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Abstract
The heterogeneity of the leading mobile platforms in terms of user interfaces, user expe-
rience, programming language, and ecosystem have made cross-platform development
frameworks popular. These aid the creation of mobile applications – apps – that can
be executed across the target platforms (typically Android and iOS) with minimal to no
platform-specific code. Due to the cost- and time-saving possibilities introduced through
adopting such a framework, researchers and practitioners alike have taken an interest in the
underlying technologies. Examining the body of knowledge, we, nonetheless, frequently
encounter discussions on the drawbacks of these frameworks, especially with regard to the
performance of the apps they generate. Motivated by the ongoing discourse and a lack of
empirical evidence, we scrutinised the essential piece of the cross-platform frameworks:
the bridge enabling cross-platform code to communicate with the underlying operating
system and device hardware APIs. The study we present in the article benchmarks and mea-
sures the performance of this bridge to reveal its associated overhead in Android apps. The
development of the artifacts for this experiment was conducted using five cross-platform
development frameworks to generate Android apps, in addition to a baseline native Android
app implementation. Our results indicate that – for Android apps – the use of cross-platform
frameworks for the development of mobile apps may lead to decreased performance com-
pared to the native development approach. Nevertheless, certain cross-platform frameworks
can perform equally well or even better than native on certain metrics which highlights
the importance of well-defined technical requirements and specifications for deliberate
selection of a cross-platform framework or overall development approach.
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1 Introduction

As a consequence of the introduction of app-enabled smartphones (Macedonia 2007),
mobile software applications – so-called apps – enjoy tremendous popularity from devel-
opers and end-users alike. This can especially be noted by the phenomenal growth in user
acquisition, app downloads, and sales experienced by the two leading mobile app market-
places, Google Play Store and Apple App Store (Jansen and Bloemendal 2013). Following
several years of consolidation, the duopoly of both operating systems accounts for more
than 99% of smartphone sales in 2018 (Statista Inc 2018a). The two ecosystems combined
generated an estimated revenue of $58.6 billion USD in 2017 alone, an increase of 30%
compared to the previous year (Nelson 2018). More than 5.8 million smartphone-specific
software applications are available throughout the numerous app marketplaces, as part of the
estimated $6.3 trillion dollar app economy (Statista Inc 2018b). App-enablement is an ongo-
ing process, blurring the lines between smartphones and tablets, consumer electronics, the
Internet-of-things (IoT) and even cars (Rieger and Majchrzak 2018). This also corresponds
to the ubiquitous availability of smartphones and the sheer amount of smartphone users.
According to recent reports, 3.8 billion unique users are estimated to have access to a smart-
phone and further growth is expected (Statista Inc 2016). For individuals and companies to
be part of the app economy, presence in the mobile app stores is required, consequently in
the form of a mobile app.

Traditionally, the creation of mobile apps has been conducted on a per-platform basis,
meaning that an app cannot be deployed to a platform it was not specifically developed
for. This type of development is commonly referred to as the native development approach,
because the apps are written using tools and languages specifically designed for (i.e., native
to) each platform. A considerable and inherent consequence of this development approach is
that if an app should reach a multi-platform audience, the entirety of the app must be written
twice: once for Android using Android Studio and Java, Kotlin, or C++, and a second time
for iOS using Xcode and Objective-C or Swift (Grønli et al. 2014). Overall, this requires
knowledge about multiple programming languages, different user interface and experience
design guidelines, development environments, ecosystems, and so on. The problem is far
worsened by device fragmentation: Especially Android exists not only in many versions but
with vendor-specific changes; operating system APIs evolve over time and devices come
with all kinds of capabilities and differences in hardware specifications (Wei et al. 2016).
There is no guarantee that an app developed in a generally acknowledged way will truly be
useful on the multitude of devices that offer compatibility in theory.

Due to the costs and knowledge requirements associated with the native development
approach (Heitkötter and Majchrzak 2013), numerous alternative approaches are available
(El-Kassas et al. 2017). These are commonly referred to as cross-platform mobile devel-
opment, an umbrella term covering a wide array of conceptual development approaches
and technical frameworks (Rieger and Majchrzak 2019) to simplify the creation of apps
(Biørn-Hansen et al. 2018). Typically, a single codebase can be used to specify or generate
apps deployable across several platforms with little to no platform-specific modifica-
tions, although the level of codesharing across platform differs between frameworks and
approaches. However, while cross-platform development frameworks can aid in the devel-
opment of apps executable across multiple platforms, certain case studies show that
companies and industry practitioners leverage cross-platform frameworks for the develop-
ment of single-platform apps. One such recent case study describe the online art platform
Artsy making use of Facebook’s React Native framework to write mobile apps using
JavaScript, as that is where their internal technical competency was strongest (Therox 2019).
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An even more recent case study from the online travel platform Townske describe the same
situation: single-platform development using a cross-platform framework, with developer
experience and internal JavaScript knowledge being core reasons to choose this over the
native approach (McPherson 2019).

Thus, developing mobile apps using cross-platform frameworks does not inherently
mean that app availability on multiple platforms is the ultimate goal – it could just as well
be other factors such as technical in-house competency. There are also numerous studies
exploring cross-platform development approaches and technologies from a single-platform
perspective, such as performance testing non-functional requirements on Android by Cor-
balán et al. (2019), investigating cross-platform bridge security on Android by Bai et al.
(2019), and impact on energy consumption in Progressive Web Apps on Android by Mala-
volta et al. (2017). For the study at hand, we make use of cross-platform frameworks for
single-platform development; each codebase is built for Android, then the benchmarking is
performed on an array of Android phones. We further elaborate on this in the study design,
and suggest conducting a similar study also for iOS as future work. Whereas apps gener-
ated using such approaches are still not as commonly encountered in the app stores as native
apps (Viennot et al. 2014), a clear industry interest in cross-platform technologies has been
noted through the introduction of frameworks by leading technology companies, including
Facebook (React Native), Google (Flutter), and Progress (NativeScript).

Both in academia and industry, the performance of apps developed using cross-platform
frameworks is frequently discussed. Some studies indicate an inherent performance loss in
such apps, although end users may not negatively experience this in everyday usage (Angulo
and Ferre 2014a). Nevertheless, the choice of a suitable technical development framework
has been found to matter a great deal in terms of expected performance (Corbalan et al.
2018). Besides, whether an overhead of app developed in a cross-platform fashion is an
inherent fate is not clear: Using frameworks that generate native apps might yield code that
outperforms hand-written code due to optimization; interpreted apps could undergo runtime
optimization that leads to better performance than apps optimized at compile-time.

We have set out to substantiate the debate and our main motivation is the frequent
encounter of claims regarding the efficiency of cross-platform technologies (e.g. Latif et al.
2016a; Ahti et al. 2016; Ribeiro and da Silva 2012; Delı́a et al. 2017). It often is argued
that a performance overhead is introduced by bridge components between framework and
native device access (Latif et al. 2017). Result from a recent study exploring the industry
perspective of cross-platform mobile development, indicate that the loss of performance
when compared to native apps is in fact the topmost perceived challenge of cross-platform
apps (Biørn-Hansen et al. 2019). The advice is then against employing cross-platform
frameworks in development projects. However, from our survey of the related literature,
this performance parameter has yet to be measured and empirically evaluated, leaving an
interesting gap in the body of knowledge.

Throughout our study, we investigate five technologies for cross-platform mobile app
development, along with the native development approach for comparison and analysis pur-
poses. We measure elapsed time from execution of a set of typical tasks, to the return of
their results. Examples of such tasks include the programmatic retrieval of a file from the
device’s file system, the querying for device GPS coordinates, or listening for accelerometer
sensor data.

We thus investigate technologies which developers can leverage in the efficient
design and development of mobile applications across multiple platforms, effectively
allowing for participation in these vast ecosystems without re-developing the same
application multiple times from scratch. More specifically, we measure the performance
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overhead introduced by multiple app development tools and frameworks following differ-
ent development approaches which we contrast with native app development. Our research
question is as follows:

RQ: To what degree do cross-platform mobile development frameworks impose addi-
tional performance-related overhead when compared to native mobile development?

Our main contribution from this study is an in-depth investigation of the technolo-
gies enabling cross-platform development frameworks to provide functionality similar to
what is found in native app development by measuring the performance-oriented impact of
individual hardware or platform feature and to empirically assess the performance of cross-
platform app development to this extent. We have developed a total of six artifacts, and
used profiling tools to measure the performance of these apps that were generated using six
technical development frameworks. Unlike the majority of studies in which performance
of cross-platform development frameworks is investigated, we have developed artifacts
using a wide array of technologies, including frameworks of the Model-Driven development
approach, Hybrid approach, Interpreted approach, Cross-compiled approach, and the Native
approach, as further elaborated in Section 3.1. This includes recently published frameworks
which claim to combine interpreted business logic with native user interface (UI) compo-
nents and have not yet been studied thoroughly by previous literature. The broad spectrum
of approaches is in line with our aim to focus on the validity and generalization of results
beyond individual implementations through the inclusion of a wide array of smartphone
devices, frameworks, and measurable features.

Besides the core contribution, our article also describes our replicable method, which can
serve as a blueprint for further performance studies. Moreover, we contextualize and discuss
our results to enrich the body of theory and share insights of performance comparisons for
cross-platform frameworks.

The remainder of this article is structured as follows. In Section 2, we highlight and
discuss related work in the context of our investigation and review the current state of litera-
ture on cross-platform framework performance. Section 3 presents the research method and
design employed to conduct the study. Our findings are then presented in Section 4, before
we discuss the findings with respect to related work and general research on the subject in
Section 5, together with thoughts on limitations and directions for research. A conclusion
of our work is then presented in Section 6.

2 Background and RelatedWork

Measuring performance and the overhead associated with the use of cross-platform mobile
development frameworks has been the focus of prior work. In this section, we first draw
the background by giving an overview about different cross-platform app development
approaches. Subsequently, we present related work on performance measurement based on
an extensive literature review.
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2.1 Overview of Cross-Platform Development Approaches

Native apps are developed individually for each targeted platform using vendor-provided
software development kits (SDK). The user has a limited choice of supported program-
ming languages, which differ per target platform. For instance, Java, Kotlin, and C++ are
supported by Android, and Objective-C and Swift by iOS. The advantage of having full
control over the platform APIs serves as the baseline against the development of apps using
different cross-platform techniques.

In general, cross-platform development uses a single code base that can be executed on
multiple platforms. Platforms in this sense typically refer to different operating systems
provided by software or hardware vendors, e.g., Android, or iOS. In addition, device frag-
mentation might cause different versions of the same underlying operating system to be
considered as distinct platforms. For example, Android is often tailored by hardware ven-
dors to specific devices or substantial changes to user interfaces (e.g., Android material
design) and technical APIs can occur when platforms evolve over time (Li et al. 2018;
Wei et al. 2016; Scalabrino et al. 2019). According to classifications by El-Kassas et al.
(2017) and Heitkötter et al. (2013), several approaches can be distinguished to achieve this
aim. We use the remainder of this section to introduce each category from Fig. 1 in detail.
Beware that although this classification helps to distinguish the main characteristics, some
frameworks merge different approaches (e.g., ICPMD El-Kassas et al. 2016) or investigate
completely different approaches such as by Tang et al. (2011) for thin-client apps based
on a cloud infrastructure. Furthermore, similar functionality might be provided using very
different techniques.

