
Contents lists available at ScienceDirect

Information Processing and Management

journal homepage: www.elsevier.com/locate/infoproman

Discovering web services in social web service repositories using
deep variational autoencoders
Ignacio Lizarraldea, Cristian Mateosa, Alejandro Zunino⁎,a, Tim A. Majchrzakb,
Tor-Morten Grønlic
a ISISTAN – UNICEN – CONICET. Tandil, Buenos Aires, Argentina
bUniversity of Agder, Kristiansand, Norway
cKristiania University College, Oslo, Norway

A R T I C L E I N F O

Keywords:
Service-oriented computing
Web Services
Service discovery
Deep neural network
Variational autoencoder

A B S T R A C T

Web Service registries have progressively evolved to social networks-like software repositories.
Users cooperate to produce an ever-growing, rich source of Web APIs upon which new value-
added Web applications can be built. Such users often interact in order to follow, comment on,
consume and compose services published by other users. In this context, Web Service discovery is
a core functionality of modern registries as needed Web Services must be discovered before being
consumed or composed. Many efforts to provide effective keyword-based service discovery
mechanisms are based on Information Retrieval techniques as services are described using
structured or unstructured textdocuments that specify the provided functionality. However,
traditional techniques suffer from term-mismatch, which means that only the terms that are
contained in both user queries and descriptions are exploited to perform service retrieval. Early
feature learning techniques such as LSA or LDA tried to solve this problem by finding hidden or
latent features in text documents. Recently, alternative feature learning based techniques such as
Word Embeddings achieved state of the art results for Web Service discovery. In this paper, we
propose to learn features from service descriptions by using Variational Autoencoders, a special
kind of autoencoder which restricts the encoded representation to model latent variables.
Autoencoders in turn are deep neural networks used for unsupervised learning of efficient cod-
ings. We train our autoencoder using a real 17 113-service dataset extracted from the
ProgrammableWeb.com API social repository. We measure discovery efficacy by using both
Recall and Precision metrics, achieving significant gains compared to both Word Embeddings and
classic latent features modelling techniques. Also, performance-oriented experiments show that
the proposed approach can be readily exploited in practice.

1. Introduction

The SOC (Service Oriented Computing) paradigm has become essential for developing Web 2.0 applications. SOC promotes
assembling Internet-accessible components, called services, to create new applications. Applications can be developed using existing
services as basic software components, potentially decreasing the cost of developing new software due to increased code reuse. Web
Services, the most common technological materialization of SOC, are common in the industry because they expose functionality and

https://doi.org/10.1016/j.ipm.2020.102231
Received 1 October 2019; Received in revised form 18 February 2020; Accepted 19 February 2020

⁎ Corresponding author
E-mail address: alejandro.zunino@isistan.unicen.edu.ar (A. Zunino).

Information Processing and Management 57 (2020) 102231

Available online 06 March 2020
0306-4573/ © 2020 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/03064573
https://www.elsevier.com/locate/infoproman
https://doi.org/10.1016/j.ipm.2020.102231
https://doi.org/10.1016/j.ipm.2020.102231
mailto:alejandro.zunino@isistan.unicen.edu.ar
https://doi.org/10.1016/j.ipm.2020.102231
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipm.2020.102231&domain=pdf

data that can be seamlessly accessed remotely. Furthermore, as social networks and Web Service-powered computing paradigms such
as Cloud Computing became more popular, new applications, which combine Web Services from different sources –or mashups–
emerged (Garriga, Mateos, Flores, Cechich, & Zunino, 2016).

Web Service descriptions enable consumers to utilize services without having to know how they are implemented because each
description acts as an API documentation. These descriptions not only define service data-types and operations, but also support
communication protocols, such as HTTP and SOAP, and data formats, such as JSON and XML. Web Service descriptions are produced
by using markup-based Web Service description languages (Chinnici, Moreau, Ryman, & Weerawarana, 2007), which are built upon
standard markup languages –mainly XML– and textual content, or semantic description languages (David et al., 2007; Roman, Keller,
Lausen, de Bruijn, & Lara, 2005) that exploit ontologies. Additionally, these descriptions can be SOAP-oriented or REST. SOAP-
oriented Web Services are described through markup-based description languages such as WSDL or semantic description languages
such as OWL or SAWSDL. In contrast, REST Web Services use newer, yet less widespread, descriptions such as WADL and OpenAPI
Specification for markup-based descriptions or SA-REST (Gomadam, Ranabahu, & Sheth, 2010; Lathem, Gomadam, & Sheth, 2007)
for semantic descriptions.

Service providers create and publish Web Service descriptions to make their services available, after which they have to be
discovered. Moreover, as producing semantic services requires annotating Web Service descriptions (i.e. data-types, operations,
messages, and so on) with semantic concepts from ontologies, which in turn has been recognized as a rather difficult
task (Corbellini, Godoy, Mateos, Zunino, & Lizarralde, 2017), researchers have concentrated on the so-called syntactics-based ap-
proaches for service discovery. In this way, earlier works have addressed discovery of markup-based services for SOAP-
oriented (Crasso, Zunino, & Campo, 2011; Wu, 2012) and REST services (Lizarralde, Rodriguez, Mateos, & Zunino, 2017; Rodriguez,
Zunino, Mateos, Segura, & Rodriguez, 2015). Despite these advances, application developers still struggle to find relevant
services (Maamar, Hacid, & Huhns, 2011), a problem that is nowadays even more prevalent in light of social Web Service repositories
such as RapidAPI.com and ProgrammableWeb.com (Corbellini et al., 2017). These repositories encourage service clients and pro-
viders not only to reach out and cooperate with the task of single service refinement (e.g. bug fixes, enhancements suggestions), but
also to relentlessly publish new value-added composed services (mashups). This makes the registry grow further and hence accurate
service discovery becomes more challenging. For example, ProgrammableWeb.com grew from hundreds of services in 2005 to more
than 17 000 in 2017. Fig. 1 illustrates this growth.

Most existing syntactics-based Web Service discovery approaches adapt traditional Information Retrieval (IR) techniques to match
keyword-based queries against a stored database of markup-based Web Service descriptions (a.k.a. documents), which may contain
such keywords (Crasso et al., 2011). When a user’s query contains multiple topic-specific keywords that are (partially) contained in
the service descriptions, traditional Web Service registries are likely to return good matches. However, users often employ short
natural language sentences, thereby reducing the potential usefulness and number of input keywords. This is problematic when
retrieving service descriptions because only words in the query can be exploited for the search, leading to term mismatch. This is
instead caused by the vocabulary problem (Furnas, Landauer, Gomez, & Dumais, 1987), which stems from polysemy (same word with
different meanings, e.g. ’Java’), synonymy (different words with the same or similar meanings, e.g. ’tv’ and ’television’) and quasi-
synonyms (words that are not synonyms per se but can be used as synonyms in particular contexts, e.g. ’diseases’ and ’disorders’).

An early attempt to reduce term mismatch was query expansion (Carpineto & Romano, 2012), which tries to solve this issue by
finding features correlated with the query terms. Usually, query expansion is performed by using lexical databases, notably
WordNet (Miller, 1995), which is a very common strategy to improve service discoverability (Carpineto & Romano, 2012;
Vechtomova & Karamuftuoglu, 2007). However, query expansion does not take into consideration the service description side, which
contains most of the service functionality declaration. To deal with this problem, the community started using dimensionality re-
duction techniques such as Latent Semantic Analysis (LSA) (Kontostathis & Pottenger, 2006) or Latent Dirichlet Allocation

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

N
um

be
r

of
 s

er
vi

ce
s

Year

ProgrammableWeb single services
ProgrammableWeb mashups

Fig. 1. ProgrammableWeb.com growth (2005-2017).

I. Lizarralde, et al. Information Processing and Management 57 (2020) 102231

2

(LDA) (Blei, Ng, & Jordan, 2003) which aim to reduce the size of the corpus’ vocabulary, mainly by grouping related terms from
service descriptions into concepts. These concepts can then help to group related services, thus improving the probability of re-
trieving relevant services.

LSA and LDA are indeed successful techniques, yet they became outperformed by newer machine learning-based techniques for
certain feature learning tasks. In particular, Autoencoders (Salakhutdinov & Hinton, 2009) are a special type of neural network that
attempts to copy the input to its output. However, instead of just doing so, a major contribution of autoencoders is that they reduce
the input feature set to a smaller number of features. This allows the autoencoder to find hidden features of the data, similarly to LSA
or LDA, and also represent more complex relationships due to the non-linear capacity of its internal network (Kingma &
Welling, 2013).

