

Achieving agility and quality in product development - an empirical study of hardware startups

Journal Pre-proof

Achieving agility and quality in product development - an empirical
study of hardware startups

Vebjørn Berg, Jørgen Birkeland, Anh Nguyen-Duc, Ilias O. Pappas,
Letizia Jaccheri

PII: S0164-1212(20)30077-7
DOI: https://doi.org/10.1016/j.jss.2020.110599
Reference: JSS 110599

To appear in: The Journal of Systems & Software

Received date: 6 January 2019
Revised date: 16 March 2020
Accepted date: 8 April 2020

Please cite this article as: Vebjørn Berg, Jørgen Birkeland, Anh Nguyen-Duc, Ilias O. Pappas,
Letizia Jaccheri, Achieving agility and quality in product development - an empirical study of hardware
startups, The Journal of Systems & Software (2020), doi: https://doi.org/10.1016/j.jss.2020.110599

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2020 The Author(s). Published by Elsevier Inc.
This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

https://doi.org/10.1016/j.jss.2020.110599
https://doi.org/10.1016/j.jss.2020.110599
http://creativecommons.org/licenses/by/4.0/

Highlights

• This study investigates agility and quality in hardware startups

• 13 hardware startups were investigated through semi-structured interviews

• Comparative study into hardware-intensive product development

• Agility is not achieved through adoption of fast-paced development prac-
tices alone

• Hardware startups often lack mindset and strategies for achieving long-
term quality

1

Achieving agility and quality in product development -
an empirical study of hardware startups

Vebjørn Berga, Jørgen Birkelanda, Anh Nguyen-Ducb, Ilias O. Pappasa,c,
Letizia Jaccheria

aDepartment of Computer Science, Norwegian University of Science and Technology
Sem Sælands vei 9, 7034 Trondheim, Norway

bDepartment of Business and IT, University of South-Eastern Norway
Lærerskoleveien 40, 3679 Notodden, Norway

cDepartment of Information Systems, University of Agder
Universitetsveien 25, 4630 Kristiansand, Norway

Abstract

Context: Startups aim at scaling their business, often by developing innovative

products with limited human and financial resources. The development of soft-

ware products in the startup context is known as opportunistic, agility-driven,

and with high tolerance for technical debt. The special context of hardware

startups calls for a better understanding of state-of-the-practice of hardware

startups’ activities.

Objective: This study aimed to identify whether and how startups can achieve

product quality while maintaining focus on agility.

Method: We conducted an exploratory study with 13 hardware startups, col-

lecting data through semi-structured interviews and analysis of documentation.

We proposed an integrative model of agility and quality in hardware startups.

Results: Agility in hardware startups is complex and not achieved through

adoption of fast-paced development practices alone. Hardware startups follow

a quality-driven approach for development of core components, where frequent

user testing is a measure for early debt management. Hardware startups often

lack mindset and strategies for achieving long-term quality in early stages.

Email addresses: vebjoern.berg@gmail.com (Vebjørn Berg),
jorgen.birkeland1@gmail.com (Jørgen Birkeland), anh.nguyen.duc@usn.no (Anh
Nguyen-Duc), ilias.pappas@uia.no, ilpappas@ntnu.no (Ilias O. Pappas),
letizia.jaccheri@ntnu.no (Letizia Jaccheri)

Preprint submitted to Journal of Systems and Software March 16, 2020

Conclusions: Hardware startups need attention to hardware quality to allow for

evolutionary prototyping and speed. Future research should focus on defining

quality-driven practices that contribute to agility, and strategies and mindsets

to support long-term quality in the hardware startup context.

Keywords: Startup, Hardware Startup, Software Engineering, Product

Development, Empirical Research

1. Introduction

Startups, newly created companies producing cutting-edge technology, are

an important source of technology innovation, and have a significant impact on

the wave of digital transformation (Jacobson et al., 2017). Despite stories of

successful startups, most of them fail, primarily due to self-destruction rather5

than competition (Crowne, 2002; Marmer et al., 2011). Without previous oper-

ational experience, startups often need to learn how to establish new roles, new

connections to external stakeholders, and new processes and practices (Stinch-

combe, 2000; Abatecola et al., 2012). In a startup company developing high-tech

products, besides personal trait of startup founders and financial and market10

factors (Giardino et al., 2015; Aldrich & Auster, 1986; Van Gelderen et al.,

2005), product development is also a key factor characterizing the development

of the startup (Unterkalmsteiner et al., 2016; Giardino et al., 2015; Tripathi

et al., 2016; Giardino et al., 2016, 2014a). For instance, software research has

shown interest in achieving effective Minimum Viable Products (Nguyen-Duc &15

Abrahamsson, 2016) and managing technical debt (Giardino et al., 2016) in the

startup context. Even though the obstacles to success gradually become known

and aware to entrepreneurs, the startup context poses several unique challenges

to traditional product development and innovation methods (Unterkalmsteiner

et al., 2016; Nguyen-Duc et al., 2016).20

The part of startup ecosystems that is relatively little explored in research

is hardware startups. They include startup companies developing products and

services with a value proposition based on an integral solution of software and

2

hardware components (DiResta et al., 2015; Jacobson et al., 2017). Hardware

is a physical, tangible part of a system, or a system of systems (e.g., sensors,25

gateways, connectivity components, wearable devices, mobile phones), while

software is a code-based, intangible part of the system (e.g., operating systems,

server-side scripts, databases, algorithms). A typical example for a modern

hardware system is a connected house, where the hardware part is implemented

to measure, collect and transmit data, and the software part is used to coor-30

dinate the operations of hardware, store and process the collected data. The

barriers for starting a hardware company have never been lower, a result of the

advanced development of hardware technology. Rapid prototyping, decreased

component costs, small-batch manufacturing, and fundraising platforms have

renewed the interest for hardware startups (DiResta et al., 2015; Wei, 2017).35

Hardware startups add additional complexity to software startups as they

need to handle the development and integration of hardware parts into the of-

fered products (Nguyen-Duc et al., 2018). Hardware products usually need to

be secured and safe, which puts a focus on ensuring quality attributes of deliv-

ered products. Moreover, the quality of the whole product relies on the quality40

of its integrated components, both software and hardware modules. While it is

known that software startups focus on speed and agility, remaining low priority

on quality assurance, it is not known if the same practices occur in hardware-

related product development. While knowledge from development of embedded

products in established companies can be relevant (Kaisti et al., 2013; Albu-45

querque et al., 2012), the ”newness and smallness” nature of startups calls for

an investigation and further, an adaption of existing methodologies and prac-

tices that are suitable to startup context (Bosch, 2016).

Software startups are known for fast-paced development, with ability to

handle uncertainty, react to changes in product and business development, and50

introduce flexibility in the process (Garbajosa et al., 2017). The concept of

agility in hardware startups might be different from pure software development,

as hardware development typically involves a long development cycle and de-

pends on a larger set of third-party vendors. The relationship between agility

3

and quality might be more critical in some circumstances, for instance startup55

companies who deliver quality-driven products. For example, the Norwegian

startup Prediktor Medical AS develops a glucose smartwatch that measures

glucose level without penetrating people’s skin. The product was quality-driven

and has been developed under a market-pressure with a promised launch time.

A recent industry survey also calls for systematic adoption of product develop-60

ment methodologies in hardware startups (Nguyen-Duc et al., 2018).

To this end, we seek to create a better understanding of work-practices in

hardware startups by investigating the role of engineering activities, from idea

conceptualization to a launched product. In particular, we will investigate factors

influencing agility and quality, and explore commonalities and challenges. As65

mentioned by Jacobson et al. (2017), literature regarding methods for hardware

product development is scarce. We aim at exploring how agility and quality are

managed in practice. This has motivated the following research question:

RQ How do hardware startups achieve both agility and product quality during

product development?70

This paper presents the results from a qualitative survey investigating 13 early-

stage European hardware startups. The work contributes to startup engineering

research by focusing on hardware-intensive product development. The research

provides early empirical evidence to agility in hardware startups, and simple

quality-aware practices in the context of restricted resources. The work also75

builds the foundation for researchers and practitioners to further explore hard-

ware startup engineering, which is still in a nascent stage.

The remainder of this paper proceeds as follows: Section 2 introduces the

background of the study and relevant theoretical frameworks. Section 3 presents

the research method undertaken and potential threats to the validity. Section80

4 reports the results of the study, including transcribed citations from the par-

ticipants. Section 5 discusses the results in relation to the research questions.

Section 6 concludes the paper by answering the research questions and proposing

directions for future work.

4

2. Background85

2.1. The context of high-tech startup companies

The term “startup” has been defined differently across various principles

(Steininger, 2019; Sutton Jr, 2000; Ghezzi, 2018; Unterkalmsteiner et al., 2016;

Crowne, 2002). From the recurrent themes on startups, high-tech startups share

common characteristics of organizations focusing on the creation of software-90

intensive products, with little or no operating history, aiming to grow by aggres-

sively scaling their business in highly scalable markets (Giardino et al., 2016).

The context of startups is long understood as a special organizational state.

New companies generally involve new roles, and the “coordination of strangers”

scenario often lead to low quality of performance (Stinchcombe, 2000; Abatecola95

et al., 2012). Sommer et al. (2009) highlighted that new companies often do not

correctly foresee real opportunities or the best ways of addressing them, and

so are forced to adapt and modify their approach over time. Giardino et al.

(2014b) revealed that startups often fail to achieve the problem-solution fit dur-

ing their execution. From early-stage, startups increase their learning curve and100

foster the establishment of survival determinants (i.e., successful practices and

procedures) (Abatecola et al., 2012; Hodgson & Knudsen, 2004).

2.2. Software product development in startup companies

Startups generally develop products in high-potential target markets with-

out necessarily knowing what customers want (Blank, 2013b; Rafiq et al., 2017).105

Increasingly more industries experience that new technologies become available

to all players at the same time, hence the benefits of technology-driven inno-

vations decrease. This has led companies to prioritize customer-driven devel-

opment, which involves identifying new and unknown customer needs as well

as meeting known needs (Bosch, 2016). This relates to market-driven software110

development, where requirements tend to be (1) invented by the software com-

pany, (2) rarely documented (Karlsson et al., 2002), and (3) validated only after

the product is released in the market (Carmel, 1994; Dahlstedt, 2003; Keil &

5

Carmel, 1995; Rafiq et al., 2017). Products not meeting customer needs are

common, resulting in failure of new product releases (Alves et al., 2006). There115

exist several entrepreneurial theories and frameworks that can guide practition-

ers in their pursuit to lasting business growth, including “Effectuation Theory”

(Sarasvathy, 2001), “Discovery and Creation” (Alvarez & Barney, 2007), the

customer development approach introduced by Blank (Blank, 2013a), and the

Lean Startup (Ries, 2011).120

Research on software engineering depicts that startup companies prefer to

prioritize time and cost over product quality (Yau & Murphy, 2013), neglecting

traditional process activities like formal project management, documentation,

and testing (Giardino et al., 2016). Shortcuts taken in product quality, de-

sign, or infrastructure can inhibit validated learning (Ries, 2011), in a context125

where customized development practices are necessary to manage the challenges

posed by customer development methods. Inadequate use of software engineer-

ing practices might be a significant factor leading to the high failure rates of

software startups (Klotins et al., 2015).