(Progressive) Web Apps: A mobile web app is essentially a web application developed
using web technologies such as HTML, CSS, and JavaScript. It is optimized for smart-
phone (and tablet) screen resolutions. Consequently, the app cannot be installed on the
device but is executed within the respective platform browser. With the rising standard-
ization and support of various APIs by mobile browser environments in the past years,
it is possible to access device features such as location and data storage. To compen-
sate for the – typically undesired (Heitkötter et al. 2013b) – look and feel of a web
site, Progressive Web Apps (PWA) were recently introduced by Google. PWAs improve
traditional web apps with so-called service workers (to allow for running code in a back-
ground thread), a web app manifest (to provide metadata), off-line capabilities, and an

Fig. 1 Categorization of Cross-Platform Approaches adapted from Majchrzak et al. (2015)
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installation-like user experience. This has evidently led to possibilities not previously
available for web apps, with Progressive Web Apps performing on a par with regular
native apps (Archibald 2016; Biørn-Hansen et al. 2018). While a PWA has access to
device and platform privileges beyond what is typical for a web app, they are still limited
in terms of feature access – a PWA cannot access device or platform features not exposed
through the web browser it runs within.

Hybrid apps: The hybrid approach has allowed primarily web developers to develop
mobile apps using the same set of knowledge they would use for the development of
web sites. Cordova, the open-source core of the framework which became known as
PhoneGap (now representing a commercial branch with additional features), was an
early representative of this approach and enabled the packaging of HTML, CSS, and
JavaScript files into an installable app. These files are subsequently rendered using a
WebView – an embeddable browser window which hides its typical controls, e.g., address
bar, bookmarks and settings. Standardized JavaScript APIs can be used – if provided by
the respective browser engine – to access device-specific functionality similar to web
apps. Additionally, functionality including contact lists, Bluetooth, GPS, and network
connectivity is provided via JavaScript APIs by the framework, each of which acts as a
Foreign Function Interface (FFIs) between the WebView component and the underlying
native code (e.g., Java or Objective-C). A hybrid app can be downloaded from the app
stores, installed on the phone, and used offline, equivalently to a native app. Thus, the
combination of access to device and platform functionality, ease of user interface imple-
mentation through widely known web languages, and native behaviour has rendered the
hybrid approach popular amongst both practitioners and researchers. Especially promi-
nent proponents of this approach include Ionic, Onsen UI, Quasar Framework, Cordova
/ PhoneGap, and Framework7. A possible drawback of this approach, which calls for
additional research and scrutiny, is the HTML-based user interfaces, and how they might
behave differently from native user interface elements even if styled to adhere to platform
design guidelines.

Runtime-based and Interpreted apps: In contrast to the hybrid approach, which reuses
the device’s browser engine through a WebView, apps built with this approach ship with
a self-contained runtime component (Corbalan et al. 2018). This approach is typically
referred to as interpreted approach, web-native approach, runtime-based approach, or
JavaScript-to-Native for the JavaScript-based implementations. The framework vendor
needs to develop the runtime layer for all targeted platforms and app developers can
then use a common API to access the underlying functionality. Typically, the applica-
tion code is written using a programming language such as JavaScript (e.g., in React
Native and NativeScript), C# (Xamarin), or custom markup (e.g., Qt). Also, instead of
providing access to native functionality through a Cordova-controlled WebView com-
ponent, frameworks of this approach typically expose proprietary plugin-based bridging
systems that allow for invocation of foreign function interfaces in native code. React
Native and NativeScript are exemplary frameworks backed by companies such as Face-
book and Progress (formerly Telerik). They use a combination of natively rendered user
interfaces in combination with a runtime for the JavaScript-based business logic. This is
possible through the use of on-device language interpreters, e.g., JavaScriptCore and V8,
which interpret markup language and returns platform-specific interface components.
One drawback of this approach relates to the fragmented space containing numerous
frameworks and tools, each with their own underlying plugin architecture. Consequently,
a plugin developed for React Native will not work in NativeScript out of the box, and
vice versa. Thus, in situations where custom plugins are developed as part of a project,
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changing out the cross-platform framework at a later stage will inherently mean rewrit-
ing not only user interfaces and business logic, but also plugins and similar custom native
bridging infrastructure.

Model-driven software development: The model-driven paradigm has been used for many
years in software engineering for the purpose of managing variability. It focuses on the
model as abstract representation of (possibly a part of) a system from which actual software
artifact is derived (Stahl and Völter 2006). In the mobile computing context, this approach
allows for the development of cross-platform apps using an higher level of abstraction
than source code, often-so through the use of textual or graphical domain-specific languages
(DSLs) or general-purpose modelling notations such as UML. Subsequently, code genera-
tors (one per target platform) transform the platform-agnostic model into platform-
specific source code, which can then be compiled and built to each mobile platform sup-
ported by the framework. The resulting apps can therefore exploit the full potential of the
platform as they are – ideally – indistinguishable from native apps. Commercial frame-
works include WebRatio Mobile, BiznessApps, and Bubble (WebRatio Srl 2015; Bizness
Apps 2019; Bubble Group 2019), whereas in academia the focus on domain-specific
frameworks is more prevalent, e.g., MD2 (Heitkötter and Majchrzak 2013), MAML
(Rieger and Kuchen 2018), and applause (applause 2015). While there are numerous
frameworks from both industry and academia, one drawback of this approach is the infre-
quent encounter of the model-driven development approach in practitioners’ outlets, which
are usually more concerned with the hybrid and interpreted development approaches.

Compilation-based: Compilation-based approaches (so-called cross- or trans-compilers)
aim for reusing a native application by mapping the input application to a target repre-
sentation. This can happen on the level of bytecode or the high-level programming code.
Because of the complexity on a low level of abstraction as well as differences between the
respective platforms, compilation-based approaches typically focus on specific aspects
of an application such as the business logic and need manual additions to replicate the
full app functionality. Examples include XMLVM (Antebi et al. 2012), J2ObjC (Google
LLC 2019c) and Google’s Flutter framework. Of these, Flutter is the most recent addition
to the compilation-based approach to the best of our knowledge. The main differentiator
between Flutter and the interpreted approach is that it does not render native user inter-
face components. Instead, Flutter leaves all rendering to the Skia Graphics Engine, which
is able to re-create the look and feel of native user interfaces through a Skia Canvas.
When building in debug mode, a Flutter app additionally contains the Dart VM needed
for enhanced developer experience, including functionality such as hot reload. Business
logic, i.e., Dart code, along with the Flutter SDK are ahead-of-time compiled to native
(ARM/x86) libraries, avoiding the use of interpreters (Flutter Developers 2019). A draw-
back of the compilation-based approach seen from a developer’s perspective, relates to
the ease of pushing updates to end-users without going through the Google Play Store or
Apple App Store. While both the hybrid and interpreted approaches can use tools such
as Microsoft CodePush to push JavaScript-based bundles as updates circumventing the
app marketplaces, the compilation-based approach, using Flutter as an example, cannot
(Seidel 2018).

2.2 Performance Evaluations of Cross-Platform Frameworks

Previous research has targeted both hardware and software perspectives, looking at the
feasibility of employing such frameworks, especially when compared to the performance
baseline of traditional native apps.
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Searching Scopus in July 2019 resulted in 516 hits with the following – intentionally
broad – search query for cross-platform framework evaluations:

TITLE-ABS-KEY(("cross platform" OR cross-platform OR
"multi platform" OR multi-platform) AND (mobile OR app
OR application) AND (framework OR library OR approach*)
AND (performance OR evaluate* OR assess*)).

In addition, a forward search on the papers by Heitkötter et al. (2012, 2013) was
performed. These studies provided an early systematic selection of app development frame-
works for smartphones and have been used by many authors as a basis for further research
on apps.1 Abstracts were manually filtered and the paper contents screened to target actual
framework comparisons in contrast to purely abstract considerations regarding the devel-
opment approaches. Also, at least two implementations should be compared; for instance
considering only the sensor power consumption on iOS (Katevas et al. 2016) or focusing on
the battery component but only for Android (Abousaleh et al. 2014) allows for targeted opti-
mizations but was not further considered for the scope of this study. Furthermore, studies
included in the selection should contain evaluations of functional characteristics in contrast
to the performance of UI rendering or visualizations which are usually subjectively assessed
by users (e.g., Kromer et al. 2016; Angulo and Ferre 2014b). Consequently, a list of 18
articles is considered closely related work as depicted in Table 1 (p. 10).

Notable details of the identified literature are presented in the following. Ciman and
Gaggi’s (2017) comprehensive evaluation of energy consumption for multiple cross-
platform frameworks reports major differences in hardware performance between the eval-
uated frameworks. They also observed differences between programming languages, e.g.,
how their C++ based artifact was outperformed by an artifact designed using JavaScript,
although both artifacts were built using the underlying MoSync development framework
that supports both programming languages. In a recent study related to the work of Ciman
and Gaggi (2017), Corbalan et al. (2018) focus on the increase in energy consumption
caused by cross-platform frameworks, although their results and methods differed com-
pared to those from Ciman and Gaggi (2017). Whereas Ciman and Gaggi (2017) measure
energy consumption during the execution of device features such as accelerometer and
GPS, Corbalan et al. (2018) measured energy consumption during three usage scenarios,
being intensive processing, audio playback, and video playback. Their findings showed that
whereas Apache Cordova handled processing and audio playback well, it performed poorly
in their video playback measurement. Corona on the other hand performed well at video
playback, but had issues with intensive processing.

In contrast to these studies, our focus lies on measuring the performance of native-side
access to platform features through invoking and having data returned from Foreign Func-
tion Interfaces (FFIs) or framework- and approach-specific equivalents. The invocation of
FFIs and the measurement of bridge performance is also mentioned in a study by Biørn-
Hansen and Ghinea (2018), although this part of their study is stated as preliminary and in
need of further work and verification. Thus, our current study greatly extends on their find-
ings, as we now focus solely on the performance of bridges and their equivalents across
multiple frameworks.