After the success that autoencoders had for image preprocessing (Kingma, Mohamed, Rezende, & Welling, 2014), the research
community began to apply them in other domains such as document hashing (Salakhutdinov & Hinton, 2009), and more recently text
classification (Xu, Sun, Deng, & Tan, 2017) and movie recommendation (Li & She, 2017). Motivated by these facts, in this paper we
focus on studying autoencoders to represent text extracted from service descriptions. We specifically investigate how to improve Web
Service discoverability by using a generative autoencoder called Variational Autoencoder (Kingma &Welling, 2013) (VAE) to create a
latent space that represents the registry content, i.e. set of service descriptions. Our approach transforms each user’s query to the
latent space and performs cosine similarity over the latent vector space to find relevant Web Services, for which we propose to modify
the autoencoder cost function. The main hypothesis behind our work is that this approach improves discoverability by reducing term
mismatch since autoencoders would be able to find complex, latent term relationships between service descriptions, and queries and
service descriptions.

Methodologically, we trained the VAE component of our approach using a dataset of 17, 113 service descriptions crawled from
ProgrammableWeb.com. We preprocessed each service description to derive its bag of words, and each bag of words was then
transformed into a vector using TF-IDF to train the VAE. Then, we used the trained model along with a subset of the main dataset
(2772 services) and service queries to assess the performance of the approach. We compared the results of our approach in terms of
common IR metrics, namely Precision, Recall, F-Measure and NDCG (Normalized Discounted Cumulative Gain). As baselines, we
considered VSM (Vector Space Model) (Salton, Wong, & Yang, 1975), as it is the canonical IR model to retrieve documents, LSA,
which is one of the first models that tried to estimate continuous representations of words (Lee, Lee, Hwang, & Lee, 2007; Paliwal,
Adam, & Bornhövd, 2007; Platzer & Dustdar, 2005; Sajjanhar, Hou, & Zhang, 2004), and Word Embeddings, which showed promising
results in previous work (Lizarralde et al., 2017). The results show an improvement over these techniques of up to 14% in Precision,
12% in Recall, 25% in F-Measure and up to 10% in NDCG.

The rest of the paper is organized as follows. The next Section explains the concepts that underpin the problem and our approach.
Section 3 revisits prominent dimensionality reduction techniques used so far to address the same problem. Then, Section 4 outlines
our proposed approach, and explains the added value of using VAE. Section 5 presents the above-mentioned experimental evaluation.
Section 6 analyses previous works in service discovery, e.g. both syntactics-based and semantics-based approaches. Finally, Section 7
concludes the paper and outlines future research opportunities.

2. Background

In the context of this paper, discovering Web Services means finding those that fulfill client side application needs. For example,
one might want to develop a new application to recommend movies and read or store user opinions on specific movies, while
delegating the task of translating text between different languages to an external service such as Google Translate or Microsoft
Translator. Therefore, the application developer has to search the service registry for relevant translation services, which is usually
done by providing a keyword-based query that is compared against service descriptions stored in the registry. To make this possible,
service providers –Google and Microsoft in this case– must publish their services in the registry. The registry in turn has to process
each service description in order to make it available for developers to discover. Fig. 3 depicts the canonical publishing process in
syntactics-based service registries, which is divided in two main stages: preprocessing and indexing.

Preprocessing consists of two major tasks, namely a) extracting raw words or tokens from service descriptions, and b) extracting
relevant information from such words while removing noise, i.e. creating what is known as a bag of words. The first task depends on
the description language adopted for describing Web Services, which as evidenced by online description format converters1, there are
over 15 alternative formats. Moreover, services might even be described using natural language, as it is the case of Program-
mableWeb.com. For example, for a service described using natural language, extracted raw words would be plainly those of the
description. Moreover, for WADL specifications, the task involves extracting operations, parameters and service names along with all
the documentation present in the service description to derive raw words from it to feed task b). In our approach, we provide support
for popular specification formats (WADL, WSDL and natural language). The second task, however, involves polishing and splitting the
raw words, which means that irrelevant words are filtered out from the bag, and word stems are obtained. This task is the same
regardless of the description language adopted for describing services.

Consider for instance the service description in Fig. 2 which is the set of sentences that represent the meaningful service in-
formation extracted from the service specification in WADL format depicted in Listing 1. The description defines the main resources
exposed by the service (translate_text), together with the accepted HTTP operations and parameters (only GET in this case). Once the

1 https://www.apimatic.io/transformer

I. Lizarralde, et al. Information Processing and Management 57 (2020) 102231

3

https://www.apimatic.io/transformer

raw words are extracted (first preprocessing tasks), stemming and stopword removal will be applied before indexing (second pre-
processing task). Stemming reduces words to their word stem, while stopword removal filters out useless words to increase search
performance. For example, the raw API textual sentence “Translates text between languages” would be converted to “translat text
languag” after performing stemming and stopword removal.

Note that if Word Embeddings are going to be used to represent service descriptions internally in the registry (see Section 3.2),
only stopword removal is going to be applied, skipping stemming. The reason stopword removal is applied before is to remove noise
when creating vector representations of service descriptions. Also, stemming is not performed because in order to add features to the
bags of words they must be converted into vectors and once vectors are created the process cannot be reverted.

Furthermore, indexing is the process through which the preprocessed bags of words are converted into vectors and an index is
created in the registry. Then, when a user enters a query such as “text translation”, relevant service descriptions can be retrieved. This
is the last step when different algorithms such as VSM, LSA, or –as proposed in this paper– VAE are utilized to create the service
description vector space.

To index service descriptions, VSM is usually utilized in the literature, where descriptions are transformed using the well-known
TF-IDF scheme. However, TF-IDF representations result in big sparse vectors that become more ineffective as the vocabulary grows in

Fig. 2. Translation service – Words extracted from document.

Listing 1. Text translation service: WADL description.

I. Lizarralde, et al. Information Processing and Management 57 (2020) 102231

4

size, which is the case of current Web Service registries hosting thousands of descriptions from a myriad of different domains
(Science, Finance, Games, Business, Technology and so on). To cope with this, dimensionality reduction techniques such as Principal
Component Analysis (PCA) or LSA can improve the search by finding concepts in the data, grouping words in the vocabulary and
reducing sparsity (see Section 3.1). Another way to create good representations of service descriptions is to use Word Embeddings
(see Section 3.2) to model service description words (Lizarralde et al., 2017). This results in non-sparse representations of service
descriptions that can hold valuable information that is not present in the dataset, e.g. if the Word Embeddings were trained with a
different dataset. Finally, in recent years advances in hardware capabilities and the increasing amount of available data made deep
learning approaches viable. In Section 4 proposal, i.e. how we applied VAE to improve Web Service discovery. VAE consists in a two-
phase neural network that encodes an input and tries to reconstruct it from the encoded representation. The benefit of this is when the
encoded representation is small enough for the VAE to reconstruct the output exactly, which forces the autoencoder to group features
to form concepts.

3. Traditional dimensionality reduction techniques for web service discovery

Given the publishing process explained in the previous section, we now concentrate on the indexing step, which is where our
contribution lies. To this end, we step into the main alternatives that have been explored to represent service descriptions as vectors.
Particularly, we focus on the use of plain VSM and variants (Section 3.1) and Word embeddings (Section 3.2). Indeed, VSM+LDA,
VSM+LSA and Word Embeddings are regarded as competitors of our approach in our experiments (Section 5).

3.1. VSM boosted with LSA/LDA

VSM models a continuous vector space in which service descriptions are seen as a collection of terms, whereas each dimension of
the space corresponds to a separate term (usually single words). For example, Fig. 4 represents a description containing the terms
“text” and “translate”. As a result, descriptions that have similar contents are represented as vectors located near each other in the
vector space. Thus, determining related descriptions is equivalent to searching for nearest neighbors in the space. Fig. 5 depicts two
vectors and their angle Ω, which is used to calculate the similarity between descriptions as the cosine (Ω). This scheme has been used
in the past to implement Web Service registries with varying degrees of success (Lee et al., 2007; Platzer & Dustdar, 2005). Moreover,

Fig. 3. Service publishing process in syntactics-based registries: schematic view.

I. Lizarralde, et al. Information Processing and Management 57 (2020) 102231

5

by representing queries as vectors too, service lookup operates by comparing query vectors and description vectors. Specifically, the
vector representing a query is matched against the vectors in the space (i.e. the available services). The service whose vector
maximizes the spatial nearness –usually cosine similarity– to the query vector represents the first hit.

