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Abstract

There has been a long-standing debate on whether optimized strategies can con-
sistently outperform the naive diversification strategy with statistical significance,
initiated by DeMiguel, Garlappi, and Uppal (2009). However, few of the papers
contributing to this debate have presented the issue of data mining bias. Hsu, Han,
Wu, and Cao (2018) and Yang, Cao, Han, and Wang (2019) corrected for this issue
in their papers by applying joint testing. Motivated by the methodology applied by
Hsu et al. (2018) and Yang et al. (2019), we aim to evaluate the performance of op-
timized strategies. To obtain our objective, we compared seven optimized strategies
relative to the naive diversification strategy, using US and Norwegian return data.
To cope with the issue of data mining bias, we applied the joint tests introduced
by White (2000) and Hansen (2005), namely White’s Reality Check (WRC) and
Superior Predictive Ability (SPA). To measure the performance of the strategies,
we used Sharpe ratio and alpha computed in Carhart’s four-factor model. The
results obtained using US data suggest that the best optimized strategy fails to
outperform the naive diversification strategy. However, the results obtained with
Norwegian data provides evidence that the best optimized strategy outperforms the
naive diversification strategy.
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1 | Introduction

Markowitz (1952) introduced the mean-variance model, which laid the foundation of

modern portfolio theory (MPT). The uncertainty related to the model’s estimations

of the mean returns and the variance-covariance matrix has, however, made the

implementation challenging. This has caused the model to produce extreme weights

in the portfolio, leading to poor out-of-sample (OOS) performance.

Numerous studies have devoted considerable effort to minimize the estimation

uncertainty, in order to improve the mean-variance model. A common solution has

been to exclude mean returns from the computation. The basis of this approach

is that the variance-covariance matrix is less exposed to estimation errors than

estimated mean returns, making it a more reliable parameter. Several strategies

that emerged in the aftermath of the mean-variance model have utilized the ap-

proach of removing mean return estimate. Clarke, De Silva, and Thorley (2006)

proposed the minimum-variance strategy. Choueifaty and Coignard (2008) intro-

duced the maximum diversification strategy to improve the poor diversification of

the minimum-variance model. Maillard, Roncalli, and Teiletche (2010) exploited

the middle ground between the minimum-variance strategy and equally weighted

portfolios developing the equal risk contribution (ERC) portfolio. Asness, Frazzini,

and Pedersen (2012) simplified the construction of the ERC portfolio, the optimized

strategy is formally known as risk parity.

Despite the improvement in optimized strategies devoted to reduce estimation

error, researchers still question whether these strategies add value. DeMiguel et al.

(2009) initiated a debate concerning the performance of optimized strategies. The

paper evaluated the performance of 14 optimized strategies relative to the naive

diversification strategy and concluded that there is no statistically significant dif-

ference in performance. The naive diversification strategy allocates wealth equally

among all assets available, relying on neither optimization nor parameter estimates

(DeMiguel et al., 2009). The simplicity of the strategy has made it a preferred

benchmark.

Several researchers have tried to defend the value of optimization in the time
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after DeMiguel et al. (2009) publication. Kritzman, Page, and Turkington (2010)

showed in their paper that the minimum-variance and the mean-variance strate-

gies were capable of outperforming the naive strategy. Kirby and Ostdiek (2012)

introduced two new strategies as a counterweight to the mean-variance strategy,

namely the volatility timing and the risk-to-reward timing strategies. The timing

strategies are constructed to utilize low turnover and is less exposed to estimation

risk. Kirby and Ostdiek (2012) demonstrated that their timing strategies were able

to outperform the naive diversification strategy, with statistical significance.

There are, however, two major issues with the studies contributing to the de-

bate on optimized strategies, namely the use of Sharpe ratio and individual testing

of strategies. Kirby and Ostdiek (2012), Kritzman et al. (2010) and DeMiguel et

al. (2009) applied data consisting of monthly portfolio returns from the US stock

market, provided by Kenneth French’s online library. Zakamulin (2017) presents ev-

idence that low volatility anomalies are present in all of Kenneth French’s datasets.

The paper argued that for a convincing demonstration of superior performance by

optimized strategies to hold, it cannot be by profiting from exposure to known

anomalies. Further, Zakamulin (2017) argued that the Sharpe ratio applied in

previous papers fails to correct for these anomalies.

Fama and French (1993) introduced alpha in the three-factor model, which can

explain the effect of anomalies. Alpha computed in multifactor models adjusts for

the low-volatility with the HML factor, correcting for this issue.

Testing multiple strategies individually causes data mining bias. This phe-

nomenon leads researchers to falsely discover superior strategies, known as type I

error. (Harvey & Liu, 2015). Hsu et al. (2018) and Yang et al. (2019) reassess the

performance of the optimized strategies, by collectively testing strategies to correct

for data mining bias. They also found that none of the optimized strategies in their

study were able to consistently outperform the naive diversification strategy.

Motivated by Hsu et al. (2018) and Yang et al. (2019), we aim to provide further

insight to the discussion initiated by DeMiguel et al. (2009). The objective of our

thesis is to replicate and extend previous studies, by reassessing whether optimized

strategies outperform the naive diversification strategy using “state of the art”
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methodology. In order to correct for data mining bias, we apply joint testing which

relies on bootstrap. Our thesis extends previous studies by including recent data

with a longer time sample using US and Norwegian data.

In this thesis, we measure the OOS performance of seven optimized strategies

relative to the naive diversification strategy. The strategies have been evaluated

using 18 US and 4 Norwegian datasets, consisting of monthly returns. The perfor-

mance measures applied are Sharpe ratio, developed by Sharpe (1966), in addition

to alpha computed in Carhart (1997) extension of the Fama and French (1993)

three-factor model, namely Carhart’s four-factor model (FFC4).

The results obtained from the individual tests in our thesis suggests that some

optimized strategies performs significantly better than the benchmark. We then

corrected for the data mining bias associated with individual testing, by applying

the joint tests SPA and WRC. However, when there is a high correlation in returns,

which is present in our data, SPA may produce deceptive results. Thus, we ignored

the results from the SPA test.

When testing the performance of optimized strategies using US data and WRC,

both Sharpe ratio and alpha computed in FFC4 suggest that the performance of

optimized strategies is not better than the naive diversification strategy. This indi-

cates that the best optimized strategy fails to outperform the naive diversification

strategy in the US market. However, when we test the performance of optimized

strategies using WRC and Norwegian data, we obtain evidence suggesting signifi-

cant superiority from both Sharpe ratio and alpha FFC4. This indicates that the

best optimized strategy outperforms the naive diversification strategy in the Nor-

wegian market, with statistical significance. The results from this thesis does not

provide an explanation for the differences, but we believe market efficiency may be

an explaining factor.

The rest of our thesis is structured in the following way: Section 2 reviews the

relevant literature. Section 3 presents the empirical data used in the thesis. Section

4 addresses the methodology relevant for the empirical study we conducted. Section

5 presents the empirical results from our study. Section 6 discusses the results. The

final Section (7) provides the conclusion of our thesis.
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2 | Literature Review

2.1 Modern Portfolio Theory and Optimized Portfolios

Construction of optimized strategies has historically been of interest within academia,

and was actualized when Markowitz (1952) derived the optimal rule for diversifica-

tion among risky assets. The framework developed by Markowitz (1952) is formally

known as the mean-variance model, which laid the foundation for MPT. The mean-

variance model suggests that investors should allocate wealth across assets, based

on the expected returns and the variance-covariance matrix. This theoretical frame-

work formed the efficient frontier, which is a set of optimized portfolios with the

largest expected return for a given standard deviation (Merton, 1972). However, a

practical implementation of the mean-variance model presents challenges. A minor

change in the estimated parameters can lead to significant changes in the portfolio

allocation, resulting in extreme weights (Merton, 1980). The process of estimating

future forecasts with precision has also proven to be difficult (Chaves, Hsu, Li, &

Shakernia, 2011). One of the most commonly used performance measures in MPT

is Sharpe ratio, initially introduced by Sharpe (1966) as the reward-to-variability

ratio. The measurement is used to obtain an understanding of the return from

an investment relative to the risk. However, the ratio is not capable of providing

information on whether superior performance occur due to better mean-variance

efficiency or established factor premiums (Zakamulin, 2017).

In the aftermath of Markowitz’s introduction of the mean-variance model, sev-

eral optimized strategies have emerged in an attempt to reduce the model’s un-

certainty. The strategies presented below are some of these strategies, which do

not rely on estimating mean returns. The reasoning behind this approach is that

estimates of the variance-covariance matrix are less exposed to error estimation.

Thus, is the variance-covariance matrix considered to be a more reliable parameter

than the mean return estimates (Mausser & Romanko, 2014).

Clarke et al. (2006) introduced the minimum-variance strategy and demon-

strated that the strategy produced low risk and a high Sharpe ratio. The strategy is
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located at the left most tip on the efficient frontier, which gives it the lowest attain-

able risk. It is tilted towards assets with low volatility, one can therefore consider the

minimum-variance strategy as insufficiently diversified (Goldberg, Leshem, & Ged-

des, 2013). Choueifaty and Coignard (2008) proposed the maximum-diversification

strategy. The authors suggested to use the most diversified portfolio to maxi-

mize the portfolio’s diversification, as a solution to the poor diversification of the

minimum-variance strategy. Maillard et al. (2010) considered a combination be-

tween minimum-variance and equally weighted portfolios, resulting in the equal

risk contribution (ERC) portfolio. This approach aims to distribute risk equally

among all assets in the portfolio. To simplify the construction of ERC, one assume

the assets to be independent. Asness et al. (2012) suggested a risk parity portfolio

based on this simplification of ERC. Risk parity is constructed to be risk averse,

and therefore overweights less volatile assets.