The results presented by Ciman and Gaggi (2017) share similarities with those reported
in related performance studies, e.g., by Willocx et al. (2015, 2016) focusing on the hardware

1They together have 268 citations according to Google Scholar as of 2019-07-15.
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Table 1 Literature on cross-platform App development performance evaluations

Paper & Year Evaluated tools Evaluated App features and perfor-
mance metrics

Biørn-Hansen and Ghinea (2018) Ionic, React Native Duration of file system access

Corbalan et al. (2018) Apache Cordova, Corona, Native
app, NativeScript, Titanium, Xam-
arin

Energy consumption, CPU utiliza-
tion, and duration of calculations
and Audio/Video playback

Delia et al. (2018) Apache Cordova, Corona, Native
app, NativeScript, Titanium, Web
app, Xamarin

Execution time of calculations

Ferreira et al. (2018) Native App, PhoneGap, Sensa
Touch, Titanium

Camera, GPS, and calculations;
duration of scenarios (including a
sequence of activities) and RAM
utilization

Jia et al. (2018) Apache Cordova, Native App, Tita-
nium, Xamarin

Building time, rendering time, UI
response time for screen content

Biørn-Hansen et al. (2017) Ionic, PWA, React Native No specific platform features; size
of installation, launch time until
first activity, and launch time until
UI rendering

Que et al. (2017) Apache Cordova, Native app Accelerator, camera, GPS, media
player; measuring of installation
and startup time, CPU and RAM
utilization, battery temperature, and
network flow

Ahti et al. (2016) Native app, PhoneGap File size, starting time, and RAM
utilization for a sample app with
network access

Mercado et al. (2016) Multiple frameworks Measuring the complaint density in
reviews of 50 actual apps in the app
store

Willocx et al. (2016) Adobe Air, Famo.us, Intel App
Framework, Ionic, jQueryMobile,
Mgwt, Native app, NeoMAD,
PhoneGap, Sencha Touch,
Titanium, Xamarin

GPS, network access; Measuring
launch time, CPU and RAM utiliza-
tion, package and file size

Ciman and Gaggi (2015) PhoneGap, Titanium Measuring energy consumption of
accelerometer, camera, compass,
GPS, and microphone

Dhillon and Mahmoud (2015) Adobe Air, Native app, PhoneGap,
Titanium, WebWorks

Execution times of contact list
access, microphone, and calcula-
tions

Willocx et al. (2015) Native app, PhoneGap, Xamarin GPS, network access; Measuring
launch time, CPU and RAM utiliza-
tion, package and file size

Ciman and Gaggi (2014) PhoneGap, Titanium Measuring energy consumption of
accelerometer, camera, compass,
GPS, and microphone

Perchat et al. (2014) COMMON framework, Native app Computations, GPS, network
access; measuring of execution
times, installation size, RAM
utilization
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Table 1 (continued)

Paper & Year Evaluated tools Evaluated App features and perfor-
mance metrics

Rösler et al. (2014) IBM Worklight (Cordova) with
jQuery Mobile, Native app

Start-up and loading time, network
stability, computations, file system
throughput, RAM utilization

Dalmasso et al. (2013) jQuery Mobile, PhoneGap, Sencha
Touch, Titanium

CPU and RAM utilization, and
power consumption of simple app
with web service communication

Corral et al. (2012) Native app, PhoneGap Execution times of accelerome-
ter, contact list, file system access
(read/write), GPS, network infor-
mation, sound notification, and
vibrator

Ohrt and Turau (2012) Flash Builder, Illumination
Software Creator, LiveCode, Mar-
malade, MoSync, OpenPlugStudio,
PhoneGap, Rhodes, Titanium

File size, launch time, and RAM
utilization for a simple app skeleton

impact imposed by a variety of frameworks and implementations. The studies presented in
Table 1 evaluate a heterogeneous variety of platform characteristics. Whereas accelerometer
and GPS sensor values, camera, and network access represent common evaluation criteria,
many platform features have already been covered as well as deliberate restrictions to in-
app computations – although also implemented using a set of cross-platform frameworks
(Delı́a et al. 2017). More exotic studies use secondary data taken from app store reviews in
order to detect performance issues in actual apps (Mercado et al. 2016).

Although the individual study results cannot easily be compared due to the dependency
on the sample app scenario, test devices, and potential external factors, it can be derived that
individual frameworks have evolved over time. Indeed, the lack of comparability is a general
limitation in the young field. For instance, access to platform features in PhoneGap/Apache
Cordova was roughly twice as slow compared to native apps and going up to a factor of 20
for file system access and beyond for GPS sensor usage (Corral et al. 2012). However, more
recent studies indicate that the framework is still more resource-intensive but for example
load times are “only” 40% slower than for native apps (Que et al. 2017), and sometimes it
even outperforms native implementations (Delia et al. 2018).

From the identified studies it can also be seen that there is no clear winner among the
evaluated frameworks and approaches. Generally, it can be observed that JavaScript-based
frameworks and interpreted apps encounter performance penalties more frequently. Coun-
tering intuition, Ahti et al. (2016) find in their evaluation that the native implementation is
slower than the PhoneGap app which might be caused by additional third-party libraries.
Novel interpreted/web-native approaches claiming a near-native performance of user inter-
faces do not necessarily perform well with regard to device access compared to hybrid
frameworks which exist for multiple years and have undergone continuous optimization. In
case of the preliminary results by Biørn-Hansen and Ghinea (2018), file system access in
React Native was slower by a factor of 5 compared to Ionic. Highly generalized assump-
tions – for instance that there is “no choice other than native for performance” (Hudli et al.
2015) – are therefore not without their caveats.

Also, using only an app skeleton without actual content (e.g., Ohrt and Turau 2012)
or pure calculations without accessing platform features (e.g., Delia et al. 2018) make the
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results even less comparable among the studies and hardly transferable to the development
of real apps. Our study, thus, aims for a clear separation by benchmarking the considered
platform features in isolation as described in Section 3. Moreover, it sets out to arrive at
the current status – as evident from above considerations, the literature lacks in respect of
development of cross-platform technology.

In addition, several articles touch the topic of cross-platform framework performance but
rest on a qualitative level of argumentation based on the underlying approach (e.g., assuming
that interpreted apps have an inferior performance compared to native apps) or discussing
subjective experiences with the general performance of a sample application (Humayoun
et al. 2013; Palmieri et al. 2012; Latif et al. 2016b; El-Kassas et al. 2017; Lachgar and Abdali
2017; Rieger and Majchrzak 2016). For example, Botella et al. (2016) found that application
load durations are significantly worse for apps built with Sencha Touch compared to Ionic,
although both are developed using web technologies. Sommer and Krusche (2013) explain
that PhoneGap’s limited JavaScript performance is fast enough in many cases but identify
deteriorating performances for Rhodes and Sencha Touch with complex DOM operations
resulting in view changes of multiple seconds. Especially when it comes to animations, the
experienced performance of browser-based approaches degrades considerably (Heitkötter
et al. 2012; Ciman et al. 2014). Our focus, however, lies on the quantification of the overhead
by the frameworks’ bridges.

The findings in the identified related work are of fundamental importance for profes-
sionals and researchers alike, as results clearly indicate that there is no framework which
is superior for all contexts or needs. Moreover, performance particularities have not been
reported uniformly let alone have systematic, broad assessments been conducted. Neither is
it possible to describe why performance deviations occur.

Our work therefore aims to extend previous studies and especially to shed more light on
the current state of platform feature access across several frameworks from very different
approaches. Besides the ability to access these platform features (which has increased over
the past years), the performance of the frameworks’ abstraction layers is of high practical
importance as it enables cross-platform development to be an alternative approach to native
app development.

3 ResearchMethod

In this section we present the research methodology applied to investigate the varying
performance among different cross-platform frameworks. We elaborate on the framework
selection, platform features to be benchmarked, the artifact design, and the process of data
gathering using six Android devices. Our research has been designed with the explicit goal
of reproducibility to overcome the incoherence of the existing literature on cross-platform
development performance.

3.1 Technical Frameworks

From our discussion on related work (Table 1), we find that few previous studies have
comprehensively included frameworks and tools from the most-encountered development
approaches, namely Hybrid, Interpreted, Model-Driven Software Development, Cross-
compiled, and Native. Instead, previous studies often choose to implement artifacts using
frameworks belonging to only some of these approaches (such as work by Que et al. 2017
and Corral et al. 2012). None of the articles in Table 1 makes use of the model-driven
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Table 2 List of technologies included in the study

Framework Version Associated approach Programming language APK size

Ionic v3.9.2 Hybrid (Cordova-based) TypeScript 10.3MB

React Native v0.53.2 Interpreted JavaScript 9.7MB

NativeScript v3.4.1 Interpreted JavaScript 30.2MB

Flutter v0.5.1 Cross-compiled Dart 32.8MB

MAML / MD2 v2.0.0 Model-Driven Development DSL 3.2MB

Native Android – Native Java 2.7MB

approach. This exclusion is especially striking regarding the trend of modern frameworks
to generate at least the user interface for performance reasons (e.g., React Native, Native-
Script). Whereas the overall choice of a cross-platform framework depends on many criteria
(cf., e.g., Rieger and Majchrzak 2019), performance comparisons are a relevant factor to
assess the proposition of near-native performance. In addition, particular operating system
or hardware features should be evaluated in isolation in order to determine the net effects of
their implementation across frameworks in contrast to an app representing a coherent sce-
nario. In general, studying performance in the area of cross-platform development needs to
be attested low maturity.

With this study, we aim to broaden the scope of what is typically encountered in similar
studies, and we do so through the effort of artifact implementation. We thus include a wide
range of cross-platform development frameworks and tools which have partly been consid-
ered in related work (cf. Table 1). The selection reflects a combination of industry standards
and cutting-edge, popular frameworks (AppBrain 2019; Stack Exchange Inc 2019). In par-
ticular, we aimed to cover the major cross-platform approaches and selected appropriate
frameworks.

Table 2 lists six technologies which have been used in the development of the artifacts.
Of these, one belongs to the Native approach, i.e., it does not support cross-platform deploy-
ment. It serves as the baseline benchmark. The remaining five technologies allow for the
creation of iOS and Android apps based on a common code base. They vary in terms of
programming language, associated development approach, industry adoption, among other
aspects.

– The Ionic framework is a representative of the hybrid app approach and itself based on
the long-lasting Apache Cordova framework. Ongoing popularity can be seen with the
project accumulating 39 000 stars on Github.

– React Native (8̃2 000 stars) and NativeScript (1̃7 000 stars) can both be categorized
to the runtime-based/interpreted approach although also generating parts of the user
interface.

– The cross-compiled Flutter framework has not yet been scrutinized by related literature.
It has, however, attracted huge interest among practitioners (as can be seen from the
77 000 stars on the Github project) and reflects the current trend towards generated app
components in cross-platform tools.

– MAML / MD2 stand out from this list as the frameworks originate from an academic
context.2 As already noted before, model-driven approaches have a comparatively low

2For full disclosure it should be noted that MAML and MD2 have been co-developed by one respectively
two of the authors.
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adoption resulting from a lack of commercial applications. Nevertheless, the framework
was chosen in order to cover a broad range of development approaches.

From the presentation of approaches in Section 2.1, the Progressive Web App approach is
the only approach missing from our study. We decided against the inclusion of this approach
due to limited access to device- and platform functionality, including the file system API
and contacts API which we rely on extensively for our study. A Progressive Web App is
also executed in a blackbox (Web browser) where the communication between JavaScript
code and native functionality is abstracted and unavailable to the developer. Thus, when
needing access to the underlying native code, e.g., for debugging or implementing cus-
tom code, which is a straightforward process in the other development approaches we have
investigated, this would not be feasible for a Progressive Web App.

Thus, the list of technologies should provide the means for a comprehensive evaluation
and discussion throughout the remainder of the article. In Table 2, we also list the compiled
APK size (MB) for each generated app. This metric can be of utmost importance in the
context of technical decision making. Considering the ”Next Billion Users”, a term referring
to the increase in connected users in emerging markets (Google LLC 2019e), additional
effort should be put towards building mobile software targeting end-users regardless of
their socioeconomic and demographic situation. Compiled APK size is a metric with direct
impact on an app’s adoption across markets wherein network availability, data usage costs
and available hardware are important factors.

3.2 Artifact Design and Implementation

The focus in our study is on the underlying capabilities of the cross-platform frameworks to
provide access to device hardware and operating system features of the platform – and not
the frameworks’ capabilities to render (nice) user interfaces.3 We, hence, kept the visual aes-
thetics of the artifacts intentionally functional to measure the objective feature performance.
However, we aim for a similar representation across the different framework implementa-
tions and use separate views for each task (see next Section 3.3) which can be selected from
an introductory start screen. While the number of runs for a specific benchmark can be
specified, we did not make use of this feature, as we always executed only a single bench-
mark run before restarting the app and starting over (see Fig. 2). When pressing the Start
benchmark button, the app will initialize the benchmark run of the respective feature by
measuring the time until the value of the platform feature is retrieved. This value (time-to-
completion) is printed to the screen, and manually transferred into an external data sheet. A
replication package containing all source code and compiled APK files is available in the
project Github repository.4

3.3 Benchmark Features and Tasks

A plethora of hardware features exist that invite for benchmarking, including sensors
(accelerometer, gyroscope, compass), network connection (cellular, WiFi, Bluetooth, NFC),
native events (hardware back button, volume keys), device information such as battery

3In fact, studying the visual capabilities in the light of a debate about native look&feel (Majchrzak and
Heitkötter 2014; Heitkötter et al. 2013a) would be an interesting idea for an empirical research paper, ideally
conducted with real users.
4Open source replication package: https://github.com/mobiletechlab/EMSE-D-19-00180-replication-package.

https://github.com/mobiletechlab/EMSE-D-19-00180-replication-package
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Fig. 2 The data gathering process

status, and many more. In addition, operating system features such as storage databases,
contact lists, or notifications are provided, which can be accessed by native apps and
therefore also through bridge components in cross-platform frameworks.

