancements [2, 5]. The last two decades of improvement in steel 

metallurgy and pipe manufacturing, leading to high steel grade pipes, the development of new 

welding procedures as well as advanced and more reliable nondestructive testing (NDT) technology, 

have almost completely removed the failure modes associated with brittle material behavior, at last 

when operating temperatures are not severe [6].  

 

With the above in mind, a simple description of the science behind the weld will give us a better 

glimpse into the importance and potential challenges involved in PWHT [7]: 

 

• Grain structures of the HAZ differ from those of the base metal because it has been heated 

to a temperature just below the melting point of the material and then cooled quicker than 

the adjacent base metal. The maximum temperature reached, time at temperature and 

cooling rate all determine the grain structure of the HAZ. 

• Grain structures of the weld metal differ from the HAZ because it too has been heated and 

cooled at a rate different from the HAZ and because it is a “casting” with a much different 

thermal and working history. With each successive weld bead, additional heat is applied to 

the weld below it, so each pass cools at a slower rate. 

Unfortunately, mechanical, physical, and chemical properties within the HAZ are not always 

predictable or desirable and frequently cause problems. For example, in carbon steel and low alloy 

steel, the HAZ can be very hard [8]. As a result, this area can be brittle and commonly succumbs to 

various damage mechanisms (Caustic Stress Corrosion Cracking, Amine Stress Corrosion Cracking, 

sulfide stress cracking, stress-accelerated corrosion and many more mechanisms). This can lead to a 

phenomenon called weld-decay, wherein the HAZ corrodes rapidly (i.e., stress accelerated 
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corrosion/sensitization)[7]. Proper post-weld heat treatment (PWHT) removes or minimizes the 

effects of these undesirable properties inherent in the HAZ. PWHT does this by changing the residual 

stresses and microstructure in the weld area [8]. 

 

As a general rule, the fabrication codes dictate when post weld heat treatment is required and the 

particular post -weld heat treatment cycle. They also generally state the requirements in terms of the 

methods that can be used and the maximum heating and cooling rates and the maximum thermal 

gradients that are allowable. Examples of such codes would be ASME VIII, BS 5500 or AS 4458 for 

pressure vessels and ASME B31.3 or AS 4458 for piping [9]. Although various code and service 

requirements can dictate a variety of temperatures and holding times, the knowledge of change of 

microstructure and the effect this has on strength and hardness must be taken into consideration. 

This is important for understanding damage behavior, to avoid brittle fracture and failure and for 

improving the service life of welded steel structures as well as welded steel pipes. 
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3. Theory 
 

This chapter will explain the theoretical background for this thesis in more detail in order to provide 

the reader with knowledge of mechanisms around the subject of post-weld-heat treatment (PWHT). 

First, theory surrounding different phases and microstructures of steel is presented, followed by heat 

treatment of steel and the effects and issues around welding. The theory behind design procedures 

and PWHT procedures of piping system according to the applicable standard is also presented. 

Finally, the last section will explain some of the theory behind the numerical analysis used in this 

study. The theory behind numerical damage modeling and also tensile testing can be read in the pre-

study for this thesis ‘’ Experimental calibration of continuum damage models ’’[10]. 

 

3.1. Phase-diagrams 
 

The iron-carbon phase diagram shows at what temperature the metal composition melts and what 

microstructure is present. For classification of steel, the carbon content is in the range of 0.08-

2.14wt%, and carbon composition from 2.14-6.7wt% is classified as cast iron [11]. Time-temperature 

transformation (TTT) and Continuous cooling transformation (CCT) -diagrams provide a visualized 

connection between thermodynamics and kinetics. They show which phases will form during heat 

treatment at given times and temperature/cooling rates. Figure 3 shows both TTT and CCT diagrams 

for AISI 4130 steel investigated in this study. Highest and most critical tempering temperature, A1, is 

approximately 727˚C (eutectoid temperature for AISI 4130 steel), where there is shift between 

phases, as can be seen from the TTT-diagram Figure 3 and the iron-iron carbide phase diagram in 

Figure 2.  

 
Figure 2: The iron-iron carbide phase diagram [11] 
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When structural steel is heated above A1, a transition takes place from ferrite to austenite[11]. At A3 

the transition is fulfilled. This process takes place in the structural steel every time a new weld pass is 

put into the groove. The reason is the special conditions in the Fe-lattice[8]. Fe is an allotropic 

material, meanings it changes microstructure in solid state as a function of the temperature. This is 

fundamental for a normalizing process, and normalization is only possible in allotropic material [8]. 

Fe and Ti have such properties. Every time the phase line is passed, a new grain -structure builds up. 

In this way, it is possible to eliminate rough grains and promote fine-grain practice. The 

corresponding heat treatment is called[8] a normalizing process. When welding structural steel, the 

normalizing process is especially important, which is one of the reasons for using multi-pass welds. 

Through multi-pass welds, the structure in HAZ is normalized[8]. 

 

 

 
Figure 3: TTT- and CCT-diagram for AISI 4130 steel investigated in this study [12]. 
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In order to estimate the phases present in a steel alloy, one can also utilize a Schaeffler-diagram, 

shown in Figure 4. Such a diagram utilizes the concentration of alloy elements in order to estimate 

the phases present in the material. The Schaeffler-diagram was originally developed in order to 

analyze welds and weld beads. Therefore, the diagram attempts to describe the microstructure after 

melting and rapid cooling, i.e. equivalent to hardening and quenching [13]. By using a standardized 

set of equations, one calculates the coordinates of the material in the corresponding diagram. These 

coordinates are referred to as nickel- and chrome-equivalents (𝑁𝑖𝑒𝑞 and 𝐶𝑟𝑒𝑞), respectively [13]: 

 

 𝑁𝑖𝑒𝑞 = %𝑁𝑖 + 30 ∙ %𝐶 + 0,5 ∙ %𝑀𝑛 (1) 
 

 𝐶𝑟𝑒𝑞 = %𝐶𝑟 + %𝑀𝑜 + 1,5 ∙ %𝑆𝑖 + 0,5 ∙ %𝑁𝑏 (2) 
 

 
Figure 4: Schaeffler diagram for predicting weld ferrite content and solidification mode [13]. 

 

3.2. Austenite-Ferrite transformation 

 

Under equilibrium conditions, pro-eutectoid ferrite will form in iron-carbon alloys containing up to 

0,8wt% carbon. The reaction occurs at 910°C in pure iron but takes place between 910°C and 723°C 

in iron-carbon alloys. However, by quenching from the austenitic state to temperatures as low as 

600°C. Ferrite-pearlite is the equilibrium microstructure obtained during slow cooling of steels 

containing up to 0.8 wt% carbon. Growth of ferrite starts at the austenite grain boundaries (GB), and 

with lowering α/ϒ transformation temperatures, four different morphologies of ferrite can be 

identified, as presented by Dubé [14]: 

 



Structural materials and numerical modelling 

8 
 

1.  Grain boundary allotriomorphs: Grow along austenite GB, stretching into both the 

surrounding austenite grains. Random orientation with one austenite grain, more coherent 

orientation with the other grain. Can therefore be faceted on one side and curved on the 

other. 

2.  Widmanstätten ferrite plates or laths: Nucleate at austenite GB and grow along well-defined 

austenite planes. Will not cross austenite GB. Primary Widmanstätten ferrite forms directly 

on austenite GB, while secondary Widmanstätten ferrite grows from other allotriomorphs of 

ferrite. 

3.  Intragranular idiomorphs: Equi-axed ferrite that nucleate inside austenite grains, often on 

non-metallic inclusions. Will have some crystallographic facets. 

4.  Intragranular plates: Similar to Widmanstätten plates, but nucleate inside austenite grains 

without being in contact with GB. 

Usually, combinations of the different morphologies are present. An example of this is the growth of 

ferrite during continuous cooling, where formation of grain boundary allotriomorph ferrite comes 

first, followed by growth of secondary Widmanstätten ferrite from the grain boundary allotriomorph, 

and finally the formation of intragranular idiomorphs or plates. This effect is illustrated in Figure 5, 

where different morphologies are shown together in the same picture[14]. 

 

 
Figure 5: Growth of pro-eutectoid ferrite and hyper-eutectoid cementite: a) 0.34 wt% C, 12 minutes 

at 790˚C. GB allotriomorphs of ferrite. b) 0.34 wt% C, 15 minutes at 725˚C. Widmanstätten ferrite 

growing from GB ferrite. c) 0.34 wt% C, 12 minutes at 790˚C. GB allotriomorphs and intragranular 

idiomorphs of ferrite. d) 0.34 wt% C, 15 minutes at 725˚C. Intragranular Widmanstätten ferrite plates. 

e) 1.2 wt% C, 10 minutes at 730˚C. GB allotriomorphs and intragranular idiomorphs of cementite. f) 

1.2 wt% C, 10 minutes at 730˚C. Widmanstätten cementite [14].  
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Diffusion during growth of ferrite leads to accumulation of carbon in the austenite. This eventually 

results in the formation of pearlite. A microstructure that forms through the eutectoid reaction, as 

shown in Equation 3 [11]. 

 𝛾 → 𝛼 + 𝜃 (3) 
 

Pearlite is a lamellar structure consisting of parallel lamellae of cementite ( θ- carbide or 𝐹𝑒3𝐶) and 

ferrite (α) layered in a sandwich structure. The formation of pearlite enables continued growth of the 

equilibrium phases while minimizing diffusion distance during growth. Because of its high strength, 

pearlite is an important constituent in steels [14]. However, pearlite is not favored in offshore 

engineering because of its low impact toughness. 

 

Due to kinetics, the growth temperature will determine the thickness of the pearlitic lamellae. Low 

cooling rates or high transformation temperatures will result in coarse lamellae, while high cooling 

rates or low transformation temperature will produce fine lamellae due to lower diffusivity [11]. 

 

Obtaining a ferrite/pearlite microstructure is dependent on slow cooling. This is shown in Figure 3, 

where it can be seen that only very slow cooling will produce a ferrite-pearlite structure in AISI 4130 

steel. 

 

 
Figure 6: Ferritic body-centered cubic crystal structure (BCC) [11]. 

3.3. Bainite 

 

Bainite is a microstructure formed in the intermediate between ferrite-pearlite and martensite.  

This is shown in Figure 3, where both the TTT- and CCT-diagram show the bainite nose. A bainitic 

microstructure can be obtained by a cooling rate too low to produce pure martensite, while still too 

high to produce ferrite-pearlite. Bainite can also be produced through isothermal heat treatment. 

The bainite microstructure consists of ferrite plates or laths. These are separated by residual phases 

like retained austenite, martensite or cementite. The bainitic plates are called subunits, which grow 

in clusters called sheaves, see Figure 3. Within each sheaf, the subunits are separated by low-

misorientation grain boundaries or residual phases. Sheaves are also referred to as “packets” of 

bainite [15]. 
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Figure 7: Transmission electron micrograph showing the structure of bainite. A grain of bainite passes 

from lower left to upper right corners; it consists of elongated and needle-shaped particles of 

Cementite (𝐹𝑒3𝐶) within a ferrite (α) matrix. The phase surrounding the bainite is martensite [11]. 

3.4. Martensite 

 

Martensite is a hard and brittle phase that forms when austenite is cooled too fast to form bainite 

[11]. Martensite is obtained with cooling rates high enough to avoid the bainite nose, see Figure 3. 

The martensite reaction is often referred to as a diffusion-less, shear transformation, which induces a 

shape change in the transformed region. The transformation is dependent on maintaining a high 

degree of coherency in the transformation interface. This results in an invariant-line strain, where 

one line in the transformation interface is unrotated and undistorted. The diffusion-less nature of the 

martensite reaction leaves carbon trapped in interstitial positions, which introduce lattice strains. In 

order to reduce strain energy from the surroundings, martensite forms as thin plates or laths [11, 

14]. 

 

The martensite reaction is athermal. This means that the fraction transformed is only dependent on 

the undercooling below the martensite-start temperature (Ms). Carbon, having been in solid solution 

in the austenite, will remain in solid solution in the martensite as well due to the high cooling rate 

and fast transformation [14]. 
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Figure 8: Austenitic face-centered cubic structure (FCC) [11]. 

 

Austenite has an FCC structure. The martensite that forms from it can have various crystal structures, 

dependent on the content of alloying elements. Martensitic steel consists mainly of BCT structure but 

bcc and hcp structures can also be found in martensite [11, 16]. The martensitic microstructure 

consists of laths in low- or medium-carbon steels, while the martensite forms as plates in high-carbon 

steels. The laths formed in low-carbon steels are fine, form at the grain boundaries and can stretch 

across an entire former austenite grain. The laths group together in sheaves or packets, like bainite 

(Figure 7). Each lath has a substructure consisting of a high density of dislocations arranged in cells, 

where one lath contains many cells. The cells have an average width of 2500 Å, and typical 

dislocation densities are estimated to be between 0.3 and 0.9 · 1012 cm/cm3 [16]. 

 

 
Figure 9: The body-centered tetragonal (BCT) unit cell for martensitic steel showing iron atoms 

(circles) and sites that may be occupied by carbon atoms (Xs). For this triagonal unit cell, c>a [11]. 
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3.5. Tempering of Martensite 

 

As explained, martensite in steels can be very hard and at the same time very brittle. It is therefore 

often necessary to temper the martensite, in order improve its usability in structural and mechanical 

components. Tempered martensite provides one of the best combinations of strength and toughness 

obtainable in low carbon steels. The tempering process allows the microstructure to move 

incrementally towards an equilibrium, under the influence of thermal activation. Thus, the tempering 

ability of a material depends on the distance the microstructure has from its equilibrium state.  

Certain structures contain higher levels of stored free energy than others do. For example, for a 

typical alloy steel with a composition of Fe-0.2C-1.5Mn wt%, the reference (zero energy) state 

contains an equilibrium mix of ferrite, graphite and cementite. With a miniscule increase in stored 

energy (70 J mol-1), the graphite is no longer present. The alloy steel has a phase mixture consisting 

of supersaturated ferrite at 1414 J mol-1, and pure martensite at 1714 J mol-1. Tempering a pure 

martensitic steel with said alloy composition can thus eventually alter the microstructure by 

releasing the free energy stored in it [14]. 

 

For pure martensitic steels, the tempering of martensite normally includes the diffusion of 

interstitially locked carbon. However, the substitutional solutes do not diffuse during this stage. If 

held at the tempering temperature for a sufficient amount of time, the structure can evolve into a 

dispersion of coarse carbides in a ferritic matrix, which bears little resemblance to the original 

martensitic structure. For martensitic ferritic steels, however, the quenching process yields a fully 

martensitic/ferritic structure. There is no indication that tempering induces the development of 

further ferritic content, or cementite. If tempering at temperatures above 550 °C, one can expect to 

see a development of austenite, finely dispersed in the martensitic structure [17].This austenite is 

commonly referred to as reversed austenite, as it reverts to its pre-quenched form due to the 

reception of thermal energy. The effect this reversed austenite has on mechanical properties is 

proportional with ΔT (where ΔT is the difference in temperature between 550 °C and the actual 

temperature used in the tempering process). 

 

 

3.6. Heat treatment – Time-Tempering  

 

 

Tempering is the process whereby a material is reheated after hardening and quenching. The 

temperature used in this process is normally far below the critical temperature. The goal is not to 

repeat the hardening process, but to relieve stresses in the lattice structure, while simultaneously 

increasing the toughness and ductility of the material [11]. The tempering process will normally 

decrease the hardness of the material. Tempering usually consists of heating the material to a 

specified temperature, holding it at said temperature for a specified amount of time, and allowing it 

to fully cool in air to ambient temperature. The exact temperature used determines the resulting 

decrease in hardness and depends on the desired properties of the finished product. As an example, 

machining tools are usually tempered at very low temperatures, while springs are tempered at much 

higher temperatures [18]. 
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It is empirically proven that the tempering temperature and the duration of the tempering process 

have direct effects on mechanical properties such as hardness. First described in 1945, the most 

statistically proven relation between tempering temperature and resulting effects is known as the 

Holloman-Jaffe Parameter, Equation (4) (also known as the Larson and Miller equation) [19]: 

 

 𝐻𝑝 =
𝑇 ∙ [𝑐 + log(𝑡)]

1000
 (4) 

 

Where the T is temperature in kelvin, c is a constant depending on the steel alloy composition of 

carbon content and where t is the tempering time in hours. With this relation, they determined that 

the hardness (HRC) decreased linearly with increasing Hp. According to their results they determined 

that as long as the Hp was the same, the hardness resulting from a higher temperature, short time 

heat treatment would be the same as that from a lower temperature, longer time tempering. The 

constant (c) was found to decrease relatively linearly with increasing carbon content and they 

recommended a value of 19.5-20 for regular carbon and alloy steels. Through comparison with the 

literature available at the time, they determined this relationship to be valid independent of the 

starting microstructural constituents or secondary hardening effects for compositions from 0.31-1.15 

wt% C, 0-5 wt% Mo and up to 5 wt% Cr. The valid tempering conditions ranged from 100°C to 710°C 

(not valid over A1 temperature) for times from 6 seconds to 1000 hours.  Note that the tempering 

temperature has a more substantial impact than the time parameter [19].  

 

Several diagrams for hardness versus Holloman- Jaffe parameter has been made for steels with a 

carbon content of 0.31-1.15% and with various alloying elements [20].  Figure 10 shows the effect of 

heat treatment of a martensitic microstructure in relation to the Rockwell hardness (HRC) and the 

Holloman-Jaffe parameter in terms of carbon content of 0.31% with a corresponding c value of 15.9. 

 
Figure 10: (HRC) Rockwell hardness vs. (Hp) Holloman-Jaffe Time-Temperature parameter for 

tempering fully quenched 0.31% carbon steel [20]. 
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3.7. Alloying contributions 

        
Figure 11: Effect of elements on the hardness of martensite tempered for 1 hour at different 

temperatures (650°C and 705°C) [20]. 

The main role of alloying elements in tempered tool steels is to compensate for the drop in strength 

and hardness that is seen in heat-treated carbon steels through a process called secondary 

hardening, and this is done primarily through two hardening mechanisms, precipitation and solution 

hardening. This increase in hardening may even be larger than that of the original peak hardness 

after quenching [14]. 

 

  
Figure 12: Effect of Molybdenum Content on Tempered Hardness for 0,35% carbon content [14]. 

Secondary hardening is an effect to take into consideration when tempering steels containing 

chromium, molybdenum, titanium, tungsten or vanadium. These elements are strong carbide 

formers and will precipitate as alloy carbides in preference to cementite at temperatures from 500-

600°C. Due to their slow, substitutional diffusion, these elements will in most practical applications 
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form fine, dispersed carbides. Aided by higher thermodynamic stability, the dispersed alloy carbides 

will replace coarser cementite particles, and because of their “sluggish” diffusion, they will remain 

small and dispersed even at elevated temperatures [14, 16]. 

 In an updated steel certificate, we will find many alloying elements; the majority are represented in 

such small amounts that we call them: micro alloying elements. Most of the micro alloying elements 

create chemical connection and belong to the following two groups: Carbides (with Carbon) and 

Nitrides (with Nitrogen)[21]. 

 

The carbides are primary created in the ferrite (under A1) and they are located at the grain boundary 

[21]. A great amount of carbides results in brittle area; they are not a metal bonding and are 

therefore missing the plastic property. Such brittle areas reduce the ductility of the steel. There are 

some metals that have a high tendency to form carbides in steel: V, Ti and Nb. Some have a medium 

tendency: Mo, W and Cr. In fact, we must be aware of these carbide-formers when we propose 

PWHT [21]. 

 

3.8. Heat Affected Zone 

 

Since carbon and low alloy steels undergo an allotropic phase transformation, the HAZ is an area in 

which drastic changes occur during the welding thermal cycle [22]. As can be seen in Figure 13, the 

regions of the HAZ can be related to the equilibrium iron-carbon phase diagram. 

 
Figure 13: Heat Affected Zone Regions in Relation to Equilibrium Iron-Carbon Phase Diagram [23]. 
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The HAZ can be further divided into coarse grain heat-affected zone (CGHAZ), fine grain heat-

affected zone (FGHAZ) and the intercritical heat-affected zone (ICHAZ). The CGHAZ is a region in 

which the temperature reaches high into the austenite phase field, resulting in pronounced grain 

growth. This is the result of the reduction in free energy by the decreasing grain boundary area (and 

curvature) and the dissolution of carbides and nitrides, that act to pin boundaries and restrain 

growth [22, 24]. The FGHAZ is the region that reached a temperature slightly above the upper critical 

transformation temperature (A3), which allows for recrystallization and results in grain refinement. 