Entrepreneurs are in general aware of the significance of how their products130

are built. Even though studies have found that startups are either reluctant

to introducing process (Coleman & O’Connor, 2008), or that they use their

own mix of Agile and ad-hoc methods (Giardino et al., 2014a), many startups

emphasized the importance of having good practices in building their products

(Sutton Jr, 2000; Giardino et al., 2014a). Small early-stage software startups135

don’t experience the same challenges as larger, more experienced companies,

and the cost and time of implementing a rigorous Agile methodology may not

provide big enough benefits (Yau & Murphy, 2013).

2.3. Agility in product development

Agility as a concept is multi-facet and in many cases refers to the ability140

of an organization, a team, or a project to react to changes occurred to them

(Conboy, 2009). In a general sense, agility can be defined as “the capabil-

ity to react and adapt to expected and unexpected changes within a dynamic

6

environment constantly and quickly, and to use those changes (if possible) as

an advantage” (Bohmer & Lindemann, 2015). In software development, Agile145

methods have proven to be a powerful tool when the goal is to build a successful,

profitable business model (Cunningham et al., 2001). When a company needs

to quickly address market and customer needs, Agile processes have proven to

be much more effective than traditional high-ceremony processes (Wasserman,

2016). Since the birth of the Agile Manifesto (2001), with stated principles and150

practices of Agile methodology (Beck et al., 2001), it has become a popular

set of practices in the software industry to replace traditional, rigid, and heavy

software development processes.

During the last decades, Agile in software engineering has been an exten-

sive research area with an enormous amount of literature (Dyb̊a & Dingsøyr,155

2008; Conboy, 2009; Abrahamsson et al., 2010; Dı́az et al., 2011; Misra et al.,

2012; Jalali & Wohlin, 2010; Da Silva et al., 2011). Existing studies provide the

introduction and adoption of Agile methods and their variance in different or-

ganizational settings. They do not agree on a unified view of current practices,

but offer a broad picture of experience and some contradictory findings (Dyb̊a160

& Dingsøyr, 2008). Benefits were reported in the following areas: customer col-

laboration, work processes for handling defects, learning in pair programming,

thinking ahead for management, focusing on current work for engineers, and

estimation (Dyb̊a & Dingsøyr, 2008). A recurring theme in studies on Agile de-

velopment is human factors (e.g., team dynamics, team coordination, customer165

involvement, etc.) and their influence on Agile development. Much research

reports experience of combining Agile development with other Software Engi-

neering paradigms, such as distributed teams (Jalali & Wohlin, 2010), product

line development (Misra et al., 2012), and user-centered design (Dı́az et al.,

2011). The combination of product line development, with the focus on upfront170

investments, planning, design, and Agile methods, with the highlight of rapid

and frequent changes, attention to the design is found challenging (Misra et al.,

2012). Several practices are investigated in the fusion of Agile methods into

more rigid processes, including release planning (Hanssen & Fægri, 2008) and

7

the bottom–up application-driven approach with automated acceptance tests175

(Ghanam & Maurer, 2010).

Research suggests that Agile methods are suitable for software startups,

as iterative development approaches are adaptive, with short lead time (Pan-

tiuchina et al., 2017; Paternoster et al., 2014). The adoption of formal sets of

Agile practices and methods in startups is limited, often due to an excessive180

amount of uncertainty and high time-pressure (Giardino et al., 2014a). Star-

tups often use a tailored version of Agile development, in many cases, the quick

combination of Agile and other methodologies.

2.4. Engineering processes for embedded system development

Research on development processes in hardware startups is rare, where ex-185

ploration of state-of-practice is limited to a few studies (Nguyen-Duc et al.,

2018). The processes and practices for developing hardware-relevant products

have been reported in literature about embedded system engineering, which

concerns about application-specific computing devices consisting of hardware

and software components (Ronkainen et al., 2002). Current knowledge on de-190

velopment processes of hardware-related products in established companies is

rarely transferred to hardware startups’ product development, as the startup

context is unique and special (Nguyen-Duc et al., 2018; Ronkainen & Abra-

hamsson, 2003). In the embedded domain, hardware sets strict requirements to

software. Development of hardware-intensive systems require simultaneous de-195

velopment of hardware-components and hardware-related software (Ronkainen

et al., 2002). Since software allows for frequent updates and releases, the sys-

tem architecture often seeks to separate hardware from software to allow for two

largely independent release processes (Bosch, 2016). This is illustrated in Fig-

ure 1 where hardware and related software development are distinct processes200

requiring constant communication and interconnected testing and verification.

8

Figure 1: Hardware-software co-design process (Ronkainen et al., 2002)

Ronkainen et al. (2002) found four main characteristics of hardware and

related software development, including (1) hard real-time requirements, (2)

experimental work, (3) documentation requirements, and (4) testing.

1. Hard real-time requirements (e.g., data throughput rates, cycle counts, or205

function call latency) mean that if software doesn’t meet requirements, fur-

ther system operation may be at risk. Hardware simulations can help de-

termine the precise operation of hardware without producing an expensive

prototype and even enable testing of the hardware-software co-operation.

2. Hardware-oriented software development is experimental by nature, and210

developers need to understand the whole system to deal with all uncer-

tainties related to changes in hardware and how software affects the whole

system. Every requirement cannot be known and every decision cannot

be made before writing software. Developers should utilize an iterative

development approach to deal with all ambiguities of hardware-related215

software development.

3. The communication among hardware and software developers must work

to implement the hardware-software interface efficiently. Information has

to be explicit and relies heavily on exact documentation to minimize in-

formation loss between iterations. However, due to the vast amount of220

9

experimental work, too much documentation is not feasible in early stages

of product development.

4. Testing is an essential activity both due to reliability and device autonomy

requirements, and regression tests to ensure parallel development doesn’t

drift. In addition to independent software and hardware tests, checking225

the right interaction between hardware and software (i.e., co-verification)

is important to ensure the system works as intended.

Recent advancement in hardware technology suggest that Agile practices also

could be used in the embedded domain (Kaisti et al., 2013). Although Agile

methods and practices may have a positive impact (e.g., decreased development230

time and reduced error rates) on product development, the use of Agile in the

embedded domain is not widespread (Albuquerque et al., 2012). There is a need

for a coherent understanding of how Agile methodologies best fit to embedded

systems development in the startup context, and how such practices can reduce

costs and efforts in different phases of the development process (i.e., requirement235

management, design, and architecture).

3. Research methodology

Software startup engineering research is to a great extent concerned with in-

vestigating the development, operation, and maintenance of software and hard-

ware products in startup companies. In order to gather and to interpret evidence240

for answering our research questions, we devised a qualitative approach. The

goal of qualitative research is to investigate and understand phenomena within

their real-life context (Robson, 2002). Dependent on the in-depth knowledge in

a case, the qualitative research can have a narrow focus on a few case studies, or

a broader scope as a qualitative survey (Robson, 2002; Andersson & Runeson,245

2002; Walsham, 1995). As the study’s overall goal is to characterize current sta-

tus of adopting agility and quality-driven practices in a population of hardware

startups, a qualitative survey appears to be suitable, especially when there is

a limited capacity for capturing insight data from a number of companies in

10

a short time (Andersson & Runeson, 2002). Robson classified four types of250

research purposes (Robson, 2002):

• Exploratory - understanding what is happening; to seek new insights.

• Descriptive - portraying a situation or phenomenon.

• Explanatory - seeking an explanation of a situation or a problem, mostly

but not necessary in the form of a causal relationship.255

• Improving - trying to improve a certain aspect of the studied phenomenon.

In line with the non-deterministic nature of product development in the startup

context (Nguyen-Duc et al., 2015) (i.e., contexts for product development are

highly influenced by team, financial, market situations and entrepreneurial ap-

proaches), and with the exploratory nature of our research question, we explo-260

ratively investigate multiple startups. Klein and Myers differentiate three types

of research perspectives, positivist, critical, and interpretive (Klein & Myers,

1999; Walsham, 1995). Positivist studies search evidence for testing hypotheses,

drawing inferences from a sample; critical studies identify social critique, and

interpretive studies attempt to understand phenomena through participants’265

interpretation of their context. In this research, we investigate a phenomenon

that integrates human factors and engineering concepts. Hence, we adopted the

interpretive view and collected data from semi-structured interviews.

There are several possible levels of analysis (e.g., individual, artifact, team,

project and company). We chose project as a suitable level of analysis, as this270

study concerns about product development activities and processes, with certain

expectations about the interactions between the products and their contextual

environments. The focus of our interviews is startups’ single projects that leads

to the launching of their core products. Figure 2 illustrates all steps of the

research process.275

11

Figure 2: Research Process

3.1. Companies and subjects selection

Our research relies on theoretical sampling: purposive, non-probabilistic

samples which are typically small, as a single observation is sufficient for in-

clusion in the coding system. Researchers identify key participant, for instance,

CEO, CTO or key engineers who has access to important information. To select280

appropriate participants, we chose criteria, as suggested by (Runeson & Höst,

2009). Startups were relevant for inclusion in the study if they met the following

criteria:

• The startup has at least two members, so product development is not an

individual activity.285

• The startup has been active for at least six months, so their experience

can be relevant.

• The startup develops products or services that include both hardware and

software parts.

12

• The startup has a first running prototype so it’s engineering practices are290

relevant.

Our sample in the survey is comprised of 13 hardware companies. They rep-

resent a diverse selection of application domains, product types and company

characteristics, although they are not systematically sampled from any larger

distribution.295

People from the relevant startups were eligible for participation if they had

experience and/or knowledge about software and/or hardware development. If

the candidate met the criteria, he/she was regarded as qualified for contributing

to the research study.

Via professional networks of co-authors of this work, we identified several300

potential sources of contacts, which are co-working spaces, incubator programs,

and technology parks. The five different channels used to find relevant startups

are (1) Innovation Center Gløshaugen, (2) NTNU Accel and FAKTRY, (3) our

co-authors’ professional networks, (4) OsloTech and StartupLab, and (5) The

Hub. Table 1 provides an overview of the different communication channels and305

can help other researchers to find and contact startups.

Table 1: Startup Channels

Channel Description Link

Innovation Center Gløshaugen

The center is located at campus Gløshaugen, and

houses various early-stage high-tech startups, mainly

to support innovative students.

www.ntnu.no/ig

NTNU Accel and FAKTRY

NTNU Accel is a uni-based accelerator for promising

startups. FAKTRY is an incubator which is part of

Accel, and houses various hardware startups.

www.ntnuaccel.no,

www.faktry.no

Our professional networks Italian companies (S13), Spanish and Dutch companies (S11)

OsloTech and StartupLab

OsloTech manage Oslo Science Park, including

incubator StartupLab which has supported more

than 200 startups since 2012.

www.oslotech.no

www.startuplab.no

The Hub

The Hub is a community platform which gives

an overview of Norwegian and Nordic startups.

Via the platform, startups can get assistance with

recruitment and connection with investors.

www.hub.no

There was a mix of startups originated from academica (7 out of 13 com-

13

panies), entrepreneurs (5 out of 13 companies), and industry spin-off (1 out of

13 companies). The investigated startup founders have varied industrial ex-

perience, ranging from 1 to more than 10 years. Regarding entrepreneurial310

experience, five startups are first time startups. The other eight startups have

experienced some failure before. Regarding the background of the interviewees,

the majority (12 out of 13 companies) have technical backgrounds that are rel-

evant for developing products (Table 3).

