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Abstract

Every physical system contains non-linear characteristics. When the system becomes

increasingly complex, the number of non-linearities rises accordingly, which makes oper-

ating the system as desired a challenge. Thus finding a suitable control structure, tuning

controller gains and evaluating the system with regard to response and stability requires

a high level of in-depth knowledge about the system itself as well as the topology of mod-

eling, identification and control. One approach to simplify this process is to linearize the

system around a specified operational point. However, this will result in a model which

is only representative of the physical system in the vicinity of said operation point and

therefore accurately represents only a small subset of the system’s operational state-space.

On the other side of the spectrum are models with high complexity, in future referred to

as full-order models. These include full-order dynamics, non-linearities, etc., all of which

require explicit knowledge of the system – including its characteristics and internal states

– which might not be feasible to obtain. If generated, these models provide a highly

accurate system representation.

Introducing the topology of hybrid systems in recent years, especially its subclass of

piecewise affine (PWA) systems, appears to be one class of systems capable of represent-

ing the middle ground with respect to complexity between a model linearized around

an operational point and a full-order model. It allows for a linearization of a non-linear

characteristic at several points, resulting in the characteristic being expressed as a com-

bination of different cells defined by linear functions. The compliance between linearized

and actual characteristics can also be easily customized by adjusting the number and

locations of linearization points.

This thesis investigates the topic of modeling and control of PWA systems based on

two experimental cases of an electrical and hydraulic nature with varying complexity that

were also built, instrumented and evaluated. A full-order model has been created for

both systems, including all dominant system dynamics and non-linearities. The unknown

parameters and characteristics have been identified via an extensive parameter identifi-

cation. In the following, the non-linear characteristics are linearized at several points,

resulting in PWA models for each respective setup.
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Regarding the closed loop control of the generated models and corresponding exper-

imental setups, a linear control structure comprised of integral error, feed-forward and

state-feedback control has been used. Additionally, the hydraulic setup has been con-

trolled in an autonomous hybrid position/force control mode, resulting in a switched

system with each mode’s dynamics being defined by the previously derived PWA-based

model in combination with the control structure and respective mode-dependent controller

gains. The autonomous switch between control modes has been defined by a switching

event capable of consistently switching between modes in a deterministic manner despite

the noise-afflicted measurements. Several methods were used to obtain suitable controller

gains, including optimization routines and pole placement. Validation of the system’s fast

and accurate response was obtained through simulations and experimental evaluation.

The controlled system’s local stability was proven for regions in state-space associ-

ated with operational points by using pole-zero analysis. The stability of the hybrid

control approach was proven by using multiple Lyapunov functions for the investigated

test scenarios.
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Chapter 1

Introduction

1.1 Background

Machines and appliances are built with a specific purpose in mind which they are sup-

posed to fulfill. In many cases this implies that the system is controlled in one way or

the other. To develop a suitable control structure, it is highly recommended to have an

in-depth understanding of the system in order to be able to identify and tune control pa-

rameters accordingly. Even today, the PID controller, consisting of proportional, integral

and derivative control [1], is overly prominent due to its simplicity, leading to many sit-

uations where the parameters are manually tuned because of how this machine operates.

As history has proven, this is a viable method that has proven successful. However, if

high performance requirements are placed on systems, relying solely on experience is not

sufficient, especially if new systems are developed. So to create a suitable control struc-

ture and tune the parameters accordingly, an in-depth analysis of the system is necessary,

out of which a model can be created. The highest degree of congruence between model

and physical system can be achieved by deriving a full-order model which, if modeled in

a sufficient level of detail, will most likely include one or more non-linearities, thereby

possibly becoming rather complex. The usual approach to simplifying these models is to

determine the system’s operational point in its state-space around which the respective

non-linearities may be linearized. While simulations in the vicinity of this operational

point may be fairly compliant with the physical system, larger deviations from this point

might result in an ample error, restricting viable simulations to a small subset of the

system’s overall operational state-space.

The rise of hybrid systems [2, 3], these being a combination of discrete and continuous

time domains, resulted, among other things, in the development of piecewise affine (PWA)

systems [4, 5, 6, 7] which allow a system to be linearized at several chosen points, resulting

in a simplified model compared to a full-order model. Yet this model still manages to

1



          


yield promising simulation results with a certain degree of accuracy while at the same

time being able to cover the entire system’s state-space.

The topology of hybrid systems also resulted in a framework which allows the descrip-

tion of more complex e.g. switched control structures [8, 9, 10, 11, 12, 13]. A classical

control approach for a combined position and force control is a cascaded control structure

where the inner loop represents force control and the outer one position control, resulting

in deficiencies in either or both controllers. In this particular case a switched system ap-

proach may be introduced that results in increased performance for either control mode

without it being necessary to change the underlying control structure between control

modes. In the following the state of the art of hybrid systems – with a focus on PWA

systems – is described.

1.2 State of the Art

In this chapter the reader will be introduced to the underlying topics of this thesis and

given a brief summary of their current state. While the topics under discussion cover

a wide spectrum of approaches and methods, all of which are relevant to the respective

fields, this chapter will try to give a general overview.

1.2.1 Hybrid Systems - An Overview

Hybrid systems are dynamic models or systems which have both continuous and dis-

crete dynamics. While the respective fields are individually well known and exten-

sively researched, their combination is a somewhat relatively new topic of investiga-

tion, which raises several methodological questions about modeling, analysis and design

[2, 12, 14, 15, 16, 17]. Continuous dynamic systems are well understood at this point and

may be expressed by the use of differential and difference equations, while discontinuous

systems facilitate the use of automata [18] and Petri nets [19] to be modeled. Nowadays,

almost every system having a high level of complexity uses a combination of continuous

and discrete dynamics in one form or another to accomplish the tasks for which it has

been designed. However, this also applies to much simpler mechanics like the backlash of

a gearbox, dead-zones, friction models distinguishing between stick and slip. It even ap-

plies to examples as simple as a bouncing ball that changes its dynamic upon impact. For

all these kinds of scenarios, mathematical models are necessary to describe the evolution

of the dynamic states of the model’s continuous and discrete parts.

To demonstrate the interaction between continuous and discrete dynamics, consider

the simple example of regulating the temperature in a house [2, 3]. In its simplest form

a heating system is either working at full power or turned off. This means the system





 

can operate at two different modes, namely on and off. In each mode q ∈ {on, off } the

evolution of the temperature T can be expressed by a differential equation. The nodes or

circles in Fig. 1.1 represent the on and off states of the system, including the differential

equation describing the temperature’s evolution over time. The circle’s edges indicate the

discrete state transitions that are possible. This system may be classified as a hybrid

system, since the evolution of the temperature is dependent of both states (T, q) where q

refers to the discrete state being either on or off and the temperature T being a state of

the continuous time domain.

Figure 1.1: Hybrid model of a thermostat [2]

Based on this example, the main features of a hybrid system may already be deter-

mined:

� The thermostat is a hybrid system consisting of both a discrete state q and a con-

tinuous state T .

� The system’s continuous behavior describing the evolution of temperature T is de-

pendent on the discrete state q being on or off.

� Changes in the discrete state q are dependent on the continuous state T with T ≤
Tmin triggering a switch from the discrete state off to on and T ≥ Tmax triggering

a switch from on to off.

In the previous example, the change in the discrete state is directly dependent on

the continuous state; however, this does not necessarily have to be the case, as in more

integrated systems, a switch of discrete state may be triggered by the model’s other

external factors not directly related to the system’s output. An example of this is an

automated gearbox whose input as well as output is revolutions per minute and torque,

but the change of gears could be triggered by flooring the gas pedal, which, as seen from

a car’s perspective, is an external input not related to the output of the submodel of the

gearbox.





          


While the discrete states are usually piecewise constant, the continuous states can

change either continuously or discontinuously, the latter being referred to as jumps or

resets [3]. These jumps can happen at transition times, at which point the discrete state

changes its value, triggering a sudden change in the continuous state’s value, e.g. a change

of gains in a switched controlled system.

1.2.1.1 Hybrid System Requirements

On a bigger scheme, there are four phenomena [17] which are required as an extension to

a purely continuous system so it can be classified as a hybrid system:

� autonomous switching of the dynamics

� autonomous state jumps

� controlled switching of the dynamics

� controlled state jumps

Autonomous switching of the dynamics occurs if the vector field fas defining the

evolution of the continuous state changes discontinuously [17]. This type of change can

be invoked by the time if the vector field fas is dependent on it.

ẋ(t) = fas(x(t), t). (1.1)

Another way of triggering a switch between vector fields is the continuous state x(t)

reaching a switching set S with x(t) ∈ S, which is referred to as an event driven switch.

An example of this is the thermostat example from above where the state T reaches the

value of Tmax while in a discrete state on, triggering a switch of discrete state to off.

Autonomous state jumps occur when at a certain time t and a jump from state

value x(t−) to x(t+) occurs [17], cf. Fig. 1.2. For example, consider the behavior of the

bouncing ball where the velocity of the ball has a discontinuous change in value when

hitting the floor at time t. Where the state jumps to, upon reaching a switching set S, is

defined by a reset map R, with the reset map possibly being dependent on the previous

discrete state q(t−), and may be written as:

(x(t−), x(t+)) ∈ R(q(t−)), for x(t) ∈ S. (1.2)

Controlled switching occurs when there is a discrete input vdis which is used to

switch between continuous dynamics [17]. If there is a change in the discrete input at

time t̄ then the vector field f csw(x(t), vdis(t)) changes abruptly at time t̄ as well.





 

Figure 1.2: Autonomous state jump [2]

Controlled state jumps is a phenomenon where a continuous state experiences

a discontinuity when the discrete state changes, e.g. based upon a control command

[17]. The previously mentioned automated gearbox may be named as an example of this

phenomenon.

1.2.1.2 Model of Hybrid Systems

As demonstrated above, there are several different ingredients necessary to define a hy-

brid system. While different formalisms were introduced in the past to describe a hybrid

system, the main modeling formalism in hybrid systems theory remains the hybrid au-

tomaton, which is an 8-tuple [2, 3] and may be defined as:

H = (Q,X , fhyb, Init, Inv, E ,G,R) (1.3)

where

� Q = {q1, . . . qk} is a finite set of discrete states

� X represents the continuous state-space for which often X = Rn holds

� fhyb : Q× Rn → Rn is a vector field

� Init is a set of initial conditions

� Inv : Q → 2Rn
defines the invariants of the locations

� E ⊆ Q×Q is the transition relation

� G : E → 2Rn
is the guard condition

� R : E → 2Rn × 2Rn
is the reset map





          


To elaborate on the above, 2Rn
describes the collection of subsets of X . Inv and G have

similar roles, where G represents a region in state-space called guard region in which a

change in discrete state may occur. This region may be seen as an ”enabling” condition

for a discrete state change, while invariants (Inv) describe when a change must take place.

E defines from which to which discrete state the automata switches [2, 3]. A schematic

representation of a hybrid automata is given in Fig. 1.3.

Figure 1.3: Schematic of hybrid automata with three discrete states, where each circle

represents a mode associated with the respective differential equations. Arrows indicate

possible transitions between discrete states [2]

1.2.1.3 Survey of Hybrid Systems

As mentioned above, the hybrid automaton is by far the most common method of de-

scribing a hybrid system. In this section a brief overview of alternative formalism and

model structures is given [2]. The following list is by no means complete, but covers the

most well-known classes:

� Hybrid automata

� Switched systems

� Piecewise affine models

� Mixed logical dynamical models





 

� Complementary systems

� Discretely controlled continuous systems

� Timed automata

� Hybrid inclusions

Hybrid automata may be seen as an extension to the finite-state machine where each

discrete state is associated with differential equations, and thereby vector fields, along

which the continuous states evolve over time. How to formulate this type of hybrid

system has already been described above; however, it is worth mentioning that rewriting

a physical system to fit the description of a hybrid automata is non-trivial, especially

when considering the definition of reset maps, invariants and guards [2, 14, 16, 20, 21].

Switched systems as described in the literature [2, 8, 9, 10, 11, 12, 13] are a very

general class of hybrid systems in which the continuous state evolves according to the

vector field of the differential equation, and the switch between vector fields may be

triggered based on either the state at a certain time or external signals. It can even

contain memory. For example, consider

ẋ(t) = fssq (x(t)), (1.4)

where x ∈ Rn describes the state vector and q : R+ → {1, . . . , N} represents the switching

signal defining the active vector field fssq with q ∈ {1, . . . , N}. Assuming the system is

switching between two dynamics separated by a hypersurface Φ(x) = 0 the dynamics can

be written as:

ẋ(t) = fss(x(t)) =

fss− (x(t)), if Φ(x(t)) < 0,

fss+ (x(t)), if Φ(x(t)) > 0.
(1.5)

Piecewise affine systems is the class of hybrid systems on which this thesis will

focus. These discontinuous dynamic systems have affine dynamics associated to each

region which in respect are polytopic. This class was well-studied in the past and remains

under investigation due to its flexibility, as it may be used in both discrete and continuous

time [4, 5, 6, 7]. It is also the ”simplest” extension of linear systems that allow modeling

non-linearities with a high level of accuracy depending on the linearisation; moreover, it

can cover simple hybrid phenomena. The continuous form of PWA is given by [2] as:

ẋ(t) = Aqx(t) + Bqu(t) + fq

y(t) = Cqx(t) + Dqu(t) + gq
for

x(t)

u(t)

 ∈ Cq, (1.6)





          


with the discrete state q ∈ {1, . . . , N}, {C1, . . . , CN} describing the non-overlapping convex

polyhedra in the state-space. x(t), y(t) and u(t) represent the state, output and input of

the system respectively at time t.

Mixed logical dynamical systems is a class of hybrid systems in which dynamics,

logic and constraints are combined in one description [2, 22, 23, 24, 25]

x(m+ 1) = Ax(m) + B1x(m) + B2∆(m) + B3z(m), (1.7)

y(m+ 1) = Cx(m) + D1x(m) + D2∆(m) + D3z(m), (1.8)

E1x(m) + E2u(m) + E3∆(m) + E4z(m) ≤ g5 (1.9)

where A, B, C, D, E, are matrices associated with the system, g5 is a vector of the

inequality, x(m) can have boolean as well as real values (similar structure for u(m) and

y(m)). z(m) and ∆(m) are real-valued and boolean auxiliary variables, respectively, and

the inequality (1.9) has to be interpreted component wise.

Complementarity systems combine differential equations of the form

ẋ(t) = fcs(x(t),w(t),u(t)), (1.10)

z(t) = gcs(x(t),w(t),u(t)) (1.11)

with complementarity conditions like

0 ≤ z(t) ⊥ w(t) ≥ 0 (1.12)

where x(t) is the state, u(t) is the input and w(t), z(t) are complementarity variables.

The inequality above indicates that z(t) and w(t) are perpendicular to each other, i.e.

z(t)Tw(t) = 0. In other words zi(t) = 0 or wi(t) = 0 for each i ∈ {1, . . . j} resulting in 2j

modes of the system where each mode is characterized by an active index set J ⊆ {1, . . . j}
and zi = 0 for i ∈ J and wi = 0 for i ∈ J c with J c := {1, . . . n} \J [2, 26, 27, 28].

Discretely controlled continuous systems is a class of hybrid systems where the

switching signal is dependent on the state vector x(t) and the control input q(t) is a

discrete signal switching between the plant’s operation modes [2, 29, 30, 31, 32].

While the description is similar to the previously mentioned PWA system, the key

difference is as follows: In a PWA system the state-space is partitioned into sets Cq(q ∈
Q). The evolution of the continuous states x(t) is defined by the respective vector field

associated with the set in which the state currently resides, e.g. if the state x(t) is within

the partition C2, its evolution is governed by the vector field fpwa2 . After crossing into





 

(a) Piecewise affine system

(b) Discretely controlled continuous

system

Figure 1.4: Comparison of switching schemes between piecewise affine and discretely

controlled continuous systems [2]

another partition/set, e.g. C1 the evolution of the state is then governed by vector field

fpwa1 .

Contrary to the above, in discretely controlled continuous systems the switching be-

tween modes is usually defined by switching surfaces or hyperplanes in the state-space.

If the state trajectory crosses a switching surface, a change of mode is triggered. The

vector field that will become active at the time of crossing is dependent on the mode

which becomes active. It is possible that while the states are passing through a region on

one vector field, after crossing the switching surface they continue in the same region yet

with a different vector field. A side-by-side comparison of PWA and discretely controlled

continuous systems and how the state evolution might appear is shown in Fig. 1.4.

Timed automata have simple continuous dynamics of the form ẋ = 1 with the in-

variants, guards, etc. being compared to constants. This limits the capability of timed

automata with regard to modeling physical systems. At the same time it makes them

very attractive for modeling timing constraints of the form: event A must take place at

least 2s after event B but not more than 5s after event C [2, 18, 33, 34, 35, 36, 37].

Hybrid inclusion are an extension of differential inclusions ẋ ∈ Fhi(x) adding invari-

ants, resets and guards. The inclusions are given by the flow set Chi and jump set Dhi

with the set-valued mappings Fhi : Chi → Rn and Ghi : Dhi → Rn whereas the hybrid

inclusion is then written as:

ẋ ∈ Fhi(x) if x ∈ Chi,

x+ ∈ Ghi(x) if x ∈ Dhi,
(1.13)

which provides the user with a compact and well structured model and is suitable for

many hybrid phenomena [2, 38, 39, 40, 41].
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Figure 1.5: Simulation of stable subsystems and unstable switched system. The dots

indicate initial condition [9]

1.2.1.4 Hybrid System Phenomena

Instability due to switching is a phenomenon which may occur in some hybrid sys-

tems [9]. In such cases it is insufficient to just study the respective subsystems individually

and prove their stability because the switching between them has to be taken into account

as well. This may be illustrated by the following example of a switched system. Let us

assume we have a hybrid system with two operation modes

ẋ =

A1x if x1x2 ≤ 0,

A2x if x1x2 > 0,
(1.14)

with

A1 =

[
−1 10

−100 −1

]
and A2 =

[
−1 100

−10 −1

]
. (1.15)

From the eigenvalues of the two system matrices A1 and A2 which are approximately −1±
31.62j for both, it may be seen that the single systems are stable, as further shown in Figs.

1.5a and 1.5b, but the switched system in Fig. 1.5c shows instability. The opposite effect

may also be attained where two unstable systems are combined into a hybrid system with





 

the switching condition stabilizing the system. This can be illustrated by using the time-

reversed version of the system described above. Switching is an additional uncertainty

factor in system analysis that does not only have to be taken into account during stability

analysis but also influences observability, controllability, etc.

Zeno behavior is another phenomenon that may be observed, which means that within

finite time, an infinite amount of events occur for a given dynamic system [42]. An

example of a system experiencing zeno behavior is the bouncing ball where the ball’s

position trajectory x1 is defined by the continuous dynamics. Upon ground impact an

event takes place, changing the ball’s velocity x2(t+) = −ax2(t−) with 0 < a < 1, resulting

in a constant overall decrease in the ball’s height, cf. Fig. 1.6. This hybrid system leads

to an infinite number of events taking place in finite time in order to get the ball to its

idle state. Zeno behavior possibly influences the well-posedness of a system since it can

affect the existence of a global solution [2].

(a) Hybrid automata
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(b) State evolution

Figure 1.6: Bouncing ball [2]

Chattering is a side effect of hybrid systems that can occur if vector fields, which define

the continuous dynamics, are divided by a hyperplane and point toward this hyperplane,

cf. Fig. 1.7. While in some instances this kind of behavior is not desired and results in a

possible systemic deadlock, sliding mode control uses this phenomenon to its advantage

by defining a hyperplane S, along which the continuous state is intended to propagate

[43].





          


Figure 1.7: Chattering of switched system

Nondeterminism with respect to hybrid systems means that the system is sensitive

to even minor changes in the initial continuous state, resulting in the sequence of discrete

states being non-deterministic [2, 44]. The evolution of continuous states is governed by

the vector field and depending on it, a state trajectory might lead to e.g. a switching

surface S where a discrete state change is triggered, or remain in the same set of the

state-space, cf. 1.8a. In another scenario shown in Fig. 1.8b, two of the state trajectories

tend toward the switching surfaces S1 and S2 where state jumps are triggered, after which

the states continue in different sets associated with their jump. However, what happens

if the trajectory ends up at the intersection of the two switching surfaces is not defined.

(a) (b)

Figure 1.8: Sensitivity of hybrid systems [2]

1.2.2 Piecewise Affine Systems

1.2.2.1 Modeling

PWA systems allow for not only modeling a broad spectrum of physical systems but also

allowing the expression of non-linearities around several operation points via multiple

linearizations. They may therefore be seen as the middle ground between a full-order

model and a model linearized around one operational point. The reproductive accuracy

of the non-linearity by means of multiple linearizations is of course dependent on how





 

many linearizations are performed. A higher level of accuracy in reproduction is usually

achieved with an increasing number of linearizations. However, it should be obvious that

the model’s accuracy is also dependent on how and at which points linearizations are

performed. Further, the model’s complexity increases with the number of linearizations

performed, possibly making it more difficult to analyze the system properly with respect

to stability [5].

Additionally, PWA systems are versatile due to them being able to be used in both

continuous and discrete time domains. PWA systems are expressed by means of extended

state-space equations

ẋ(t) = Aqx(t) + Bqu(t) + fq

y(t) = Cqx(t) + Dqu(t) + gq
for

x(t)

u(t)

 ∈ Cq. (1.16)

The standard state-space formulation describes the evolution of the system’s states x(t)

by means of A describing the system’s dynamics, B describing the relation between input

signal u(t) and system dynamics alongside an output term C and a feed through terms

D defining the system’s output y(t).

In the above equation, one can see that the standard state-space format was extended

by the vectors fq and gq. These vectors may be seen as constant offsets. In a PWA

system some or all vectors and matrices are dependent on the currently active discrete

state q ∈ {1, . . . n} and differ in value between discrete states, therefore describing different

vector fields to which the states’ evolution is tied. Each discrete state relates to a set Cq
representing a convex polyhedra with the polyhedras not overlapping each other. If fq

and gq are null, the system is considered to be piecewise linear with the associated set Cq
usually containing the system’s equilibrium point [5]. Determining which discrete state

is active depends on the combination of one or several states, possibly also including the

input signal, e.g. actuator saturation.

1.2.2.2 Control

Over the past centuries, ever increasing knowledge in fields like mathematics and physics

has enabled us to further examine and model systems as well as develop control structures,

during which terms like controllability, stabilizability, observability and detectability have

arisen. These play an important role in modern control theory. For example, Kalman

was a pioneer in the field of controllability, which was further extensively studied in the

field of finite-dimensional linear systems, nonlinear systems, infinite-dimensional systems,

hybrid systems and behavioral systems [45]. Outside of the linear context, however, global

controllability is hard to prove, even for smooth non-linear systems [2].





          


As regards hybrid systems, controllability and stabilizability remain a topic of inves-

tigation. For instance, while no general algorithm applicable to hybrid systems has yet

been found [2], for specific classes, amongst which are PWA systems, results have been

generated for both controllability [5, 46, 47] and observability/detectability [5, 48, 49].

Generally speaking, while controllability merely describes the ability of moving the

system’s states around in state-space according to a defined reference trajectory by manip-

ulating its system inputs, choosing a suitable control structure to fulfill the requirements

imposed is essential. The most common control structure is feedback control, which has a

long history in various fields of application dating all the way back to antiquity. Recently,

more elaborate control strategies/structures for more complex systems have been devel-

oped [50]. One of the most common and widespread control techniques is probably the

well-known PID controller consisting of proportional, integral and derivative control [1].

While PID control might be sufficient for many application cases, more elaborate control

strategies have been developed to further enhance a system’s performance and tailor its

response to the respective requirements.

In the following a short overview of various common control strategies is given, be-

ginning with adaptive control [51] using online identification of process parameters and

modification of controller gains for establishing robustness. Hierarchical control [52] is

another way of controlling more complex systems where the system is split up in e.g. sub-

systems which are controlled individually nested under e.g. an overall controller design.

More recently, due to the rise of artificial intelligence (AI), intelligent control [53, 54] has

become more prominent using artificial neural networks, fuzzy logic, machine learning,

genetic algorithms, etc. Optimal controllers [55] are widely used to control a system based

on a defined ”cost index” that is to be minimized. The cost function can be related not

only to common characteristics like settling time, overshoot, etc. but can also be more

complex e.g. minimizing fuel consumption for an airplane flight. This group of controllers

also include Model Predictive Control (MPC) [56] and linear-quadratic-Gaussian control

(LQG) [57]. Especially when there are uncertainties prevalent between the model used to

design a controller and the actual system, robust controllers [58] are used. This class of

controllers include techniques like H-infinity [59] and sliding mode control (SMC) [43].

As it seems the overly dominant control strategy used for PWA systems was and is

still MPC and certain variations of it [5, 60, 61, 62, 63, 64]. This control approach uses

a model to predict the state trajectories for a given time horizon N based on the current

states x(m) and control inputs ˆ̄u, generated by a cost function

ˆ̄u(x(m)) = arg min
ū

N−1∑
i=0

fMPC(x(m+ i),u(m+ i)) (1.17)

which is to be minimized. Only the first value of the generated control values is then





 

used in the following system iteration where the new states are measured again and the

process repeated.

Other research has been conducted on synthesizing control laws based on linear algebra

and reach-set computations [65], piecewise affine state-feedback [66] and moving horizon

estimation [24].

In order to be able to control a system, one or more of its states has to be measurable.

The limited number of states available/measurable often restricts the design of a proper

control structure; therefore, having more states which can be used for control is beneficial.

However, since in most physical systems not all states within the system can be measured,

observers remain a topic of interest to hybrid and therefore PWA systems, where the

remaining unknown states are estimated based on the observer’s system model. One can

imagine that creating a suitable observer turns out to be relatively complicated if the

current discrete state q is unknown and cannot be reconstructed directly by the known

system output y(t) and system input u(t). Another level of difficulty associated with

state estimation is added when resets of the continuous states are present. Works which

are concerned with observer design for PWA systems are e.g. [67, 68, 69, 70, 71, 72, 73].

1.2.2.3 Stability Analysis

For linear time invariant (LTI) systems mathematical techniques in the frequency do-

main like Laplace transform, Fourier Transform, Z-Transform, Bode plot, root locus and

Nyquist stability criterion can be applied to determine stability [1]. However, since all

real world systems contain non-linearities and if analyzed in depth so will the models,

other stability criteria are necessary to evaluate a system. Such criteria include but are

not limited to limit cycle theory [74], Poincaré maps [75], Lyapunov stability theorem [76]

and Popow criterium [77].

Since this thesis focuses on stability analysis using pole-zero plots, which are well

known, and the Lyapunov theorem, only the latter approach will be further elaborated on

in more detail, specific for PWA Systems. The pioneer of stability analysis for dynamical

systems was Lyapunov [76] with his theorem being based on the conservation of energy

in the sense that if the energy in a system decreases over time it must come to rest

independent of its initial state. This means that the energy of a system L(x(t)) for a

motion x(t) is proper in the sense of L(0) = 0 and

L(x) > 0 ∀x 6= 0. (1.18)

Further L(x) → ∞ when ‖x‖ → ∞. That the energy of the system ẋ = flya(x) is to

constantly decrease along all trajectories is defined by the requirement

L̇(x) =
∂L(x)

∂x
flya(x) < 0 ∀x 6= 0. (1.19)





          


The function L(x) is called a Lyapunov function and represents an abstract measure of the

energy stored in the system. One might be able to determine a Lyapunov function based

on the knowledge of the modeled system but as should be clear, finding an appropriate

function is not trivial [15].

By fulfilling the above mentioned Lyapunov conditions a system is considered to be

asymptotically stable. For linear systems the Lyapunov equation was defined as L(x) =

xTPx for a continuous linear system ẋ = Ax leading to the inequalities

P > 0 ATP + PA < 0, (1.20)

where the system is considered to be asymptotically stable if the matrix P is positive

definite.

While this method can be applied to linear systems which use standard state-space

representation, the inequalities had to be expanded to accommodate for the additional

affine vector fq of PWA systems resulting in piecewise quadratic Lyapunov functions [78,

79]. The state vector is extended to

x̄(t) =

[
x(t)

1

]
(1.21)

with the dynamics of the system defined as

˙̄x =

[
ẋ

0

]
=

[
Aq fq

01×n 0

]
x̄ = Āqx̄ (1.22)

Since Āq describes the evolution of the continuous state only for the discrete state q

and therefore only for a subset of the overall state-space, cell boundaries have to be

established limiting the validity of the above mentioned linear matrix inequalities (LMI’s)

to the respective polyhedra. This is done by introducing the polyhedral cell bounding

matrix Ēq = [Eq, eq] with the condition

Ēqx̄(t) � 0 for x(t) ∈ Xq (1.23)

and

eq = 0 for q ∈ I0, (1.24)

where the polyhedra or cell I0 contains the origin and all other cells are denoted as I1. To

further ensure continuity between the different polyhedra/cells dividing the state-space,

a continuity matrix F̄q = [Fq, f̂q] is needed for cell Xq with the condition that

F̄qx̄(t) = F̄q+x̄(t) for x(t) ∈ Xq ∩ Xq+ , (1.25)

again with the condition that

f̂q = 0 for q ∈ I0. (1.26)





 

Using the knowledge about the LMI’s of continuous linear systems combined with the

extensions made for PWA systems, piecewise quadratic stability can be proven with

Pq = FT
q TFq q ∈ I0,

P̄q = F̄
T
q TF̄q q ∈ I1,

(1.27)

when the following LMI’s are satisfied0 > AT
q Pq + PqAq + ET

q UqEq

0 < Pq − ET
q WqEq

q ∈ I0, (1.28)

0 > Ā
T
q P̄q + P̄qĀq + Ē

T
q UqĒq

0 < P̄q − Ē
T
q WqĒq

q ∈ I1, (1.29)

The symmetric matrices T, Uq and Wq are to be determined with Uq and Wq containing

only non-negative entries.