2.2 Debate on the Value of Optimization

DeMiguel et al. (2009) initiated a debate concerning the performance of optimized

strategies, with their paper comparing performance of optimized strategies relative

to the naive diversification strategy. The naive diversification strategy demon-

strated good results and in several cases outperformed the optimized strategies

(DeMiguel et al., 2009). The paper concluded that there is no statistical evidence

of superiority related to optimized strategies.

Kritzman et al. (2010) argued in defence of optimized strategies, by demonstrat-

ing that they outperform the naive diversification strategy. However, the study

was conducted without comparing statistical differences in the Sharpe ratios. An-

other study that argued in defence of optimized strategies were Kirby and Ostdiek

(2012). The authors introduced two alternative strategies, volatility-timing and

risk-to-reward timing. These strategies were developed to mitigate the effect of

estimation errors, by focusing on volatility and return from assets. Thus, ignoring

the correlation between assets to combine the optimal allocation. They argued that

by focusing on the diagonal of the variance-covariance matrix, the strategies can

reduce estimation error and therefore outperform the naive diversification strat-
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egy. Using Sharpe ratio they demonstrated that these strategies outperformed the

naive diversification strategy. The study only used four datasets to evaluate the

performance of the optimized strategies, which can lead to insufficient results.

There are two issues present in the studies that argued in defence of optimized

strategies (Kritzman et al., 2010; Kirby & Ostdiek, 2012). The first issue being

that the papers only use Sharpe ratio as portfolio performance measurement. The

second issue arises when the papers by Kritzman et al. (2010) and Kirby and Ostdiek

(2012) proceed to evaluate the performance using individual tests. Evaluating the

performance of the strategies individually raises the concern of whether strategies

are exposed to data mining bias. In the following Sections (2.3 and 2.4) we present

methods to cope with these issues.

2.3 Multifactor Models and Asset Pricing Anomalies

Zakamulin (2017) showed that all recent empirical studies surrounding portfolio

optimization use the Sharpe ratio as performance measure. Thus, the studies has

been conducted without controlling whether the superior performance of these op-

timized portfolios appears due to exposures to one or several profitable anomalies.

However, alpha motivated by multifactor models accounts for various anomalies

that can be exploited to influence the Sharpe ratio.

Sharpe-Lintner-Mossin mean-variance equilibrium model of exchange, also re-

ferred to as the capital asset pricing model (CAPM), is one of modern capital

market theories most critical developments. The model explains the relationship

between systematic risk and expected return for an asset. CAPM has been a pop-

ular measurement among researchers and is still widely used.

Since CAPM was first introduced, there have been made discoveries of expected

return samples that the model was unable to explain. This phenomenon is referred

to as market anomalies and are often related to size and value. Fama and French

(1993) identified three risk factors in returns from stocks, extending CAPM to Fama

and French’s three-factor model. The three factors covering the stock market; (i)

overall market, (ii) factors related to firm size and (iii) book-to-market equity fac-

tors. They claimed that these factors were able to describe the average return
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anomalies. The three-factor model, however, fails to obtain observation from the

cross-sectional variation in momentum portfolios. Carhart (1997) made an exten-

sion to the three-factor model, that captures the momentum anomaly identified by

Jegadeesh and Titman (1993).

2.4 Data Mining Bias

The issues related to data mining have been a well-known phenomenon within the

field of portfolio performance, after it was highlighted by Leamer (1978, 1983). Data

mining bias leads researchers to falsely discover superior strategies, known as Type

I Error (White, 2000). This suggest that observed superior performance in some

instances can be attributed to randomness. The phenomenon is prominent when

strategies are tested individually, the number of false discoveries increases with

the number of strategies tested. This relationship is known as the false discovery

rate (FDR). To correct for data mining bias, one tests the performance of all the

strategies collectively, formally known as joint testing.

White (2000) introduced White’s Reality Check (WRC) test, in an attempt to

cope with data mining bias. WRC provide the framework to collectively test opti-

mized strategies. WRC tests the null hypothesis that the best optimized strategy

among other possible strategies does not outperform the benchmark. The joint test

that WRC provide has later become a standard procedure in a number of stud-

ies. Hansen (2005) later revised the procedure introduced by White (2000) and

proposed a new test called SPA. Hansen (2005) suggested two improvements of

the WRC test: (i) Normalize the test statistics. Without normalizing one might

compare two different things. (ii) Exclude strategies with poor performance, which

removes the unfavorable effect they might have in a joint test. Both SPA and

WRC are based on the family-wise error rate (FWER), measuring the probability

of wrongly discover superior strategies (Yang et al., 2019).

Hsu et al. (2018) reassessed the out-of-sample performance of various optimized

strategies, using some advanced tests from WRC, collectively testing all optimized

strategies relative to the naive diversification strategy. Their study found that some

strategies provided superior performance when using an individual test to evaluate
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the performance. However, when they corrected for data mining bias using WRC,

almost none of the optimized strategies demonstrated superior performance. This

demonstrates the importance of controlling for data mining bias. Yang et al. (2019)

conducted a similar study, where they evaluated the performance of tactical asset

allocation on technical trading rules. They applied advanced extensions of both SPA

and WRC in their joint testing, to correct for data mining bias. The paper arrives

at the same conclusion as Hsu et al. (2018), that there is no evidence suggesting

optimized strategies are superior to the naive diversification strategy.

3 | Data

The data applied in this thesis are monthly return data from US and Norwegian

stock portfolios, in addition to the four research factors in Carhart’s model: (i)

Market return minus risk free rate (MKTRF), (ii) Small-Minus-Big (SMB), (iii)

High-Minus-Low (HML) and (iv) Momentum (MOM).

US return data have been retrieved from the online library provided by Kenneth

R. French1. The start of each US dataset was set to July 1963 in our research, to

cope with the different starting times within each dataset. The end was set to

December 2019, as this was the most recent available data. We included a total of

18 datasets from US, which are presented in Table 1.

1Data retrieved from: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
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Table 1: Kenneth French Datasets
# Dataset N
1 Portfolios formed on Size 10
2 Portfolios formed on Book-to-Market 10
3 Portfolios formed on Industry 10
4 Portfolios formed on Short-Term-Reversal 10
5 Portfolios formed on Long-Term-Reversal 10
6 Portfolios formed on Market Beta 10
7 Portfolios formed on Variance 10
8 Portfolios formed on Accruals 10
9 Portfolios formed on Residual Variance 10
10 Portfolios formed on Earnings-to-Price 10
11 Portfolios formed on Cash-Flow-to-Price 10
12 Portfolios formed on Dividend Yield 10
13 Portfolios formed on Momentum 10
14 Portfolios formed on Operating Profitability 10
15 Portfolios formed on Investment 10
16 Portfolios formed on Net Share Issues 10
17 Portfolios formed on Size and Book-to-Market 25
18 Portfolios formed on Size and Operating profitability 25
# is the number of the portfolio in the series. N is the
number of portfolios in each dataset. Dataset describes
the variable that the datasets are based on.

The Norwegian data applied in the study have been retrieved from the online

library provided by Bernt Arne Ødegaard2. The number of Norwegian datasets

included in our paper were four, due to the limitation of accessible datasets. The

datasets are presented in Table 2. To cope with the different starting times within

each dataset, we set the start of each Norwegian dataset to September 1981. The

end was set to December 2019, as this was the most recent available data.

Table 2: Bernt Arne Ødegaard Datasets

# Dataset N

1 Portfolios formed on Size 10
2 Portfolios formed on Book-to-Market 10
3 Portfolios formed on Momentum 10
4 Portfolios formed on Spread 10

# is the number of the portfolio in the series. N is the
number of portfolios in each dataset. Dataset describes the
variable that the datasets are based on.

2Data retrieved from: http://finance.bi.no/∼bernt/financial data/ose asset pricing data/index.html
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4 | Methodology

In this section we aim to provide an explanation of the methods applied in our

research. We start by presenting the naive diversification strategy (benchmark),

followed by the seven optimized strategies we implemented. In the second sub-

section we introduce our performance measures, Sharpe ratio and alpha computed

in FFC4. We then explain the bootstrap methodology. The fourth subsection

examines OOS estimation. In the fifth subsection we present hypothesis testing,

including both individual- and joint hypothesis testing. Then we proceed to review

SPA and WRC test, to correct data mining bias.

4.1 Portfolio Strategies

We have implemented seven optimized strategies, in addition to the naive diver-

sification strategy in this empirical study. These eight strategies are presented in

Table 3.

Table 3: Portfolio strategies included in the thesis

# Strategy Abbreviation

Benchmark:
0 Naive diversification 1/N
Optimized portfolios:
1 Mean-variance MV
2 Minimum-variance MIN
3 Maximum-diversification MD
4 Equal risk contribution ERC
5 Risk parity RP
6 Volatility-timing VT
7 Risk-reward-timing RRT

# is the number of the portfolios. Strategy denotes the
strategy name.

We implement two restrictions in the construction of the portfolios. Eq.(1):

Setting the sum of all weights equal to 1 (100%), which is a standard assumption

in portfolio optimization. Eq.(2): None of the weights can be negative (short

sale restriction). The short constraint is implemented to make our research more

applicable to real-life scenarios, since portfolio managers usually are not allowed to

take short positions.
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w′1 = 1, (1)

where, w is a vector of portfolio weights of the risky assets and 1 is a vector of

ones:

w =



w1

w2

...

wN


, 1 =



1

1

...