Despite being widely used, VSM only addresses syntactic term relationship. One major challenge towards improving service
discoverability is developing techniques to find and relate the underlying meaning of words from service descriptions. The problem
with retrieving descriptions that are relevant to the user resides in deciphering clients’ needs. Ideally, different words should be
directly related to different concepts, as shown in Fig. 6. Unfortunately, written languages have multiple words that are associated
with the same concepts, as Fig. 7 shows, hiding the real meaning or concept behind the words. One attempt to solve this problem is
LSA (Kontostathis & Pottenger, 2006), which works by analyzing word co-occurrence in documents. If two words usually appear in
the same context, they will probably be related. To cite an example beyond text translation, the words “currency” and “dollar” might
usually appear together in descriptions from the Finance domain. To do this, LSA utilizes a mathematical technique known as
Singular Value Decomposition, which maps words into concepts by reducing the number of dimensions of the term occurrence
matrix. Words are then compared by calculating the cosine of the angle between the two vectors representing the words as concepts.

This capability is exploited to match client’s queries to relevant services. Upon receiving a keyword-based query –e.g. “text
translation”–, a VSM-powered registry will first map the query onto a vector in the VSM space via TF-IDF, which is then compared
with the vectors representing stored descriptions.

3.2. Word embeddings

Initial dimensionality reduction techniques such as LSA have proven to be valuable to find concepts present in service descriptions
and improve service retrieval (Lizarralde et al., 2017). Another approach is to learn features from words (Word Embeddings), and
transfer this knowledge to create better service description representations. Word Embeddings aim to capture features or char-
acteristics from words. To achieve this, each word is represented as an n-Dimensional vector in a continuous vector space where each
dimension represents concepts or categories shared across words. For example, one of the dimensions could have captured the
concept of language, resulting in words like ’English’ or ’Spanish’ having higher values for that dimension than words such as ’book’
or ’pen’. Fig. 8 depicts the result of applying a t-Distributed Stochastic Neighbor Embedding (t-SNE) (van der Maaten & Hinton, 2008)
dimensionality reduction technique to a generated embedding vector space. It can be observed that words which hold a relationship
are near to each other.

Fig. 4. Representation: Each term n has its own axis in the n-dimensional space; axis values represent the importance of the term in a description.

Fig. 5. Comparison: Two different descriptions might have different vectors along the same axes (i.e. terms); the cosine of the angle between the two
vectors determines their similarity.

Fig. 6. Ideal case.

I. Lizarralde, et al. Information Processing and Management 57 (2020) 102231

6

Word2Vec (Mikolov, Sutskever, Chen, Corrado, & Dean, 2013) was the cornerstone of modern approaches for Word Embeddings.
It proposed a predictive approach for modelling words called Skip-Gram. As words are inherently affected by the context in which
they are used, a window around a target word could be defined and then try to predict that word given the context window, based on
the features that the target word has. Trying to minimize the error in predicting any target word will lead to learn good re-
presentations for all words.

Another popular alternative to Skip-Gram is to try the inverse process of predicting the target word given a context word (CBOW).
Fig. 9 shows an example of a Neural Network architecture for this approach. In this example, g is the function that the Neural Network
tries to minimize. In this case, g represents the network loss when trying to predict target words (e.g. ’mat’) from source context
words. More recent studies (Bojanowski, Grave, Joulin, & Mikolov, 2017) showed that one of the caveats of Word2Vec is that it does
not properly handle the morphology of words since it considers each word as an atomic element. FastText (Bojanowski et al., 2017)
utilizes the same predictive scheme as Word2Vec (Skip-Gram) but addresses this limitation by considering each word as a bag of n-
grams. For each n-gram, FastText will learn a vector representation of that specific n-gram. Then, each word will be represented as
the sum of the vectors of individual n-grams. For example, considering n=3 as the size of the n-gram, the word text will be re-
presented as <te, tex, ext, xt>, where special characters “<” and “>” represent the start and the end of the word. This simple model
allows sharing representation across words, enabling FastText to calculate embeddings of rare words that do not appear in the
training data.

Predictive approaches showed that Word Embeddings can create effective representations of words. Nevertheless,
GLoVe (Pennington, Socher, & Manning, 2014) takes a different direction with a count-based approach that outperforms Word2Vec.

Fig. 7. Real case.

Fig. 8. Word Embeddings: Vector Space.

Fig. 9. Word2Vec: CBOW Neural Network.

I. Lizarralde, et al. Information Processing and Management 57 (2020) 102231

7

Count-based approaches work by first calculating co-ocurrence probability between words along the corpus, and then a word is
related with another word if they have a high joint probability. The next step to create the embeddings is to perform a “learning” step
where the embeddings are refined to be effective representations of the joint probabilities. This is done for instance by using logistic
regression, in order to create a matrix that can “explain” the original matrix by minimizing the matrix reconstruction loss.

Moreover, effective word feature representations allow us to perform interesting language operations between words or sen-
tences. For example, analogies such as “man is to king is like woman is to ___? (queen)” or calculating how semantically related two
words are. Particularly, word similarity have proven to be useful for comparing and representing Web Service
descriptions (Lizarralde et al., 2017). Service descriptions can be reduced to a bag of words, and since each word is represented as a
vector in the Word Embeddings space, the words contained in a service description can be averaged to create a vector that represents
that description. Then, the same process can be followed to transform a client’s query into a vector in that space and compare it
against the service description using cosine similarity.

4. Variational autoencoders applied to web service discovery

Finding the underlying meaning of service descriptions or queries is key to improve discoverability. Accurately doing so without
requiring client and service providers to exploit pure semantic-based approaches is in the agenda of various researchers. We will now
discuss how we apply autoencoders to index Web Service descriptions, as an alternative to VSM-based approaches and Word
Embeddings.

Autoencoders are neural networks that try to model the input as a new set of features in a lower dimension (encoder), to then
reconstruct the original input from the new set of features (decoder) assuming some loss in this bi-directional process (see Fig. 10).
The objective function is equivalent to minimize the reconstruction error between the original and the reconstructed input. By
reducing the dimensionality of the original input, autoencoders extract interesting features from the input data.

Autoencoders have been used in the past as a pre-training step to extract meaningful features given that labelled data was not in
abundance. However, as more labeled data became available, their use declined as they could not offer a noticeable improvement
versus classic supervised techniques. More recently, different variations of autoencoders arose and started showing promising results
for image preprocessing (Kingma et al., 2014). Broadly speaking, autoencoders comprise two phases, an encoding phase that
transforms the input data into a lower dimensional representation, and a decoding phase that tries to reconstruct the encoded data
back into the original data. An objective function then compares the output against the original input to minimize the reconstruction
error.

Despite autoencoders having been widely applied for preprocessing images, the benefits of applying autoencoders in the text
domain have not been widely explored yet. One existing effort worth mentioning is the work by Chen and Zaki (2017), who propose a
novel autoencoder for text that outperforms vanilla autoencoders and state of the art techniques for word-feature extraction such as
Word2Vec. The authors state that applying traditional autoencoders to learn text features that are not different from one another,
leads to noise/redundancy. This is the result of groups of neurons that shared similar groups of input neurons with whom they had the
strongest connections. To mitigate this problem the authors propose KATE (K-Competitive Autoencoder) which introduces constraints
to neurons by stimulating mutual completion, resulting in specialized neurons that can identify important patterns in the data.

New studies explored different autoencoder variations. In particular, VAE (Kingma & Welling, 2013) represents a special type of
generative (Westerveld, de Vries, & de Jong, 2007) autoencoder. Instead of directly encoding the input into a new representation,
VAE models a Gaussian distribution. To do this, the encoder first uses an intermediate layer that reduces the dimensionality of the
input hinf. Then it uses the reduced input to model two parameters, the mean μ and the standard deviation σ (see Fig. 11). After that,
the parameters are used to sample a random point in the distribution z, and finally, hgen reconstructs the input from that point using
the reverse process. The main difference with traditional autoencoders is that VAE relies on a generative model, this is, this latter tries
to optimize p(x, y), while a discriminative model will optimize p(y|x). For example, in the case of modeling documents, VAE will learn
the distribution of documents in the corpus, instead of learning how to classify or associate documents with their representations.

On one side, VAE provides a benefit similar to LSA or LDA, which is dimensionality reduction and consequently, reduced vector
sparsity. This has a direct impact in Web Service discovery because as we mentioned before, algorithms are sensitive to noise and
sparse vectors (Chen & Zaki, 2017). On the other side, unlike linear approaches such as LSA or LDA, VAE can represent complex non-
linear functions which, in the case of text, results in better document encodings. Conceptually, this means that VAE can be used to
obtain better Web Service description vectors that not only are not sparse but also contain valuable concepts. We set forth the
hypothesis that accurate vector representations of Web Service descriptions using VAE will result in more precise comparisons when
finding relevant services, thus improving Web Service discovery.

Fig. 10. Simple autoencoder.

