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ABSTRACT

This paper investigates the application of heterodyned Acous-
tic Emission (AE) compared to more conventional vibration
measurements for Condition Monitoring (CM) of an offshore
drilling machine, with a particular focus on the large, axial
tapered roller bearing supporting the drill string weight in a
top drive. The focus on cost reduction and operational uptime
in the oil and gas industry motivates research on improved
CM methods for fault detection, identification and ultimately
prediction. However, bearing failure on this type of machines
are currently responsible for a significant share of operational
downtime on drilling rigs. In the experiment, a previously
used and replaced bearing is compared to a new, healthy
bearing with the purpose of identifying possible condition
indicators (CI) from the vibration and AE measurements.
AE root-mean-square values (RMS) was identified as a CI,
being more consistent with the expected bearing health than
vibration measurements and also less affected by operating
speed. The AE measurements also show complementary
forced frequency identification capabilities compared to the
vibration measurements. The particular failure mode with
bearing roller end damage is described and seen in conjunc-
tion with the results.

1. INTRODUCTION

The Rolling Element Bearing (REB) is a component found in
basically all rotating machinery. It is also a common cause of
premature machine failure. As bearings get larger, the con-
sequence of failure typically increases in terms of unplanned
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downtime cost and potential safety hazards. Simultane-
ously, maintenance actions are time-consuming, expensive
and sometimes impossible to do on-site. The oil and gas
industry is moving towards condition based maintenance
strategies which require reliable CM methods. For the case
of drilling machines, CM of the main bearing has proven to
be difficult. A study of downtime causes on drilling rigs,
the drilling machine was shown to be responsible for 13 %
of downtime, with the bearing as the largest cause of failure
(Jeffrey, 2012). The current industry standard is mainly a
combination of visual inspection, periodic offline vibration
measurements, and lubricant analysis. The statistics show an
obvious potential for improvement, motivating the develop-
ment of methods suitable for online CM of the bearing. This
experiment is a rare opportunity to do measurements on a real
drilling machine with a known damage to the bearing. The
goal is to identify condition indicators for the main bearing
and compare vibration measurements with AE measurements
with regards to fault detection and identification.

Vibration analysis using accelerometers is the current in-
dustry standard for bearing CM, and has been researched
for decades. Piezoelectric transducers are common for bear-
ing CM, but MEMS-type accelerometers are also in use
(Bechhoefer, Schlanbusch, & Waag, 2016). Likewise, the
application of AE for bearing fault detection is not new in the
field of CM of REBs, with early work done by (Yoshioka &
Fujiwara, 1982, 1984). Heterodyning of the AE signal before
sampling can be done to reduce the amount of stored and an-
alyzed data for AE measurements, but maintain diagnostics
information (Hecke, Yoon, & He, 2016). This reduction in
data volume makes the technology more accessible for the
industry, and is utilized in the experiment. AE measurements
has also been combined with self-learning neural networks
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(He, He, & Bechhoefer, 2016), which can further automate
the analysis process.

The majority of research on bearing CM focus on signal
processing methods for analysis of the time-waveform output
by transducers. An extensive, categorized review of meth-
ods for bearing fault detection was presented by (Randall
& Antoni, 2011). A recent advance is the development
of cyclic spectral analysis, with notable work by (Antoni,
2007a, 2009). Cyclic spectral analysis can be applied to AE
as well as vibration signals (Kilundu, Chiementin, Duez, &
Mba, 2011).

Detection and diagnostics of discrete bearing faults are
typically done by detecting the presence of one or more fun-
damental fault frequency; Ball Pass Frequency Inner Race
(BPFI), Ball Pass Frequency Outer Race (BPFO), Cage Pass
Frequency (CPF) and Ball Spin Frequency (BSF). However,
to the authors’ knowledge, CM methods specific for the fail-
ure mode described in this paper has not been thoroughly
researched, opening new possibilities for future work in the
field.

2. METHODS

This section describes the experimental setup, data acquisi-
tion systems, and data processing methods used to obtain the
presented results.

2.1. Experimental Setup

Tests were performed on a large drilling machine taken out of
operation for onshore maintenance. The main point of inter-
est is the axial bearing, which normally supports the weight
of the drillstring. The idea was to apply different systems to a
relevant industrial application to compare performance. The
machine already has measurement points for the radial and
axial direction of the shaft, as shown in Figure 1. In this ex-
periment, the only axial load on the bearing is caused by the
shaft self-weight. The rotating motion is powered by a single
hydraulic motor, connected to the shaft by a spur gear with a
8:1 ratio. Normally the machine uses up to four motors, but
as the torsional load is low, only one motor was installed for
this experiment. A pump for lubricant circulation is mounted
to the side of the machine.
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Figure 1. Experimental setup

2.2. Test Parameters

The experiment had two variable parameters; rotational speed
and three stages of declining bearing condition. The three
stages of declining bearing condition are termed Health Level
(HL), with an index from 0 to 2. First, the machine was tested
using a new, healthy bearing. This is referred to as HL0. HL1
refers to a previously used bearing, which was replaced due to
observed roller end damage, described in section 3. The same
bearing was subject to artificially created indentations on a
roller end and run under poorer lubrication conditions to pro-
duce HL2. Basic test parameters including the main bearing
fault frequencies is shown in Table 1. The fault frequencies
are given in orders, with the main shaft as 1X. For each health
level, the machine was tested at 5 rotational speeds ranging
from 50 RPM (0.83 Hz) to 250 RPM (4.17 Hz). The main
bearing was not subject to external axial load except shaft
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self-weight. The bearing load of 9.83 kN is significantly less
than typical load under operation, further complicating fault
detection.