This is merely a brief summary of the extensions to the original Lyapunov theorem

that have been made to adopt the formalism to PWA systems, outlining the required key

components and conditions to be fulfilled.

1.3 Contributions

This thesis is based on five papers that have been published or submitted for publication

during the PhD study.

1.3.1 Paper A: Design and Analysis of non-linear Circuit with

Tunnel Diode for Hybrid Control Systems

Summary: In this paper an electric circuit containing a non-linear tunnel diode is in-

vestigated. A test setup was built based on a model of the circuit, which was created

containing two differential equations, including a non-linear term representing the tunnel

diode’s characteristic. Measurements were performed to characterize the diode and obtain

the parameters for the non-linear term. The system’s transient response was evaluated

and the circuit analyzed, including the hysteresis behavior of the diode followed by an

open loop control where the diode switches between its high and low states based on a

pulsed input signal.

This paper has been published as:

P. Pasolli, M. Ruderman. Design and Analysis of non-linear Circuit with Tunnel Diode for

Hybrid Control Systems. Proceeding of IEEE 15th International Workshop on Advanced





          


Motion Control (AMC2018), 181-186, 2018.

doi: 10.1109/AMC.2019.8371084.

1.3.2 Paper B: Design, Control, and Analysis of Nonlinear Cir-

cuits with Tunnel Diode with Piecewise Affine Dynamics

Summary: This paper expands upon the previous Paper A. A closed loop control struc-

ture in the form of an integral error, state-feedback controller is added. Further, a series

of simulations and experiments are performed to validate the closed loop system where

the diode is controlled toward its high and low states. A third simulation/experiment is

conducted with a reference controlling the system to a section with a negative gradient

on the diode’s characteristic, resulting in a limit cycle behavior. The non-linearity is

linearized, resulting in four cells, each of which is associated with a linear characteristic

and results in a PWA model with four discrete states. A formal verification of the model

is performed by using the PWLTool toolbox and compared to Simulink-based simulation

results.

This paper has been published as:

P. Pasolli, M. Ruderman. Design, Control, and Analysis of Nonlinear Circuits with Tun-

nel Diode with Piecewise Affine Dynamics. IEEJ Journal of Industry Applications, Vol.8

No.2 pp.280-249, 2018. doi: 10.1541/ieejjia.8.240.

1.3.3 Paper C: Linearized Piecewise Affine in Control and States

Hydraulic System: Modeling and Identification

Summary: A hydraulic test setup was built consisting of two cylinders in antagonistic

setup which can be controlled individually and connected via a force gauge. A full-

order model of the right cylinder-valve combination is created that includes several non-

linearities followed by a model reduction. A series of tests are performed to identify

the parameters and characteristics of the respective subsystems and non-linearities. The

non-linear terms are then linearized at multiple points upon which a PWA model of the

hydraulic system is created. A series of simulations and experiments are performed where

the results from experimentally measured data, full-order model, reduced-order model

and PWA model simulations are compared to one another.

This paper has been published as:

P. Pasolli, M. Ruderman. Linearized Piecewise Affine in Control and States Hydraulic

System: Modeling and Identification. IECON 2018-44th Annual Conference of the IEEE



http://dx.doi.org/10.1109/AMC.2019.8371084
http://dx.doi.org/10.1541/ieejjia.8.240


 

Industrial Electronics Society, pp. 4537-4544, 2018. doi: 10.1109/IECON.2018.8591572.

1.3.4 Paper D: Hybrid State Feedback Position-Force Control

of Hydraulic Cylinder

Summary: This paper is part of a natural evolution of Paper C where the previously

derived PWA model of the hydraulic setup is expanded upon by introducing a hybrid,

closed loop control circuit capable of controlling the cylinder in both position and force

control mode. The closed loop structure includes an integral error, state-feedback con-

troller alongside a static dead-zone compensator for the valve and a low pass filter (LPF)

for the control signal. The switching between control modes is triggered by a hysteresis

relay. Optimal state feedback gains are established by the use of non-linear, least-squares

optimization. Experiments and simulations are performed to verify the controller’s per-

formance based on a position- to force-control test scenario.

This paper has been published as:

P. Pasolli, M. Ruderman. Hybrid State Feedback Position-Force Control of Hydraulic

Cylinder. 2019 IEEE International Conference on Mechatronics (ICM), Vol. 1, pp. 54-

59, 2019. doi: 10.1109/ICMECH.2019.8722829.

1.3.5 Paper E: Hybrid Position/Force Control for Hydraulic Ac-

tuators

Summary: Paper E expands upon Paper D by establishing a position-force-position con-

trol approach based on the previously derived PWA model. To improve performance, the

control structure is changed to an integral error, feed-forward, state-feedback controller,

including a static dead-zone compensator and LPF. Controller gains are determined by

the use of the standard pole placement method based on the linearized PWA model, fur-

ther confirming local stability. A multiple Lyapunov function-based stability analysis is

performed to verify the stability of the switched system, including the event-based switch-

ing of the hysteresis relay. Two test scenarios are presented simulating a hard stop and a

dynamic environment, both triggering one or multiple cycles of switching from position to

force control and back. Several experimental measurements for each respective scenario

are performed to evaluate repeatability, the results of which are presented.

This paper has been submitted as:

P. Pasolli, M. Ruderman. Hybrid Position/Force Control for Hydraulic Actuators. Under

review at IEEE Transactions on Industrial Electronics.



http://dx.doi.org/10.1109/IECON.2018.8591572
http://dx.doi.org/10.1109/ICMECH.2019.8722829


          


1.4 Test Setup Overview

During the course of this thesis two test setups were built with the first one being an

electric circuit based on [80]. The circuit contains a voltage source u in series with a

resistor R and an inductance L. In parallel to this two paths are added with the first one

containing a capacitance C and the other one a non-linear tunnel diode. A schematic of

the circuit is shown in Fig. 1.9. A more detailed description, including the components

and instrumentation used, may be found in Papers A and B.

Figure 1.9: Electric circuit including a non-linear tunnel diode

The second test setup is a hydraulic system with increased complexity in comparison

to the electrical one. The setup consists of two cylinders arranged in an antagonistic

setup, coupled together via a force gauge. The left cylinder is connected to a bidirectional

control valve (BDCV) which is only used to change the direction of the flow with a pressure

relief/reduction valve (PRV) connected to it, adjusting the line’s pressure. The right

cylinder is connected to a servo valve that is to be controlled. All pressures in the system

are measured as well as the servo valve’s spool position and right cylinder’s position. The

models created are based on the right cylinder-valve combination (marked with dashed

box), cf. Fig. 1.10. The uncontrolled system includes several unknown parameters which

were identified alongside three non-linearities. A more detailed technical description of

the setup, including components and instrumentation, may be found in appendix F.

1.5 Outline

Since detailed information is given in the respective papers listed in the appendix, which

will be referred to in the following chapters, the rest of the thesis’ main section focuses on

the methodology used. Examples and information from the papers are occasionally used

for illustration purposes. The remainder of this thesis is divided into three main chapters.

In Chapter 2 the modeling methodology for dynamic systems, parameter identification and





 

Figure 1.10: Schematic of hydraulic test setup

the linearization process used for obtaining a PWA based model are introduced. Chapter

3 is devoted to control-related topics. First, the control structure itself is elaborated on,

followed by a control signal filter, a static compensator, the switching event triggering the

respective control modes and the obtainment of controller gains. Chapter 4 is involved

with the local stability analysis using pole-zero plots and a multiple Lyapunov function-

based approach. Finally, in Chapter 5 the thesis is concluded with further information

given with regard to future work.







Chapter 2

Modeling of Dynamical Systems

The framework used throughout this thesis to model and describe systems is the state-

space representation, which allows the formulation of dynamics by means of several first

order differential equations. This method of representation allows for a compact notation

that includes multiple inputs and outputs. If the system is also LTI, its dynamics may

be expressed as a static matrix having its states, inputs and outputs expressed in static

vectors or matrices. These cases also allow for a convenient transformation – from time

domain to frequency domain – for further analysis.

In this chapter the concept of a dynamic system’s state-space representation is intro-

duced, after which the methodology used to derive models for both test setups is elabo-

rated on and thoughts about the process pointed out. The methods used for identifying

the models unknown parameters and characteristics is explained with the presentation of

the linearization approach taken to linearize the respective models non-linear character-

istics concluding this chapter.

2.1 State-Space Modeling - Linear Time Invariant

Systems

A system’s dynamics are defined by its differential equations. A system is considered

LTI if its output may be described via a linear map that is dependent on the system’s

inputs. If an input is applied at two different times, the system’s output will be identi-

cal at both times (except for the time passed in-between). Since these systems do not

include non-linear characteristics, they may be expressed using the standard state-space

representation. A single input, single output (SISO) system’s model may be expressed by

the following formulation

23



          


Figure 2.1: Linear time invariant mass spring damper system

ẋ = Ax + bu,

y = cx.
(2.1)

The above equation omits the feed-through term that is present in the standard state-

space representation since it is not relevant for this work. The variables are defined as

x ∈ Rn×1 being the state vector, A ∈ Rn×n system matrix, b ∈ Rn×1 input vector, u

system input, y system output and c ∈ R1×n output vector.

Let us exemplify these system’s modeling processes based on the mass spring damper

system shown in Fig. 2.1. Based on Newton’s Second Law, stating that the sum of all

forces acting on a body is equal to the body’s mass times acceleration, the following

differential equation may be derived describing the mass’ dynamics

ẍmsd =
1

Mmsd

(Fmsd − bmsdẋmsd − smsdxmsd) . (2.2)

The system’s states are the velocity ẋmsd and position xmsd. As can be seen from the

equation, there is a linear dependency between the states and the system’s acceleration,

with the mass Mmsd, damping bmsd and the spring constant smsd being time-invariant.

In order to transform the differential equation into the state-space format, a state vector

x = [x1, x2]T is created with x2 = ẋmsd and x1 = xmsd. The system’s input u in this

case is the external force Fmsd and the output of interest to us is the mass’ position as in

y = x1.

The system’s dynamics written in a state-space format may then be expressed as

ẋ =

[
ẋ1

ẋ2

]
=

 0 1

− smsd
Mmsd

− bmsd
Mmsd

[x1

x2

]
+

 0
1

Mmsd

Fmsd = Ax + bFmsd,

y =
[
1 0

] [x1

x2

]
= cx.

(2.3)





    

2.2 Non-linear Systems

Similarly, a non-linear system to be modeled is investigated and differential equations de-

rived which describe the system’s dynamics, the difference being that some or all resulting

equations are of a non-linear nature. This point may be illustrated by assuming that the

damper in the above described mass spring damper system has a non-linear characteristic

that is given by

bmsd(ẋmsd) = a1ẋ
3
msd + a2ẋmsd. (2.4)

resulting in the differential equation being written as

ẍmsd =
1

Mmsd

(Fmsd − bmsd(ẋmsd)− smsdxmsd) . (2.5)

Since the differential equation now exhibits non-linear terms due to the damper’s char-

acteristic, the system’s model cannot be expressed using the standard state-space repre-

sentation since the system matrix A is to be static and therefore will not contain system

states.

While the above textbook example is fully modeled by only one differential equation,

the models for the test setups vary in their levels of complexity. In such more complex

systems, it is beneficial to divide the overall system into several subsystems which, while

linked together, can be modeled and analyzed individually, basically breaking the system

down through a top-down approach and then building up an overall model through a

bottom-up approach where the individual submodels are combined.

2.2.1 Electric Setup

The electric circuit first presented in Paper A, cf. Fig. 1.9, is based on [80] and consists

of a couple of standard electric components and a non-linear tunnel diode. The circuit

model may be created by applying Kirchoff’s First and Second Laws in combination with

the differential equations for the inductance and capacitance, resulting in the system’s

dynamics being defined as

ẋ1 =
1

C
(−fD(x1) + x2),

ẋ2 =
1

L
(u−Rx2 − x1),

(2.6)

where x1 = uD is the voltage across the diode, x2 = iL is the inductance current and the

state vector is defined as x = [x1, x2]T . The non-linearity fD(x1) represents the diode’s

characteristics and may be approximated, according to [80], with a polynomial of the fifth

order as

fD(x1) ≈ κ1x1 + κ2x
2
1 + κ3x

3
1 + κ4x

4
1 + κ5x

5
1, (2.7)





          


with the coefficients κ1,...,5 shaping the polynomial. The differential equations in (2.6) with

the polynomial in (2.7) represent the system’s full-order model and the model’s accuracy

when compared to the physical system being only affected by the choice of the function

representing the non-linearity and its coefficients, assuming the inductance, capacitance

and resistor are LTI.

2.2.2 Hydraulic Setup

The hydraulic setup first investigated in Paper C is complex and consists of multiple

individual components combined in series with one another. To make the modeling process

more comprehensible, the system is split up into several subsystems, cf. Fig. 2.2, which

may be investigated individually, simplifying the process of creating a suitable model as

previously described. In the following the thought process and approach for modeling the

different subsystems are presented.

Figure 2.2: Subsystems of hydraulic setup

Valve

The valve’s subsystem consists of the dynamics of the moving parts (spool) along with the

dead-zone and saturation combination due to its mechanical construction. The valve used

in the test setup comes with an integrated control loop. Since there is no insight given

into the control structure or parameters used, it is tedious to create a detailed model of

the valve that includes the spool’s dynamics, electronics used for control and the control

structure deployed. From data sheet inspection, in particular the frequency response

function (FRF), it is known that the overall valve has a rather high cutoff frequency in

comparison to the rather slow overall hydraulic setup. The assumption can be made that

the electronics and control circuit are even faster and therefore have only a negligible

impact on the overall hydraulic model’s response, which led to omitting the modeling of





    

Figure 2.3: Schematic cross-section of over lapped valve

these components.

It is known that an actuator, in this case a solenoid, creates a magnetic field which in

return generates a force displacing the spool, its position being proportional to the input

signal. Simultaneously, a centering spring is present which ensures that the spool will

return to its equilibrium position in case of a power loss. Additionally, any friction forces

present add damping to the system. Therefore the spool’s dynamics may be approximated,

similar to the mass spring damper system, as a 1-DOF (degree of freedom) second-order

system

ν̈ + 2ζω0ν̇ + ω2
0ν = ω2

0u, (2.8)

with ν being the spool position, ζ and ω0 the damping and natural frequency and u the

control input.

The saturation limits the spool’s movement in either direction from its equilibrium

point due to the mechanical construction where the spool reaches an end stop. This is

a phenomenon affecting a vast variety of actuators. A dead-zone refers to a behavior

in which a varying input signal lying within the dead-zone does not affect the system’s

output. The dead-zone for hydraulic valves is associated with a construction type where

the valve exhibits an overlap, cf. Fig. 2.3. Under ideal conditions this results in no flow

through the valve while the spool is moving within the range of the overlap, thereby intro-

ducing a dead-zone. In the case of servo valves, as used here, the overlap and subsequent

dead-zone is usually rather small, which, when paired with a fast actuation of the spool,

makes them suitable for closed loop control.

The dead-zone and saturation in their most generalized form are seen as piecewise

linear with the characteristic shown in Fig. 2.4, where sections 1 and 5 represent the

actuator’s saturation; sections 2 and 4 the proportional characteristics and section 3

depicting the dead-zone. The dead-zone saturation model may simply be written as

v = fDS(ν), (2.9)

with ν being the spool position, fDS(ν) the non-linear characteristic of dead-zone and





          


Figure 2.4: Generalized dead-zone, saturation characteristic of a hydraulic valve

saturation and v the valve’s orifice opening, determining the volumetric hydraulic flow.

Hydraulics

The hydraulics’ subsystem consists of the hydraulic flow and pressure; thus, it may be

modeled by using standard hydraulic equations, cf. [81, 82]. The flow is expressed by

using orifice equations that are dependent on the relative pressure drop over the valve, its

orifice opening and shape. The former is defined by the difference in pressure in the lines

connected to the valve depending on its current configuration, the latter being defined by

the valve’s mechanical construction. This determines the maximum flow possible, which

is expressed by the valve’s flow and pressure rating. The orifice opening is related to

the spool’s position in combination with the dead-zone. Since the differential cylinder

used has two chambers, two flow equations for each valve port, correspondent with the

hydraulic line, are needed which have the general form of

Q = vK
√

∆P , (2.10)

with Q being the volumetric flow of the hydraulic fluid, K the valve flow coefficient taking

into account the orifice’s shape in fully open configuration, ∆P the pressure difference

over the valve and v the orifice opening.

The pressure gradient in each hydraulic line is expressed by using continuity equations

that take into account the bulk modulus of the hydraulic fluid, describing its compress-

ibility, respectively stiffness and the hydraulic fluid’s volume present in the respective

line. Besides the hydraulic flow, the cylinder piston’s movement also affects the change in

pressure, increasing or decreasing it according to its velocity and direction of movement.

A final influential factor is the leakage coefficient. The pressure difference between cylin-

der chambers may be significant. Seals are installed to avoid oil creep between chambers;

however, due to the piston’s movement in combination with the high pressure difference,





    

Figure 2.5: Hydraulic differential cylinder schematic

leakage cannot be completely avoided. This issue increases over time due to wear on the

seal. The general continuity equation according to Fig. 2.5 is described by

Ṗ =
E

V
(Q− Aẋcyl − CL∆P ) . (2.11)

E describes the bulk modulus, V the volume in the hydraulic line and cylinder chamber, Q

the volumetric flow, A the cross-section of the cylinder’s chamber, CL the leakage between

the two chambers and ẋcyl the piston’s velocity.

Cylinder

The dynamic piston motion may be derived by applying Newton’s Second Law as in sec-

tion 2.1. The cylinder’s driving force is defined by the difference between the chamber

pressure’s times the respective cross-sections of chambers A and B. Since the cylinder is

differential, meaning unequal cross-sections, the maximum driving force for either direc-

tion differs. Friction generated due to the seals’ installation reduces the driving force.

While this amount is not substantial compared to the high forces generated, it needs to

be included for proper modeling since it acts as a non-linear damper. Finally, the piston’s

movement is also affected by applied external forces. Since the piston is only able to move

along one axis, its dynamics may be expressed as a second-order system with 1-DOF

mẍ = PAAA − PBAB − fr(ẋcyl)− FL, (2.12)

where m is the lumped moving mass, including the piston itself, plus any other attached

masses, fr(ẋcyl) the friction between cylinder housing and piston and FL the external load

force. PA,B describes the respective chamber pressures and AA,B the respective cross-

sections.

The modeling of a friction characteristic for a component has to be evaluated on a

case-by-case basis. The most simplistic modeling approach is related to a purely Coulomb-

based model using a simple signum function containing an amplification factor. In cases

where it is known that the velocity impacts the created friction, a combination of viscous

and Coulomb friction may be used which rapidly yields better results than a purely





          


Coulomb-based approach. However, based on obtained experimental data, an adapted

Stribeck-based friction model was used [83].

fr(ẋcyl) = tanh(γẋcyl)

(
Fc + (Fs − Fc) exp

(
−
∣∣∣∣ ẋcylχ

∣∣∣∣δ
))

+ σẋcyl, (2.13)

with Fc being the Coulomb friction coefficient, Fs the stiction coefficient, σ representing

the viscous friction component, δ and χ being Stribeck shape parameters. γ scales the

smoothness at zero crossing until the hyperbolic tangent function reaches its saturation

value of ±1 dependent on the sign of the velocity.

As can be seen, the derived complete hydraulic model contains three distinct non-

linearities as given by the dead-zone saturation combination, flow equation and friction

affecting the cylinder’s dynamics. By no means has every possible dynamic of the hy-

draulic setup been modeled. Yet the model created describes the test setup’s main com-

ponents and their interaction with each other.

Model Reduction

The combination of the equations above describe the full-order model of the hydraulic

test setup, which consists of several non-linear and differential equations that are linked

together. In order to simplify the overall model, a model reduction was performed. Equa-

tion (2.10) introduces the valve’s flow equation. Since there are two cylinder chambers

connected to the valve, two flow equations and thus two continuity equations, cf. (2.11),

have to be formulated. These sets may be combined into one by expressing the cylin-

der’s driving force not as a difference between pressures but as a combined load pressure

defined as PL = PA − PB. The cross-section on which this newly defined load pressure

acts, thereby constituting the cylinder’s driving force, is defined as the average of the

cross-sections of the two cylinder chambers as in Ā = 0.5(AA + AB). This results in one

flow and and one continuity equation, slightly simplifying the cylinder dynamics in (2.12).

This model reduction quite naturally impacts the model’s accuracy compared to the

full-order model and physical setup. Assuming a constant difference between chamber

pressures PA and PB the piston’s velocity in the full-order model will differ between an

extending and retracting motion due to the different cross-sections of the respective cham-

bers. In case of the reduced order model, the load pressure PL, representing the difference

between chamber pressures, remaining unchanged for both extending and retracting mo-

tion as in the full-order model, is multiplied with the average cross-section, resulting in

equal velocity for either direction of movement. The reduced order model is further used

as the basis for linearization and creating a PWA-based model.





    

2.3 Parameter Identification

A properly developed model is the foundation for a detailed system description. An

equally meticulous process has to be used to determine the respective equations’ param-

eters. The more the chosen values conform with the physical system, the more accurate

the model is able to represent the system’s response. This is a crucial factor when a

control structure is to be integrated and simulations are used to verify the system’s per-

formance before deploying it on the actual setup, especially as the system has to fulfill

high performance requirements.

It is especially a non-linear characteristic that is usually only roughly described in data

sheets through having a general shape given alongside certain individual characteristics.

While one could try to create a function fitting the given shape and characteristics, the

match with the actual component’s characteristics is probably mediocre at best and as

such does not suit our purpose. Therefore several experiments were conducted to identify

the unknown factors.

The performed experiments may be divided into two categories where in the first

one, a component and their associated characteristic could be analyzed separately since

the signals necessary for analysis could be monitored directly. The second is related

to characteristics where the values necessary for analysis could not be obtained directly

through measurements but had to be calculated through other monitored values, e.g.

friction, dead-zone. These cases add another level of uncertainty to the identification

process since the calculated values might depend on other identified parameters through

the chain of equations used.

During post-processing of the obtained data, a combination of several different meth-

ods was used. For several measurements, it was necessary to average the data in order to

obtain a static value from a noise-afflicted signal or obtain the mean value from several

measurements performed with identical inputs. As regarded measurements exhibiting an

initial transient behavior, only one set of samples associated with steady state behavior

was used and averaged, cf. Fig. 2.6, according to

xavg =
1

osam − nsam

osam∑
i=nsam

xDATAi (2.14)

where nsam represents the first and osam the last sample included in the averaging process

with xDATAi being the data points and xavg the calculated average value.

In other instances where the function to which the measured data is supposed to corre-

spond was known, a linear least-squares estimation was used [84]. Examples of this include

fitting of the measured cylinder’s position with a linear function from which the piston’s

velocity can be derived at constant valve openings, or the frequency response analysis of
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Figure 2.6: Averaging of signals experiencing initial transient behavior between two chosen

start/end points

the servo valve where a sinusoidal function was to be fitted to the measured spool posi-

tion. With respct to the generalized form of the linear least-squares approach, vectors of

independent variables wi = [w1, w2, . . . wm]T and model parameters β = [β1, β2, . . . , βm]

as well as a prediction model defined by yi ≈ βwi are needed. The optimum parameters

in the least-squares sense are then defined as

β̂ = arg min
β

n∑
i=1

(βwi − yi)2. (2.15)

The optimum values are obtained if the gradient of the above equation is zero. By express-

ing the model’s input variables and its output in matrix form W, Y, the derivative may

be taken. Rearranging the derived equation results in the optimized model parameters

given by

β̂ = (WTW)−1WTY. (2.16)

When the measured signals directly correlated to a characteristic that was greatly

distorted due to noise, e.g. Fig. 2.7, the signal was analyzed by using the Fast Fourier

Transform (FFT) to identify frequencies of interest. Since the measured data is already

discretized due to the sampling time of the real-time target, a Butterworth low-pass filter

design was used to generate filter coefficients based on the cutoff frequency determined

from the investigation of the signal’s frequency spectrum. The digital filter that was used

has a general rational transfer function defined as

H(z) =
Y (z)

X(z)
=
α1 + α2z

−1 + α3z
−2 + · · ·+ αn+1z

−n

1 + ε1z−1 + ε2z−2 + · · ·+ εoz−o
, (2.17)

with X(z) being the measured signal, Y (z) the filtered signal, o the feedback and n the





    

feedforward filter order, α = [α1, α2, . . . , αn+1] the feedforward and ε = [ε1, ε2, . . . , εo] the

feedback filter coefficients. [85].
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Figure 2.7: Highly distorted signal due to low signal to noise ratio and filtered signal

In order to identify the valve’s dynamic model, a frequency response analysis was

performed using sinusoidal inputs with varying frequencies. With the measured response

being analyzed using the methods described above, the phaseshift was calculated between

input signal and the measurement’s fitted sinusoidal. The magnitude is described by

the difference in amplitude between input and fitted signal and converted into dB with

ydb = 20 log10(ymag). The valve’s model parameters were then fitted to the phaseshift and

magnitude response obtained, by manually adjusting the parameters.

2.4 Linearisation of Dynamic Systems

In order to linearize a defined and identified non-linear function fn(x), verification must be

made that the resulting function is differentiable, followed by choosing a point x∗ around

which the function is intended to be linearized. The linearization may then be expressed

as

y = fn(x∗) +
∂fn(x∗)

∂x
(x− x∗). (2.18)

By rearranging and substituting variables, the above equation may be expressed as

y = kx+ d, (2.19)

where k represents the linear function’s slope and d the offset. For a non-linearity de-

pendent on more than one input variable e.g. fN(x, y), a point p(x∗, y∗) at which the

linearization is to be performed has to be chosen, which results in the following equation
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Figure 2.8: Diode characteristic with its linearization. The vertical dash-dotted lines

represent the cell boundaries with the circles depicting the points based on which the

linear functions were calculated

for linearization:

fN(x, y) ≈ fN(x∗, y∗) +
∂fN(x, y)

∂x

∣∣∣∣∣
x∗,y∗

(x− x∗) +
∂fN(x, y)

∂y

∣∣∣∣∣
x∗,y∗

(y − y∗). (2.20)

By rearranging and substituting values in the above fashion, the linearization may be

expressed as

fN(x, y) ≈ k1x+ k2y + d. (2.21)

This approach results in a linear function tangential to the non-linear one; they converge

at the chosen linearization point.

When acquired data cannot be properly fitted with a function, or the congruence with

the function is weak, o points may be selected and n linear functions defined connecting

these points with n = o− 1, cf. Fig. 2.8. Each point contains the coordinates describing

its location, in the instance of a two-dimensional characteristic defined as pi(x
∗
i , y
∗
i ). The

linear function’s parameters may then be calculated as

ki =
y∗i+1 − y∗i
x∗i+1 − x∗i

di = y∗i − kix∗i
(i = 1, . . . , n) (2.22)

Let us consider the mass spring damper example from section 2.2 again. The state

vector was defined as x = [x1, x2]T with the states x1 = xmsd being the position and

x2 = ẋmsd being the velocity. The non-linear damper was of the form

bmsd(ẋmsd) = a1ẋ
3
msd + a2ẋmsd. (2.23)
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Figure 2.9: Non-linear damping function and its linearization. The circles indicate the

points based on which the linear function was calculated with the dash-dotted lines rep-

resenting the cell boundaries.

Three points are chosen around which the function should be linearized with two of them

equidistant from, and one at, zero. In Fig. 2.9 the non-linear damping characteristic

and the linearization points, along with the corresponding linearizations, are shown. This

results in the characteristic being split into three different cells, where each cell is linked to

one of the three linear functions of the linearized damping characteristic. The transition

between cells is indicated by the vertical dash-dotted lines. The linearized model is then

expressed as

ẍmsd =
1

Mmsd

(Fmsd − kqẋmsd − dq − smsdxmsd) (2.24)

where kq and dq represent the gradient and offset of the linear function for one cell with

the index q = {1, 2, 3} referring to the cell.

With the linearizations performed, the mass spring damper model can now be ex-

pressed in a PWA manner

ẋ = Aqx + bFmsd + fq,

y = cx,
(2.25)

with

Aq =

 0 1

− smsd
Mmsd

− kq
Mmsd

 , b =

 0
1

Mmsd

 , fq =

 0

− dq
Mmsd

 , c =
[
1 0

]
.

(2.26)

To incorporate the offset term dq of the linearization, which is neither linked to any state

nor to the system’s input, the standard state-space representation is extended with the

affine vector fq. The characteristic being split into three cells also results in the system

matrix Aq, including the linear function’s gradient, being different for each cell, as is the





          


affine vector fq. Depending on the mass’ velocity x2 = ẋmsd it may be determined which

cell is currently active.

Referring back to the general description of hybrid systems, cf. section 1.2.1 the mass

spring damper model as described above has the property of autonomously switching

its dynamics based on the state x2. The continuous state-space X is divided into three

polytopic regions with adjoining borders; therefore, the set of discrete states includes

three entries for each affine region Q = {q1, q2, q3}, with each region having its respective

vector field assigned. The invariants inv and the guard condition G are the same and are

described by the border between the affine regions, in this case solely dependent on the

mass’ velocity. Transitions between regions can only occur in sequential order and are

described by E with no resets being present and therefore no existence of a reset map R.