I. Lizarralde, et al. Information Processing and Management 57 (2020) 102231

8

LSTM networks are another option widely used for language modelling because of their ability to consider sequence of words.
However, we exclude LSTM networks since they have two problems when applied to Web Service discovery. On one side, LSTM
networks are usually trained in a supervised scheme. This makes the training process very difficult since we have to manually
annotate all service descriptions, including new services that are published into the registry constantly, which is the case of modern
registries. Second, LSTM networks are used for tasks such as generating or classifying text, but they are not the most appropriate
model to create encoded representations from service descriptions.

For the aforementioned reasons, we utilized VAE to index Web Services. First, our approach assumes bag of words extracted from
the preprocessing step when publishing service descriptions, and each of these bags are transformed into vectors by applying TF-IDF
as shown in Fig. 3. Then, VAE is trained using these vectors to model a lossy representation of the descriptions.

As suggested, two essential components of VAE are the encoder and the decoder. They work in tandem in order to learn the
identity function such that given any input (service descriptions) the output is as close as possible to the given input. To this end, a
third essential component is the cost function, which measures reconstruction performance. In our approach, publishing descriptions
in the registry first requires preprocessing and vectorizing each description using TF-IDF and L2 normalization. Moreover, in the
training phase of our VAE, input data (vectors) can be interpreted as the target data (vectors). So the cost function basically reflects
the mismatch between input vector and encoded vectors (Amaral et al., 2013). The cost function formula is defined as follows:

= +cost loss regularization

The loss function is the one that is gradually minimized during VAE training, whereas the regularization term is used to prevent
data overfitting. We decided to utilize cosine similarity as the loss function for the VAE, since it is a well known effective technique to
compare plain document vectors (Gomaa & Fahmy, 2013). Then, the loss function is defined as the cosine similarity between the
encoded generated vector xgen and the input vector x, and n is the dimension of the vectors (English vocabulary size excluding
stopwords):

= = =

= =

loss x xgen
x xgen

x xgen

x xgen
. i

n
i i

i
n

i i
n

i

1

1
2

1
2

(1)

and the regularization term, which is used for generalization to obtain abstract representations of the encoded vectors, is defined as:

= +
=

regularization µ e1
2

* (1)
i

n

i i
1

2 i

(2)

Once the autoencoder is fully trained –using 100 epochs in our experiments–, we utilize it to create an encoding vector space of
the corpus. Then, each time a user searches for a service, the input query is transformed to the same vector space and compared
against each description to find the most similar services. The comparison is also done using cosine similarity, as defined in (1), but by
considering as vectors being compared that of the query and the encoded documents in the registry. Then, a query-service similarity
ranking is returned to the user.

For example, consider the same service presented in the previous section, which is the set of sentences that represent the
meaningful service information extracted from the description in Listing . Now, consider Fig. 12 which depicts the matching process.
First, a user performs a query, e.g. “text translation”. Second, this query is transformed using the encoding phase of the VAE network,
and matched against the corpus encoded representations. Third, using the similarity scores obtained via cosine similarity, the most
similar descriptions are sent back by the service registry to the user.

5. Validation

The proposed approach aims to improve syntactics-based Web Service discoverability by introducing VAE in the standard Web

Fig. 11. Variational Autoencoder.

I. Lizarralde, et al. Information Processing and Management 57 (2020) 102231

9

Service indexing and searching process. The rationale is that VAE enables the modelling of more compact and precise representations
of service descriptions. As each description is modelled in a continuous vector space, by calculating the distance between vectors we
can obtain the similarity between them. Our main experimental hypothesis, which is assessed in this Section, is that using VAE to find
the similarity between service descriptions and queries will improve Web Service discoverability, as there is evidence that auto-
encoders can perform better for certain learning tasks than older NLP techniques such as LSA or LDA or even recent alternative
techniques such as Word Embeddings (Chen & Zaki, 2017), since they can model more complex functions. In other words, this Section
aims to empirically prove that:

• VAE can outperform traditional dimensionality reduction techniques such as LSA or LDA used in tandem with VSM for re-
presenting service descriptions. This is since VAE can model more complex functions than LDA or LSA, which allows them to
better represent complex relationships between descriptions, especially as the dataset gets bigger. For simplicity, we will refer
from now on to LDA and LSA instead of VSM+LDA and LSA+VSM.
• VAE also outperforms more advanced techniques, particularly Word Embeddings (Lizarralde et al., 2017), which already achieve
good results for discovering Web Services. Word Embeddings are very effective at representing the meaning of particular words.
However, when it comes to model multi-domain service descriptions they lack specificity because Word Embeddings are trained
with general and larger non-specific documents, which might give them versatility at the expense of precision.

5.1. Experiment Setting and Results

To achieve these objectives, we built a dataset containing 17 113 Web Service descriptions from Programmableweb.com, the
biggest Web API Portal so far. Programmableweb.com contains services published by developers all over the world. Using real-world
service specifications is interesting as possibly incomplete and imprecise service descriptions found in practice are taken into account.

For this dataset, following the methodology in Lizarralde, Mateos, Rodriguez, and Zunino (2018), we created 28 queries (Table 1)
and manually determined which services were relevant to each query from a subset of 2 772 services. A service was considered
relevant for a query only if it fulfilled the intended functionality. For example, given two services offering functionality for converting
Microsoft Word documents to PDF documents and to convert PDF documents to JPEG images, it does not matter that both contain the
term “PDF”: if a user searches for Microsoft Word to PDF converting services, only the former will be considered as relevant. As
another example, consider a user looking for a service to convert video formats, and there is a service published that only offers video
storage for mp4 and avi. This service will not be considered as relevant, as it does not offer any conversion service. Overall, a total of
253 were relevant to the 28 queries, which is 9% of the above-mentioned subset. This is deemed as a challenging enough retrieval
scenario for any Web Service registry.

In practice, even when users search for specific services by using specific terms, oftentimes users do not know which services can
fulfill their needs and hence they use quite generic queries to find out what services are available in the repository. This is particularly
true in registries like ProgrammableWeb, which have thousands of services. Also, in terms of information retrieval, it is easier for a
registry to retrieve services for specific queries, while is not that easy to retrieve adequate services when the query does not contain

Fig. 12. VAE discovery process

I. Lizarralde, et al. Information Processing and Management 57 (2020) 102231

10

specific terms, which in turn, stresses the registry even more. Then, we processed each word in our queries using WordNet to find out
how generic each word was by taking into account the depth in which each words falls in the WordNet tree (third column in Table 1).
As it can be observed, except for adjectives, verbs or unknown words to WordNet, most nouns are in the middle or bottom of the
WordNet tree, which is 16 level high (De Renzis et al., 2017). This indicates that our queries are not too specific but not too generic
either, which sets a fair querying scenario.

To associate queries to services, three different software engineers, two of them with industry experience, individually registered
the services relevant to each query. It is important to note that we considered a service as relevant if at least two out of the three
subjects labelled the service as relevant.

In order to assess our approach we compared it against traditional dimensionality reduction approaches such as LSA or LDA,
which are in fact well known techniques used as baseline in the Information Retrieval community (Nalisnick, Mitra, Craswell, &
Caruana, 2016). In addition, we compared VAE against Word Embeddings. We believe this is a valuable assessment as previous work
showed that Word Embeddings achieved state of the art results for discovering REST Web Services (Lizarralde et al., 2017).

To train VAE along with LDA and LSA, we used the 17 113 service dataset and preprocessed each service description removing
stopwords, performing Porter stemming and TF-IDF. The configuration of the VAE neural network is depicted in Fig. 13. We per-
formed hyperparameter tuning and found that the best configuration was to use 5 layers with 2048 neurons for the intermediate

Table 1
Queries, relevant services and WordNet depth per word.

Query Relevant services WordNet depth

filter adult content 1 9, 8, 8
sentiment analysis 7 7, 13
calculate word similarity 5 0, 11, 11
object recognition 5 10, 10
convert audio to text 5 0, 10, 0, 11
convert text to speech 5 0, 11, 0, 9
audio recommendation 5 10, 0
third party authentication 3 11, 7, 9
convert dollars to pounds 2 0, 10, 0 11
send sms usa 70 0, 0, 10
detect text language 2 0, 11, 8
convert image to text 6 0, 8, 0 11
convert bitcoin to usd 33 0, 0, 0,0
voice recognition 4 9, 10
make phone call 28 13, 11, 10
get flight information 2 13, 12, 9
credit card validation 1 12, 12, 8
get food calories 2 13, 6, 0
get weather information 17 13, 8, 9
captcha authentication 1 0, 9
convert video format 2 5, 10, 6
chat service 12 15, 12
track fitness 4 11, 9
health tracker 5 10, 8
find ocean information 10 10, 6, 9
convert data formats 3 5, 5, 6
translate english to spanish 2 0, 10, 0, 10
ecommerce shopping cart 11 0, 10, 10

Fig. 13. Autoencoder Network Configuration.