From this extensive list of possible features we designed five benchmarks. These relate
to both hardware and software capabilities. Features were selected to reflect the presumably
most common use cases while at the same time being present on many devices – in contrast
to specialized sensors, which only a few devices provide and few people use. Moreover,
benchmarks were chosen to be executable mostly in isolation, avoiding complex multi-
device set-ups that rely on external factors such as network quality beyond our control. This
should help providing objective and reproducible results.

Unfortunately, comprehensive sensor usage statistics are not available and can only be
approximated through requested app permissions. From the 42 Android apps in the Google
Play Store that have more than 1 billion installations (Androidrank 2019), 37 apps request
(external) file system access, 33 access contact lists, 26 use GPS location, 24 ask for image
capture permissions, 23 read out the phone status, 18 request microphone access, 8 read or
modify calendar entries, 8 want to read SMS, and one app accesses body sensors. However,
not all features require explicit permissions by the user, e.g., the accelerometer sensor, and
every app has access to some software features such as a database.

The features implemented as tasks for benchmarking are as following:5

5Although we deem the device’s camera as important use cases for smartphone hardware access, the encap-
sulation of functionality in several frameworks posed major difficulties with regard to automating the process
of taking pictures without manual user interaction (e.g., tapping a capture button). We also found differ-
ences between the frameworks regarding how deeply integrated and configurable their camera plugins were
in terms of being able to create an equally complex and testable integration between all the developed apps.
Therefore, this feature could not be assessed objectively and we left it out of the present study.
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– Accelerometer: The accelerometer sensor captures data on the acceleration force
applied to the device in all spacial axes in m/s2. It is mostly used for simple routine
tasks such as device orientation changes but can be employed for complex activities, for
examples in augmented reality (AR) settings. The benchmark requests these three val-
ues (x, y, z axes) for the next update. To measure the minimum reaction time, the sensor
sampling rate is set to the mode SENSOR DELAY FASTEST which avoids artificial
delays intended to reduce processor load and power consumption.

– Contacts: Contact lists are routinely utilized by almost all users of smartphones. The
contacts benchmark involves creating and inserting a new contact into the device’s con-
tact list. In terms of the contacts’ information, we provide each contact object with a
name and a mobile phone number. We deemed this the minimum amount of data needed
to store a new contact in a real-world context. Nevertheless, there is little reason to
expect additional information to be stored to have a significant impact on performance.

– File system: Similarly, reading files stored on the file system is evaluated. File system
access is particularly required for bulk data access. We, therefore, use a benchmark
PNG image of 528 x 528 pixels and a size of 613 KB. In order to separate the device
access from the UI representation, we measure the time until the base64-encoded string
is decoded in memory and ready for assignment to a view element (but excluding the
actual rendering).

– Geolocation: Finally, accessing location information via GPS sensor or network-based
positioning mechanisms is another common use case of mobile-specific functionality. It
is used for routing, to provide location-based services and hints, and for other localiza-
tion purposes. This benchmark retrieves the longitude and latitude values of the device’s
current location based on the vendor-recommended location retrieval mechanism.

3.4 Data Gathering

For this study, we gathered data on time-to-completion (TTC), CPU usage, idle-state RAM
occupancy (PreRAM), and busy-state memory occupancy (RAM). All measurements were
taken with the Android Studio profiler tool using the default Java sampling method for data
collection which captures values using a frequent sampling interval of 1 ms. Within the
Android Studio profiler, performance values are provided for the specific app during test-
ing; thus, we report on the single highest consumption (peak value) observed for the given
benchmark. These peak values indicate which frameworks during which benchmarks may
require the most of the on-device hardware. Because more accurate trace-based inspection
of method calls impacts runtime performance but provides no additional value in terms of
the above metrics, this configuration is sufficient for our purposes. Specifically CPU and
memory usage are metrics included also in previous performance studies, including Dal-
masso et al. (2013) and Willocx et al. (2015). The TTC metric is provided in milliseconds,
and reports on the duration of time between invoking a benchmark task, and having the
results available. An example of this is the time it takes from requesting accelerometer data
until the values are provided back to the cross-platform context ready to be displayed to the
user. The CPU usage is the percentage of available processing power consumed at peak dur-
ing benchmarking. Within the Android Studio profiler, values are provided for the specific
app; thus, we report on the single highest consumption observed for the given benchmark.
Idle-state RAM consumption (PreRAM) is the observed memory consumption in megabytes
when the app is running on a device just before executing a benchmark task. This facil-
itates the analysis of fundamental memory requirements among the frameworks included
in the study. The busy-state RAM consumption (RAM) is the observed peak of memory
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consumption in megabytes during the execution of a benchmark task. Specifically, it is the
difference between the RAM and PreRAM variables (denoted as ComputedRAM) that will
assist in understanding the actual impact on memory consumption caused by each specific
benchmark task and framework.

We conducted all performance tests on physical mobile devices rather than on emulated
hardware. Again, this was a deliberate choice, facing that the effort for running, monitor-
ing, and debugging on real devices is tremendously higher than using emulation. However,
this is particularly important due to subtle differences in receiving realistic sensor input and
effects of continued physical execution (Joorabchi et al. 2013) – to an extent that evasive
malware can use a multitude of heuristics to detect emulators (Mutti et al. 2015). Further-
more, the heterogeneity of devices, including attributes such as processor and memory,
needs to be taken into account as stressed by Noei et al. (2017) in their research on user
perception of software quality versus device and app attributes. Additionally, we ensured
that all the Android APK app installation files were built for release rather than debug
mode. This was especially required for certain cross-platform frameworks, e.g., Flutter lim-
its the performance of apps built in debug mode, consequently rendering any performance
comparisons in debug mode invalid. Nevertheless, to extract information on app-specific
usage and utilization of CPU and memory on-device, APKs built for release must include a
debuggable property in their Gradle configuration (Google LLC 2019d). This is done to
enable Android Studio’s profiler tool to gather necessary profiling data for inspection.

First, we conducted the time-to-completion feature benchmark using APKs without
the debuggable property. Secondly, we re-compiled the APKs, this time including
debuggable, and conducted the profiling using the Android Studio profiler environment.
To the best of our knowledge, this approach should allow the time-to-completion benchmark
to produce results unaffected by potential monitoring overhead, while afterwards being able
to retrieve CPU and RAM data using the means available. Both processes are illustrated in
Fig. 2. It illustrates the extraction of results from within the app while running on device,
and results from Android Studio.

Furthermore, Fig. 2 illustrate the effort put in to the data gathering process. For each
loop as illustrated in the figure, only one (n = 1) benchmark run was executed. In order to
extract results on time-to-completion (TTC), a task would be executed, and upon completion
the result (in milliseconds) would be displayed within the app’s user interface, after which
the result of the benchmark would be transferred manually from the app into a datasheet.
As recent research indicate a non-trivial energy consumption overhead related to the use
of automation frameworks (Cruz and Abreu 2019), we avoided automating any processes
related to data gathering. This is also true for extracting results on CPU, PreRAM and RAM,
all of which were manually extracted from the Android Studio profiler. The process involved
starting the Android Studio profiler and letting it record the preferred metrics, executing
the benchmark on-device, then manually inspect the recorded event timeline to identify the
impact on the metrics caused by the execution of the benchmark. We separated between
the process of extracting the time-to-completion metric, and the process of extracting the
remaining metrics; CPU, PreRAM, and RAM. Thus, all benchmark tests were executed in
two separate rounds to gather the aforementioned results using different processes: first
round for TTC, and second round for the remaining three metricises which were gathered
simultaneously. We relied on no automated services or processes for the data gathering.
Every interaction with the app, every extraction of data – whether from within the app or
from the Android Studio profiler – were done manually. This resulted in tens of thousands
of manual interactions with the physical mobile devices and the apps deployed to them,
being navigation to respective benchmark task page, executing the benchmark, closing the
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app, restarting the app, and so on, for every benchmark run recorded. This was a rigorous
and time-consuming process.

Benchmarking the JavaScript-based implementations (i.e., Ionic, React Native and
NativeScript) leverages the Date API for calculating elapsed time. While there are other
time units available for JavaScript, including DOMHighResTimeStamp (W3C 2018),
we identified no other timer than DateTime for the Dart-based Flutter implementation
(Google LLC 2019b). Thus, in an attempt to harmonize the timer units, we decided on
the JavaScript Date API over the DOMHighResTimeStamp. These differences in time
units and their resolutions could be seen as a technical limitation inherently affecting the
obtained results (cf. Section 5). Nevertheless, the lack of a unified cross-language timer
implementation ultimately led to this decision.

We focused on the preparation of devices included in this study, ensuring to the best
of our abilities that the hardware on which the benchmarking tasks were executed kept to
the same baseline. Thus, prior to the benchmarking, networking features including WiFi
access, Bluetooth connectivity, and mobile data were turned off, limiting external interfer-
ence. All background apps were also terminated and the benchmark started after ensuring
in the Android Studio profiler that overall processor load had abated. After each completed
benchmark run (i.e., retrieval of one set of results, either CPU, RAM and PreRAM, or time-
to-completion (TTC)), the app would be terminated and restarted, then we would proceed to
the next benchmark run, and repeat the process in order to avoid distorted results from warm
starts of the app screens which already reside in memory (Singh 2017). Restarting the app
from scratch also limits caching of app contents and executing previously just-in-time com-
piled code by the Android Runtime (Google LLC 2019a) – although these operating system
level optimizations are generally beyond the control of the app developer and we aim for a
realistic real-world behavior of the device.

In our research, we conducted the performance measurements on a total of six mobile
devices, as further described in Table 3. With a previously identified population of n =
24 093 distinct Android device models (OpenSignal 2015), the market fragmentation is too
severe to conduct the benchmarks on a sample-wise representative number of consumer
devices (n = 379). Nevertheless, the devices included in this study represent a wide range
of hardware, including both budget smartphones and the state of the art, as well as devices
representative for the current consumer and business hardware on the market.

3.5 Data Analysis

In total, n = 16 290 individual data points were manually gathered for this study. Of this,
4 320 data points are related to time-to-completion (TTC) metric, 3 990 to CPU load, 3 990
to idle-state memory usage (PreRAM), and 3 990 to memory usage during benchmarking

Table 3 List of devices used for measuring performance

Model CPU (Cores) Memory OS

Samsung S8 2.3+1.7 GHz (Octa) 4GiB LPDDR4 Android 8.1

Samsung A3 (2016) 1.5 GHz (Quad) 1.5GiB Android 7.0

Huawei Mate 10 Pro 2.36+1.8 GHz (Octa) 6GiB Android 8.0

Huawei Mate 8 2.3+1.8 Ghz (Octa) 3GiB Android 6.0

LG Nexus 5X 1.4+1.8 GHz (Hexa) 2GiB Android 8.1.0

Sony Xperia Z5 1.5+2.0 GHz (Octa) 3GiB Android 6.0
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(RAM). In addition, we have analyzed 3 990 data points which are the arithmetic computa-
tions of RAM subtracted from PreRAM, providing the actual memory impact of executing
a given benchmark (ComputedRAM). The difference in n between time-to-completion and
the other metrics is due to issues with the NativeScript-based implementation on one of the
benchmark devices for which detailed profiling was unavailable.