Chapter 3

Hybrid Control System Design

This chapter focuses on the control approach and begins with the control structure’s

introduction. Subsequently, the approach to signal noise filtering is described, and dead-

zone compensation is detailed. The selection of a proper switching event for the hybrid

position/force control approach is explained, and the generation of controller gains is

discussed.

3.1 Integral, Feed-Forward, State-Feedback Control

In section 1.2.2.2 an overview of different kinds of controllers was given, with the literature

pointing toward MPC as a promising control approach for PWA systems. This control

approach is rather complex and has a somewhat high level of demand in computational

power due to its optimization routine. While this is of no concern during simulations, if

deployed on a system, the embedded PLC (programmable logic controller) has to perform

all necessary calculations within one sampling period, which might not be feasible on low-

end hardware.

In comparison, the integral, feed-forward, state-feedback control structure is rather

easy to comprehend. While it has a low computational demand, it yields vastly improved

performance as compared to PID control, which is still the standard in many industrial

applications. While a PID controller only uses the error between reference and a to

be controlled system state to generate a control signal, the control method used here

allows for additional reference signal shaping through the feed-forward term. Further, the

inclusion of available system states into the control signal through state-feedback allows

for more freedom with respect to system response adjustment.

In this control structure, the controlled state of the system is compared to a reference

that causes an error ė which is then integrated, resulting in ė = 0 for t → ∞ which

is necessary to eliminate steady-state errors. To accommodate the additional integrated

37



          


error ė, the models’ state vector has to be extended to xe = [xT , e]T . In the feed-forward

pathway, the reference signal is prefiltered with a gain factor, while the state-feedback

path first multiplies the measured states with the respectively chosen gains and then

summarizes them. This introduces additional options for control signal shaping, e.g. on a

hydraulic testbench, cf. Paper D where the cylinders’ pressure is fed back while controlling

the pistons’ force for enhanced damping. The integrated error along with the feed-forward

and state-feedback signal form the control signal uc, cf. Fig. 3.1 which is defined as

uc = FFr − kxe, (3.1)

with k = [K1, K2, . . . , Kn, Ki] being the gain vector containing the state-feedback gains

K1, . . . , Kn and the integrator gain Ki, FF the feed-forward term and r the reference

signal.

Figure 3.1: Integral error, feed-forward, state-feedback control structure

It should be noted that while the integrator takes into account the error, being a

relative value between reference and controlled state, the feed-forward and state-feedback

are associated with absolute values for the reference and states.

This may have a major impact on the system’s response as identified in Paper E where

a hydraulic cylinder was driven in a position-force-position control sequence. While the

previous control approach from Paper D omitted the feed-forward term for the position-

force control sequence, its inclusion was vital for the switch from force to position control

mode in Paper E. The high pressure resulting from force control, cylinder displacement

from its zero position, reset of the integrated error to zero due to the mode switch,

cf. section 3.4 and change of controller gains influenced the control signal via the state-

feedback loop at the time of switching between control modes, resulting in unstable system

behavior (limit cycle switching between modes) that was counteracted by the inclusion of

said feed-forward term into the control structure.





    

3.2 Control Signal Filtering

While noise is not present in a simulation environment unless explicitly modeled, every

physically measured signal is exposed to noise in one way or another. While controlling a

system without a proper filtering solution might be possible under certain circumstances,

the control signal will be contaminated with noise as well, forcing the system’s actuator or

actuators to adjust their state in a high frequency manner. While the system’s controlled

state might still follow the trajectory, the high frequent actuation command merely causes

unnecessary wear, which is undesirable.

A common approach is to filter all measured signals before they are used in a control

structure, allowing filters to be fitted according to the noise present in the respective

signal. However, this may result in issues since a filtering process also adds a phase

delay to the signal. This is especially the case when the measured signals are filtered

individually, as the phase delays might differ between signals, making it even harder to

properly control a system.

Therefore, in this work the control signal uc has been calculated based on the unfiltered

measurements and then filtered using a digital filter, as introduced in section 2.3. Since

the system is to be operated in a low-frequency range, a low-pass filter is used, removing

the noise’s higher frequency components, cf. Papers D and E. To avoid negatively im-

pacting the system’s performance, the actuators’ frequency response function (FRF) may

be analyzed and the respective cutoff frequency ωc determined, with the cutoff frequency

of the filter then being chosen accordingly so as ωf > ωc to avoid slowing down the overall

system’s performance.

3.3 Static Compensator

As identified in Paper C, due to its mechanical construction, the servo valve of the hy-

draulic test setup has an inherent dead-zone saturation combination effect. While this

saturation effect limits the maximum actuation possible, the dead-zone prevents changes

in the actuators’ output for actuations located within the dead-zone’s range. This sig-

nificantly influences the closed loop performance and might even lead to limit-cycles or

unstable systemic behavior.

In order to circumvent these issues, a compensator may be designed. Previous work,

cf. [86, 87, 88] proposed a dynamic compensator based on fuzzy logic; however, the dead-

zone in this work is mechanically defined and may be seen as LTI for which a static

compensator is sufficient, cf. Paper D.

A dead-zone saturation combination has an inherent non-linear characteristic which
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Figure 3.2: Linearized dead-zone and compensator

has been linearized during the process of creating a PWA model. While the saturation

effect cannot be compensated for due to physical constraints, the dead-zone, being formed

around the actuators’ idle position, can. The compensator is designed in an inverting

feed-forward manner by mirroring the linearized dead-zone characteristic over a unity

gradient, resulting in a compensator characteristic with three cells, cf. Fig. 3.2. This

process results in a perfect compensation of the dead-zone characteristic according to the

PWA model. The compensator within the control structure is placed directly in front of

the model/plant.

A perfect dead-zone would correspond to an absolute zero actuation, introducing a

discontinuity at the compensator’s zero crossing. In such cases a compensator may be

defined as

yout = tanh(γxinp) (3.2)

around zero crossing to avoid discontinuities, with γ defining the steepness of the slope

when linearizing the function. In the case of the hydraulic valve, due to tolerances in

manufacturing, there is still a creeping flow present while the spool is within the dead-

zone, resulting in a linearization of the dead-zone with k > 0 at zero crossing. This is

advantageous in light of the compensator since the discontiuity is replaced with a linear

function exhibiting a steep slope at zero crossing.

3.4 Switching Event

In Paper D the hybrid position/force control approach for the hydraulic test setup is

introduced. The benefit of this approach is that the control gains for each control mode

may be tuned independently from one another, in this case without changing the overall

control structure. It is worth mentioning however, that each time the mode is switched,
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Figure 3.3: Relay function. (a) shows the noise-afflicted input signal to the relay and

mode switch over time, with the relay function being illustrated in (b)

the integrated error is also reset to zero. The result is a superior performance compared

to traditionally cascaded control loops. In order for the overall system to switch between

control modes autonomously, a trigger or switching event has to be defined.

An example where a hybrid position/force control approach might be used that is

related to the test setup is an automated excavator that progresses along a defined tra-

jectory in position control mode. Since the ground conditions are unknown and possibly

include rather large rocks, a purely position control approach could lead to equipment

destruction. In such cases detection of exceedingly high forces that cause a switch to

force control would counteract this possible destruction.

A very simple switching event is a relay/signum function defined as

h(t) = sign(xsig(t)), (3.3)

which triggers a switch in modes if the measured signal passes a threshold. While this

type of switching event may yield the desired results in a simulation environment, it is

rarely used in real-life applications related to the topic at hand. This is mostly due to

measured signals being afflicted with some form of noise which, by using such a function,

could leave the system in a non-conclusive state and possibly lead to dead-locks. The

relay function’s mode-switching behavior is shown in Fig. 3.3 where it may be seen that

fast switching between modes occurs around the zero crossing due to the noise on the

signal, making it unsuitable for applications where deterministic behavior is required.

An alternative is an adapted version of the time-delayed relay function. The function

may be expressed using a automaton as shown in Fig. 3.4. While this may counteract

the noise-induced, non-conclusive switching of the relay function, based on the excavator

example, it may still lead to destruction of equipment. This is because the excavator

would still continue in position control mode during the specified time-delay, constantly





          


Figure 3.4: Finite-time-automaton for adapted time-delayed relay function. xsig(m) is

the input signal at time step m with n being the number of samples related to the time

delay ∆t and h(m) the output
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Figure 3.5: Simulation of adapted version of the time-delayed relay function. The input

signal is shown alongside the mode propagation. The crosses indicate the relay’s switching

behavior. A mode switch is only triggered after the time delay ∆t has passed based on

the relay’s last switch.

increasing cylinder pressure and force due to the generated control error. The function’s

response is shown in Fig. 3.5.

The hysteresis relay is a function ensuring that a switch in control modes is triggered

as soon as a defined threshold is surpassed and results in a deterministic mode switching

behavior despite the signal’s noise [89].

h(t) =


−1, if xsig(t) ≤ βhys

+1, if xsig(t) ≥ αhys

h (t0) , if βhys < xsig(τ) < αhys ∀τ ∈ [t0, t]

(3.4)

Here, an upper and lower threshold αhys and βhys is to be defined which causes a switch

in modes with the delta between thresholds being chosen according to the peak-to-peak

amplitude of the noise to avoid non-deterministic mode switches. The behavior of the

hysteresis relay function is shown in Fig. 3.6.
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Figure 3.6: Hysteresis relay. The switching function is shown in (a) and the input signal

with the upper and lower thresholds and the mode propagation in (b). The mode switches

after surpassing the function’s lower and higher thresholds with no non-deterministic

switching behavior present.

3.5 Control Parameter Adjustment

During the course of this thesis, three sets of control parameters were defined. The first

set is related to the electric circuit, cf. Paper B with the other two being related to the

hydraulic test setup, the first for the position-force control sequence, cf. Paper D and the

second for position-force-position control, cf. Paper E.

Concerning the electric circuit, the control parameters were dialed in manually based

on the necessary anticipated control value and overall systemic knowledge. Since this

setup/model was mainly used to analyze the overall system behavior, no specific per-

formance criteria were imposed. Therefore a trial and error-based method was deemed

sufficient. For the more complex hydraulic setup, a non-linear, least squares-based opti-

mization routine as well as the traditional pole placement method were used.

3.5.1 Optimal State Feedback

As input to a non-linear, least squares-based optimization procedure [84], as used in this

work, cf. Paper D, a simulation model has to be provided alongside a cost function,

which is to be minimized along with an initial guess regarding the values to be optimized.

The simulation model Y = Fsim(λ) is dependent on an input vector λ = [λ1, λ2, . . . , λo],

containing the parameters to be optimized, generating a matrix Y = [y1,y2, . . . ,yn] where

each vector y(·) describes a state’s evolution over time, with o < n, which is used in a cost





          


function

c = fcost(Y) =


f1(Y)

f2(Y)

. . .

fi(Y)

 . (3.5)

The sum of squares, according to the least-squares algorithm, is formed by

S =
i∑

j=1

f 2
j (Y) (3.6)

which is then potentially minimized by iteratively adjusting the input vector λ

min
λ
S, (3.7)

The minimum of S is dependent on o input parameters and is found if

∂S

∂λj
= 0 (j = 1, . . . , o) (3.8)

The sum of squares S may be seen as a multidimensional surface with the number of

dimensions being equal to the number of input parameters. This type of surface may

contain multiple local minima, which are higher in value than the global minimum, which

is the lowest value possible. To avoid ending up in a local minima, which will result in

the optimization being stopped, the initially given values of λ have to be chosen carefully.

A proper initial guess may be obtained through preliminary simulations and in-depth

systemic knowledge. In order to ensure that the optimization has not converged into a

local minima, the routine may be run multiple times with widely varying initial guesses. If

the parameters converge into the same values independent of the initial guesses provided,

it is likely that the resulting parameters will be related to the global minimum.

The cost functions may be defined to meet the performance criteria imposed. These

functions might be as simple as not only minimizing the error between the reference and

controlled state, but also taking into account e.g. the maximum allowed overshoot or

restriction of the control signal’s range. The more functions a cost function contains, the

more complex its evaluation becomes. This is especially true if multiple different perfor-

mance indicators are combined; the resulting numerical values between indicators may be

of different ranges, resulting in a prioritization of minimizing a certain indicator having

the highest numerical value. To circumvent this issue, the values may be normalized

and different weights applied in order to choose which indicator should have the highest

impact on the cost function.

To verify the resulting optimized parameters, simulations may first be performed,

after which performance indicators may be computed and compared to the requirements.





    

Additionally, the convergence of the normalized parameters and S may be evaluated in

accordance with the iterations performed in order to verify either that the values in fact

converged to a certain point at the end of the optimization or if additional iterations are

necessary.

3.5.2 Pole Placement

In order to generate the control parameters in Paper E, the method of pole placement

was used. This method is based on the pole-zero plot derived from a transfer function.

The plot graphically illustrates a system’s stability and response. This method may be

directly applied to LTI systems. PWA systems may be seen as a compilation of multiple

LTI systems where each system is associated with a region in state-space confined by its

respective cell boundaries. This region has its dynamics defined by the corresponding

matrices and vectors of the state-space model. Since the transformation to the frequency

domain to derive the poles’ and zeros’ locations is only possible for systems described

in the standard state-space representation, the state vector x may be extended and the

system matrix A and affine vector f combined into a newly defined extended system

matrix Ā as shown in section 1.2.2.3. The resulting equations then follow the standard

state-space format and are defined as

˙̄x(t) = Āx̄(t) + b̄u(t),

y(t) = c̄x̄(t),
(3.9)

with the conversion to frequency domain done by taking the Laplace transformation of

the state-space model

sx̄(s) = Āx̄(s) + b̄u(s), (3.10)

y(s) = c̄x̄(s). (3.11)

A transfer function is defined by the ratio of output to input. For example, (3.10) may be

solved for x(s) and then substituted into (3.11). By rearranging the resulting equation,

the transfer function may be found as

H(s) =
y(s)

u(s)
= c̄(sI− Ā)−1b̄, (3.12)

where I is the identity matrix. The zeros are then defined by the terms in the numerator

and the poles by the denominator of the resulting fraction.

The number of poles and zeros for a controlled system is the sum of poles and zeros

related to the plant’s dynamics plus the control structure’s dynamics. The poles closest

to the imaginary axis are dominant and have the highest impact on the system’s response,





          


which in this case are associated with the controller gains and can therefore be placed

accordingly to shape the system’s response.

While in simulations the controller-related poles may be altered to one’s liking, in

a physical system there are limitations. The adjustment of the poles and thereby the

controller gains directly affect the control signal. By placing poles further from the imag-

inary axis, the controller gains increase, resulting in an amplified control signal which the

actuator might not be able to follow due to saturation effects. These factors have to be

taken into consideration while placing poles for a physical setup, limiting the region in

which they can be placed.

Further, due to the PWA-based model, the systemic dynamics change dependent on

the cell combination. Therefore the right region has to be chosen for placing the con-

troller’s poles since gains in the used control structure remain the same throughout the

regions. In this work a cell combination was chosen based on the region in state-space

associated with steady-state behavior following a reference trajectory, therefore defining

the state-space matrix and vectors.





Chapter 4

Stability Analysis

The goal of stability analysis is to determine if a system is stable, meaning that from a

set of initial conditions, the system’s states converge to an equilibrium point and remain

there, assuming there are no disturbances. A general distinction may be made between

local and global stability. Local stability describes a system’s ability to return to an

equilibrium point after experiencing a minor disruption, while global stability states that

no matter the size of the disruption, the system will converge back to its equilibrium

point. It may be seen that the proof of a system’s global stability is something for

which to strive. However, physical systems have imposed restrictions with regard to the

values the respective system states can reach due to physical limitations. While a global

stability analysis may still be conducted, for created models based on a physical system,

a local stability analysis that is limited to the system’s operational range is sufficient. A

subset of local stability covering the reachable state-space focuses on the stability analysis

covering the state-space region around an operational point. This was performed for the

hybrid-controlled hydraulic system for position and force control, respectively, alongside

an analysis for the switch between control modes, cf. Paper E.

4.1 Stability Analysis of Linear Systems

The stability analysis of LTI systems may be conducted by investigating its pole-zero

configuration, whereas if all poles are located in the left half plane, the system is considered

stable. Poles in said half plane being on the axis indicate an exponentially decaying

response with its values representing the rate of decay and complex pole pairs resulting

in an oscillatory decay with the rate of decay being defined by the real and the oscillatory

frequency given by the imaginary value. If any of the poles are located within the right

half plane, the system is considered unstable. The poles located closer to the origin are

considered dominant poles having the highest impact on the system’s response.
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Figure 4.1: Pole-zero plot of controlled hydraulic model for both control modes

The poles and zeros of the controlled hydraulic setup for both control modes are

shown in Fig. 4.1 as defined in the previous section of pole placement. The plot reveals

one conjugate complex pole pair and one pole pair on the axis in the left half plane for each

control mode, respectively, with the latter pair being the dominant one. This indicates a

prevalent exponential decay with an overimposed oscillatory behavior.

While this proves the local stability for a region in state-space associated with the

cell combination chosen, it gives no indication of the local stability covering the system’s

reachable state-space, nor the global stability.

In order to broaden the proof of stability covering the entire or reachable state-space,

not only an individual investigation of the remaining combination of cells is necessary

but the transitions between cells has to be taken into account as well. At this point the

model under investigation is no longer linear, but rather hybrid and the other methods

introduced in section 1.2.2.3, have to be applied.

4.2 Stability Analysis of Non-linear Systems

In the following the issue of verifying stability of a switched system containing two discrete

modes is addressed, as it is the case for the autonomously switched hybrid position/force-

controlled hydraulic test setup. As previously noted, while the respective mode’s local

stability around the switching point may be verified by analyzing the pole-zero plot the

autonomous switching between these modes can still lead to an overall unstable behavior,

cf. section 1.2.1.4. Regarding these hybrid systems, the investigation via the pole-zero

configuration is not sufficient; thus, more elaborate methods have to be used. As intro-

duced in section 1.2.2.3 for non-linear and PWA systems a Lyapunov-based approach may

be pursued. The stability of these switched systems may be verified by finding a common





  

Lyapunov function. While conditions for finding such functions have previously been

investigated by researchers [10, 12], it is a non-trivial and case-specific process. There-

fore, pertaining to the analysis of the switched system at hand, the approach of multiple

Lyapunov functions is used [8]. In this approach a switched system is considered to be

asymptotically stable if the Lyapunov function’s value at the end of one mode is higher

than the function’s value at the end of the same mode’s next period.

For this a quadratic Lyapunov function L(h) which is dependent on the mode h may

be defined, taking into account the system’s potential and kinetic energy, with each of

the energy-related terms being multiplied with a positive coefficient W
(·)
(·) (h) > 0

L(h) =
o∑
i=1

W pot
i (h)ψ2

i (·) +
n∑
j=1

W kin
j (h)φ2

j(·). (4.1)

In the equation above ψ is a function related to potential energy, with φ being related to

kinetic energy and each of the functions may also be mode dependent.

A simulation of the Lyapunov function for a periodically alternating mode can then

reveal a non-increase of the Lyapunov function value for two consecutive operational

periods of the same mode, proving that the switched system is asymptotically stable.

Using the multiple Lyapunov functions’ approach also restricts the class of admiss-

able switching signals. While by finding a common Lyapunov function, the stability of a

switched system may be proven for the occurence of fast switching between modes, mul-

tiple Lyapunov functions are only admissable for systems with a rather slow switching

behavior, as is the case in this work.







Chapter 5

Concluding Remarks

5.1 Conclusions

The focus of this work was to model and control piecewise affine (PWA) systems. This

was exemplified in two test setups, one electrical and the other hydraulic, which were

constructed and implemented during the course of this project. Full-order models were

created, and several non-linearities were derived describing the respective systems’ dy-

namics. Regarding the hydraulic setup in particular, a model reduction was performed in

order to slightly lower the created model’s complexity; however, in doing so, the implica-

tions of reducing this model were clear.

An extensive parameter identification was performed to evaluate the respective pa-

rameters and characteristics of each model by consulting data-sheets and performing

experimental measurements. The experimentally obtained data was post-processed and

analyzed; the respective parameters and characteristics were adjusted accordingly. The

identified non-linearities were then linearized at several points, resulting in each non-linear

characteristic being expressed by a set of linear functions. The resulting affine linear sys-

tem dynamics were then combined and formulated in a PWA state-space representation

for each system, respectively. Open loop experiments and simulations were performed

and compared to one another in order to verify their conformity.

A control structure featuring integral error, feed-forward and state-feedback control

was deployed for both systems, the feed-forward term being omitted if unnecessary. For

the hydraulic system, including a dead-zone within the actuator, a compensator was

designed, canceling out the dead-zone effect. A low-pass filter was then implemented

to reduce noise components of the control signal. Controller gains were generated using

in-depth system knowledge, an optimization routine and the standard pole-placement

method, which was realized by linearizing the model around certain operational points.

As for the closed loop hydraulic system, a switching event based on a hysteresis relay
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was introduced to allow for autonomous switching between the position and force control

mode.

Finally, a stability analysis was conducted proving local stability. Stability around

operational points was confirmed via a pole-zero analysis. A multiple Lyapunov function-

based approach was used to prove the hybrid controlled system’s stability in the vicinity

of the switching points.

5.2 Potential for Future Works

The hydraulic system in this work represents a single valve-cylinder combination. The

PWA-based modeling approach can be used and scaled to model more complex systems,

e.g. hydraulic cranes. The described methodology can also be transferred to systems in

other domains e.g. robotic manipulators, complex electric circuits, etc. A PWA-based

system’s conformity in comparison to a full-order model is always less accurate compared

to a physical system. This is especially true with regard to an increase in the number of

linearized characteristics; thus, when considering their interactions with one another, it

remains to be investigated up to which point this type of PWA-based modeling approach

is sufficiently congruent with a physical system.

Since the PWA model consists of only linear equations, and the switch between cells

can be determined by simple if -statements, it may be assumed that the computational

time for PWA models is less than for a full-order model – or even a reduced-order model.

Using the PWA-based modeling approach for highly complex systems could potentially

decrease computational time. This is especially relevant if the models grow in complexity,

e.g. scaling the valve-cylinder combination investigated in this work up to an industrial

loader crane with multiple actuators and links.
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doi:10.1007/0-8176-4404-0_5.

[18] N. Lynch, R. Segala, F. Vaandrager, and H. Weinberg. Hybrid I/O automata, volume

1066. Elsevier BV, 1996. doi:10.1007/BFb0020971.

[19] R. David and H. Alla. Petri nets for modeling of dynamic systems. A survey. Auto-

matica, 30(2):175–202, 1994. doi:10.1016/0005-1098(94)90024-8.

[20] C. Cassandras and S. Lafortune. Introduction to discrete event systems. Springer

US, 2008. doi:10.1007/978-0-387-68612-7.

[21] T. A. Henzinger. Theory of hybrid automata. In Proceedings - Symposium on Logic

in Computer Science, pages 278–292, 1996.



http://dx.doi.org/10.1109/5.871309
http://dx.doi.org/10.1109/TAC.2002.804474
http://dx.doi.org/10.1137/05063516X
http://dx.doi.org/10.1137/05063516X
http://dx.doi.org/10.1109/TAC.2004.825641
http://dx.doi.org/10.1109/TAC.2002.806650
http://dx.doi.org/10.1109/cdc.1996.572653
http://dx.doi.org/10.1016/0304-3975(94)00202-T
http://dx.doi.org/10.1007/0-8176-4404-0_5
http://dx.doi.org/10.1007/BFb0020971
http://dx.doi.org/10.1016/0005-1098(94)90024-8
http://dx.doi.org/10.1007/978-0-387-68612-7




[22] A. Bemporad and M. Morari. Control of systems integrating logic, dynamics, and con-

straints. Automatica, 35(3):407–427, 1999. doi:10.1016/S0005-1098(98)00178-2.

[23] G. Ferrari-Trecate, E. Gallestey, P. Letizia, M. Spedicato, M. Morari, and M. Antoine.

Modeling and Control of Co-Generation Power Plants: A Hybrid System Approach.

IEEE Transactions on Control Systems Technology, 12(5):694–705, 2004. doi:10.

1109/TCST.2004.826958.

[24] G. Ferrari-Trecate, D. Mignone, and M. Morari. Moving horizon estimation for

hybrid systems. IEEE Transactions on Automatic Control, 47(10):1663–1676, 2002.

doi:10.1109/TAC.2002.802772.

[25] S. Karaman, R. Sanfelice, and E. Frazzoli. Optimal control of mixed logical dy-

namical systems with Linear Temporal Logic specifications. In Proceedings of the

IEEE Conference on Decision and Control, pages 2117–2122, 2008. doi:10.1109/

CDC.2008.4739370.

[26] A. Van Der Schaft and J. Schumacher. Complementarity modeling of hybrid

systems. IEEE Transactions on Automatic Control, 43(4):483–490, 1998. doi:

10.1109/9.664151.

[27] W. Heemels, B. De Schutter, and A. Bemporad. Equivalence of hybrid dynamical

models. Automatica, 37(7):1085–1091, 2001. doi:10.1016/S0005-1098(01)00059-0.

[28] W. Heemels, J. Schumacher, and S. Weiland. Linear complementarity systems.

SIAM Journal on Applied Mathematics, 60(4):1234–1269, 2000. doi:10.1137/

S0036139997325199.

[29] O. Stursberg, S. Kowalewski, J. Preußig, and H. Treseler. Block-diagram based

modelling and analysis of hybrid processes under discrete control. Journal Europeen

des Systemes Automatises, 32(9-10):1097–1118, 1998.

[30] J. Lunze. Fault diagnosis of discretely controlled continuous systems by means of

discrete-event models. Discrete Event Dynamic Systems: Theory and Applications,

18(2):181–210, 2008. doi:10.1007/s10626-007-0022-3.

[31] H. Toubakh and M. Sayed-Mouchaweh. Hybrid dynamic classifier for drift-like fault

diagnosis in a class of hybrid dynamic systems: Application to wind turbine converters.

Neurocomputing, 171:1496–1516, 2016. doi:10.1016/j.neucom.2015.07.073.

[32] A. Schild and J. Lunze. Stabilization of limit cycles of discretely controlled contin-

uous systems by controlling switching surfaces, volume 4416 LNCS. Springer, Berlin,

Heidelberg, 2007.



http://dx.doi.org/10.1016/S0005-1098(98)00178-2
http://dx.doi.org/10.1109/TCST.2004.826958
http://dx.doi.org/10.1109/TCST.2004.826958
http://dx.doi.org/10.1109/TAC.2002.802772
http://dx.doi.org/10.1109/CDC.2008.4739370
http://dx.doi.org/10.1109/CDC.2008.4739370
http://dx.doi.org/10.1109/9.664151
http://dx.doi.org/10.1109/9.664151
http://dx.doi.org/10.1016/S0005-1098(01)00059-0
http://dx.doi.org/10.1137/S0036139997325199
http://dx.doi.org/10.1137/S0036139997325199
http://dx.doi.org/10.1007/s10626-007-0022-3
http://dx.doi.org/10.1016/j.neucom.2015.07.073


          


[33] G. Lafferriere, G. Pappas, and S. Yovine. A new class of decidable hybrid systems,

volume 1569. Springer, Berlin, Heidelberg, 1999.

[34] G. Behrmann, A. Fehnker, T. Hune, K. Larsen, P. Pettersson, J. Romijn, and

F. Vaandrager. Minimum-cost reachability for priced timed automata, volume 2034.

Springer, Berlin, Heidelberg, 2001.

[35] R. Alur, S. La Torre, and G. Pappas. Optimal paths in weighted timed automata,

volume 2034. Springer, Berlin, Heidelberg, 2001.

[36] A. David, K. Larsen, A. Legay, U. Nyman, and A. Wasowski. Timed I/O automata:

A complete specification theory for real-time systems. In HSCC’10 - Proceedings of the

13th ACM International Conference on Hybrid Systems: Computation and Control,

pages 91–100, 2010. doi:10.1145/1755952.1755967.

[37] T. Henzinger, P. Kopke, A. Puri, and P. Varaiya. What’s Decidable about Hybrid

Automata? Journal of Computer and System Sciences, 57(1):94–124, 1998. doi:

10.1006/jcss.1998.1581.

[38] T. Henzinger, P.-H. Ho, and H. Wong-Toi. Algorithmic analysis of nonlinear hybrid

systems. IEEE Transactions on Automatic Control, 43(4):540–554, 1998. doi:10.

1109/9.664156.

[39] J.-P. Aubin, J. Lygeros, M. Quincampoix, S. Sastry, and N. Seube. Impulse dif-

ferential inclusions: A viability approach to hybrid systems. IEEE Transactions on

Automatic Control, 47(1):2–20, 2002. doi:10.1109/9.981719.

[40] R. Goebel and A. Teel. Solutions to hybrid inclusions via set and graphical

convergence with stability theory applications. Automatica, 42(4):573–587, 2006.

doi:10.1016/j.automatica.2005.12.019.

[41] A. Teel, A. Subbaraman, and A. Sferlazza. Stability analysis for stochastic hybrid sys-

tems: A survey. Automatica, 50(10):2435–2456, 2014. doi:10.1016/j.automatica.

2014.08.006.

[42] A. D. Ames and S. Sastry. Characterization of zeno behavior in hybrid systems using

homological methods. In Proceedings of the American Control Conference, volume 2,

pages 1160–1165, 2005. doi:10.1109/acc.2005.1470118.