1


.

w ≥ 0, (2)

where, 0 is a vector of zeros:

0 =



0

0

...

0


.

To explain the notations applied in the methodlogy, we use the following exam-

ple: Assume that the investor invests wi of his wealth in asset i, the return on the

portfolio is then given by:

xp =

N∑
i=1

wixi, subject to w′1 = 1. (3)

We denote the expected return on asset xi by E[xi] = µi and the variance by

V ar[xi] = σ2i . We also denote Cov(xi, xj) = σij = ρijσiσj where ρij = ρji is the

correlation coefficient between the returns on asset i and j. The matrix notation

of the mean returns on the risky assets and the variance-covariance matrix can be

expressed in the following way:
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µ =



µ1

µ2
...

µN


, Σ =



σ11 σ12 . . . σ1N

σ21 σ22 . . . σ2N
...

...
. . .

...

σN1 σN2 . . . σNN


.

Accordingly, the portfolios mean return and variance are given by:

µp = w′µ, σ2p = w′Σw.

4.1.1 Naive Diversification (Benchmark)

The naive diversification strategy (1/N) given in Eq.(4) is the simplest diversifi-

cation strategy, and distributes wealth without any optimization. The strategy

“naively” distributes wealth equally among all assets accessible, thus it is not af-

fected by estimation errors.

wi =
1

N
, (4)

where wi denotes the weight of wealth invested in asset i, 1 represents the total

wealth and N is the number of assets.

4.1.2 Mean-Variance

The mean-variance model was introduced by Markowitz (1952), where the investor

optimize the relation between mean and variance of portfolio returns (DeMiguel et

al., 2009). To obtain a desired value of mean returns µ∗, the strategy construct a

portfolio with the lowest feasible variance. Thus, we have to identify the minimum-

variance that has the mean return of µ∗. In this situation w is one solution to the

quadric problem given by:

min
w

1

2
w′Σw subject to w′µ = µ∗. (5)
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However, a problem arises when return from the risk-free asset exceeds the mean of

the minimum-variance portfolio. The optimal strategy is then to short sell the risky

asset and allocate that capital in the risk-free asset. Another problem occurs when

the risk aversion of the investor is such that he prefers to borrow the risk-free asset.

Short selling is problematic due to the risk involved in this procedure. Prohibiting

short sales cope with these issues and is therefore included in the MV strategy.

To accommodate the issues in Eq.(5), we instead solve the maximization prob-

lem in Eq.(6) to obtain the MV portfolio. We maximize the expected utility U of

the risky assets w in the portfolio:

max
w

U(w) = (µ− 1rf )′w+rf−A
1

2
w′Σw subject to w′1 = 1 and wi ≥ 0 ∀i, (6)

where A is the investor’s risk aversion. rf is the return on the risk-free asset.

4.1.3 Minimum-Variance

The minimum-variance strategy has the unique property of reducing risk by only

relying on the variance-covariance matrix. Estimates from the matrix are less ex-

posed to error estimation, which in turn is meant to make the strategy more robust

and lead to a more precise and reliable result (Clarke et al., 2006). The MIN port-

folio is located farthest to the left in the efficient frontier, which gives it the lowest

attainable risk. To derive the weights of the MIN strategy we solve the following

minimization problem:

min
w

1

2
w′Σw s.t w′1 = 1 and wi ≥ 0 ∀i, (7)

4.1.4 Maximum-Diversification

Choueifaty and Coignard (2008) introduced the diversification ratio (DR), where

the weighted average of standard deviations are divided by the portfolio standard

deviation. The motivations behind DR is; the advantage of predicting volatility
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rather than estimating returns and the poor diversification in the MIN portfolio.

DR is given by:

DR =
w′σ√
w′Σw

, (8)

where σ = (σ1, ..., σN )′ and σi is the standard deviation of asset i. To compute

the weights of the MD portfolio, we maximize the diversification ratio subject to

the weight constrain. The derivation of the MD portfolio can thus be expressed as:

max
w

w′σ√
w′Σw

s.t w′1 = 1 and wi ≥ 0 ∀i. (9)

4.1.5 Equal Risk Contribution

The objective of the strategy is to equally allocate risk among all assets, making

each asset contribute equally to the overall portfolio risk. ERC is motivated by

observations of 60/40 portfolios consisting of stocks and bonds, where stocks con-

tribute to more than 90% of the risk in the portfolio (Chaves et al., 2011). ERC

portfolios are considered to be risk-averse, since it overweight less volatile assets

(Asness et al., 2012). Total risk of the portfolio is given by:

σp =
√

w′Σw. (10)

The relative risk contribution (RRC) is given by:

RRCi =
wi(Σw)i
w′Σw

, (11)

which satisfy the RRC constraint:

N∑
i=1

RRCi = 1. (12)
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The sum of RRC equals 1 (100%) of the portfolios risk. The goal of the strategy is

to distribute risk equally among N assets:

RRCi =
1

N
. (13)

To achieve the objective given in Eq.(13), we need to solve the optimization problem

of the ERC portfolio. The problem can be expressed as a Sequential Quadratic

Programming (SQP) problem:

min
w

N∑
i=1

N∑
j=1

(
wi(Σw)i − wj(Σw)j

)2
s.t w′1 = 1 and w ≥ 0 ∀i, (14)

where (Σw)i is the i-th weight of vector Σw. A simpler alternative solution to the

problem is solving the nonlinear convex optimization problem:

min
w

w′Σw s.t
N∑
i=1

log (wi) ≥ c, (15)

where c ≥ 0 represents a random positive constant. However, this solution does not

satisfy the budget constraints, therefore the weights have to be normalized after

the solution have been obtained.

4.1.6 Risk Parity

In the construction of the risk parity portfolio, the correlation assumptions between

assets play an important role. To simplify the construction one assumes that the

asset returns are independent. The RP portfolio weights are given by:

wi =
1
σi∑N
i=1

1
σi

, (16)

where the weight of asset i is inversely proportional to its standard deviation.

One assumes that the correlation between assets is the same, ρij = ρ. The corre-

lation matrix diagonal is thus ρii = 1, which allows for simplification of the ERC

portfolios.
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4.1.7 Volatility Timing and Risk-Reward Timing

Kirby and Ostdiek (2012) introduced two methods of portfolio optimization, for-

mally known as Volatility-Timing strategy and Risk-to-Reward timing strategy.

Both methods are derived from the MV strategy, which suggest a new class of ac-

tive portfolio strategies. These strategies are outlined to exploit sample information

regarding volatility dynamics in order to reduce the effect of estimation risk. The

strategy suggests rebalancing the weights monthly, in accordance with the changes

in the tuning parameter, that are estimated from the variance-covariance matrix.

This allows us to control the sensitivity of the portfolio and measure the portfolio’s

timing aggressiveness. There are four elements that emphasize the characteristics

of the timing strategies: (i) It does not require optimization. (ii) the strategy does

not require covariance matrix inversion. (iii) Both strategies assures non-negative

weights. (iv) Through volatility changes, the sensitivity of the portfolio weights can

be adjusted with a tuning parameter (Kirby & Ostdiek, 2012). The asset weights

in the VT strategy are given by:

wi =
(1/σ2i )

η∑N
i=1 (1/σ2i )

η i = 1, 2, . . . ., N, (17)

where, η > 0.

We follow the procedure of Zakamulin (2017) and set η = 4. The simplicity

and long weights leads to parameters being less affected by estimation risk. Kirby

and Ostdiek (2012) argue that superior performance occur when increasing the

parameter η, since this will reduce the portfolio’s transaction and turnover costs.

The RRT strategy emphasizes the same elements as the Volatility-Timing strat-

egy. Kirby and Ostdiek (2012) suggest to include sample information about the

dynamics of conditional expected returns. How one operate the RRT strategy with

information regarding expected return, is the key difference between the two tim-

ing strategies. We use two estimators regarding conditional expected returns. The

first estimator is constructed to reduce risk by taking advantage of asset pricing

theory. The second estimator is a simple rolling estimator that inflict no forecast
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assumptions (Kirby & Ostdiek, 2012). The asset weights in RRT are given by the

following equation:

wit =

(
(µi−rf )

+

σ2
i

)η
∑N

i=1

(
(µi−rf )

+

σ2
i

)η , (18)

where,

(µi − rf )+ = max (µi − rf , 0). (19)

For both strategies, the tuning parameter η is included, where η ≥ 0. This

parameter measures the timing of aggressiveness. When η → 0 we retrieve the 1/N

strategy. When η → ∞ the weights will approach 1, for the asset with the lowest

volatility. If we set η > 1 we will make up for information lost by ignoring the

correlations.

4.2 Performance Measures

4.2.1 Sharpe Ratio

The Sharpe ratio was first introduced by Sharpe (1966). The objective of the

Sharpe ratio is to measure the relation between mean and standard deviation of

the excess return. The ratio aims to provide an understanding of the risk related

to the excess return (Auer & Schuhmacher, 2013). The simplicity of comparing

performance of portfolios with various risk exposure, have made the Sharpe Ratio

a popular model. The ratio can be expressed in the following way:

SR =
µi − rf
σi

(20)

Although the measure is widely used and recognized within financial research,

it has some limitations. For instance, if the returns are not normally distributed,

the results may be deceiving. Jobson and Korkie (1981) developed a hypothesis

test for SR with the null hypothesis:

H0 : SRk ≤ SR0. (21)
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Memmel (2003) revised the test and simplified the derivation of the ratio (DeMiguel

et al., 2009).