Because it is only above this threshold for a short time, the ferrite present in this region does not 

completely transform to austenite and refines the grain structure on cooling [13]. In the ICHAZ, the 

temperatures range between the A3 and lower critical (A1) temperatures. Because of this, there is 

partial transformation to austenite during the welding thermal cycle [13].  

 

During cooling from welding, phase transformations can play a large role in the properties and 

microstructure in the HAZ. Regions of the HAZ that were transformed to austenite will transform to a 

wide variety of phases based on welding parameters and material hardenability. In applications such 

as corrosion resistant cladding, the dilution of the weld filler metal by the base material must be 

controlled carefully in order to maintain the appropriate properties [25]. For this reason, the heat 

inputs used in these welding processes are typically very low and result in extremely fast cooling 

rates that lead to a near completely martensitic microstructure in the HAZ. Other applications, such 

as joining power generation boiler tubes, call for much higher heat input conditions that result in 

slower cooling conditions and microstructures consisting of bainite, ferrite and possibly martensite 

[26]. 

 

 

3.9. Residual stresses and stress concentrations 

 

The cooling of a localized volume of material from its melting point to ambient temperature involves 

a significant reduction in volume and cause shrinkage of the weldment [13]. Since the welded 

structure remains continuous, there must be a mechanism whereby this difference in strain is 

accommodated. This is achieved in part through plastic strain of the material. The balance is 

accommodated through elastic strain. This results in a stress field distributed throughout the 

material after cooling, known as residual stress.  

 

In welds of thick sections, the residual stresses that develop in the weldment often exceed the yield 

strength of the material. Therefore, the material yields and the remaining residual stress can be at 

the level of the yield stress, as the full elastic strain limit has been reached [3, 27]. 
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Figure 14: (a) Longitudinal and (b) transversal residual stress distribution in a weld [28]. 

 

In a multi-pass weld the residual stress field produced is triaxial. Since the weld metal is  

sufficiently constrained by the parent metal in each principal direction, the residual stresses also act 

in these three directions. This residual stress field can considerably decrease the strength of a 

weldment [3, 13]. 

 

 
Figure 15: Schematic sketch of multipass welding. Note that the root pass has the highest dilution 

ratio [13]. 

 

It is well known that stress raisers tend to reduce fatigue life namely, the what is known as notch 

effect. Stress raisers can be mechanical, such as toes with a high reinforcement, lack of penetration, 

and deep undercuts. They can also be metallurgical, such as micro fissures (microcracks), porosity, 

inclusions, and brittle and sharp intermetallic compounds [13]. These are factors that need to be 

taken into consideration when designing and approving the weld. 
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Figure 16: Stress raisers in a V-groove [13]. 

 

 

 
Figure 17: Typical weld joint – V-groove [13]. 

 

3.10. Hydrogen cracking 

 

One of the chief weldability concerns in low alloy steels is hydrogen induced cracking (HIC). 

This form of cracking, also referred to as cold cracking occurs after cooling of the weldment. The 

welding process invariably introduces dissolved hydrogen into the weldment [27]. Several 

mechanisms by which this dissolved hydrogen leads to cracking have been proposed, without 

widespread agreement on the most likely mechanism [13]. 

 

Hydrogen cracking often involves a significant incubation period before the cracking is either 

detected or causes the component to fail. This incubation period is associated with the diffusion of 

hydrogen and can be of the order of several weeks [27]. 

 

The cracking proceeds in a step-wise fashion typically in the HAZ. There is a strong dependence on 

notch intensity to initiate the cracking. Such stress concentration in a weldment is usually supplied by 

the geometry of the weld toe. Any defects included in the weld structure such as slag, pores etc. 

could also contribute to stress concentration [13].  
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While the exact mechanism involved in hydrogen cracking is subject to conjecture, the factors that 

contribute to its appearance are widely accepted [27]. The most significant of these factors are: 

 

- Hydrogen content 

- Residual stress 

- Microstructure 

 

The most common region for hydrogen crack initiation is the CGHAZ. The increased size of prior 

austenite grains increases the segregation at grain boundaries [27]. It would appear that the role of 

hydrogen in the cold cracking mechanism is to decohere the matrix-particle interfaces of both 

precipitates and inclusions [13]. 

 

For a microstructure to be considered ‘susceptible’, it should exhibit the following properties [27]: 

 

- Relatively hard grains (martensite or bainite) 

- Coarse prior austenite grain size 

- Grain boundary particles (Carbide precipitates or slag inclusions) 

- High dislocation density 

The properties of weldments (harden able, dispersion strengthened) render it susceptible to 

hydrogen cracking and for this reason, most weld procedures require the use of low hydrogen 

electrodes and thermal treatments to encourage H effusion [13, 27]. 

 

As described in the study done by Dimitri Rybakov [1], conducted for the same pipes used for drilling 

fluid in the drilling industry, the risk of cracking and failure due to Hydrogen Sulfide in the drilling 

fluid can be of major concern. This problem is caused by the Hydrogen Sulfide in the drilling fluid 

entering the impurity pockets and metallic voids in the steel pipe for so to expand to a crack as the 

hydrogen ions defuse in the metal pocket or void [1]. 

 

3.11. Welding of Low Alloy Steels 

 

For joining streel pipes in the oil and gas industry, fusion welding is the most commonly used form of 

welding. A fusion weld joint is broken into several regions, as identified by Savage et al.; the fusion 

zone (which contains both the composite region and the unmixed zone), the partially melted zone, 

and the true heat-affected zone (HAZ) [29]. The fusion zone is the region in which the temperature 

has exceeded the liquidus temperature and hence has fully melted. The partially melted zone is the 

region in which the temperature was between the liquidus and solidus temperature, resulting in an 

area that did not completely melt but had areas that formed liquid. The true HAZ is the region in 

which temperatures do not exceed the solidus and therefore all reactions are solid state type [23]. 

One of the reasons for developing low-carbon steel (0.06 % < C < 0.12 %) was the wish fora better 

weldability with special focus on the problems in HAZ[16, 23]: 

 

• Stress corrosion 

• Hydrogen-induced cracks (HIC) 
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These problems were related to the amount of martensite in HAZ[23]. In ordinary C-Mn-steel the 

tendency to form martensite was strong and the “eye of the needle” was the hardness test. 

Unannealed martensite is a structure with a high level of residual stresses and very little plasticity, 

hence a great danger of hydrogen-induced cracks[23]. In micro-alloyed low-carbon steel the 

hardness problem is almost eliminated, with the exception of steel for special purposes such as the 

NACE class[30, 31]: "Sour Service" equivalent a  𝐻𝑚𝑎𝑥  requirement = 22 HRC (250 HV). However, the 

tendency to create brittle zones with rough grain size of so-called side-plate ferrite/ -Widmanstätten 

(SP) close to Fusion Line can be a risk. These areas have low toughness values, as explained at the 

beginning of this chapter.  

 

Another point is that PWHT sometimes reduces the toughness value, in contrast to what can be 

expected with ordinary C-Mn-steel[23]. The development of low-carbon steel has in fact moved the 

current problem from a hardness problem in HAZ to a toughness problem in HAZ[23]. The relation 

between microstructure and the mechanical properties has been a focus during welding of structural 

steel [16]. Many investigations has been done to understand the amount and effect of the different 

micro-alloyed elements[16, 19].  

 

3.12. Preheating of welds 

 

The temperature of steel as soon as a weld run is started is the third major factor affecting weld 

cooling: for the first run, this is the preheat temperature; for subsequent runs, the interpass 

temperature. To avoid hydrogen cracking, steels are often preheated to temperatures up to 250°C 

before welding. To control weldment properties, maximum interpass temperatures (usually up to 

300°C) may also be specified. These temperatures should be measured close (up to 50 mm) to the 

weld line immediately before a weld run is deposited. If the preheating is applied from one side only 

by a gas flame, the temperatures should preferably be measured on the side that is not heated. If 

this is not possible, the flame should be removed shortly before the temperature is measured: 

a waiting time of 1 min/25 mm of individual steel thickness is recommended. 

 

Preheat and interpass temperatures within the ranges given above have less effect on the cooling 

rates at high temperatures than at low temperatures. Consequently, preheating a simple C or C:Mn 

steel, which transforms at a relatively high temperature, will not have much effect on the cooling 

rate through the transformation range, and on the resultant microstructure and hardness. However, 

it will considerably slow the cooling at lower temperatures, when hydrogen diffusion from the steel 

will be a major consideration in avoiding hydrogen cracking. On the other hand, low alloy steels 

transforming at lower temperatures can undergo significant changes to their HAZ microstructures 

and properties (not always favorably) by preheating to a higher temperature. Adverse effects on HAZ 

microstructure and properties may require maximum controls on preheat and interpass 

temperatures: the latter may lead to slower joint completion rates than are economically desirable 

and can give rise to problems, for example when automatically welding circumferential seams in 

small diameter thick-walled pipes. 
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3.13. PWHT of steel 

 

The main difficulty in welding is the prevention of an abrupt deterioration of properties as a result of 

the appearance of structures, that reduce the resistance to brittle fracture in the heat-affected zone 

(HAZ)[25]. Post weld heat treatment (PWHT) is conducted on weldments for several reasons, 

including relief of residual stress, Hydrogen diffusion, homogenization, and dissolution of undesirable 

secondary phases that may have formed in the fusion zone or HAZ [25].  

 

After PWHT, a weldment should be tougher and also should resist such service hazards as stress 

corrosion cracking (SCC) and in-service hydrogen cracking more readily than in the as-welded 

condition. The selection of PWHT temperatures is often aided or limited by the appropriate 

application standard, and is usually within the temperature range 550-750˚C. It should be 

remembered that PWHT at a lower temperature will not undo any excessive softening that may have 

resulted from the use of too high a temperature. However, if a weldment has been under-tempered 

by PWHT, a further heat treatment at a higher temperature is always possible [8]. 

 

 
Figure 18: Thermal cycle representing a PWHT schedule [23]. 

 

Low alloy steels containing chromium generally require PWHT temperatures at or above 650˚C[8], 

the temperature depending on the required properties and the application. The lower temperatures 

are used when the highest strength is required[8]: optimum creep resistance results from an 

intermediate temperature, whilst the highest temperature within the range is used to obtain 

maximum softening and stress relaxation. With alloy steels, two important points should be noted 

[8].  

• The selected PWHT temperature should always be below the 𝐴1 temperature of the steel, 

that is the temperature above which the steel begins to transform to austenite [8].  
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• When welding quenched and tempered steels that have been tempered to a particular 

strength or hardness level, it is important not to exceed the tempering temperature that was 

originally used, otherwise the whole component will be softened and weakened below its 

required level. It is normal to set the maximum of the PWHT temperature some 20˚C below 

the actual tempering temperature [8].  

Unfortunately, it is not always easy to discover the previous heat treatment history of a piece of 

steel, although it should be on the material certificate. Some steelmakers give such a wide range for 

the tempering temperature of a particular steel as to be useless, for example 530-680˚C[8]. In such 

cases, the supplier or steelmaker should be carefully questioned. If this fails to provide the actual 

tempering temperature, the only action is to remove a small piece of steel from an unimportant area 

and subject it to careful hardness measurements after laboratory heat treatments at progressively 

higher temperatures in order to estimate the original tempering temperature. These tests should 

start at the bottom of the steelmakers' range and finish either where the steel starts softening, or at 

a temperature such as 650˚C where a high degree of stress relief will be obtained [8].  

 

During PWHT, care should be taken to ensure uniform heating of the components that may be of a 

very complex structure. Most heat treatment specifications give guidance on heating and cooling 

rates and temperature differentials. The penalties for exceeding these limits include distortion, 

cracking and also the re-imposition of residual stresses (albeit not in exactly the same configuration, 

but possibly up to the same maximum level) as that which the PWHT is intended to reduce. Although 

PWHT is preferably applied to completed fabrications, there are times when this is not possible. For 

example, available furnaces may be too small, the weld may be a repair in a structure too large to 

heat treat, or there may be a component in the vicinity that would be damaged by the heating. Local 

PWHT is acceptable in such cases, always provided precautions are taken to maintain low 

temperature gradients between the heated and unheated regions and to avoid distortion or buildup 

of high local stresses on cooling. Again, guidance is usually given in the appropriate application 

standard [8]. 

In terms of PWHT procedure of process piping systems the ASME B31.3 has become the world’s most 

widely used standard, and the Norwegian offshore industry follows this standard for designing 

offshore piping systems. ASME B31.3 (Sect. 331.2.6) explains that welds may be subjected to local 

PWHT by means of a circumferential band around the entire component, with the weld located in 

the center of the band. The width of the band heated to the specified temperature range shall be at 

least three times the wall thickness at the weld of the thickest part of the part being joined [32]. 

There are different types of procedures for each type of alloy determining the thickness, where the 

PWHT procedure, temperature, holding time and heating and cooling rates are explained. 

 

From the ASME code B31.3 heat treatment temperature shall be checked by thermocouple 

pyrometers or other suitable methods to ensure that the welding procedure specification (WPS) 

requirements are met. If used, the heat treatment furnace shall be calibrated such that the PWHT 

can be controlled within the required temperature range. For welds that require PWHT in accordance 

with Table 331.1.1 (see Figure 23 and Figure 24), the temperature of the material during PWHT shall 

be within the range specified [33]. However, if specified by the designer, the range may be extended 

as permitted by Table 331.1.2 (see Figure 25), provided the lower critical temperature 𝐴1, of the 

material is not exceeded [33]. 
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3.14. Hardness testing and Hardness-Strength relation 

 

Hardness tests have long been a standard method for material characterization since they provide an 

easy, inexpensive, non-destructive, and objective method of evaluating basic properties from a small 

volume of materials. In addition to resistance to plastic deformation, stiffness, strength of thin 

coatings, residual stresses near the surface, and the fracture toughness of the material are some 

basic properties that can be measured by the hardness tests. Hardness measurements are popular 

due to their flexibility where the products are not appropriate for standard material testing 

experiments such as simple tension, simple compression, or simple torsion. In this study, hardness 

data will be used to supply new increased yield strength distribution of cold-formed products and 

verify or compare the data obtained by FEM simulations in Abaqus. 

Vickers hardness number (HV) has been the most popular in investigation of the relationship 

between hardness and the flow stress of materials such as steel for two reasons. Firstly, its superior 

resolution as compared to spherical indenters, and secondly, the Vickers indenter is self-similar, 

through which the hardness is ideally independent of the indentation load and indentation 

depth[34]. Therefore, in this study, as Vickers indentation and hardness test was used in the study 

done by Dimitri Rybakov [1], the same steel pipe with the same PWHT the same results will be used 

in this study for hardness measurement. 

 

In literature, various authors have investigated the relationship between Vickers hardness number 

and the yield stress of material. A review of the first results is covered by Tabor in his standard work 

[34].For non-strain hardening materials the Vickers hardness number HV defined as: 

 

 𝐻𝑉 =
𝑖𝑛𝑑𝑒𝑛𝑡𝑒𝑟 𝑓𝑜𝑟𝑐𝑒 𝑖𝑛 𝑘𝑔

𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑚𝑝𝑟𝑖𝑛𝑡 𝑖𝑛 𝑚𝑚2
 (5) 

 

 

The relations between strength and hardness established by Tabor [34] by the following Equation (6), 

 

 𝑅𝑚 = (
𝐻𝑉

2.9
) (1 − 𝑛) (

12.5𝑛

1 − 𝑛
)

𝑛

 (6) 

 

which relates the ultimate, nominal stress, 𝑅𝑚, to the Vickers hardness, HV, and the strain hardening 

coefficient, n. Note that the traditional unit for hardness is kgf/mm2, while stress is usually given in 

N/mm2. This leads to a unit difference of 9.81 N/kgf. Tabor assumed that the true stress, σ, could be 

approximated by the Ramberg and Osgood equation, also called Power law equation[34, 35]: 

 

 𝜎 = 𝐾𝜀𝑛 (7) 
 

where K is the Strength coefficient and ɛ is the true strain. This equation makes it possible to 

determine n from experimental results; in general for low carbon steel the strain hardening exponent 

is approximately 0.21 [11]. A simplified derivation results in the following expression when the curve 

is only fitted for the (𝐴𝑔𝑡, 𝑅𝑚)-point of the tensile curve [34, 35]: 
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 𝑛 = ln(1 + 𝐴𝑔) (8) 

 

The strain hardening coefficient can also be calculated by determining the slope of ln 𝜎 plotted 

against ln 𝜀. If the tensile curves will not produce a straight line with Equation 5, the Ludwik 

equation, can be used to obtain a straight line [36]: 

 

 𝜎 = 𝜎0 + 𝐾𝜀𝑛 (9) 
 

The relation shown in Equation (6) was improved by J.R. Cahoon [37], who presented the relation 

shown by Equation (10). 

 

 𝑅𝑚 =
𝐻𝑉

2.9
(

𝑛

0.217
)

𝑛

 (10) 

 

 

Cahoon claimed this relation to be both simpler and more accurate when compared to the relation 

found by Tabor. Tabor also noted that his relation showed good correlation for lower values of the 

strain hardening coefficient, n, but not for higher values of n [37]. 

 

There have also been attempts to establishing relations between the 0.2 % offset yield strength and 

the hardness of metals as well. One formula was established by Cahoon for the relation between 

yield strength and hardness- [38]; this result is shown by Equation (11). 

 

 𝑅0.2 =
𝐻𝑉

3
(0.1)𝑛 (11) 

 

The relations presented by Equations (6), (10) and (11) are good estimates for various alloys, but, 

since the strain hardening coefficient is a part of the expression, all are dependent on prior 

knowledge of the specific material [39]. But a different approximation for determining the relations 

between strength and hardness has also been done, the study by Pavlina and Van Tyne [39]. Their 

work resulted in the expressions shown by Equations (12) and (13), done by using Vickers hardness 

on varying steel grades for determining the yield and tensile strength for steel [39]. 

 

 𝑅0.2 = 2.876 ∙ 𝐻𝑉 − 90.7 (12) 
 

 𝑅𝑚 = 3.734 ∙ 𝐻𝑉 − 99.8 (13) 
 

Their study proved more stable than the previous formula established by Tabor using the strain 

hardening parameter; however, the specific steel strength can vary as they have just used an average 

strength for giving more stable results and to reduce the standard deviation [39]. It is worth 

mentioning that according to offshore specifications [40], the ratio between yield and tensile 

strength in the base should not exceed 0.85. For the traditional class of normalized carbon-
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manganese and controlled rolled low-carbon micro alloyed steels, the ratio between the base plate 

yield and tensile strength is about 0.7. This ratio is increased to about 0.8 for the accelerated cooled 

steels [41]. 

 

In 1989 there was a study done by O. M. Akselsen, G. Rorvik, M. I. Onsjøen and Ø. Grong on 

predictions of mechanical properties of HAZ [41]. The study was done on high strength steels where 

the investigation was undertaken with the objective of providing quantitative information on the 

strength and ductility of the grain-coarsened HAZ of modern structural steels, based on tensile 

testing of weld thermal simulated specimens. From stress-strain relationships and hardness 

measurements, empirical equations were developed to predict HAZ yield and tensile strength, as well 

as ductility from a knowledge of base metal chemical composition and welding parameters [41]. 

 

In the case of grain-coarsened HAZ, the regression analysis gave the following relationship [41]: 

 

 𝑅0,2 = 3,1𝐻𝑉(0,1)𝑛 − 80 (14) 
 

In addition to yield point, the ultimate tensile strength was developed for grain coarsened HAZ and is 

also related to hardness through the following equation [41]: 

 

 𝑅𝑚 = 3,5𝐻𝑉(1 − 𝑛) (
12,5𝑛

1 − 𝑛
)

𝑛

− 92 (15) 

 

The total elongation at fracture was also plotted versus tensile strength. Although it was pointed out 

that there was a relatively large scatter in elongation values for the given tensile strength level, the 

following relationship was found (with a correlation coefficient 𝑟2 of 0.6) [41]: 

 

 𝐴35(%) = 5,75 ∙ 104𝑅𝑚
−1.25 (16) 

 

Values calculated from equation (16) were plotted versus measured elongation illustrated in        

Figure 19. In general, elongation at the fracture can be predicted with a precision of ± 3 % with a 

small overestimation at low elongations and underestimation at high values [41]. 
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Figure 19: Correlation between measured and calculated grain-coarsened HAZ elongation, 𝐴35 [41]. 