[43] L. Fridman, J. A. Moreno, B. Bandyopadhyay, S. Kamal, and A. Chalanga. Con-

tinuous Nested Algorithms : The Fifth Generation of Sliding Mode Controllers. In
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Abstract – Electric circuits with tunnel diode’s represent a classical exam-

ple of dynamic systems with nonlinearities, which feature piecewise negative

damping and multiple equilibria and, as consequence, nontrivial trajectories

in the state-space. In this paper, we describe the experimental design and

analysis of an electrical circuit, including a tunnel diode, allowing for a stor-

age behavior with bistable output voltage states – low and high. The system

is modeled for simulation and an experimental setup is designed and imple-

mented in order to run a formal verification on different tools, applying a

variety of hybrid control methods. The nonlinear diode’s characteristic curve

is experimentally determined and evaluated. The transient response of circuit

is also analyzed. Furthermore the circuit is controlled in an open loop manner,

by a biased sequence of pulse signals, showing a bistable switching behavior

of the output voltage state.

A.1 Introduction

Since invented and introduced, the tunnel diodes belong to standard electronic elements,

which can be used for a wide variety of functions such as amplifying, switching, frequency

conversion, etc [1]. Formerly used in microwave oscillators [2], tunnel diodes have en-

tered diversity of semiconductor technologies and micro-electronics applications, like for

example in computer memory, but also in various other logic circuits, see e.g. [3]. Even

though representing a well-understood and widely established semiconductor technology,

the tunneling diodes remain further in focus of investigation in conjunction with unique

current-voltage characteristics and associated properties of nonlinear electric circuits. For

instance, the resonant tunneling diodes in oscillating circuits can be used for strain de-

tection and therefore as sensing elements [4].

In the recent work, we fall back on the strongly pronounced nonlinear current-voltage

characteristics of a tunnel diode, and therewith associated multiple equilibria, correspond-
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ingly, nontrivial trajectories in the state-space. Due to its negative differential resistance,

the diode’s non-linear characteristic has two stable operating points with the same cur-

rent response, cf. Fig. A.1. This characteristic combined, with standard diode behavior

as ultra-fast heterostructure device, allows it to be used in circuits as a storage element

with bistable output voltage, low and high, and fast switching transients between both.

Switching between the two states can be accomplished by the pulse signal added to a nec-

essary voltage offset (bias). Such a nonlinear circuit with tunnel diode and output voltage

to be controlled is used in our study, while representing a reach-on-dynamics nonlinear

control system with hybrid, i.e. mixed time-continuous and discrete, behavior. Recall that

the hybrid systems are ubiquitous and we see and interact with them on a daily basis

[5, 6, 7]. Therefore, the objective of this paper is an experimental design and analysis of

the nonlinear circuit, based on the tunnel diode, which can later on serve for investigation

and verification/validation of various hybrid control strategies, with particular focus on

stability, reachability, and computational efficiency.

The paper is organized as follows: In Section II, we summarize the modeling of the

nonlinear circuit with the tunnel diode. Following, the designed and assembled circuit

with measuring and controlling devices are described in Section III. The experimental

identification of diode characteristics is shown in Section IV. The analysis of transient

response circuits behavior is provided in Section V. A simple open loop switching control

of bistable output voltage is demonstrated with experiments in Section VI. Finally, Section

VII summarizes the paper and gives brief outlook on the future works.

A.2 Modeling of Non-linear Circuit

The system under consideration is based on an electric circuit using a tunnel diode as a

non-linear component. The idea for this nonlinear system is inspired by a classical example

from Khalil [8]. Besides the tunnel diode, the energy storage elements, i.e. capacitor and

inductance, are also involved, equally as a resistive element and a voltage source.

In order to analyze and allow for numerical simulation of the circuit, the following

differential equations are assumed first. Seeing the capacitance and the inductance to be

time-invariant and linear we can write

iC = C
dvC
dt

, vL = L
diL
dt
, (A.1)

where i and v represent the current and, respectively, the voltage across the components.

The subscript describes which component is referred to, while C and L represent the

components. For the state model we define state x1 as the voltage across the diode vR,

and state x2 as the current through the inductance iL. Furthermore the controllable input





           


voltage is given by u. In order to get a state equation for x1, iC has to be expressed as a

function of the state variables x1, x2, and input u.

Applying the first of Kirchoff’s law at the intersection point, meaning that the sum of

all currents must be equal to zero, we obtain the following equation

iR + iC = iL. (A.2)

Further, knowing that the characteristic of the tunnel diode is a function of x1, we can

rewrite (A.2) to

iC = −h(x1) + x2. (A.3)

Also vL should be described as a function of state variables x1,x2 and input u. Applying

Kichoff’s second law, meaning that all voltages in a closed pathway must be equal to zero,

we can write

E = RiL + vL + vc, (A.4)

while the total potential difference is set to be the input control value, i.e. E = u.

Therefore, we obtain

vL = −x1 −Rx2 + u. (A.5)

Now vL and iC from (A.1) can be substituted by (A.3) and (A.5) which results in the two

state equations

ẋ1 =
1

C
[−h(x1) + x2], (A.6)

ẋ2 =
1

L
[−x1 −Rx2 + u]. (A.7)

For further reference, the state x2 will be referred to as uD instead of uR, since the voltage

across the diode is an output value of interest. Using both state equations, a nonlinear

state model can be directly implemented for numerical simulations.

A.3 Test Setup and Experiment

The experimental test setup corresponds to the circuit provided in [8]. For hardware

assembly, the components with values different from those assumed in [8] where used, due

to the parts in stock, cf. Table A.1.

For the diode element, a vintage tunnel diode from General Electric, Type 1N3716 has

been used [9]. A typical static curve with most relevant characteristic points for a chosen

diode can be seen in Fig. A.1 and Table A.2.

The circuit is set up on a universal interface bread board. As a measurement and

control interface for the electric circuit, a dSpace MicroLabBox has been used [10]. To





          


Table A.1: Initial components configuration

Components Reference values [8] Experimental values

R 1.5kΩ 1.5kΩ

C 2pF 12pF

L 5µH 4.7µH

Figure A.1: Typical characteristic curve of tunnel diode [9]

Table A.2: Diode characteristic points [9]

Static Characteristics Symbol Value

Peak Point Current IP 4.7mA

Valley Point Current IV 0.6mA

Peak Point Voltage VP 65mV

Valley Point Voltage VV 350mV

Forward Voltage VFP 500mV





           


+ -

+

-

Figure A.2: Electrical diagram for experimental setup of complete circuit

connect the MicroLabBox to the circuit, standard BNC connectors are used. The output

ports of the MicroLabBox provide ±10V with a current range of ±8mA and an offset

error of ±4mV . The settling time is given with 1µs and the resolution of A/D conversion

is 16bit. The board channels have also a circuit protecting them from over-voltage or

-current.

The analogue out-port is the input voltage to the circuit representing u in (A.7). The

voltage to drive the circuit is directly supplied by the analogue output channel. Although

the current provided from the MicroLabBox would be enough for the diode only, the

rest of the circuit should be additionally energized. Therefore an operational amplifiers

(OP) of type LM324AN [11] has been used to boost the maximum available current up

to 30mA. The OP is in voltage follower configuration without any gain, having the same

output voltage as the input.

On the input side of the MicroLabBox, the measuring input channels have the voltage

range of ±11V , with a resolution of 16bit and a sampling rate of 106Hz, i.e. 1µs sampling

time. For measurements, three BNC cables where connected to the circuit. One to

measure u, another one – across a shunt resistor of 1Ω – to measure the state x2, which is

the inductor current iL. The last one is directly connected across the diode, for measuring

the state x1, corresponding to uD output. Thus, the electric diagram of the implemented

setup is shown in Fig. A.2, where the points of measuring are indicated with the symbols

. Respectively, the experimental setup in the room temperature environment is shown

on the picture in Fig. A.3.





          


Figure A.3: Experimental setup

A.4 Measuring of Diode Characteristic

For reliable modeling and numerical simulation of the circuit, the actual characteristic of

the diode had to be determined from measurements. For that, R, L, and C shown in Fig.

A.2 have been first taken out, and a sinusoidal voltage was supplied to u in a closed-loop

configuration, with a feedback integrator only. The current, via a shunt resistor added in

front of the diode, and the voltage across the diode have been measured. The feedback

integrator has been used in order to ensure that the diode’s voltage follows the input

voltage closely. Multiple measurements where taken, with the configuration values shown

in Table A.3.

For each of the listed configurations, 10 measurements were performed at different

times, with 10 periods each. Trigger conditions for measurement recording was set to

0.4V rising flank for the voltage across the diode. The following diagrams show one

exemplary measurement, corresponding to M.2 configuration as in Table A.3. The raw

measurement data couldn’t be used for identification, as it turns out the signal of the

diode’s voltage seems to be rather smooth while the current measurement included non-

neglectable noise and quantization effects, see Fig. A.4. Trying to boost the signal of

the current measurement, using an instrumentation amplifier, appears less useful due

to a low signal to noise ratio of the signal. Therefore, a Fast Fourier Transformation

(FFT) has been first performed on both the current and voltage measurements, see Fig.

A.5. It can be seen that while, the power spectrum of the measured voltage disclose the





           


Table A.3: Configuration of diode characteristic measurement values

Configuration M.1 M.2 M.3

Sine amplitude 0.25V 0.25V 0.25V

Sine offset 0.25V 0.25V 0.25V

Sine frequency 5Hz 10Hz 100Hz

Integrator 100 100 5000
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Figure A.4: Diode characteristic - raw voltage and current measurement
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Figure A.5: Diode characteristic - Fast Fourier Transform

one principal harmonic, the spectrum distrusting of the measured diode current clearly

demonstrate multiple frequency components right-hand side to the principal harmonic.

This is supposedly due to inherently nonlinear nature of the tunnel diode, though will

not be further analyzed, correspondingly discussed, due to a different focus of the recent

work. Afterwards, a low pass filter has been applied, resulting in a more smooth measured

characteristic. Also, the filtered data was cropped to full periods so as to avoid the initial

”bending” of signals due to the filtering.

Next, all data points within a moving frame of 1mV , were averaged for the voltage and

current signal, thus giving a data point every 1mV within the range of 0 to 0.5V . Finally,

the obtained characteristic points have been shifted to start at 0V and, if necessary,

smoothened out using a moving average. Note hat the shift of zero voltage is reasonably

required since the shunt, connected in series, provided an additional low voltage drop

which is not belonging to diode’s characteristic. The settings applied for filtering and

smoothing the data from the chosen configuration M.2 are as follows: filter order 29 and

cutoff frequency 30Hz.

After evaluating all measurements in the same manner, we came to the conclusion,

that the determined (final) characteristic from the measurements with M.2 configuration

are closest to the generalized characteristic curve and nominal (manufacturer provided)

data points. The final characteristic curve, as well as the characteristic points from the

data sheet A.2, are shown in Fig. A.6. Further it can be noted that the data spread of
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Figure A.6: Diode characteristic curve with characteristic points from data sheet

the 10 repeated measurements has been equally evaluated and yielded negligible.

A.5 Transient Response and Circuit Analysis

Performing a numerical simulation when applying a pulse signal at the system u, we see the

state response as shown in Fig. A.7. Here, the parameter reference values as in Table A.1,

have been used in order to analyze the circuits behavior. From the open loop response it

can be recognized, that the time constants are relatively short and are in the region of a few

nano-seconds. Therefore, initial circuits configuration is significantly faster than available

sampling time of the MicroLabBox controller. Therefore, the circuits time response is

required to be slower than about 100µs, so as to allow for sufficient sampling during the

transient phases. Different values for the components C and L have been tried to alter

the response time. The chosen values, based on components available, are shown in Table

A.4. The results of numerical simulation and experimental measurements are compared

with each other in Fig. A.8 for all three components’ configurations. One can see, that

for all three configurations, the measured response of the circuit is well in accord with the

modeled one, in both steady-state and transient (rise time) phases. This argues in favor

of the designed and identified system, and allows for using numerical simulation for future

analysis in control strategies. For further experiments, the components’ configuration V.3

has been chosen as a sufficiently slow and, therefore, suitable for capturing the transient

response.





          


0 0.5 1 1.5 2 2.5 3
Time [s]

×10-8

-1

0

1

2

3

4

5

6

7

8

V
o
lt
a
g
e
[V

]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

C
u
rr
en
t
[A

]

×10-3Diode Voltage and Inductor Current

u(t) Input Voltage
uD Diode Output Voltage
iL Inductance Current

Figure A.7: Transient response of diode, numeric simulation as in Table A.1
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Table A.4: Components’ configurations

Component V.1 V.2 V.3

R 1.5kΩ 1.5kΩ 1.5kΩ

C 12pF 22µF 47µF

L 4.7µH 1mH 1mH

Also, a frequency sweep has been simulated in order to check at which signal frequen-

cies the corresponding response of the circuit is going to be affected. For the simulation,

the values of configuration V.3 from Table A.4 have been assumed as well. From Fig. A.9

one can see, that starting from about 100Hz, a magnitude decrease is already observable.

Also the phase starts decaying already at relatively low frequencies. Furthermore, it has

to be mentioned that the numerical simulation has performed for a system model based

on Fig. A.2, therefore including the OP, supply voltage and measuring elements. The

model for simulation was created using the National Instrument Multisim 14.0 which has

the OP LM324AN in library. However, the exact diode used in our test setup was not

available, and the next best match was taken in order to perform the simulation, i.e. a

diode of type 1N3715 instead of 1N3716. Despite the dynamic system with only two in-

tegrators is expected to have the phase response converging to −180◦, from Fig. A.9 one

can see that the phase goes far beyond −180◦. This is mainly caused by high frequency

behavior of LM324AN amplifier and possible impact of nonlinearities on the estimation

of frequency response function.

Next, in order to analyze the fast (transient) switching between two bistable states, a

sine signal with the frequency of 10Hz, amplitude of 5V , and offset of 5V was applied to

the input of the circuit. The measured results are shown in Fig. A.10, from which one

can clearly see a two-level output state behavior, as hysteresis in the input-output voltage

coordinates. Diode output voltages of less than 0.1V can be considered as low level,

while the voltages above 0.4V can be considered as high level. Obviously, the designed

circuit provides the expected memory effect due to the energy storage in combination

with nonlinear voltage-current characteristics of the tunnel diode.

A.6 Open Loop Control

The open loop control setup, which the following measurements were taken from, is shown

in Fig. A.11. Varying configurations of pulse signals have been used. The goal is to switch
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Figure A.11: Open loop control structure

Table A.5: Amplitude, offset and pulse-width settings for experiments and corresponding

figure references

Amplitude 3.4V Amplitude 5V

Offset 4.1V Offset 5V

Pulsewidth 32% Fig. A.14 Fig. A.12

Pulsewidth 18% Fig. A.15 Fig. A.13

between two bistable states, with a short pulse around the offset voltage, which value is

4.1V . The configurations applied to the system are shown in Table A.5.

Taking a look at Fig. A.12 one can see that both states are easily reached, when a

pulse in positive or negative direction is applied over the offset. However, once we reduce

the pulse-width to less than 19% (using 1% increments), the signal is not able to reach

both states anymore which can be seen from Fig. A.13. Interesting to mention is that

although the output voltage reached almost its lower state, it bounces back up to the

state high only due to the voltage of the offset.

Furthermore, coming back to a pulse-width of 32% but lowering the voltage gradually

(using 0.1V increments), one can see that at the input voltage level of 3.4V the system

is not able to switch between the two states anymore either, as can be seen in Fig A.14.

The same behavior, not being able to switch between states, can be observed in the worst

case scenario, combining low voltage and and short pulse width, see Fig. A.15.

Therefore it can be concluded, that the minimum pulse-width at which the system is

still able to switch between states high and low is depending on the systems input voltage

provided and the pulsewidth, assuming that the offset voltage is in the middle of the

hysteresis. On our test setup, one is limited to the maximal 10V , therefore the maximum

possible pulse amplitude to induce is 5V .
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Figure A.12: Measured input voltage and system response at amplitude of 5V , offset 5V

with pulse-width of 32%
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Figure A.13: Measured input voltage and system response at amplitude of 5V , offset 5V

with pulse-width of 18%
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Figure A.14: Measured input voltage and system response at amplitude of 3.4V , offset

4.2V with pulse-width of 32%
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Figure A.15: Measured input voltage and system response at amplitude of 3.4V , offset

4.2V with pulse-width of 18%

A.7 Summary and Outlook

In this work, the non-linear electric circuit with tunnel diode has been designed and

implemented on an experimental setup. The classical model, known from literature [8],

has been assumed, while the system parameters have been assumed from the data sheets

of standard linear components and identified by series of dedicated experiments. The

nonlinear characteristics of the tunnel diode have been determined from the measurements

and compared with typical characteristic curves and the few characteristic points available

from the components’ documentation. Both, the steady-state and transient responses of

the overall system have been analyzed based on experiments. Also, an open loop control

with biased impulses have been realized and evaluated, allowing for a bistable output

voltage behavior. The knowledge gained by conducting the simulations and experiments

for this setup, now enables us to apply various hybrid control methods [7], [12] and perform

a formal analysis [13], [14] for different tools designed for hybrid control verification.

Having validated analysis tools to verify the proper function of the control scheme is

therefore of utmost importance.







REFERENCES

[1] R. Hall. Tunnel diodes. IRE Transactions on Electron Devices, 7(1):1–9, 1960.

[2] H. Sommers. Tunnel Diodes as High-Frequency Devices. Proceedings of the IRE,

47(7):1201–1206, 1959.

[3] R. H. Bergman. Tunnel diode logic circuits. IRE Transactions on Electronic Com-

puters, (4):430–438, 1960.

[4] T. Tajika, Y. Kakutani, M. Mori, and K. Maezawa. Experimental demonstration of

strain detection using resonant tunneling delta-sigma modulation sensors. Physica

status solidi (a), 214(3):1600548, 2017.

[5] J. Lunze and F. Lamnabhi-Lagarrigue. Handbook of hybrid systems control: theory,

tools, applications. Cambridge University Press, 2009.

[6] R. Goebel, R. G. Sanfelice, and A. R. Teel. Hybrid dynamical systems. IEEE Control

Systems, 29(2):28–93, 2009.

[7] H. Lin and P. Antsaklis. Hybrid Dynamical Systems: An Introduction to Control and

Verification. Now Publishers, 2014.

[8] H. Khalil. Nonlinear Systems. Prentice Hall, 3rd edition, 2002.

[9] ElfaDistrelec. Tunnel Diodes, 2017. URL: https://www.elfadistrelec.no.

[10] dSpace. MicroLabBox - dSPACE, 2017. URL: https://www.dspace.com/de/gmb/

home/products/hw/microlabbox.cfm.

[11] T. Instruments. LM324AN Texas Instruments — Mouser Germany, 2017. URL:

https://www.mouser.de/ProductDetail/Texas-Instruments/LM324AN/?qs=

KaAwwOlwapuGsi7hHRxlkw==.

[12] K. H. Johansson. Hybrid control systems. 2004. URL: http://www.diva-portal.

org/smash/record.jsf?pid=diva2{%}3A505356{&}dswid=-8266.

81

https://www.elfadistrelec.no
https://www.dspace.com/de/gmb/home/products/hw/microlabbox.cfm
https://www.dspace.com/de/gmb/home/products/hw/microlabbox.cfm
https://www.mouser.de/ProductDetail/Texas-Instruments/LM324AN/?qs=KaAwwOlwapuGsi7hHRxlkw==
https://www.mouser.de/ProductDetail/Texas-Instruments/LM324AN/?qs=KaAwwOlwapuGsi7hHRxlkw==
http://www.diva-portal.org/smash/record.jsf?pid=diva2{%}3A505356{&}dswid=-8266
http://www.diva-portal.org/smash/record.jsf?pid=diva2{%}3A505356{&}dswid=-8266


          


[13] R. Alur. Formal verification of hybrid systems. Emsoft, pages 273—-278,

2011. URL: http://dl.acm.org/citation.cfm?doid=2038642.2038685http://

ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=6064535, doi:10.1145/

2038642.2038685.

[14] A. Fehnker, A. Fehnker, F. Ivancic, and F. Ivancic. Benchmarks for Hybrid Sys-

tems Verification. Hybrid Systems: Computation and Control, 15213:326 – 341,

2004. URL: http://www.springerlink.com/content/bf2mw0g2m4mvwudu, doi:

10.1007/978-3-540-24743-2_22.



http://dl.acm.org/citation.cfm?doid=2038642.2038685 http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=6064535
http://dl.acm.org/citation.cfm?doid=2038642.2038685 http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=6064535
http://dx.doi.org/10.1145/2038642.2038685
http://dx.doi.org/10.1145/2038642.2038685
http://www.springerlink.com/content/bf2mw0g2m4mvwudu
http://dx.doi.org/10.1007/978-3-540-24743-2_22
http://dx.doi.org/10.1007/978-3-540-24743-2_22


Paper B

Design, Control, and Analysis of

Nonlinear Circuits with Tunnel

Diode with Piecewise Affine

Dynamics

Philipp Pasolli, Michael Ruderman

83



          


This paper has been published as:

P. Pasolli, M. Ruderman. Design, Control, and Analysis of Nonlinear Circuits with

Tunnel Diode with Piecewise Affine Dynamics. IEEJ Journal of Industry Applications,

Vol.8 No.2 pp.280-249, 2018. doi: 10.1541/ieejjia.8.240.



http://dx.doi.org/10.1541/ieejjia.8.240


Design, Control, and Analysis of Nonlinear
Circuits with Tunnel Diode with Piecewise

Affine Dynamics

Philipp Pasolli, Michael Ruderman

University of Agder

Department of Engineering Sciences

Jon Lilletunsvei 9, 4879 Grimstad, Norway

Abstract – A classic example of dynamic systems with nonlinearities is

considered, using an electrical circuit including the tunnel diode, that features

several equilibria points due to a piecewise positive and negative damping.

These system-properties allow us to investigate the possible limit cycles, and

the formal analysis of the closed-loop dynamics of such. In this paper, an

experimental setup of nonlinear circuits is designed, followed by the system

modeling and identification of the diodes’ characteristics. An integral-state-

feedback control is designed and evaluated for demonstrating the appearance

of the limit cycles depending on the reference level. A piecewise affine (PWA)

system formulation is also provided for allowing the use of formal verification

tools for hybrid dynamic systems. An available tool, PWLTool, is applied in

line with trajectory prediction from the numerical simulation of the identified

closed-loop system.

B.1 Introduction

Complex systems often include nonlinearities creating extensive challenges in the analysis,

identification, and design of controllers. Often, such systems have to be linearized, for

different purposes, around operation points that drastically restrict their extent of validity

to a certain range, i.e. in the state and parameter spaces. By linearizing more complex

systems, such as introducing additional nonlinearities to possibly already existing ones,

the chance that a system becomes unstable is increased. Using standard approaches

(e.g. simulation with different initial conditions) for simulating a system leads only to a

partial verification and does not necessarily cover the whole possible operating range of a

system. By introducing Formal Analysis Tools, one is given the opportunity to possibly

fully evaluate a system in regards of stability and other important criteria. The PWLTool

used in this scenario is able to handle our so called piecewise affine (PWA) System.

However, these systems [1] allow for interconnecting several linearized parts, where each
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linearization region becomes one polyhedral cell within the entire state-space. This enables

greater extension of the linear state-space notation by the affine terms and, therefore,

considering more complex dynamic systems, such as including saturations and dead-zones,

[2, 3], equally as various, and also including switching, control strategies [4, 5, 6, 7]. PWA

systems require definition of, in addition to the vector field, the set of polyhedral cells

which assemble the whole state-space and transitions between them. The PWA modeling

is accomplished by extending the standard state-space representation by an additional

affine part, acting as an offset in the vector field, coupled with the descriptive matrices of

the cells boundaries and transitions, cf. [8]. Various systems with nonlinearities can be

modeled as having piecewise dynamics, among them mechanical, hydraulic, and electrical

– all mostly containing some static nonlinearities in the single elements with corresponding

transfer characteristics. The recent work focuses on an electrical circuit, including the

tunnel diode with the well-pronounced nonlinear characteristics [9].

Since introduction, tunnel diodes belong to the standard electronic elements, which can

be used for a wide variety of functions such as amplifying, switching, frequency converting,

etc. Formerly used in the microwave oscillators [10], tunnel diodes have entered a diversity

of semiconductor technologies and micro-electronics applications, for example in computer

memory, but also in other logic circuits, see e.g. [11] for a formal overview. Even though

representing well-understood and widely established semiconductor technology, the tunnel

diodes remain further in focus of investigations in conjunction with unique current-voltage

characteristics and associated properties. For instance, the resonant tunneling diodes in

oscillating circuits are used for the strain detection and, therefore, as sensing elements

[12].

In the recent work, we fall back on the strongly pronounced nonlinear current-voltage

characteristics of a tunnel diode, and with associated multiple equilibria, correspondingly,

nontrivial trajectories in the state-space. Due to its negative differential resistance, the

diode’s nonlinear behavior has two stable operating points for the same current response,

cf. Fig. B.6 further in Section B.4. These characteristics, combined with standard diode

behavior as an ultra-fast heterostructure device, allows it to be used in circuits as a storage

element with bistable output voltage, low and high, and fast switching transients between

both. Switching between the two states can be accomplished by a pulse signal added to

the required voltage offset (bias). Such a nonlinear circuit with tunnel diode and output

voltage to be controlled has been shown in our previous work [13], while representing a

reach-on-dynamics nonlinear system with hybrid behavior. While this type of circuits is

well-known and described in the literature on nonlinear systems, see e.g. [14], our focus

is also on the experimental design, identification, and analysis under real measurements,

accessability and controllability of the system states, and hybrid, i.e. mixed continuous





           
 

and discrete, system consideration.

It is important to state that hybrid systems are ubiquitous and one sees and interacts

with them on a daily basis [15, 16, 17]. Dealing with hybrid systems means adding

complexity to the system description, which makes it harder to be analyzed and formally

verified [18, 19, 20] in terms of the specified properties and desired features. While proofing

concepts with prototypes provide the most reliable results, they are also the most costly,

safety critical, and time consuming. Therefore, a verification via formal numerical tools is

highly desirable in system and within control engineering. Different tools are available, see

e.g. references in [21, 22, 23, 24, 25, 15], and that for different classes of hybrid systems,

depending on their modeling paradigm, computational requirements, and case-specific

applications. The PWA formalism, mentioned above, provides one of the apparently

prosperous ways for hybrid (control) system modeling and analysis.

In the recent work, the nonlinear diode characteristics are piecewise linearized so that

the entire circuit dynamics are brought into the PWA form. Previously, a standard nu-

merical simulation of the identified analytic model would be compared with measurements

carried out on the developed experimental setup. After evaluating and analyzing the con-

trolled closed-loop behavior of a nonlinear circuit, a formal analysis of the designed PWA

system is also shown. In this work we use the PWLTool [26], as suitable for dealing with

the PWA system dynamics. The rest of the paper is organized as follows. In Section 2,

we summarize the modeling of the nonlinear circuit with a tunnel diode. The designed

and assembled experimental setup with measuring and controlling devices are described

in Section 3. The experimental identification of the diode characteristics is shown in

Section 4. Section 5 deals with the transient response analysis of the system. Section

6 introduces the state feedback control with reference-dependent limit cycles, and shows

the corresponding simulation and experimental results. Piecewise affine formulation of

our system is introduced in Section 7, while Section 8 deals with formal verification case.

Finally, Section 9 summarizes the paper.

B.2 Modeling of Nonlinear Circuit

The system to be modeled, identified correspondingly, is based on a nonlinear electric

circuit known from the literature, cf. Chapters 1-2 of [14]. Besides the tunnel diode, the

energy storage elements, i.e. capacitor and inductor, are involved equally as a resistive

element and a voltage source. Assuming the capacitor and inductor to be LTI (linear

time-invariant) elements, their behavior is given by eqs. (B.1) and (B.2). Here i and v

are representing the current and voltage across the capacitor and inductance respectively,

while C and L represent the capacitance and inductance constants. We define the voltage





          


across the diode vD (correspondingly capacitor vC) as the state variable x1, while x2 is the

state variable representing the current iL flowing through the inductance, correspondingly

resistor. The voltage source will be referred to as u, thus constituting the controllable

input of the whole system.

In order to derive the dynamics equations, the Kirchoff’s law is applied to the junction

point between the tunnel diode, capacitance and inductance, eq. (B.3). Knowing the

nonlinear characteristics of the tunnel diode as a function of the voltage state h(x1), we

obtain the expression (B.4). Substituting (B.1) into (B.4) we obtain the first dynamic

state equation (B.6). By applying the Kirchoff’s first law to the circuit and keeping in

mind the assignments made above, we obtain eq. (B.5). Now we substitute (B.2) into

(B.5), resulting in the second dynamic state equation (B.7). It is evident that the obtained

state-space model (B.6), (B.7) contains the tunnel diode nonlinearity in feedback, that

cannot be directly decoupled since being unmatched with the control value u.

iC = C
dvC
dt

(B.1)

vL = L
diL
dt

(B.2)

iD = iL − iC (B.3)

iC = −h(x1) + x2 (B.4)

vL = −x1 −Rx2 + u (B.5)

ẋ1 =
1

C
[−h(x1) + x2] (B.6)

ẋ2 =
1

L
[−x1 −Rx2 + u] (B.7)

B.3 Experimental Setup

An experimental setup, described by the model (B.6)-(B.7) and therefore approaching the

circuits analyzed in [14], has been designed and instrumented. However, the values for R,

C and L have been chosen slightly different from [14], due to availability of the laboratory

components, see Table B.1.