Table 2: Interviewee Descriptions

Company Role Background Gender

Startup 1 (S1) CEO Industrial Engineer M

Startup 2 (S2) CTO Informatics M

Startup 3 (S3) CTO Computer Science M

Startup 4 (S4) Hardware developer Cybernetics M

Startup 5 (S5) CTO Electronics M

Startup 6 (S6) Software developer Informatics M

Startup 7 (S7) CEO Electronics M

Startup 8 (S8) CEO Mechanical Engineer M

Startup 9 (S9) CEO Entrepreneurship M

Startup 10 (S10) Software developer Computer Science M

Startup 11 (S11) CEO Computer Science M

Startup 12 (S12) CEO Electronics M

Startup 13 (S13) Software developer Computer Science M

3.2. Data collection procedure315

Our chosen data collection method was interviews, identified as an efficient

method for answering research questions in explorative studies (Oates, 2005).

The semi-structured approach enabled discovery of unforeseen information as

interviewees could express themselves more freely, and fitted both the time

constraints of the project and the availability of startup companies. We followed320

14

a questionnaire guiding the data collection process.

• Section 1: Warm-up

1. Tell us about your company at the current stage

2. What was the original ideas?

• Section 2: Agility and Agile practices325

1. Have you heard about, or used any of the methodologies: Agile, Lean

Startup?

2. How is the methodology implemented?

3. How do external dependencies influence product development?

4. How do you balance hardware and software development?330

5. How do you manage documentation?

• Section 3: Quality and Quality assurance

1. How do you manage product quality?

2. When did you last refactor the codebase?

3. To what extent do you reuse components of earlier prototypes?335

4. How do you perform hardware and software testing?

5. When do you start writing tests?

• Section 4: Closing-up

1. What would you do differently with the product development?

2. Any final interesting remarks?340

The first and second researcher were in direct contact with the subjects,

hence the data collection process can be regarded as a first degree data col-

lection technique. First degree data collection requires a significant effort, but

allowed both researchers to control what data was collected, ensuring that all

pre-defined interview questions were answered sufficiently and exploring new345

directions by asking follow-up questions (Runeson & Höst, 2009). Both the first

15

and second author attended all interviews to avoid one single interpretation of

the respondent’s perspective and insight on topics, as qualitative data often can

be rich and broad, but less precise.

Before the interviews, we looked into the participants’ business background,350

either through their company websites or other relevant incubator or accelerator

websites. Additionally, most participants answered a simple questionnaire prior

to interviews where they filled out basic information about themselves and the

company (Appendix B). These measures allowed for more efficient interviews

as the first and second author possessed more knowledge about the interviewee355

and could use less time on formalities. Initial company analysis allowed for a

holistic understanding of each company and provided stronger evidence for the

conclusions drawn from the interviews. Each interview lasted between 40 min-

utes and 1 hour. Table 3 presents key facts about the investigated companies.

The size of the company provides insight into the required need for develop-360

ment process and managerial overhead. The “Current stage” is adapted from

the paper Crowne (2002), as applied in the systematic mapping study by Berg

et al. (2018), representing the stage of the startups at the time of the inter-

views. The startup stage refers to the period between product conception and

the first sale. The stabilization phase starts when the first customer receives the365

product, while the growth phase begins when a product is delivered to a new

customer without disturbing the development team.

16

Table 3: Startup Description

Company Product Current Stage Founded Location # of employees

Startup 1 (S1) Smart gloves Startup 2016 Norway 18

Startup 2 (S2) Medtech biosensor Startup 2017 Norway 5

Startup 3 (S3) Physical exercise game Stabilization 2016 Norway 5

Startup 4 (S4) Unmanned aircraft system Startup 2016 Norway 7

Startup 5 (S5) Advanced noise cancellation Startup 2017 Norway 5

Startup 6 (S6) Medtech hydration monitoring Startup 2016 Norway 10

Startup 7 (S7) LPG management system Stabilization 2016 Norway 8

Startup 8 (S8) Cable cam system Stabilization 2016 Norway 10

Startup 9 (S9) Digital piggy bank Startup 2017 Norway 5

Startup 10 (S10) Collaborative camera Growth 2014 Norway 50

Startup 11 (S11) Interactive children’s toy Startup 2015 Netherlands 8

Startup 12 (S12) 3D-printer control board Growth 2009 Norway 1

Startup 13 (S13) Sensors for IoT Growth 2007 Italy 25

3.3. Analysis procedure

We applied the thematic synthesis process which is a codes-to-theory model

for qualitative research (Cruzes & Dyb̊a, 2011). The objective of our thematic370

synthesis process was to both answer the research questions and come up with

a model of higher-order themes describing development strategies in hardware

startups, focusing on aspects that are unique from software startups. The main

steps of the process are illustrated in Figure 3.

Figure 3: Thematic Synthesis Process (Cruzes & Dyb̊a, 2011)

17

3.3.1. Initial reading375

The first step of the analysis process was to read through the transcribed

interviews to generate initial ideas and identify possible patterns in the data.

All interviews were transcribed shortly after they were conducted to ensure the

actual meaning of interviewees’ answers. All authors discussed the interviews,

creating a mind map of central concepts relevant to hardware startups.380

3.3.2. Coding process

To generate initial codes, the first and second author applied a descriptive

coding technique (Saldaña, 2015), to identify interesting concepts, categories,

or other findings in a systematic way across the data set. Descriptive coding

helped organize and group similar data into categories, which is the first step385

towards the creation of themes.

The coding process followed an integrated approach (Saldaña, 2015). This

allowed us to avoid coding data out of context, while at the same time identifying

what the text was saying rather than what we wanted to see. We applied an

iterative coding process, to allow for simultaneous data collection and analysis390

(Runeson & Höst, 2009). The coding process resulted in a total of 49 codes and

734 references from 13 interviews.

The first iteration involved coding the data from the four first interviews.

A total of 29 codes were generated from 416 references. The codes were exam-

ined by the first, second, and third author. Lessons from the evaluation were395

implemented in the next interviews to generate relevant codes. For the second

iteration, we classified text into the codes from the first iteration, while at the

same time generating new codes in an inductive manner.

3.3.3. Codes into themes

A theme can be seen as a way of grouping initial codes into a smaller number400

of sets, to create a meaningful whole of unstructured codes (Cruzes & Dyb̊a,

2011). We divided related codes into categories and concepts (Strauss & Corbin,

1998). All interview transcripts were analyzed separately to ensure that themes

18

were in line with the associated context.

3.3.4. Model of higher-order themes405

The generated themes were further explored and interpreted to create a

model of higher-order themes (Appendix A). The higher-order themes were pro-

totyping and development, quality assurance, and enabling factors. In addition,

we identified patterns more general to the startup context. The 14 themes in

the thematic map were extracted to address management of Agility (as shown410

in Table 5) and Quality (as shown in Table 6).

3.4. Validity procedure

In qualitative research, the validity must be addressed to enable replication

of research and to ensure findings are trustworthy (Yin, 2003; Cruzes & Dyb̊a,

2011; Runeson & Höst, 2009). To ensure the validity of this study, we followed415

the validity guidelines from Runeson & Höst (2009).

Construct validity ensures that the operational measures that are studied

really represent what the researcher have in mind and what is investigated

according to the research questions. To assure that the interview questions

(Section 3.2) were suitable for answering our research questions, we defined in-420

terview questions through a top-down approach using the Goal Question Metric

method. Interviewees were either CEOs or engineers with insight into business-

and technical-related aspects. Since it is difficult to understand a startup and

its dimensions within a time-span of 30 to 60 minutes, we collected data about

the startups through incubator and company websites prior to interviews. To425

improve the reliability of the study, all participating startups were included in

the process of writing company descriptions to ensure their conformance with

reality.

External validity refers to the extent to which the findings are generalizable

beyond the context studied. For qualitative studies, the intention is to enable430

analytical generalization where the results are extended to companies which have

common characteristics. Our startups were mostly located in Norway, mainly

19

consisting of early-stage small-size entrepreneurial teams. They are also mostly

self-funded and acquiring some key competence from the start. Hence, it would

be safe to rely the findings to startups with similar characteristics (i.e., early-435

stage European startups). Startups from other American countries or startups

already in a growth stage, might not be observed with similar features.

Reliability refers to the extent that data and the analysis are dependent

on the specific researchers. We have defined and validated interview protocols

with colleagues. To decrease the risk of biased interpretations, author one and440

two attended all interviews. Some interviews were in Norwegian, hence tran-

scripts were not always verbatim to preserve the actual meaning of respondents.

Recordings were transcribed shortly after each interview to mitigate bias. Ad-

ditionally, we compared findings to related literature (Giardino et al., 2016;

Nguyen-Duc et al., 2018; Ronkainen & Abrahamsson, 2003), examining simi-445

larities, contrasts, and explanations. Such comparisons have proven to enhance

internal validity and the quality of findings (Eisenhardt, 1989).

4. Results - How do hardware startups achieve both agility and prod-

uct quality during product development?

4.1. An integrative view on agility and product quality in hardware startup de-450

velopment

The integrative model of agility and quality in hardware startups is presented

in Figure 4. We have grouped the main concepts according to two dimensions

(1) agility-driven or quality-driven, (2) project activities (i.e., prototype and

product development, or quality assurance). Each concept describes a common455

foundation in hardware startups that manage agility or product quality. We

classified the emerging concepts into three categories:

• Mindset (represented by green boxes in Figure 4): a belief, an opinion, or

a way of thinking towards a topic

• Practice (represented by pink boxes in Figure 4): the actual application460

of an idea, a belief, or a method to solve a specific task

20

• Strategy (represented by yellow boxes in Figure 4): a high level plan that

might include a set of practices or processes to achieve a goal

As can be seen from Figure 4, the integrative model of agility and quality

in hardware startups focuses on four quadrants on two axes. The vertical axis465

shows two major activity areas (1) prototyping and product development and (2)

quality assurance. The horizontal axis shows the area of Agility or Quality. By

putting them together, we offer an integrative overview of how agility and quality

are managed in both product development and quality assurance activities. The

final section in the model represents enabling factors that apply to both quality470

and agility concepts.

As seen from the model, hardware startups achieve agility at both mindset,

strategy, and practice level in the prototyping and product development phase.

Hardware startups include development practices during the quality assurance

phase that provide short-term gains in quality. However, it becomes clear that475

hardware startups lack both strategies and mindsets for achieving the long-term

quality of the product during the prototyping and development phases.

The model also illustrates the lack of practices during the quality assurance

phase that support the vital need for agility in hardware startups. In other

words, there are none quality-driven activities adopted by hardware startups480

that contribute to their agility. This impedes the adoption and focus on quality

in hardware startups.

The commonality among hardware startups performing these approaches

are (1) customized iterative practices, (2) sufficient competence in team, and

(3) collaborative technical decision making. These appear as key mindsets and485

strategies for startups to perform both agility and quality-driven product de-

velopment. In the following sub-sections, we present detailed insights related to

the common enabling factors, agility and quality aspects in prototyping, product

development, and quality assurance activities.