 

 

3.15. Stress analysis of piping systems 

 

Piping stress analyses is used to classify the static and dynamic loading resulting from temperature 

changes, internal and external pressures, and changes in fluid flow rate, the effects of gravity, seismic 

activity, fire, and other environmental conditions.  

 

In the offshore oil and gas industry, pipe stress analysis is the important technique for engineers to 

design piping systems without overloading and overstressing the piping components and connected 

equipment. The piping stress analysis is to be performed in accordance with the requirements 

specified in the latest edition of the ASME B31.3 for pressure piping.  

 

ASME B31.3 designs conditions specifically intended for pressure design. There are two main design 

conditions discussed in the code. These are design pressure and design temperature. 

 

Design pressure: 

A requirement when determining the design pressure, is to consider all the possible conditions of 

internal pressure, such as thermal expansion of trapped fluids, surge and failure of control devices. It 

is permitted to use a process piping system without the protection of a pressure safety relief valve. 

The piping systems have to be designed to withstand the maximum pressure that can occur when 

none of the protections are provided and it must also be safe when all the protections have failed. 
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Design temperature: 

The design temperature mainly considers the metal temperature of the pipe. There are several 

internal and external conditions that can be involved in the design temperature, such as the 

temperature of the process fluid, ambient cooling, ambient heating, solar radiation, and maximum 

heat tracing temperature. Minimum design temperature is the lowest temperature that a 

component can be expected to reach while the system is in operation. This temperature is required 

to determine the design requirements and special material qualification requirements. 

 

In the following, a brief description of the performed checks in the ASME B31.3 is presented. 

 

Check, Internal Design Pressure 

The requirement thickness of strait section of pipe shall be determine in accordance with 

equation(17): 

 

 𝑡𝑚 = 𝑡 + 𝐶 (17) 
 

 

The minimum thickness T for the pipe selected, considering the manufacturer’s minus tolerance, 

shall not be less than 𝑡𝑚.  

 

The hoop stress due to internal design pressure must fulfil the following criterion (section 

304.1.2.(3a))[32]: 

 

 𝑡𝑚 = [
𝑃𝐷

2(𝑆𝐸𝑊 + 𝑃𝑌)
] (18) 

 

 

 𝑡𝑚 = [
𝑃𝐷

2(𝑆𝐸𝑊 + 𝑃𝑌)
+ 𝐶] ∙ [

100

100 − 𝑀𝑇
]   (19) 

 

 

Where, 

P = Design pressure 

D = Outer diameter 

S = Allowable stress 

E = Quality factor, here equal to 0.8, from ASME B31.3, Table A-1A[32]. 

W = Weld joint strength reduction factor in accordance with para. 302.3.5(e).  here equal to 1. 

Y = Material and temperature coefficient taken from Table 304.1.1, in ASME B31.3, or use eq(20). 

𝑡𝑟𝑒𝑞 = Required wall thickness 

MT = User supplied mill tolerance, percent or inches 

C = Corrosion allowance, where the tolerance is not specified an assumption of 0,5 mm shall be set. 
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 𝑌 =
𝑑 + 2𝐶

𝐷 + 𝑑 + 2𝐶
 (20) 

 

Where, 

d = Inside diameter of pipe. 

 

 

Pressure Testing and Leak Testing Requirements for Process Piping 

Leakage test shall be conducted after any heat treatment that has been completed, (345.2.2.b)[32]. 

 

Hydrostatic Leak Test, Test Pressure (345.4.2) 

Except as provided in para. 345.4.3, the hydrostatic test pressure at EVERY POINT in a metallic piping 

system shall be as follows[32]: 

 

(a) not less than 1.5 times the design pressure 

 

(b) when the design temperature is greater than the test temperature, the minimum test pressure, at 

the point under consideration, shall be calculated using eq: 

 

 𝑃𝑇 = 1.5𝑃𝑆𝑇/𝑆 (21) 
 

Where, 

P = Internal design pressure 

𝑃𝑇 = Minimum test gauge pressure 

S = Allowable stress at component design temperature for the prevalent pipe material; see table A-1 

or Table A-1M in ASME B31.3. 

𝑆𝑇 = Allowable stress at test temperature for the prevalent pipe material; see Table A-1 or Table A-

1M in ASME B31.3. 

 

(c) in those cases where the piping system may not include pipe itself, any other component in the 

piping system, other than pipe-supporting elements and bolting, may be used to determine the ST/S 

ratio based on the applicable allowable stresses obtained from Table A-1[32]. 

 

In those cases where the piping system may be made up of equivalent lengths of more than one 

material, the ST/S ratio shall be based on the minimum calculated ratio of the included materials. 

 

(d) if the test pressure as defined above would produce a circumferential pressure or longitudinal 

stress (based on minimum pipe wall thickness) in excess of the yield strength at test temperature or 

a pressure more than 1.5 times the component rating at test temperature, the test pressure may be 

reduced to the maximum pressure that will not exceed the lesser of the yield strength or 1.5 times 

the component ratings at test temperature [32]. 
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3.16. Numerical analysis in Abaqus  

 

In this study the software Abaqus in Explicit modus is used to analyze the integrity of the pipe. This 

section gives a brief overview of the important features of the explicit calculation method; a more 

detailed overview was done in the Pre-study, Experimental calibration of continuum damage 

models[10]. The difference between Abaqus Standard and Abaqus Explicit lies in the calculation 

method, especially in gaining the accelerations of the nodes. In the implicit method, the global 

tangent stiffness matrix as well as iterations and tolerances are required, which are expensive in 

calculation time and can lead to numerical difficulties [42, 43]. 

 

In Abaqus Explicit the calculation method is, as the name implies, strongly explicit. The state at the 

end of an increment is solely based on the displacements, velocities and accelerations at the 

beginning of that increment in time. The calculation during that increment proceeds as 

follows[44]: Dynamic equilibrium is established for each node at the beginning of an increment. The 

acceleration of the nodes is only calculated by its mass and the net force (difference between 

external applied forces and internal nodal forces) acting on it. Thus, these calculations are cost-

efficient. By time integration based on a central difference rule, the established equations of motion 

are explicitly integrated through time and obtain the node’s velocities and displacements. Then the 

strain increments of the element, and finally its stresses, are calculated from the nodes’ velocities. As 

the last step, the internal forces of the nodes are reset before the dynamic equilibrium at the 

beginning of the next increment can be solved [43, 44]. 

 

In the explicit analysis the displacement and the velocity at the beginning of each increment is 

known. This means that the global mass and stiffness matrix need not be added for each increment, 

saving much computational work. However, the size of the time increments Δt have to be smaller 

than a critical time increment 𝛥𝑡𝑐 [42, 43, 45] 

 

 ∆𝑡 ≤ ∆𝑡𝑐 =
𝑙𝑚𝑖𝑛

𝑒

𝑐𝑑
 (22) 

 

 

 

 
𝑐𝑑 = √

𝐸

𝑝
 (23) 

 

Where 𝑙𝑚𝑖𝑛
𝑒  is the smallest element dimension on the model, and 𝑐𝑑 is the speed of sound in the 

material over the element. The 𝑐𝑑 is calculated as seen in Equation(23), where E is the Youngs 

modulus and p is the mass density. This makes the method conditionally stable, and the increments 

must be kept small enough to preserve the stability of the result. Since the incremental steps are 

small, the incremental result will never greatly deviate from the exact solution, and any inaccuracy 

will most likely be corrected when calculating the next increment. Due to of this, there is often no 

need to control the accuracy as with the implicit method [42, 43]. 
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The explicit method is preferred over the implicit method due to the ability to convert the mass 

matrix to a diagonal matrix, often referred to as lumped mass. This reduces the number of 

calculations needed for each time increment for a three-dimensional finite element analysis (FEA). 

The amount of data storage needed for each increment calculation is also much smaller for the 

explicit method [42]. 

 

Implicit method is said to be "unconditionally stable" and is thus often preferred in structural 

calculations, as its results are more stable and thus believed to be more reliable.  However, the 

stability of implicit methods comes at the price of computational recourses. For the complex 

problems such as excessive plasticity and fracture simulations, the more computationally efficient 

explicit method is often the only feasible option. Thus, the ductile damage models used in this thesis 

are not available in "regular" implicit Abaqus, but only in Abaqus Explicit [42]. 

 

3.17. Ductile damage in Abaqus 

 

It is common to distinguish between brittle and ductile fracture in metals. The sudden brittle fracture 

is generally avoided, making the ductile fracture the preferred failure mode, where ductile materials 

fail as a result of nucleation, growth and coalescence of micro voids. Figure 20 displays the entire 

ductile fracture process [46]. In this study, the Ductile Damage model in Abaqus is used for the 

simulation of the damage accumulation until final fracture. More detailed use and theory behind the 

damage model is found in the Pre-study for this thesis [10]. 

 

 
Figure 20: Ductile fracture process [46]. 

As described in the Abaqus user manual, ductile damage initiation criterion is a model for predicting 

the onset of damage due to nucleation, growth, and coalescence of voids in ductile metals. The 

model assumes that the equivalent plastic strain at the onset of damage is a function of stress 

triaxiality, and equivalent plastic strain rate at the onset of damage is a function of the stress 

triaxiality and strain rate [47].  

 

The importance of triaxiality is evident, for example, in stress concentrations due to geometry and 

already initiated crack tips [47]. To capture the effect of triaxiality, in an experimental procedure for 
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estimation of the model parameters, the notched test specimen is subjected to tensile loading. In the 

unidirectional tension test, the stress state prior to necking is due to the 3D stress state on the 

sample surface. The onset of necking is accomplished by the development of a triaxial state of stress 

in the neck [47, 48].  

 

The classical metal plasticity model in Abaqus defines the post-yield behavior for most metals. 

Abaqus approximates the smooth stress-strain behavior of the material with a series of straight lines 

joining the given data points. Any number of points can be used to approximate the actual material 

behavior. Therefore, it is possible to use a very close approximation of the actual material behavior. 

The plastic data define the true yield stress of the material as a function of true plastic strain. The 

true stress and true strain is calculated by using equation (26) and (27); these are calculated from the 

normal stresses and strains that can be calculated using equation (24) and (25), based on results 

from experimental tests. The first piece of data given for the plasticity plot defines the initial yield 

stress of the material and should have a plastic strain value of zero [49, 50]. 

 

 𝜀 =
𝑙 − 𝑙0

𝑙0
=

∆𝑙

𝑙0
 (24) 

 

 

 𝜎 =
𝐹

𝐴0
 (25) 

 

 

 𝜀𝑇 = ln(1 + 𝜀) (26) 
 

 

 𝜎𝑇 = 𝜎(1 + 𝜀) (27) 
 

 

Figure 21 illustrates the characteristic stress-strain behavior of a material undergoing damage. In the 

context of an elastic-plastic material with isotropic hardening, the damage manifests itself in two 

forms: softening of the yield stress and degradation of the elasticity. The solid curve in the figure 

represents the damaged stress-strain response, while the dashed curve is the response in the 

absence of damage. As discussed later, the damaged response depends on the element dimensions 

such that mesh dependency of the results is minimized [51]. 
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Figure 21: Stress-strain curve with progressive damage degradation [51]. 

 

In Abaqus, the specification of a failure mechanism consists of four distinct parts [52]: 

- The definition of the effective (or undamaged) material response (e.g., a-b-cd’), 

- A damage initiation criterion (e.g., c), 

- A damage evolution law (e.g., c-d, and  

- A choice of element deletion whereby elements can be removed from the calculations once 

the material stiffness is fully degraded (e.g., d). 

 

  
Figure 17: Failure mechanism in Abaqus[52]. 

 

In continuum mechanics the constitutive model is normally expressed in terms of stress-strain 

relations. When the material exhibits strain-softening behavior, leading to strain localization, this 

formulation results in a strong mesh dependency of the finite element results in that the energy 

dissipated decreases upon mesh refinement [52]. In Abaqus all the available damage evolution 

models use a formulation intended to alleviate the mesh dependency. This is accomplished by 
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introducing a characteristic length into the formulation, which in Abaqus is related to the element 

size, and expressing the softening part of the constitutive law as a stress-displacement relation [52]. 

 

The damage evolution is defined as mesh independent because it does not directly use any 

parameters that are dependent on the element size in the model. Instead of defining the 

deformation after damage initiation as plastic strain, it is defined as an equivalent plastic 

displacement �̅�𝑝𝑙 with the evolution expressed by [51]: 

 

 

 �̇̅�𝑝𝑙 = 𝐿𝜀̅̇𝑝𝑙 (28) 
 

 

Where L is the characteristic length of the element [51]. The evolution of damage variable with the 

relative plastic displacement can be specified in tabular, linear, or exponential form. Instantaneous 

failure will occur if the plastic displacement at failure �̇̅�𝑓
𝑝𝑙

, is specified as 0; however, this choice is not 

recommended and should be used with care because it causes a sudden drop of the stress at the 

material point that can lead to dynamic instabilities. The linear damage evolution law defines a truly 

linear stress-strain softening response only if the effective response of the material is perfectly 

plastic (constant yield stress) after damage initiation, see Figure 22 [51]. 

 

 

 
Figure 22: Linear damage evolution [51]. 

 

The characteristics of loading force on a model are with circumferential stress, axial stress and radial 

stress occurring at the same time, which are called the triaxial state of stress. The yield condition 

used in this paper is the von Mises yield condition. The von Mises yield condition considers that the 

yield occurred when the ratio of the maximum shape change reaches a certain value, and the 

expression for it is shown in equation (29)[42]: 

 

 𝜎𝑒 =
1

√2
[(𝜎1 − 𝜎2)2 + (𝜎2 − 𝜎3)2 + (𝜎3 − 𝜎1)2]

1
2 (29) 
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In the post-processing of FEM by Abaqus, von Mises is generally called Mises equivalent stress [42]. 

The stress distribution for the model can be represented by the stress contour, which can make a 

clear description of the variation of the result for the whole simulation, to determine the failure zone 

for the model and the value of stress for that area. In this work, whether the welded pipe failed or 

not is evaluated based on the value of von Mises equivalent stress in the welded area by adopting 

the plastic failure criterion. The plastic failure criterion suggests that when the von Mises equivalent 

stress of the welded area reaches the post-yield point of the material, when the minimum stress 

along the wall thickness of the pipe reaches the ultimate tensile stress that will cause pipeline failure 

to occur, and the pressure to make this happen is called burst pressure. 

 

3.18. Mesh density 

 

The element mesh of a model should be good enough to capture the relevant failure modes of the 

structure depending on the forces acting upon it. In areas of interest, the element aspect ratio should 

be according to requirements for the selected element formulation. Furthermore, areas in or nearby 

large deformation should have an aspect ratio close to unity. Distribution of load and load type has 

an impact on the mesh density. And the nodes at where the load in applied needs to be correctly 

located [53].  

 

It is usually necessary to run mesh sensitivity studies in order to verify that the results from the 

analysis are sufficiently accurate. This is also performed to make sure that the element mesh 

represents all the relevant failure modes in a sufficient and effective way. In general, the mesh 

refinement studies are completed by checking that the convergence of the results are obtained, 

which show that the results are stable when rerunning the analysis with decreased element size. 

Geometric sharp corners will have infinite small area and will therefore never converge [53]. 

 

3.19. Mass scaling 

 

In order to obtain an economical solution for simulations with a large number of small elements, 

the calculation time must be shortened in some way. There are two possibilities, namely load 

rate scaling and mass scaling. Since load rate scaling strongly affects the time period T and, 

therefore, has a more lasting effect on the inertial forces, mass scaling should be preferred. 

Mass scaling means artificially increasing the mass of the model. Since the mass and density 

respectively has the important role of defining the time step for integration, see equations (22) and 

(23), increasing the mass will enlarge the stable time increment. Hence the analyses can be solved 

faster[42, 45]. 

 

There are two possibilities of mass scaling in Abaqus: 

 

• To scale the mass by a certain factor. 

• To scale the mass by defining a minimum stable time increment ∆t. 

As the finite element model consists of elements of different sizes, a uniform scaling with a constant 

factor would increase the mass, especially of the large elements, by too much. The second possibility 
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is preferred, where only the mass of these elements, whose stable increment ∆𝑡𝑠𝑡𝑎𝑏𝑙𝑒 is smaller than 

the defined one, is scaled. This is defined in Abaqus with the type BELOW MIN for the option  

*FIXED MASS SCALING. Hence the mass of all those elements with a stable time increment 

 ∆𝑡𝑠𝑡𝑎𝑏𝑙𝑒 = ∆𝑡 are automatically scaled by a corresponding factor so that their stable time increment 

is redefined as ∆𝑡𝑠𝑡𝑎𝑏𝑙𝑒 = ∆𝑡. As a result of this kind of mass scaling, only portions of the model, 

where the smallest elements are located are scaled. The user has to verify that the changes in mass, 

and consequently the increase in inertial forces, does not influence the results of the simulation 

significantly. This can simplest be done by comparing it to unscaled results. In summay, the goal of 

mass scaling is to determine which amount of scaling will provide reasonable results while saving as 

much computer calculation time as possible. However, mass scaling will always reduce the quality of 

simulation results[42, 45]. 
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4. Research question 
 

Too high heat treatment temperature can cause weakening of the steel.  There is an anecdotal 

evidence that the allowable range of heat treatment temperatures in older version the ASME B31.3 

was too high and welding workshops have been reporting reduction of hardness in base material 

after PWHT at higher temperatures.  Similar reduction of hardness was also observed by Dmitri R[1].  

 

In 2014 PWHT temperatures were lowered in the ASME B31.3 Code for Pressure piping systems. 

However, this leaves the question with regard to safety of the pressure pipes that were welded in 

accordance to the old (prior to 2014) Code.  How safe are those pipes and what consequences does 

the weakening of the base material might have? 

 

Hence, the main objective for this study is to estimate the strength after different post-weld-heat-

treatments (PWHT) done for AISI 4130 steel pipes; verification of strength and damage accumulation 

is done by numerical analysis in the software Abaqus. The study is done for welded pipe segments 

used for drilling fluid in the oil and gas industry. 

 

‘’How has the strength of welded connections been affected by the change of PWHT 

procedure?’’  

 

o Are there any dangerous concerns in terms of strength of welded pipes completed before 

the change of PWHT procedure made in 2014 in the ASME B31.3?  

o Is there any change in base material strength when it is PWHT to 705˚C? How is this 

compared to PWHT of 650˚C in terms of damage behavior? 

o What are the failure mechanisms typical for this pipe segment and how can this be modeled 

by the finite element software Abaqus? 

o What changes when using a different PWHT temperature for pipes in terms of strength 

integrity and failure mechanisms?  
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5. Case 
 

This chapter gives an overview of the demands of the pipe that was tested and the material and 

equipment that was used in this study, as well as the material parameters. This study used hardness 

results from a previous study on the same material case. It must be mentioned that the deposited 

weld material from the electrodes in the study was not tensile tested, so assumptions of the material 

behavior were done according to the material certificate and the other material that was tested. Due 

to deviation of material parameters from the PWHT, it is of interest to identify what parameters may 

influence the failure mode of the FE model. This is of specific interest and will provide guidelines for 

further work. Investigations concerning the fully modeled piping system in FE analysis, will not be 

prioritized in this study. A closer investigation will be performed with regards to the variation of 

PWHT procedure and possible changes in strength.  

 

The background for this study is the change of the PWHT procedure that was made to the ASME code 

in 2014, where the temperature was changed from the range 704-746°C to 650-705°C; see Figure 23, 

Figure 24 and Figure 25. The procedure for the tested steel in this study is marked red. 

 

 
Figure 23: PWHT ASME B31.3-2012 [54]. 

The ASME B31.3-2012 shows that for low alloy steels with thickness over 13mm and a Chromium 

content as AISI 4130 the minimum holding time is set to 2.4 minutes/mm but not less than two 

hours. According to ASME B31.3 the heating and cooling rate shall not exceed 335°C/h[32] divided by 

one-half the maximum material thickness in inches at the weld, but in no case shall the temperature 

change rate exceed 335°C/h. 
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Figure 24: PWHT ASME B31.3-2014 [33]. 