This raw data was then statistically analyzed in order to identify differences across the
frameworks under test. We designed the native Java implementation as baseline to which
all other frameworks are compared. By respecting current best practices and state-of-the-art
system APIs we assume a high performance (i.e., low utilization of resources and fast exe-
cution times) for this implementation. However, frameworks might utilize highly optimized
modules that do not make use of the Android (Java) SDK but rely on low-level C++ code
which can potentially outperform the native baseline.

In the following section, descriptive statistics such as mean, minimum, and maximum
values as well as the respective standard deviation are provided for each combination of
feature and framework. To assess whether the observed variance of results is significant,
we perform ANOVA tests (α = .05) along with effect sizes using omega squared (ω2), fol-
lowing the interpretations provided by Kirk (1996). The effect size provides an indication
of how many percent of the variance between two groups can be explained by the indepen-
dent variable. While the ANOVA can provide data on whether or not two (or more) groups
are statistically significantly different from each other, the test does not help in determin-
ing where those significant differences are to be found. Thus, where we identify statistical
significance, we follow up using Tukey post-hoc tests between each individual framework
with results from the native implementation as baseline standard. In each table provided in
the subsections to follow, the p value column indicates the level of statistical significance
to the native implementation results provided by the Tukey test.

Regarding the memory usage before (PreRAM) and during (RAM) the benchmarks, we
also make use of ANOVA (α = .05), along with Spearman’s rank-order test to report on the
correlation between idle-state memory usage (PreRAM) and ComputedRAM.

Fig. 3 Log-scaled Boxplot of Time-to-Completion Results (in ms) per Framework per Task
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Fig. 4 Log-scaled Boxplot of Time-to-Completion Results (in ms) per Framework Independent of Task and
Device Type

4 Results

In this section, we firstly assess overall performance results independent of individual tasks
and devices. We are interested in exploring the bigger picture: how do the frameworks per-
form in terms of overall time-to-completion, CPU usage as well as idle-state and during-task
memory occupancy. For Figs. 3, 4, 5, 6, 7 and 8 regular outliers are denoted by a black circle
(•), while more extreme outliers by an asterisk (*). Subsequently, we assess each individual
task on its performance across the frameworks scrutinized.

4.1 Time-to-Completion

The time-to-completion (TTC) metric reports on the duration between when a foreign func-
tion call is invoked on the front-end of the application, and when the result of the call is

Table 4 Overview of overall time-to-completion performance results

Descriptives Analysis against native

Framework Mean SD Max Min ANOVA p ω2 Tukey p

Native 278.72 714.98 10401 12 – – –

React Native 656.54 2253.47 15968 19 < .001 .012 = .002

MAML/MD2 295.20 846.71 18453 40 = .690 –.001 = 1.0

Ionic 1021.04 3762.86 29969 26 < .001 .018 < .001

Flutter 354.50 211.88 1234 22 = .006 .004 = .971

NativeScript 200.34 322.80 3620 30 = .007 .004 = .967
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Table 5 Overview of PreRAM performance results

Descriptives Analysis against native

Framework Mean SD Max Min ANOVA p ω2 Tukey p

Native 49.53 17.03 84.80 15.82 – – –

React Native 57.68 17.30 92.80 25.39 < .001 .053 < .001

MAML/MD2 51.96 16.47 85.60 26.43 = .001 .005 = .233

Ionic 93.78 20.75 125.40 20.75 < .001 .576 < .001

Flutter 101.67 31.51 168.20 29.94 < .001 .514 < .001

NativeScript 63.93 15.48 87.60 37.03 < .001 .147 < .001

returned from the native side. From this metric, we can evaluate the speed-wise performance
of each cross-platform framework, with the native implementation results as baseline.

Figure 3 (next page) shows a boxplot of time-to-completion per framework per task and
Fig. 4 (p. 23) depicts a boxplot illustrating the time-to-completion between the different
frameworks, regardless of task.

From a visual assessment of the results, we find a large amount of outliers in the dataset.
This could indicate that for the majority of the implementations, time-to-completion is
highly fluctuating. Only NativeScript and Flutter did not to the same degree show the same
fluctuating results, however the Flutter implementation has an overall higher mean TTC
than the other frameworks. Nevertheless, results from the Ionic benchmarks indicate that
the framework may cross the 10 000 ms mark for fetching geolocation data more often than
the other implementations.

In order to determine if differences in time-to-completion are statistically significant
between the technical frameworks, we conducted a one-way ANOVA individually per
framework with the native implementation as baseline. As depicted in Table 4 (p. 23), the
low values for p < 0.01 for all cross-platform frameworks indicate significance except for
MAML/MD2. This, however, aligns well with the intention of a model-driven framework
that generates source code ideally indistinguishable from a native implementation.

4.2 Memory Consumption

In this study, we differentiate between the general memory usage as occupied by the app in
an idle state (PreRAM), and the memory usage during benchmarking (RAM). In particular,

Table 6 Overview of RAM performance results

Descriptives Analysis against native

Framework Mean SD Max Min ANOVA p ω2 Tukey p

Native 55.01 16.88 95.70 29.34 – – –

React Native 62.22 17.21 99.50 29.99 < .001 .042 < .001

MAML/MD2 57.39 16.40 96.50 36.59 = .007 .004 = .269

Ionic 105.72 24.08 156.50 50.79 < .001 .598 < .001

Flutter 104.95 30.50 176.20 40.79 < .001 .506 < .001

NativeScript 71.49 13.79 92.60 41.52 < .001 .197 < .001
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Table 7 Overview of ComputedRAM performance results

Descriptives Analysis against native

Framework Mean SD Max Min ANOVA p ω2 Tukey p

Native 5.48 4.13 21.80 0.30 – – –

React Native 4.53 4.13 17.17 0.30 < .001 .012 = .006

MAML/MD2 5.42 3.84 18.00 0.10 = .777 –.001 = 1.0

Ionic 11.93 9.05 38.00 0.90 < .001 .173 < .001

Flutter 3.27 3.48 17.40 0.00 < .001 .076 < .001

NativeScript 7.56 2.61 16.20 0.70 < .001 .067 < .001

the actual impact on memory usage caused by the task benchmarked can be assessed by
subtracting the latter value from the former. That is if an app consumes 85MB PreRAM in
idle state, and 100MB RAM during a task run, the calculated usage for that task is 15MB –
which is what the metric ComputedRAM reflects. Depending on the programming style and
framework architecture, an app might seemingly use little additional memory for executing
tasks but require much idle memory, e.g., to constantly hold some data structures in memory.

In Tables 5, 6 and 7, we summarize the overall memory usage in terms of PreRAM,
RAM and ComputedRAM in that respective order. These results are independent of spe-
cific features and devices, and instead provide a holistic perspective of the state of memory
usage in the technical artifacts benchmarked. In Fig. 5, a per-feature boxplot is provided,
separated on framework. While still providing overview, the boxplot also shed light upon
the differences in memory usage in more detail than the tables do. For instance, through
visual assessment of Fig. 5, we find that the Ionic framework in general uses the most
ComputedRAM memory, but also has the greatest variance.

Fig. 5 Linearly Scaled Boxplot of ComputedRAM Results (in MB) per Framework per Task
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Table 8 Results from Spearman’s rank-order correlation coefficient tests on PreRAM and ComputedRAM
against the native implementation baseline results

Framework Observations (n) Correlation coefficient (rs ) Significance level (p)

React Native rs (1440) –.166 < .001

MAML/MD2 rs (1440) –.162 < .001

Ionic rs (1440) .286 < .001

Flutter rs (1440) –.424 < .001

NativeScript rs (1100) –.117 < .001

The idle-state memory usage metric, PreRAM (cf. Table 5), is the profiler-reported usage
when the app is running on the device and navigated to the respective test’s view, but prior
to running the benchmark. This way, we can measure any potential overhead that cross-
platform frameworks impose on the memory occupancy at runtime when compared with
the native baseline results. As expected, the native baseline has the lowest reported RAM
(cf. Table 6) usage. Across all tasks, Flutter has the highest idle-state memory usage of the
studied frameworks, up to a tenfold increase for the geolocation task compared to native.

To account for possible correlations between PreRAM and ComputedRAM (cf. Table 7),
Spearman’s rank-order correlation coefficient test was conducted for each cross-platform
implementation against the native baseline. While all results are statistically significant, the
size of correlation varies, as presented in Table 8. To discuss the strength of the correlation
size, we follow rule of thumb interpretation by Hinkle et al. (1988). From the results in
Table 8, we find that Ionic is the only framework with a positive correlation, although less
than rs = .3 which according to Hinkle et al. should be interpreted as a negligible correla-
tion. The only non-negligible correlation identified is that between native and Flutter, where
Flutter has a low negative correlation. Looking to Flutter’s results in Tables 6 and 7, this
could indicate that while Flutter has a high PreRAM, the impact on memory usage caused
by executing the benchmark task – ComputedRAM – is low.

Figure 6 shows the linearly scaled boxplot for ComputedRAM usage in megabytes
across all tests and devices per framework. We can observe from the figure that Flutter has

Fig. 6 Linearly scaled boxplot of RAM Usage (in MB) across all tests and devices per framework
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Table 9 Overview of CPU performance results

Descriptives Analysis against native

Framework Mean SD Max Min ANOVA p ω2 Tukey p

Native 17.50 8.24 49.60 5.90 – – –

React Native 23.17 13.57 66.60 1.80 < .001 .059 = .000

MAML/MD2 16.11 8.12 45.90 5.90 = .001 .006 = .101

Ionic 22.35 11.11 59.93 0.09 < .001 .057 = .000

Flutter 19.60 9.64 56.75 0.00 < .001 .013 = .001

NativeScript 15.71 8.38 35.73 5.00 = .001 .010 = .060

a consistent low memory usage, although with a significant amount of high outliers. Also,
results for Ionic show a huge variation. NativeScript has the second-highest mean usage,
but with the lowest standard deviation. Only MD2 exhibits no significant deviation from
the native implementation. Interestingly, React Native undercuts the mean memory usage
of the baseline. This is caused by alternative module implementations for the different fea-
tures that deviate from recommended practices for a hand-written implementation (e.g.,
the geolocation module which performs slower and less accurate Facebook Inc 2019, cf.
Section 4.7).

4.3 CPU Usage

In this study, we measured the CPU usage across all the frameworks as laid out in Table 9.
The mean values were quite concentrated, with React Native and Ionic standing out as
less effective. Although CPU usage will be heavily framework dependent, it introduces a
possibility to see the impact of the individual frameworks from the tests.