For the tunnel diode, a vintage diode from General Electric of the type 1N3716 [27]

was chosen, with the characteristic values provided in Table B.2, as available from the

manufacturer data sheet; the corresponding points are also depicted further in Fig. B.6.

All electrical components have been set up on a standard bread board. As interface

between the development computer and experimental setup, a dSpace MicroLabBox [28]

has been used as a real-time board, with standard BNC-connectors for analog signals.

The control output voltage is limited by ±10V , and the maximal output current by 8mA

correspondingly. The 16bit D/A and A/D converters, with the settling time of 1µs,





           
 

Table B.1: Circuit components’ values

component reference values [14] designed setup values

R 1.5kΩ 1.5kΩ

C 2pF 12pF

L 5µH 4.7µH

onboard. An output channel of the MicroLabBox serves as the input u to the system, and

Table B.2: Diode characteristic points [27]

Static characteristics symbol value

Peak Point Current IP 4.7mA

Valley Point Current IV 0.6mA

Peak Point Voltage VP 65mV

Valley Point Voltage VV 350mV

Forward Voltage VFP 500mV

Forward Current IFP 4.7mA

is provided via the analog port. However, due to the limited output current, the circuit

is energized through an auxiliary operational amplifier (OP), of type LM324AN [29], and

that in a voltage follower configuration with ability to supply up to 30mA. In the voltage

follower configuration the OP has a unity input-output gain. Three different signals have

been measured, namely the voltage across the diode x1, the input voltage to the circuit u,

and the current through the inductor iL. In order to measure the current, a shunt resistor

of 1Ω has been added in series to the inductance. The image of the above described setup

is shown in Fig. B.1.

While initially using the dSpace MicroLabBox, in the later control experiments, the

real-time platform has been switched to the Speedgoat board, baseline model S [30] with

the IO183 interface card [31]. This hardware allows to operate the system with a sampling

rate of 2kHz. Furthermore, it supports 8 single-ended or 4 differential analog channels

with a 16bit A/D and D/A converter. Input voltages of ±10V and outputs of 0− 5V are

supported with a maximum output current of 5mA. The designed OP has been configured





          


Figure B.1: Laboratory experimental setup of circuits with amplifier unit and real-time

control board

as a differential amplifier (see Fig. B.2) which output voltage is given by

Vout = −R2

R1

(V1 − V2). (B.8)

By connecting V1 and the open end of R2 to the ground, one obtains positive output

voltage for positive V2 values, with the R2/R1 gain. The gain has chosen to be 3.03,

with R1 = 330kΩ and R2 = 1MΩ, that ensures to reach maximum output voltage, while

the supply voltage is ±15V . By introducing a physical gain of 3.03, it is possible to

Figure B.2: Differential operational amplifier

stay within 0 − 5V output voltage range of the real-time interface. Though, whenever

referring to u we will always refer to the unaltered control signal, while the modified one

(divided by OP gain) is referred to as ualt. Applying all these hardware modifications to





           
 

Figure B.3: Circuit diagram of experimental setup including differential operational am-

plifier (red) and measurement points

our physical setup, the layout of the experimental system results in the circuit diagram

as shown in Fig. B.3. Here the points of measurement are indicated by .

B.4 Identification of Diode Characteristics

For h(x1) mapping, cf. eq. (B.6), the diode characteristics have been identified from the

measurements. Recall that the diodes’ data-sheet has been limited to three characteristic

points. Therefore, the setup from Fig. B.3, has been temporary disconnected in such

a way that L, C, and R elements are disabled. This configuration allows measuring

the voltage across the diode, and the total flowing current through the shunt resistor in

series with the diode. This circuit, dedicated for uD-iD characteristics measurement, has

been set in a closed-loop control configuration with an integrator, making sure that the

diodes’ voltage follows the desired reference closely. As a reference, a sinusoidal wave

has been used. The diodes’ voltage and current have been measured for three different

configurations of the integrator gain and sinusoidal parameters, as listed in Table B.3.

For each configuration, a total of 10 trials have been recorded, each one containing at

least 10 periods of the sinusoidal wave. In Fig. B.4, one measurement from the EM.2





          


Table B.3: Diode characteristic measurement configurations

Configuration EM.1 EM.2 EM.3

Sine amplitude 0.25V 0.25V 0.25V

Sine offset 0.25V 0.25V 0.25V

Sine frequency 5Hz 10Hz 100Hz

Integrator 100 100 5000

configuration is shown as an example, with the voltage above and corresponding current

below.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6
10-3

Figure B.4: Measured diode data: raw voltage measurement above and raw current mea-

surement below

The raw data showed that the measurements have to be processed first before being

suitable for extracting the stationary characteristics. While the voltage across the diode

contains only some minor noise, the current measurement contains noise to a larger extent,

which is mainly due to a low signal to noise ratio. Therefore the signals have to be

cleaned up during the signal processing. For preliminary signal analysis, a fast Fourier

transformation (FFT) has been performed, see Fig. B.5, so as to highlight the frequency

components of both signals. While the first reference peak is dominant in the measured

voltage, the spectrum of the diode current has multiple non-negligible distortions, clearly

pointing on the nonlinear transfer characteristics of the diode circuit. An FIR (Finite
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Figure B.5: FFT transformed diode measurements: voltage spectrum above and current

spectrum below

Impulse Response) low-pass filter has been applied to both signals. The signals have been

also cut to the full periods, so as to avoid the initial deviation from the reference signal

due to the filtering. All periods from all measurements have been averaged, within an

equidistant sampling with 1mV step. As a result, a sufficient number of points between

0V and 0.5V have been obtained to describe the diodes’ characteristic curve. Finally, the

characteristic curve has been shifted to start at 0V since an additional voltage drop, due

to shunt, provides a certain minor bias deteriorating the diodes’ characteristics.
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Figure B.6: Diode characteristic measurement including characteristic points from

datasheet
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Figure B.7: Numerically simulated transient response of the circuit with parameter values

from Table B.1

After processing all measurements in the same way, the resulting characteristic curves

for EM.1-EM.3 configurations have been compared opposite to each other and to char-

acteristic points from the data sheet. The data distribution within each configuration has

been analyzed and it has been found that the data variance is negligible. The identifica-

tion results from EM.2, shown in Fig. B.6, have been selected as closest to the generalized

characteristics, known from the literature, and to the characteristic points provided by

the manufacturer.

B.5 Analysis of Transient and Steady-State Response

The transient response and, in particular, time constants of the modeled circuit were

qualitatively analyzed by applying square pulse signals as input to the numerical simula-

tion. The (output) diode voltage and the total current, i.e. x1 and x2, are shown in Fig.

B.7, together with the input voltage u, and for parameter values from Table B.1. From

the simulation, the response times were in the range of several nanoseconds. Neither of

the real-time boards at our disposal operate at this time scale and, hence, capture the

transient phases of the circuit. Therefore, other inductor and capacitor elements with

different C, L values, as those who mainly determine the time constant, have been tested

as listed in Table B.4. Both, simulations and measurements have been performed for all

three configurations from Table B.4. The results are shown opposite to each other in

Fig. B.8. Based on that, the V.3 configuration of R, C, L elements has been selected

for further use, as the one with a slowest transient response and, correspondingly, largest

number of the samplings captured at the stepwise excitation.





           
 

Table B.4: Component values for rise time simulation

Component V.1 V.2 V.3

R 1.5kΩ 1.5kΩ 1.5kΩ

C 12pF 22µF 47µF

L 4.7µH 1mH 1mH

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0
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0.2
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0.4

0.5

Figure B.8: Simulation and experiment of the circuit pulse response for different R, C, L

values, as in Table B.4

A frequency sweep has been simulated in order to obtain the frequency response func-

tion (FRF) of the system as whole, shown in Fig. B.9. A noticeable decrease in both,

magnitude and phase starts first around 100Hz. The simulation is based on the entire

circuit as shown in Fig. B.3, i.e. with OP in a voltage follower configuration, by using

National Instrument Multisim 14.0. However, a slightly different type of the tunnel diode

1N3716 has been taken here, as available in the simulation libraries, instead of the ac-

tual one of the type 1N3715. From our system modeling containing two integrators, a

maximum phase shift by −180◦ is expected. Yet from the shown FRF, the phase goes

far beyond −180◦ at higher frequencies. This can be attributed to the high-frequency

behavior of the OP incorporated into the Multisim simulation. Note that all further tests

and simulations are limited to the input signal frequencies below 10Hz, thus without

additional phase lag produced by the residual circuit elements, like OP, which are not

implicitly incorporated into our modeling.
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Figure B.9: Simulated FRF of the entire circuit

B.6 Controlled Closed-loop Behavior of Circuit with

Reference-dependent Limit Cycles

In this Section we are investigating the controlled behavior of the circuit at different

reference levels and different regions of the state-space when applying an integral-state-

feedback control. Our purpose is to demonstrate a qualitatively different closed-loop

response of the nonlinear system, depending on the operational subspace, with one and the

same state-feedback controller which also uses entirely available system state information.

B.6.1 Integral-State-Feedback Controller

In order to ensure that the system follows the reference we designed an integral-state-

feedback controller of the form

u = −kTx = −
(
k1 k2 ki

)
x1

x2

x3

 , (B.9)

Note that an auxiliary state x3 is introduced as output of the integrator of the tracking

control error. The k1, k2, ki > 0 are the state feedback gains and the control design

parameters. Substituting (B.9) into (B.7) and adding one more differential equation for





           
 

the new state results in the extended state space model of closed control loop

ẋ1 =
1

C
[−h(x1) + x2], (B.10)

ẋ2 =
1

L
[−x1 −Rx2 − k1x1 − k2x2 − kix3], (B.11)

ẋ3 = x1 − r, (B.12)

that describes the controlled dynamics of the system. Here r is the reference value for the

output voltage under control.

In the following, a square pulse signal of different amplitudes is applied as a reference.

The amplitudes correspond to the three different levels, respectively regions in the state-

space, which are of interest to distinguish. All parameters, for simulation and subsequent

experiments, are listed in Table B.5. The control gains have been tuned within the

simulation and experiment, also taking into account the control signal constrains, i.e.

actuator saturations.

Table B.5: Closed-loop system parameters

Parameter Value

Pulse Amplitude

0.025V

0.2V

0.5V

Pulse width 50%

R 1.5kΩ

Parameter Value

C 47µF

L 1mH

ki 30000

k1 10

k2 5

B.6.2 Simulation Results

Figure B.10 shows the simulated controlled system response to the reference pulse of the

0.025V amplitude. The state x1 follows exactly the reference signal at steady-state and

discloses transients without overshoot, oscillations, or additional time delays.

Figure B.11 above shows the output (diode) voltage for the 0.2V reference. One

can see that the controlled system does not converge to the reference value and ends

up in a sustained oscillatory behavior, i.e. limit cycle. It becomes further traceable

when inspecting the corresponding phase portrait in Fig. B.11 below, plotted in the state

coordinates. Starting from the initial state (0, 0) (blue arrow on the left) one can follow the

repeatable, i.e. steady-state, cycle along the blue arrows as long as the reference remains

constant, r = 0.2V . Afterwards, the trajectory follows one transient cycle, indicated by

the red arrows, until reaching zero equilibrium at r = 0V .
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Figure B.10: Simulated closed-loop response of the output voltage x1 to the 0.025V

reference

When increasing the reference level to 0.5V , it is possible to observe the closed-loop

behavior as shown in Fig. B.12. There are no limit cycles present, and the controlled

output voltage again reaches the steady-state reference after a certain transient overshoot.

This closed-loop system behavior can be seen as largely acceptable, in terms of the control

design, comparing to that shown for r = 0.025V in Fig. B.10 in particular since both

reference amplitudes differ by the factor 20.

The above results clearly indicate that the same controller performs satisfactory at the

low and high reference levels, but can lead to rather unexpected, in this case parasitic,

limit cycles in between. This scenario, due to the nonlinear characteristics of the plant

under control, highlights the problem of piecewise affine system dynamics and challenges

posed on the tools for analysis.

B.6.3 Experimental Results

The experimental evaluation of the control scenarios, shown and analyzed above, has

been performed with the same parameters, cf. Table B.5, and double runtime for the sake

of testing reproducibility of the results. Real-time measurements were taken with 2kHz

sampling rate. All signals displayed below are raw, i.e. unprocessed, except for the phase

portrait, for which the signals have been FIR filtered. This is done for the sake of a better

visualization for the measured current, which is otherwise subject to relatively high noise

components.

In Fig. B.13, the measured system response to the 0.025V reference is shown. The

results are very close to the simulated one in both transient and steady-state, cf. with

Fig. B.10.
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Figure B.11: Simulated closed-loop response to the 0.2V reference: output voltage above

and phase portrait below

Reviewing the experimental system response to the 0.2V reference, shown in Fig. B.14,

one can see certain differences to the simulation, cf. Fig. B.11, especially in the shape

and period of the limit cycles. One should note that in the simulation, the control signal

u varies between around 12V and −6V , while our experiment allows for positive control

voltages only. Nevertheless, the appearance and principle shape of the stable limit cycles

are experimentally confirmable, as can be seen in the lower part of Fig. B.14.

Finally, the response to the 0.5V reference has been measured, as shown in Fig. B.15.

The principle closed-loop behavior coincides with the simulation, cf. with Fig. B.12, while

the transients slightly differ – mainly due to the control unipolarity and saturations in

the real system, and the related wind-up of the integral control action.
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Figure B.12: Simulated closed-loop response of the output voltage x1 to the 0.5V reference
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Figure B.13: Measured closed-loop response of the output voltage x1 to the 0.025V ref-

erence

B.7 Piecewise Affine (PWA) Model Formulation

For the purpose of further analysis and compatibility to formal verification methods and

tools, our system model is further transformed into a PWA form, cf. Section B.1. In

order to do so, the diodes’ characteristics are first linearized as shown in Fig. B.16. This

results in the total of four cells within the state-space with the corresponding boundaries

denoted by W1 to W3, cf. Fig. B.16 and Table B.6.

In order to transfer the nonlinear state dynamics into the PWA form, the diode charac-

teristics h(x1) can be approximated by knx1+dn, where n is the cells’ index. Furthermore,

eqs. (B.10), (B.11) and (B.12) have to be converted into the PWA state-space notation
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Figure B.14: Measured closed-loop response to the 0.2V reference: output voltage above

and phase portrait below
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Figure B.15: Measured closed-loop response of the output voltage x1 to the 0.5V reference
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Figure B.16: Linearization of the diode characteristics

Table B.6: Cells and boundary constants of piecewise affine model

Cell kn dn

I 0.1026 0

II -0.0135 0.048

III 0 0.0004

IV 0.0563 -0.0241

Variable Value

W1 0.0411

W2 0.3252

W3 0.4342

of the form

ẋ = Ax + br + f, (B.13)

y = cx, (B.14)

with the system matrix

A =


−kn

C
1
C

0

−1+k1
L
−R+k2

L
−ki

L

1 0 0

 , (B.15)

and input and output distribution vectors

b =


0

0

−1

 , (B.16)

c =

(
1 0 0

)
, (B.17)





           
 

correspondingly. The affine term is captured by

f =


−dn

C

0

0

 , (B.18)

and the full-state vector x = (x1, x2, x3)T is the same as defined in Section B.6. The

determined cells and boundary constants kn, dn, and Wj are given in Table B.6.

For completely defining the PWA model, the identified cells should be equally de-

scribed in a matrix form. We first extend the sate vector so as to allow for the bias terms

as

xA =

 x

1

 (B.19)

and, then, introduce the cells matrix Gn which satisfies

GnxA � 0 (B.20)

if and only if x ∈ Xn. Note that {Xn}n=I,...,IV ⊆ R3 represents the set of polyhedral cells,

with pairwise disjoint interior, which divide the entire state-space in the so-called modes

of the system dynamics, correspondingly trajectories. Further we note that z � 0 has

meaning that all entries of z-vector are non-negative. Therefore, the inequality condition

(B.20) governs which part of the state-space is described by each matrix, also defining the

outer boundaries of the cells. For exemplification, consider the II-nd cell , i.e. n = II.

The cell matrix is defined by

GII =

 1 0 0 −W1

−1 0 0 W2

 . (B.21)

Evaluating (B.20) one obtains the set of inequalities

x1 ≥ W1, (B.22)

x1 ≤ W2, (B.23)

which define the boundaries of the cell within the state-space. The residual cells are

defined as follows:

GI =

(
−1 0 0 W1

)
, (B.24)





          


GIII =

 1 0 0 −W2

−1 0 0 W3

 , (B.25)

GIV =

(
1 0 0 −W3

)
. (B.26)

In addition, the auxiliary matrices En have to be specified such that satisfying

EnxA = EmxA (B.27)

for x ∈ Xn∩Xm. This matrix equality defines pairwise the state values on the intersection

between the cells. Note that the E-matrices are not a part of a standard PWA system

description itself and are merely used to parameterize Lyapunov functions and to provide

computational aid in the system analysis such as stability, input output gain, etc, see [26]

for more details. Consequently, the simulation with the PWLTool system does not require

these matrices. For the sake of completeness, the auxiliary matrices are still defined as

follows

EI =



0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0


(B.28)

EII =



1 0 0 −W1

1 0 0 0

0 1 0 0

0 0 1 0


(B.29)

EIII =



−1 0 0 −W1 + 2W2

1 0 0 0

0 1 0 0

0 0 1 0


(B.30)





           
 

EIV =



0 0 0 −W1 + 2W2 −W3

1 0 0 0

0 1 0 0

0 0 1 0


. (B.31)

B.8 Formal verification

The verification tool we use in this work is the PWLTool [26]. The recent purpose is to

detect the limit cycles, observed in the simulation and experiments above, and an unstable

system response as well, when e.g. changing the control parameters. The PWLTool-based

simulation does not allow to input reference, correspondingly control, values. Therefore,

the dynamic simulation scenarios should be captured by the initial state values. For the

stepwise references, i.e. r = const, we incorporate it into the affine part of the PWA

formulation, thus solely modifying the f vector. While our numerical simulation (using

the Simulink software) incorporates the identified characteristics of the tunnel diode, the

PWLTool inherently uses the linearized characteristics only. Therefore, one can expect

differences in the predicted state trajectories resulting from both simulations.

Figures B.17 to B.19 show the computed state trajectories, resulting from the Simulink-

and PWLTool-based simulations. A qualitative accordance, especially in case of the stable

limit cycles, can be observed for all three reference values, i.e. r = 0.025V , r = 0.2V , and

r = 0.5V .

Since a more detailed analysis i.e. concerning the Lyapunov stability, correspondingly

finding and evaluating the Lyapunov function candidates, is out of scope in the recent

work, the single (artificially forced) unstable response has been tested in terms of its

prediction. For that purpose, a positive integral state feedback, i.e. ki < 0 has been

assumed. All residual parameters have been kept with the same values as before. The

simulation results are shown in Fig. B.20 where the trajectories, starting from zero initial

state, continue towards infinity in direction indicated by the arrows.

B.9 Conclusions

The model for a nonlinear electric circuit including the tunnel diode, based on [14], has

been considered and identified in an experimental setup. System parameters for the
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Figure B.17: Simulink and PWLTool trajectories for r = 0.025V
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Figure B.18: Simulink and PWLTool trajectories for r = 0.2V

linear components have been assumed from the data sheets and validated by experiments.

The nonlinear characteristics of the tunnel diode have been determined from a series of

dedicated measurements and compared to the principal shape given by the data sheet,

including the available characteristic points. Furthermore, the steady-state and transient

response of the system have been analyzed and showed a good accord between the model

and experiment. A closed-loop system has been designed with a integral-state-feedback

controller to which the pulsed signals with varying amplitudes have been applied leading

to different steady-state and limit cycle behaviors. Simulations have been compared to

measurements, showing a good accord in all scenarios. Residual differences between the

simulation and experiments have been also discussed.

Beyond, the identified nonlinear model has been converted into the piecewise affine

(PWA) notation, with a corresponding cells division and boundaries within the state-
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Figure B.19: Simulink and PWLTool trajectories for r = 0.5V
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Figure B.20: Simulink and PWLTool simulated trajectories for an instable system with

r = 0.2V and ki = −30000

space. A formal verification has been exemplary tested by using the PWLTool [26] and the

predicted trajectories have been compared with those from the numerical simulation of the

analytic model. Future works will be concerned with more detailed analysis of the designed

PWA system in terms of stability and reachability analysis and hybrid system properties.

Other available tools to be tested and deployed for formal analysis and verification are

also under consideration.







REFERENCES

[1] E. Sontag. Nonlinear regulation: The piecewise linear approach. IEEE Transactions

on automatic control, 26(2):346–358, 1981.

[2] M. Johansson and A. Rantzer. Computation of piecewise quadratic Lyapunov func-

tions for hybrid systems. IEEE Transactions on Automatic Control, 43(4):555–559,

apr 1998.

[3] M. Johansson. Piecewise Linear Control Systems. PhD Diss., Lund Institute of

Technology, 1999.

[4] A. Rantzer and M. Johansson. Piecewise linear quadratic optimal control. IEEE

transactions on automatic control, 45(4):629–637, 2000.

[5] L. Rodrigues and J. P. How. Observer-based control of piecewise-affine systems.

International Journal of Control, 76(5):459–477, 2003.
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Abstract – In this paper, the modeling and identification of a nonlinear

actuated hydraulic system is addressed. The full-order model is first reduced

in relation to the load pressure and flow dynamics and, based thereupon, lin-

earized over the entire operational state-space. The dynamics of the propor-

tional control valve is identified, analyzed, and intentionally excluded from

the reduced model, due to a unity gain behavior in the frequency range of

interest. The input saturation and dead-zone nonlinearities are considered

while the latter is identified to be close to 10% of the valve opening. The

mechanical part includes the Stribeck friction detected and estimated from

the experiments. The linearization is performed in multiple steps, for the

most pronounced terms of nonlinear system dynamics. Out of this follows a

linearized piecewise affine in the control and state model in a state-dependent

matrix form. A series of measurements were performed on the designed and

implemented experimental setup, while identifying uncertain parameters of

the system, in addition to those obtained from the technical data and charac-

teristics of components. The models behavior are compared with experimental

measurements and discussed.

C.1 Introduction

When it comes to applications demanding high power in relatively small form factor,

hydraulic systems and actuators [1, 2] still remain the first choice. However, hydraulic

systems are also known for their nonlinear behavior making it challenging for operation

in the force control [3] and motion control [4] modes, and a hybrid combination of both

e.g. [5]. Correspondingly, the control design, tuning, and evaluation require an advanced

system knowledge and associated modeling and identification. One goal can be to create

simplified models, mostly linearized around some operation points, e.g. [3, 6, 7, 8, 9]. On

the other hand, more detailed modeling of the single hydraulic components, like a unified
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one proposed for proportional valves in [10], requires yet an explicit knowledge of the

mechanical assemblies and, mostly, an accurate identification of the internal states and

characteristics, that is generally not feasible under regular operation conditions. Never-

theless, multiple system- and control-oriented studies considered

extended, to say full-order, system dynamics while incorporating the most pronounced

nonlinearities nested within electrical, hydraulic, and mechanical subsystems of a hy-

draulic drive as a whole, see e.g. [11, 4, 5, 12]. A comparison between a full-order model

and its reduced counterpart, including local linearization, has been recently shown in

[13]. At the same time, a hybrid system consideration, and piecewise affine as one of the

particularly handy subclasses of that, appears promising also for hydraulic systems over

a large operation range. For more advanced studies on identification techniques for the

hybrid systems we refer to [14, 15, 16].

In this paper, we assume the main sources of nonlinearities during the system modeling

and introduce, based thereupon, a linearized piecewise affine in the control and states

model of an actuated hydraulic cylinder supplied via a controlled servo valve. Recall that

a general class of nonlinear systems affine in the control assumes a vector field state-space

notation

ẋ = f(x) + g(x)u,

cf. [17], while the affine (linear with offset) state dynamics [18] requires from us inclusion

of an additional constant vector term. We rely on a linearized piecewise affine formula-

tion of a state-space model, while believing it can yield further advantages for the analysis

and control design, also in spirit of the hybrid control systems [19, 20] and their compu-

tational, to say formal, verification [21]. It is worth noting that even without affine state

dynamics, the affine (only in control) linear parameter-varying models are challenging as

for structural identifiability and parameterizations [22]. For particular dynamic systems,

i.e. valve-controlled hydraulic drives, we propose an approach for linearized piecewise

affine modeling.

The rest of the paper is organized as follows. The paper starts with the full-order model

in Section II, while taking the necessary steps of the model reduction in Section III. The

state-space model, affine in both control and states, is formulated in Section IV, including

the piecewise affine linearization at various points. In Section V the experimental setup is

described. The parameter identification is shown in Section VI, and an evaluating com-

parison between the different models and data from the motion experiments is provided

in Section VII. Lastly a brief summary is given in Section VIII.





         
 

C.2 Full-Order Model

Below, the full-order model of the system is first described. We distinguish between mod-

eling the valves characteristics, orifice equations, continuity equations, and mechanical

sub-model of the hydraulic cylinder. Note that the full-order model can be directly de-

rived from the basics on hydraulic systems to be found in the standard literature e.g.

[1, 2].

C.2.1 Servo Valve Approximation

The controlled servo valve can be approximated by a second-order dynamic system, with

the spools’ position ν as output, so that the input-output transfer function is

G(s) =
ν(s)

u(s)
=

ω2
0

s2 + 2ζω0s+ ω2
0

. (C.1)

Here, ζ is the damping coefficient and ω0 is the natural frequency of the closed-loop

dynamics. The external control signal is denoted by u. Values for ω0 and ζ are subject to

variations, depending on the input amplitude |u|, as pointed out in the FRF (frequency

response function) of the data sheets provided by the valves’ manufacturer. According to

the technical data sheet, the servo valve we consider has a 10% overlap in the spool-orifice

area, thus, introducing a dead-zone. Furthermore, the valve is inherently limited in how

far it can open, therefore being subject to an additional saturation. The combination of

dead-zone and saturation nonlinearities can be described as in [13] by

h(ν) =


α · sign(ν), if |ν| ≥ α + β,

0, if |ν| < β,

ν − β · sign(ν), otherwise,

(C.2)

where the parameters α and β are the valve saturation and dead-zone width, respectively.

As the dead-zone is of a constructive, i.e. mechanical, nature, its transfer characteristic has

to be placed in series with the servo valve model. Several previous works [11, 3, 4, 5, 23]

neglected or only partially accounted for the mentioned combination of the saturation

and dead-zone. Both can, however, have a non-negligible impact on the overall system

dynamics. At the end, the entire sub-model of the controlled servo valve is described by

ν̈ + 2ζω0ν̇ + ω2
0ν = ω2

0u, (C.3)

z = h(ν), (C.4)

while z is an internal state representing the orifice opening.





          


C.2.2 Orifice and Continuity Equations

The orifice equations describe the hydraulic flow Q through the valve, respectively in

regards of the pressure drop, as

QA =


zK
√
PS − PA for z > 0

zK
√
PA − PT for z < 0

0 otherwise,

(C.5)

QB =


zK
√
PB − PT for z > 0

zK
√
PS − PB for z < 0

0 otherwise,

(C.6)

and that for both ports, correspondingly load connections of the hydraulic circuit. The

pressure indices A,B, T, S refer to the servo valves’ inlets and outlets, i.e. to the A and B

connection ports, tank, and pressure supply respectively. Well-known, K represents the

valves’ flow coefficient

K = cdω

√
2

ρ
, (C.7)

with the constructive valves’ parameters, in addition to the oil density ρ. At the same

time, from the technical data sheet, one can assume a characteristic relationship

Q = Qn

√
∆p

pn
, (C.8)

where ∆p is the pressure drop across the valve, and Qn, pn are the nominal flow and

pressure drop, describing the valves behavior in a fully open state. By rearranging (C.8),

it can be seen that Qn(
√
pn)−1 is equivalent to the flow coefficient K, that allows omitting

the identification of ω, cd and ρ parameters. This way, the valves’ flow coefficient is

determined from the nominal pressure drop and flow characteristics given by the technical

data sheet.

Knowing the flow through the valve, the pressure drop can be calculated directly, via

the continuity equations

ṖB =
E

VB + AB(l − x)
· (QB + ABẋ+ CL (PA − PB))

ṖA =
E

VA + AAx
· (QA − AAẋ+ CL (PB − PA)) ,

(C.9)

where VA/B is the volume of the hydraulic oil in the tubing between the valve and both

A/B-chambers of the cylinder, while AAx and AB(l − x) are the operational volumes of

cylinder. Note that the total (maximal) stroke l provides mechanical constraints for the

piston motion, so that 0 ≤ x ≤ l, while x is the relative cylinders’ rod position. E is

the bulk modulus and CL is an internal leakage coefficient. The latter characterizes the

pressure drop across the membrane which is separating both cylinder chambers.





         
 

C.2.3 Mechanical Sub-Model of Cylinder

The cylinder dynamics is modeled as a second-order system with one DOF (degree of

freedom) described by

mẍ = PAAA − PBAB − f(ẋ)− FL. (C.10)

The total mass under actuation is m, and f(ẋ) constitutes the entire friction force acting

against the rods’ motion. FL is the load force applied externally, which can be measured

by a force sensor, cf. further Fig. C.4. The lumped mass is calculated from the data

sheets of all moving components in the assembly, while the cross sections of both cham-

bers AA 6= AB are taken from the available technical drawings. The nonlinear velocity-

dependent Stribeck friction model, see e.g. [24], is taken for f(ẋ). To avoid a sign-related

discontinuity, a hyperbolic tangent has been assumed, cf. [13], therefore resulting in a

Stribeck type friction model

f(ẋ) = tanh(γẋ)
(
Fc + (Fs − Fc) exp

(
−
∣∣∣ ẋ
χ

∣∣∣δ))+ σẋ. (C.11)

The Coulomb friction coefficient is stated as Fc > 0, stiction coefficient as Fs > Fc, the

linear viscous friction coefficient as σ > 0. Two Stribeck shape parameters are δ 6= 0

and χ > 0. The parameter γ scales the smoothness of zero crossing transition, until its

saturated value → ±1 approaches the velocity-dependent sign. Note that more complex

dynamic friction behavior [25] is purposefully not considered, since for the largely damped

and relatively slow hydraulic systems the modeling (C.11) can yield as fairly sufficient,

cf. [3, 23].