 

 

 
Figure 25: Alternate PWHT Requirements - ASME B31.3-2014 [33]. 

 

As seen from the ASME B31.3-2014 Figure 24, the minimum holding time is set to 1/25 hour/mm but 

not less than 15min. Yet, as seen in Figure 25 a further reduction in minimum temperature can be 

made, but minimum holding time will then increase, as seen for steel with decrease of 55°C, where 

the minimum holding time increases to 4/25 hours/mm. 
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A brief overview of what was tested and analyzed in this study are as follows: 

 

• Numerical sensitivity check of the results in terms of element size and mesh dependency of 

the results. 

• Numerical investigation for predicting the damage accumulation and behavior of different 

possible material parameters in terms of softening and hardening of the HAZ after PWHT 

using available numerical formulas and FEA. 

• Processing of material data from hardness tests from previous study and one extra numerical 

estimation of hardness using Holloman-Jaffe done for simulation of three different PWHT 

procedures that is compared in this study for comparison and verification of the behavior 

due to the different PWHT procedures. 

• Execution experimental tensile tests and processing of material data from tensile tests done 

for simulation of the four different PWHT procedures that is compared in this study for 

comparison and final verification of the behavior due to the different PWHT procedures. 

 

5.1. Design criteria for the pipe 

 

This study has used the design criteria for the injection system for the drilling fluid used under deep-

water drilling. The design criteria are found in Appendix J from the Piping Class Sheet KX10MH and 

supplied by Dimitri Rybakov in MHWirth. 

 

Design pressure: 517 bar or 51.7 MPa 

Design temperature: -29°C – 90°C 

Material: Low alloy steel. (usually AISI 4130 or 4140) 

Corrosion allowances: 3 mm 

 

 
Figure 26: Specific design pressure from Piping Class Sheet KX10MH. 

 

5.2. Hardness data 

 

The hardness data in this study was taken from the study done by Dimitri Rybakov “Post weld heat 

treatment of welded low alloyed steel pipes”[1], due to current restrictions performing tests in the 

lab; the Vickers hardness data from this study is found in Appendix B. The steel pipes that were 

tested were the same as in this study AISI 4130, and the PWHT procedures were 650˚C and 705˚C 

with a holding time of twenty minutes for both procedures. Before welding, the samples were also 

preheated to a temperature of 120˚C.  
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Figure 27: Calculation of the effects of welding and PWHT of previous study done in Weld Note. 

 

5.3. Welded Steel pipe 

 

The steel pipe studied is of a low-alloy AISI 4130 steel. The chemical composition of the steel pipe is 

presented in Figure 110 in Appendix E and the certificates for the welding electrodes are found in 

Appendix F and Appendix G. The properties of the AISI 4130 steel before welding are determined by 

the heat treatment obtained from the manufacturer. It is the hardening which gives high strength 

and hardness (depending on temperature and whether it is cooled down in water / oil / emulsion), 

then time and temperature of tempering that decreases strength and hardness and provides 

increased toughness. Thus, the properties of the base material are mainly determined by the heat 

treatment before welding. 

 

 The pipe in this study has an outer diameter of 66.33 mm and a wall thickness of 11.07 mm as can 

be seen from the material certificate in Figure 110 in Appendix E. 

 

Table 1: Chemical composition of AISI 4130 steel from material certificate. 

%C %Si %Mn %Cr %Ni %Mo %V %Cu %Nb %B %N %Co 

0.31 0.24 0.54 0.93 0 0.17 0 0 0 0 0 0 
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Material parameters from material certificate for the pipe: 

- Yield strength, Re = 645 MPa 

- Tensile strength, Rm = 745 MPa 

- Elongation, % = 22 (Min 16) 

- Hardness, HRC (Max 22) = 20 HRC (238 HV) 

The material data for the steel pipe in this study that was not taken from experiments or material 

certificate was: 

 

- Modulus of elasticity, E = 2.1𝑥105 

- Poisson’s ratio, v = 0.3 

- Density of the material, p = 7,8𝑔/𝑐𝑚3 

- Strain rate for simulations, 𝜀̅̇𝑝𝑙 = 0.1 

- Stress triaxiality, ƞ = 0.33 

- Tensile strain, taken from the pre-study[10] = 68% of total elongation. 

<<The material in this study is considered to be isotropic >> 

 

 
Figure 28: Photo of the type of welded steel pipe under study [1]. 

In this study, the modeled heat-affected zone (HAZ) is defined as the combination of CGHAZ and 

FGHAZ explained from theory. In general, when welding steel, HAZ will have a zone that has been 

heated above A1 and therefore consists of untempered martensite; basically, this is an area that is 

hardened but not tempered. This is what the PWHT is going to take care of it is essentially a 

tempering of the martensite in HAZ so that it becomes more tough and ductile. It is generally 

unfortunate to have a zone in a component that is very brittle. 

 

This study will simulate the pipe using two given electrodes of different strengths provided by 

MHWirth, to see what effect this might have on the results. The material certificates of the 

electrodes are found in Appendix F and G, where in this study the weak electrode refers to the OK 

48.08 and the strong electrode refers to OK 74.86 Tensitrode electrode. The material of the 

electrodes is not tested in this study; the material data is taken from the electrode data sheets. The 

chemical composition and relevant material parameters are as follows: 
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Table 2: Chemical composition of the ‘’weak’’ OK 48.08 electrode found in the certificate. 

%C %Si %Mn %Cr %Ni %Mo %V %Cu %Nb %B %N %Co 

0.06 0.4 1.2 0 0.8 0 0 0 0 0 0 0 

 

Material parameters from Material certificate for the electrode: 

- Yield strength, Re = 540 MPa 

- Tensile strength, Rm = 600 MPa 

- Elongation, % = 26 

 

Table 3: Chemical composition of the ‘’strong’’ OK 74.86 Tensitrode electrode found in the certificate. 

%C %Si %Mn %Cr %Ni %Mo %V %Cu %Nb %B %N %Co 

0.06 0.37 1.74 0.04 0.83 0.34 0 0 0 0 0 0 

 

Material parameters from Material certificate for the electrode: 

- Yield strength, Re = 630 MPa 

- Tensile strength, Rm = 720 MPa 

- Elongation, % = 25 

 

5.4. Test specimens 

 

In total there were 10 uniform samples tested in this study. All were round specimens with an outer 

diameter of 10mm and same gauge length of 35mm. The uniform samples had a geometry as shown 

in Figure 29 (B); the pipe sample provided by MHWirth is shown in Figure 29 (A). The machine 

drawings of the specimens are presented in Appendix L. The smallest diameter of the gauge cross 

section area is set to 5mm for the specimen. The test specimen was heat-treated differently as 

shown in Table 4, where the material parameters for the heat-affected zone (HAZ) represent samples 

that were first heated and quenched to form martensite, and the Base metal represents the part of 

the pipe that is not affected by the weldment but will be affected by the different PWHT procedure. 

The material parameters for the base metal and HAZ without any PWHT is also extracted, seen from 

the column ‘’No PWHT’’. The experimental procedure will be described in further detail in the next 

chapter. 
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Figure 29: (A) Raw steel pipe sample and (B) Uniform test specimens that were tested in this study. 

This geometry of the test specimens shall fulfill the following condition from standard E8/8M-08[55]: 

 

• Provide a uniform cylindrical gauge portion. 

• Provide a uniform strain distribution over the whole gauge portion. 

• Allow the extensometer to measure the strain without interference or slippage. 

Table 4: Heat treatment matrix for the tensile tested specimens and number of specimens. 

SECTION NO PWHT PWHT 600°C PWHT 650°C PWHT 705°C PWHT 746°C 

Base metal 2 0 1 1 1 

HAZ 1 1 1 1 1 

 

As explained from theory the PWHT temperature should always be set below the actual tempering 

temperature and below the A1 temperature. However, to investigate the effect of an incorrect PWHT 

procedure with too high a temperature, in this study experiments and simulations set on the exact 

temperature from the ASME B31.3 standard, as shown previously in Figure 23 and Figure 24, will be 

performed.  

 

 

 

 

 

 

A B 
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5.5. Hydraulic Tensile test machine 

 

The test machine used for laboratory experiments in this study, was an Si-Plan 25 kN load cell. 

Tension tests can be performed with this test machine in a regular tension test configuration. The 

test speed was given as strain rate and was calculated by stroke relative to the parallel area of the 

test specimen. Stroke is the displacement of the crosshead on the machine measured by a linear 

transducer. Stroke and load are the only direct output from the test machine, but time and extension 

are calculated by the computer that runs the machine along with the data from extensometer. 

 

5.6. Extensometer 

 

For tests conducted with extensometer, an Si-Plan axial extensometer (model: 676212) applicable for 

gauge lengths 25 - 30mm was used. The Extensometer can read from -10% in compression to +100% 

in tension. The grips on this model are clip-on and were connected directly on to the specimen’s 

gauge area on the uniform samples. 

 

 
Figure 30: Si-Plan Extensometer. 

5.7. Digital sliding gauge 

 

A digital sliding gauge was used for measuring the steel specimens before and after the experimental 

tests. 

 
Figure 31. Digital sliding gauge. 
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5.8. Furnace 

 

To heat treat the steel samples, a Naber programmable furnace was used in order to achieve an even 

heating and cooling rate of max 335°C/h. 

 
Figure 32: Furnace used for heat treatment of the steel samples. 

5.9. Numerical simulation tool 

 

The software used for numerical simulation by Finite Element Method (FEM) was Abaqus 

(Abaqus/Explicit). The simulation of damage was performed by using the Ductile Damage model, and 

the damage model was used to compare the strength and integrity of the welded pipe affected by 

the different material properties of the chosen PWHT procedures.  

 

To evaluate the metal structure in the weld and heat affected zone, the program Weld Note from 

CorroWelds AS was used. This program can plot the corresponding microstructures in a Schaeffler 

diagram in terms of chemical composition of the base metal of the pipe and electrode that is joined. 

The corresponding A1 and A3 temperatures can also be determined by plotting the chemical 

composition of the base metal that is supposed to be joined, as seen from Figure 27. 

 

Microsoft Excel was used to process the data and for calibrations and preparation of results being 

presented.  
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6. Methods 
 

The task in this study is to evaluate possible effects of different PWHT procedures on the pipe 

strength and integrity, due to the change to the PWHT procedure made in the ASME Code, 2014 

edition. Where the temperature range was changed from 704 - 746˚C to 650 - 705˚C for low-alloy 

steels such as AISI 4130 steel pipes, this is shown in Figure 23, Figure 24 and Figure 25 in Case [33, 

54]. The method of analyzing the effect of this change is by using the available damage model Ductile 

Damage in the numerical finite element program Abaqus and adding material data for the different 

modeled sections of the weld. Abaqus is available under a student license at the University of Agder 

application base ‘’Innsia’’. 

 

Different methods were used to extract the necessary information to answer the research question 

in this study. This chapter present the methods to solve the research question. 

A literature study was used to obtain the correct knowledge about the subject of heat treatment and 

tempering of welded steel, become familiar with the different design parameters for the welded 

steel pipe under investigation in this study. The methods for experimental tensile testing were 

performed according to the two standards E8/E8M – 08 for uniform monotonic test specimens [55]. 

The numerical simulations were performed using the software program Abaqus in Explicit mode 

(Abaqus/Explicit) to simulate the different damage accumulations from the respective PWHT 

procedures.  

 

The point of the literature study is to gain an insight both into the work that has been done earlier 

and the results that have been presented until now on the subject. This is also important in terms of 

basic knowledge of the different behaviors of steel under welding and heat treatment, and what can 

be expected in terms of results. It has also been essential to aquire the latest and most relevant 

literature on the subject from reliable sources like books and standards.      

 

Two different approaches to deciding the material data of the welded pipe have been employed; the 

first using the data taken from material hardness tests and material certificates, the second using 

material data from experimental tensile tests for a more realistic behavior for comparison.  

Two different electrodes have also been used, and these will be compared in terms of strength due 

to the proposed pressure load. The placement of fracture and burst pressure as well as the stresses 

of the modeled pipe will be of interest when analyzing the different PWHT procedures. 

 

Different numerical formulas for material parameters after heat-treatment and for hardness were 

investigated so that this could be plotted numerically in Abaqus. This was so the behavior of the 

damage accumulation and plasticity of the welded pipe could be simulated realistically. For the 

calibration of the material behavior in Abaqus, the use of stresses and strains was taken from the 

material certificates for the pipe; material data for HAZ was set by the experimental hardness test 

done in the previous study done by Dimitri Rybakov[1]. One of the hardness-based simulation was 

performed by estimation, using Holloman-Jaffe for prediction of hardness and strength of HAZ after 

PWHT temperature of 600°C. 
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The experimental tensile tests were performed to extract more applicable material data in order to 

simulate the behavior of the welded pipe to a greater degree of accuracy. Elongation and behavior of 

the specimen’s gauge area was extracted using the extensometer. The results from the experimental 

tests were plotted numerically in Abaqus in the same way as for the estimated material data from 

the use of hardness data. The results from using both the hardness data and the tensile test data 

have also been compared in terms of accuracy in predicting damage behavior and strength. 

 

This chapter is thus divided into different sections in order to describe the continuous development 

of the study in an orderly manner. It describes the work methods used. Both the numerical and the 

experimental setup are explained, in addition to the extraction and post processing of the results. 

Due to the continuous development in the research, the respective methods was conducted as 

follows: 

 

 

 

 

 

 

 

 
 

 

 
 
 

 

 

 
 

 

 

6.1. Material parameters based on hardness 

  
In order to achieve an estimation of the possible results from the different PWHT procedures a 

numerical investigation of the possible outcome was performed. The results from hardness tests for 

the same pipe and material from the previous study by Dimitri Rybakov[1] was used and processed; 

the results from the previous study are found in Appendix B.  Three different PWHT temperatures 

were tested to investigate the possible strength of the pipe based on hardness of the HAZ for the 

welded pipe segment. The chosen temperatures that were 600°C, 650°C and 705°C as these are the 

highest and lowest temperatures for the ASME B31.3-2014 and below the A1 temperature. From the 

results in Appendix B shown in Table 12, the mean values for HAZ were calculated by using equation 

(30), which was affected by the chosen PWHT procedure. 

Post processing of hardness results and 
estimation of material parameters for the 
different sections of the welded pipe according 
to the chosen PWHT procedures. 

A numerical FE model of the studied welded pipe segment was compiled with internal pressure 
and the dimensions of the pipe were described from the material certificate. 

The damage behavior of the numerical simulations was calibrated from the different material 
data the form of stresses and strains and were plotted for each section of the weld. 

A capacity check for the pipe subjected to the different PWHT procedures was done in order, 
to verify if there were any concerns in terms of design pressure and test pressure that the pipe 
will be subjected to. 

Heat treatment of the steel samples 
according to the chosen PWHT procedures 
representing the different sections of the 
welded pipe, and execution and post 
processing of experimental tensile tests. 
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 (30) 

 

In order to predict the hardness of the tempered martensitic structure of HAZ after PWHT of 600°C, 

the Holloman-Jaffe equation (4) was used together with the hardness tests for the PWHT 

temperatures of 650°C and 705°C. The results from this procedure are showed in Table 14 together 

with the estimation of the yield and tensile strength of HAZ after PWHT using equation (12) and (15) 

shown in Table 15. The elongation at fracture for HAZ was estimated by using equation (16) from 

theory and the results from the calculated tensile stress using equation (15). The formula chosen for 

identification of the strength hardness relation was based on comparison of the strength and 

hardness from the material certificate and the formulas in chapter 3.14, and is shown in Table 5. 

 

Table 5: Comparison of hardness vs strength using hardness of 20HRC (238HV) as reference. 

Formula Yield strength, [MPa] Tensile strength, [MPa] 

Reference strength from material certificate 645 745 

Tabor, Equation (6)   - 819.971664 

J.R. Cahoon, Equation (11) and (10) 506.4 803.8 

Pavlina and Van Tyne, Equation (12) and (13) 593.788 788.892 

O. M. Akselsen, G. Rorvik, M. I. Onsjøen and 

Ø. Grong, Equation (14) and (15) 

390.9 740.3 

 

 

To find HV hardness from HRC hardness Figure 102 in the Appendix A was used. The holding time t 

was set according to ASME: 1/25 hour/mm but not less than 15min, and in this study set to 20 

minutes. To calculate the hardness after PWHT of 600°C using Holloman-Jaffe, the c value was set to 

19.5 as the recommended constant for Holloman-Jaffe, as explained from theory. To verify the 

phases present in the weldment before PWHT, the Schaeffler diagram was used in order to check 

what phases were present after welding for the material heated above the A3 temperature. As can 

be seen from Figure 33, the base metal of the pipe has a martensitic structure, as does the fusion 

zone or weld metal, albeit with some minor inclusions of ferrite.  
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Figure 33: Check of microstructure in the welded area of the weld before PWHT using the Schaeffler 
diagram. 

Table 6: Test Matrix based on hardness and numerical approximation. 

 Temperature, [°C] Holding time, [min] 

PWHT 1 600 20 

PWHT 2 650 20 

PWHT 3 705 20 

 

The PWHT was in the allowable range of the Holloman-Jaffe tempering limit of 100°C - 710°C; the 

procedures are shown in Table 6.  

 

The resulting estimated yield and tensile strength was then plotted in Abaqus as parameters for the 

HAZ region; the material parameters for the base material as well as the weld metal was set to the 

same as in the material certificate. For the simulations based on hardness, the base material affected 

by the PWHT was set to have the same material characteristics as the rest of the pipe; see Figure 39. 

This is due to the minor difference in hardness that was measured, as can be seen from certificate 

(238 HV) and the results from the hardness tests as seen in Table 13 (241,8 and 243,8 HV). Fracture 

strain was calculated according to ductility from material certificates for the base metal and the 

electrodes as also shown in the case chapter and in the material certificate found in Appendix E, F 

Base metal/HAZ - pipe 

Fusion zone - strong electrode 

Fusion zone - weak electrode 
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and G. The yield strain was thus found by using Hooks law, σ = Eε . The tensile strain was found by 

calculating the relation between the engineering tensile strain and engineering fracture strain from 

the experimental data from the Pre-study[10] by the following relation: 

 

 

 𝑢𝑡𝑒𝑛𝑠𝑖𝑙𝑒 = 1 − (
𝜀𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒 − 𝜀 𝑡𝑒𝑛𝑠𝑖𝑙𝑒

𝜀𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒
) (31) 

 

 

By using this expression, the engineering tensile strain was found to be approximately 68% 

(𝑢𝑒𝑛𝑔,𝑡𝑒𝑛𝑠𝑖𝑙𝑒) of the %elongation to fracture, and from this result the stress strain relations were 

plotted as shown in Table 16 and Figure 53 for the base material taken from the material certificate. 

The stress strain results from the strength-hardness data were calculated accordingly, and are found 

in Appendix H. The engineering fracture stress was set to the same as the yield stress estimated from 

the results from the Pre-study, where the engineering fracture stress was approximately the same as 

the yield stress [10]. From these results the true stress and strains were calculated using equation 

(26) and (27) from theory. The different true stress strain diagrams for each of the material 

parameters used for the different PWHT procedures are shown in Figure 54, Figure 55 and Figure 56. 

 

For calibration of the damage accumulation, a data plot was made with true strain that was adjusted 

with zero at yield point up to ultimate strength by subtracting the strain point from yield to ultimate 

strength with the original true yield strain. This plot with original true stress and adjusted/effective 

true strain was then plotted in tabular form in Abaqus as the calibrated material plasticity data, this is 

shown in Figure 59. To calibrate the behavior after necking for the Ductile damage model that 

represents the damage stress state, the Ramberg and Osgood equation (7) was used to determine 

the strength coefficient K together with the strain hardening exponent, which is found by using 

equation (8). Figure 58 in the results shows the calibration lines that were set to match as close as 

possible by plotting the corresponding K and n values. This best fit calibration was done by trial and 

error due to the use of the linear damage evolution from necking to final failure used in Abaqus; see 

Figure 22 in the theory. The K and n values is decide the stress-strain curve with progressive damage 

degradation in linear form, as seen in Figure 21 and Figure 22 in theory. As can be seen from theory, 

the concept of damage assumes the growth of voids in the material that reduces the effective area. 