Figure 7 – the boxplot of CPU usage – shows the use in percent across all tests and
devices per framework. MD2 comes out as the winner, although quite a few outliers can
be observed. NativeScript performs with the most concentrated values and no particular

Fig. 7 Linearly scaled boxplot of CPU usage (in %) across all tests and devices per framework
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Fig. 8 Linearly scaled boxplot of CPU results (in %) per framework per task

outliers exposed. The mean values of NativeScript and MD2 again outperform the native
baseline implementation, however, differences are not significant according to the ANOVA
test. While Table 9 and Fig. 7 both provide CPU usage results independent of device and fea-
ture, Fig. 8 provide a more detailed look into the various frameworks’ per-feature CPU usage
performance. Through a visual assessment of Fig. 8, we find that especially the Contacts
API had highly fluctuating CPU usage across all but the NativeScript-based implementa-
tion, indicating that for certain tasks, cross-platform frameworks may outperform the native
baseline implementation in terms of reliability and consistency of performance results.

4.4 Accelerometer

In Android, it is not possible to query the current value of the accelerometer through a
platform-provided API call. Instead, the sensor sends system events when changes are
detected, which can then be handled by appropriate event listeners. For the native applica-
tion, the benchmark activity can directly register an event listener on benchmark start and
access the sensor values from an upcoming update event. This results in the by far low-
est time to completion. In contrast, MAML/MD2 apps internally use a custom event-action
cycle to handle the separation of UI or data changes and their effect. Requesting the sensor
value requires registering for an update of the SensorProvider which in turn needs to wait
for an upcoming sensor value update. Therefore, more time is required for the additional
cycle, which is reflected in a 2 times slower retrieval as depicted in Table 10.

For the React Native implementation, we experimented with the option
updateInterval provided by the observable-based accelerometer plugin. While the
default interval was 100ms, we found this to have a direct effect on the benchmark
results, consistently reporting ∼100ms results. Lowering the interval to 0ms, the app
would become unresponsive. We found during development that at a 50ms interval, the
accelerometer benchmark reported values both above and below the set interval, rendering
it more similar to the other implementations.



Empirical Software Engineering

Table 10 Results per framework on accelerometer performance, Metric: Time-to-Completion (ms)

Framework Mean SD Max Min Tukey p

Native 48.1 51.87 682 12 –

React Native 65.1 20.26 110 19 = .095

MAML/MD2 97.3 30.48 158 40 < .001

Ionic 76.3 23.75 124 26 < .001

Flutter 357.2 133.25 900 22 < .001

NativeScript 65.5 24.30 136 30 = .082

Results from benchmarking the accelerometer sensor indicate that the framework choice
has a statistically significant impact on performance across all considered metrics, although
with a varying effect size. Below, we investigate each metric in detail to uncover differences
in performance impact between the cross-platform frameworks using results from the native
implementation as baseline.

4.4.1 Time-to-Completion for Accelerometer

Inspecting the Tukey post-hoc results in Table 10, we find that MAML/MD2, Ionic, and
Flutter are all statistically significantly different from the native implementation in terms
of time-to-completion results for the accelerometer task. React Native and NativeScript are
reported as non-significant in the same context. Based on the descriptive statistics, we find
that the native implementation has the lowest mean and the lowest reported minimum value,
but also exhibits the second highest standard deviation. React Native and NativeScript both
have low mean and standard deviation values which indicates a consistent accelerometer
performance among the implementations benchmarked. The Flutter implementation is the
furthest away from the native implementation for this feature, with a seven-fold mean value
compared to native, the highest standard deviation, and the maximum value in absolute
terms.

T T C : F(1074, 5) = 657.217, p < .001, ω2 = .752 (1)

The ω2 indicates that a large amount of 75.2% of the variation in accelerometer time-to-
completion performance can be explained by the framework.

4.4.2 CPU Usage for Accelerometer

Looking to the Tukey post-hoc results in Table 11, we find that benchmark results from
React Native and MAML/MD2 are statistically significantly different from the native imple-
mentation, while Ionic, Flutter, and NativeScript are non-significant. Results from the
MAML/MD2 implementation indicate that it has a lower mean CPU usage, lower standard
deviation, and a lower maximum value than any other implementation, including native.
React Native, on the other hand, uses more CPU capacity than all other considered frame-
works, both in mean and maximum values. The most native-like results are here provided
by Flutter, with a mean value, standard deviation, and maximum value close to the native
implementation, although with a lower minimum value.

CPU : F(984, 5) = 29.527, p < .001, ω2 = .126 (2)

The ω2 indicates that 12.6% of the variation in accelerometer CPU usage can be explained
by the framework.
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Table 11 Results per framework on accelerometer performance, Metric: CPU (%)

Framework Mean SD Max Min Tukey p

Native 17.2 8.52 41.8 5.9 –

React Native 23.6 13.00 64.9 1.8 < .001

MAML/MD2 13.2 4.65 29.5 5.9 < .001

Ionic 20.0 8.80 49.5 2.9 = .027

Flutter 18.4 7.30 31.9 .9 = .791

NativeScript 14.6 8.30 31.7 5.0 = .227

4.4.3 PreRAM Usage for Accelerometer

The Tukey test in Table 12 indicate that all but one implementation are statistically sig-
nificantly different from the native implementation results. MAML/MD2 has the most
native-like usage of PreRAM. On the contrary, Flutter has the highest mean, highest stan-
dard deviation, and highest maximum and minimum values. Closely following Flutter is the
Ionic implementation, which share similarities regarding high values across all statistical
columns.

PreRAM : F(984, 5) = 224.237, p < .001, ω2 = .530 (3)

The ω2 indicates that 53.0% of the variation in accelerometer PreRAM performance can
be explained by the framework.

4.4.4 ComputedRAM Usage for Accelerometer

From the Tukey test results in Table 13, we find that React Native, MAML/MD2, and Flut-
ter are statistically non-significant compared to native, while Ionic and NativeScript are
significantly different. Both Ionic and NativeScript have higher means, although only Ionic
has a higher standard deviation, and a three-fold maximum value compared to native. React
Native and MAML/MD2 are comparable in performance, although their means are lower
than the native implementation, the standard deviation comparable, and maximum values
lower. The means indicate that Flutter has the lowest mean ComputedRAM usage, although
this needs to be seen in relation to the highest mean PreRAM usage discussed in the previous
section.

ComputedRAM : F(984, 5) = 69.015, p < .001, ω2 = .256 (4)

The ω2 indicates that 25.6% of the variation in accelerometer ComputedRAM perfor-
mance can be explained by the framework.

Table 12 Results per framework on accelerometer performance, metric: PreRAM (MB)

Framework Mean SD Max Min Tukey p

Native 46.95 15.80 78.9 23.3 –

React Native 58.60 17.55 92.8 37.8 < .001

MAML/MD2 50.98 16.83 81.7 27.0 = .434

Ionic 95.06 21.44 125.4 59.8 < .001

Flutter 101.01 30.23 168.2 62.9 < .001

NativeScript 61.05 15.93 81.9 37.0 < .001
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Table 13 Results per framework on accelerometer performance, Metric: ComputedRAM (MB)

Framework Mean SD Max Min Tukey p

Native 3.58 2.76 10.1 .9 –

React Native 3.00 2.80 8.7 .5 = .815

MAML/MD2 2.99 2.83 9.7 .1 = .808

Ionic 9.59 8.31 30.4 1.0 < .001

Flutter 2.77 3.42 17.4 .0 = .506

NativeScript 7.09 2.45 11.0 .7 < .001

4.5 Contacts

In terms of implementation and benchmarking challenges, we found that when benchmark-
ing on devices without SIM cards, the process of creating and saving new contacts could
end in failure without any exceptions thrown by the development framework. Using the adb
logcat CLI tool, we could inspect an unfiltered stream of logs from the device over USB,
thus manually seek out the relevant silent failures. The lack of a signed-in Google account
was identified as the primary reason why the contacts API did not function as expected.

Results from benchmarking contacts performance indicate that the framework employed
has a statistically significant impact on performance across all metrics included, although
with a varying effect size. Below, we investigate each metric in detail to uncover differences
in performance impact between the cross-platform frameworks using results from the native
implementation as baseline.

4.5.1 Time-to-Completion for Contacts

As reported in Table 14, all but the MAML/MD2 based implementation are statistically
significantly different from the native baseline results. For this benchmark, MAML/MD2’s
native-like performance is indicated by a Tukey p close to 1.0. Mean-wise, the NativeScript
implementation has the highest (worst) score with a three-fold increase in TTC compared
to the native baseline, while MAML/MD2’s performance is in fact better than the native
baseline by about 2 (two) milliseconds. While NativeScript has the highest mean value,
Flutter’s performance is seemingly the least consistent framework in this test, with a TTC
varying from 95ms to 1 234ms.

T ime : F(1074, 5) = 275.815, p < .001, ω2 = .560 (5)

Table 14 Results per framework on contact performance, Metric: Time-to-Completion (ms)

Framework Mean SD Max Min Tukey p

Native 95.43 26.93 241 53 –

React Native 159.61 52.40 437 91 < .001

MAML/MD2 93.06 26.55 253 43 = .0.999594

Ionic 193.58 64.70 482 83 < .001

Flutter 242.31 135.64 1234 95 < .001

NativeScript 321.07 61.41 741 196 < .001
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Table 15 Results per framework on contact performance, Metric: CPU (%)

Framework Mean SD Max Min Tukey p

Native 16.69 10.06 49.6 6.0 –

React Native 22.10 15.48 64.2 5.0 < .001

MAML/MD2 13.69 6.80 37.1 6.0 = .155

Ionic 21.35 13.46 59.9 3.0 = .003

Flutter 19.09 12.64 56.7 0 = .381

NativeScript 15.61 8.54 30.7 6.0 = .981

The ω2 indicates that 56.0% of the variation in contacts time-to-completion performance
can be explained by the framework.

4.5.2 CPU Usage for Contacts

From the descriptive statistics in Table 15, we find that only two implementations have
statistically significantly different means compared to the native implementation, namely
React Native and Ionic. In this benchmark, we find that the MAML/MD2 implementation
has both a lower mean CPU utilization, lower standard deviation, lower maximum value and
equal minimum value to the native implementation.

CPU : F(984, 5) = 13.407, p < .001, ω2 = .059 (6)

The ω2 indicates that 5.9% of the variation in contacts CPU performance can be explained
by the framework.

4.5.3 PreRAM for Contacts

From Table 16, we find that the native implementation has the lowest mean, maximum and
minimum values. As indicated by the Tukey post-hoc test, results from the MAML/MD2
implementation closely resemble those of the native counterpart at a highly non-significant
level of difference. All other implementations are statistically significantly different from
the native baseline, with Flutter furthest away with the highest results across all metrics – in
several cases a two-fold increase. The lowest standard deviation is found in the NativeScript
implementation, although the mean memory usage is higher than in native, React Native
and MAML/MD2.

PreRAM : F(984, 5) = 215.704, p < .001, ω2 = .520 (7)

Table 16 Results per framework on contact performance, Metric: PreRAM (MB)

Framework Mean SD Max Min Tukey p

Native 48.18 17.30 79.7 24.8 –

React Native 58.43 17.89 87.2 30.5 < .001

MAML/MD2 50.08 16.24 84.6 28.1 = .954

Ionic 93.50 21.48 119.1 37.3 < .001

Flutter 101.35 29.88 154.9 57.7 < .001

NativeScript 62.36 15.60 83.0 38.0 < .001
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Table 17 Results per framework on contact performance, Metric: ComputedRAM (MB)

Framework Mean SD Max Min Tukey p

Native 3.72 2.81 9.8 .5 –

React Native 3.13 2.74 8.9 .3 = .749

MAML/MD2 3.15 2.84 10.1 .4 = .780

Ionic 9.46 7.50 27.8 1.1 < .001

Flutter 2.75 3.19 12.5 0 = .224

NativeScript 7.08 2.37 11.1 5.0 < .001

The ω2 indicates that 52.0% of the variation in contacts PreRAM performance can be
explained by the framework.