C.3 Model Reduction

From the available FRFs of the servo valve, shown further in Section VI, as identified

for 10%, 25% and 90% opening, one can neglect the closed-loop dynamics in the lower

frequency range of interest. Therefore, a unity gain and an acceptably low phase lag

can be considered, leading to the replacement of (C.3) by u = ν. Note that a hydraulic

cylinder is to be operated clearly below 10Hz frequency, cf. Figs. C.5a, C.5b, so that

the above assumption is valid for modeling reduction. Note that (C.2) remains an input

nonlinearity to be accounted for.

For the further model reduction, cf. [13] for details, a load-dependent pressure PL =

PA−PB is introduced and |QA| = |QB| is assumed for a closed hydraulic circuit. Therefore,

the orifice equations (C.5), (C.6) are combined into

QL = zK

√
1

2
(PS − sign(z)PL), (C.12)





          


while

PA =
PS + PL

2
, PB =

PS − PL
2

. (C.13)

Following the above aggregation, the continuity eqs. (C.9) can be also combined into one:

ṖL =
4E

Vt

(
QL − Āẋ− CLPL

)
. (C.14)

In (C.14), Vt = VA+VB represents the total actuator volume, and Ā = 0.5(AB+AA) is the

averaged piston area. The latter will inherently lead to a certain model-reduction error

once the piston has a single rod, thus yielding an asymmetric cylinder. Incorporating

both above reduced equations into the cylinder dynamics (C.10) results in

mẍ = PLĀ− f(ẋ)− FL. (C.15)

C.4 Non-linear System Affine in Control and States

In order to model the system dynamics in a piecewise affine state-space formulation,

several linerization steps are required.

Obviously, the combined dead-zone and saturation nonlinearity (C.2) can be described

by

z = kg · u+ dg, (C.16)

that partitions the total input range into the adjoining cells, indexed by g while g =

1, . . . , 5.

For linearizing the orifice equation, the partial derivatives are first taken with respect

to both variables z and PL, thus resulting in two linearized parameters Ĉq and Ĉqp. These,

multiplied with the orifice opening and load pressure states respectively, yield the total

load flow rate as

Q̂L = Ĉqz + ĈqpPL, (C.17)

and that for a chosen working point (ẑ, P̂L). Both terms of linearization can be computed

as

Ĉq =
∂QL

∂z

∣∣∣∣
P̂L

= K

√
0.5
(
PS − sign(z)P̂L

)
, (C.18)

Ĉqp =
∂QL

∂PL

∣∣∣∣
ẑ

=
ẑKsign(ẑ)

4
√

0.5 (PS − sign(ẑ)PL)
. (C.19)

One can recognize that, in order to capture the whole operation space, a piecewise affine

mapping is required. That results in the state-dependent coefficients

Cq(PL) = koPL + do, (C.20)





         
 

Cqp(PL, z) = (knPL + dn) z. (C.21)

Here again, the subscripts o and n represent the indices of the cells within state-space; k

and d are the corresponding constants that parameterize the total piecewise affine model.

Figure C.1 shows Ĉq as well as its linearization Cq.

0 20 40 60 80 100 120
0

1

2

3

4

5

6
10-4

Figure C.1: Ĉq coefficient and its linearization

For Ĉqp, the characteristic curves are shown in Fig. C.2, together with linearization,

for several representative values of z. Note that here the linearization was performed for

a fully opened valve state, i.e. z = 1. The characteristic curves for z < 1 are then scaled

down by multiplication with ẑ, according to (C.19). Note, that the linearized model does

not take the supply pressure into account. Therefore the linearization process has to be

performed for the intended supply pressure and, consequently, the k and d values have

to be recalculated once the supply pressure changes. By substituting (C.20) and (C.21)

into (C.17), one can easily obtain the total orifice equation with the piecewise affine, yet

state-dependent, coefficients.

In a similar way, the Stribeck friction model (C.11) is piecewise linearized as well, that

results in

f(ẋ) = kw · ẋ+ dw, (C.22)

while w in the cells index in the ẋ-space, and k and d are the corresponding constants.

When merging the above equations into the state dynamics (C.14), (C.15) one obtains

the overall model in the following form

ẋ = A(x)x + b(x)u+ f, (C.23)

y = cTx, (C.24)

with the state vector x = [PL, ẋ]T . That one incorporates the state-dependent system

matrix A, input coupling vector b, and affine vector term f. Note that since the cylinder
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Figure C.2: Ĉqp coefficient and its linearization

stroke is not directly affecting the system dynamics, the total order is reduced by one.

Obviously, one free integrator can be always connected in series with the system output

(C.24), as it is done further for the model evaluation in Section VII, as there is no velocity

measurement is provided. The modeling matrices, correspondingly vectors, are given by

A =


4Edg
Vt

(
ko + knPL + dn −

CL
dg

)
−4EĀ

Vt
Ā

m
−kw
m

 (C.25)

b =

4EkgPL
Vt

(
ko +

do
PL

+ knPL + dn

)
0

 (C.26)

f =


4Edodg
Vt

−dw + FL
m

 (C.27)

cT =
(

0 1
)

(C.28)

C.5 Experimental Setup

The hydraulic system under investigation is shown in Fig. C.3 (laboratory view). The

schematic representation of the decoupled right-hand side cylinder is drawn in Fig. C.4,

where the sensing interfaces are indicated by . The system consists of a single rod,

double-acting cylinders of type [26], with a linear force sensor [27] attached, that is mea-

suring the respective load from the perspective of each cylinder. The cylinder under

consideration is actuated via a 4/3 servo valve [28], attached to a hydraulic pump, with a





         
 

Figure C.3: Experimental hydraulic setup (laboratory view)

maximum supply pressure of 350bar1 and maximum flow rate of 120l/min. The pressures

in both chambers of the cylinder are measured by the sensors [29]. Further, a linear poten-

tiometer [30] is installed to track the cylinders’ rod position. The servo valve also includes

a sensor for the spool position monitoring. As the real-time control interface between the

development computer and experimental setup, the Speedgoat platform, baseline model

S [31], with the IO183 and IO397 interface cards is used. This hardware allows for a

sampling rate of 2kHz. Furthermore, it supports 8 single-ended or 4 differential analogue

input and 4 single ended output channels with a 16bit A/D and D/A converter each, as

well as analog input voltages of ±10V and output voltages of 0 − 5V, with a maximum

output current of 5mA on IO183. On IO387, 4 single-ended or 4 differential analogue

input and 4 single ended output channels with a 16bit A/D and D/A converter each, as

well as a analog input voltages of ±10.24V and output voltages of ±10V with a max-

imum output current of 5mA are available. An emergency break circuit was designed

and implemented, switching all valves into a system pressure relieving, that means a

‘no-motion’ correspondingly ‘no-force’, configuration. The instrumented components are

listed in Table C.1.

C.6 Parameter Identification

In this section, the single identification steps for determining the unknown, correspond-

ingly uncertain, system parameters are described. All experimental measurements, de-

scribed below, were performed with a sampling frequency of 2kHz.

1Note that the pressure is denoted in bar, as conventionally for hydraulics, while standard SI units,

i.e. Pa, are used for all calculations made





          


Figure C.4: Schematic representation of experimental setup

Table C.1: Installed components of experimental system

Description Model number

Moog servo valve D633 R16KD1M0NSM2

Cylinder CD25-40 25x200-SS-HC-SSN-NNN

Danfoss P-sensor MBS 1250 063G1229

Celesco linear-pot. CLP-250

HBM Force sensor 1-S9M/50kN-1

C.6.1 Servo Valve

In order to evaluate FRFs of the controlled servo valve, mentioned before, measurements

were made to identify closed-loop frequency characteristics. Referring to (C.1), identifica-

tion of the ω0 and ζ parameters is required. To approach the nominal FRF characteristics,

available from the data sheets, three different levels of the valve opening, 10%, 25% and

90%, are assumed, i.e. corresponding to the input magnitude |u|. For FRF measurements,

sinusoidal signals were used, with frequencies starting from 2Hz and going up to 50Hz for

90% opening, and up to 100Hz for the rest. The equidistant frequency interval is taken

to be 2Hz. During the signal analysis the measured spool position was fitted over 4 peri-
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Figure C.5: Measured FRFs versus linear model fit

ods with a sinusoidal curve for calculating, based thereupon, the magnitude and phase for

each frequency measurement. The measurements and the fitted models are shown in Figs.

C.5a and C.5b, while the determined model parameters are listed in Table C.2. The plots

Table C.2: Servo valve second-order model parameters

Valve opening [%] ω0 [rad s−1] ζ

10 816.8 0.7

25 628.3 0.7

90 220 0.7

show that for 10% and 25% valve opening, the model and the measurements are close to

each other, while at 90% the parameters are adjusted to better fit the magnitude, to be

inline with approximation from Section C.4, while the phase response shows a stronger

divergence.





          


C.6.2 Dead-zone

Measurements were performed to test the extend of the dead-zone in either direction from

the middle (zero) position. For u > 0 the cylinders’ initial position was fully retracted,

while for u < 0 fully extended. The constant input signals were applied starting from 1%

to 20% valve opening, and that in 0.5% steps. During the signal processing the cylinders’

position signal was fitted with a linear function using the least squares method, revealing

the slope and, therefore, constant velocity estimate of the rod ˆ̇x, shown in Fig. C.6. Note

-20 -15 -10 -5 0 5 10 15 20
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Figure C.6: Experimental test of the dead-zone and linearization

that under these experimental conditions, a quasi-static behavior can be assumed, so that

the appearance of non-zero velocity is directly associated with boundaries of the dead-

zone. The plot shows a dead-band of around 10%, yet we still observe a very slow (rather

creeping) cylinder motion also within the dead-band. Therefore, an ideal assumption of a

fully locking dead-zone (C.2), is here not fully justified and a flat slope should be assumed

for |ν| < β, corresponding kg > 0 in (C.16).

C.6.3 Stribeck Friction

For positive u values, the rods’ initial position is fully retracted, and fully extended for

negative u values. Constant input signals, starting from 5% in 1% intervals up to 50%

valve opening, were sent to the valve, while a constant counteracting force, produced by

the second cylinder, was applied. Since the constant valve opening is expected to generate

a constant relative velocity at steady-state, and the full cylinder stroke was driven for all

input values, the normed drive time is taken for the sake of comparison. The driven

cylinder position over the normed time is shown in Fig. C.7 for all measurements, and

that for both directions. On the contrary to the full-order model, all measurements do





         
 

not reveal an expected linear slope that corresponds to constant relative velocities. At

the same time, a fairly good match of all curves and their mirroring symmetry for both

directions point on some rather systematic behavior, which is obviously not captured even

by the full-order model. A detailed analysis of this by-effect is, however, out of the focus

of this paper and builds an outlook for future works. For obtaining a reasonable estimate

of relative velocities from the recorded experiments a least-squares fit of linear function

(i.e. slope) has been made for all curves shown in Fig. C.7. This yields a corresponding

Figure C.7: Cylinder position measurements over normed time for all Stribeck curve

measurements, 46 measurements for retracting and 45 measurements for extending motion

set of bidirectional relative velocities, and that with the same extend of residual errors

for the assumed linear slope. When calculating the friction force, the initial samples of

each measurement show a transient, and that on both pressure sensors and force sensor.

However, it has no apparent affect on the velocity of cylinder, as can be seen from Fig.

C.7. Therefore, only the steady-state part of each measurement was used for averaging

PB, PA and FL, thus allowing for calculating the cylinder forces according to (C.10). The

obtained velocity-force data was used to fit the Stribeck parameters, according to (C.11),

by using the standard nonlinear least-squares method. During the following linearization,

the curve was split into seven segments, four from which are representing the purely

viscous and Coulomb friction contributions for both directions. The fitted Stribeck model

and its piecewise linearization are shown together with the measured data in Fig. C.8.

C.7 Model Evaluation

Simulations were performed for all three models and compared with the corresponding

measurements. As input a sinusoidal signal with frequencies of f = [1, 2, 3]Hz and am-
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Figure C.8: Measured data points and fitted Stribeck model

plitudes corresponding to the valve opening of u = [20, 40, 60]% were used. From the

signals monitoring it was obvious that the supply pressure was varying from the 100bar

set value during the drive, despite being connected to an oversized hydraulic power unit,

cf. Fig. C.9. Therefore, the measured pressure was used as the supply pressure input

signal for the simulation. Plots of the ‘corner’ configurations, relating to amplitude and
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(a) 20% valve opening amplitude and frequency of 1Hz
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(b) 60% valve opening amplitude and frequency of 2Hz

Figure C.9: Measured supply pressure at sinusoidal input





         
 

frequency, are shown in Figs. C.10, C.11, C.12 and C.13. Initial conditions for pressures

and cylinder position for the simulation were taken from the measurements at the start

of the next full period once the steady-state condition can be observed. Also, starting

from that point all initial values of the simulation were taken over from the available

measurements. All identified, correspondingly computed, system parameters are given

in Table C.3, while the corresponding linearization parameters are listed in Tables C.4,

C.5, C.6, C.7, C.8, C.9. The linearization parameters for Cq and Cqp, listed in the tables,

are each with four values, shown as an ordered set, with the order corresponding to four

simulations presented. The experimental signals were processed using a moving average

function, smoothing them for a better visual comparison.

From the results we can see a qualitatively similar behavior for all three models.

The full-order model, equally as the measurements, shows an overall positive slope due

to different cross sections of the piston, i.e. asymmetric cylinder. Furthermore, it can

be seen that the qualitative response of the simulation and the measurement are fairly

close. From Figs. C.10, C.12 one can recognize that at lower valve opening, i.e. at

lower relative velocities, the measured displacement amplitude differs stronger compared

to the models. One of the possible reasons lies in a not fully linear displacement map at

constant valve opening, correspondingly flow, cf. Fig. C.7, and related identification of

model parameters.

For the linearized model we observe a slightly drifting behavior. As mentioned in

section C.4, the linearization parameters for this model have to be recalculated if the

supply pressure changes. For the shown simulation, an average supply pressure was

calculated and used for calculation of the linearization parameters. An attempt of on-line

recalculating the linearization parameters at the time-varying supply pressure fails due

to an exponential increase in simulation time. The reduced model shows no drift in the

graphs, in accord with the assumption that both sides piston areas are equal. Here the

average supply pressure, the same as for the linearized model, was used to have a better

comparison between the reduced and linearized model.

From comparison of the plots it can be said, that the cylinder motion predicted by the

full-order model is best in accord with the measurements, especially in view of the relative

displacement which has a free integrator behavior. Furthermore it can be noted, that there

are almost no differences between the linearized and reduced order model besides a slight

drifting motion of the linearized model due to the afore mentioned cell segmentation.
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Figure C.10: Measurement and simulation for sinusoidal input with 20% valve opening

and 1Hz frequency
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Figure C.11: Measurement and simulation for sinusoidal input with 60% valve opening

and 1Hz frequency

C.8 Summary

Modeling of a hydraulic drive system was performed, including the full-order, reduced, and

linearized models. Furthermore, the nonlinearities in the reduced model were located and

linearized over the whole operational state-space, therefore resulting in a state-dependent

matrix form affine in the control and states. The experimental hydraulic system was de-

signed, constructed and instrumented, while incorporating a standard single-rod hydraulic

cylinder operated via the controlled servo valve. Measurements were performed for ana-
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Figure C.12: Measurement and simulation for sinusoidal input with 20% valve opening

and 3Hz frequency
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Figure C.13: Measurement and simulation for sinusoidal input with 60% valve opening

and 3Hz frequency

lyzing the system dynamics and identifying the free parameters, otherwise weakly known

from the technical data. These included FRFs of the valve closed-loop, the dead-zone and

the nonlinear Stribeck-type friction. Simulations of all three models were exposed oppo-

site to each other and compared with a set of measurements at different amplitudes and

frequencies. Observed deviations were analyzed and discussed concerning the inherent

sources and implications for modeling.





          


Table C.3: Simulation Parameters

Param. Value Unit

m 1.394 kg

AA 1.3E−3 m2

AB 0.76E−3 m2

K 0.252E−6 m3

s
√
Pa

E 109 Pa

Param. Value Unit

PT 0 Pa

VA 0.7E−3 m3

VB 0.7E−3 m3

FL 0 N

CL 0 1/s

l 0.2 m

Table C.4: Values for linearized dead-zone and saturation

Cell kg dg

I 0 -1

II 1 0.1

III 0.04 0

IV 1 -0.1

V 0 1

Table C.5: Values for linearized Stribeck friction

Cell kw dw

I 1105 -30.7

II −0.254 -90.8

III −3867 -147

IV 1.833E3 0

V −3867 147

VI −0.819 90.7

VII 1105 30.7

Table C.6: Values for ko for linearized Cq

Cell ko

I [−0.034E−9, −0.038E−9, −0.035E−9, −0.037E−9]

II [−0.053E−9, −0.058E−9, −0.053E−9, −0.056E−9]

III [−0.092E−9, −0.100E−9, −0.092E−9, −0.097E−9]

IV [−0.412E−9, −0.447E−9, −0.411EE−9, −0.435E−9]

V [−0.920E−9, −0.998E−9, −0.919E−9, −0.972E−9]





         
 

Table C.7: Values for do for linearized Cq

Cell do

I [0.554E−3, 0.510E−3, 0.554E−3, 0.525E−3]

II [0.647E−3, 0.597E−3, 0.648E−3, 0.613E−3]

III [0.949E−3, 0.874E−3, 0.950E−3, 0.899E−3]

IV [0.388E−3, 3.573E−3, 3.882E−3, 3.671E−3]

V [8.632E−3, 7.957E−3, 8.646E−3, 8.177E−3]

Table C.8: Values for kn for linearized Cqp

Cell ko

I [0.027E−15, 0.034E−15, 0.026E−15, 0.031E−15]

II [0.095E−15, 0.121E−15, 0.094E−15, 0.111E−15]

III [0.491E−15, 0.627E−15, 0.489E−15, 0.578E−15]

IV [43.93E−15, 56.09E−15, 43.71E−15, 51.68E−15]

V [491.1E−15, 627.1E−15, 488.8E−15, 577.8E−15]

Table C.9: Values for dn for linearized Cqp

Cell do

I [ 0.027E−9, 0.030E−9, 0.027E−9, 0.029E−9]

II [−0.009E−9, −0.009E−9, −0.009E−9, −0.009E−9]

III [−0.322E−9, −0.349E−9, −0.321E−9, −0.340E−9]

IV [−40.54E−9, −43.98E−9, −40.48E−9, −42.80E−9]

V [−458.8E−9, −497.7E−9, −458.1E−9, −484.3E−9]
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Abstract – A hybrid position-force control is proposed using a unified state

feedback controller in combination with feed-forward dead-zone compensation.

the dead-zone compensator was constructed as inverse of the identified static

map while the state feedback gains were obtained using a numerical opti-

mization routine. An accurate state-space model affine in states and control,

derived in previous work, was used for closed-loop simulations and control

tuning. A trigger event for automatic switching between position and force

control was defined and integrated into the overall control architecture along-

side with a feed-forward low-pass filter reducing high frequency components

in the control signal. Experimental evaluations were performed for different

references with automatic switching between the position trajectory following

and force set value regulation.

D.1 Introduction

Hydraulic systems are widely used in various industries due to their longevity, compact-

ness, modularity and excellent power to mass ratio. Further they have the ability of hold-

ing large forces constantly without overheating, as most other actuators would. However,

hydraulic systems contain multiple nonlinearities e.g. in the orifice equations, mechanical

friction, leakage, and others, which either can not be modeled completely or require some

in depth investigation to come up with a proper modeling solution. On top of that, there

are uncertain model properties e.g. wear of components, bulk modulus, and others which

make hydraulic systems not only more challenging to model but also to control.

In several cases of hydraulic applications a lot of tasks are highly repetitive and tedious

e.g. in excavators, while still being controlled manually by operators. While at least semi-

automatic control already entered these application fields, it is still the standard to use

PID controllers for most of the closed-loop controls. Some optimal control designs for PID,

with additional nonlinear extensions, were reported e.g. [1] for improving the control

system performance. In other motion control researches, different types of controllers,
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like adaptive, extended state-feedback and variable structure, are shown as superior to

the standard PID, not just for hydraulic systems, cf. [2, 3, 4, 5].

Keeping in mind an example with excavator, it could be destructive for equipment to

run with position control only, so that a force control approach might be required. Here

it is worth to recall that a high-performant position control is inherently stiff, so that an

impact with environment might lead to distructive or at least wearing by-effects. Control

approaches are, however, especially challenging if an environment has uncertainties in

resistive force and either an alternative control strategy or a kind of universal controller

with relatively wide operational range is needed. For several force control strategies,

including those designed for hydraulic systems, we refer to [6, 7, 8, 9]. Yet if a fully

automated system is desired, a combination of position and force control should be sought,

capable of utilizing both types of controllers depending on the environmental factors. Such

hybrid control approaches are quite common and continue to be a field of intense research

especially in robotics, cf. [10, 11, 12].

In this paper a hybrid position and force control approach is pursued based on an

integral state feedback controller, see e.g. [13] for overview. While for position control

the system can basically be regulated using a PID, for a force control it is a pressure

feedback which becomes vital for actively damping the system, cf. [14]. Other research

showed that a pressure feedback control can also be implemented directly using additional

hardware, cf. [15].

For laying out a proper control architecture, a detailed model of the system is required.

In [16] a reduced hydraulic model in approach to our test setup is described which was

expanded upon in [17] by linearizing it and creating a state-space model affine in both

control and states. The proposed hybrid position-force control is based on the latter. The

rest of the paper is structured as follows. In section II the modeling from previous work

[17] is revised and summed up while introducing the integral state feedback controller in

section III. Section IV evaluates the measurements performed and in V an outlook for

future work is shown. Finally in VI a summary of the work done is given.

D.2 System Modeling

The hydraulic system modeled is a single rod, double acting cylinder attached to a servo

valve connected to a HPU (Hydraulic Power Unit). Characteristics of both the valve and

the cylinder were previously identified in [17]. Simulations and measurements were com-

pared verifying the model and its identified parameters, including a dead-zone-saturation

combination, the valves dynamics as a second-order system, orifice and continuity equa-

tions and the Stribeck friction model for cylinder. For the model reduction the assumption





        

of equal cross sectional areas of the cylinder was made, therefore introducing a load de-

pendent pressure, and simplifying both the orifice and continuity equations. Also, the

valves’ dynamics was neglected due to an observed unity gain and negligible phase lag

in the frequency range of interest. Linearizations of type y = kx + d, i.e. with slope

k and offset d, were performed for the identified nonlinearities, therefore resulting in a

state-space model affine in control and states, representing the plant itself only, of the

form

ẋ = A(x)x + b(x)u+ f, (D.1)

y = cTx, (D.2)

with u being the input to the plant.

For this work, the state-space model was expanded by an event switching between the

position and force control, denoted by h. Expanding the state vector for state feedback

control with integral term results in the following formulation

ẋ = A(x, h)x + b(x)r(h) + f, (D.3)

y = c(h)Tx, (D.4)

which is represented in Fig. D.2.

The state vector is given by xT = (x, ẋ, PL, FL, e) where e is the error between reference

and measured output (position or force), x is the cylinder’s position, ẋ the relative velocity,

PL the load-dependent pressure and FL is the load force. The introduction of h and

switching between control schemes leads inherently to a change of the system dynamics

and, therefore, to two different system matrices A and output vectors c, depending on

the instantaneous control mode. r is the corresponding reference signal, again dependent

on h. b is the input coupling vector and f is correspondingly the affine term, cf. [17].

D.3 Control Design

This section describes the single steps of designing the closed-loop control system, its

parameter optimization, definition of the switching event, static dead-zone compensator,

and feed-forward filter for the control signal.

D.3.1 Static Dead-zone Compensation

The valve to be controlled contains a dead-zone-saturation combination. While the satu-

ration only limits the maximum output values, the dead-zone affects the valve’s behavior

around its origin in the range of ±10% of the valves command, thus directly influencing





          


the closed-loop behavior. To overcome this issue a static dead-zone compensation is in-

troduced. This is done by flipping the identified dead-zone of the system over a slope with

unity gradient, so as to achieve best possible compensation results, cf. Fig. D.1. The
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Figure D.1: Static dead-zone compensation

static compensator function is then linearized resulting in 3 linearisation regions described

by

u = kauc + da, (D.5)

where uc is the control signal and u the input to the valve. The corresponding linearization

regions (further denoted as cells) are indexed by a. As seen in the dead-zone analysis in

[17], the dead-zone does not correspond to zero movement of the cylinder, therefore a

slight slope in the range of ±10% was used instead of k = 0, and the slope is not infinite

for the respective part of the linearized dead-zone compensation.

D.3.2 Integral Error State-Feedback Control

After feed forward compensating the dead-zone of the valve, a state-feedback controller

was designed to follow the desired reference for each control strategy.

One should note that a rather classical cascaded control loop, consisting of an inner

force controller with saturated control signal and an outer position control loop, always

constitutes a trade-off between both. Well-known, the stiffness of an ideal force controller

goes towards zero, while that of an ideal position controller towards infinity. Therefore,

designing a combined position/force control mostly cannot comply with high performance

specification of both arranged in a cascade manner. On the contrary, a hybrid, i.e. switch-

ing, position and force controller allows for meeting enhanced performance requirements

by each one separately, while the design challenges shift to a reliable switching strategy





        

and corresponding transient behavior. Because of the mentioned above, a switched state

feedback controller was implemented of the form

uc = −k(h)x (D.6)

with k = (K1, K2, K3, K4, Ki) to be the vector of control gains, determined separately

for position (h = −1) and force (h = 1) control modes. Implementing the proposed

controller results in the overall structure shown in Fig. D.2, where γ is the static dead-

zone compensator.

Figure D.2: Control Structure

The matrix and vectors of (D.3) and (D.4) are given by

A(x, h) =



0 1 0 0 0

0 −kw
m

Ā

m
− 1

m
0

a31 a32 a33 a34 a35

0 0 0 0 0

−1 0 0 0 0


, h = −1

A(x, h) =



0 1 0 0 0

0 −kw
m

Ā

m
− 1

m
0

a31 a32 a33 a34 a35

0 c 0 0 0

0 0 0 −1 0


, h = 1

(D.7)





          


with the coefficients given by

a31 = −4EkgkaK1

Vt

(
knP

2
L + dnPL + koPL + do

)
a32 = −4E

Vt

(
kgkaK2(knP

2
L + dnPL + koPL + do) + Ā

)

a33 =

4E

Vt

(
− kgkaK3(knP

2
L + dnPL + koPL + do)

+ko(kgda + dg) + dg(knPL + dn)

+kgda(knPL + dn)− CL
)

a34 = −4EkgkaK4

Vt

(
knP

2
L + dnPL + koPL + do

)
a35 =

4EkgkaKi

Vt

(
koPL + d0 + knP

2
L + dnPL

)

(D.8)

with the rest of the vectors described by:

b =



0

0

0

0

1


(D.9)

f =



0

−dw
m

4E(kgdoda + dodg)

Vt

0

0


(D.10)

c(h)T =
(

1 0 0 0 0
)
, h = −1;

c(h)T =
(

0 0 0 1 0
)
, h = 1;

(D.11)

In the above equations, E describes the bulk modulus of the hydraulic fluid with Vt

being the sum of volumes in the lines from the valve to the cylinder. Ā is the averaged

cross section of cylinder, m is the lumped mass moved in the system, and c is the spring

constant of a hard stop against environment when the system is operated with force

control. k and d with the corresponding indices refer to the different cells of linearization

of the state space, cf. with (D.5). CL is the leakage coefficient between both cylinder

chambers.





        

D.3.3 Filtering of Control Signal

High frequency components were observed in the valve response. This is directly related to

the amplification of the noisy sensor signals. While the integrator smoothes the noise out,

the state feedback control terms amplify the noise afflicted signals, thus resulting in a high

frequency control signal feeded to the valve. While the fast servo-valve is able to follow

the reference, such high frequencies on the command signal are not desired, introducing

unnecessary wear for the component. An analysis of the control signal showed, that

the valve mainly operates at around 25% of its maximum opening which corresponds,

according to the measured FRF (Frequency Response Function), to a cutoff frequency

of about 100Hz. Therefore, a second-order low-pass filter with a cut-off frequency of

100Hz was inserted after the dead-zone compensation. This aims filtering out the higher

frequencies of the control signal, while not slowing down the overall system dynamics.