When the effective area thus equals the nominal area, the material fails. The failure criteria are 

decided by the calibration of the fracture strain, triaxiality and displacement at failure, as can be seen 

plotted in Figure 57.  

 

As the damage accumulation after necking is different for the different PWHT procedures as well as 

each of the different zones of the welded pipe, the K and n values were calibrated separately for the 

HAZ and the base material and fusion zone so that the actual accumulation line could follow the 

experimental force-displacement line as close as possible. It must be mentioned that the K and n 

values decide the behavior and start point after necking of the damage curve; start point is shown as 

D=0 in Figure 21. The results from the processed predicted hardness data is found in chapter 7.1 and 

the numerical results from these material parameters is found in chapter 7.3 and 7.4 for the weak 

and strong electrode. 
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The primary focus of the validation was on failure pressure and stresses for the pipe subjected to the 

chosen PWHT procedure. The %deviation of the results of the pressure and stresses is calculated 

using the equation (32). 

  

 %𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =
𝑆1 − 𝑆𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑆𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
∙ 100 (32) 

 

Table 22 show a comparison between the burst pressure for the weak vs strong electrode 

relationships for the FEA model and the six simulations tested, and Table 23 shows the resulting 

stresses extracted from the fracture of the pipe. Figure 72 and Figure 73, show the comparison 

between the burst pressure and max stresses in the fracture and HAZ area of the simulated model 

and the weak vs strong electrode results of the FEA model for the pipe segment.  

 

6.2. Design of experiments 

 

To verify the results and simulation done for the material data based on hardness test, experimental 

tensile tests of the different sections of the weld were performed, as shown in the previous chapter 

in Table 4. Heat treatment for four different PWHT procedures have been performed; the three 

previous PWHT procedures and one additional above the A1 temperature. The additional procedure 

is chosen as a worst-case scenario and is set to the highest PWHT temperature of 746°C according to 

the ASME B31.3[54] code before the update that was introduced in 2014, shown in Figure 23. The 

procedures for heat treatment and experimental tensile tests were performed as follows: 

 

6.2.1. Preparation of specimens 

 

The first stage was the cutting and milling process of the raw steel pipe sample so it would achieve 

the desired shape and geometry according to the standard. Exact drawings of the two types of 

specimen to be tested were made before the milling process could start; see Figure 127 in Appendix 

L. After the milling process, the specimens were polished and checked for defects that could affect 

the tensile tests, such as notches and deformations on the surfaces of the specimens.  
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Figure 34: Cutting of the raw steel pipe sample. 

 

6.2.2. Heat treatment procedure  

 

To extract the material parameters of a pipe subjected to welding and the chosen PWHT procedures 

the steel samples had to be provided with the same material characteristics. The different material 

characteristics that were tested, previously shown in  Table 4, were created by heating and cooling 

the processed steel specimens accordingly. To create the heat-affected zone (HAZ) of the weld, the 

samples representing this section had to acquire the same properties before PWHT as the HAZ would 

have after welding. This was done by heating samples to 850°C, above the A3 temperature taken 

from Weld Note and with a holding time of 30 minutes for full austenization. The heating was set to 

heat as fast as possible to 850°C. In order to create martensite, the samples were quenched in water; 

the procedure is also visualized in Figure 35.  

 

 
Figure 35: Time tempering procedure for creation of martensite. 
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Table 7: Heat treatment to make the martensitic test specimens. 

 Temperature, 

[°C] 

Holding time, 

[min] 

Heating rate, 

[°C/h] 

Cooling rate, 

[°C/h] 

Martensitic test samples 

representing the HAZ 

850 30 Approx. 996 quenched 

 

When the martensitic samples representing the HAZ were made, the HAZ and the unaffected 

samples representing the part of the base metal affected by the PWHT were then heated together. 

The sets of samples heat treated simulating the two PWHT sections of the pipe was shown in Table 4; 

where four different heat treatments representing the PWHT procedures that was performed 

according to as shown in Table 8.   

 

Table 8: Heat treatment matrix for the test specimen. 

 Temperature, [°C] Holding time, [min] Heating/Cooling 

rate, [°C/h] 

PWHT 1 600 20 Max. 335 

PWHT 2 650 20 Max. 335 

PWHT 3 705 20 Max. 335 

PWHT 4 746 20 Max. 335 

 

The heat treatments were also logged accordingly for approximately each 50°C, and time and 

temperature were noted to log the heat treatment procedures; the noted time temperature is found 

in Appendix M. The heating rate was easier to control in the furnace compared to the cooling rate as 

seen from the PWHT diagrams, shown in Figure 36. Each of the PWHT heating and cooling rates was 

logged with the time and temperature as shown. The heating rate that was logged was 

approximately 320°C/h and satisfied the requirement of 335°C/h in ASME B31.3 [32]. 
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Figure 36: PWHT diagrams. 

 

6.2.3. Quality assurance of tests 

 

Before the actual test was performed, a check-list was made with routines for tensile testing; see 

Figure 125 in Appendix K. The routines were made so the quality and execution of the test would be 

done in the same manner for all the tested specimens. Along with the check-list for routines under 

testing, a sheet was also made to note information and data for the different tests performed on 

each specimen; see Figure 126 in Appendix K. Test specimens were labeled with appropriate 

numbers for reference so it would be easy to identify the specimens with the results; see Figure 124 

in Appendix K. The test specimens were also carefully measured to determine the deformations, 

stresses and strains acting on the specimens during the experimental tests before testing. 

 

6.2.4. Calibration of equipment 

 

The testing machine was tested and checked before any test could begin. The wedge grip alignment 

was controlled on the testing machine to ensure that there was a minimum introduction of bending 

stress on the specimens under testing, see Figure 37. The test machine was also warmed up and 

aligned to normal operating temperature and positioned to minimize errors that could result from 

transient conditions. The testing machine was set up in a manner so that zero force indication 

signifies a state of zero force on the specimens. 
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Figure 37: Tensile test frame with a specimen attached in the grip and extensometer attached to the 

specimen. 

 

Before the actual mechanical test could begin, preparation of extensometer and computer for the 

handling of results was also checked. A clip-on extensometer was used to measure axial strain during 

tensile testing; see Figure 37. The gauge length (35 mm) for computing strain is a parameter intrinsic 

to the clip-on extensometer. The extensometer measures elongation during the testing to insured 

minimal drift, slippage and instrument hysteresis. It directly measured the axial strain on the gauge 

section of the specimens. 

 

 

The strain-measuring systems, including the extensometer and its associated electronics, shall 

be accurate to the range of the induced strain under testing. The geometry of the contact zones and 

the pressure exerted by the extensometer on the specimen shall be such that they prevent slippage 

of the extensometer but do not damage the specimen. 
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6.2.5. Execution of experiments 

 

The specimen was fit to the test machine and centered with appropriate alignment and direction of 

force. Maximum load is recorded during testing and noted in the information sheet made for each 

specimen; see Figure 126 in Appendix K. After fracture of the specimens, final diameter was 

measured. The tensile test was performed with a loading rate of 0.039 mm/s. This ensured that the 

specimens elongated plastically with a steady phase to final fracture. All testing was done at room 

temperature according to standards. 

 

The test data file from the extensometer records the time, strains and the corresponding force 

applied to the specimen taken from the machine. This data is further postprocessed to extract the 

yield stress and stress at tensile strength of the uniform monotonic test specimens. The displacement 

is used to obtain the average strain throughout the specimen. The force applied is used to calculate 

the stress in the cross-sectional area of the specimens. 

 

6.2.6. Processing of experimental results 

 

The yield stresses, tensile stresses, engineering stress-strain and true stress-strain data was 

calculated in Excel for input parameters for the numerical analysis. The decomposition of true stress-

strain curve, thus effective stress-strain, was used for calibration of the plasticity in Abaqus Explicit. 

This was done by converting the engineering stress-strain values to true stress-strain values using 

equations (24), (25), (26) and (27). This is also according to the Abaqus manual, according to which 

the effective true stress-strain from yielding to tensile stress should be used as input parameters[50]. 

The true fracture strain was determined from the fracture point from the true stress strain curves 

from the tensile experiments and was plotted in Abaqus. 

 

A data plot was made with true strain that was adjusted with zero at yield point up to ultimate 
strength by subtracting the strain point from yield to ultimate strength with the original true yield 
strain. This plot with original true stress and adjusted/effective true strain was then plotted in tabular 
form in Abaqus as the calibrated material plasticity data, and is done in the same way as for the 
previous hardness data shown in Figure 59. The calibration of the behavior after necking and 
determining the strength coefficient K for determining the damage stress state, was also done in the 
same way as explained for the hardness data, and is shown in Figure 58. As seen from results, the 
specimen representing the heat affected base material was fracturing close to the edge of the 
extensometer so the strain after necking became distorted; so the damage behavior was thus 
assumed to be the same as for the base material after necking for this specimen; see Figure 80 and  
Table 26. Numerical simulations were then performed for the weak and strong electrode as for the 
material data based on hardness tests; this is found in chapter 7.2.2. and 7.2.3. 
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6.3. Numerical setup and procedure  

 

As mentioned in this study as mentioned Abaqus Explicit is the software for the numerical simulation 

for finite element analysis (FEA). The geometry of the pipe was modeled according to the dimensions 

in Figure 109 in Appendix E. The purpose of the finite element analysis (FEA) in this study was to 

assess the strength and integrity of a welded pipe segment as affected by different PWHT 

procedures. The results from the numerical simulations with the use of material parameters 

estimated for the different PWHT procedures, as well as the difference between the two approaches 

for calibration of material data, will be analyzed and compared. The results will also be compared to 

the design pressure and possible test pressure described from the ASME B31.3; the procedure for the 

pressure check is explained in further detail later in this chapter. The establishment of the finite 

element model (FEM) was done as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.3.1. Geometry and boundary conditions. 

 

The pipe was modeled as a three-dimensional solid part, as seen in Figure 38. The total length of the 

pipe model was set to one meter with the weld in the center. This should be appropriate to obtain 

good results for the weakest part of the pipe and at the same time not have too large a model that 

will use unnecessary much simulation time.  The type of boundary conditions used are found in 

Figure 40, and Figure 48 displays a visualization of the applied boundaries where the arrows function 

as applied pressure load, corresponding to displacement in the described direction in addition to the 

corresponding loading conditions and amplitudes.  

 

Establishing geometry and boundary conditions of a solid model 

Selection of element type and mesh for the model  

Defining the material parameters for the different sections of the welded pipe model  

Defining step and mass scaling for the numerical simulation 

Amplitude and loading conditions for the numerical simulation 
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Figure 38: Modeled welded pipe segment. 

 

 

 
Figure 39: Design of the welded connection of the pipe. 1): unaffected base material, 2): PWHT base 
material, 3): HAZ, 4): Melted zone (Weld metal from electrode). 

 

The melted weld zone and HAZ were defined by measures taken from the test piece shown in 

Figure 105 in Appendix B. Where the reinforcement height was set to 2mm and the root depth was 

set to 1mm for the weld in the simulated model, taken from the average measures of the welded 

pieces in Figure 105. The base metal affected by the different PWHT procedures was defined by the 

ASME code B31.3[32] by minimum width of local heat treatment of three times the wall thickness of 

the pipe from center of the weld as explained in theory. 

1 1 2 2 3 3 4 
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Table 9: Boundary conditions for the welded pipe segment analyzed for pressure in Abaqus. 

Type X Y Z 

Boundary Condition (Z= 500) - - (U1=U2=U3=UR1=UR2=UR3=0) 

Boundary Condition (Z= -500) - - (U1=U2=U3=UR1=UR2=UR3=0) 

 

 
Figure 40: Applied boundary conditions for the modeled pipe segment. 

 

6.3.2. Meshing of elements 

 

Meshing plays a crucial role in the analysis of finite element modeling and analysis, so a verification 

of the mesh was performed in terms of a sensitivity study of the pipe model before analysis of the 

PWHT procedures. Four different mesh configurations have been tested and are presented in Table 

10; Coarse, Medium, Fine and Extra fine mesh. The Hex element type was chosen for the pipe model 

and partitioned to achieve a more improved mesh and to reduce the running time. Both the pipe and 

weld region can be expected to have plastic deformations and failure, as the material defined for the 

regions will have different strength. Due to this only a global mesh has been considered in this study 

as failure is not concentrated in one specific area of the pipe, due to the chosen loading conditions 

and difference in material strength, see Figure 41 and Figure 44. A study has been carried out to 

clarify the sensitivity due to mesh refinement where a pressure deviation of approximately 2% has 

been considered sufficient. As defined in the pipe model, Table 10 describes the preselected element 

sizes of the models, where the size is approximately the same in both directions with some 

adjustments due to curvature and thickness. 

 

It is important that the element size of the model where plastic deformation takes place are small 

enough to represent the deformation and placement of fracture in a reliable manner, even if it may 

not be small enough to show in detail the necking and plasticity of the fracture initiation. Linear 

interpolation between nodes also indicates that the element size must be small in order to properly 

represent the curved deformation.  
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Table 10: Element sizes in sensitivity procedure. 

Coarse mesh [mm] Medium mesh [mm] Fine mesh [mm] Extra fine mesh 

[mm] 

10 7 5 4 

 
The FE model of the pipe segment was modelled with a chosen mesh size of 5mm due to 

computational time and a reliable representation of the placement of failure and behavior of the 

pipe under the loading conditions. 

 

 
Figure 41: Mesh definition for the pipe segment. 

 

 
Figure 42: Applied 10mm mesh on the modeled pipe segment. 
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Figure 43: Applied 7mm mesh on the modeled pipe segment 

 

 
Figure 44: Applied 5mm mesh on the modeled pipe segment. 
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Figure 45: Applied 4mm mesh on the modeled pipe segment. 

 

6.3.3. Material parameters in Abaqus 

 

In this study, the Ductile Damage model was used for the numerical simulation in Abaqus, where the 

stress -rate, stress triaxiality and true stress and strain parameters for Ductile Damage were added, 

see Table 17 and Figure 57. The plasticity data from the effective true stress strain curve is added 

into the calibration option to the modeling of the plasticity material behavior in Abaqus, as seen in 

Figure 59.  The damage parameters for Ductile Damage were calibrated and added in the form of 

fracture strain 𝜀𝑓, stress triaxiality ƞ and strain rate �̇�𝑖. Strain rate was set to 0.1mm/s for the FE 

model, see Figure 57. The stress triaxiality was set to 0.33 as described in previous chapter and the 

same as in the Pre-study[10]. The isotropic hardening model in Abaqus was employed for the 

simulations and the yield criterion is the Von -Mises yield function was the same as that used in the 

Pre-study [10]. 

 

6.3.4. Step definition and Mass scaling 

 

Dynamic Explicit analysis was used for the comparison of the damage initiation criteria chosen in this 

study. To reduce the running time, a time period of 1 second has been used, as shown in Figure 46, 

and the Mass scaling Factor was set to 10 as shown in Figure 47, as the most suitable factor done by 

trial and error in terms of stability and reduction of time, as described from theory.  
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Figure 46: Time period of the defined step. 

 

 
Figure 47: Mass scaling for the numerical simulation of the pipe model. 

 

6.3.5. Amplitude and loading 

 

The sets of numerical simulation for comparison are shown in Table 11 . The chosen loading 

condition was set to be pressure until failure, since the piping system referred to in this study is a 

high-pressure offshore piping system. The loading condition should give a good indication of the 

weakest part of the pipe subjected to the different PWHT procedures simulated in this study. The 

loading was run until failure. The burst pressure, max stresses applied on to the pipe, and placement 

of the failure were of interest. Table 11 shows the different numerical simulations performed based 

on material data from the hardness tests and experimental tensile tests.  

 

Table 11: Numerical pressure simulation matrix for the Hardness and Tensile test properties. 

 PWHT procedure 

600˚C 

PWHT procedure 

650˚C 

PWHT procedure 

705˚C 

PWHT procedure 

746˚C 

Weak electrode *Hardness/Tensile Hardness/Tensile Hardness/Tensile Tensile 

Strong electrode *Hardness/Tensile Hardness/Tensile Hardness/Tensile Tensile 

*Hardness estimated by using Holloman-Jaffe. 
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The Field output request was set with apropriate time points of 1000, set for the chosen amplitude 

that was run. The History output request was set at each time points, n, chosen. The amplitude plots 

and amplitudes are shown in Figure 49, Figure 50 and Figure 51 for the preassure load. 

 

 
Figure 48: Pressure load applied in the pipe model. 

 

 

 
Figure 49: Load definition for the numerical pressure simulation. 
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Figure 50: Time- Displacement amplitude for the applied pressure load in Abaqus. 

 
 

 
Figure 51: Loading amplitude for the pressure simulations. 
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6.4. Pressure checks of pipe 

 

The results of the numerical analysis and the design criteria that were set for the pipe were checked 

in terms of material strength and design capacity according to the ASME B31.3. The design pressure 

criteria were set according to the given design pressure of 51.7 MPa, and corrosion allowance of 

3mm as shown in chapter 5.1. was used to calculate the approximate stress allowance.  

 

The design pressure was then compared against the results from the FEA of the pipe that was 

affected by the different PWHT procedures. The burst pressure and max stresses were of interest 

and compared against the design criteria and the highest-pressure loads.  

 

For control of capacity equation (19) and (20), were used to identify the possible load cases applied 

to the pipe. The check was also performed for the test pressure for the pipe too, as described from 

theory where equation (21) was used; the resulting test pressure from this was plotted again using 

equations (19) and (20). The results from the calculations were performed in an Excel sheet and are 

shown in Table 32, Table 33, Table 34 and Table 35 in chapter 7.6. 
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7. Results  
 

The purpose of this chapter is to describe and present the results of the tests and experiments in the 

research. The work is divided into different sections: presentation of sensitivity check, results from 

calculated hardness estimates for the HAZ, calibration of material, and damage parameters for the 

numerical simulations based on both hardness tests and experimental tensile tests. Post-processed 

hardness data extracted from the previous study and the experimental tensile tests done for this 

study are presented, along with the presentation of the results from the different numerical 

simulations done for two types of electrodes, together with a comparison of the results. Finally, the 

results from the pressure check done according to ASME B31.3 are presented for the results from the 

tensile tests. 

 

7.1. Analysis based on material data from hardness tests 

 

In this section, the results from the post processing and numerical simulations based on extracted 

and estimated hardness are presented. Also, the mesh sensitivity study done for the modeled pipe 

section is presented. 

 

7.1.1. Results from calculation of material parameters 

 

Table 12: Calculation of mean hardness values for the different zones of the weld before PWHT, 
calculated from values shown in Appendix B, the tensile stresses is found by using equation (15). 

  650   705  

 Base Haz weld Base Haz weld 

 244 336 229 250 345 234 

 245 349 234 244 345 213 

 240 294 218 236 307 201 

 246 230 220 245 245 238 

 245 232 210 248 233 237 

 231 274  240 270  

  273   287  

  253   271  

  235   230  

  226   237  

Sum 1451 2702 1111 1463 2770 1123 

Mean 241.8 270.2 222.2 243.8 277 224.6 

Tensile Strength 753.7 852.9 685.0 760.7 876.7 693.4 
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Table 13: Calculation of mean hardness values for the different zones of the weld after PWHT, 
calculated from values shown in Appendix B, the tensile stresses are found by using equation (15). 

  650   705  

 Base Haz weld Base Haz weld 

 245 271 239 230 235 216 

 246 277 238 232 230 202 

 244 245 213 226 217 184 

 249 229 212 236 209 194 

 246 231 212 232 202 195 

 227 273  231 248  

  242   213  

  234   216  

  221   208  

  229   209  

Sum 1457 2452 1114 1387 2187 991 

Mean 242.8 245.2 222.8 231.2 218.7 198.2 

Tensile Strength 757.2 765.4 687.1 716.4 672.8 601.1 

 
 
Table 14: Material hardness for HAZ using Holloman-Jaffe and hardness tests correlation. 

PWHT temperature 
[°C] 

Hp Hardness (HRC) Hardness (HV) 

600 16.6 31 269.5 

650 17.6 28 245.2 

705 18.6 25 218.7 

 

To transform from Rockwell scale HRC hardness to Vickers hardness number HV, Figure 102 shown in 

Appendix A has been used. As seen from Figure 52 the hardness of HAZ subjected to PWHT of 600°C 

is predicted to be over the 𝐻𝑚𝑎𝑥 requirement of 22 HRC (250 HV) for ‘’Sour Service’’[30, 31]. 