We test the null hypothesis developed by Jobson and Korkie (1981), in order to

evaluate which portfolio that achieves the highest Sharpe ratio:

z =
SRk − SR0√

1
T

[
2(1− ρ) + 1

2(SR2
k + SR2

0 − 2SRkSR0ρ2)
] , (22)

where SRk and SR0 denotes the Sharpe ratios of the optimized and the benchmark

strategy. T denotes the sample size. ρ denotes the correlation coefficient over a

sample given by T . The z-test is distributed asymptotically as a standard normal.

4.2.2 Carhart’s Four-Factor Model

Alpha is one of the most common performance measures within finance (Gerber &

Hens, 2006). Alpha motivated by CAPM (single-factor model) is estimated using

Ordinary Least Squares (OLS) and consists of one market factor. Namely, the

market excess return.

Fama and French (1993) believe there are two additional factors that have to

be taken into account, to explain the size and value anomalies. The additional

factors are SMB and HML. The idea behind these factors are that small/value

stocks are riskier than large/growth stocks and thus they provide a special risk

premium. SMB aims to imitate the risk factor in returns linked to size, while

HML is supposed to imitate the risk factor in returns related to the book-to-market

equity (Fama & French, 1993). Their model is referred to as the Fama-French three-

factor model (FF3). Carhart (1997) made an extension to the three-factor model

introducing the four-factor model (FFC4), which can obtain observation from the

cross-sectional variation in momentum portfolios. The model capture Jegadeesh

and Titman (1993) momentum factor, in addition to the factors the three-factor

model capture. The FFC4 model is given by:

Ri,t = αi + βiRM,t + siSMBt + hiHMLt + piPR1Y Rt + εi,t, (23)
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where, Rit denote the return of a portfolio in excess of rt. PR1Y R denote returns

in a one year momentum.

The multiple factor model is estimated using OLS, then tested with the null

hypothesis:

H0 : αk ≤ α0, (24)

in order to find and evaluate the significance of the alpha. The test of the null

hypothesis is given by:

z =
αk − α0√

1
T

(
σ2k − 2ρσkσ0 + σ20

) , (25)

where αk and α0 denotes the alpha values of the optimized and benchmark strate-

gies. T denotes the sample size. ρ denotes the correlation coefficient between the

residuals, obtained in the linear regression. σk and σ0 denotes the standard errors.

The z-test is distributed asymptotically as a standard normal.

4.3 Bootstrap

The implementation of the bootstrap method depends crucially on whether the re-

turn is assumed dependent or independent. If the data is assumed to be dependent,

a method called block bootstrap is applied, introduced by Hall (1985). Hall (1985)

and Kunsch (1989) bootstrap methods operate with overlapping blocks of data to

calculate estimates of distribution and parameters. Bootstrapping do not require

any parameters of the probability distribution, and effectively utilize observations

from minor sample sizes (Cogneau & Zakamouline, 2013).

When conducting the block bootstrap method with dependent data, it is im-

portant to keep the dependency intact in observations. In accordance to the block

bootstrap we need to take a set or block of observations into account when calcu-

lating statistics or parameter estimates.

We follow the approach introduced by Politis and Romano (1994), called the

stationary block bootstrap method. The block lengths are random and the resample

will be stationary. For the stationary block bootstrap the length of each block is
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developed from geometric distribution. This type of simulation is referred to as

“geom”, and is the process of generating the lengths of the blocks in the resampling

operation. In order to choose the block length we can use an approach by Politis

and White (2004) with the correction by Patton, Politis, and White (2009).

4.4 Out-Of-Sample Testing

We apply backtesting to test the performance of strategies. The procedure simu-

late strategies using historical data, which allows us to simultaneously test several

strategies. This gives an understanding of how the strategies performed in a given

time period. We divide the time sample into “in-sample” (prior to simulation) seg-

ment and “out-of-sample” (simulation) segment, in order to simulate a real trading

scenario. The data in the in-sample period t is used to estimate the parameters

applied in the out-of-sample simulation. By only allowing in-sample data to be

used, the issue of “peeking” is eliminated.

The parameters used in the OOS simulation are estimated using a lookback

period, which consists of a training period and a rolling lookback window. Training

period is the time prior to the simulation, also known as in-sample period. When

the simulation starts, the training period moves forward in the same frequency as

the simulation, this procedure is known as rolling lookback window. The rolling

lookback window estimates parameters in a given period ahead of the OOS estima-

tions. The length of the training period and the rolling lookback window period

can vary (between three and twenty years is recommended), however, there is no

scientific justification for how long these periods actually should be. We have cho-

sen five years, based on the sample time in our study and the precedence within

portfolio research. It is common to assume that returns are time-invariant and

slowly changing, which allows us to use the sample mean and variance provided by

the lookback period
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4.5 Hypothesis Testing and Data Mining Bias

False discoveries of profitable strategies have been a known phenomenon within

financial research. Some of these false rejections have been caused by the individ-

ual hypothesis test, when more than one hypothesis was tested (Type I Error).

Joint hypothesis testing aims to cope with the issue of false rejections in individual

hypothesis test.

When conducting a individual test, a significance level of 5% for a individual

strategy is sufficient to reject the null hypothesis. However, this criterion is not

sufficient for joint hypothesis testing. This is because we expect that some of the

variables will be significant at a 5%-level, just by chance, when testing several

strategies. The observed outperformance can thus be explained by the two factors:

Observed outperformance = True outperformance + Randomness. (26)

Further, we assume that the performance of the optimized strategies are equal

to the benchmark performance, the observed outperformance can thus be given by:

Observed outperformance = Randomness. (27)

Given that Eq.(27) is true, the z test statistic is normally distributed z ∼ N (0, 1).

The p-value of a individual test is given by Eq.(28), where we assume that all

returns are independent. The generalization of the returns distribution allow us to

study returns that are correlated.

pS = Pr(z > z1−α), (28)

where z1−α denotes the 1− α quantile of z ∼ N (0, 1). Given a significance level of

α = 0.05, the probability of false discovery is 5% in each test. If the researcher has

studied many strategies and only selects the best strategy, the p-value is likely to

overestimate the significance of the strategy.

In order to evaluate the overestimation of the best strategy, we assume that

the researcher only presents the best strategy out of N strategies and the test

21



statistics are independent for these N strategies. The p-value of obtaining at least

one significant value by chance, when testing N strategies, is given by:

pN = 1− Prob(z1 < z1−α; z2 < z1−α; ...; zN < z1−α) = 1− (1− pS)N , (29)

where zk, k ∈ [1, N ], denotes the value of the z test statistic for strategy k. If pS

is 5% and N is 100, then pN is 99.4%. This means that there is close to 100%

likelihood that one or more strategies outperform the benchmark, just by chance.

It is therefore reasonable to assume that the best selected strategy benefited from

randomness, given that true outperfomance is equal to zero. We employ the joint

tests SPA and WRC to correct for data mining bias.

4.5.1 White’s Reality Check

White (2000) introduced an approach to conduct joint tests, known as White’s

reality check (WRC). This test allows the researcher to simultaneously test multi-

ple strategies, while maintaining a low probability of falsely discovering profitable

strategies. For simplicity, we only demonstrate the WRC framework using Sharpe

ratio, however, the same approach applies for alpha. We measure the outperfor-

mance of each optimized strategy:

fk = SRk − SR0, (30)

where SRk denotes Sharpe ratio of optimized strategy k, and SR0 denotes Sharpe

ratio of the 1/N strategy. fk denotes the outperformance measure. We want to

find the strategy with the greatest observed outperformance:

f̄ = max
k=1,...,N

fk, (31)

where f̄ denotes the best strategy. We want to check if the best optimized strategy

can outperform our benchmark strategy. We use the null hypothesis: that the best
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strategy does not outperform the benchmark:

H0 : f̄ ≤ 0. (32)

We need to know the probability distribution of f̄ , in order to test the null

hypothesis. In the computation of WRC we implement a geometric block boot-

strap to find the probability distribution of f̄ . When conducting the bootstrap, we

resample the excess returns to the optimized strategies and the excess returns to

the naive strategy simultaneously. We denoted the resample series of strategy k by

r∗j,k. The series provided by the benchmark is denoted by r∗j,0. Where j indicates

the repetition number in the bootstrap. Note(∗) denotes that r∗ is a resampled

(bootstraped) version of r.

We compute the Sharpe ratios for each strategy after implementing the boot-

strap, thus SR∗j,k denotes Sharpe ratio of strategy k, and SR∗j,0 denotes the Sharpe

ratio of the 1/N strategy. To compute the outperformance we use:

f∗j,k=SR
∗
j,k−SR∗j,0, (33)

where f∗j,k denotes the bootstrapped outperformance measure between the k

optimized strategy and the benchmark. The strategy with the greatest observed

outperformance is given by:

f̄∗j = max
k=1,...,N

(
f∗j,k − fk

)
, (34)

where we subtract the observed outperformance (fk) from the resampled ob-

served outperformance (f∗j,k), in order to adjust our computation of the outperfor-

mance to conform the null hypothesis. The collection of f̄∗j defines the probability

distribution of f̄ . To calculate the p-value, we have to check how many times f̄∗j is

observed higher than f̄ . The computation of the p-value is given by:

PWRC =

J∑
j=1

1f̄∗j > f̄

J
, (35)

where 1 denotes the indicator function that takes the value of one, if there are
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observations of the condition being satisfied.