21

Figure 4: An integrative view on quality and agility

22

4.2. Enabling factors for achieving agility and quality490

Table 4: Enabling factors for achieving agility and quality

Terms Definitions Impacting factors Category

Customized iterative

practices

Self-defined versions of Agile

with Sprints where customers

or potential users can give

feedback. Tailored set of Agile

practices (e.g., product backlogs,

Sprint reviews) might be adopted

Team competence,

team size,

third-party vendors,

market feedback

Strategy

Sufficient competence

in team

Acquiring in-house software

and hardware engineers to

perform design, implementation,

and product testing

Funding,

professional networks,

recruitment strategy

Strategy

Collaborative technical

decision making

Achieving harmony between

hardware and software integration

with a flat-team structure

that supports quick decisions

regarding both implementation

and testing

Team competence,

leadership,

coordination and

communication

mechanisms

Mindset

Customized iterative practices. Hardware and hardware-oriented product

development involve a lot of experimental work, and so developers are encour-

aged to follow an iterative development approach (Ronkainen & Abrahamsson,

2003). Among the startups, five practiced simplistic versions of Scrum, seven

used ad-hoc Agile practices, while one startup did not follow a defined Agile495

development process. In some startups there was not identified a need to im-

plement specific development methods, one reason being the small size of the

development team. This was especially the case in early stages when tech teams

were co-located and introduction of formal communication processes would in-

hibit the agility and freedom of the team. In the startup where the development500

team only consisted of one person, the degree of process was almost absent.

S5 - “Since the team is so small, communication is easy. We have

not seen a need to implement any specific Agile methods or other

23

lean practices.”

S13 - “I don’t think Agile practices are applicable to hardware de-505

velopment, for example you cannot frequently re-design a port as it

involves great costs.”

S8 - “In hardware, the variance of tasks and interrelated dependen-

cies make it more complex than what current Scrum tools like Jira

are suited for.”510

S4 - “Strict Scrum is probably easier to implement for pure software

development, so we use a simplified version of it.”

Due to different team sizes, product offerings, and other financial, managerial,

and human factors, Agile practices were implemented differently among the

hardware startups. Sprint duration usually lasted between 1-2 weeks, and goals515

were defined in weekly meetings. Since development of physical products usually

takes longer time than implementation of software, the startups focused on

defining measurable sub-goals that were part of a long-term plan. Most startups

had the same Sprints for the respective hardware and software development.

However, one startup differentiated between hardware and software Sprints to520

better handle contingencies of hardware and software development.

S1 - “We work on a weekly basis where we define goals for each week.

These are part of a main goal of what we want to achieve during the

semester.”

S10 - “Software development follows two-week Sprints while hardware525

Sprints last 1-2 months.”

Sufficient competence in team. Although contracting is a common approach,

startups mention that internal development would be the best way to achieve

agility. Hardware startups need team members that are dedicated to all as-

pects of the development process. As hardware startups have to deal with530

24

many factors besides software there are higher demands to expertise and expe-

rience of team members. Team members of hardware startups will preferably

need knowledge about application domain, systematic development, software

and hardware development, mechanical engineering, and experience of working

with third-party companies. Particularly, achieving a good collaboration be-535

tween software engineers and hardware engineers in the team would accelerate

the process of prototyping. However, this is only observed in one startup. Most

of the startups had challenges of achieving right sets of competence from the

beginning:

S6 - “Finding talented people is hard. Since we are a startup we540

cannot give very good salary. This is why we try to attract people

who see that the product may provide great value in the future.”

Even though external resources can substitute for the missing competence,

this would not be sustainable in the long run. Many startups include part-time

team members, who are typically more task-based oriented than co-founders.545

Depending on these people might reduce the agility of production due to the

availability and commitment issues.

Collaborative technical decision making. Hardware startups are found with

technology-driven processes of iterating their products. The teams are typi-

cally flat structured, probably due to the fact that startups often have a small550

number of members at early stages. Members are motivated and voluntary in

taking tasks and responsibilities. In our study, startups seem to lack governance

mechanisms of legal rules and strict regulation. Typically, technical decisions

are made by engineers themselves. All decisions are made on team-basis. We

also observe that startups allow for flexibility in working time and place, as ev-555

eryone is responsible for the requirements needed for their area of responsibility.

For a small team, team members could probably play multiple roles. Overall,

team members trust other’s competence. The team is flexible in organizing and

reorganizing (i.e., adding new members and collaborating with vendors) to react

to changes from environments.560

25

4.3. Agility aspects of hardware startups

Table 5: Achieving agility in hardware startups

Terms Definitions Impacting factors Category

Partial

laboratory-prototyping

Production of simple and

low-fidelity prototypes,

representing a part of the

final products and services,

software and hardware

prototyped separately

Complexity of hardware,

funding,

available tools,

third-party vendors

Practice

Adoption of tools

and components

Utilizing commercial-off-the-shelf

or open source components and

tools to speed up the prototyping

Funding,

component-driven

experts in team,

third-party vendors

Practice

Optimizing manufacturing

and logistic process

Managing third-party risks

and maintaining flexibility in

development process to

achieve performance

Team competence,

communication skills,

risk management

Strategy

Combining documentation

with Agile methods

Spend less time on documents,

make it as a task in the

Sprint backlog

Expert availability Mindset

Accepting technical debt

as an intrinsic attribute

Allow amount of technical

debt that does not block

product demonstration

Product nature,

team competence,

traceability of issues

Mindset

Outsourced manual

testing

Outsourcing none important,

manual testing tasks to

third-party vendors

Communication skills,

quality of outsourced

partners, task definition

mechanisms

Strategy

Partial laboratory-prototyping. Almost all startups immediately built a phys-

ical prototype to elicit requirements and achieve rapid business experimentation.

They usually followed an evolutionary approach, performing incremental im-

provements on an early low-resolution prototype. Rapid prototyping is impor-565

tant to obtain customer feedback, however it can be problematic in the hardware

context. Hardware startups usually have a significant focus on non-functional

requirements because of the many challenges and regulations associated with

complex systems development and the general hardware ecosystem. Common

26

to the investigated startups is their priority of modularity both at software and570

hardware level, much so to achieve frequent user testing.

S10 - “We made a physical prototype immediately. It looks like to-

day’s product, but with many shortcuts and lower quality.”

S8 - “We can develop many low-resolution prototypes using our own

equipment, but if we want high-quality prototypes we might have to575

order 10 different parts from 2-3 suppliers.”

To deal with their inability to quickly develop prototypes, the startups tried to

be flexible on the software side of their products. Since software can be fre-

quently updated and tested by customers, they focused on developing a simple

interface between hardware and the software directly accessing the hardware.580

In this way they could achieve more parallel and independent development of

hardware and software. They mainly tried to reuse software, as hardware com-

ponents were easier to reuse with more refined prototypes.

S4 - “We have developed a simple interface between hardware and

software so that the development can happen individually.”585

S3 - “When we outsourced software development, changes took a lot

of time... In software we need to make changes weekly. In hardware

it is okay that things take a bit more time.”

S2 - “We prefer making changes in the software or firmware. To

facilitate this, we have a clearly defined interface between software590

and hardware.”

Adoption of tools and components. Among the investigated startups there

was a more extensive reuse of software than hardware. Hardware and mechan-

ical components were easier to reuse with more refined prototypes than early

low-resolution prototypes. The startups made little use of mock-up tools, and595

so throwaway prototypes seem to take little part of the prototyping stage of

hardware startups.

27

S2 - “We try to reuse as much as possible from each prototype.

We divide the code into different modules, so that if we replace any

hardware component we only need to change that specific part of the600

code.”

S7 - “We tried to reuse the electronics, but it was harder than ex-

pected. So the physical components are usually substituted for each

prototype... The software is more easily reusable.”

Having access to prototyping equipment will be an important asset, reducing605

both development time and prototyping cost. With 3D-printers startups can do

a lot of the prototyping themselves, and make rapid changes based on customer

feedback. This enables faster problem space testing.

S2 - “With a 3D-printer we can make products that look and feel

real. This is a huge advantage. We can literally do almost everything610

apart from the electronics production ourselves and put it together

almost for free.”

S9 - “We have done a lot of 3D-printing. Without access to use-

ful equipment prototyping would have been very expensive and taken

more time.”615

Optimizing manufacturing and logistic process. The most time-consuming

process of hardware prototyping is the long production and shipping times, as

production usually is located in China or other countries in southeast Asia.

This means that not only will the delivery time of necessary parts depend on

the vendor’s own schedule, but also the shipping method used. Several of the620

investigated startups spent a significant amount of money on speeding up pro-

duction and shipping time of manufactured components.

S8 - “All parts of the prototypes must be ordered, mostly from China,

with long delivery times. We spend a lot of money making delivery

times shorter.”625

28

Several startups experienced quality issues working with their external part-

ners. Manufacturing defects of crucial prototype components caused extra de-

lays, which is critical considering the valuable time already spent waiting for

the components. Cooperating with professional actors can decrease the risk of

quality issues, and enhance communication.630

S4 - “We have outsourced production of mechanical parts and circuit

boards. Some of the components we have received from the manu-

facturer have been in bad condition and with significant defects.”

As high-tech prototyping is a time demanding process, there might go several

years from the startup is founded to the time a finalized product is ready to635

be released to the market. This implies that vendors’ dependability also is of

importance. Choosing components that with certainty will be available the

entire prototyping stage is crucial.

S12 - “The first version of the screen went out of production. This

was the most important component and it took a lot of time to fix640

the problem.”

To achieve speed, product quality often gets low priority in startups. However,

because of the vendor dependency of hardware startups, hardware development

should receive higher focus on quality. Making shortcuts in hardware design,

and not assuring that the design is of sufficient quality before sending the spec-645

ifications for production might be costly. Initial findings suggest that hardware

startups focus on ensuring the quality of core hardware components, as low-cost

solutions may inhibit progress in the long-run. Findings from S12 and S1 indi-

cate that hardware startups should put great effort into ensuring the quality of

hardware components, as low-cost solutions can inhibit the long-term evolution650

of their prototypes.

S1 - “We spent more than $500 on a single component we could not

use. In addition we had to spend more time redesigning the board,

and wait for it to be produced.”

29

Because of pressured financial resources and small production batches it can655

be hard for startups to receive commitment from professional manufacturers.

Working with vendors producing components of high quality at an affordable

cost will be an advantage. The big geographical distance, and the difference

in language and culture may also challenge the communication skills of the

team, as effective communication is important to receive service as paid for and660

maintain product development speed.

S10 - “As we have grown, we have been able to work with better

suppliers producing at higher quality, which in turn has helped us

prototype faster.”

S2 - “We are building on networks from earlier startup experience...665

Previously, we chose the cheapest suppliers, but then we also got

components in bad condition, there were communication problems,

and it usually took more than 4 weeks to get the products.”

Combining documentation with Agile methods. On the software side of the

product, the common perception is that since the developers work on the code-670

base every day, documentation activities lead to additional overhead. Tacit

knowledge seem to be a common practice in hardware startups.

S3 - “We spend less time on documentation to speed things up, de-

velopment is our main focus. It is also because software development

is in-house. We work on it daily and understand the code.”675

High-tech products include a lot of different sub-systems and technologies, and

so product complexity increases fast. This implies that documentation of com-

ponents should receive a bigger attention in hardware startups. In worst case,

lack of quality and documentation can put all development on hold.