 

 
Figure 52: Tempered Hardness of HAZ for AISI 4130 steel - Tempered in 20min, constant c= 19,5. 
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Table 15: Material parameters calculated for HAZ. 

PWHT temperature 
[°C] 

Yield strength, 
[MPa] 

Tensile Strength, 
[MPa] 

Fracture strain, 
A35(%) 

600 684.4 850.4 0.125 

650 614.5 765.4 0.132 

705 538.3 672.8 0.168 

 
 
Table 16: Stress Strain results for Base-material calculated from material certificate for the pipe. 

 Engineering 
Strength, [MPa] 

Engineering 
Strain, [-] 

True Strength, 
[MPa] 

True Strain, [-] 

Yield 645.0 0.00307 647.0 0.00307 

Tensile 745.0 0.217248 906.8 0.19659 

Fracture 645.0 0.32 851.4 0.27763 

 

 

The stress and strain for all the sections with the different PWHT procedures was found and the 

stress-strain diagram was plotted as shown in Table 16 and Figure 53 for the base material of the 

pipe. The rest of the stress and strain data is presented in Appendix H. 

 

 

 
Figure 53: Stress-strain diagram for base material calculated from material certificate for the pipe. 

 

As explained, the different sections of the weld have different material behaviors; Figure 54, Figure 

55 and Figure 56 show the different true stress and strain graphs for the different sections of the 

pipe subjected to each of the PWHTs. We see here that the strength of HAZ is decreasing with the 

increase in PWHT temperature and that the strain of the HAZ is increasing with an increase in 

temperature. The true stress and strain for both electrodes used are also shown in the same graphs 

for comparison. 
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Figure 54: True stress-strain diagram for PWHT 600. 

 

 
Figure 55: True stress-strain diagram for PWHT 650. 

 

 
Figure 56: True stress-strain diagram for PWHT 705. 
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Table 17: Damage parameters calculated from certificates and hardness tests. 

Material True fracture strain [𝜀0̅
𝑝𝑙

] Displacement at failure [�̅�𝑓
𝑝𝑙

] 

AISI 4130 Steel 0.27763 5.138 

Weak electrode 0.23111 4.174 

Strong electrode 0.22314 4.014 

HAZ 600 0.11797 2.010 

HAZ 650 0.12389 2.117 

HAZ 705 0.15513 2.694 

 
Table 17 shows the damage parameters for the damage accumulation from tensile strength to 

fracture; in Abaqus these parameters are used to define the placement of the fracture. Figure 57 

shows how these damage parameters for the respective materials are plotted in Abaqus. 

 

 

 

           
Figure 57: (a) Base material parameter plotted for Ductile Damage in Abaqus. (b) Showing the 
Damage evolution from necking to fracture, using linear damage evolution, plotted Displacement at 
Failure. 

(a) (b) 
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Figure 58: Visualization of calibration of strength coefficient K for unaffected base metal of the pipe. 

 

Figure 58 shows the calibration of the strength coefficient K that is used to determine the linear 

damage evolution after necking for the unaffected base metal of the pipe. The green line is the 

plasticity curve from the true effective stress-strain curve extracted from experiments; the red line is 

the calibration line using the Ramberg and Osgood equation (7). This calibration was also done for 

the HAZ and fusion zone of the pipe with the respective PWHT procedures, as shown in Appendix I. 

 

 

Table 18: Calibrated Strength coefficient, K values and hardening exponent, n. 

Material Strength coefficient, K [MPa] Hardening exponent, n 

Base material  933 0.082 

Weak electrode 724 0.065 

Strong electrode 865 0.073 

HAZ 600 958 0.095 

HAZ 650 868 0.090 

HAZ 705 770 0.090 

 

 

Table 18 shows the damage parameter K that is calibrated for the different sections. The hardening 

exponent n is calibrated too, but is not an input parameter in Abaqus; the hardening exponent is only 

used to calibrate the behavior of the material stress and strain graph.  
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Figure 59: Plotted plasticity data for the unaffected base material along with the calibrated strength 
coefficient K at the end that decides the start/behavior of the linear damage evolution. 

 

 

7.1.2. Results sensitivity study 

 

The choice of mesh was done after a check of the sensitivity of different mesh sizes, as described in 

the previous chapter. Due to the chosen loading condition affecting the whole model, a refined mesh 

was not chosen in this study. From simulations of the coarse mesh of 10mm, the pipe was behaving 

more irregularly, with an unsymmetrical behavior with considerably more simulation time. The 

medium to extra fine mesh was acting stiffer and had a better representation of the behavior of the 

fracture and loading conditions. The representation of the hardening and fracture was in any case 

slightly more favorable for the fine and extra fine mesh. The fracture was also occurring with a 

similar distance from the pipe end and the welded part of the pipe with the fine and extra fine mesh. 

A slight increase in the maximum load is registered with finer mesh, but the pressure level is more 

even, with a deviation of approximately 2% between the chosen mesh and the medium and extra 

fine mesh. The disturbance observed could be a reason to investigate further. 
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Figure 60: Pressure vs mesh size diagram for the pipe due to pressure load. 

 
Table 19: Sensitivity results from pressure load at fracture. 

Type Mesh size 
[mm] 

Number of 
elements 

Number of 
nodes 

Pressure 
[MPa] 

 

Pressure 
Deviation [%] 

Coarse 10 7344 14832 372.279 19.451 

Medium 7 28416 42912 462.177 1.106 

Fine 5 80784 108240 467.348 Chosen mesh 

Extra Fine 4 172032 215880 477.329 2.136 

 

Figure 61 shows the corresponding pressure vs strain curves for the different meshes that under 

study. There was a significant increase in stress and computational time as the mesh size was 

decreased.   

 

 
Figure 61: Pressure vs strain curve mesh sensitivity. 
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7.1.3. Numerical results for weak electrode 

 

 
Figure 62: Numerical results for PWHT 600 weak electrode. 

Figure 62 shows the simulation of the weak electrode, and as seen the fracture is occurring in the 

base material of the pipe. 

 

 

 
Figure 63: Numerical results from PWHT 650 weak electrode. 

Figure 63 shows the simulation of the weak electrode, where the fracture is occurring in the welded 

area of the pipe. The visualization presented also shows the base metal deforming as well, this is due 

to the similar tensile strength of the materials, so placement of failure is determined by the burst 

pressure of the areas. 
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Figure 64: Numerical results from PWHT 705 weak electrode. 

 

Figure 64 shows the simulation of the weak electrode and as seen the fracture is occurring in the 

welded area of the pipe. As seen from the previous simulations, the deformations around the welded 

section are growing larger and closer to the center of the weld with a higher PWHT temperature. 

 

Table 20: Reaction forces on pipe with weak electrode. 

PWHT procedure Placement of 

fracture 

Max internal stress 

[MPa] 

Burst Pressure [MPa] 

600 Base material 932.528 259.29 

650 Weld 854.527 244.96 

705 Weld 759.364 201.135 

 

 
Figure 65: Resulting burst pressure based on weak electrode. 
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Figure 66: Highest stresses for pipe based on hardness data with weak electrode. 

 

 

7.1.4. Numerical results from strong electrode 

 

 
Figure 67: Pipe with pressure load until failure PWHT600 strong electrode. 

 

Figure 67 shows the simulation of the strong electrode, and as seen the fracture is occurring in the 

base material of the pipe. 
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Figure 68: Pipe with pressure load until failure – PWHT650 strong electrode. 

 

Figure 68 shows the simulation of the strong electrode and as seen the fracture is occurring in the 

base material of the pipe. 

 

 
Figure 69: Pipe with pressure load until failure – PWHT705 strong electrode. 

 

Figure 69 shows the simulation of the strong electrode, and the fracture is occurring in the welded 

area of the pipe. The visualization presented also shows the base metal deforming as well; this is due 

to the different strength and geometry of the weld, so placement of failure is determined by the 

burst pressure of the areas. As seen from the previous simulations, the deformations around the 

welded section are growing larger and closer to the center of the weld with a higher PWHT 

temperature also for the strong electrode. 
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Table 21: Reaction forces on pipe with strong electrode. 

PWHT procedure Placement of 

fracture 

Max internal stress 

[MPa] 

Burst Pressure [MPa] 

600 Base metal 932.633 259.312 

650 Base metal  906.41 255.217 

705 Weld 760.271 217.091 

 

 
Figure 70: Burst pressure for simulations based on strong electrode. 

 

 

 
Figure 71: Highest stresses for pipe based on hardness data with strong electrode. 
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7.1.5. Comparison of results 

 

Table 22: Comparison of burst pressure for the pipe. 

Test procedure Burst pressure, weak 

electrode [MPa] 

Burst pressure, strong 

electrode [MPa] 

Deviation [%] 

PWHT 600 259.29 259.312 0.0 

PWHT 650 244.96 255.217 4.2 

PWHT 705 201.135 217.091 7.9 

 

 

Table 23: Comparison of max stress for the fracture initiation of the pipe. 

Test procedure Max stress, weak 

electrode [MPa] 

Max stress, strong 

electrode [MPa] 

Deviation [%] 

PWHT 600 932.528 932.633 0.0 

PWHT 650 854.527 906.41 6.1 

PWHT 705 759.364 760.271 0.1 

 

 

 

 
Figure 72: Weak vs strong electrode – Burst pressure results in pipe. 
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Figure 73: Weak vs strong electrode – Comparison of max stresses in pipe at fracture. 

 

All measured pressure and stresses were taken from the elements inside the pipe that was most 

affected by the applied pressure load and that was failing and deforming first.  

 

 

7.2. Analysis based on material data from tensile tests  

 

All the experimental tests were conducted to fracture. For each specimen, the detailed results 

consist of stress-strain curves and observations made; the rest of the tests are found in Appendix N. 

In total there were ten specimens that were tested under a monotonic tensile load, all of which were 

uniformly shaped specimens. The specimens were heat-treated with the described heat treatments 

from previous chapter for extraction of the material parameters for the different PWHTs of the pipe. 

 

7.2.1. Results from tension tests  

 

The yield strength was found by identification of the lowest point in the yield plateau on the stress- 

strain curve for the uniformed specimens, as seen for test specimen Base 2 in Figure 75; for the rest 

of the samples, see Appendix O. The engineering stress-strain curves were plotted using equations 

(24) and (25), the strain results from the extensometer, and the force from the test machine; the 

stress-strain diagrams are presented in Appendix N.  

 

As mentioned in previous chapter 6.2.6., the uniform test samples were used for calibration of the 

plasticity of the damage models. The value of the equivalent strain at the point of damage initiation 

was collected by first tuning the plasticity model and then finding the mean equivalent strain value 

for the damage initiation criterion. Then a damage evolution was set by defining a linear behavior of 

the downward curve until failure. The true strength and true strain curve are calculated according to 
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equations (26) and (27) respectively and plotted as seen in Figure 76. Table 25 shows the important 

true stress-strain data were recorded from extraction of experimental results. The tensile test of the 

quenched specimen is only used to show what properties the samples had before heat treatment. 

And as seen from Figure 133 and Figure 134 in Appendix N, the sample was substantially stronger 

and fractured at the maximum of the capacity of the test machine, in a brittle manner as expected. 

 

Table 24: Collected experimental Normal/Engineering stress strain data. 

Specimen Yield stress [MPa] Tensile stress at 
ultimate strength 

[MPa] 

Tensile strain [-] Fracture strain [-] 

Base 1 626.320 744.795 0.053108 0.16192 

Base 2 642.870 741.555 0.079944 0.180304 

HAZ (quenched) - Over 1296.419 - 0.090788 

HAZ 600 809.080 875.908 0.054524 0.161012 

Base 650 629.680 748.126 0.048344 0.150128 

HAZ 650 712.290 812.816 0.069268 0.18924 

Base 705 618.090 730.912 0.075396 0.181908 

HAZ 705 617.160 725.308 0.06504 0.192828 

Base 746 585.190 687.692 0.087816 0.122828 

HAZ 746 527.520 659.646 0.114592 0.199992 

 

 

Table 25: Collected experimental true stress strain data. 

Specimen True stress at 

yield [MPa] 

True stress at 

ultimate strength 

[MPa] 

True tensile 

strain [-] 

True fracture 

strain [-] 

Base 1 629.221 790.016 0.063909573 0.150073809 

Base 2 648.069 808.508 0.097300924 0.165772032 

HAZ 600 815.228 926.733 0.059509648 0.149292039 

Base 650 632.163 788.320 0.060417542 0.139873241 

HAZ 650 716.468 874.386 0.077438705 0.173314448 

Base 705 620.780 795.556 0.091462788 0.167130082 

HAZ 705 620.075 782.551 0.084958605 0.176326958 

Base 746 588.015 752.855 0.093421124 0.11587544 

HAZ 746 530.257 746.630 0.14142317 0.18231489 

 

The true stress-strain diagram was plotted for all tensile experiments and datapoints were inputted 

to Abaqus in tabular form to set the plasticity behavior of the material. One of the engineering stress-

strain diagrams and true stress-strain diagrams is presented in Figure 74 and Figure 76, and 

illustration of the plasticity plot was done in the same manner as shown previously for the hardness 

based simulations, shown in Figure 59. The rest of the true stress-strain curves are found in Appendix 

N. 

 



Structural materials and numerical modelling 

83 
 

 
Figure 74: Engineering stress-strain diagram – Uniform specimen Base 2. 

 

 
Figure 75: Illustration of determination of yield point from the experimental tensile tests – Here 

representing base material (Base 2). 
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Figure 76: True stress-strain diagram – Uniform specimen Base 2. 

 

A diagram for comparison of the different material properties of the different sections of the welded 

pipe was made, the same as for the hardness, as shown here by Figure 77, Figure 78, Figure 79 and 

Figure 80. The effect of the different heat treatments on the base material was simulated for the 

tensile tests as described in previous chapter, in contrast to the simulations done for the hardness 

test. The only base material properties affected by the PWHT procedure was PWHT 600 due to a 

limited amount of test specimens. The rest of the procedures had base material affected by the 

PWHT procedure and are labeled Base 650, Base 705 and Base 746 in the diagrams presented. 

 

 

 
Figure 77: True stress-strain diagram for PWHT 600 based on experimental tests – Material 

parameters for the electrodes are estimated from certificates. 
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Figure 78: True stress-strain diagram for PWHT 650 based on experimental tests – Material 

parameters for the electrodes are estimated from certificates. 

 

 

 

 

 

 
Figure 79: True stress-strain diagram for PWHT 705 based on experimental tests – Material 

parameters for the electrodes are estimated from certificates. 
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Figure 80: True stress-strain diagram for PWHT 746 based on experimental tests – Material 

parameters for the electrodes are estimated from certificates. 

 
Table 26: Damage parameters calculated and run from tensile tests. 

Material True fracture strain [𝜀0̅
𝑝𝑙

] Displacement at failure [�̅�𝑓
𝑝𝑙

] 

Base material 0.165772032 2.509 

HAZ 600 0.149292039 2.6622 

Base 650 0.139873241 2.5446 

HAZ 650 0.173314448 2.9993 

Base 705 0.167130082 2.6628 

HAZ 705 0.176326958 3.1947 

*Base 746 0.11587544 0.876 

HAZ 746 0.18231489 2.135 

*As seen, the test specimen was fracturing close to the edge of the extensometer and the strain after 
necking became distorted. 
 

Table 27: Calibrated Strength coefficient, K values and hardening exponent, n for tensile test data. 

Material Strength coefficient, K [MPa] Hardening exponent, n 

Base material 858 0.097300924 

HAZ 600 988 0.059509648 

Base 650 835 0.060417542 

HAZ 650 935 0.077438705 

Base 705 847 0.091462788 

HAZ 705 838 0.084958605 

Base 746 775 0.093421124 

HAZ 746 780 0.14142317 

 

The damage calibration was done in the same manner as for the hardness-based simulations as 

described in chapter 6.2.6.; the calibration graphs are found in Appendix P. 
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7.2.2. Numerical results based on weak electrode 

 

 
Figure 81: Numerical results for PWHT 600 weak electrode. 

 

 

 
Figure 82: Numerical results from PWHT 650 weak electrode. 
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Figure 83: Numerical results from PWHT 705 weak electrode. 

 

 

 
Figure 84: Numerical results from PWHT 746 weak electrode. 

 

Table 28: Reaction forces on pipe weak electrode. 

PWHT procedure Placement of 

fracture 

Max internal stress 

[MPa] 

Burst Pressure [MPa] 

600 Base metal  808.006 196.648 

650 Base metal  811.33 198.453 

705 Weld 716.249 187.474 

746 Weld 685.396 159.86 

 



Structural materials and numerical modelling 

89 
 

 
Figure 85: Resulting burst pressure based on material data from experiments and weak electrode. 

 

 

 
Figure 86: Highest stresses for pipe based on tensile experiment data with weak electrode. 
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7.2.3. Numerical results based on strong electrode 

 

 
Figure 87: Numerical results from PWHT 600 strong electrode. 

 

 

 

 
Figure 88: Numerical results from PWHT 650 strong electrode. 
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Figure 89: Numerical results from PWHT 705 strong electrode. 

 

 

 
Figure 90: Numerical results from PWHT 746 strong electrode. 

 

Table 29: Reaction forces on pipe with strong electrode. 

PWHT procedure Placement of 

fracture 

Max internal stress 

[MPa] 

Burst Pressure [MPa] 

600  Base metal 807.425 195.923 

650 Base metal 807.2 195.708 

705 PWHT Base metal 805.849 194.639 

746 Weld 741.357 163.642 
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Figure 91: Resulting burst pressure based on material data from experiments and strong electrode. 

 

 

 
Figure 92: Highest stresses for pipe based on tensile experiment data with strong electrode. 
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7.2.4. Comparison of results 

 

Table 30: Comparison of burst pressure for the pipe. 

Test procedure Burst pressure, weak 

electrode [MPa] 

Burst pressure, strong 

electrode [MPa] 

Deviation [%] 

PWHT 600 196.648 195.923 0.4 

PWHT 650 198.453 195.708 1.4 

PWHT 705 187.474 194.644 3.8 

PWHT 746 159.86 163.642 2.4 

 

Table 31: Comparison of max stress for the fracture initiation of the pipe. 

Test procedure Max stress, weak 

electrode [MPa] 

Max stress, strong 

electrode [MPa] 

Deviation [%] 

PWHT 600 808.006 807.425 0.1 

PWHT 650 811.33 807.2 0.5 

PWHT 705 716.249 805.849 12.5 

PWHT 746 685.396 741.357 8.2 

 

 
Figure 93: Weak vs strong electrode – Burst pressure based on material data from tensile tests. 
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Figure 94: Weak vs strong electrode – Comparison of max stresses in pipe at fracture based on 
material data from tensile tests. 

 
 

 
Figure 95: Presentation of burst pressure for all simulations, both based on hardness and tensile tests. 
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7.3. Results from pressure check  

 

In this section the results from the control of service pressure are presented to verify the variations 

and if so the decrease in material strength and integrity in terms of design parameters set for 

pressure loads in the ASME B31.3. 

 

 

  
Figure 96: Calculation of material and temperature coefficient, Y. 

 

 
Figure 97: Calculation of the stress acting on the pipe with the estimated design pressure. 

 

 
Figure 98: Calculation of the test pressure for the pipe with the estimated design pressure. 

 

 
Figure 99: Calculation of the stresses acting on the pipe under the estimated test pressure. 

 

Outer diameter D 66,33 mm

Inside diameter of pipe d 44,19 mm

Material and temperature coefficient Y 0,43 -

Applied pressure P 51,7 MPa

Outer diameter D 66,33 mm

Quality factor E 0,8 -

Weld joint strength reduction factor W 1 -

Material and temperature coefficient Y 0,43 -

wall thickness t 11,07 mm

User supplied mill tolerance MT - -

Corrosion allowance C 3 mm

Design stress S 237,75 MPa

Internal design pressure P 51,70 MPa

Allowable stress at component design temperature S 25 ksi

Allowable stress at test temperature ST 25 ksi

Minimum test gauge pressure PT 77,55 Mpa

Test pressure P 77,55 Mpa

Outer diameter D 66,33 mm

Quality factor E 0,8 -

Weld joint strength reduction factor W 1 -

Material and temperature coefficient Y 0,43 -

wall thickness t 11,07 mm

User supplied mill tolerance MT - -

Corrosion allowance C 3 mm

Applied stress S 356,70 MPa
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Table 32: Comparison of burst pressure and design pressure of 51.7 MPa. 