4.5.2 Superior Predictive Ability

Hansen (2005) introduced the SPA test, which extends WRC. Hansen added two

improvements opposed to the WRC. The first improvement the author suggested

is to normalize the test statistics. Without normalizing the test statistics, we may

compare two different models that are incomparable. Kosowski, Timmermann,

Wermers, and White (2006) address and confirm this problem in their paper as

well. Hansen suggest to substitute fk with:

zk =
fk
σ̂fk

, (36)

where σ̂fk denotes the standard deviation of fk. This allows us to formulate a

null hypotheses of interest, that the statistics of standard deviation and mean can

not exceed zero:

H0 : z̄ ≤ 0, (37)

where,

z̄ = max
k=1,...,N

zk. (38)

The second improvement Hansen suggested in his paper was to exclude poor models

from the test. Hansen argued that poor models could manipulate the result in the

WRC. When conducting tests of various strategies, one will not be able to obtain

the results from a strategy that produce good results, among strategies that produce

poor results. In order to determine which strategies that produce poor results, a

threshold value is set. The statistic threshold value A is given by:

A = −
√

2ln(ln(n)), (39)

where n denotes the number of strategies. In our thesis, we apply two performance

measures, namely Sharpe ratio and alpha. We compare each strategy to the thresh-

old value, based on which performance measure we use, and exclude the strategies

where zk is below the threshold value A. Thus, the optimized strategy is excluded
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from the test if:

zk < A. (40)

5 | Empirical Results

In this section we present the results obtained from OOS simulated strategies, using

US and Norwegian monthly return data. The parameters in the empirical study

are estimated using a training period and a rolling lookback period of five years (60

months), based on limitations in sample time and previous research. It is common

to assume that return distributions are time-invariant and slowly changing, which

allows us to use the sample mean and variance provided by the lookback period.

We apply the joint tests SPA and WRC, which are conducted with Sharpe

ratio and alpha computed in FFC4. The results are provided by testing the null

hypothesis H0 : f̄ ≤ 0, that the best optimized strategy fail to outperform the 1/N

strategy.

5.1 Individual Tests

The Sharpe ratios of all strategies and p-values from the individual hypothesis test

H0 : SRk ≤ SR0 are presented in Table 4. From this table we observe that

about 40% (51 out of 126) of the optimized strategies in the US market achieve

significantly better Sharpe ratio than the benchmark. In the Norwegian markets

about 10% (3 out of 28) of the optimized strategies outperform the benchmark,

in terms of Sharpe ratio. The differences in the US and Norwegian data may be

caused by the number of datasets applied, or other market factors Sharpe ratio fails

to measure.

Carhart’s (1997) four-factor model accounts for four market factors (MKTMRF,

HML, SMB and MOM) when measuring the alpha value. These factors may be able

to explain some of the performance of optimized strategies, that the Sharpe ratio

fails to measure. Alpha values from all strategies and p-values from the individual

hypothesis test H0 : αk ≤ α0 are presented in Table 5. We observe that about 18%

(23 out of 126) of the optimized strategies in the US market achieve significantly
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higher alpha than the benchmark. In the Norwegian markets about 20% (6 out of

28) of the optimized strategies significantly outperform the benchmark.

Comparing the Sharpe ratio and alpha from the US market, we see that there

is a (23/51) 55% reduction in significant results. However, there is (6/3) 100%

increase in significant results in the Norwegian market. The differences are likely

caused by the different factors applied by the models.

Using individual test to find the best performing strategies have been a stan-

dard procedure within financial research (DeMiguel et al., 2009; Kirby & Ostdiek,

2012). This methodology has been used to produce the results found in this section.

However, this approach has several weaknesses pointed out in the methodology in

Section 4.5. The main issue being false discovery of profitable strategies, known as

data mining bias.
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Table 4: Annualized Sharpe ratios and p-values from H0 : SRk ≤ SR0.
Naive MV Min MD ERC RP VT RRT

US Data:
Portfolios formed on Size 0.407 0.425 0.407 0.392 0.413 0.413 0.428 0.45

(0.815) (0.99) (0.629) (0.25) (0.214) (0.309) (0.49)
Portfolios formed on Book-to-Market 0.479 0.454 0.485 0.434 0.484 0.486 0.499 0.524

(0.696) (0.876) (0.094) (0.172) (0.074) (0.091) (0.356)
Portfolios formed on Industry 0.463 0.434 0.533 0.484 0.494 0.488 0.534 0.441

(0.743) (0.35) (0.666) (0.016) (0.008) (0.047) (0.787)
Portfolios formed on Short-Term-Reversal 0.395 0.475 0.399 0.321 0.399 0.403 0.416 0.523

(0.217) (0.921) (0.001) (0.473) (0.176) (0.2) (0.026)
Portfolios formed on Long-Term-Reversal 0.476 0.483 0.53 0.442 0.485 0.486 0.503 0.535

(0.913) (0.165) (0.175) (0.059) (0.059) (0.088) (0.294)
Portfolios formed on Market Beta 0.407 0.332 0.537 0.45 0.442 0.438 0.507 0.437

(0.326) (0.119) (0.243) (0.002) (0.002) (0.009) (0.671)
Portfolios formed on Variance 0.353 0.316 0.515 0.289 0.402 0.403 0.5 0.458

(0.62) (0.066) (0.122) (0.001) (0.00) (0.002) (0.151)
Portfolios formed on Accruals 0.407 0.452 0.489 0.42 0.42 0.419 0.449 0.477

(0.464) (0.057) (0.466) (0.001) (0.001) (0.003) (0.175)
Portfolios formed on Residual Variance 0.349 0.441 0.506 0.261 0.388 0.39 0.473 0.487

(0.205) (0.031) (0.006) (0.001) (0.00) (0.001) (0.043)
Portfolios formed on Earnings-to-Price 0.464 0.441 0.466 0.451 0.466 0.468 0.473 0.494

(0.706) (0.958) (0.61) (0.389) (0.179) (0.33) (0.556)
Portfolios formed on Cash-Flow-to-Price 0.456 0.522 0.469 0.451 0.458 0.459 0.466 0.527

(0.304) (0.744) (0.85) (0.232) (0.16) (0.239) (0.168)
Portfolios formed on Dividend Yield 0.47 0.389 0.521 0.455 0.487 0.484 0.525 0.452

(0.265) (0.412) (0.722) (0.026) (0.007) (0.013) (0.771)
Portfolios formed on Momentum 0.359 0.553 0.439 0.375 0.381 0.384 0.427 0.508

(0.017) (0.06) (0.615) (0.011) (0.004) (0.005) (0.034)
Portfolios formed on Operating Profitability 0.383 0.399 0.487 0.349 0.396 0.397 0.424 0.418

(0.789) (0.002) (0.095) (0.00) (0.00) (0.00) (0.483)
Portfolios formed on Investment 0.451 0.447 0.49 0.45 0.466 0.466 0.489 0.509

(0.949) (0.318) (0.941) (0.001) (0.001) (0.006) (0.285)
Portfolios formed on Net Share Issues 0.351 0.483 0.391 0.404 0.367 0.364 0.394 0.475

(0.04) (0.387) (0.021) (0.001) (0.001) (0.005) (0.028)
Portfolios formed on Size and Book-to-Market 0.391 0.547 0.538 0.375 0.418 0.419 0.473 0.585

(0.007) (0.00) (0.301) (0.00) (0.00) (0.00) (0.00)
Portfolios formed on Size and Operating profitability 0.406 0.502 0.494 0.375 0.42 0.421 0.456 0.523

(0.082) (0.003) (0.036) (0.00) (0.00) (0.00) (0.021)
Norwegian Data:

Portfolios formed on Size 1.318 1.497 1.268 1.447 1.339 1.304 1.268 1.379
(0.097) (0.571) (0.044) (0.106) (0.183) (0.257) (0.488)

Portfolios formed on Book-to-Market 0.769 0.636 0.772 0.761 0.778 0.775 0.789 0.664
(0.133) (0.973) (0.856) (0.382) (0.484) (0.559) (0.154)

Portfolios formed on Momentum 0.777 0.814 0.703 0.801 0.773 0.767 0.74 0.791
(0.655) (0.278) (0.589) (0.645) (0.263) (0.25) (0.852)

Portfolios formed on Spread 1.073 1.294 1.117 1.243 1.108 1.08 1.075 1.212
(0.058) (0.566) (0.007) (0.005) (0.457) (0.945) (0.165)

P-values in parentheses. Significant Sharpe ratios at a 5%-level are marked with bold
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Table 5: Annualized alphas from OLS estimation computed in FFC4 and p-values from H0 : αk ≤ α0.
Naive MV Min Max ERC RP VT RRT

US Data:
Portfolios formed on Size -0.063 0.97 0.208 -0.218 0.007 0.001 0.168 0.894

(0.397) (0.73) (0.084) (0.524) (0.113) (0.124) (0.316)
Portfolios formed on Book-to-Market 0.115 -1.345 0.048 -0.25 0.195 0.203 0.333 -0.137