S2 - “Instead of updating documentation and quality, we did things680

as fast as possible, which eventually led to a lot of extra work.”

30

The prototyping stage in hardware development is often significantly longer than

that of software development. Since it might take years before hardware startups

have a functioning product ready for the market, there’s a great probability of

people quitting the project before it is finished. As to this there should be685

increased focus on documentation in hardware startups, since knowledge often

accompanies the person quitting.

S4 - “Sometimes it becomes challenging to keep the knowledge of

people who quit, the knowledge often accompanies that person. This

leads to extra costs and effort.”690

The choice of outsourcing companies can greatly impact the amount of docu-

mentation. Good partners usually provide well-documented solutions and com-

ponents, which can help manage technical debt.

S3 - “We received an 80-page user manual from the consultants who

developed the hardware.”695

To help startups perform documentation, there exist multiple tools lowering

the barriers for writing documentation. Examples of tools include Wikis, Google

Spreadsheets, and Confluence. Utilizing tools can help decrease the amount of

rework in the long run. Also thorough documentation can allow for more efficient

integration of new employees in the development process.700

S2 - “Previously we have spent a lot of extra time due to a lack of

documentation. Instead of stopping, we did things as fast as possible

without performing documentation. This eventually lead to a lot of

extra work.”

S4 - “We have a wiki for internal documentation. It is quite low705

effort to write something.”

Accepting technical debt as an intrinsic attribute. Technical debt has been

illustrated by Brown et al. (2010), stating that “developers sometimes accept

compromises in a system in one dimension (e.g., modularity) to meet an urgent

31

demand in some other dimension (e.g., a deadline), and that such compromises710

incur a ‘debt’ on which ‘interest’ has to be paid and which the ‘principal’ should

be repaid at some point for the long-term health of the project”. Finding the

correct balance between learning goals and quality is therefore important in

order to minimize waste and to manage technical debt (Terho et al., 2016).

By accepting that time to market is more important than product quality,715

hardware startups incur intentional technical debt. Business experimentation

to build new features is performed in small iterative cycles with minimal effort

on product quality to receive fast customer feedback. Corresponding to soft-

ware startups technical debt mainly manifests itself on the software side of the

product in hardware startups. Since software can be changed quickly, shortcuts720

and workarounds are more easily taken on the software side than on the hard-

ware side of the product. The development team prioritizes implementing new

functionality over improving the quality of the codebase.

S2 - “Software changes all the time... To make things work straight

away, we’d rather take a shortcut and fix it later. We know we’re725

building up technical debt, but it’s on purpose to be able to test the

product on customers as quickly as possible.”

Hardware startups do not accumulate technical debt for their hardware com-

ponents similarly as for their software components. As the concept of technical

debt is built on erosion of systems from frequent low-quality changes, this is not730

as easily manifested in hardware components. Refactoring delivered or released

hardware is a difficult and rarely performed endeavour. However, poor hard-

ware design might eventually lead to the hardware needing to be redesigned.

As hardware components often are reused between low-resolution prototypes,

bad design might imply that the hardware needs redesign on an earlier iteration735

of the product than intended. Early lifetime design decisions might propagate

throughout the lifetime of the product, and may eventually become part of the

final product. These poorly made design decisions will then be discovered af-

ter the product is released. Hence, temporary low-quality solutions in both

32

hardware and software will eventually lead to accumulation of technical debt in740

hardware startups

Outsourced manual testing. Outsourcing includes the choices of both local

consultant companies and aboard contracting vendors. Hardware development

requires a significant amount of testing to ensure product quality. This applies

already at the prototype stage, and for demonstration. Among the companies,745

some outsourced their manual testing (i.e., testing the final release at different

execution environments, and testing the integration between developed compo-

nents and known services or products). Outsourcing manual testing can save

time and effort for startups to focus on innovation and core value creation ac-

tivities.750

S10 - “In software we have a great focus on testing. When soft-

ware is modified, we run automatic tests to ensure that everything

works... In hardware we test that the product functions in different

climates, and perform various mechanical tests... We have also out-

sourced much manual testing to a company to check more parts of755

the product.”

33

4.4. Quality aspect of hardware startups

Table 6: Quality aspects of hardware startups

Terms Definitions Impacting factors Category

Quality-driven prototyping

for core components

Test-driven prototyping,

early focus on

non-functional attributes

Testing capabilities

within team
Practice

Towards more frequent

user testing

Early verify customer value

before thorough testing

Communication skills,

task definition
Strategy

Partly automated testing
Team members individually

test new functionality

Team competence,

product nature
Practice

Simulation as an aid

for unit and component testing

Ability to predict

product behaviour before

physical production

Available tools,

product nature
Practice

Regulation and standard

to guide quality assurance

Market regulations and

standards may infer strict

development guidelines

Quality of

outsourced partners,

available tools

Practice

Quality-driven prototyping for core components. Testing is central to hard-

ware startups. High quality in hardware development is important both because

of the cost associated with mistakes from production, but also as quality greatly760

affects the perceived functionality of the product. In contrast to software prod-

ucts, it is challenging to implement changes and make improvements to the

quality after the product has been produced and assembled. As a consequence,

focus on non-functional attributes at the prototyping stage is essential. We ob-

served many startups that implemented a test-driven approach for developing765

the core components of their prototypes.

S4 - “We have a test setup to ensure that the subsystems work

as intended, and that allows us to analyze different metrics and

data. For the most critical components and features we usually

define detailed test plans in advance of development.”770

Towards more frequent user testing. To achieve quick development speed in

early stages, low-level testing activities generally receive little focus in hardware

34

startups. Before a feature is guaranteed to be part of the final product, it is

more important to verify that the feature adds value to the customers. Until

then, the time spent on testing activities is minimized. This is also evident775

in software startups, where developers avoid wasting time on improvements of

not-validated functionalities (Giardino et al., 2016).

S2 - “We prefer to work fast, as writing tests can double the devel-

opment time... If parts are to be replaced, then we think there’s no

point in spending time on testing.”780

In S3 and S6, the CEO highlighted the importance of having frequent feedback

from their customers and users on the prototypes. This would be critical for

the design and development of a product that later is sought to a mass market.

Several startups faced the challenge of testing their product in realistic en-

vironments because of legal restrictions related to privacy and public safety.785

Simulations and dummy-data can be alternatives to early testing.

S4 - “Setting up a foundation for doing robust tests is a challenge.

When developing drones it is not easy to perform testing, it requires

specific experience and knowledge.”

Lack of financial resources and long delivery times make it challenging to790

test the product on a broader spectrum of customers. Physical prototypes are

resource-intensive to develop, and in contrast to pure software products, one

cannot necessarily deliver a new digital software update to customers. The

investigated startups relied on a small set of customers for frequent feedback.

Partly automated testing. The hardware startups relied on each individual795

developer to test features as they were implemented. In that way the person

responsible for the code was also responsible for its quality and functioning with

the rest of the system. A frequently used testing activity among the startups

was manual smoke tests (i.e., ensuring that major functionality work before

undertaking more formal testing procedures). Prototypes were manually tested800

by internal employees to identify the most prominent defects before testing

prototypes with early adopters or customers.

35

S8 - “We test the subsystems ourselves, but do not have a struc-

tured system for testing... The person responsible for delivery is also

responsible for testing the feature to make sure it works.”805

S1 - “People inside the startup who have experience with similar

solutions test the product before it is tested with pilot customers.”

Software engineers tends to optimize the integration and operation of software

components by adopting automated testing. This is reported to be done in some

part of the product.810

Simulation as an aid for unit and component testing. For hardware develop-

ment, simulation is very helpful to ensure certain quality attributes of physical

products. Hardware simulations can help determine the precise operation of

hardware without producing an expensive prototype, and enable testing of the

hardware-software co-operation (Ronkainen et al., 2002). Several startups found815

it challenging to test their product in realistic environments, both due to mem-

ory and performance constraints and because of privacy and public safety issues.

Since planning is difficult in the startup context, test plans were often changed,

hence these were often neglected. Simulations helped testing the product and

code base before production, postponing the split between hardware and soft-820

ware functionality.

S4 - “At an early stage, things don’t always go as planned. Other

things than what you test for fail, so test and project plans often

change a lot... In addition to performing many simulations, we use

basic tuning of attitude control to avoid simple mathematical errors.”825

Among the investigated startups we found that startups in later lifecycle stages

implemented more systematic testing activities. As they got more customers,

quality and testing activities became more important. Established customers

have stricter demands than pilot customers. To deal with increased quality

requirements, the startups implemented formal processes for testing.830

Regulation as a guide for early quality assurance. For some startups working

under regulated domains, such as healthcare and automotive, market regulations

36

and standards infer a strict guideline for product development. This has been

used to guide the quality assurance activities since the prototyping phases. Be-

sides, companies operating in the market will need to document all parts of835

their product and meet the high standards of quality required. Hence, market

segment will greatly affect the severity of technical debt and infers an early debt

management.

S6 - “We are weak on processes and document management, it is

very ad-hoc. Soon we will introduce a process tool and a document840

management tool. This is necessary if we are to meet the ISO stan-

dard requirements and get it approved as a medical product.”

S13 - “The documentation is part of the development process... We

have an ISO certification that says we are certified according to that

quality process. They have strict requirements on how documentation845

should be kept, including the flow of the documentation and what kind

of documentation to write.”

5. Discussion

5.1. Achieving agility in hardware-related product development

Agility is an essential part of startups in general (Pantiuchina et al., 2017),850

and should thus be considered as an attribute of early stage hardware startups.

Hardware startups’ need for speed often sacrifice product quality. Instead of

applying best engineering principles, we found that development teams prefer

simple solutions to achieve rapid business growth. Speed-related activities lead

to the accumulation of technical debt, which eventually inhibit further business855

growth (Giardino et al., 2016). Achieving agility in hardware startups is not

as straightforward as adopting Agile practices or rapid prototyping in software

startups.

It is evident that iterative development with middle-term planning is used

in hardware startups because hardware development usually requires more time860

37

than software development does. As non-functional attributes need to be as-

sured at the prototyping stage (Nguyen-Duc et al., 2018), and hardware startups

deal with third-party dependency, release frequency is low compared to software

startups. This limited the ability of continuous experimentation as observed in

software startups (Fagerholm et al., 2014).865

The investigated hardware startups achieved agility by facilitating for simul-

taneous work on multiple possible solutions. Implementation of ready-made or

outsourced components can be a significant struggle as hardware startups rarely

develop all components themselves. System design and architectural decisions

are made in advance of development, and may greatly affect later system inte-870

gration of components. As development in hardware startups can be considered

a test of feasibility, development methods should facilitate for experimentation

of multiple solution methods.

One of the key practices to achieve agility is efficient management of external

dependency. By increasing the knowledge of external components in the system,875

developing reliable relationships with external partners, startups can reduce the

time wasted on fixing issues that are not under the startup’s team control.