4.5.4 ComputedRAM for Contacts

While Flutter has the lowest reported mean and minimum values (cf. Table 17), the standard
deviation is slightly higher than what is found in the native baseline results. Both React
Native and MAML/MD2 have results indicating native-like performance, while Ionic and
NativeScript are both statistically significantly different from native. Ionic has the highest
values across all metrics in this test.

ComputedRAM : F(984, 5) = 75.003, p < .001, ω2 = .272 (8)

The ω2 indicates that 27.2% of the variation in contacts ComputedRAM performance
can be explained by the framework.

4.6 File System Access

File system access occurs frequently when data such as images is stored on the device itself
or the external flash storage (as opposed to the system-provided database which can be used
to store structured data in the order of magnitude below 1 MB per entry). Typically, file
system access is performed asynchronously to avoid blocking the main UI thread until the
data is persisted or retrieved. For this task, it is worth noting that no asynchronous interface
was available in NativeScript for accessing the file system. Thus, the only option was to
make use of the synchronous interface, rendering the implementation of the app somewhat
different than those for the other apps.

4.6.1 Time-to-Completion for File System Access

As reported in Table 18, NativeScript has the most native-like performance, showing even
lower mean, standard variation, and maximum values compared to native. The MAML/
MD2 implementation has the third-best performance in the test and cannot be regarded
statistically different from native. Results indicate that Flutter has the overall highest values
across all metrics, with a six-fold increase in mean time-to-completion compared to the
baseline.

T ime : F(1074, 5) = 459.062, p > .001, ω2 = .680 (9)

The ω2 indicates that 68.0% of the variation in file system time-to-completion can be
explained by the framework.
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Table 18 Results per framework on file system performance, Metric: Time-to-Completion (ms)

Framework Mean SD Max Min Tukey p

Native 82.34 22.93 166 32 –

React Native 154.74 45.79 281 70 < .001

MAML/MD2 103.38 25.84 158 51 = .520

Ionic 360.35 87.84 644 157 < .001

Flutter 528.02 263.91 1197 301 < .001

NativeScript 75.58 19.18 155 44 = .994

4.6.2 CPU Usage for File System Access

As reported in Table 19, across MAML/MD2, Flutter, and NativeScript, the differences from
the native baseline are minimal. NativeScript has the lowest mean and maximum values,
although higher standard deviation and minimum values than native. Both React Native and
Ionic are statistically significantly different from the native implementation, with the former
having the lowest mean usage, but highest standard deviation (cf. Table 19).

CPU : F(984, 5) = 38.270, p < .001, ω2 = .158 (10)

The ω2 indicates that 15.8% of the variation in file system CPU performance can be
explained by the framework.

4.6.3 PreRAM Usage for File System Access

By inspecting the mean variation in Table 20, we find significant differences in minimal
and maximal memory requirements between the frameworks. While React Native, MAML/
MD2 and NativeScript are relatively close to the native implementation in terms of PreRAM
usage, both Ionic and Flutter consume a statistically significantly larger amount of memory,
the latter close to a two-fold increase compared to native.

PreRAM : F(984, 5) = 180.822, p < .001, ω2 = .476 (11)

The ω2 indicates that 47.6% of the variation in file system PreRAM performance can be
explained by the framework.

Table 19 Results per framework on file system performance, Metric: CPU (%)

Framework Mean SD Max Min Tukey p

Native 18.20 7.33 42.9 6 –

React Native 27.45 14.38 66.6 1.8 < .001

MAML/MD2 19.68 9.53 45.9 6.9 = .739

Ionic 28.19 10.82 54.6 .9 < .001

Flutter 18.93 7.51 36.0 0 = .984

NativeScript 17.00 9.24 35.7 6.9 = .944
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Table 20 Results per framework on file system performance, Metric: PreRAM (MB)

Framework Mean SD Max Min Tukey p

Native 54.08 17.59 84.8 26.6 –

React Native 57.37 16.84 87.7 36.1 = .685

MAML/MD2 55.87 16.43 83.8 30.2 = .968

Ionic 93.91 19.67 120.1 64.7 < .001

Flutter 103.01 33.56 167.6 29.9 < .001

NativeScript 63.98 14.67 83.9 43.0 = .004

4.6.4 ComputedRAM Usage for File System Access

For this test, Ionic particularly stands out as performing relatively bad when compared to
the native implementation, with huge variations from max 38.0 to min 2.8, observing a
standard deviation of 7.92 more than double the size relative to all other frameworks but
the native performance (cf. Table 21) The MAML/MD2 implementation has the closest-to-
native performance, with a Tukey p of 1.0. While both Ionic and Flutter are statistically
significantly different from native on mean values, the Flutter implementation has a much
lower mean than native.

ComputedRAM : F(984, 5) = 174.612, p < .001, ω2 = .467 (12)

The ω2 indicates that 46.7% of the variation in file system ComputedRAM performance
can be explained by the framework.

4.7 Geolocation

In contrast to the accelerometer sensor, the GPS module in Android is not
just event-based but access is provided through an intermediate location man-
ager (FusedLocationProvider as used by the native implementation or
LocationManager), which aggregates different location providers such as GPS or a
WiFi network. The management object directly supports querying for the last known loca-
tion. To actually retrieve up-to-date location values and avoid using cached values, which
are updated according to a system-controlled rate, we measure the time to request a new
value. Nevertheless, the origin of the retrieved value may be based on previous network
information, the GPS sensor, or a fused value based on different sources and varying
accuracy.

Table 21 Results per framework on file system performance, Metric: ComputedRAM (MB)

Framework Mean SD Max Min Tukey p

Native 8.07 5.46 21.8 .3 –

React Native 9.41 3.59 17.2 3.3 = .101

MAML/MD2 8.14 3.23 18.0 1.0 = 1.000

Ionic 18.45 7.92 38.0 2.8 < .001

Flutter 3.83 3.72 16.6 .4 < .001

NativeScript 9.30 1.84 12.7 2.3 = .378
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Table 22 Results per framework on geolocation performance, Metric: Time-to-Completion (ms)

Framework Mean SD Max Min Tukey p

Native 889.05 1244.50 10401 58 –

React Native 2246.74 4122.66 15968 37 = .002

MAML/MD2 887.07 1551.66 18453 48 = 1.000

Ionic 3453.94 6991.73 29969 63 < .001

Flutter 291.18 165.98 684 71 = .560

NativeScript 339.24 588.07 3620 45 = .560

4.7.1 Time-to-Completion for Geolocation

Apparently, there is an internal process of waking up the GPS sensor for power reasons
which leads to multi-second delays until a location value is retrieved from the hardware
sensor. This occurs independent of our data collection method of completely closing and
restarting the app as Android’s location manager applies its own criteria on when the GPS
sensor is queried. Consequently, minimum and maximum values in time-to-completion
depicted in Table 22 exhibit a wide variation for all frameworks.

The most prominent outlier is the Ionic-based implementation. As our code already
implements the geolocation provider options as suggested by the Ionic team (Lynch 2018),
we were hesitant to attempt any further optimization of code or the underlying geolocation
plug-in. From our search for information on the issue, we encountered numerous questions
regarding the geolocation feature in Ionic, as also noted as the motivation behind the work
of Lynch (2018). Thus, we treat the results as what should be expected of the framework
without any optimizations.

T ime : F(1074, 5) = 23.997, p < .001, ω2 = .096 (13)

The ω2 indicates that only 9.6% of the variation in geolocation time-to-completion
performance can be explained by the framework.

4.7.2 CPU Usage for Geolocation

Drawing on the results presented in Table 23, we find that only Flutter is statistically sig-
nificantly different from the native implementation in terms of mean performance. While
MAML/MD2 has the most native-like performance, with a Tukey p value of 1.0, Native-
Script has a lower mean CPU usage than native although with a slightly higher standard

Table 23 Results per framework on geolocation performance, Metric: CPU (%)

Framework Mean SD Max Min Tukey p

Native 17.94 6.64 32.8 6.9 –

React Native 19.58 9.58 43.6 1.8 = .458

MAML/MD2 17.83 8.73 44.4 6.0 = 1.000

Ionic 19.84 8.56 45.8 9.9 = .290

Flutter 22.00 9.80 41.9 0 < .001

NativeScript 15.65 7.55 31.9 5.0 = .215
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Table 24 Results per framework on geolocation performance, Metric: PreRAM (MB)

Framework Mean SD Max Min Tukey p

Native 48.91 16.66 79.1 15.8 –

React Native 56.34 16.97 86.1 25.4 = .009

MAML/MD2 50.94 15.90 85.6 26.4 = .940

Ionic 92.66 20.49 125.1 20.5 < .001

Flutter 101.34 32.46 165.4 37.0 < .001

NativeScript 67.24 15.24 87.6 38.0 < .001

deviation. Minimum and maximum values of the NativeScript implementation closely
resemble those reported also by the native implementation.

CPU : F(1014, 5) = 9.273, p < .001, ω2 = .041 (14)

The ω2 indicates that 4.1% of the variation in geolocation CPU performance can be
explained by the framework.

4.7.3 PreRAM Usage for Geolocation

Drawing from the results in Table 24, we can see that MAML/MD2 is relatively close to
the native implementation in terms of PreRAM usage, although having a slightly higher
mean. Both Ionic and Flutter require significantly more memory than native, at close to- or
above a twofold increase. React Native and NativeScript are closer to native than the two
frameworks previously mentioned.

PreRAM : F(1014, 5) = 207.898, p < .001, ω2 = .504 (15)

The ω2 indicates that 50.4% of the variation in geolocation PreRAM performance can be
explained by the framework.

4.7.4 ComputedRAM Usage for Geolocation

As reported in Table 25, for this test the implementations written in both React Native
and Flutter are statistically significantly different from native in a positive fashion, as
both require less memory. NativeScript’s memory requirement resemble that of the native

Table 25 Results per framework on geolocation performance, Metric: ComputedRAM (MB)

Framework Mean SD Max Min Tukey p

Native 6.56 2.92 13.5 1.6 –

React Native 2.60 2.91 11.8 0.5 < .001

MAML/MD2 7.40 3.20 14.2 2.6 = .542

Ionic 10.26 9.18 32.8 .9 < .001

Flutter 3.74 3.48 16.0 .2 < .001

NativeScript 6.97 2.84 16.2 .7 = .976
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Table 26 Weighting of frameworks, ordered by sum (higher is better)

Framework TTC CPU PreRAM RAM ComputedRAM
∑

Native 5 4 6 6 3 24

MAML/MD2 4 5 5 5 4 23

NativeScript 6 6 3 3 2 20

React Native 2 1 4 4 5 16

Flutter 3 3 1 2 6 15

Ionic 1 2 2 1 1 7

implementation, while both MAML/MD2 and Ionic used more memory than the aforemen-
tioned frameworks, although the latter used significantly more.

ComputedRAM : F(1014, 5) = 59.239, p < .001, ω2 = .222 (16)

The ω2 indicates that 22.2% of the variation in geolocation ComputedRAM performance
can be explained by the framework.

5 Discussion

In this section, we present our weighted overview of the technical frameworks and tech-
nologies, and discuss it in the context of our research question. Then we present immediate
implications of our findings, followed by an overview of limitations to the study, and a
comprehensive outlook and directions for further research.