(0.113) (0.905) (0.342) (0.142) (0.118) (0.218) (0.712)
Portfolios formed on Industry 0.919 0.475 1.67 1.168 1.079 1.075 1.439 0.199

(0.709) (0.354) (0.69) (0.3) (0.187) (0.209) (0.488)
Portfolios formed on Short-Term-Reversal 0.093 1.53 -0.231 -1.066 0.033 0.078 0.081 1.766

(0.165) (0.522) (0.002) (0.419) (0.842) (0.957) (0.052)
Portfolios formed on Long-Term-Reversal 0.46 0.058 0.818 0.083 0.518 0.522 0.598 0.806

(0.672) (0.504) (0.34) (0.405) (0.408) (0.523) (0.653)
Portfolios formed on Market Beta 0.094 -2.013 1.207 0.536 0.331 0.318 0.779 -0.341

(0.084) (0.205) (0.413) (0.11) (0.081) (0.118) (0.66)
Portfolios formed on Variance -0.552 -2.087 0.903 -1.811 -0.172 -0.133 0.647 -0.001

(0.156) (0.131) (0.044) (0.058) (0.022) (0.036) (0.567)
Portfolios formed on Accruals 0.69 0.622 1.224 0.586 0.797 0.797 1.032 0.906

(0.941) (0.33) (0.694) (0.025) (0.025) (0.051) (0.77)
Portfolios formed on Residual Variance -0.382 0.189 0.955 -2.053 -0.123 -0.077 0.572 0.435

(0.585) (0.085) (0.001) (0.078) (0.035) (0.028) (0.356)
Portfolios formed on Earnings-to-Price 0.664 -0.779 0.227 0.644 0.65 0.65 0.601 0.323

(0.094) (0.398) (0.958) (0.639) (0.687) (0.58) (0.608)
Portfolios formed on Cash-Flow-to-Price 0.519 0.348 0.276 0.293 0.497 0.503 0.459 0.552

(0.851) (0.65) (0.569) (0.423) (0.597) (0.582) (0.962)
Portfolios formed on Dividend Yield 0.373 -0.725 0.874 0.277 0.505 0.49 0.849 -0.026

(0.254) (0.494) (0.857) (0.166) (0.075) (0.07) (0.627)
Portfolios formed on Momentum 0.39 0.485 0.445 0.10 0.317 0.395 0.437 -0.209

(0.92) (0.924) (0.537) (0.514) (0.962) (0.876) (0.449)
Portfolios formed on Operating Profitability -0.279 -0.419 0.984 -0.541 -0.135 -0.121 0.181 0.031

(0.879) (0.005) (0.386) (0.002) (0.001) (0.001) (0.667)
Portfolios formed on Investment 0.492 -0.631 0.455 0.191 0.568 0.571 0.664 0.314

(0.213) (0.936) (0.271) (0.118) (0.103) (0.254) (0.81)
Portfolios formed on Net Share Issues -0.478 1.637 -0.225 0.028 -0.362 -0.383 -0.176 1.09

(0.028) (0.681) (0.122) (0.105) (0.101) (0.158) (0.051)
Portfolios formed on Size and Book-to-Market -0.172 1.194 1.075 -0.68 0.08 0.09 0.583 1.851

(0.17) (0.027) (0.098) (0.002) (0.001) (0.001) (0.018)
Portfolios formed on Size and Operating profitability -0.072 1.118 1.013 -0.455 0.084 0.093 0.436 1.42

(0.236) (0.033) (0.185) (0.007) (0.009) (0.002) (0.095)
Norwegian Data:

Portfolios formed on Size 0.113 0.2 0.119 0.144 0.116 0.109 0.104 0.154
(0.00) (0.687) (0.001) (0.135) (0.053) (0.249) (0.005)

Portfolios formed on Book-to-Market 0.008 -0.005 0.018 0.009 0.009 0.008 0.012 -0.007
(0.515) (0.511) (0.87) (0.484) (0.664) (0.498) (0.35)

Portfolios formed on Momentum 0.013 0.036 0.008 0.028 0.012 0.01 0.005 0.026
(0.21) (0.687) (0.141) (0.437) (0.095) (0.191) (0.425)

Portfolios formed on Spread 0.066 0.13 0.084 0.104 0.071 0.066 0.066 0.108
(0.00) (0.138) (0.00) (0.004) (0.816) (0.985) (0.008)

P-values in parentheses. Significant alphas computed in FFC4 at a 5%-level are marked with bold
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5.2 Adjusting for Data Mining Bias

In much of the previously conducted research on the field, the z-values from individ-

ual tests have been applied to measure the performance of each strategy. However,

this method does not adjust for data mining, making the results vulnerable to data

mining bias. In this thesis we gather all z-statistics and test them collectively with

the null hypothesis H0 : f̄ ≤ 0. Significant values from a individual test do there-

fore not necessarily mean that the strategy is superior to the benchmark, due to

the weaknesses in this procedure. We have therefore used the two methods of joint

testing, SPA and WRC. In the WRC test we include all test-statistics, but in the

SPA test we set a threshold value at -1.5. This procedure excludes all strategies

with a test-statistic below -1.5.

Figure 1 shows the bootstrapped distribution of max-z̄/f̄ test statistics, while

using US return data. Figure 2 presents equivalent results using Norwegian return

data. Using Panel A in Figure 1 as example for the significant results: we see that

the mode of the bootstrapped z̄ test statistics is located around 2.2% per month,

but varies from about 1% to about 5%. The best performing optimized strategy

is marked with the dotted red line at about 4%, which is well out in the right tail

and gives a p-value of 0.006 (< α = 0.05). Thus, we reject H0. For the cases with

insignificant results, we use Panel C in Figure 1 as example: The mode of the

bootstrapped alphas computed with FFC4 is located around 3% per month, but

varies from about 0.3% to about 6.5%. The best performing strategy is located

around 3.2%, and provides a p-value of 0.468 (> α = 0.05). Thus, we fail to reject

H0.
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SPA WRC

Panel A Panel B

Panel C Panel D

Figure 1: Panel A and C present the results from the SPA test, which is based on z-statistics. Panel B
and D present the results from the WRC test, which is based on f-statistics. The panels plot a bootstrapped
distribution of estimates of the max-z̄/f̄ statistics. The results are obtained by applying monthly return data
from 18 US datasets in the time period July 1963 to December 2019. X-axis presents the monthly performance
of the test statistics, while the Y-axis presents the probability distribution. The dotted red line shows the
location of the best performing optimized strategy. R denotes the number of resamples in the bootstrap.
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SPA WRC

Panel A Panel B

Panel C Panel D

Figure 2: Panel A and C present the results from the SPA test, which is based on z-statistics. Panel B
and D present the results from the WRC test, which is based on f-statistics. The panels plot a bootstrapped
distribution of estimates of the max-z̄/f̄ statistics. The results are obtained by applying monthly return data
from four Norwegian datasets in the sample period September 1981 to December 2019. X-axis presents the
monthly performance of the test statistics, while the Y-axis presents the probability distribution. The dotted
red line shows the location of the best performing optimized strategy.
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Table 6: P-values from SPA and WRC.
US Norway

Datasets 18 4
SR Alpha SR Alpha

SPA 0.006 0.468 0.031 0.015
WRC 0.101 0.857 0.039 0.013
Significant p-values are marked with bold.

The results from Figure 1 and 2 are presented in Table 6. From the table we

see that the p-values from the SPA test are significant in all instances, except alpha

FFC4 in US. The p-values from the WRC test are significant in the Norwegian

data, but not in the US data. The number of Norwegian datasets is important to

notice when considering the results.

There is an issue concerning the SPA test being dependent on t-statistics (z-

statistics). When returns are highly correlated (ρ → 1), the standard error of

estimation located in the denominator of a t-statistic becomes substantially small

Eq.(22 and 25). This results in a very high t-statistic, which means that significant

differences may not be economically significant (i.e. two portfolios performs eco-

nomically insignificant, although the p-values suggest a significant difference). This

phenomenon is present in Table 4, were we see that for instance, in the US dataset

formed in accruals, the ERC strategy significantly outperforms the 1/N strategy

at a 5%-level. However, the differences is Sharpe ratio are marginal, namely 0.013

(ERC = 0.42 vs 1/N = 0.407).

Table 7 shows the correlation between the returns from optimized strategies

and the benchmark. The results from this table suggests that high correlations

are present, with the majority of the correlations above 0.9. ERC and RP have

the highest correlations among the strategies with most correlations above 0.999.

This suggests that the results provided by the SPA test might be influenced by the

high correlation in returns, wrongly causing significant results. WRC, however, is

not dependent on t-statistics and thus not influenced by the high correlations. We

therefore emphasize the results provided by the WRC test.

Based on the results provided by the WRC test extracted from Table 6, we

draw the following conclusion: There is evidence suggesting that the best optimized

strategy in the US data fails to outperform the 1/N strategy (fail to reject H0 at
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5%). In the Norwegian data, however, there is significant evidence suggesting that

the best optimized strategy outperform the 1/N strategy (reject H0 at 5%).