I. Lizarralde, et al. Information Processing and Management 57 (2020) 102231

11

layers (hinf and hgen) and 256 neurons for the latent layer (μ, σ and z). On the other hand, we utilized the following pre-trained
predictive and count-based models for Word Embeddings as competitors:

• Word2Vec2: Google News dataset (Mikolov et al., 2013) (about 100 billion words). The model contains 300-dimensional vectors
for 3 million words and phrases.
• GLoVe3: Common Crawl, 840 billion tokens, 2.2 million vocabulary, 300-dimensional vectors.
• FastText4: 1 million word vectors with subword information trained on Wikipedia 2017, UMBC webbase corpus (a dataset of high
quality English paragraphs from Stanford) and statmt.org news dataset (16B tokens) (Mikolov, Grave, Bojanowski, Puhrsch, &
Joulin, 2018).

To quantify the results, we opted for the classic retrieval metrics, namely Recall, Precision, F-Measure and NDCG, to assess the
techniques and determine the improvement VAE provides over LSA, LDA and Word Embeddings approaches. To implement the
approaches described in Sections 3 and 4 and evaluated in this Section, we used Python along with Gensim5 for LSA, LDA and Word
Embeddings models. Also, to implement the VAE we used well-known Keras library with Tensorflow as the backend. In particular, we
utilized a modified version of the Keras Variational Autoencoder.6 The original version is thought to be used for images and for this
reason we modified the cost function of the autoencoder so it is fitted to be used with Web Service descriptions. The source code
implemented in Python 3, its required dependencies, data files (e.g. service dataset), and configured experiments are shipped as a
stand-alone Docker image ready to be built, which is available for download7. Fellow researchers will find this image not only useful
to reproduce our experiments, but also as a platform and framework to potentially develop new service discovery algorithms based on
state-of-the-art text processing techniques.

Recall is a metric that measures the fraction of relevant services that are retrieved by the registry. For example, if the dataset
contains 4 service descriptions relevant for a given query and the retrieved list of descriptions only has 1 of them, Recall is 0.25.
Formally, Recall is defined as:

=Recall retrievedRelevantDocuments
relevantDocuments

| |
| |

Precision measures the fraction of relevant elements in the retrieved list. For example, if the registry retrieved 5 descriptions for a
given query, but only 2 of them are relevant to the query, Precision is 0.4. Formally:

=Precision retrievedRelevantDocuments
retrievedDocuments

| |
| |

The F Measure metric combines the previous two metrics using the harmonic mean. F-Measure is defined as:

=
+

F Measure Precision Recall
Precision Recall

2* *

Finally, DCG is a measure for ranking quality and measures the usefulness (gain) of an item based on its relevance and position in
the provided list. The higher the DCG, the better the ranked list. Formally, DCG is defined as:

= +
=

DCG rel rel
log ii

p
i

1
2 2

where p is the size of the candidate list, and reli indicates if the candidate retrieved at the i-th position of the list was relevant. The
DCG metric can be divided by the maximum value it can take, and then, values for each query can be averaged to obtain a measure of
the average performance of a ranking algorithm, named Normalized DCG (NDCG).

The reported results are the arithmetic means of the values obtained for each query. We have also used variants of these metrics
known as Recall-at-X, Precision-at-X and F-Measure-at-X. The derived metrics are defined as above, but only the first X retrieved
services are considered in the calculations. This was done because in general users who search the Web are highly likely to consider
only the first results and disregard the rest. Furthermore, the probability that a user considers a given result decreases drastically with
the result position (Agichtein, Brill, Dumais, & Ragno, 2006), being nearly zero after the tenth position.

Fig. 16 shows the average Precision for each position using Bezier curves. As it can be observed, VAE achieves higher values of
precision in most cases. Specifically, VAE improves Precision-at-1 between 3.6% and 35.7%, and Precision-at-(2-10) up to 35.7%.
Based on these results, a user has up to 35.7% more chance of finding a relevant service in the top 10 results. Also, Figs. 15 and 14
show the results of the average Recall and F-Measure for each position. As we can observe, VAE performs well, specially in the first
5 positions where it improves Recall by at least 4% and up to 34%. Additionally, as suggested by the improvements in Precision and
Recall, F-Measure is significantly improved in the first 5 positions with at least 5.4% improvement and up to 31.1%, and NDCG 17

2 https://code.google.com/archive/p/word2vec/
3 http://nlp.stanford.edu/data/glove.840B.300d.zip
4 https://fasttext.cc/docs/en/english-vectors.html
5 https://radimrehurek.com/gensim/
6 https://github.com/keras-team/keras/blob/master/examples/variational_autoencoder.py
7 https://www.dropbox.com/s/tfuljmono5bx6r3/docker-vae.zip

I. Lizarralde, et al. Information Processing and Management 57 (2020) 102231

12

https://code.google.com/archive/p/word2vec/
http://nlp.stanford.edu/data/glove.840B.300d.zip
https://fasttext.cc/docs/en/english-vectors.html
https://radimrehurek.com/gensim/
https://github.com/keras-team/keras/blob/master/examples/variational_autoencoder.py
https://www.dropbox.com/s/tfuljmono5bx6r3/docker-vae.zip

also shows improvements of up to 37.6%. Table 2 summarizes the results shown in the Figures. Improvements reported in this
paragraph are based on the absolute difference between VAE perfomance and the performance of the evaluated alternatives.

Although our VAE approach achieves values around 50% in Precision, these values are for each position and do not consider the
whole window. Given the probability with which a user considers a given result in the result window is fairly different (Chen, Yang,
Wang, & Zhang, 2010), not only the values of Precision, Recall or F-Measure but the ranking scores should be considered. The
proposed approach not only improves traditional metrics but ranking performance, as evidenced by the clear improvement of NDCG
values. This has an additional impact on the users that will not only have more chances of finding relevant services in the 10-service
window, buy also those services will be placed in the first positions.

5.2. Discussion

The experimental results reinforce the idea that, taking into account VAE performance, Word Embeddings can be also beneficial
for Web Service discovery, as suggested in a previous paper that exploits the latter technique to index and retrieve

Fig. 14. F-Measure-at-X.

Fig. 15. Recall-at-X.

I. Lizarralde, et al. Information Processing and Management 57 (2020) 102231

13

services (Lizarralde et al., 2017). However, in Lizarralde et al. (2017) the proposed discovery algorithm was tested by using a much
smaller dataset –i.e., 1 274 services– from the (now discontinued) Mashape.com API registry. Moreover, based on the above results,
from all the Word Embeddings approaches, FastText is the strongest option in terms of balanced performance considering all metrics.
One reason is that unlike the other Word Embeddings approaches, FastText considers words as bags of n-grams, which allows the
algorithm to take into account the morphology of words upon building the vector space.

VAE showed promising results for improving Web Service discovery, as it achieved strong differences compared to alternative
techniques used as base for materializing Web Service discovery approaches in the literature. This is specially true in the first
positions of the results window. Moreover, like LSA, LDA or Word Embeddings, VAE also reduces the size of the service description
representations since it encodes each description in a compressed representation of concepts. This in turn increases the search speed
as mathematical operations such as cosine similarity are less expensive when performed in smaller vectors. Table 3 shows the mean
average performance of VAE against traditional TF-IDF in terms of execution time over 100 queries, and in terms of memory con-
sumption on the ProgrammableWeb.com dataset. The experiments were assessed in a four-core Intel Core i5-4460, 16 GB of RAM and
128 GB SSD. Results show that compressing vector representations has a noticeable impact in performance, reducing the query
execution time from almost 2 seconds to 50 milliseconds (36 times faster) and memory consumption by a factor of 40. These results
show that the VAE-powered registry using compressed representations can deliver excellent performance even in modest hardware.

We also report on the stability of our approach by computing variance, or the expectation of the squared deviation of a random
variable from its average. Figs. 18 and 19 depict the average Recall and Precision values (over the 28 queries used) achieved by our
VAE-powered approach at different positions in the results window by using solid lines. Moreover, the shaded region in both figures

Fig. 16. Precision-at-X.

Fig. 17. NDCG.

I. Lizarralde, et al. Information Processing and Management 57 (2020) 102231

14

Table 2
NDCG, Recall, Precision and F-Measure results. Top-3 NDCG, Recall@1, Precision@1 and F-Measure@1 are in bold.