D.3.4 Event-based Switching

For the system to automatically switch between the position and force control a switching

event h had to be defined. The system starts at t = 0s with x = 0 and ẋ = 0 with position

control of following a given reference, in this case a ramp function, until it reaches a

mechanical hard stop that should trigger switching from position to the force control

and, correspondingly, reset the integral error. The event trigger is then the load force

surpassing a predefined threshold. Analysis of sensor’s signal showed that due to the

noise, force peaks of up to 1500N in either direction can be observed on top of the current

value. Unsuitable threshold definition, therefore, could lead to a limit cycle behavior of

periodically switching from force to position control and vice versa. To overcome this

issue a delayed relay was introduced, defined by [18]

h(t) = min[sign(FH − β),max[h(t−), sign(FH − α)]] (D.12)

with the initial state

h(t0) =

{
sign(FH(t0)) if FH(t0) ∈ (−∞, β) ∨ (α,∞)

[−1,+1] otherwise
(D.13)

The previous to switching time instance is denoted by t−, while the assigned parameters

are α = 1500N , β = −1500N , and the relay’s input value is assigned to be FH =

FL − 2000N .

While the test setup has a mechanical hard stop which introduces a rapid increase

of the measured force and therefore triggers switching between the controllers, in the

simulation an artificial hard stop was created to verify the control functionality. The





          


hard stop is modeled as a high stiffness spring, without damping, based on the Youngs’

modulus equation. Rearranging the equation leads to the spring constant

EsAs
L0

=
FL
∆L

= c, (D.14)

where Es = 210GPa is the Youngs’ modulus of steel, As is the cross section of the

”spring”, L0 its non deformed length, ∆L the deformation, and FL the load force. As can

be seen, FL/∆L is equal to c and therefore only Es, As and L0 are needed for calculating

the spring constant.

In the experimental setup, see further in section IV, the hard stop is reached once the

left cylinder is fully retracted. The I-beam the cylinders are mounted to, cf. Fig. D.5, is

assumed to be much stiffer than the combination of cylinder rods plus force sensor and

therefore L0 = 0.88m, being the summed length of both cylinder rods and force sensor, is

assumed. While there are various components in that chain, As = 5E−4m2 was assumed

to be uniform and given by the cylinders cross section, leading to a spring constant of

c = 1.2E8N/m.

D.3.5 Optimal State Feedback

For the designed control structure, the state feedback gains are determined as follows.

A set of initial gain values was empirically determined first as a starting point for opti-

mization. Different cost functions were assumed for each controller to achieve the desired

outcome.

For position control, the cost function is given by

min

∫
((r − x)t+ udt)

2dt (D.15)

with r being a ramp reference with a slope of 0.05m/s, x the cylinder’s position and

ud the difference between the control signal after dead-zone compensation and the sig-

nal after saturation of the valve. This is included to minimize not only the control

error, but also the amount of control signals exceeding the maximum command input

admissible by the valve. Multiplications with the time t were performed to punish devi-

ations from the reference harder with increasing time. The initial set of gain values was

[50, 0.001, 1E−8, 1E−6, 5000]. The convergence of the normalized gain values and the cost

function are shown in Fig. D.3.

The cost function for the force control is given by

min

∫
((r − FL)t)2dt. (D.16)

where r is the reference force defined to be 3500N and FL is the measured load force.

Again the difference is multiplied by time to punish deviations from the reference harder
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Figure D.3: Cost and gain value convergence for position control from (D.15)

with increasing time. Initial values for parameters were taken from previous measurements

to be as close as possible to the real conditions. The initial set of gain values was K =

[6E−7, 3E−4, 5E−8, 2E−5, 1.4E−3]; this was determined empirically. The convergence of

the gain values and minimization function are shown in Fig. D.4.
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Figure D.4: Cost and gaine value convergence for force control from (D.16)

Note that K4 was set to zero for position control because there is no external force

acting against the cylinders movement. For the force control, K1 was set to zero because

there is only negligible micro-movement once the hard stop is reached. The optimized





          


values for the control gains are shown in Table D.1.

Table D.1: Optimized gain values for position and force control

Gain parameter Position control Force control

Ki 5E3 0.0014

K1 73.3 0

K2 9E−4 3.1E−4

K3 1.65E−8 5E−8

K4 0 2.5E−9

D.4 Experimental Evaluation

The experimental setup used in this work is shown in Fig. D.5, where the right cylinder-

valve combination is to be controlled, while the force sensor is connecting both cylinders.

A hard stop is reached by extending the right cylinder until the left cylinder is fully

retracted. All state variables are measured and more details on the developed setup can

be found in [17].

Figure D.5: Experimental setup of hydraulic cylinders

After confirming with simulations that the obtained control parameters lead to the de-

sired system behavior, experiments on the laboratory setup were performed. For position

control, the system was supposed to follow two different slopes of 0.03m/s and 0.07m/s

starting from a fully retracted position, i.e. x0 = 0, ẋ0 = 0, while the reference values for

force control are 3500N and 7000N correspondingly. The measured values for the ramp

with slope of 0.03m/s and reference force of 3500N are shown in Figs. D.6 and D.7, while





        

the measured position and force for the slope of 0.07m/s and reference force of 7000N

are shown in Figs. D.8 and D.10.
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Figure D.6: Measured cylinder position and reference for ramp with 0.03m/s slope
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Figure D.7: Measured load force and reference for 3500N

As can be seen from the figures, the cylinder follows the reference position closely for

both ramps until reaching the hard stop at a position of about xs = 0.11m when a rapid

increase of the measured force can be observed for both cases. Surpassing the threshold

of 3500N triggers the event switching from position to force control.

After a short transient the system reaches steady-state, holding a constant force against

the hard stop for both cases according to their references. This also confirms, that the

optimized gains are equally valid for varying reference signals. The validity of the sim-

ulation model and optimization routine is confirmed by determined gain factors equally

suitable set for both simulated and real (measurement) control response. Taking a closer





          


0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

Figure D.8: Measured cylinder position and reference for ramp with 0.07m/s slope
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Figure D.9: Outtake of measured position and reference of ramp with slope of 0.07m/s

look at the position, exemplary for the ramp with a slope of 0.07m/s as shown in Fig.

D.9, it can be also observed that the cylinder is marginally penetrating into the hard

stop around ts = 1.6s, where the initial peak of the force is generated. This minimal

penetration and well-matched transient to the force control response argues in favor of

the designed event-based switching strategy.

Table D.2 shows numerical indicators for both measurements taken. ISE (Integral

Square Error, (D.17)) and MSE (Mean squared error, (D.17)) show both relatively small

errors for both cases for position control and rather high values for force control. Bare in

mind, that due to the switch of the controller and the reset of the integral error at the

point of switching and the initial force peaks due to the impact, the initial values of the

force controller weigh into both criteria heavily. For the SSE (Steady State Error, (D.17))

an average, to compensate for the noise of the signal, of the values for position and force
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Figure D.10: Measured load force and reference for 7000N

Table D.2: Numerical Indicators

0.03m/s, 3500N 0.07m/s, 7000N

Position Force Position Force

SSE 0.7E−3m 10.7N 1.6E−3m 1.72N

ISE 0.012m 1.25E9N 0.0237m 3.72E9N

MSE 5.65E−7m 178E3N 2.65E−6m 197E3N

control were compared to the references once a steady state behavior was observed. As

can be seen the state error in both cases for position and force control is very small.

ISE =

∫
e2dt

MSE =
1

δ

δ∑
i=1

e2
i

SSE =
1

εsse − εss

εsse∑
i=εss

ei

(D.17)

whereas δ is the number of samples for MSE analyzed for the respective control phase

and εss the first and εsse the last sample observed being in steady state condition for each

control phase for SSE.

D.5 Summary

The state-space model of a hydraulic cylinder affine in control and states was expanded.

Based on the identified dead-zone, a pre-compensator was designed and an integral-error-

state-feedback controller implemented. The proposed approach realizes a closed-loop sys-





          


tem capable of switching automatically between the position and force regulation depend-

ing on a measured mechanical resistance of environment. The trigger event initializing

the switching from position to force control was introduced and the control gains for

both integrator and state-feedback were found using optimization routines of position

and force controls. A low-pass filter was added to the control signal while maintaining

the comparably fast response of the overall system. Most important that a unified state

feedback control structure has been developed equally suitable for both position and force

control and well-matched switch between them. Practically close hydraulic experiments

were performed and evaluated confirming efficiency of the proposed control approach and

accuracy of the simulation model. As seen from simulations and measurements, the pro-

posed hybrid system manages to follow the references, both before and after the switch

from position to force control and reaches a steady state after a short transition period in

both cases. Future works are to include stability analysis, starting from the local one and

developing towards an extended over the whole operational state-space. Further analysis

and experimental investigations towards switching back from the force to motion control

are also of interest.

Acknowledgment

This work has received funding from the European Union Horizon 2020 research and

innovation programme H2020-MSCA-RISE-2016 under the grant agreement No 734832.





REFERENCES

[1] G. Liu and S. Daley. Optimal-tuning nonlinear PID control of hydraulic systems.

Control Engineering Practice, 8(9):1045–1053, 2000. doi:10.1016/S0967-0661(00)

00042-3.

[2] Bin Yao, Fanping Bu, J. Reedy, and G.-C. Chiu. Adaptive robust motion control of

single-rod hydraulic actuators: theory and experiments. IEEE/ASME Transactions

on Mechatronics, 5(1):79–91, 2000. doi:10.1109/3516.828592.

[3] M. Ruderman, D. Weigel, F. Hoffmann, and T. Bertram. Extended SDRE control of

1-DOF robotic manipulator with nonlinearities. Proc. 18th IFAC World Congress,

2011.

[4] S. Koch and M. Reichhartinger. Observer-based sliding mode control of hydraulic

cylinders in the presence of unknown load forces. Elektrotechnik und Information-

stechnik, 133(6):253–260, 2016. doi:10.1007/s00502-016-0418-6.

[5] C. Vazquez, S. Aranovskiy, L. Freidovich, and L. Fridman. Second order sliding

mode control of a mobile hydraulic crane. In 53rd IEEE Conference on Decision and

Control, pages 5530–5535, 2014. doi:10.1109/CDC.2014.7040254.

[6] A. Alleyne and R. Liu. A simplified approach to force control for electro-hydraulic

systems. Control Engineering Practice, 8(12):1347–1356, 2000. doi:10.1016/

S0967-0661(00)00081-2.

[7] N. Niksefat and N. Sepehri. Design and experimental evaluation of a robust force con-

troller for an electro-hydraulic actuator via quantitative feedback theory. Control En-

gineering Practice, 8(12):1335–1345, 2000. doi:10.1016/S0967-0661(00)00075-7.

[8] J. Komsta, N. van Oijen, and P. Antoszkiewicz. Integral sliding mode compensator

for load pressure control of die-cushion cylinder drive. Control Engineering Practice,

21(5):708–718, 2013. doi:10.1016/J.CONENGPRAC.2011.12.006.

155

http://dx.doi.org/10.1016/S0967-0661(00)00042-3
http://dx.doi.org/10.1016/S0967-0661(00)00042-3
http://dx.doi.org/10.1109/3516.828592
http://dx.doi.org/10.1007/s00502-016-0418-6
http://dx.doi.org/10.1109/CDC.2014.7040254
http://dx.doi.org/10.1016/S0967-0661(00)00081-2
http://dx.doi.org/10.1016/S0967-0661(00)00081-2
http://dx.doi.org/10.1016/S0967-0661(00)00075-7
http://dx.doi.org/10.1016/J.CONENGPRAC.2011.12.006


          


[9] S. Katsura, Y. Matsumoto, and K. Ohnishi. Analysis and experimental validation

of force bandwidth for force control. IEEE Transactions on Industrial Electronics,

53(3):922–928, 2006. doi:10.1109/TIE.2006.874262.

[10] O. Khatib. A unified approach for motion and force control of robot manipulators:

The operational space formulation. IEEE Journal on Robotics and Automation,

3(1):43–53, 1987. doi:10.1109/JRA.1987.1087068.

[11] M. H. Raibert and J. J. Craig. Hybrid Position/Force Control of Manipulators.

Journal of Dynamic Systems, Measurement, and Control, 103(2):126, 1981. doi:

10.1115/1.3139652.

[12] W.-H. Zhu, S. Salcudean, S. Bachmann, and P. Abolmaesumi. Motion/force/im-

age control of a diagnostic ultrasound robot. In Proceedings ICRA. Millennium

Conference. IEEE International Conference on Robotics and Automation. Symposia

Proceedings, volume 2, pages 1580–1585, 2000. doi:10.1109/ROBOT.2000.844822.

[13] G. Roppenecker. State Feedback Control of Linear Systems — a Renewed Approach.

at - Automatisierungstechnik, 57(10), 2009. doi:10.1524/auto.2009.0796.

[14] H. C. Pedersen and T. O. Andersen. Pressure Feedback in Fluid Power Sys-

tems—Active Damping Explained and Exemplified. IEEE Transactions on Control

Systems Technology, 26(1):102–113, 2018. doi:10.1109/TCST.2017.2650680.

[15] J. K. Sørensen, M. R. Hansen, and M. K. Ebbesen. Novel concept for stabilising

a hydraulic circuit containing counterbalance valve and pressure compensated flow

supply. International Journal of Fluid Power, 17(3):153–162, 2016. doi:10.1080/

14399776.2016.1172446.

[16] M. Ruderman. Full- and reduced-order model of hydraulic cylinder for motion control.

In 43rd Annual Conference of the IEEE Industrial Electronics Society, pages 7275–

7280, 2017. doi:10.1109/IECON.2017.8217274.

[17] P. Pasolli and M. Ruderman. Linearized Piecewise Affine in Control and States Hy-

draulic System: Modeling and Identification. IECON2018 - 44th Annual Conference

of the IEEE Industrial Electronics Society, 2018.

[18] M. Ruderman. Computationally Efficient Formulation of Relay Operator for Preisach

Hysteresis Modeling. IEEE Transactions on Magnetics, 51(12):1–4, 2015. doi:

10.1109/TMAG.2015.2455517.



http://dx.doi.org/10.1109/TIE.2006.874262
http://dx.doi.org/10.1109/JRA.1987.1087068
http://dx.doi.org/10.1115/1.3139652
http://dx.doi.org/10.1115/1.3139652
http://dx.doi.org/10.1109/ROBOT.2000.844822
http://dx.doi.org/10.1524/auto.2009.0796
http://dx.doi.org/10.1109/TCST.2017.2650680
http://dx.doi.org/10.1080/14399776.2016.1172446
http://dx.doi.org/10.1080/14399776.2016.1172446
http://dx.doi.org/10.1109/IECON.2017.8217274
http://dx.doi.org/10.1109/TMAG.2015.2455517
http://dx.doi.org/10.1109/TMAG.2015.2455517


Paper E

Hybrid Position/Force Control for

Hydraulic Actuators

Philipp Pasolli, Michael Ruderman

157



          


This paper has been submitted as:

P. Pasolli, M. Ruderman. Hybrid Position/Force Control for Hydraulic Actuators.

Under review at IEEE Transactions on Industrial Electronics.





Hybrid Position/Force Control for
Hydraulic Actuators

Philipp Pasolli, Michael Ruderman

University of Agder

Department of Engineering Sciences

Jon Lilletunsvei 9, 4879 Grimstad, Norway

Abstract – In this paper a novel hybrid position/force control with au-

tonomous switching between both control modes is introduced for hydraulic

actuators. A full-order model which describes the system dynamics is first

derived for simulation and analysis, including servo-valve, orifice equations,

hydraulic continuity equations and mechanical subsystem. A reduced model,

in its linearizable form, is used to simplify the control design and stability

analysis. A hybrid position/force control structure with feed-forwarding, full-

state feedback, including integral control error, and pre-compensator of the

dead-zone nonlinearity followed by the low-pass filtering of control value, is

designed. Controller gains are obtained via local linearization and pole place-

ment accomplished for the position and force control separately. A hysteresis-

based autonomous switching is integrated into the closed control loop, while

multiple Lyapunov function based approach is applied for stability analysis of

the hybrid control system. Experimental evaluation is shown on the developed

test rig, with standard industrial hydraulic cylinders, for different motion and

load profiles.

E.1 Introduction

Different actuators are used in most mechatronic applications. While electric motors,

linear drives, or pneumatic actuators are well suitable for a fast system response, hy-

draulic actuators are still the first choice if compact form factor combined with high

power density and reliability are demanded, see [1, 2] for backgrounds. At the same time,

hydraulic actuators are also well known for their nonlinearities and the challenges which

come alongside if used with the closed-loop force or motion control. To implement a

suitable control strategy and tune the control parameters accordingly, an in-depth system

knowledge is required for a detailed modeling and identification of unknown parameters.

While often simplified system models, linearized around a certain operational point, are

used [3, 4, 5, 6], a more complex modeling yields inherently more accurate analysis and
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simulation of hydraulic (sub)systems, as shown e.g. in [7] for a decomposed proportional

valve. This level of modeling demands explicit knowledge of not only the overall setup

but also the subsystems, down to the e.g. mechanical design of subcomponents. Although

a such in-depth analysis of the system parameters is less feasible under regular operation

conditions, many studies aim to consider extended and often full-order system dynamics,

also incorporating nonlinearities nested within electric, mechanical and hydraulic subsys-

tems [8, 9, 10, 11]. In this paper, only major sources of nonlinearities are attempted to

be taken into account, while deriving a full-order model of the system under investiga-

tion, including the parameters identification in the principal subsystems. One can note

that among various control-oriented strategies for modeling and identification of hydraulic

systems, following approaches can be distinguished as the state-dependent (partially) lin-

earized [12], piecewise affine [13, 14], and local linear, like Fourier transforms [15] based

of the quantitative feedback theory, which are particularly suitable for a robust linear

design.

Several applications using the hydraulic actuators are repetitive and tedious for hu-

man operators, e.g. excavators, but remain yet to be controlled manually. During an,

at least, semi-automatic control emerges in these fields, the widespread PID-controllers

keep yet standard also in those applications. While improvements like optimal design

of PID-control with non-linear extensions were reported [5], other research promotes dif-

ferent control strategies like for example adaptive control or variable structure control,

showing often a superior performance to the classic PID-controllers, see e.g. [16, 17, 11].

When a hydraulically actuated equipment or machine interacts with environment, like

given example of an excavator, the use of position control only can be destructive due

to inherently stiff control properties. In that case a force-based control approach is nec-

essary. Several force control strategies for hydraulic systems were proposed [3, 8, 18],

while the force control issues are equally well-known in robotics and mechatronics, see

e.g. [19]. However, for a fully automatic operation of such equipment, a combination of

force and position control should be taken into consideration, where the individual con-

trollers can be switched, correspondingly reconfigured upon the motion constraints and

interaction with the environment. Such hybrid control approaches remain topical, even

though addressed former in robotics e.g. [20, 21].

In this paper, a hybrid position and force control approach is pursued based on a

feed-forwarding and full-state feedback, including the integral control error. An appropri-

ate hysteresis-based switching strategy is integrated into the closed feedback loop, while

changing between the parameter settings of both control modes. Remarkable is that the

derived control structure itself does not change and, therefore, represents an uniform ar-

chitecture for the position and force control simultaneously. Some preliminary results of





      

this work have been partially reported in [14, 22]. In the recent work, we present the fully

developed hybrid position/force control with extended design, analysis, and evaluation.

The rest of the paper is structured as following. In Section II, the detailed system de-

scription, including experimental setup and modeling, are provided. Section III describes

the proposed control architecture, control gains tuning, linearized system behavior, and

local stability analysis based on [23]. An exhaustive experimental control evaluation is

reported in Section IV. Finally, the paper’s summary in Section V.

E.2 System Description

In this section an overview of the experimental setup (depicted in Fig. E.1) is first given.

The right-hand side, which is the combination of servo valve and linear cylinder, will

then be described together with the derived full-order model. For the standard modeling

equations in use we refer to the basic hydraulics literature e.g. [1, 2] for further details.

E.2.1 Hydraulic Actuator Setup

The recent system is a hydraulic setup with two cylinders arranged in an antagonistic way.

The right-hand cylinder is attached to the 4/3 servo valve, with an internal closed-loop

control, connected to the HPU (hydraulic power unit) which is supporting up to 350 bar

and 120 l/min. The left-hand cylinder is connected to the valve which is only used at

fully open states to change the flow direction, further referred to as BDCV (bi-directional

control valve), which is connected to the PRV (pressure relief/reduction valve). The

latter has a direct inlet connected to the HPU line. Pressure sensors are attached to the

right and left chambers of the cylinders, to the line between PRV and BDCV, and on

the interface to HPU. An absolute position sensor is attached to the right-hand cylinder,

while the servo valve spool position can also be monitored and read out. A force sensor,

with rigid mechanical interface, is installed and connects both cylinder rods with each

other. Fig. E.1 shows the laboratory view of the experimental setup.

As control interface, the Speedgoat real-time (RT) target Baseline S was used with

interfacing cards IO183 and IO397. The RT board is running the closed-loop control,

sending and receiving the analog signals to and from the setup correspondingly. The RT

target allows for a sampling frequency of 2 kHz while both cards support 16 bit A/D

and D/A converters respectively. The input voltage level supports ±10V, while output

voltages are in the range of 0-5V and ±10V respectively, with a maximum current draw

of 5mA. In addition, a hard-wired emergency break circuit was installed, setting all valves

into zero state and, therefore, stopping all motion and releasing the remaining pressure,

correspondingly force, from the system. The setup components are listed in Table E.1.





          


Figure E.1: Experimental setup of hydraulic actuators

Table E.1: Hardware components of experimental setup

Description Model number

Moog servo valve D633 R16KD1M0NSM2

Cylinder CD25-40 25x200-SS-HC-SSN-NNN

Danfoss P-sensor MBS 1250 063G1229

Parker P-sensor SCP01-400-44-07

Celesco linear-pot. CLP-250

HBM Force sensor S9M/20kN

E.2.2 System Modeling

While only the right-hand cylinder, correspondingly servo valve, cf. Fig. E.1, are to be

controlled, a full-order model is derived below. The developed model is used for the plant

and controlled system simulation and validation before integration on the hardware. A

series of dedicated experiments was accomplished to identify several free (unavailable)

parameters of the following system modeling. Residual standard components parameters

were determined based on the available data sheets. Due to the space limits and more

control-oriented focus of the recent work, the details of system identification are not

included and the interested reader is refereed to [14, 22].

E.2.2.1 Servo valve model

The servo valve to be modeled is internally low-level controlled and can be approximated

as a second-order system with the transfer function

G(s) =
ν(s)

u(s)
=

ω2
0

s2 + 2ζω0s+ ω2
0

, (E.1)





      

where ν describes the spool position and u the control signal. The characteristics of the

closed-loop system are defined by its natural frequency ω0 and damping factor ζ. As

can be seen in the FRF (frequency response function) of the valve data sheet, cf. [14]

ω0 and ζ vary depending on the amplitude of the control signal |u|. Due to the valve

overlap, of 10%, in the spool-orifice area introduced by its mechanical construction, a

static input dead-zone is assumed. In addition, the spool experiences mechanical end

stops in either direction, thus introducing a saturation effect. The combination of dead-

zone and saturation can be expressed as in [24] by

g(ν) =


α · sign(ν), if |ν| ≥ α + β

0, if |ν| < β

ν − β · sign(ν), otherwise,

(E.2)

where α and β describe the valves’ saturation and dead-zone properties respectively. The

valve dynamics and dead-zone/saturation nonlinearity are inherently serial connected due

to mechanical structure of the valve. Since the dead-zone and saturation can have non-

negligible impact on the overall system performance, they have to be incorporated into

modeling. That was however only partially accounted for, or neglected, in several previous

works [8, 25, 3, 11, 10]. The sub-model of the valve can therefore be described as

ν̈ + 2ζω0ν̇ + ω2
0ν = ω2

0u, (E.3)

z = g(ν), (E.4)

with z representing the output orifice opening of the valve.

E.2.2.2 Orifice equations

The hydraulic flow Q through the valve is described by the orifice equations based on the

pressure drop over the valve. Since two lines are connecting the valve to cylinder, the two

corresponding flow equations are

QA =


zK
√
PS − PA for z > 0

zK
√
PA − PT for z < 0

0 otherwise,

(E.5)

QB =


zK
√
PB − PT for z > 0

zK
√
PS − PB for z < 0

0 otherwise.

(E.6)

The pressure indices A,B, P, S refer to the respective ports of the valve, where A and B

correspond to the connecting lines to cylinder (sometimes refered to as A and B chambers),





          


S to the HPU line (meaning supply), and T to the tank line. K is the valve flow coefficient

given by

K = cdw

√
2

ρ
, (E.7)

where cd and w represent the structural valve parameters and ρ is the oil density. While

several valve parameters are weakly known, the available manufacturer data sheet reveals

Q = Qn

√
∆p

pn
, (E.8)

which describes the flow as a function of the pressure drop ∆p, the nominal flow Qn and

the nominal pressure pn in a fully open state, while the latter two are known from the

data sheet. From the above it can be seen that the flow coefficient K is equivalent to

Qn(pn)−1/2, therefore omitting necessity to identify the cd and w parameters.

E.2.2.3 Continuity equations

Knowing the valves flow for either line, the pressure drop can be calculated as

ṖB =
E

VB + AB(l − x)
· (QB + ABẋ+ CL (PA − PB)) ,

ṖA =
E

VA + AAx
· (QA − AAẋ+ CL (PB − PA)) .

(E.9)

In the equations above E constitutes the bulk modulus reflecting compressibility of the

hydraulic fluid, VA and VB are the hydraulic fluid volumes in the connecting lines, AA/B

are the cross sections of the respective chambers of cylinder, l is the maximal piston stroke,

and x is the relative piston position, while ẋ is correspondingly the relative velocity. CL

represents the leakage coefficient between both chambers.

E.2.2.4 Mechanical subsystem

The relative motion of the piston rod can be described by the second-order dynamics,

with one DOF (degree of freedom), as

mẍ = PAAA − PBAB − f(ẋ)− FL, (E.10)

with FL being an external load acting axial on the stiff rod interface, and m being the

lumped mass of all moving parts. The latter is an accumulated value from the respective

data-sheets of the mechanical components in the drive chain. The non-linear Stribeck

friction force, cf. [26], is included by f(ẋ). To avoid discontinuities in the static friction

model, see e.g. [25, 27] for details, the signum term is replaced by a tangent hyperbolic

function, cf. [24], resulting in

f(ẋ) = tanh(γẋ)

(
Fc + (Fs − Fc) exp

(
−
∣∣∣∣ ẋχ
∣∣∣∣δ
))

+ σẋ. (E.11)





      

Here Fc > 0 describes the Coulomb friction constant. Fs > Fc refers to the stiction

friction coefficient, while σ characterizes the viscous friction term. The parameters δ 6= 0

and χ > 0 are the Stribeck shaping factors. Finally, γ relates to the hyperbolic tangent

and adjusts the transitions smoothness at zero-crossing, until the function saturates at

±1 depending on the velocity sign. While more complex dynamic friction behavior can be

taken into account, see e.g. [28, 29, 27, 26], the chosen model was deemed to be satisfying

due to the cylinder being a slow moving and heavily damped system [25, 3, 24].

E.3 Control Design

This Section discusses the control architecture, while describing the entire closed-loop

control system. That includes the feed-forward dead-zone compensation and control sig-

nal filtering, determining the control parameters, defining the switching strategy, and

providing the local stability analysis.

In order to simplify the control synthesis, a model reduction, correspondingly lineariza-

tion, was made. Out of that a piecewise linear model suitable for the control parametriza-

tion via pole placement and analysis was obtained. It is worth noting that the closed-loop

control system simulations, and therefore numerical evaluation of the nominal design, were

further performed using the full-order model provided in Section E.2. In the valve trans-

fer characteristics, see [14], a unity gain can be observed up to the frequency of about

10Hz, even for 90% opening. The reference signals specified for both, simulations and

experiments, are not exceeding that frequency. Therefore, the internal valve dynamics

are largely neglected, hence, resulting in u = ν. For further model reduction a load-

dependent pressure is introduced as PL = PA − PB with |QA| = |QB|, cf. [1], resulting in

an aggregated equation

QL = zK

√
1

2

(
PS − sign(z)PL

)
, (E.12)

while it is valid

PA =
PS + PL

2
, PB =

PS − PL
2

. (E.13)

Both continuity equations are, same way, reduced to one

ṖL =
4E

Vt
(QL − Āẋ− CLPL), (E.14)

where Vt = VA + VB and Ā = 0.5(AA + AB). Note that inside of an ideal cylinder, the

leakage coefficient between both chambers is further assumed to be zero i.e. CL = 0. The

piston rod dynamics (E.10) can then be expressed as

mẍ = PLĀ− f(ẋ)− FL. (E.15)





          


Since the above reduced model still contains some nonlinear terms, (E.12) can be linearized

around an operational point as

Q̂L = Ĉqz + ĈqpPL, (E.16)

with

Ĉq =
∂Q̂L

∂z

∣∣∣∣∣
P̂L

, Ĉqp =
∂Q̂L

∂PL

∣∣∣∣∣
ẑ

, (E.17)

often referred to as the flow-gain and flow-pressure coefficients, correspondingly. The

Stribeck friction term in (E.15) is linearized as well, so as to allow for the state-space

representation of the whole system dynamics. For an operation range under consideration

the Stribeck function f(ẋ), can also be linearized in a piecewise affine form as

f̂(ẋ) = ksẋ+ ds. (E.18)

The entire linearized state-space model of the plant is

ẋ = Ax + bu+ f,

y = cx,
(E.19)

where x = (x, ẋ, PL, FL)T is the state vector, inclusive the external load force FL. The

system matrix, input coupling, affine term, and output coupling vectors are given by

A =



0 1 0 0

0 −ks
m

Ā

m
− 1

m

0 −4EĀ

Vt

4EĈqp
Vt

0

0 0 0 0


, (E.20)

b =


0

0
4EĈqkg
Vt

0

 , f =


0

−ds
m

4EĈqdg
Vt

0

 , cT =


1

0

0

0

 , (E.21)

correspondingly. It is worth emphasizing that the modeled load force, as a state, provides

zero eigen-dynamics since being an exogenous external quantity. Note that the above

state-space model is configured to have the piston position as output value. This will be

reconfigured next when switching between the position and force control.