Table 7: Correlations between optimized strategies and the naive strategy and p-values from H0 : ρ = 0.
MV Min Max ERC RP VT RRT

US Data:
Portfolios formed on Size 0.858 0.905 0.975 0.999 0.999 0.99 0.902

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
Portfolios formed on Book-to-Market 0.9 0.962 0.983 1.00 1.00 0.996 0.939

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
Portfolios formed on Industry 0.79 0.862 0.94 0.996 0.998 0.968 0.822

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
Portfolios formed on Short-Term-Reversal 0.895 0.967 0.987 0.999 0.999 0.994 0.918

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
Portfolios formed on Long-Term-Reversal 0.892 0.962 0.985 0.999 0.999 0.994 0.92

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
Portfolios formed on Market Beta 0.852 0.822 0.965 0.997 0.997 0.963 0.871

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
Portfolios formed on Variance 0.855 0.802 0.956 0.995 0.995 0.942 0.864

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
Portfolios formed on Accruals 0.907 0.953 0.993 1.00 1.00 0.995 0.933

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
Portfolios formed on Residual Variance 0.864 0.866 0.974 0.997 0.997 0.965 0.882

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
Portfolios formed on Earnings-to-Price 0.9 0.963 0.983 1.00 1.00 0.998 0.937

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
Portfolios formed on Cash-Flow-to-Price 0.895 0.962 0.982 1.00 1.00 0.998 0.933

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
Portfolios formed on Dividend Yield 0.868 0.902 0.958 0.998 0.999 0.988 0.899

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
Portfolios formed on Momentum 0.895 0.967 0.987 0.999 0.999 0.994 0.918

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
Portfolios formed on Operating Profitability 0.895 0.967 0.987 0.999 0.999 0.994 0.918

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
Portfolios formed on Investment 0.9 0.963 0.992 1.00 1.00 0.995 0.925

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
Portfolios formed on Net Share Issues 0.895 0.947 0.987 0.999 1.00 0.994 0.92

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
Portfolios formed on Size and Book-to-Market 0.916 0.962 0.994 0.999 0.999 0.994 0.935

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
Portfolios formed on Size and Operating profitability 0.923 0.977 0.995 1.00 1.00 0.997 0.935

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
Norwegian Data:

Portfolios formed on Size 0.835 0.887 0.942 0.998 0.998 0.97 0.891
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Portfolios formed on Book-to-Market 0.876 0.905 0.969 0.998 0.999 0.98 0.914
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Portfolios formed on Momentum 0.89 0.928 0.969 0.999 0.999 0.984 0.913
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Portfolios formed on Spread 0.799 0.911 0.942 0.998 0.999 0.984 0.851
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

P-values in parentheses. Significant correlations at a 5%-level are marked with bold
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6 | Discussion

DeMiguel et al. (2009), Zakamulin (2017) and several others have demonstrated

that optimized strategies fail to consistently outperform the 1/N strategy with

statistical significance. However, a number of papers like Kritzman et al. (2010)

and Kirby and Ostdiek (2012) have argued in defence of the optimized strategies,

claiming their superiority. The evidence on either side of the debate have mainly

been based on individual tests, t-statistics and Sharpe ratio. The t-statistics are,

however, questionable in the research of portfolio performance, due to the presence

of high correlation in returns (presented in Table 7). Individual hypothesis testing

is also a subject for criticism, due to its vulnerability to data mining bias. Sharpe

ratio is a questionable performance measurement, due to its limitations mentioned

in Section 4.2.1. This issue might be what causes the following difference in Sharpe

ratio and alpha computed in FFC4: The majority of the Sharpe ratios presented

in Table 4 are insignificant when tested with H0 : SRk ≤ SR0. However, the

number of significant observations is still about 120% higher than in Table 5

(H0 : αk ≤ α0).

We aim to cope with these issues by applying SPA and WRC test, in addition

to alpha computed in FFC4. However, the SPA test is based on t-statistics, which

makes it vulnerable to high correlation in returns. The results obtained through

WRC are therefore emphasized.

From the WRC test in Table 6 we see that Sharpe ratio and alpha computed

in FFC4 are insignificant when using US return data. These results support the

null hypothesis H0 at a 5%-level, indicating that the best optimized strategy fails

to outperform the 1/N strategy in the US market. However, when we apply Nor-

wegian return data to WRC, both Sharpe ratio and alpha FFC4 yields significant

p-values. Thus, we obtain evidence suggesting that we reject the null hypothesis H0

at a 5%-level. This implies that the best optimized strategy outperform the bench-

mark in the Norwegian market. Comparing the results obtained with US data and

Norwegian data, we observe that there is a clear difference in the outcomes.

What causes this difference is not explained by our results, but we have some
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ideas of what the cause could be. The size of the economies may affect the market

efficiency, since US have a significantly larger economy than Norway, the stocks

in Norway might be more exposed to “wrong pricing”. The number of datasets

included may also have an impact. However, these are only guesses with no scientific

grounding.

The use of joint test is a relatively new and pristine method of processing data,

although there are some papers that already have applied this methodology, like

Hsu et al. (2018) and Yang et al. (2019). These papers applied both SPA and WRC

in their research and arrived at the same conclusion as our paper when using US

return data. Namely, that there is no evidence suggesting that optimized strategies

are superior to the 1/N strategy. We were unable to find papers conducting a

similar study with Norwegian data. Thus, we find our study to extend previous

research by applying joint testing methodology to Norwegian return data, provided

by Bernt Arne Ødegaard. We also use a very recent time sample, that we are yet

to observe in other studies.

The low-volatility anomalies in Kenneth French’s datasets, pointed out by

Zakamulin (2017), may affect the results provided by the Sharpe ratio. Alpha

computed in FFC4 adjusts for the low-volatility with the HML factor, correcting

for this issue. In this case, however, the results from Sharpe ratio and alpha FFC4

were equal in terms of significance. Thus, we chose to ignore the flaws in Sharpe

ratio when considering our results. We also believe it is important to mention

the few number of Norwegian datasets included, which was inevitable due to the

limitations in accessible datasets.

The cost of rebalancing the portfolio each month and other expenses related to a

real-market scenario are ignored in this thesis. This limits our results to only apply

in a theoretical market scenario, however, we still believe that our contribution

is valuable in the study of portfolio performance and the discussion initiated by

DeMiguel et al. (2009).

Going forward, there are several interesting aspects to further investigate, which

was out of the scope of this thesis. Adding more optimized strategies and adjusting

the time horizon may give interesting results. Applying other datasets could also
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yield new interesting insight. We limited our study to Carhart’s four-factor model.

Expanding the research to include Fama-French five research factors would also be

an interesting extension in future studies.

7 | Conclusion

The motivation behind our thesis has been a long-standing debate within academia,

on whether optimized portfolios can significantly outperform the 1/N strategy,

initiated by DeMiguel et al. (2009). We noticed that there are several weaknesses

in many of the papers contributing to this debate, which we aimed to correct in

our thesis. Mainly, the use of individual hypothesis tests and Sharpe ratio as the

only measurement.

In this thesis, we have measured the performance of seven optimized strategies

relative to the 1/N strategy, adjusting for data mining bias. The issues of data

mining are corrected by applying the joint test WRC. The results obtained in our

thesis were two-folded: First, using return data from the US market, the WRC test

provides insignificant results at 5%-level from both Sharpe ratio and alpha FFC4.

This indicates that the best optimized strategy fails to outperform the 1/N strategy

in the US market. Thus, we fail to reject H0 when using US return data. Second,

the WRC test conducted with Norwegian data provides, however, significant results.

Both Sharpe ratio and alpha FFC4 provides significant p-values at a 5%-level, which

indicates that the best optimized strategy is statistically significant superior to the

1/N strategy. Thus, we reject H0 when using Norwegian return data.

What causes the difference in results when applying US return data opposed

to Norwegian return data, are not explained by the results obtained in our thesis.

However, a possible explanation may be the differences in market efficiency in the

respective countries, causing stock prices to deviate from their “real” value based

on all available information.
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Appendix

Reflection Note 1

This reflection note is written as a part of the master program in Business Admin-

istration at University of Agder. The objective of this reflection note is to preset

an overview of the insight I have gathered throughout my studies and in particular

the master thesis. The thesis has been written by Haakon Sebastian Olviken in

companionship with me.

Markowitz (1952) introduced the mean-variance model that laid the foundation

of the modern portfolio theory (MTP). This work actualized the research of op-

timized strategies since the 50’s Lately, DeMiguel et al. (2009) initiated a debate

regarding optimized strategies, by presenting evidence that optimized strategies fail

to outperform the näıve diversification strategy. Kritzman et al. (2010), (Kirby &

Ostdiek, 2012) and several others have later defended the outperformance of opti-

mized strategies. However, there are several limitations with the papers mentioned;

they use Sharpe ratio as performance measurement and single hypothesis test to

support/reject their null hypothesis. If the returns are not normally distributed,

the results may be deceiving when applying Sharpe ratio. Data snooping have been

a known phenomenon in the research of strategies, causing the researcher to falsely

discover profitable strategies (Type I Error). Single hypothesis tests do not correct

for this issue, making it a vulnerable test. Yang et al. (2019) and (Hsu et al., 2018)

solved these issues by implementing alpha motivated by Carhart (1997) four-factor

model (FF4) and joint hypothesis testing.

We aim to contribute to this discussion with our thesis, by applying the meth-

ods used in the papers by Yang et al. (2019) and Hsu et al. (2018) to new datasets.