The nature of hardware development makes embedded systems sensitive to

rapid changes in hardware or hardware-related software (Ronkainen & Abra-

hamsson, 2003). Preliminary architecture design is necessary to facilitate itera-880

tive development, and flexibility to handle rapid changes. As hardware startups

intentionally try to force changes on the software side, neglecting up-front de-

sign may cause bugs that are not easily detected. Early investments in up-front

system design can make the product more robust to changes, and facilitate for

streamlined development in later stages.885

Testing must ensure conformance between hardware and hardware-related

software. However, the test-driven approach is problematic because of the se-

vere memory and performance constraints of embedded systems (Ronkainen &

Abrahamsson, 2003), in addition to the restricted resources of hardware star-

tups. To achieve quick development speed in early stages, low-level testing890

activities generally receive little focus in hardware startups. The startups were

38

first and foremost interested in ensuring that included features provide value to

customers.

Refactoring is basically the object-oriented variant of restructuring, “the

process of changing a [object-oriented] software system in such a way that it895

does not alter the external behaviour of the code, yet improves its internal

structure” (Fowler, 2018). Our research indicates that regular refactoring is not

practiced in hardware startups, neither for software or hardware development.

Prototyping consists to a large degree of shortcuts and workarounds, especially

for the software components. The nature of hardware development is not com-900

patible with regular refactoring, as frequently redesigning components involves

significant costs. This relates to software startups as well. Research states that

refactoring rarely is implemented in the early stages of the startup, but as the

startup grows, returning the accumulated technical debt is needed to meet more

quality-demanding customers and scalability issues (Giardino et al., 2016).905

The mentioned practices extend the list of Agile methods for embedded sys-

tems development and in general hardware-related products (i.e., embedded

hardware, wearable devices, Internet-of-things systems, and robotics) (Kaisti

et al., 2013). The environmental conditions that make the practices particu-

larly relevant include limited resources, market-driven requirements, and the910

temporary and exploratory nature of process management.

5.2. Assuring product quality

The complexities and uniqueness of hardware development imply that hard-

ware startups need to prioritize product quality differently from software star-

tups in order to speed-up development. The investigated startups tried to facil-915

itate for changes in their software parts while keeping the amount of hardware

rework minimum, due to the rigid nature of hardware development. Hard-

ware quality is often necessary to meet real-time performance requirements of

embedded systems (Ronkainen & Abrahamsson, 2003). Enabling the hardware-

software co-operation is an intricate process due to the complex control and920

testing support required over hardware, and the fast time-to-market cycles re-

39

quire simultaneous software and hardware design (Ronkainen et al., 2002). The

hardware startups invested in a simple interface combined with a skilled team

to increase the amount of parallel development, facilitating for two largely in-

dependent development processes of hardware and software.925

While forcing rapid changes on the flexible software side, the hardware star-

tups incurred intentional technical debt. Since the software developers con-

stantly worked with the code base, they relied on tacit knowledge instead of

formal documentation. Hardware documentation seemed to be of higher im-

portance due to the many stakeholders involved in hardware development. In-930

tentional technical debt is a frequent problem in software startups, but can be

even more harmful for hardware startups due to the change-sensitivity of the

numerous complex hardware-software interactions (Ronkainen & Abrahamsson,

2003). Refactoring of code base can cause changes in system behaviour or even

jeopardize system operation. Even if software shortcuts make sense in the short-935

run, our findings indicate that the complex nature of high-tech products may

cause a severe amount of rework in the long-run. Hardware startups should

invest in documentation tools to lower the barriers for formal documentation.

Adoption of Agile methods has proven to be efficient in reducing error rates (Al-

buquerque et al., 2012), however current usage of such is restricted to a subset940

of Agile practices customized the individual needs of hardware startups.

The investigated hardware startups incurred unintentional technical debt

due to the difficulty of testing problem space. They performed usability and

acceptance tests on a small group of pilot customers, as a lack of financial re-

sources and third-party dependencies (e.g., delivery times) made it challenging945

to test the product on a broader spectre of customers. By immediately building

a physical prototype, the startups focused on validating, as they focused on

making their customer acquisition processes more efficient rather than testing

the demand for a functional product. The hardware startups’ inability to pro-

duce many prototypes inhibited business experimentation and lead to feature950

creep. Feature creep in hardware startups may similarly to software startups be

harmful to the production and maintenance of core functionality (Nguyen-Duc

40

et al., 2017).

Testing is central to embedded system development, as hardware startups

need to assure non-functional attributes at an early stage. We found that test-955

ing practices were implemented to various extent among the hardware startups,

among other things, because the testing environment was different from the de-

velopment environment. Memory and performance constraints can also affect

hardware startups’ testing ability (Ronkainen & Abrahamsson, 2003). The in-

vestigated startups relied on individual developers’ efforts to ensure quality of960

new functionality. Manual smoke tests and simulations were favored to profes-

sional engineering activities. Findings indicate that rigorous low-level testing

practices were not implemented before later life-cycle stages.

The investigated startups followed a quality-driven development approach,

where performance and quality criteria of core components were verified through965

frequent user testing. Beyond functional testing as in software development,

specific test plans are needed for hardware and hardware-software integration

interfaces. The found practices can be applied to a cost and quality-driven

environment similar to what Peters et al. reported.

5.3. Balancing agility and quality in high-tech product development970

The conflicting requirements for quality and agility mean development meth-

ods will need a hybrid process that balances both strict hardware development

while allowing speed and flexibility as in software development. We extend

knowledge about possible integrative approaches for agility and quality in hard-

ware development (Jha et al., 2016). Tactics for achieving agility (i.e., outsourc-975

ing, rapid prototyping, Sprint-based development) related to speed are com-

monly used by most startups, however, we see that hardware startups’ overall

strategy is to spend more time on quality-assuring activities.

A previous study reports five types of Agile practices that influence software

quality, which are teamwork, engineering, documentation, testing, and manage-980

ment (Arcos-Medina & Mauricio, 2019). The startups in our study illustrate the

implementation of simple quality-aware practices in their development process

41

with the focus on frequent user testing, early customer feedback, collaborative

decision making, adoption of low-level documentation tools, and model-based

engineering.985

Working with limited resources, finding alternative ways to ensure product

quality in early stages can be of high value. Realistic testing environments may

be restricted, and as the early stages should not only be about failing fast,

but failing cheap, computer simulations may provide early product validation.

As documentation and component testing usually is the responsibility of each990

developer it should be easy to produce light documentation. Finding a sufficient

approach to Agile documentation in startups that does not disrupt the informal

workflow of the team is important. Simple and useful documentation will spare

later effort.

Particular for the startup context, hardware and software teams are not995

always co-located or communicating in an effective manner. We see hardware-

software integration meetings as an important practice for providing agility and

quality to the development process, supporting team decision making. As ob-

served in most startups, managing the interface between hardware and software

is a necessity for speed that allows for distributed development teams simulta-1000

neously working on multiple solutions and technologies.

Existing research addresses the combination between agility and quality at

requirement engineering, architecture, and implementation level (Jha et al.,

2016; Arcos-Medina & Mauricio, 2019; Franch et al., 2019). Our study offers

a comprehensive view on adopting agility and quality-aware practices across1005

product development activities. We also observe that all startups to some extent

were familiar with Agile and it’s concepts, however its’ applicability to the

hardware startup context were of different perception. Although quality-aware

Agile practices are useful, there is still a lack of know-how to establish and

bring these practices into actual usage. Hardware startups need a specific set of1010

quality-aware practices in order to manage technical debt and attain the level

of quality required for all stages of their development process.

42

6. Conclusion

Hardware startups develop physical products with mixed hardware and soft-

ware components, requiring expertise within a broad range of technological1015

fields. In addition to software development hardware startups deal with pro-

duction and logistics issues, factors implying higher initial financial and human

investments than what is experienced by software startups. From a qualitative

exploratory study investigating 13 hardware startups, this paper presents the

role of engineering activities from idea conceptualization to a launched product,1020

and factors influencing agility and quality.

Our research results indicate that hardware startups achieve rapid prototyp-

ing through evolutionary approaches, hardware-software decomposition strate-

gies, and opportunistic Agile practices. The level of agility in prototyping and

production varies depending on team competence, funding and various exter-1025

nal constraints. Hardware startups incur technical debt as an unavoidable part

of the evolution. The state-of-practice testing, with informal and partial qual-

ity assurance approaches, does not help to reduce the overall level of tech-

nical debt. The competitive environment of hardware startups makes speed

inevitable, where investing in hardware quality will be necessary for bringing1030

products fast to market. The study explains the priorities of hardware star-

tups’ engineering approach, and the specific need for process in managing the

relationship between quality and speed. We provide practitioners with a better

understanding and awareness of their own context, helping them make technical

and business-related decisions of sustainable character. It is also evident that1035

quality and agility is balanced with the mean of quality-aware Agile processes

with an effective management of third-party vendors.

This study provides early empirical evidence into prototyping and engineer-

ing practices in hardware startups. However, the study highlights the compro-

mise hardware startups make between quality and speed. Quality is of higher1040

significance, and more research should be provided identifying valuable activ-

ities and approaches for hardware startups dealing with restricted resources.

43

We encourage researchers to explore the long-term effects of technical debt, as

our results are based on a small sample of early-stage hardware startups. In

addition, future research should investigate how hardware startups can ensure1045

safety and security standards when developing highly safe systems, following

standards like IEC61508 (Japan, 2012). The results are partly based on man-

agerial viewpoints, hence missing important links to everyday testing activities

performed by engineers and developers. Future work should verify the results

with other startup companies to find its applicability in other environments, en-1050

abling generalization to a larger startup audience. More investigations should

be undertaken to understand the role of scope in the engineering activities of

hardware startups.

Our integrative model of agility and quality also implies the focus on mind-

sets, strategies, and practices for each product development activity. Future1055

research should focus on defining quality-driven practices that contribute to

agility, and further simplify the introduction of quality in startups. As hard-

ware startups need more attention to hardware quality to allow for evolutionary

prototyping and speed, there should be engineering strategies describing how

hardware startups can manage the relationship between restricted resources and1060

increased quality demands. Future research can also focus on strategies and

mindsets to support long-term quality in the startup context. Hardware star-

tups need specific guidelines for performing problem space testing, and research

should verify the consequences of its absence.

There are identified several limitations to this study. Having based our study1065

on qualitative measures, results and implications are subject to bias. To mit-

igate the risk of misunderstandings or wrong interpretations, two researchers

attended all interviews. Whenever possible, interviews were performed face-

to-face on-site. Recordings were transcribed and translated shortly after each

interview to ensure respondents’ meanings were preserved. Another limitation1070

is the insufficient knowledge on technical decisions and product development

challenges provided by some interviewees (i.e., knowledge of business executives

is often based on managerial viewpoints). The results would benefit from a

44

greater amount of participants providing insights into every-day engineering ac-

tivities of hardware startups. Another shortcoming to the study is the diversity1075

of the investigated startups, as the selection constituted early-stage European

hardware startups. The study would profit from a wider collection of data,

both to discover more relevant themes and to ensure credible conclusions (i.e.,

generalizability of the results). Further investigations of hardware startups op-

erating in different markets, lifecycle stages, and various geographical locations1080

can improve the reliability of the research results.

45

Appendix A. Thematic map

46

47

Appendix B. Pre-interview question questionnaire

• Briefly describe your product.

• Briefly explain your role and responsibilities in the company.1085

• Briefly describe your company (i.e., history, current headcount, roles, and

process)

• Have you received any funding?