E.3.1 Hybrid Control Structure

The proposed control architecture includes the feed-forward and integral-error- and full-

state-feedback. While a more classical architecture would refer to a cascaded structure,





      

where the inner-loop represents a force control and the outer-loop the position control,

such control approaches have considerable drawbacks. An ideal force control tends to zero

control stiffness, while an ideal position control stiffness tends towards infinity. There-

fore a cascaded combination would always constitute a tradeoff and offer a suboptimal

performance when targeting the position and force control simultaneously.

For enhancing the control performance of both operation modes, a hybrid switched

position/force control was developed, see Fig. E.2. Note that an additional vector of

external disturbances Ψ(t) is drawn, for the sake of completeness, although not explicitly

modeled or analyzed due to limited process knowledge. For the rest of the paper, h

represents the discrete switching event variable and therefore the corresponding operation

mode, with h = −1 for the position and h = 1 for the force control. Note that the hybrid

position/force control structure remains the same upon switching and allows for control

parameters to be determined separately, so as to meet the performance requirements in

both cases.

LPF

FF

Figure E.2: Block-diagram of the hybrid position/force control

For the closed-loop control system the state vector of (E.19) is extended by an ad-

ditional integral control error state with ė = y − r(h) dynamics, thus resulting in xe =

(xT , e)T . Here r(h) is the control reference value, while the output y depends on the

control mode and is switched through the output coupling vector c(h). Note that in order

to accommodate the integral error state, the system matrix (E.20) and vectors (E.21) of

the state-space model are directly extendable to Ae ∈ R5×5 and be, c
T
e , fe ∈ R5×1. The

resulting control law is then

uc = FF r(h)− k(h)xe, (E.22)

where k(h) = (K1, K2, K3, K4, Ki) is the vector of control gains, which are determined

separately for position and force control. FF represents the feed-forward control part,

which is a single gain value for the given structure, and that FF = K1 for position control

and FF = K4 for force control. The overall control structure, as in Fig. E.2, includes

also a pre-filtering dead-zone compensator γ and low-pass filtering (LPF) of the control

signal, both addressed below in more detail.





          


E.3.2 Dead-zone Compensation

As shown before in Section E.2.2.1, the servo valve is subject to a dead-zone nonlinearity

due to the mechanical assembly. While the saturation only limits the maximum control

amplitude, the dead-zone, on the contrary, can significantly affect the closed-loop perfor-

mance. This is apparent since the control signal within the range of −10% ≤ u ≤ 10%

will result in no flow and therefore no rod movement. To overcome this issue, a dead-zone

compensator is designed in an inverting feed-forward manner. The static compensator

is obtained by flipping the linearized dead-zone characteristics over a slope with unity

gradient. The compensator is also split into three linearisation regions, further denoted

as cells, which are described by

uf = γ(uc) = kauc + da, (E.23)

with k and d representing the linearization constants and index a ∈ {1, 2, 3} referring to

the corresponding cells. From experimental analysis of the valve behavior it is given that

no absolute zero movement appears close to the u = ±10% thresholds, and some minor

and slow flow drift occurs also at |u| <10%. For that reason and in order to avoid the

control discontinuities at zero crossing of the γ-map, a steeply slope for a = 2 was chosen

instead of ka =∞, which corresponds to the β sign(uc) with some β > 0 scaling factor.

E.3.3 Filtering of Control Signal

Due to a relatively high level of both the process and measurement noise in the system,

a low-pass filtering appears indispensable for controller implementation on the hardware.

While the servo valve is well-capable of following the control signal up to certain frequen-

cies, cf. [14], high-frequent control components are not desired due to possible wear and

damage of the mechanical and hydraulic parts. At the same time, the full-state feedback

controller poses inherent limitations on filtering the single measured system states, that

due to a possible loss of the phase conditions and individually lagged dynamics of the sin-

gle states. Therefore, a low-pass filter is applied to the control signal, after the dead-zone

pre-compensation, thus resulting in entirely smoothing the mechanical system excitation

and avoiding chattering. The numerical analysis of the closed-loop control system be-

havior confirmed that the valve is operating within 25% opening, that for the given test

scenarios. This corresponds to the cutoff frequency of 100Hz, cf. [14]. Following to that,

the LPF cutoff frequency was set to the same 100Hz, for not additionally restricting the

actuator dynamics.





      

E.3.4 Event-based Switching

A discrete switching event h determines which control mode is active at any instance of

time. Using a simple relay function to switch between the control modes is not deemed

viable due to the sensor noise, possibly introducing the non-conclusive switching and

undesirable dead-lock of the operational state of the hybrid control system. Instead,

a hysteresis relay was chosen, resulting in an amplitude-delayed and therefore robuster

switching between the control operation modes. The hysteresis switching function [27] is

given by

h(t) = min[sign(FH − β),max[h(t−), sign(FH − α)]], (E.24)

with the initial state

h(t0) =

{
sign(FH(t0)) if FH(t0) ∈ (−∞, β) ∨ (α,∞),

[−1,+1] otherwise.
(E.25)

The term t− represents the time instant prior (immediately before) the switching, while

α = 1500N and β = −1500N represent the set threshold values. The delta between α

and β was chosen according to the observable peak to peak amplitudes of the noisy force

sensor signal. The relay input is FH = FL − ξ where ξ = 2000N was assigned as the load

force offset which shifts the switching hysteresis relay along the FL-state axis. Note that

the integral control error e is reset to zero every time h(t) changes its discrete value.

E.3.5 Determining of Control Gains

The control gain parameters are determined via standard pole placement accomplished

for the linearized models, that separately for the position and force control modes. The

pole placement is made for the test case scenarios, the same which are lately evaluated

with experiments. The controlled rod displacement is driven with a constant speed until it

reaches a hard stop (by environment), that triggers an autonomous switching to the force

control at which the rod is holding a constant force. Since the steady-state velocity and

force are defined by reference, the residual state values required for model linearization

are extrapolated from the simulation of the full-order (nonlinear) model, cf. Section E.2.

The state-space model (E.19) does not allow for directly using the pole placement,

that due to inclusion of the affine terms. In order to deal with affine vector fe, that when

deriving the state-space form applicable for pole placement, the state vector is further

extended to x̄ = [xTe , 1]T , thus resulting in

˙̄x =

[
ẋe

0

]
= Āx̄ + b̄ r =

[
Ae fe

0 0

]
x̄ +

[
be

0

]
r, (E.26)





          


with the output coupling vector extended to c̄ = [ce, 0]. This allows establishing the set of

two state-space forms, where the switching discrete state h = [−1, 1] refers to the position

and force control respectively. The overall hybrid control system, in the linearized form,

is then defined by

˙̄x = Ā(h)x̄ + b̄(h)r(h),

y = c̄(h)x̄.
(E.27)

Since the feedback control design relies on the linearized modeling at steady-state

operational conditions, following assumptions/simplifications can be made for obtaining

the constant system matrices and vectors of (E.27). For the steady-state velocity, equally

as reactive force of the environment, a steady-state load pressure of the cylinder can be

assumed. This is inherent since the load pressure is equivalent to the hydraulic driving

force, correspondingly pressure difference between both chambers. Therefore, the flow

equation (E.12) can be simplified to

Q̄L = zKΩ, (E.28)

where Ω =
√

0.5(PS − PL) for z > 0, and it is valid 0 ≤ Ω ≤
√

0.5PS for |PL| = const <

PS at the steady-state. Moreover z = uc with saturations can be assumed due to the

cancelation of the dead-zone by the forward compensator (E.23). Since the numerical

simulation does not highlight saturated control values, that for the reference scenarios

under evaluation, the nonlinear saturation by-effect can also be neglected when tuning

the linear control parameters. Also the dynamic behavior of LPF, cf. Fig. E.2, is

neglected since the LPF bandwidth coincides with that of the servo-valve. Both corner

frequencies (of LPF and servo-valve) are significantly higher compared to the dynamics

of the operated hydraulic actuator. With respect to the above assumptions, the matrices

and vectors of (E.27) are given by

Ā(−1) =



0 1 0 0 0 0

0 −ks
m

Ā

m
0 0 −ds

m
a31 a32 a33 a34 a35 0

0 0 0 0 0 0

−1 0 0 0 0 0

0 0 0 0 0 0


, (E.29)

b̄(−1) =
[
0 0 4E

Vt
KΩK1 0 1 0

]T
, (E.30)

c̄(−1) =
[
1 0 0 0 0 0

]
(E.31)





      

for the position control, i.e. h = −1, and by

Ā(1) =



0 1 0 0 0 0

0 −ks
m

Ā

m
− 1

m
0 −ds

m
a31 a32 a33 a34 a35 0

0 c 0 0 0 0

0 0 0 −1 0 0

0 0 0 0 0 0


, (E.32)

b̄(1) =
[
0 0 4E

Vt
KΩK4 0 1 0

]T
, (E.33)

c̄(1) =
[
0 0 0 1 0 0

]
(E.34)

for the force control, i.e. h = 1, respectively. The individual summarized matrix elements

are

a31 = −4E

Vt
KΩK1,

a32 = −4E

Vt
(KΩK2 + Ā),

a33 = −4E

Vt
KΩK3,

a34 = −4E

Vt
KΩK4,

a35 =
4E

Vt
KΩKi.

(E.35)

The available system parameters are Ā = 0.001m2, m = 1.7026kg, K = 0.25E−6 m3

s
√
Pa

,

E = 109Pa, Vt = 0.0014m3 and c = 1.2E8N/m. The latter, which is an equivalent

environmental stiffness, is determined as a lumped parameter of the coupled rods, force

sensor, and material properties of the cylinder cap. The residual constants are dependent

on which operation mode is active. According to the test scenarios, Ω = 2.23E3, ks =

1.0151E3 and ds = 30.755 for the position control, while Ω = 2.0125E3, ks = 6.2499E3

and ds = 0 for the force control. Recall that ks represents the slope and ds the offset of

the linearized Stribeck function. The gain parameters, entering eqs. (E.30), (E.33) and

(E.35), are determined for each control mode by the corresponding pole placement.

In Fig. E.3, the poles of both closed-loop controls are shown versus those of the system

plant (open loop). Note that the most left complex pole pair is associated with hydraulics

behavior that is marginally influenced by adjusting the respective gains. The dominant

poles, i.e. closer to origin, refer to the controlled actuator system dynamics. The gains

were chosen so that no complex pole pairs occur close to the origin, and the most right

real pole satisfies the requirements on the control system dynamics. In addition, higher





          


Table E.2: Control gain parameters

Position Control Force Control

K1 190 0

K2 9.019E−4 2.5E−4

K3 30.539E−9 5.9E−8

K4 0 5E−5

Ki 5000 1.2E−3
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Figure E.3: Pole-zero diagram of closed-loop controls versus plant
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Figure E.4: Bode diagram of designed closed-loop controls

gain values were avoided by taking into account the control saturations and measurement

noise included into numerical simulation. From the Bode plot shown in Fig. E.4, it can

be seen that the first corner frequency, correspondingly bandwidth, is about 21Hz for the

position control and about 2.5Hz for the force control. The determined control gains are

listed in Table E.2. Note that K4 is set to zero for the position control since no force

feedback is required. Correspondingly, K1 is set to zero for the force control, since an

absolute position feedback is irrelevant during a forced contact with stiff environment.





      

E.3.6 Stability Analysis

The local stability analysis relies on the stability of both linearized closed-loop control sys-

tems, see poles configuration in Section E.3.5, and multiple Lyapunov function approach

applicable to the switched systems, see [30]. Note that the stability of switching between

the motion and force control has been recently discussed in detail in [23], that for the

linearized closed-loop behavior and autonomous switching by means of a hysteresis relay.

Thus, we give here the main statement and exemplifying result only, while for details on

using the multiple Lyapunov function an interested reader is referred to [30, 23]. For both

closed-loop control systems, given by (E.27), the quadratic Lyapunov function candidate

can be assumed as

L(h) = W1ẋ
2 +W2P

2
L +W3

(
r(h)− y(h)

)2
. (E.36)

Note that this contains all terms related to energy storage in the control system: kinetic

energy of relative motion, potential energy of hydraulic pressure and potential energy

of the feedback control loop reflected through the quadratic control error. The positive

coefficients W1−3 can be found for Lyapunov stability proof and, below, are used as mode-

dependent, i.e. Wi(h), that for the sake of better visualization/comparison of multiple

Lyapunov function. The multiple Lyapunov function of both control modes is shown in

1 2 3 4
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Time [s]
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Figure E.5: Multiple Lyapunov function for position (red solid line) and force (blue dashed

line) controls at periodic switching

Fig. E.5 for a periodic switching, meaning an alternating position and force control mode.

A non-increase in the Lyapunov function level for two consecutive operations of the same

mode implies the entire switched system is asymptotically stable, cf. [23]. Since both

closed-loop dynamics are linearized in the vicinity to the switching point, the shown local

stability appears sufficient for analysis of the designed hybrid control system with the

intended test scenarios.





          


E.4 Experimental Evaluation

An elaborated experimental evaluation of the proposed hybrid control is given below.

Two test scenarios are considered: in the first one the controlled motion of the piston

rod is executed until hard-stop at the cylinder boundary, while in the second one a slow

dynamic counteracting force, produced by the left-hand cylinder, is introduced during

which the piston rod is moving within 0 ≤ x < l range. The supply pressure was set to

PS = 100E5Pa with a maximum flow limited to 40 l/min.

E.4.1 Hard-stop Environment

The controlled motion starts at zero position (right-hand cylinder fully retracted) and

follows the ramp reference with a slope corresponding to 0.03m/s velocity, cf. Fig. E.6.

The controlled motion reaches hard-stop when the overall drive of both cylinders, con-

nected stiffly, reaches the left-hand cylinder boundary. Note that during the experiment

the BDCV is in zero position, thus opening both cylinder chamber lines to the tank and

providing no active counteraction force but passive additional load only. When reaching

hard-stop by environment, the counteracting force rises, due to the stiff position control,

and the hysteresis relay-based switching triggers the force control at the set threshold

value, cf. Section E.3.4. The force reference trajectory is initially set to the constant

value r(1) = 3500N and afterwards decreases towards zero in a slow cosine shape. This

reference trajectory is assigned in order to evaluate simultaneously the set value and tra-

jectory following of the force control and autonomous switching back to position control

once passing the lower threshold value of the load force, that is releasing from the contact

with environment. After switching back, the position control tracks the negative ramp,

with slope corresponding to -0.03m/s velocity, until reaching the initial zero position.

Fig. E.6 shows the reference and measured position values of the right-hand cylinder

rod. The transient phases at the beginning of relative motion and after switching back

(from force control) are additionally zoomed-in, around the time of 0.1s and 8.5s corre-

spondingly. Accurate reference following with solely minor transient overshoots can be

recognized.

Fig. E.7 shows the sensor measured counteraction force versus the corresponding

reference. Note that the triggered force control is active only during the time span where

the reference is indicated, while the residual force measurements correspond to both slopes

of the controlled motion, i.e. position control, where the load force occurs between the

right-hand (driving) cylinder and left-hand (driven) cylinder. An accurate force following

can be recognized, while some transient swinging occurs at the hard-stop contact, that is

inherent and a well-known issue of the force control in general, compare with e.g. [3, 19].
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Figure E.6: Reference and measured position control response
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Figure E.7: Reference and measured force control response

In order to assess repeatability of the proposed hybrid control scheme, a total of 20

experiments were conducted. The mean values and standard deviations of the control

errors are evaluated from the signals processed by the second-order LPF with 100Hz

cutoff frequency. The low-pass filtering is done for the sake of better visualization of all

tests against each other. Recall that the inherent level of process and measurement noise

in the hydraulic system is relatively high. Figs. E.8a and E.8b show the mean values

and standard deviations of the position control error for both ramp segments of the rod

displacement. The mean values and standard deviations of the force control errors are

shown in Fig. E.9.

E.4.2 Dynamic Environment

For the test scenario with dynamic environment, the controlled motion starts at fully

retracted zero position, following a ramp reference within 1.5s, after which the reference

trajectory has a slow sinusoidal pattern, cf. Fig. E.10. Note that the reference trajec-

tory r(−1) is shown for the position control mode only; after switching back from the

force control, the position reference is recalculated on fly. The left-hand cylinder is feed-

forward controlled in an open-loop manner, while being stiffly coupled to the right-hand

(controlled) one. This way, a varying counteraction force is generated. The BDCV feed-

forward control value is chosen such that it is continuously driving the left-hand cylinder,
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Figure E.8: Mean values and standard deviations of position error
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Figure E.9: Mean values and standard deviations of force error

while the PRV is controlled in a pulsed pattern with 10s period and 60% pulse-width.

The force reference trajectory r(1) starts at 3375N and then steps up and down to 4500N

and 3150N respectively, see Fig. E.11. These step values are chosen such that the con-

trolled cylinder rod cannot reach fully extended/retracted states while pushing against

the left-hand cylinder rod. Fig. E.10 shows the position measurement together with the

reference trajectory segments. After 4s, labeled by the dashed bar, the PRV controlling

the left-hand load cylinder switches to high, thus resulting in an increased load force and

hence triggering switch to the force control mode. The corresponding reference force

and (all time) measured load force can be seen in Fig. E.11. After 10s, the PRV control

value is again at low-level, the load force drops below the relay switching threshold and

the hybrid controller changes back to the position control mode, labeled by the second

dashed bar in Fig. E.11. Note that between both dashed bars, a relative motion occurs

(see Fig. E.10), while the required controlled force is kept constant, cf. Fig. E.11. Also

here the experiments were repeated 20 times, while the same signals filtering, as described

above, was applied when evaluating the mean values and standard deviations of the con-

trol error. Both are shown in Figs. E.12a and E.12b for the position control mode, and
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in Fig. E.13 for the force control mode respectively.
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Figure E.12: Mean values and standard deviations of position error

E.5 Summary

A novel hybrid position/force control for standard linear hydraulic actuators was pro-

posed. For its development an experimental hydraulic test rig with two cylinders in
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Figure E.13: Mean values and standard deviations of force error

antagonistic setup was assembled, instrumented and the corresponding full-order model

was derived. A reduction of the state-space model was introduced, forming the basis for

hybrid control loop design, while an autonomous switching between the position and force

control relies on the hysteresis relay, that without changing the overall control structure.

Control parameters were obtained based on the pole placement and the local stability

was proven. Two experimental studies were illustrated for evaluating repeatability and

performance of both, position and force controls, and switching between them.
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Appendix F

Hydraulic Test Setup

Philipp Pasolli
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Hydraulic Test Setup

Figure F.1: Experimental hydraulic test setup

F.1 Hydraulic/Mechanical components

F.1.1 Overview

Figure F.2: Testbench schematic
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Table F.1: Pressure relief/reduction valve

Component Manufacturer Model No.

Main stage Sun Hydraulics PVDA8

Electro-proportional relief valve Sun Hydraulics RBAP

24VDC Coil Sun Hydraulics 770-224

A picture of the constructed experimental testbench is shown in Fig. F.1 and a schematic

showing the arrangement of the testbench’s components is given in Fig. F.2. The test-

bench features two different cylinders arranged in an antagonistic setup which may be

connected to each other with a force gauge. The righthand side differential cylinder of

the test setup is connected to a servo valve connected to the HPU (hydraulic power unit).

The position of the cylinder rod is monitored by an absolute resistor-based linear po-

tentiometer. The valve has an internal closed loop control circuit to control the spool’s

position, which is measurable. The spool’s position is determined by the command signal.

The lefthand differential cylinder is connected to a directional valve which up to this

point has only been used in its fully open state to switch the hydraulic flow’s direction.

It is therefore called a BDCV (bidirectional control valve). The BDCV spool position is

adjusted by two solenoids moving the spool in either direction. These actuator solenoids

are named BDCV1 and BDCV2, respectively. The BDCV spool position may be measured

via BDCV Sense. In order to adjust the pressure – and thereby force – of the left cylinder,

a PRV (pressure relief/reduction valve) is installed prior to the BDCV. The PRV is then

connected to the HPU. Overall testbench pressure and flow may be manually adjusted

with values during testing set to 100bar and 40l/min.

The relative force between the two cylinders is measured by a force gauge. Pressure

sensors are installed in the chambers of both cylinders, between PRV and BDCV as well

as on the HPU line. Sensors are indicated by in Fig. F.2.

The components used in this setup are listed in table F.2 with the components for the

PRV assembly listed in table F.1.

F.1.2 Component specification overview

In table F.3 a short list appears of the components installed with their respective in-

put/output voltages/currents. For further detailed properties I refer to the components’

data sheets based on their model no. given in table F.2 and F.1.





          


Table F.2: Hydraulic and Mechanical Components

Decription Manufacturer Model No.

Cylinder Servi Group CD25 S-E/S-E

Force Sensor HBM S9M/20 kN

Servo Valve Moog D633 R16KD1M0NSM2

BDCV Mecman Rexroth WRL 43 G4B-6-1

Pressure Sensor P1,2 Parker SCP01-400-44-07

Pressure Sensor P3...6 Danfoss MBS 1250 063G1229

Linear Potentiometer Variohm VLP-250

Table F.3: Component input/output voltages and currents

Component
Input Output

Voltage Current Voltage Current

Linear Potentiometer 10VDC n.a. 0...10VDC n.a.

Pressure Sensore P1,2 14 . . . 36VDC n.a. 0 . . . 10V n.a.

Pressure Sensore P3...6 8 . . . 40VDC n.a. n.a. 4 . . . 20mA

Servo Valve 24VDC, −10 . . . 10Vc n.a. n.a. 4 . . . 20mA

Force Sensor Handled by signal converter in electric cabinet

BDCV Actuator Handled by signal converter in electric cabinet

BDCV Sensor 24VDC n.a. 3 . . . 12V n.a.

PRV 24VDC 590mA n.a. n.a.





   

F.2 Electric Cabinet

Figure F.3: Electric cabinet

All signals to and from the testbench are routed through the electric cabinet, where signal

conversions are performed and power is distributed to the respective components. Three

power supplies are installed, two 24VDC and one 15VDC. The 15VDC power supply is

connected to a DC/DC converter (15VDC to 10VDC) to power the linear potentiometer

while one of the 24VDC power supplies delivers power to the remaining sensors while the

other powers the actuators. By associating sensors and actuators with different power

supplies, it was possible to reduce the noise affecting the sensor’s signals. Regarding the

force sensor, a signal converter/power supply was installed to convert the 6-wire config-

uration into a real-time target compatible voltage signal. Current to voltage converters

for the sensors P3...6 and servo valve as well as digital module amplifiers (DMA) for the

proportional and servo valves to actuate the PRV and BDCV were installed. The BDCV

uses two actuators to displace the spool in either direction (BDCV1 and BDCV2). The

DMA of the BDCV automatically adjusts actuation for BDCV1 and BDCV2 in accor-

dance with the command signal. Two additional current to voltage converters for sensors

P1,2 are already pre-installed and wired up in case these sensors are replaced with current-

based sensors in the future. A custom circuit board with two voltage dividers reduces the

voltages of the BDCV sensor by 50% for real-time target compatibility purposes.





          


Five relays were installed that are triggered by an emergency stop button to set all

actuators to their zero positions (connecting actuator inputs to ground (GND)), stopping

the movement of the right cylinder and flushing any remaining pressure in the left cylinder

into the tank. The relays are configured in such a way that a sudden power loss is equal

to pushing the emergency stop button. On the outside of the cabinet are both a switch

to turn on/off the mains power and an emergency stop button. All components in the

cabinet, including incoming cables, are labeled accordingly.

A list of the components installed in the electric cabinet, including their respective

manufacturer and model no., is given in table F.4. Schematics of how the components

are connected to one another is presented in section F.5.

Table F.4: List of electric components in cabinet

Description Manufacturer Model No.

Power Supply 15V Phoenix Contact MINI-PS-100-240AC/2x15DC/1

Power Supply 24V Phoenix contact QUINT-PS-100-240AC/24DC/5

Force Sensor Converter HBM clip AE301

PRV DMA HCS DMA-22-02-110-x-S0

BDCV DMA HCS DMA-22-01-080-X-SHAWE

A to V Converter LEG TV2-3-1-2

F.3 Real-Time Target

As a computer to testbench interface, the Speedgoat Baseline S real-time target is cur-

rently being used, including two extension cards IO183 and IO397. Both cards feature

16bit A/D and D/A converters with IO183 having 8 single ended or 4 differential analogue

inputs having a range of ±10V and 4 single ended analogue outputs having a range of

0 − 5V with a maximum current draw of 5mA. IO397 adds an additional 4 single ended

or 4 differential analogue inputs having a range of ±10.24V and 4 single ended analogue

outputs having a range of ±10V and a maximum current draw of 5mA. The cards are

connected to an interface terminal with two modules, one for each card, respectively.

IO183 is connected to module 1 and IO397 to module 2. The terminals on each module

are numbered accordingly. The RT target is shown in Fig. F.4a and the interface terminal

in Fig. F.4b.





   

(a) Speedgoat RT Target

(b) RT Target Interface

Figure F.4: RT Target and interface terminal

F.4 Interfaces

The cabinet is designed to be mounted directly to the testbench with interfaces for con-

necting sensors and actuators on the top and a mains voltage input cable on the bottom.

At this stage the cabinet is not yet mounted to the testbench due to spatial limitations.

The mains voltage cable is directly fed into the case without any connectors in-between.

If the cable is not long enough for future use, it may be removed by first taking out the

incoming wires from the terminals next to the power supplies on the bottom of the cab-

inet. It may then be replaced with a longer one. The rest of the interfaces are situated

on the top of the cabinet for easy access to connecting sensors and actuators. All sensor

and actuator cables are detachable. All ports are labeled accordingly on the cabinet with

the sensors’ and actuators’ respective cables labeled in the same way. The following list

shows which sensor/actuator is associated with which of the three different connectors

used:

� 4-Pin: Pressure sensors P1...6, linear potentiometer, BDCV sensor, BDCV1, BDCV2,

PRV.

� 24-Pin: RT Interface - including all sensor signals and command signals for PRV,

BDCV and Servo valve.

� 8-Pin: Servo Valve, Force gauge.

A list of connectors used with model no. for panel mount and plug is given in table F.5

Manufacturer for the connectors used is Binder.





          


Table F.5: Connerctors: Binder - Ordering Numbers

Plug Panel Mount

8-Pin 99 4830 00 08 09 4831 00 08

24-Pin 09 0495 70 24 09 0498 00 24

4-Pin 99 0429 14 04 09 3432 92 04

Pins located in the 4-pin connectors are all wired up the same way. The wiring

layouts of the 8-pin connectors differ from each other for the servo valve and force gauge

respectively. In the following the connectors’ wiring according to the pin layout appearing

in Fig. F.5 is listed. The pin layout is mirrored along the vertical axis of the connector

depending on the direction from which it is viewed. Pin numbers are also indicated on

the respective connector itself. The wiring layout for 4-pin connectors is given in table

F.6, wiring layout for the servo valve in table F.7, for the force gauge in table F.8 and for

the 24-pin RT interface in table F.9.

(a) 8 pole

(b) 24 pole

(c) 4 pole

Figure F.5: Connector port layout - cabinet mounted view

Table F.6: 4-pin wiring layout

Pin Color Description

1 White V+

2 Brown Signal

3 Green GND

4 n.a. n.a.





   

Table F.7: 8-pin wiring layout for servo valve

Pin Color Description Datasheet Indicator

1 White not used C

2 Green V+ A

3 Grey GND E

4 Brown GND B

5 Yellow Measure Signal F

6 Blue n.a. n.a.

7 Pink Command Signal D

8 Red GND G

Table F.8: 8-pin wiring layout for force gauge

Pin Sensor Color Cabinet Color Description

1 White White Measure +

2 Green Green Sensing +

3 Grey Grey Sensing -

4 Black Brown Excitation -

5 n.a. Yellow Shielding

6 Blue Blue Excitation +

7 n.a. Pink n.a.

8 Red Red Measure -





          


Table F.9: 24-pin wiring layout for real-time-interface

Pin Color Sense/Command Device Module Module Pin

1 White n.a. n.a. n.a. n.a.

2 White Green n.a. n.a. n.a. n.a.

3 Brown Green n.a. n.a. n.a. n.a.

4 White Blue Sense Force Gauge 1 12a

5 Red Blue n.a. n.a. n.a. n.a.

6 Pink Brown n.a. n.a. n.a. n.a.

7 Pink White n.a. n.a. n.a. n.a.

8 Pink Grey n.a. n.a. n.a. n.a.

9 Purple Sense P6 2 3a

10 Black Command BDCV 2 11a

11 Red Sense P3 1 13a

12 Brown Grey Sense P5 2 1a

13 Blue Sense Linear Pos. 1 11a

14 Pink Sense BDCV 1 10a

15 Grey Sense P4 1 14a

16 Yellow Sense P2 1 9a

17 Green n.a. GND 1 6a

18 White Grey Command PRV 2 10a

19 Yellow Brown Sense Servo Valve 1 7a

20 Brown Sense P1 1 8a

21 White Yellow Command Servo Valve 2 9a

22 n.a. n.a. n.a. n.a. n.a.

23 n.a. n.a. n.a. n.a. n.a.

24 n.a. n.a. n.a. n.a. n.a.

F.5 Wiring Schematic

In the following a schematic wiring layout for the components used is shown and can be

cross referenced with the information and tables given previously.
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