Namely, joint hypothesis testing and bootstrapping. Our paper concerns the per-

formance of seven optimized portfolio strategies relative to a passive benchmark

(näıve diversification). The analysis of the performance is conducted with US-/and
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Norwegian datasets, consisting of portfolio returns. The näıve-diversification strat-

egy is independent of any estimates based on future returns or other uncertainties,

which makes it preferable benchmark. The results provided in thesis support the

findings from Yang et al. (2019) and Hsu et al. (2018) in the US data, providing

evidence that optimized strategies fail to outperform the näıve benchmark. How-

ever, our results suggest that optimized strategies are significant superior when

using Norwegian data. Our results fail to explain the reason for this difference, but

market efficiency in the respective markets may be a part of the explanation.

International Trends

We analyze data representing stock returns from US and Norway, which is deeply

influenced by the international economics. The state of the world economics affects

both the market factors and stocks returns, making the data applied in our thesis

heavily dependent on international economic trends. The trends within the financial

market is formally known as bull (rising) and bear (recession) markets. The trend in

the last decade (since the financial crisis) has been low interest rates, even negative

in some instances, causing many to invest in the stock market. This is one of several

specific trends influencing both the Norwegian and US stock markets, within the

sample period; US: 1963-2019, Norwegian: 1981-2019.

Innovation

The thesis provides methods that are “state of the art” within the research of

optimized strategies performance, namely bootstrapping and the joint tests Reality

Check from White (2000) (WRC) and Superior Predictive Availability from Hansen

(2005) (SPA). Previously, researchers tested the optimized strategies individually,

which was related to great probability of wrongly discovering superior strategies.

Quick implementation of new methodology is important in this line of research, in

order to achieve broad academic foundation for new findings and correct errors.

Going forward, continuous exploration of new optimized strategies may also lead

new discoveries within this field. Sharpe ratio and FF4 are both acknowledged

performance measures, but they also have known flaws. Development of more
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precise performance measures that improves upon the flaws of these models, would

probably contribute to a better understanding of which strategies that are most

profitable. We use the advanced statistical programming language R to conduct our

research, which allows to quickly adopt new methodology. The optimized strategies

(algorithms) are also getting more complex as new techniques are developed, which

makes this an interesting topic to follow. The “easy” access to large amounts of

data online also helps speed the process of testing the performance of newly emerged

strategies.

Responsibility

There are several aspects concerned with responsibility that has been raised during

the production of the thesis. In the writing process we have been very careful in ref-

erencing all sources used, such that we do not take any credit for work conducted

by others. Data snooping is a known phenomenon in the research of profitable

strategies, leading to false discoveries of profitable strategies. I have taken a num-

ber of precautions to cope with the issue of data snooping in our thesis; (i) Picking

18 arbitrary US datasets to avoid selecting preferable datasets. However, this was

not possible with the Norwegian data, due to the limitation of 4 available datasets.

(ii) WRC and SPA are tests that are implemented to cope with the issue of false

discoveries. Although we are trying to reduce the likelihood of errors in our dis-

coveries, there is still a 5% chance of false discoveries, caused by the test procedure

(p-value > α =0.05).

There is also a well-known fact that large financial corporation have self-interest

in the discovery of profitable strategies that beats the benchmark, in order to make

customers pay for the active ones. This may give resistance to papers demonstrating

that “passive” strategies achieve the same performance as active strategies. We have

tried our best to be independent of any outside influence towards our study, but

we cannot exclude the possibility that we have been somewhat influenced.
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Summary

The thesis has been a great possibility for me to apply all the knowledge I have

accumulated through the master’s program. I believe that the studies have made

ready to enter work life, with enough resources to be successful in a high competent

profession. Working with the master thesis can for sure be all-consuming at times,

making it easy to forget the wider impact. Discussing the three concepts interna-

tional trends, innovation and responsibility in this reflection note truly helped me

gain a wider understanding of the related repercussions. In particular the respon-

sibility related to academic work is something that I am deeply committed to, as

research is so much about discovering the truth. Intentionally biased research is

weakening the reputation of academia, as well as staging the progression in research.

I believe that continuous research, leading to increased knowledge is beneficial to

the society, making our contribution important in that sense as well.

Kristiansand, 02.06.2020
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Reflection Note 2

We have evaluated the performance of seven optimized strategies, relative to the

naive diversification strategy. We use the naive strategy as benchmark, since it is

easy to implement and is commonly used as benchmark among researchers within

the field. (DeMiguel et al., 2009). The strategy allocate wealth equally among N

assets, and is not affected by estimation errors. We use advanced methods, namely,

joint testing and bootstrapping to test the optimized strategies collectively. In or-

der to handle data snooping bias, also referred to as false discovery, we implement

White’s reality check (WRC) and superior predictive ability test (SPA) to correct

this issue. Introduced by White (2000) and (Hansen, 2005). We evaluated the per-

formance of the strategies across datasets we have gathered through online libraries

provided by Kenneth French and Bernt Arne Ødegaard. The datasets consist of

monthly returns form the US and Norwegian market. We use 18 datasets from the

US market, with the monthly returns from the period 1963 to 2019. For the Nor-

wegian market we use four data sets, with monthly return from the period 1981 to

2019. Our objective with this thesis is to contribute to the ongoing debate regard-

ing optimized strategies initiated by DeMiguel et al. (2009). The debate addresses

whether optimized strategies consistently outperform the naive diversification or

not. With our empirical studies, we have provided new evidence that contribute to

the debate, with the methods used in this thesis. We extend previous studies by

including more datasets with a longer period from the US- and Norwegian market.

Our thesis conclude that optimized strategies do not consistently outperform the

naive diversification strategy (benchmark).

Further, my reflection note will include a reflection of internationalisation, in-

novation and responsibility. These factors are the key concepts in the School of

Business and Law’s mission statement and strategy.

Internationalisation

Our thesis is subject to several international factors. First, the thesis utilize his-

torical data with monthly returns of the US market, provided by Kenneth French’s
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online library. In addition, we use data from the Norwegian market return. Both

are used in the computation of generating empirical results. The market data we

use is dependent on international movements in the global economy. Which will

affect the results of our thesis.

There are researchers worldwide that provide us with new perspectives upon

the subject. We use terminologies that are used globally to assure our contribution

regarding the subject is understood everywhere. We naturally adapt our research

to other researchers by writing in English, and by providing an empirical approach

of our conducted demonstration. This ensure that whomever would be capable to

reassess our results, assuming they have access to the necessary tools. Our results

can therefore be tested on an international level.

Innovation

In our thesis regarding modern portfolio theory, we involve great numbers of data in

the research process. Our thesis is categorized as quantitative, our approach have

to handle a lot of data. We use the latest technology available to produce results.

We use the data program R to test our methods, and present our thesis using latex.

We use different combination of methods in our approach, involving joint testing

and the use of bootstrapping. The results we achieve with these methods and the

new data (market returns from 2019/2020) we have gathered, will give a result we

have never seen before. Hopefully our results will be a valid contribution to research

on the subject.

Since the first optimized strategy was developed in the 1950s, a lot of effort have

been put into improving the allocation strategy. In the last decade, modern portfolio

theory have received a lot of attention, and new strategies have emerged. This is a

result of the volatile global markets, leading investors to evaluate capital allocation

more than ever before. In recent litterateur the value of allocation strategies are

debated, whether optimal strategies add value or not to the portfolio. With our

approach and methods, we argue that optimized strategies do not consistently add

value. The contribution we have made can provide new insight to the ongoing

debate. Our evidence for the discovery will be published, and available for everyone
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to read.

The technology we have access to, gives us more data power, and allow us to

compute number and data much faster. The rapid development of technology and

data power can result in new research methods emerging due to the technologi-

cal advancement. Exploring various markets can give new insight to the ongoing

discussion. We observe that the majority of researcher use market data from the

US. We used data from the Norwegian market and the US market, to understand

how different results variate in separate markets, not to compare the two individual

markets.

Responsibility

Optimized strategies primarily focuses on how to allocate capital among assets, in

order to achieve high return. The methods neglect other information characterizing

the asset. Our thesis is purely based on a theoretical representation of the market

return. Our studies do not suggest an approach for ethical trading, however this is

an important topic to consider before allocating wealth.

If an investor intend to implement these strategies in a functional financial

market, one have to consider the cost of maintaining an optimized portfolio strategy.

This relates especially to portfolio managers, who manage other people’s wealth.

Our thesis suggest that optimization do not add any particular value. One can

therefor question if the additional cost of running an optimized portfolio is worth

it, or if it is ethical. Based on preferences from each individual investor, the investor

should consider what they believe are necessary in a portfolio, in order for them to

make investments.

Our contribution consist of new information and previous knowledge. The

knowledge we have obtained while conducting our research have clearly been re-

ferred to, through the entire thesis. We are responsible for the information in the

thesis, and theory we have gathered from other researchers will be accredited by

referring to the original authors.
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Summary and Conclusion

This final section is brief summarization and conclusion on my discussion. The

courses we had during our master degree have equipped us with the necessary

tools in order for us to write this master thesis. With advanced methodological

approaches, we want to make a contribution to the ongoing debate initiated by

DeMiguel et al. (2009). We have to adapted our presentation of our thesis, so ev-

eryone can understand our contribution. We used market data on a national and

international level, to provide evidence for our empirical results. The data we use

are affected by changes in the global economy, thus influencing our result. Using the

latest of technology gives us more data power, and allow us to use new approaches

to test our hypothesis. This produce results, that give new insight to portfolio opti-

mization. Everyone can construct portfolios using the strategies we have evaluated,

it is not said that only corporations can use the strategies to invest. However, the

strategies primarily focus on how to allocate wealth, therefore investors have to

make their own personal opinion on which investments to make.

Kristiansand, 02.06.2020
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