VSM-supported Word Embeddings

VAE LSA LDA Word2Vec GLoVe FastText

NDCG 0.669 0.569 0.293 0.624 0.581 0.605
Recall at 1 0.139 0.082 0.029 0.098 0.086 0.099
Recall at 2 0.265 0.148 0.033 0.191 0.135 0.172
Recall at 3 0.306 0.176 0.042 0.247 0.188 0.216
Recall at 4 0.362 0.240 0.044 0.266 0.229 0.240
Recall at 5 0.394 0.304 0.054 0.297 0.274 0.275
Recall at 6 0.413 0.328 0.083 0.303 0.327 0.312
Recall at 7 0.431 0.349 0.097 0.331 0.349 0.335
Recall at 8 0.436 0.364 0.120 0.344 0.359 0.365
Recall at 9 0.464 0.420 0.124 0.363 0.385 0.368
Recall at 10 0.474 0.445 0.125 0.369 0.396 0.384
Precision at 1 0.500 0.393 0.143 0.429 0.393 0.464
Precision at 2 0.482 0.339 0.125 0.446 0.357 0.429
Precision at 3 0.417 0.321 0.119 0.357 0.321 0.381
Precision at 4 0.384 0.295 0.098 0.295 0.313 0.321
Precision at 5 0.350 0.293 0.100 0.279 0.307 0.314
Precision at 6 0.321 0.262 0.113 0.244 0.298 0.298
Precision at 7 0.296 0.250 0.107 0.245 0.270 0.270
Precision at 8 0.277 0.237 0.107 0.232 0.250 0.254
Precision at 9 0.270 0.234 0.103 0.214 0.242 0.234
Precision at 10 0.257 0.229 0.096 0.204 0.229 0.225
F-Measure at 1 0.217 0.135 0.048 0.159 0.141 0.163
F-Measure at 2 0.342 0.206 0.052 0.268 0.196 0.245
F-Measure at 3 0.353 0.227 0.062 0.292 0.237 0.276
F-Measure at 4 0.372 0.264 0.061 0.280 0.264 0.275
F-Measure at 5 0.371 0.298 0.070 0.288 0.289 0.293
F-Measure at 6 0.362 0.291 0.096 0.270 0.312 0.304
F-Measure at 7 0.351 0.291 0.102 0.282 0.305 0.299
F-Measure at 8 0.339 0.287 0.113 0.277 0.295 0.300
F-Measure at 9 0.341 0.301 0.112 0.269 0.297 0.286
F-Measure at 10 0.334 0.302 0.109 0.262 0.290 0.284

Table 3
VAE performance.

Average query execution time (in seconds) Vector space size (in Megabytes)

TF-IDF 1.987 1474.560
Compressed VAE representation 0.055 36.864

Fig. 18. Recall-at-X variance.

I. Lizarralde, et al. Information Processing and Management 57 (2020) 102231

15

represent the variance around each average value. For Precision, the variance is noticeable larger at positions 1 and 2. This is since
the metric is computed over binary values: for each query, either there is a relevant result or not at each position. Then, for instance,
Precision-at-1 yields 100% (1/1) for some queries and 0% (0/1) for others. The probability of having extreme Precision values for the
queries however decays as we move further in the results window, and the variance stabilizes around 0.07-0.05 for positions 4 on-
wards. Recall at the first positions, however, does not suffer in general from extreme values due to individual Recall scores are
smoothed using the number of relevant documents, which differ from query to query. For example, considering two queries Q1 and
Q2 with two and one relevant document in the dataset, respectively, and assuming that a relevant document is retrieved at the first
position for Q1 but not for Q2, Recall-at-1(Q1) is 50% (1/2) and Recall-at-1(Q2) is 0% (0/1). Thus, individual Recall scores are closer
to the average (25%). As a result, the variance starts around 0.05 and stabilizes around [0.11-0.13] from position 4 onwards. Last but
not least, the variance for NDCG was 0.11 over 0.66. Unlike Recall and Precision, which are computed at different positions and
hence difference variance values are obtained, NDCG outputs one value per query, and hence only one NDCG variance value is
reported.

Finally, we assessed the training time of our VAE network using the services from the dataset. Basically we took random subsets of
the entire dataset, and then measure the average training time across five repetitions. Fig. 20 depicts the training time. In this case we
used a AMD Ryzen 5 2600X Six-Core Processor, 16 GB of DDR4 RAM, 1 TB HD, equipped with a NVIDIA Titan XP. Note that training

Fig. 19. Precision-at-X variance.

Fig. 20. VAE training time (in seconds).

I. Lizarralde, et al. Information Processing and Management 57 (2020) 102231

16

our VAE using the whole dataset takes around 500 seconds (less than 9 minutes), which is not an issue in practice considering that
this can be done routinely –e.g. every week– in real registries and not as individual services are published. In addition, the curve
adjusts to a linear function with R-squared=96.20%, which is a good fit. Hence, the current API repository of Program-
mableWeb.com, which as of November 2019 has around 23 000 services, could be trained in our experimental hardware within a
reasonable time.

6. Related work

Web Services are essential building blocks of modern Web 2.0 applications, and nowadays Web Services are present in almost any
Web, mobile, and even desktop applications. Along with this, the number of available Web Services is also increasing
heavily Corbellini et al. (2017), making Web Service discovery essential to find services that effectively fulfill users’ needs when
developing service-oriented client applications. Consequently, many researchers have focused on improving service discoverability.

Initial research adapted well-known IR techniques, mostly VSM, to the Web Services field. In short, VSM considers documents as
vectors in a multi-dimensional space, where each dimension represents a term in a document. Then, given a query, VSM tries to rank
documents based on the terms shared between the query and individual documents considering the importance of terms in documents.
In this sense, Elshater, Elgazzar, and Martin (2015) propose the goDiscovery approach for discovering Web Services, which utilizes a
TF-IDF scheme combined with VSM implemented as a KDTree structure. Each node in the tree splits on a particular hyperplane
dimension given by each term. Then, when a user’s query arrives, the value for that dimension in the query vector is recursively
compared to follow the appropriate subtree. Once a leaf node is reached, the nearest neighbour services associated to this leaf node
are retrieved achieving O(log2N) search complexity, making the approach scalable. Czyszczoń and Zgrzywa (2014) propose a
modified TF-IDF scheme that considers sections in a service description as different bags of words.

This has two implications: 1) as TF-IDF values are calculated for each bag, service description similarity scores drastically change,
and 2) multiple term vectors are created (one for each section), increasing memory consumption. To mitigate 2) the approach merges
such sections and computes the average weight of all service operation’s parameters. Finally, the approach uses LSA to compare
service description similarity. In the same line, Paliwal et al. (2007) also utilises LSA for service similarity, but combined with
ontology linking. The authors build a service request vector according to the corresponding domain ontology. Then, the request is
transformed to the LSA space and compared using cosine similarity to retrieve relevant services. Other works (Bukhari & Liu, 2018)
combine LDA with clustering to improve Web Service retrieval performance for large datasets. The authors first generate TF-IDF
vectors for each service that are transformed into a concept-space by applying LDA. This greatly reduces the size of the vectors by
finding hidden concepts in service descriptions. Then, the authors apply different clustering techniques such as Agglomerative
clustering and KMeans to further reduce the search space by grouping concept-wise similar services. When a user searches for a
service, the appropriate cluster will be first selected and then the query is compared against each service in the cluster to find the
most suitable services.

Moreover, the Baskara and Sarno (2017) model service descriptions as an acyclic directed graph, and a Bi-term Topic Model
(BTM) is used to extract topics from the descriptions. BTM is a technique that considers bi-term co-occurrence (Chen & Kao, 2015), in
contrast to those models which consider word co-ocurrence. This reduces the complexity of the model and performs better on short-
text descriptions. Finally the authors perform Weighted Directed Acyclic Graph (WDAG) similarity to find relevant Web Services,
where services that pass a given threshold are retrieved as candidates for the query. Another work (Lizarralde et al., 2018) utilizes
Named Entity Recognition to identify entities in Restful Web Service descriptions and then expand them with information from public
text corpora (e.g. Wikidata). This helps to mitigate term mismatch since it adds both relevant synonyms and hypernyms to expanded
service descriptions. This approach was evaluated together with classical syntactics-based service discovery approaches using a real
1274-service dataset, achieving up to 15.06% better Recall scores, and up to 17% Precision-at-1, 8% Precision-at-2 and 4% Precision-
at-3. Wu (2012) argues that tokenization is a critical step to improve service discoverability. They claim that notations and toke-
nization heuristics based on human naming tendencies are not reliable. To solve this, they propose to use probabilistic-based
techniques such as Minimum description length (MDL), Transitional Probability (TP) and Prediction by Partial Matching (PPM)
achieving better Precision, Recall and F-Measure values compared with traditional tokenization heuristics.