Test procedure Burst pressure [MPa] Deviation from design 

pressure [MPa] 

Deviation from design 

pressure [%] 

Weak electrode - 600 196.648 144.948 280.364 

Weak electrode - 650 198.453 146.753 283.855 

Weak electrode - 705 187.474 135.774 262.619 

Weak electrode - 746 159.86 108.16 209.207 

Strong electrode - 600 195.923 144.223 278.961 

Strong electrode - 650 195.708 144.008 278.545 

Strong electrode - 705 194.644 142.944 276.487 

Strong electrode - 746 163.642 111.942 216.522 

 

Table 33: Comparison of max stress and design stress of 237.75 MPa. 

Test procedure Burst stress [MPa] Deviation from design 

stress [MPa] 

Deviation from design 

stress [%] 

Weak electrode - 600 808.006 570.256 239.855 

Weak electrode - 650 811.33 573.58 241.253 

Weak electrode - 705 716.249 478.499 201.261 

Weak electrode - 746 685.396 447.646 188.284 

Strong electrode - 600 807.425 569.675 239.61 

Strong electrode - 650 807.2 569.45 239.516 

Strong electrode - 705 805.845 568.095 238.946 

Strong electrode - 746 741.357 503.607 211.821 

 

Table 34: Comparison of burst pressure and test pressure of 77.55 MPa. 

Test procedure Burst pressure [MPa] Deviation from test 

pressure [MPa] 

Deviation from test 

pressure [%] 

Weak electrode - 600 196.648 119.098 153.576 

Weak electrode - 650 198.453 120.903 155.903 

Weak electrode - 705 187.474 109.924 141.746 

Weak electrode - 746 159.86 82.31 106.138 

Strong electrode - 600 195.923 118.373 152.641 

Strong electrode - 650 195.708 118.158 152.364 

Strong electrode - 705 194.644 117.094 150.992 

Strong electrode - 746 163.642 86.092 111.015 
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Table 35: Comparison of max stress and test stress of 356.70 MPa. 

Test procedure Burst stress [MPa] Deviation from test 

stress [MPa] 

Deviation from test 

stress [%] 

Weak electrode - 600 808.006 451.308 126.524 

Weak electrode - 650 811.33 454.632 127.456 

Weak electrode - 705 716.249 359.551 100.8 

Weak electrode - 746 685.396 328.698 92.15 

Strong electrode - 600 807.425 450.727 126.361 

Strong electrode - 650 807.2 450.502 126.298 

Strong electrode - 705 805.845 449.147 125.918 

Strong electrode - 746 741.357 384.659 107.839 

 

 

 
Figure 100: Visualization of service pressure and test pressure vs material burst pressure for the 

estimated and experimental hardness data collected. 
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Figure 101: Visualization of service stress and test stress vs material stress capacity for the estimated 

and experimental hardness data collected. 
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8. Discussion 
 

The focus of this thesis has been to evaluate the effect different post-weld heat treatment 

procedures in terms of strength and integrity of pressure pipe. The behavior of a welded pipe 

segment has been studied, with the material properties using different material data according to 

the chosen PWHT procedures and simulated in Abaqus. This chapter analyzes the results from the 

numerical simulations and the difference in terms of change in PWHT procedure. 

 

8.1. Material parameters from hardness tests 

 

In this study, the Holloman-Jaffe equation was used to estimate the hardness based on the 

temperature, carbon content and tempering time for the additional PWHT of 600°C based on 

hardness. One can also  estimate the metal structures formed under heat treatment using the TTT or 

CCT diagram, and from this estimate the hardness of the composition of phases present, but there is 

uncertainty around this, so the use of the Holloman-Jaffe parameter was seen as the most preferred 

way to determine the outcome. As we can see from the results, the reaction from the different 

PWHT temperatures acts with a corresponding parallel decrease of calculated hardness and strength 

values, as seen in Figure 52. The prediction of the material parameters for the base material of the 

pipe affected by the PWHT is not possible to determine by numerical formulas as the production of 

steel can vary in terms of processing, such as tempering and work hardening. As a rule of thumb, it is 

said that the properties of the base material will not change during PWHT if the temperature does 

not reach the lower critical transformation temperature A1, at 720°C for AISI 4130 steel, and starts 

normalizing. Thus, normally only the properties of HAZ and the welding material are said to be 

affected by the PWHT. In the weld or fusion zone with the deposited metal from the electrode it is 

also hard to predict the outcome in terms of hardness due to the material composition, so the given 

data sheet was used in all simulations.  

 

The weak electrode was an electrode with the minimum recommended material properties, but is 

not usually preferred due to its low tensile strength compared to the base metal. Normally the 

electrode should have a higher tensile strength than the base metal so that the weld would not have 

the weakest material, but given that the case in this study was the effect of different PWHTs, the 

point would in any case be validated to see the variation in behavior of more than one electrode if it 

is the case in some situations that the material has for some reason been weakened.  

 

As can be seen from Table 12 and Table 13, the base metal and deposited weld metal subjected to 

the PWHT temperature 650°C has a very minor increase from 241.8 HV to 242.8 HV and is less 

affected by the PWHT. This is also close to the hardness in the material certificate of 238 HV (20 

HRC).  The HAZ has a decrease in hardness of 25 HV, from 270.2 to 245.2 HV after PWHT as preferred 

when tempering martensitic structures in HAZ.  

 

The PWHT procedure with the holding temperature of 705°C shows that the hardness of the base 

metal subjected to the PWHT decreased 12.6 HV from 243.8 to 231.2 HV, but is still close to the value 

in the material certificate for the pipe. Results from the hardness test performed in the fusion zone 

for the deposited weld metal also have very little change - 224.6 and 198.2 HV - this is also very close 
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to the hardness test performed for the PWHT of 650°C. However, as for the HAZ, the reduction in 

hardness is larger and was shown to be approximately 58.3 HV, from 277 HV to 218.7 HV. The 

estimated hardness of HAZ subjected to the PWHT temperature of 600°C was estimated to be in the 

order of 269.5 HV, which has an estimated tensile strength of 850.4 MPa. It should also be pointed 

out that the 𝐻𝑚𝑎𝑥 requirement of 22 HRC (250 HV) for ‘’Sour Service’’ in this case is not fulfilled by 

this hardness. 

 

8.2. Material parameters from tensile test 

 

A total of ten specimens was tested under monotonic tensile load. Tests were performed to extract 

material data for the base material using two specimens, and one quenched specimen was tested for 

indication of material properties of the heat-affected zone before PWHT. All the tests were 

conducted until fracture with a constant strain rate of 0.039mm/s and the plasticity model could 

easily be made from the stress-strain data for all the uniform monotonic samples; all stress-strain 

diagrams from the tests samples are presented in Appendix N. The performed tensile tests were 

executed in a reliable manner and achieved reasonably good results except for one sample, ‘’Base 

746’’, where the fracture occurred too close to the edge of the extensometer, so some adjustments 

were made in terms of damage behavior after necking for this sample, using the base material as 

reference for the damage accumulation after necking. 

 

It must be pointed out that the samples were not preheated as would be done for an on-site weld 

when joining the pipe. However, what effect the preheating has to say in terms of material strength 

remains to be proven, but this is considered to be minor when heating to a temperature of not more 

than 120°C as were the hardness tested samples in the previous study. The study mainly focuses on 

the transformation that occurs during PWHT below the A1 temperature, but as seen from the ASME 

B31.3-2012, the PWHT range was set between 705°C and 746°C so to test the highest temperature 

would also be of interest due to the transformation of phase that occurs at 720°C (estimated in Weld 

Note) where the Austenite transformation takes place, if for some reason there has been a case were 

the PWHT has been too high. The interest in that case would then be, what occurs to the material 

affected by such a high PWHT temperature. However, as can be read in theory, this would rarely be 

the case due to the general rule that the PWHT performed should be 20°C under the PWHT 

temperature set in standard and not above the A1 temperature of the material used.  

 

The results for the selected specimens were presented in the previous results section. The welded 

material was not tensile tested in this study. In the PWHT procedure at 600°C, only one quenched 

sample representing the HAZ was tested due to a lack of tensile specimens. Yet, this is the heat 

treatment with the lowest temperature affecting the base material and the general rule of thumb is 

that the base material will not change properties to a large extent. When examining the material 

behavior from the tested base material at 650°C and 705°C, where the deviation of material behavior 

is minor, when looking at the affected and unaffected base material, it is then assumed to be even 

less for the affected base material when PWHT is at 600°C. However, as seen for the affected base 

material at 746°C, there is a notable drop in strength of 55.483 MPa compared to the original base 

material.  
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The tensile test of the quenched specimen resulted in a hard and brittle fracture with a high strength, 

as can be expected and desired. The test reached the maximum of what the test machine could 

perform at approximately 25kN. From the results, it can be assumed that there is a martensitic 

structure after the quenching procedure, as one can expect in the HAZ after welding. From the 

tensile tests from the then heat-treated martensitic samples representing the HAZ, there was a clear 

tendency towards softer material as the temperature became higher, as expected. As can be seen 

from Figure 77, Figure 78, Figure 79 and Figure 80, one can see that the HAZ and heat treated base 

material acquires lower strength as the temperature rises. This shows the effect taking place under 

heat treatment with the diffusion of interstitially locked carbon, where the steel transforms from a 

hard and brittle structure to a tougher and more ductile structure. However, it also shows the effect 

of the weakening of the welded section when the temperature becomes too high, at which point the 

strength will be decreased unfavorably. This weakening results in the placement of fracture will 

change from happening in the base metal of the pipe to the heat-treated area. 

 

8.3. Numerical setup  
 

The calibration of the plastic behavior was done the same way for both approaches of collecting 

material data, by using the effective true stress-strain curve. A linear behavior was chosen in this 

study in terms of damage behavior after necking. The Ductile Damage model was used and calibrated 

to follow the degradation of all the experimental stress-strain curves after necking by using the linear 

damage evolution and calibration of the degradation line using Ramberg and Osgood as seen in 

Figure 58. Before the simulations, a control of mesh sensitivity was performed in terms of accuracy of 

results, the mesh size of 5mm was chosen with a deviation of approximately 2%, as seen from Table 

19. However, as the investigation preferred to have a larger model and the Abaqus license maintains 

some restrictions in terms of number of elements, the mesh was set to 5mm with no refinements. It 

must be mentioned that for a better indication of the plasticity that occur in the fracture area and for 

a more precise view of the failure mechanisms, a much smaller mesh is needed than that which was 

tested in this study. In addition, the study does not focus on the brittle failure mechanisms that may 

occur. The mesh size of 4mm was tested but it was running slower and with errors that led to the 

abortion of some simulations. The indication and placement of failure were still possible to indicate 

in terms of the effects of the different PWHT procedures. 

 

8.4. Numerical simulations 
 

The results from the numerical simulations of the material data from both the hardness and tensile 

tests showed the tendency of the failure to occur closer to the heat-treated welded section of the 

pipe at higher temperature starting at around 650°C. If comparing the simulations done for material 

tensile test data to the simulations from the hardness tests, the failure occurs in the welded area at 

lower temperature, even if simulating with a stronger electrode due to the material data also for the 

PWHT base material. In terms of numerical simulations, it is obvious to see that with a higher PWHT 

temperature the placement of fracture is occurring in the weld due to the lower strength of the HAZ 
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and affected base material, owing to loss of stiffness and strength close to the weld due to the heat 

treatment.  

 

For the simulations based on hardness test, the fracture was occurring in the base metal of the pipe 

in the simulations for PWHT 600°C with strong and weak electrode at pressure around 259 MPa, and 

for the PWHT 650°C with strong electrode at pressure around 255.217 MPa. For the rest of the PWHT 

procedures the fracture occurred in the weld, where the welds refer both to the area of HAZ and 

weld material. The PWHT at 650°C with the weak electrode the pressure was approximately 244.96 

MPa, while with the PWHT at 705°C the weak and strong electrode failed with a burst pressure of 

201.135 and 217.091 MPa. 

 

As can be seen based on material data from the tensile test, the fracture occurs in the base material 

for PWHT of 600°C with a burst pressure of 196.648 and 195.923 MPa and 650°C with burst pressure 

of approximately 198.453 and 195.708 MPa for both electrodes. For PWHT procedure 705°C and 

746°C using the weak electrode, the weld metal fails first at approximately 187.474 and 195.86 MPa. 

Using the strong electrode, the failure occurs in the affected base material and for PWHT 705°C at a 

pressure of 194.644 MPa and for the PWHT 746°C the HAZ fails first at approximately 159.86 MPa 

and is the lowest burst pressure for all the simulations. One must also bear in mind that because the 

weld has a thicker section, this will compensate for some of the lower strength of the material in the 

way the geometry is conducted in this study. However, this is perhaps not the case in a real scenario 

where the weld has variations in its geometry and potential minor defects that can cause stress 

concentrations in other places around the welded area. Examples of this can be undercut or a too 

high a reinforcement in the weld toe area. As can be seen from Figure 79, the strength of the HAZ for 

PWHT 705°C is slightly lower than both weld material and affected base material, but is strengthened 

by the weld, and results in the affected base material failing first.  

 

Overall, the different PWHTs simulated in this study shows that the material capacity in terms of 

burst pressure and fracture stress for the welded pipe is above the design pressure and stress by 

approximately 209.207% to 188.284% for the simulations based on material data from tensile tests, 

shown in Table 32 and Table 33. The test pressure for the pipe was also evaluated since the pipe will 

be tested under higher pressure when heat treatment has been performed; the result from this 

shows that the test pressure is also below the burst pressure and fracture stress by approximately 

106.138% to 92.150% in this case, shown in Table 34 and Table 35. Only the tensile-tested results 

were checked in terms of capacity due to the lower strength and, more importantly, the more 

realistic material data. 

 

8.5. Comparison of material parameters 

 

The results show that the base material that was tested had a lower yield and tensile strength 

compared to what is shown in the material certificate for the pipe. However, the greatest impact on 

the difference in material parameters was the strain and ductility since, when calculating the true 

tensile stress using the elongation from the certificate, the strength is shown to be to high compare 

to the real case. From the tensile tests the approximate tensile strength was 98.292 MPa and 

116.784 MPa under the true tensile strength estimated from the certificate. The results from the 
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tensile-tested specimens representing the HAZ showed that the yield and tensile stress were higher 

than that estimated for all PWHT procedures, as seen collated in Table 36, where the deviation just 

also got larger with the higher temperature. The estimated fracture strain was actually not that far 

from the actual strain of the tempered HAZ, but there was a difference in terms of stress at ultimate 

strength. The estimated hardness and strength of the PWHT procedure at 600°C by using Holloman-

Jaffe turned out to be a reasonable indication of strength, at least when comparing the ultimate 

strength where the deviation was 25.508 MPa. If the hardness turns out to also be accurate when 

the HAZ undergoes PWHT at 600°C, one shall than keep in mind that the 𝐻𝑚𝑎𝑥 requirement may not 

be fulfilled and a longer tempering time is needed to reduce the hardness accordingly. The results 

show the tendency towards reduction of strength with an increase in temperature, and so by using 

the hardness one is at least on the conservative side in terms of strength indication using hardness 

data, as can be seen from Table 36. 

 

Table 36: Comparison of stress at ultimate tensile strength for HAZ. 

PWHT procedure Hardness data, true 

tensile stress, [MPa] 

Tensile tests, true 

tensile stress, [MPa] 

Deviation, [MPa] 

600°C 850.4 875.908 25.508 

650°C 765.4 812.816 47.416 

705°C 672.8 725.308 52.508 

 

Even if there was only one tensile sample for the tested material that represented each PWHT 

procedure, it is a good indication of how the material reacts to the PWHT procedures in a more 

realistic manner. It should also be pointed out that the ratio between the yield and tensile stresses is 

above the limit of 0.85 in the certificate and for the tests for the base material as mentioned in 

chapter 3.14.. 

 

8.6. Sources of error 

 

When using numerical formulas based on hardness for approximating strength and ductility that 

cannot be exactly verified, there are errors in the predictions of data that are calculated for that part 

of this study. The numerical mesh sensitivity analysis was performed with a deviation of 

approximately 2%. Still, other errors may occur as well, such as with the mass scaling. When 

calculating the hardness using the Holloman-Jaffe equation, the c parameter is not possible to know 

exactly without having the exact curve for the steel grade used and, in this case, it must be adjusted 

after experimental hardness tests. The calculation of the tensile and yield stresses also comes with 

deviations in terms of accuracy compared to the actual strength and strain shown from tensile tests 

of the material used.  
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9. Conclusion 
 

The aim of this study was to investigate how different post-weld heat treatment (PWHT) procedures 

would affect the welded pipe connection in terms of strength and integrity, based on the change 

made to ASME B31.3 in 2014. The verification of strength and damage accumulation has been 

conducted using Abaqus Explicit and the damage model Ductile Damage. To investigate the effect of 

the PWHT procedures, two approaches have been employed: one using material parameters from 

hardness results from a previous study and a second using material parameters from experimental 

tensile tests. Numerical formulas have been used to calculate the corresponding yield and tensile 

stresses for the material when based on hardness, together with material data from the material 

certificate to evaluate the material properties. The plasticity of the material for both the base metal 

of the pipe, HAZ and weld metal has been plotted in Abaqus to investigate the effects of the PWHT as 

realistically as possible. The pipe was investigated numerically by means of internal pressure load to 

failure. As there are several different welding electrodes, two typical electrodes have also been used 

in the simulations; only the material properties from the certificate have been used. When analyzing 

the effect of heat treatments, only one tempering time has been considered in this study. One shall 

also bear in mind that there is a risk of not getting the hardness requirements fulfilled if using too 

low a temperature. 

   

Based on the results achieved, the following conclusions can be drawn: 

 

1) It can be concluded that with a high PWHT temperature below but close to the A1 

temperature, the risk of failure occurring in the heat-treated part is present due to 

decrease in strength compared to a lower temperature.  

2) As can be seen from the results from the pressure check performed according to ASME 

B31.3 of the simulated pipe in this study, it can be concluded that the strength capacity 

for the pipe is satisfied, but not without consequences in terms of placement of failure. 

3) There is a change in terms of placement of failure due to the decrease in strength of the 

base material subjected to the PWHT procedure of 705°C compared to 650°C, where 

failure is occurring in the heat-treated part of the pipe as a result of the higher 

temperature. 

4) The failure mechanisms of the pipe segment that was simulated and analyzed were of a 

ductile manner - ‘’ductile rupture’’ - where the weakest part of the modeled pipe 

expanded like a balloon until a uniform rupture occurring by element deletion around 

the expanding part of the pipe. The defined material strength, thickness, and geometry 

defines the placement of failure. 

5) When using a higher PWHT temperature, the study shows that the welded section of the 

pipe achieves a lower strength, especially in the HAZ as it undergoes the heat treatment. 

The FE analysis shows that the mid-section loses stiffness as the strength decreases, 

gaining ductility and toughness. 
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10.  Suggestions for further work 
 

Suggestions for future work from this study include the following: 

 

- This study has been limited to using the hardness test performed in a previous study due to 

current lab restrictions; a suggestion is to investigate the hardness of the tensile test 

specimen that was used in this study to see if these could be numerically calculated more 

precisely in terms of strength- hardness correlation. 

- Due to the limited amount of tensile test specimens in this study to verify the material 

behavior, a further verification of the material properties after post-weld heat treatment is 

recommended; further testing is also recommended due to potential errors during testing. 

- In this study two types of typical electrode were used, but all material behavior was 

estimated from the material certificates of the electrodes. In order also to simulate the effect 

and behavior of the welding material that is deposited and affected by the heat treatment 

more realistically, material testing would be recommended. 

- The numerical simulations performed in this study were not intended to simulate the 

behavior of the fracture or of crack initiation. This would also be of interest for further work 

in terms of failure initiation of a welded pipe. Interesting scenarios to investigate would 

typically be flaws or hydrogen cracks near the weld or areas affected by corrosion attacks. 