5.1 Overview

To provide a general overview of the development technologies’ performance, we have
weighted them based on each measurement metric’s mean value. We assign the framework
with the lowest mean a score of 6 (highest), the highest mean a score of 1 (lowest), and the
remaining scores are assigned in the same order to the remaining frameworks. This inverse
ranking of the six considered technologies allows us to identify the overall performance-
wise best- and worst-scoring technologies in our study. For this weighting, we do not
separate between the different mobile devices or benchmarking tasks (e.g., geolocation,
accelerometer, etc.). Instead, we base the weighting on the results presented in Sections 4.1,
4.2 and 4.3. Also, what Table 26 does not take into account is standard deviation or varia-
tion, so even if a framework is given a high or low weight, it does not necessarily reflect a
consistently high or low performance.

Performance-wise, the model-driven MAML/MD2 framework closely resemble the over-
all

∑
of the native development approach, according to Table 26. As model-driven

frameworks generate platform-specific source code, this is perhaps not by itself a surprising
finding. Possibly more surprising is the seeming lack of industry adoption of model-driven
cross-platform development frameworks (Biørn-Hansen et al. 2019) when the results so
closely resemble native performance, unlike several of the more industry-adopted frame-
works scoring lower on the weighting. Thus, our findings may imply that practitioners and
industry decision-makers should look more towards the model-driven approach, based on
the performance results presented in this study.
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As Table 26 illustrates, the hybrid approach-based Ionic framework has the overall lowest
score. It ranks lowest on three of five metrics, however outperforms React Native on CPU
usage and Flutter on PreRAM usage by one point each. The framework’s overall ranking
is in line with previous studies on performance in cross-platform applications, including
El-Kassas et al. (2016) and Katevas et al. (2016), and Abousaleh et al. (2014).

Flutter has PreRAM and RAM scores comparable to the Ionic framework’s results, how-
ever has the best score for ComputedRAM. This could indicate that while Flutter has high
overall memory requirements, the effect on the memory usage when executing a task is
lower than for the other frameworks. In terms of TTC and CPU, Flutter has an average score.
We have not identified previous academic studies empirically investigating the performance
of the Flutter framework.

What Table 26 best illustrates is the cross-platform trade-off developers face. If time-
to-completion is the most important metric, thus adopting NativeScript, this will come at
the cost of ComputedRAM. If minimizing ComputedRAM is important, Flutter scores
the highest, but also has the lowest PreRAM score, meaning it overall consumes the most
memory prior to executing a task (Geolocation, contacts, etc.). As a developer or decision-
maker deciding on a cross-platform development framework, having a clear idea of product
requirements and specifications is of paramount importance.

RQ: To what degree do cross-platform mobile development frameworks impose addi-
tional performance-related overhead when compared to native mobile development?

Evidently, the results presented in Table 26 suggest that using one of the cross-platform
frameworks tested will impose additional performance overhead compared to native in the
context of executing native-side functionality. The severity of this overhead, however, ranges
from rather small in the case of MAML/MD2, to more than threefold in the case of Ionic
when compared on the final weighting

∑
. Nevertheless, while the native approach has

the highest overall
∑

, other cross-platform frameworks were found to possibly be more
performant on certain metrics, such as NativeScript’s time-to-completion and CPU usage,
and Flutter’s minimal increase in memory usage during task benchmarking, as seen in the
ComputedRAM column.

5.2 Implications

In terms of practical implications, a major finding is the importance of having a techni-
cal specification or set of requirements as the foundation for deciding on a cross-platform
development framework and overarching development approach. While the weighting of
frameworks in Table 26 presents native as the overall best performing approach, other
frameworks score higher in terms of certain metrics, e.g., NativeScript which scores
highest on time-to-completion and CPU usage during task execution, or Flutter’s lowest
ComputedRAM usage. We do not believe there is a silver bullet among the frameworks
included in our evaluation, however the weighting of frameworks and results from our
experiment can hopefully help in future technical decision-making processes. Another
implication for practice is Table 26, which could aid in decision-making where device
attributes (e.g., processor and memory capabilities) are critical, for example in developing
countries and emerging markets where typical mobile devices might be more on the lower
end hardware-wise. Thus, our results suggest a varying degree of performance overhead
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imposed by the cross-platform frameworks tested, although holistically the native approach
provides an overall better performance when ranked on mean result values.

As for implications for future research, this paves the way for a discussion about the role
and possible neglect of cross-platform frameworks and their bad reputation. Our methodol-
ogy and through this, our results, highlight a baseline for comparison of such frameworks
in future studies. Further, we add to the body of knowledge with a baseline of reference for
future research projects and mobile performance studies.

5.3 Limitations

There are several threats to validity when conducting a software engineering experiment,
and the study at hand is no exception. Differences in software architecture, programming
languages, and cross-platform framework capabilities and matureness were some of the
topics in question when designing the experiment. We put a great deal of effort into har-
monizing the technical artifacts prior to the benchmarking. This was indeed important,
as different developers worked on feature implementation, potentially resulting in skewed
benchmarks as a result of differences in the artifacts. However, across or even within
one framework or programming language, the same effect can be implemented by vari-
ous means. We aimed for an efficient implementation of each artifact, although we did not
explicitly test for differences within one framework.

Nevertheless, inevitable limitations of the study are the inherent differences between the
frameworks, especially between different approaches to achieve cross-platform capabili-
ties. For this reason, we focused on the programmatic access to the platform functionalities
and deliberately disregarded their representation on screen to avoid interconnecting device
access and UI rendering. Further research is possible to focus on the UI performance aspect
of cross-platform benchmarks, although some approaches such as the reactive nature of
React Native impede an efficient measurement of rendering performance. Additionally, as
discussed in Section 3.4 on data gathering, timer APIs and their precision differed especially
between the programming languages, rendering the timer unit in the Flutter implementation
different from that in, e.g., the React Native artifact. This is a consideration that must be
accounted for in the data analysis.

To the best of our abilities, we also ensured a common baseline between the devices,
e.g., that WiFi and mobile data would be turned off, and that the apps would be terminated
and restarted after each benchmark run (n = 1 run), ensure no bias through singular effects.
Nonetheless, we are aware of the possibility of platform- and hardware-level measures out
of our control, possibly impacting the results produced and reported on. This includes back-
ground tasks executed by other apps or the operating system, and also peaks in the execution
time of the first run although each run is set up identically and resets all values after the
measurement stops.

In terms of executing the benchmarks on-device, there is a possible performance impact
when pressing the “Start benchmark” button in the graphical user interface. It should be
assumed that pressing said button would require some processing power, which we do not
account for in our current study. The same could also be said for re-rendering the screen
with results, which is likely to require additional processing power. Nevertheless, this is true
for all the benchmarks we’ve executed on all devices in all frameworks. These are covariates
one could account for in future studies. Investigating the potential impact of running the
Android Studio profiler on the development machine while executing the benchmarks on
the mobile device (connected via USB), would also make for an interesting study. To the
best of our knowledge, there is no other possible approach to conduct the gathering of
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CPU and RAM data with minimal impact on benchmark performance. Also, the Android
Studio profiler is the official profiling tool, thus the context would be similar to that of a
practitioner’s experience when profiling Android apps.

Finally, the combination of operating system version, framework version, and device
capabilities has an immediate impact on the benchmark outcome and its reproducibility. To
compensate for this problem, we have selected the devices to cover a variety of Android ver-
sions (version 6.0.1 to 8.0) which together account for 66.4% of currently installed Android
operating systems (Google LLC 2018). In addition, the chosen list of devices includes recent
devices with state-of-the-art computing power as well as older devices (cf. Table 3).

With regard to generalizability, we selected four commonly used device features for our
study (cf. Section 3.3), i.e., accelerometer, contact list, file system, and geolocation. This
selection covers both hardware and software features but of course further extension to other
device capabilities is desirable. In particular, the device camera is arguably an important
sensing component which could not yet be covered due to the aforementioned problems
concerning comparability.

5.4 Outlook and Directions for Research

The implications of our study leave no doubt that much further research is needed. A fram-
ing is provided by the limitations, which at least partly ought to be overcome to make
further contributions to theory. We additionally propose steps and ideas for future research
as follows.

(i) A meta study investigating both technical and non-technical metrics and criteria
could lead to a complete decision framework for cross-platform frameworks and
approaches. While this current study investigates the performance of native func-
tion calls from cross-platform frameworks, it does not weigh or rank non-technical
metrics or criteria including developer experience and happiness, tooling, number of
supported platforms, extensibility, and more. These are indeed often-cited reasons to
adopt a cross-platform development approach, even for single-platform development
(McPherson 2019; Therox 2019). While such a meta study would be a grand under-
taking, especially in a field of such rapid innovation, the outcome could be equally
grand, and have impact and practical implications also outside of academia.

(ii) An investigation of the impact on user experience would be equally valuable.
While the metrics we have included for this study, being time-to-completion (TTC),
CPU, PreRAM, RAM, and ComputedRAM, can provide an overview of system per-
formance, they do not inherently help in exploring user experience. We suggest
developing user interface-rich mobile apps using the same set of cross-platform
frameworks as included in this current study, and rather measure the users’ experience
and perception of quality, usability, and possibilities of developing high-quality user
interfaces. Can an Ionic app, scoring the lowest on TTC, RAM, and ComputedRAM
still provide a user experience on a par with the frameworks scoring higher on these
metrics?

(iii) With the introduction of novel device classes, including foldable and flexible touch
screens on mobile devices, smart car displays, smart wearables and more, what are the
current possibilities and boundaries of cross-platform frameworks in these contexts?
Also, are there unexpected differences in app performance between different Android
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operating system versions? Does perhaps a newer version of the operating system
allow cross-platform apps better performance than previous versions?

(iv) Development of a testbed which reduce the workload related to benchmarking and
profiling. I.e., automated extraction and aggregation of CPU/RAM data from on-device
apps executing benchmarks, and better so with multi-device support to minimize
time spent waiting for results before switching devices to perform the exact same
benchmarks again.

(v) In this current study, we have intentionally left out Apple iOS devices. This was done
due to the already comprehensive data material and extent of the paper. For future
research, we deem it only natural that a similar study will focus on Apple’s iOS
ecosystem.

(vi) With the increased focus on Progressive Web Apps, we urge the inclusion of this
approach in future studies of similar nature. Looking into the potential enabling fac-
tors and drawbacks of this Web-native approach would be nothing short of timely and
relevant to both practice and research.

6 Conclusion

In this study, we have investigated the performance overhead imposed by cross-platform
mobile development frameworks in Android apps compared to the native development
approach. Specifically, we have focused on the performance of native-side foreign func-
tion interface calls from a cross-platform context, to invoke and run device and plat-
form functionality, including geolocation API, contacts API, file system integration, and
accelerometer integration. We have gathered data on five metrics: CPU usage, idle-state
memory consumption (PreRAM), during-benchmark memory consumption (RAM), the
difference between RAM and PreRAM (ComputedRAM), and the lapsed time from invok-
ing a benchmark task until data is returned from the native side (time-to-completion
(TTC)).

In total, n = 16 290 individual data points related to these metrics were manually gath-
ered for analysis through a rigorous and time-consuming data collection process. Based
on statistical analysis and a weighted evaluation of the results, we investigate how well
our developed artifacts perform compared to a developed native baseline artifact. Our
results indicate that the use of cross-platform frameworks for the development of mobile
apps may lead to decreased performance compared to the native development approach.
Nevertheless, the results also indicate that certain cross-platform frameworks can perform
equally well or even better than native on certain metrics but no framework scores best
across all features in this study. These findings reinforce the importance of well-defined
technical requirements and specifications, without which deciding on a cross-platform
framework or overall development approach can potentially lead to underperforming
apps.
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