References

Abatecola, G., Cafferata, R., & Poggesi, S. (2012). Arthur stinchcombe’s “li-1090

ability of newness”: contribution and impact of the construct. Journal of

Management History , 18 , 402–418. doi:10.1108/17511341211258747.

Abrahamsson, P., Oza, N., & Siponen, M. T. (2010). Agile software development

methods: a comparative review. In Agile software development (pp. 31–59).

Springer.1095

Cunningham et al., W. (2001). The agile manifesto. URL: http://www.

agilemanifesto.org access date: 2017-11-12.

Albuquerque, C. O., Antonino, P. O., & Nakagawa, E. Y. (2012). An investiga-

tion into agile methods in embedded systems development. In International

Conference on Computational Science and Its Applications (pp. 576–591).1100

Springer.

Aldrich, H., & Auster, E. R. (1986). Even dwarfs started small: Liabilities

of age and size and their strategic implications. Research in organizational

behavior , .

Alvarez, S. A., & Barney, J. B. (2007). Discovery and creation: Alternative1105

theories of entrepreneurial action. Strategic entrepreneurship journal , 1 , 11–

26.

48

Alves, C., Pereira, S., & Castro, J. (2006). A study in market-driven require-

ments engineering, .

Andersson, C., & Runeson, P. (2002). Verification and validation in industry1110

- a qualitative survey on the state of practice. In Proceedings International

Symposium on Empirical Software Engineering (pp. 37–47). doi:10.1109/

ISESE.2002.1166923.

Arcos-Medina, G., & Mauricio, D. (2019). Aspects of software quality applied

to the process of agile software development: a systematic literature review,1115

. 10 , 867–897. URL: https://doi.org/10.1007/s13198-019-00840-7.

doi:10.1007/s13198-019-00840-7.

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W.,

Fowler, M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern,

J., Marick, B., Martin, R. C., Mellor, S., Schwaber, K., Sutherland, J.,1120

& Thomas, D. (2001). Manifesto for agile software development. URL:

http://www.agilemanifesto.org/.

Berg, V., Birkeland, J., Nguyen-Duc, A., Pappas, I., & Jaccheri, L. (2018). Soft-

ware startup engineering: A systematic mapping study. Journal of Systems

and Software, .1125

Blank, S. (2013a). The four steps to the epiphany: successful strategies for

products that win. BookBaby.

Blank, S. (2013b). Why the lean start-up changes everything. Harvard business

review , 91 , 63–72.

Bohmer, B. A., A. I., & Lindemann, U. (2015). Open innovation ecosystem-1130

makerspaces within an agile innovation process. In Proceedings of the Inter-

national Society for Professional Innovation Management .

Bosch, J. (2016). Speed, data, and ecosystems: The future of software engi-

neering. IEEE Software, 33 , 82–88. URL: http://ieeexplore.ieee.org/

stamp/stamp.jsp?tp=&arnumber=7368022. doi:10.1109/MS.2016.14.1135

49

Brown, N., Cai, Y., Guo, Y., Kazman, R., Kim, M., Kruchten, P., Lim, E.,

MacCormack, A., Nord, R., & Ozkaya, I. (2010). Managing technical debt in

software-reliant systems. In Proceedings of the FSE/SDP workshop on Future

of software engineering research (pp. 47–52). ACM.

Carmel, E. (1994). Time-to-completion in software package startups. In 19941140

Proceedings of the Twenty-Seventh Hawaii International Conference on Sys-

tem Sciences.

Coleman, G., & O’Connor, R. V. (2008). An investigation into software de-

velopment process formation in software start-ups. Journal of Enterprise

Information Management , 21 , 633–648. doi:10.1108/17410390810911221.1145

Conboy, K. (2009). Agility from first principles: Reconstructing the concept of

agility in information systems development. Information systems research,

20 , 329–354.

Crowne, M. (2002). Why software product startups fail and what to do about

it. evolution of software product development in startup companies. In Engi-1150

neering Management Conference, 2002. IEMC’02. 2002 IEEE International

(pp. 338–343). IEEE volume 1.

Cruzes, D. S., & Dyb̊a, T. (2011). Recommended steps for thematic synthesis

in software engineering. In Empirical Software Engineering and Measurement

(ESEM), 2011 International Symposium on (pp. 275–284). IEEE.1155

Da Silva, T. S., Martin, A., Maurer, F., & Silveira, M. (2011). User-centered

design and agile methods: a systematic review. In 2011 Agile Conference (pp.

77–86). IEEE.

Dahlstedt, A. (2003). Study of current practices in market-driven requirements

engineering. In Third Conference for the Promotion of Research in IT at New1160

Universities and University Colleges in Sweden.

50

Dı́az, J., Pérez, J., Alarcón, P. P., & Garbajosa, J. (2011). Agile product line en-

gineering—a systematic literature review. Software: Practice and experience,

41 , 921–941.

DiResta, R., Forrest, B., & Vinyard, R. (2015). The Hardware Startup: Building1165

Your Product, Business, and Brand . ” O’Reilly Media, Inc.”.

Dyb̊a, T., & Dingsøyr, T. (2008). Empirical studies of agile software develop-

ment: A systematic review. Information and software technology , 50 , 833–

859.

Eisenhardt, K. M. (1989). Building theories from case study research. Academy1170

of management review , 14 , 532–550.

Fagerholm, F., Guinea, A. S., Mäenpää, H., & Münch, J. (2014). Building

blocks for continuous experimentation. In Proceedings of the 1st international

workshop on rapid continuous software engineering (pp. 26–35). ACM.

Fowler, M. (2018). Refactoring: improving the design of existing code. Addison-1175

Wesley Professional.

Franch, X., Lopez, L., Mart́ınez-Fernández, S., Oriol, M., Rodŕıguez, P., &

Trendowicz, A. (2019). Quality-aware rapid software development project:

The q-rapids project. In Software Technology: Methods and Tools (pp. 378–

392). Springer, Cham. URL: https://ezproxy1.usn.no:2066/chapter/10.1180

1007/978-3-030-29852-4_32. doi:10.1007/978-3-030-29852-4_32.

Garbajosa, J., Magnusson, M., & Wang, X. (2017). Generating innovations

for the internet of things: agility and speed. In Proceedings of the XP2017

Scientific Workshops (p. 10). ACM.

Ghanam, Y., & Maurer, F. (2010). Linking feature models to code artifacts1185

using executable acceptance tests. In International Conference on Software

Product Lines (pp. 211–225). Springer.

51

Ghezzi, A. (2018). Digital startups and the adoption and implemen-

tation of Lean Startup Approaches: Effectuation, Bricolage and Op-

portunity Creation in practice. Technological Forecasting and Social1190

Change, . URL: http://www.sciencedirect.com/science/article/pii/

S004016251731778X. doi:10.1016/j.techfore.2018.09.017.

Giardino, C., Bajwa, S. S., Wang, X., & Abrahamsson, P. (2015). Key chal-

lenges in early-stage software startups. In International Conference on Agile

Software Development (pp. 52–63). Springer.1195

Giardino, C., Paternoster, N., Unterkalmsteiner, M., Gorschek, T., & Abra-

hamsson, P. (2016). Software development in startup companies: The green-

field startup model. IEEE Transactions on Software Engineering , 42 , 585–

604. URL: http://dx.doi.org/10.1109/TSE.2015.2509970. doi:10.1109/

TSE.2015.2509970.1200

Giardino, C., Unterkalmsteiner, M., Paternoster, N., Gorschek, T., & Abra-

hamsson, P. (2014a). What do we know about software development in star-

tups? IEEE Software, 31 , 28–32. URL: http://dx.doi.org/10.1109/MS.

2014.129. doi:10.1109/MS.2014.129.

Giardino, C., Wang, X., & Abrahamsson, P. (2014b). Why early-stage software1205

startups fail: a behavioral framework. In International Conference of Software

Business (pp. 27–41). Springer.

Hanssen, G. K., & Fægri, T. E. (2008). Process fusion: An industrial case study

on agile software product line engineering. Journal of Systems and Software,

81 , 843–854.1210

Hodgson, G. M., & Knudsen, T. (2004). The firm as an interactor: firms as

vehicles for habits and routines. Journal of evolutionary economics, 14 , 281–

307. URL: https://doi.org/10.1007/s00191-004-0192-1. doi:10.1007/

s00191-004-0192-1.

52

Jacobson, I., Spence, I., & Ng, P.-W. (2017). Is there a single method for the1215

internet of things? ACM Queue, 15 , 20.

Jalali, S., & Wohlin, C. (2010). Agile practices in global software engineering-

a systematic map. In 2010 5th IEEE International Conference on Global

Software Engineering (pp. 45–54). IEEE.

Japan, I. (2012). Embedded System development Process Reference guide.1220

Information-technology Promotion Agency, Japan. URL: http://www.ipa.

go.jp/english/sec/.

Jha, M. M., Vilardell, R. M. F., & Narayan, J. (2016). Scaling agile scrum

software development: Providing agility and quality to platform development

by reducing time to market. In 2016 IEEE 11th International Conference1225

on Global Software Engineering (ICGSE) (pp. 84–88). doi:10.1109/ICGSE.

2016.24 ISSN: 2329-6313.

Kaisti, M., Rantala, V., Mujunen, T., Hyrynsalmi, S., Könnölä, K., Mäkilä, T.,

& Lehtonen, T. (2013). Agile methods for embedded systems development-

a literature review and a mapping study. EURASIP Journal on Embedded1230

Systems, 2013 , 15.

Karlsson, L., Dahlstedt, A., och Dag, J. N., Regnell, B., & Persson, A. (2002).

Challenges in market-driven requirements engineering-an industrial interview

study. In Eighth International Workshop on Requirements Engineering: Foun-

dation for Software Quality .1235

Keil, M., & Carmel, E. (1995). Customer-developer links in software develop-

ment. Communications of the ACM , 38 , 33–44.

Klein, H. K., & Myers, M. D. (1999). A Set of Principles for Conducting and

Evaluating Interpretive Field Studies in Information Systems. MIS Quar-

terly , 23 , 67–93. URL: https://www.jstor.org/stable/249410. doi:10.1240

2307/249410.

53

Klotins, E., Unterkalmsteiner, M., & Gorschek, T. (2015). Software engineer-

ing knowledge areas in startup companies: A mapping study. In J. M.

Fernandes, R. J. Machado, & K. Wnuk (Eds.), Software Business, Icsob

2015 (pp. 245–257). volume 210 of Lecture Notes in Business Informa-1245

tion Processing . URL: <GotoISI>://WOS:000365180900024. doi:10.1007/

978-3-319-19593-3_22.

Marmer, M., Herrmann, B. L., Dogrultan, E., Berman, R., Eesley, C., & Blank,

S. (2011). Startup genome report extra: Premature scaling. Startup Genome,

10 .1250

Misra, S., Kumar, V., Kumar, U., Fantazy, K., & Akhter, M. (2012). Agile

software development practices: evolution, principles, and criticisms. Inter-

national Journal of Quality & Reliability Management , 29 , 972–980.

Nguyen-Duc, A., & Abrahamsson, P. (2016). Minimum viable product or mul-

tiple facet product? the role of mvp in software startups. In International1255

Conference on Agile Software Development (pp. 118–130). Springer.