- Only one loading scenario on a straight pipe segment was investigated in this study, but 

further numerically investigating the behavior also of different pipe geometries and perhaps 

different loading scenarios could be of interest. This is in order to investigate if there are 

welded connections that will be affected at higher stress concentrations that may be more 

critical if subjected to the incorrect heat treatment. This also involves other structures, not 

only piping systems.  
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Appendix A 
 

 
Figure 102:Hardness conversion table [21].  
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Appendix B 
 
 

 
Figure 103: Hardness test results for PWHT procedure at 650˚C [1]. 

 

 
Figure 104: Hardness test results for PWHT procedure at 705˚C [1]. 

 
 

 
Figure 105: Some of the welded pipe sections that were hardness tested in the previous study [1]. 
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Appendix C 
 

 
Figure 106: PWHT procedure ASME B31.3-2012-Page 68[54]. 

 

 
Figure 107: PWHT procedure ASME B31.3-2012-Page 69[54]. 
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Appendix D 
 

 
Figure 108: PWHT procedure ASME B31.3-2014-Page 70[33]. 
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Appendix E 
 

 
Figure 109: Material Certificate. 

 

 
Figure 110: Material Certificate. 
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Figure 111: Material Certificate. 
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Appendix F 

 
Figure 112: Weak electrode 48.08 electrode used for the welded pipe [1]. 
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Appendix G 
 

 
Figure 113: Strong electrode – 74.86 electrode used for the simulation of the welded pipe. 
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Appendix H  
 
Table 37: Stress-strain results for the weak electrode calculated from the electrode data sheet. 

 Engineering Stress Engineering Strain True Stress True Strain 

Yield 540,0 0,00257 541,4 0,00257 

Tensile 600,0 0,176514 705,9 0,16256 

Fracture 540,0 0,26 680,4 0,23111 

 
 

 
Figure 114: Stress-strain diagram for the weak weld calculated from the electrode data sheet. 

 
Table 38: Stress-strain results for the strong electrode calculated from the electrode data sheet. 

 Engineering Stress Engineering Strain True Stress True Strain 

Yield 630,0 0,00300 631,9 0,00300 

Tensile 720,0 0,169725 842,2 0,15677 

Fracture 630,0 0,25 787,5 0,22314 

 
 

 
Figure 115: Stress-strain diagram for the strong weld calculated from the electrode data sheet. 
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Table 39: Approximated HAZ Stress-strain results for PWHT 600. 

 Engineering Stress Engineering Strain True Stress True Strain 

Yield 684,4 0,00326 686,6 0,00325 

Tensile 850,4 0,085001926 922,7 0,08158 

Fracture 684,4 0,125205371 770,1 0,11797 

 
 

 
Figure 116: HAZ Stress-strain diagram for the approximated results for PWHT 600. 

 
 
Table 40: Approximated HAZ Stress-strain results for PWHT 650. 

 Engineering Stress Engineering Strain True Stress True Strain 

Yield 614,5 0,00293 616,3 0,00292 

Tensile 765,4 0,089538428 834,0 0,08575 

Fracture 614,5 0,131887506 695,5 0,12389 

 
 

 
Figure 117: HAZ Stress-strain diagram for the approximated results for PWHT 650. 
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Table 41: Approximated HAZ Stress-strain results for PWHT 705. 

 Engineering Stress Engineering Strain True Stress True Strain 

Yield 538,3 0,00256 539,7 0,00256 

Tensile 672,8 0,113928411 749,4 0,10789 

Fracture 538,3 0,167813244 628,6 0,15513 

 
 

 
Figure 118: HAZ Stress-strain diagram for the approximated results for PWHT 705. 
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Appendix I 
 

 
Figure 119: Visualization of calibration of strength coefficient K for the weak electrode. 

 
 

 
Figure 120: Visualization of calibration of strength coefficient K for the strong electrode. 
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Figure 121: Visualization of calibration of strength coefficient K for the HAZ with PWHT temperature 
600°C. 

 
 

 
Figure 122: Visualization of calibration of strength coefficient K for the HAZ with PWHT temperature 
650°C. 
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Figure 123: Visualization of calibration of strength coefficient K for the HAZ with PWHT temperature 
705°C. 
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Appendix J 
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Appendix K 
 
 
 
 
 
 
 

 
Figure 124: Material course test samples. 

 
 

Material course test samples

# Notation Diameter [mm] Geometry type Load

1 Base 1 4,95 Uniform Monotonic

2 Base 2 5,0275 Uniform Monotonic

3 HAZ 4,955 Uniform Monotonic

4 HAZ 600 4,89 Uniform Monotonic

5 HAZ 650 4,985 Uniform Monotonic

6 Base 650 4,93 Uniform Monotonic

7 HAZ 705 4,97 Uniform Monotonic

8 Base 705 4,9725 Uniform Monotonic

9 HAZ 746 4,962 Uniform Monotonic

10 Base 746 5,003 Uniform Monotonic
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Figure 125: Check list for tensile testing. 
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Figure 126: Test data sheet -There is one test data sheet that is filled out for each sample. 
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Appendix L 

 
Figure 127: Drawing of the tested specimen -The total length varyies between 150 and 170mm, but 
the gauge section is always centered accordingly. 
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Appendix M 
 

  
 

 
Figure 128: Time temperature rate noted for each of the PWHT procedures. 

HAZ (quenched) PWHT 600 PWHT 650

30 min holding time 20 min holding time 20 min holding time

Temp [°C] time [min] Temp [°C] time [min] Temp [°C] time [min]

20 0 20 0 20 0

189 10 350 51 300 37

296 15 400 61 350 43

403 20 450 77 400 53

529 25 500 87 450 66

607 30 550 95 500 78

682 35 600 105 550 90

748 40 600 125 610 105

800 44 550 132 650 114

809 45 500 138 650 133

850 48 450 142 600 142

850 78 400 148 550 147

20 79 350 156 500 157

450 161

400 164

350 173

300 184

PWHT 705 PWHT 746

20 min holding time 20 min holding time

Temp [°C] time [min] Temp [°C] time [min]

20 0 20 0

100 10 230 14

150 22 250 17

200 31 300 31

300 50 355 44

350 62 400 55

400 73 455 68

450 84 500 80

500 94 550 92

550 105 600 103

600 115 650 113

650 126 700 125

700 136 727 131

705 138 746 136

705 158 746 156

700 159 727 159

650 165 700 162

600 173 650 172

550 186 600 185

500 198 550 207

450 216 300 220

400 234

350 241

300 251
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Appendix N 
 

 
Figure 129: Engineering stress-strain diagram – Uniform specimen Base 1. 

 

 
Figure 130: True stress-strain diagram – Uniform specimen Base 1. 

 

 
Figure 131: Engineering stress-strain diagram – Uniform specimen Base 2. 
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Figure 132: True stress-strain diagram – Uniform specimen Base 2. 

 

 
Figure 133: Engineering stress-strain diagram – Uniform specimen HAZ - Quenched. 

 

 
Figure 134: True stress-strain diagram – Uniform specimen HAZ - Quenched. 
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Figure 135: Engineering stress-strain diagram – Uniform specimen HAZ 600. 

 

 
Figure 136: True stress-strain diagram – Uniform specimen HAZ 600. 

 

 
Figure 137: Engineering stress-strain diagram – Uniform specimen Base 650. 
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Figure 138: True stress-strain diagram – Uniform specimen Base 650. 

 

 
Figure 139: Engineering stress-strain diagram – Uniform specimen HAZ 650. 

 

 
Figure 140: True stress-strain diagram – Uniform specimen HAZ 650. 
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Figure 141: Engineering stress-strain diagram – Uniform specimen Base 705. 

 

 
Figure 142: True stress-strain diagram – Uniform specimen Base 705. 

 

 
Figure 143: Engineering stress-strain diagram – Uniform specimen HAZ 705. 
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Figure 144: True stress-strain diagram – Uniform specimen HAZ 705. 

 

 
Figure 145: Engineering stress-strain diagram – Uniform specimen Base 746. 

 

 
Figure 146: True stress-strain diagram – Uniform specimen Base 746. 
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Figure 147: Engineering stress-strain diagram – Uniform specimen HAZ 746. 

 

 
Figure 148: True stress-strain diagram – Uniform specimen HAZ 746. 
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Appendix O 
 
Illustration of determination of yield stress for the different experiments. 



Structural materials and numerical modelling 

138 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



Structural materials and numerical modelling 

139 
 

Appendix P 
 

 
Figure 149: Visualization of calibration of strength coefficient K for the tensile tested base material. 

 
 
 

 
Figure 150: Visualization of calibration of strength coefficient K for the tensile tested HAZ 600. 
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Figure 151: Visualization of calibration of strength coefficient K for the tensile tested base material 
affected by PWHT temperature of 650°C. 

 
 

 
Figure 152: Visualization of calibration of strength coefficient K for the tensile tested HAZ 650. 
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Figure 153: Visualization of calibration of strength coefficient K for the tensile tested base material 
affected by PWHT temperature of 705°C. 

 

 
Figure 154: Visualization of calibration of strength coefficient K for the tensile tested HAZ 705. 
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Figure 155: Visualization of calibration of strength coefficient K for the tensile tested base material 
affected by PWHT temperature of 746°C. 

 
 

 
Figure 156: Visualization of calibration of strength coefficient K for the tensile tested HAZ 746. 
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Appendix Q 
Project meetings: 
 

  Project meeting  1-2020 

Date: 10.01.2020  Time: 10.30 Place: 
MHWirth, KRS A317 
Frikstad   

Referent: Even Englund 

 Name Role:     
 Dr. Dmitry Vysochinskiy Supervisor    

 Even Englund 
 
Dmitri Rybakov 

Master student 
 
Company contact 
(MHW) 

   

        

 TASKS  

 

 

- Strength reduction under heat treatment of pipes. 

- Received literature; get an understanding of the subject post weld heat treatment 

(PWHT). 

- Dmitri Rybakov form MHWirth will supply the pipe that shall be tested. 

 

 

 

   

 

 

  Project meeting  2-2020 
Date: 16.01.2020  Time: 12.45 Place: UIA Grimstad   Referent: Even Englund 

 Name Role:     
 Dr. Dmitry Vysochinskiy Supervisor    

 Even Englund Master student    

        

      

 TASKS  

 

 

 

- Status progress ; get an understanding of the subject PWHT, pipe design and ASME 

B31.3. 

- New PWHT procedure in ASME B31.3 2014 revision. 

- Start design of experiments for the pipe, heat treatment and numbers of tensile tests. 

- Start modeling a section of the pipe in Abaqus that is going to be tested, the pipe is 

used in sour service. 

- The Ductile Damage model will be used to simulate the damage accumulation until 

fracture.  

- The burst pressure is the focus in this study. 
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  Project meeting  3-2020 
Date: 23.01.2020  Time: 12.45 Place: UIA Grimstad   Referent: Even Englund 

 Name Role:     
 Dr. Dmitry Vysochinskiy Supervisor    

 Even Englund Master student    

        

      

 TASKS  

 

 

 

-  Martensite in the weld and heat affected zone will be of focus due to the unwanted 

material properties this will have. 

- Test matrix for the tensile specimens must be ready until next meeting. 

 

 

 

 

   

 

 

 

 

  Project meeting  4-2020 
Date: 30.01.2020  Time: 12.45 Place: UIA Grimstad   Referent: Even Englund 

 Name Role:     
 Dr. Dmitry Vysochinskiy Supervisor    

 Even Englund Master student    

     
 

   

      

 TASKS  

 

 

- Make a simpler test matrix to present to Dmitri Rybakov. 

- Make more deadlines in the project plan in MS Project. 
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  Project meeting  5-2020 
Date: 03.02.2020  Time: 14.45 Place: UIA Grimstad   Referent: Even Englund 

 Name Role:     
 Dr. Dmitry Vysochinskiy Supervisor    

 Even Englund 
 
Dmitri Rybakov 

Master student 
 
Company contact 
(MHW) 

   

        

      

 TASKS  

 

 

 

-  The HAZ will need to have to sets of heat treatments one first for creation of 

martensite with quenching, and a second to simulate the PWHT. 

- The material properties of the base material affected by the different PWHT will be 

the focus and interest in this study. 

- Dmitri Rybakov also wants that there will be performed a new set of hardness tests 

for the tested material. 

 

 

 

 

   

 

 

 

 

  Project meeting  6-2020 
Date: 07.02.2020  Time: 10.00 Place: UIA Grimstad   Referent: Even Englund 

 Name Role:     
 Dr. Dmitry Vysochinskiy Supervisor    

 Even Englund Master student    

        

      

 TASKS  

 

 

 

-  There will have to be made an appointment for cutting and preparation of the tested 

pipe section, and how many test pieces that can be extracted from the pipe. 

- Revision of the test matrix. 

- Figure out what the design parameters for the pressurized pipe section. 

- Presentation of the modeled section of the pipe in Abaqus. 
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  Project meeting  7-2020 
Date: 13.02.2020  Time: 12.45 Place: UIA Grimstad   Referent: Even Englund 

 Name Role:     
 Dr. Dmitry Vysochinskiy Supervisor    

 Even Englund Master student    

        

      

 TASKS  

 

 

 

- As UIA don’t have capacity to cut the pipe section for extraction of the test 

specimens, an external company has to be contacted for this task. 

 

 

 

 

   

 

 

 

 

  Project meeting  8-2020 
Date: 20.02.2020  Time: 12.45 Place: UIA Grimstad   Referent: Even Englund 

 Name Role:     
 Dr. Dmitry Vysochinskiy Supervisor    

 Even Englund Master student    

        

      

 TASKS  

 

 

 

- Prepare and work with a review of theory of the study for next meeting as well as the 

Significance of the work for the thesis. 

- Also send price for cutting of pipe to Paul before ordering of cutting of the pipe. 
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  Project meeting  9-2020 
Date: 27.02.2020  Time: 14.45 Place: UIA Grimstad   Referent: Even Englund 

 Name Role:     
 Dr. Dmitry Vysochinskiy Supervisor    

 Even Englund Master student    

        

      

 TASKS  

 

 

 

- Investigate hardness testing and material data that can be extracted. 

- Test the modeled pipe section with the extracted hardness test done by Dmitri 

Rybakov to see what result this will give.  

- Prepare for heat treatment of the test specimens and book time for tensile tests in the 

lab (contact Cecilie Ødegår).  

- Dmitry Vysochinskiy will get the piece that has been cut from the pipe milled in HiOF. 

 

 

 

 

 

   

 

 

 

 

 

  Project meeting  10-2020 
Date: 05.03.2020  Time: 14.45 Place: UIA Grimstad   Referent: Even Englund 

 Name Role:     
 Dr. Dmitry Vysochinskiy Supervisor    

 Even Englund Master student    

        

      

 TASKS  

 

 

 

-  Make a simple numerical test matrix for the simulations in Abaqus. 

- Prepare a PWHT procedure matrix and procedure for the experimental tests. 

- Make a sensitivity study of the pipe before testing of the PWHT procedures. 

 

 

 

 

   

 

 



Structural materials and numerical modelling 

148 
 

  Project meeting  11-2020 
Date: 19.03.2020  Time: 10.30 Place: Microsoft Teams   Referent: Even Englund 

 Name Role:     
 Dr. Dmitry Vysochinskiy Supervisor    

 Even Englund Master student    

        

      

      

 TASKS  

 

 

- CORONA VIRUS – possibly the experimental test will not be performed, new 

focus for the study must be made. 

- Investigate: Design criteria for the pipe, Hardness parameters, heat treatment. 

- Use the experimental hardness results from Dmitri Rybakov master thesis to simulate 

the failure of the pipe for PWHT temperatures 650°C and 705°C. 

- Test different electrodes as the one used by Dmitri Rybakov was not maybe not the 

most appropriate one in all cases. 

 

 

 

 

   

 

 

 

 

  Project meeting  12-2020 
Date: 26.03.2020  Time: 10.15 Place: Microsoft Teams   Referent: Even Englund 

 Name Role:     
 Dr. Dmitry Vysochinskiy Supervisor    

 Even Englund Master student    

        

      

 TASKS  

 

 

- Focus on Max force applied on the pipe and max stresses as this is the important 

design criteria’s in ASME B31.3. 

- Make a design check of the pipe to verify if there are any concerns. 

- Make a simple Numerical test matrix for the numerical simulations that now will be 

performed. 

- Also preform simulation for PWHT temperature 600°C using Holloman-Jaffe.  
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  Project meeting  13-2020 
Date: 02.04.2020  Time: 10.00 Place: Microsoft Teams   Referent: Even Englund 

 Name Role:     
 Dr. Dmitry Vysochinskiy Supervisor    

 Even Englund Master student    

        

      

 TASKS  

 

 

 

-  Start adding results from the simulations into the report and finish the Case and 

Method chapter for next meeting. 

- Start writhing the Discussion and Conclusion. 

 

 

 

 

 

   

 

 

 

 

 

  Project meeting  14-2020 
Date: 08.04.2020  Time: 10.00 Place: Microsoft Teams   Referent: Even Englund 

 Name Role:     
 Dr. Dmitry Vysochinskiy Supervisor    

 Even Englund Master student    

        

      

 TASKS  

 

 

 

-  Make ready a preview of the report for Dmitry Vysochinskiy until next meeting. 

- Make a flow chart for the progress of the work and work methods used, for better get 

an overview of the report – Try not to have more steps than three max five steps. 
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  Project meeting  15-2020 
Date: 15.04.2020  Time: 09.15 Place: Microsoft Teams   Referent: Even Englund 

 Name Role:     
 Dr. Dmitry Vysochinskiy Supervisor    

 Even Englund Master student    

        

      

 TASKS  

 

 

- Verification of the background of new and old PWHT in ASME B31.3, must be of 

focus and well presented. 

- See over the structure of the report – Make a natural flow stepwise in the report. 

 

 

 

 

 

   

 

 

 

 

 

 

  Project meeting  16-2020 
Date: 23.04.2020  Time: 09.30 Place: Microsoft Teams   Referent: Even Englund 

 Name Role:     
 Dr. Dmitry Vysochinskiy Supervisor    

 Even Englund Master student    

        

      

 TASKS  

 

 

 

-  Waiting for final decision of the experimental testing, Dmitry Vysochinskiy is 

contacting Rino at HiOF to ask if he has milled the specimens. 
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  Project meeting  17-2020 
Date: 30.04.2020  Time: 09.30 Place: Microsoft Teams   Referent: Even Englund 

 Name Role:     
 Dr. Dmitry Vysochinskiy Supervisor    

 Even Englund Master student    

        

      

 TASKS  

 

 

 

- Contact Rino for collecting of the test samples 

- New agreement and schedule for heat treatment and experimental testing 

- Finish the report based on the results from hardness tests and prepare for validation 

by adding the experimental tensile tests later. 

- Prepare the heat treatment (07.05 and 08.05) and experimental test program (14.05). 

 

 

 

 

 

 

   

 

 

 

 

  Project meeting  18-2020 
Date: 12.05.2020  Time: 18.00 Place: Microsoft Teams   Referent: Even Englund 

 Name Role:     
 Dr. Dmitry Vysochinskiy Supervisor    

 Even Englund Master student    

        

      

 TASKS  

 

 

 

- Make separate part in the report for the tensile tests to validate the hardness tests 

- Further improvements of setup and structure in the report. 
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  Project meeting  19-2020 
Date: 28.05.2020  Time: 10.30 Place: Microsoft Teams   Referent: Even Englund 

 Name Role:     
 Dr. Dmitry Vysochinskiy Supervisor    

 Even Englund Master student    

        

      

 TASKS  

 

 

 

-  Make sure that it is clear that the material data for the electrodes is taken from 

certificates 

- True stress at yielding, True stress at UTS 

- Only show the normal stress for the quenched test specimen. 

-  

 

 

 

 

   

 

 

 

 

  Project meeting  20-2020 
Date: 04.06.2020  Time: 18.00 Place: Microsoft Teams   Referent: Even Englund 

 Name Role:     
 Dr. Dmitry Vysochinskiy Supervisor    

 Even Englund Master student    

        

      

      

 TASKS  

 

 

 

- Show the difference in pressure in a clear and simple manner. 

- Show the max stresses as well in the fracture but not the other places ‘’less is more’’. 

- Mention the limitations. 

- We do not focus on the formation of cracks or brittle fracture, just ductile failure. 

- Simple; what changes when temperature is changed, is the failure in the base metal 

or the weld.  

 

 

 

 

   

 
 