Other works have focused their efforts on the query side. The work in Paliwal, Shafiq, Vaidya, Xiong, and Adam (2012) proposes a
two-step approach for service discovery. The first step comprises a semantic categorization of services published in a UDDI (Universal
Description, Discovery and Integration) registry, a former standard publishing and inquiring services. The second step involves query
refinement, which consists of input/output parameter analysis, to select a set of services that best represent the desired functionality
and query expansion with relevant ontology terms. Another work (Crasso et al., 2011) considers additional information provided by a
Query by Example approach, which allows discoverers to partially pre-specify the necessary service functionality by providing
examples (source code) in their preferred programming language. This enriches query information by extracting terms from para-
meter names and operation names from the example, which are then used to compute similarity using VSM and cosine similarity.

Also, other works have taken advantage of Word Embeddings (Mikolov et al., 2013). The work in Shi, Liu, Zhou, Tang, and
Cao (2017) combines Word Embeddings with LDA to cluster Web Services. The authors use KMeans++ to cluster Word Embedding
representations from terms present in Web Service descriptions. Then, they use these clusters to help to train distributed re-
presentations of Web Services based on the LDA model. Another work (Lizarralde et al., 2017) exploits Word Embeddings to find
hidden relationships between service descriptions and queries for the case of REST services. The results showed improvements over
classical service retrieval techniques such as Vector Space Model or LSA of up to 20% in Precision, 39% in Recall, 35% in F-Measure
and 10% in NDCG, using a service dataset of around 1 400 service descriptions.

I. Lizarralde, et al. Information Processing and Management 57 (2020) 102231

17

Finally, some works tackle the problem of service recommendation. Kumara, Paik, Siriweera, and Koswatte (2016) proposed a
cluster-based Web service recommendation approach. To cluster services, they calculate service semantic similarity using the Hybrid
term similarity method (Kumara, Paik, Chen, & Ryu, 2014). The approach recommends services taking into account the current
service being invoked by the user. Moreover, Zhang and his colleagues (Zhang, Wang, He, Li, & Huang, 2019) proposed GoSD, a
service recommendation mechanisms focused on gradual query refinement and expansion with the goal of helping users to find
relevant services. The approach first models and clusters services based on probabilistic topic distribution and LDA, and based on a
custom goal extraction technique, the approach also clusters services based on their goals. Lastly, GoSD builds a service-service goal
matrix which, together with the two cluster models, are used to carry out service recommendation. The goal extraction
technique (Zhang, Wang, & Ma, 2017), on the other hand, extracts service goals from textual service descriptions using linguistic
analysis, and constructs domain service goal by merging semantically similar service goals within a defined functional domain.
Finally, in Xiong, Wang, Zhang, and Ma (2018), a discovery framework called DHSR is proposed. The framework addresses the
problem of recommending a group of services to build new mashups. To this end, DHSR firstly trains a deep neural network that
seamlessly integrates both historical service invocation information –interactions between mashups and atomic services– and textual
content –mashup/service textual descriptions–. Then, based on a natural language specification of the new mashup to be built, DHSR
utilizes the complex interactions and relations captured by the neural network to recommend a suitable set of services.

7. Conclusions

Motivated by the past successful application of autoencoders for image processing (Kingma et al., 2014; Vincent, Larochelle,
Bengio, & Manzagol, 2008) and more recently text feature extraction (Chen & Zaki, 2017), we have proposed to exploit autoencoders
for the task of Web Service retrieval. Autoencoders are neural networks that reduce the input dimensionality and then try to re-
construct the input from the new encoded representation. This allows autoencoders to extract important features from input text
while eliminating noise. As Web Service descriptions are sparse TF-IDF representations, this affects the discovery process since it is
difficult for classic techniques to learn from these vectors. We particularly proposed to use Variational Autoencoders to transform
Web Service description representations into meaningful non-sparse vectors. As the performed experiments have shown, Variational
Autoencoders improved performance w.r.t. classic IR metrics such as Precision-at-X, Recall-at-X, F-Measure-at-X and NDCG. Ad-
ditionally, autoencoders also reduced the dimensionality of the Web Service description’s vectors by a factor of 40, decreasing
memory consumption and increasing query performance. Experiments also suggest that VAE training time function might tolerate
even larger number of published service descriptions.

Future work includes exploring different VAE configurations by increasing the number of layers (deeper networks), and im-
proving the cost function, for example by using Word Mover’s Distance (WMD) (Kusner, Sun, Kolkin, & Weinberger, 2015) instead of
cosine similarity. WMD has shown promising performance compared with traditional document distance techniques. As WMD is
computationally expensive to use as a cost function, we plan to utilize an approximation known as Sliced-Wasserstein distance, and
more specifically, a Sliced-Wasserstein autoencoder (Kolouri, Martin, & Rohde, 2018). Another alternative is to investigate whether
combining VAE and Word Embeddings serves to our purposes and improves results, particularly by adding an embedding layer to the
autoencoder instead of feeding the network with plain TF-IDF vectors.

CRediT authorship contribution statement

Ignacio Lizarralde: Software, Investigation, Data curation, Writing - original draft. Cristian Mateos: Conceptualization,
Methodology, Investigation, Writing - review & editing, Funding acquisition, Writing - original draft. Alejandro Zunino:
Conceptualization, Supervision, Writing - review & editing, Funding acquisition. Tim A. Majchrzak:Writing - review & editing. Tor-
Morten Grønli: Writing - review & editing.

Acknowledgements

We acknowledge funding by CONICET through grant code 11220170100490CO – Convocatoria PIP 2017-2019 GI.

References

Agichtein, E., Brill, E., Dumais, S., & Ragno, R. (2006). Learning user interaction models for predicting web search result preferences. 29th annual international ACM SIGIR
conference on research and development in information retrieval. ACM Pages 3–10

Amaral, T., Silva, L. M., Alexandre, L. A., Kandaswamy, C., Santos, J. M., & de Sá, J. M. (2013). Using different cost functions to train stacked auto-encoders. 12th mexican
international conference on artificial intelligence. IEEE Pages 114–120

Baskara, A. R., & Sarno, R. (2017). Web service discovery using combined bi-term topic model and wdag similarity. Information & communication technology and system
(ICTS), 2017 11th international conference on. IEEE Pages 235–240

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of machine Learning research, 3(Jan), 993–1022.
Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017). Enriching word vectors with subword information. Transactions of the Association for Computational

Linguistics, 5, 135–146.
Bukhari, A., & Liu, X. (2018). A web service search engine for large-scale web service discovery based on the probabilistic topic modeling and clustering. Service

Oriented Computing and Applications, 1–14.
Carpineto, C., & Romano, G. (2012). A survey of automatic query expansion in information retrieval. ACM Computing Surveys, 44(1), 1.
Chen, G.-B., & Kao, H.-Y. (2015). Word co-occurrence augmented topic model in short text. International Journal of Computational Linguistics & Chinese Language

Processing, Volume 20, Number 2, December 2015-Special Issue on Selected Papers from ROCLING XXVII, 20(2).

I. Lizarralde, et al. Information Processing and Management 57 (2020) 102231

18

http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0001
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0001
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0002
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0002
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0003
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0003
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0004
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0005
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0005
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0006
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0006
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0007
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0008
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0008

Chen, L., Yang, G., Wang, D., & Zhang, Y. (2010). Wordnet-powered web services discovery using kernel-based similarity matching mechanism. Service oriented system
engineering (SOSE), 2010 fifth IEEE international symposium on. IEEE Pages 64–68

Chen, Y., & Zaki, M. J. (2017). Kate: K-competitive autoencoder for text. Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data
mining. ACM Pages 85–94

Chinnici, R., Moreau, J.-J., Ryman, A., & Weerawarana, S. (2007). Web services description language (WSDL) version 2.0 part 1: Core language.W3C recommendation,
26:19.

Corbellini, A., Godoy, D., Mateos, C., Zunino, A., & Lizarralde, I. (2017).Mining social web service repositories for social relationships to aid service discovery. Proceedings of
the 2017 IEEE/ACM 4th international conference on mobile software engineering and systems. IEEE/ACM.

Crasso, M., Zunino, A., & Campo, M. (2011). Combining query-by-example and query expansion for simplifying web service discovery. Information Systems Frontiers,
13(3), 407–428.

Czyszczoń, A., & Zgrzywa, A. (2014). Latent semantic indexing for web service retrieval. Computational collective intelligence. technologies and applications. Springer Pages
694–702

David, M., Mark, B., Drew, M., Sheila, A. M., Massimo, P., Katia, P. S., ... Naveen, S. (2007). Bringing semantics to web services with OWL-s. World Wide Web, 10(3),
243–277.