Nguyen-Duc, A., Seppänen, P., & Abrahamsson, P. (2015). Hunter-gatherer Cy-

cle: A Conceptual Model of the Evolution of Software Startups. In Proceedings

of the 2015 International Conference on Software and System Process ICSSP

2015 (pp. 199–203). New York, NY, USA: ACM. doi:10.1145/2785592.1260

2795368 event-place: Tallinn, Estonia.

Nguyen-Duc, A., Shah, S. M. A., & Ambrahamsson, P. (2016). Towards an

early stage software startups evolution model. In Software Engineering and

Advanced Applications (SEAA), 2016 42th Euromicro Conference on (pp.

120–127). IEEE.1265

Nguyen-Duc, A., Wang, X., & Abrahamsson, P. (2017). What influences the

speed of prototyping? an empirical investigation of twenty software star-

tups. In International Conference on Agile Software Development (pp. 20–36).

Springer.

54

Nguyen-Duc, A., Weng, X., & Abrahamsson, P. (2018). A preliminary study of1270

agility in business and production: cases of early-stage hardware startups. In

Proceedings of the 12th ACM/IEEE International Symposium on Empirical

Software Engineering and Measurement (p. 51). ACM.

Oates, B. J. (2005). Researching information systems and computing . Sage.

Pantiuchina, J., Mondini, M., Khanna, D., Wang, X., & Abrahamsson, P.1275

(2017). Are software startups applying agile practices? the state of the

practice from a large survey. In 18th International Conference on Agile

Software Development, XP 2017, May 22, 2017 - May 26, 2017 (pp. 167–

183). Springer Verlag volume 283 of Lecture Notes in Business Information

Processing . URL: http://dx.doi.org/10.1007/978-3-319-57633-6_11.1280

doi:10.1007/978-3-319-57633-6_11.

Paternoster, N., Giardino, C., Unterkalmsteiner, M., Gorschek, T., & Abra-

hamsson, P. (2014). Software development in startup companies: A sys-

tematic mapping study. Information and Software Technology , 56 , 1200–18.

URL: http://dx.doi.org/10.1016/j.infsof.2014.04.014. doi:10.1016/1285

j.infsof.2014.04.014.

Peters, H., Knieke, C., Brox, O., Jauns-Seyfried, S., Krämer, M., & Schulze,

A. (). A test-driven approach for model-based development of powertrain

functions. In G. Cantone, & M. Marchesi (Eds.), Agile Processes in Soft-

ware Engineering and Extreme Programming Lecture Notes in Business1290

Information Processing (pp. 294–301). Springer International Publishing.

doi:10.1007/978-3-319-06862-6_23.

Rafiq, U., Bajwa, S. S., Xiaofeng, W., & Lunesu, I. (2017). Requirements elicita-

tion techniques applied in software startups. In 2017 43rd Euromicro Confer-

ence on Software Engineering and Advanced Applications (SEAA), 30 Aug.-11295

Sept. 2017 2017 43rd Euromicro Conference on Software Engineering and

Advanced Applications (SEAA) (pp. 141–4). IEEE Computer Society. URL:

http://dx.doi.org/10.1109/SEAA.2017.73. doi:10.1109/SEAA.2017.73.

55

Ries, E. (2011). The lean startup: How today’s entrepreneurs use contstant

innovation to create radically successful businesses. Crown Books.1300

Robson, C. (2002). Real World Research: A Resource for Social Scientists and

Practitioner-Researchers. (2nd ed.). Oxford, UK ; Madden, Mass: Wiley-

Blackwell.

Ronkainen, J., & Abrahamsson, P. (2003). Software development under strin-

gent hardware constraints: Do agile methods have a chance? In International1305

Conference on Extreme Programming and Agile Processes in Software Engi-

neering (pp. 73–79). Springer.

Ronkainen, J., Taramaa, J., & Savuoja, A. (2002). Characteristics of process

improvement of hardware-related sw. In International Conference on Product

Focused Software Process Improvement (pp. 247–257). Springer.1310

Runeson, P., & Höst, M. (2009). Guidelines for conducting and reporting case

study research in software engineering. Empirical software engineering , 14 ,

131.

Saldaña, J. (2015). The coding manual for qualitative researchers. Sage.

Sarasvathy, S. D. (2001). Causation and effectuation: Toward a theoretical1315

shift from economic inevitability to entrepreneurial contingency. Academy of

management Review , 26 , 243–263.

Sommer, S. C., Loch, C. H., & Dong, J. (2009). Managing complexity and

unforeseeable uncertainty in startup companies: An empirical study. Organi-

zation Science, 20 , 118–133.1320

Steininger, D. M. (2019). Linking information systems and entrepreneurship: A

review and agenda for IT-associated and digital entrepreneurship research. In-

formation Systems Journal , 0 . URL: https://onlinelibrary.wiley.com/

doi/abs/10.1111/isj.12206. doi:10.1111/isj.12206.

56

Stinchcombe, A. L. (2000). Social structure and organizations. In Economics1325

meets sociology in strategic management (pp. 229–259). Emerald Group Pub-

lishing Limited. doi:10.1016/S0742-3322(00)17019-6.

Strauss, A., & Corbin, J. (1998). Basics of qualitative research: Procedures and

techniques for developing grounded theory.

Sutton Jr, S. M. (2000). Role of process in a software start-up. IEEE Soft-1330

ware, 17 , 33–39. URL: http://dx.doi.org/10.1109/52.854066. doi:10.

1109/52.854066.

Terho, H., Suonsyrja, S., & Systa, K. (2016). The developers dilemma: Perfect

product development or fast business validation? In 17th International Con-

ference on Product-Focused Software Process Improvement, PROFES 2016,1335

November 24, 2016 - November 26, 2016 (pp. 571–579). Springer Verlag

volume 10027 LNCS of Lecture Notes in Computer Science (including sub-

series Lecture Notes in Artificial Intelligence and Lecture Notes in Bioin-

formatics). URL: http://dx.doi.org/10.1007/978-3-319-49094-6_42.

doi:10.1007/978-3-319-49094-6_42.1340

Tripathi, N., Annanpera, E., Oivo, M., & Liukkunen, K. (2016). Exploring

processes in small software companies: A systematic review. In P. M. Clarke,

R. V. Oconnor, T. Rout, & A. Dorling (Eds.), Software Process Improve-

ment and Capability Determination (pp. 150–165). volume 609 of Commu-

nications in Computer and Information Science. URL: <GotoISI>://WOS:1345

000382651100012. doi:10.1007/978-3-319-38980-6_12.

Unterkalmsteiner, M., Abrahamsson, P., Wang, X. F., Anh, N. D., Shah, S.,

Bajwa, S. S., Baltes, G. H., Conboy, K., Cullina, E., Dennehy, D., Edison,

H., Fernandez-Sanchez, C., Garbajosa, J., Gorschek, T., Klotins, E., Hokka-

nen, L., Kon, F., Lunesu, I., Marchesi, M., Morgan, L., Oivo, M., Selig,1350

C., Seppanen, P., Sweetman, R., Tyrvainen, P., Ungerer, C., & Yague, A.

(2016). Software startups - a research agenda. E-Informatica Software En-

57

gineering Journal , 10 , 89–123. URL: <GotoISI>://WOS:000387014900006.

doi:10.5277/e-Inf160105.

Van Gelderen, M., Thurik, R., & Bosma, N. (2005). Success and risk factors in1355

the pre-startup phase. Small business economics, 24 , 365–380.

Walsham, G. (1995). Interpretive case studies in IS research: nature and

method. European Journal of Information Systems, 4 , 74–81. URL: https:

//doi.org/10.1057/ejis.1995.9. doi:10.1057/ejis.1995.9.

Wasserman, A. I. (2016). Low ceremony processes for short lifecycle projects.1360

In Managing Software Process Evolution (pp. 1–13). Springer.

Wei, J. (2017). State of the hardware incubators and accelerators in the united

states [society news]. Ieee Consumer Electronics Magazine, 6 , 22–23.

Yau, A., & Murphy, C. (2013). Is a rigorous agile methodology the best devel-

opment strategy for small scale tech startups?, .1365

Yin, R. (2003). K.(2003). case study research: Design and methods. Sage

Publications, Inc, 5 , 11.

58

Declaration of interests

☒ The authors declare that they have no known competing financial interests or personal relationships
that could have appeared to influence the work reported in this paper.

☐The authors declare the following financial interests/personal relationships which may be considered
as potential competing interests:

Vebjørn Berg: Conceptualization, Methodology, Formal analysis, Investigation, Data
Curation, Writing - Original Draft, Writing - Review & Editing
Jørgen Birkeland: Conceptualization, Methodology, Formal analysis, Investigation, Data
Curation, Writing - Original Draft, Writing - Review & Editing
Anh Nguyen-Duc: Conceptualization, Validation, Resources, Supervision, Writing - Original
Draft, Writing - Review & Editing
Ilias O. Pappas: Resources, Supervision, Writing - Review & Editing
Letizia Jaccheri: Validation, Resources, Supervision, Writing - Review & Editing

Vebjørn Berg holds a M.Sc. in Computer Science at NTNU: Norwegian University of Science and
Technology. He is currently working at consultancy firm Netcompany.

Jørgen Birkeland holds a M.Sc. in Computer Science at NTNU: Norwegian University of Science
and Technology. He is currently working at consultancy firm Holte Consulting.

Anh Nguyen-Duc is a Associate Professor at the Department of Business and IT, University of
Southeast Norway. His research interests include Empirical Software Engineering, Data Mining,
Software Startups Research and Cybersecurity.

Ilias O. Pappas is an Associate Professor of Information Systems at the Department of Information
Systems, University of Agder (UiA), Norway. His teaching and research activities focus on the areas
of digital transformation, social innovation and social change, as well as Internet marketing and
information technology adoption. He has worked on EU-funded projects that support SMEs to
innovate, network and grow by promoting innovation through collaboration platforms. Pappas has
been a Guest Editor for the journals Information & Management, Technological Forecasting and
Social Change, and Information Systems and e-Business Management. He has published over 70
articles in peer reviewed journals and conferences including Journal of Business Research, European
Journal of Marketing, Computers in Human Behavior, Information & Management, Psychology &
Marketing. He serves as the secretary of the IFIP Working Group 6.11: Communication Aspects of
the E-World. Pappas is a recipient of ERCIM and Marie Skłodowska-Curie fellowships.

Letizia Jaccheri (Ph.D. from Politecnico di Torino, Italy) is Professor at the Department of Computer
Science of the Norwegian University of Science and Technology. Jaccheri’s research is on: software
engineering; entertainment computing; computational creativity; ICT-enabled social innovation.
Jaccheri is the Norwegian representative and Vice President of IFIP TC14 on Entertainment
Computing. She has published more than 200 papers in International conferences and journals. She
has been teaching courses in software engineering at various levels since 1994. She has supervised
PhD students, Post-doctoral students and acted as opponent for national and international defences.

From 2015 to April 2018 she was independent director of Reply S.p.A, an IT company with 6000
employees world wide.

She has been general chair of IFIP ICEC 2015, co-chair of ACM IDC 2018, and Program Chair of the
European Computer Science Summit 2018. She participates to several Horizon 2020 projects.

Letizia Jaccheri is passionate about dissemination of computer science and research to the general
public and to contribute to recruit female students to computer science and research. Jaccheri is Senior
ACM Member since 2017 and ACM Distinguished speaker since 2018.