De Renzis, A., Garriga, M., Flores, A., Cechich, A., Mateos, C., & Zunino, A. (2017). A domain independent readability metric for web service descriptions. Computer
Standards & Interfaces, 50, 124–141.

Elshater, Y., Elgazzar, K., & Martin, P. (2015). godiscovery: Web service discovery made efficient. IEEE international conference on web services. IEEE Pages 711–716
Furnas, G. W., Landauer, T. K., Gomez, L. M., & Dumais, S. T. (1987). The vocabulary problem in human-system communication. Communications of the ACM, 30(11),

964–971.
Garriga, M., Mateos, C., Flores, A., Cechich, A., & Zunino, A. (2016). Restful service composition at a glance: A survey. Journal of Network and Computer Applications, 60,

32–53.
Gomaa, W. H., & Fahmy, A. A. (2013). A survey of text similarity approaches. International Journal of Computer Applications, 68(13), 13–18.
Gomadam, K., Ranabahu, A., & Sheth, A. (2010). Sa-rest: Semantic annotation of web resources (w3c member submission).
Kingma, D. P., Mohamed, S., Rezende, D. J., & Welling, M. (2014). Semi-supervised learning with deep generative models. Advances in neural information processing systems

Pages 3581–3589
Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. ArXiv preprint arXiv:1312.6114.
Kolouri, S., Martin, C. E., & Rohde, G. K. (2018). Sliced-wasserstein autoencoder: An embarrassingly simple generative model. ArXiv preprint arXiv:1804.01947.
Kontostathis, A., & Pottenger, W. M. (2006). A framework for understanding latent semantic indexing (lsi) performance. Information Processing & Management, 42(1),

56–73.
Kumara, B. T., Paik, I., Chen, W., & Ryu, K. H. (2014). Web service clustering using a hybrid term-similarity measure with ontology learning. International Journal of

Web Services Research (IJWSR), 11(2), 24–45.
Kumara, B. T., Paik, I., Siriweera, T., & Koswatte, K. R. C. (2016). Cluster-based web service recommendation. Services computing (SCC), 2016 IEEE international conference

on. IEEE Pages 348–355
Kusner, M., Sun, Y., Kolkin, N., & Weinberger, K. (2015). From word embeddings to document distances. International conference on machine learning Pages 957–966
Lathem, J., Gomadam, K., & Sheth, A. P. (2007). SA-REST and (s)mashups : Adding semantics to RESTful services. International conference on semantic computing Pages

469–476
Lee, K.-H., Lee, M.-y., Hwang, Y.-Y., & Lee, K.-C. (2007). A framework for XML web services retrieval with ranking. 2007 international conference on multimedia and

ubiquitous engineering (MUE’07). IEEE Pages 773–778
Li, X., & She, J. (2017). Collaborative variational autoencoder for recommender systems. Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery

and data mining. ACM Pages 305–314
Lizarralde, I., Mateos, C., Rodriguez, J. M., & Zunino, A. (2018). Exploiting named entity recognition for improving syntactic-based web service discovery. Journal of

Information Science.
Lizarralde, I., Rodriguez, J. M., Mateos, C., & Zunino, A. (2017). Word embeddings for improving rest services discoverability. Computer conference (CLEI), 2017 XLIII latin

american. IEEE Pages 1–8
Maamar, Z., Hacid, H., & Huhns, M. N. (2011). Why web services need social networks. IEEE Internet Computing, 15(2), 90–94.
van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-sne. Journal of Machine Learning Research, 9(Nov), 2579–2605.
Mikolov, T., Grave, E., Bojanowski, P., Puhrsch, C., & Joulin, A. (2018). Advances in pre-training distributed word representations. Proceedings of the international conference

on language resources and evaluation (LREC 2018).
Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. Advances in neural

information processing systems Pages 3111–3119
Miller, G. A. (1995). Wordnet: a lexical database for english. Communications of the ACM, 38(11), 39–41.
Nalisnick, E., Mitra, B., Craswell, N., & Caruana, R. (2016). Improving document ranking with dual word embeddings. Proceedings of the 25th international conference

companion on world wide web. International World Wide Web Conferences Steering Committee Pages 83–84
Paliwal, A. V., Adam, N. R., & Bornhövd, C. (2007). Web service discovery: Adding semantics through service request expansion and latent semantic indexing. IEEE inter-

national conference on services computing. IEEE Pages 106–113
Paliwal, A. V., Shafiq, B., Vaidya, J., Xiong, H., & Adam, N. (2012). Semantics-based automated service discovery. IEEE Transactions on Services Computing, 5(2),

260–275.
Pennington, J., Socher, R., & Manning, C. D. (2014). Glove: Global vectors for word representation. EMNLP, volume 14 Pages 1532–1543
Platzer, C., & Dustdar, S. (2005). A vector space search engine for web services. Third european conference on web services (ECOWS’05). IEEE.
Rodriguez, J. M., Zunino, A., Mateos, C., Segura, F. O., & Rodriguez, E. (2015). Improving rest service discovery with unsupervised learning techniques. 2015 ninth

international conference on complex, intelligent, and software intensive systems Pages 97–104, Jul
Roman, D., Keller, U., Lausen, H., de Bruijn, J., & Lara, R. (2005). Michael stollberg, axel polleres, cristina feier, christoph bussler, and dieter fensel. web service

modeling ontology. Applied ontology, 1(1), 77–106.
Sajjanhar, A., Hou, J., & Zhang, Y. (2004). Algorithm for web services matching. Asia-pacific web conference. Springer Pages 665–670
Salakhutdinov, R., & Hinton, G. (2009). Semantic hashing. International Journal of Approximate Reasoning, 50(7), 969–978.
Salton, G., Wong, A., & Yang, C.-S. (1975). A vector space model for automatic indexing. Communications of the ACM, 18(11), 613–620.
Shi, M., Liu, J., Zhou, D., Tang, M., & Cao, B. (2017). We-lda: A word embeddings augmented lda model for web services clustering. Web services (ICWS), 2017 IEEE

international conference on. IEEE Pages 9–16
Vechtomova, O., & Karamuftuoglu, M. (2007). Query expansion with terms selected using lexical cohesion analysis of documents. Information Processing & Management,

43(4), 849–865.
Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P.-A. (2008). Extracting and composing robust features with denoising autoencoders. Proceedings of the 25th international

conference on machine learning. ACM Pages 1096–1103
Westerveld, T., de Vries, A., & de Jong, F. (2007). Generative probabilistic models. Multimedia retrieval. Springer Pages 177–198
Wu, C. (2012). WSDL term tokenization methods for ir-style Web Services discovery. Science of Computer Programming, 77(3), 355–374.
Xiong, R., Wang, J., Zhang, N., & Ma, Y. (2018). Deep hybrid collaborative filtering for web service recommendation. Expert Systems with Applications, 110, 191–205.
Xu, W., Sun, H., Deng, C., & Tan, Y. (2017). Variational autoencoder for semi-supervised text classification. AAAI Pages 3358–3364
Zhang, N., Wang, J., He, K., Li, Z., & Huang, Y. (2019). Mining and clustering service goals for RESTful service discovery. Knowledge and Information Systems, 58(3),

669–700.
Zhang, N., Wang, J., & Ma, Y. (2017). Mining domain knowledge on service goals from textual service descriptions. IEEE Transactions on Services Computing In press

I. Lizarralde, et al. Information Processing and Management 57 (2020) 102231

19

http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0009
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0009
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0010
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0010
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0011
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0011
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0012
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0012
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0013
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0013
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0014
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0014
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0015
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0015
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0016
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0016
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0017
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0018
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0018
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0019
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0019
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0020
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0021
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0021
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0022
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0022
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0023
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0023
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0024
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0024
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0025
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0026
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0026
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0027
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0027
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0028
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0028
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0029
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0029
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0030
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0030
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0031
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0032
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0033
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0033
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0034
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0034
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0035
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0036
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0036
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0037
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0037
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0038
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0038
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0039
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0040
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0041
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0041
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0042
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0042
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0043
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0044
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0045
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0046
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0046
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0047
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0047
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0048
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0048
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0049
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0050
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0051
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0052
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0053
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0053
http://refhub.elsevier.com/S0306-4573(19)31087-8/sbref0054

	Discovering web services in social web service repositories using deep variational autoencoders
	Introduction
	Background
	Traditional dimensionality reduction techniques for web service discovery
	VSM boosted with LSA/LDA
	Word embeddings

	Variational autoencoders applied to web service discovery
	Validation
	Experiment Setting and Results
	Discussion

	Related work
	Conclusions
	CRediT authorship contribution statement
	Acknowledgements
	References