Table 1. Bearing Operating Information

Test Information

Bearing diameter 650 mm

Bearing load 9.83 kN

Test speeds, [RPM] {50− 100− 150− 200− 250}
Test speeds, [Hz] {0.83− 1.67− 2.5− 3.34− 4.17}
Main shaft speed 1X

Motor shaft speed 8X

BPFI 8.68X

BPFO 8.32X

BSF 6.75X

CPF 0.49X

2.3. Sensor Placement

The drilling machine is equipped with measurement points
for routine CM. However, to accommodate several transduc-
ers logging simultaneously, an adapter plate was made from
a 20mm steel plate. The sensors were placed on a circle cen-
tered on the mounting flange to make the signal transmission
path as equal as possible.

System ASystem B1

System B2System C

Steel plate

Connection 
Flange

Figure 2. Sensor placement on adapter plate

2.4. Instrumentation

Data acquisition was done using 3 different systems, two of
which utilizes acceleration transducers while the third one
uses an AE transducer. The benchmark for acquisition time
was a frequency resolution of 10-30 bins between fault fre-
quencies, as recommended in (Bechhoefer et al., 2016). Sys-
tem A recorded for 100 revolutions regardless of rotational
speed while the other systems sampled fixed length time se-
ries. Key specifications are given in Table 2.

Table 2. Instrumentation

Feature System A System B System C

Transducer Acceleration Acceleration AE

Frequency 2 Hz -10 kHz 2 Hz -10 kHz 50-400 kHz

Sensitivity 10 mV/ms−2 1.0 µA/ms−2 69 dB (peak)

Sample rate 102.4 kHz 10 kHz 50 kHz

Recording 100 rev 60 s 120 s

2.4.1. System A

System A consists of a piezoelectric accelerometer with a
sensitivity of 100 mV/g and linear range of 2 Hz to 10 kHz.
However, with a sampling rate of 102.4 kHz, the signal is
oversampled compared to the linear range. This was done to
capture encoder data, which was logged simultaneously on
the same system to allow RPM calculation and order tracking.

2.4.2. System B

System B is part of a commercially available CM system,
using an Integrated Electronics Piezoelectric Accelerome-
ter with a current output sensitivity of 1.0 µA/ms−2. For
the purpose of this paper, the time-waveform is extracted
and analyzed to ensure control of signal processing meth-
ods used. Sampling is limited to 10 kHz for 60 seconds.
The system is installed at two locations, named B1 and B2
for distinction, shown in Figure 2. System B2 is mounted
directly over the connection flange, where the accelerome-
ter is normally mounted, to serve as a reference measurement.

2.4.3. System C

System C uses an AE transducer glued to the measurement
surface. The frequency range is 50 to 400 kHz. However, the
signal is heterodyned and demodulated by an analog circuit
before sampling, which allows the sampling frequency of
50 kHz. The preprocessing method applied to AE signals
was presented in (Qu, Bechhoefer, He, & Zhu, 2013). The
high frequency heterodyne product is filtered out, and the
low frequency is phase-shifted by π

2 , which effectively is the
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complex part of the Hilbert transform of the signal. Sampling
both the original signal and the phase-shifted version allows
demodulation simply by calculating the absolute value of the
two.

3. FAILURE MODE

The bearing is a pure axial tapered roller bearing, supporting
the drillstring. The rollers are tapered to maintain rolling line
contact between roller and races during rotation. A retaining
flange is necessary to keep the rollers in place due to the
wedge effect of the tapered roller. Simplified, the forces
acting on the roller is shown in Figure 3. The axial load FA
is decomposed in two components; FN normal to the tapered
bearing raceway, and FC acting on the roller end towards
the roller apex point. The relative magnitude of FN and FC
depends on the cone angle β. Due to the inevitable sliding
contact at the roller end, this area is exposed to surface wear.
This corresponds well with the observed damage on the worn
bearing in the drilling machine, which initiated the mainte-
nance action.

Figure 3. Internal bearing forces

Arc-shaped scratches with varying radius are observed across
the roller end surface, as shown in Figure 4. Generation of
such damage can be explained by observing the trace of a
particle stuck on the retaining flange, which is passed by a
roller. Figure 5 shows this trace for 3 particles at different
distances from the rolling surface.

Figure 4. Characteristic roller end damage

Figure 5. Trace of particles on a roller end

The distribution of scratches appears to be relatively even
between rollers. As it is not a clear, discrete fault, an as-
sumption of periodic behavior may be invalid, which makes
traditional frequency analysis tools less useful. Generation of
scratches implies permanent changes in the metallic structure,
which will generate an AE transient. Also, as the number of
scratches increases, the accumulated amount of particles in
the lubricant should grow at an increasing rate, leading to a
similar growth in scratch formation and AE activity.
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4. RESULTS

The presented results highlight observed differences between
the vibration and AE measurement system for overall value
trending and feature detection in the frequency domain.

4.1. RMS Trending

A change in signal RMS values can be used to indicate a
change in condition. In this experiment, there was a known
change component health, which was expected to cause an
increase in RMS. Measurements from system B2 show an
increase in RMS with RPM for all HLs, shown in Figure 6.
However, from HL0 to HL1, the RMS decrease unexpectedly,
and remains low at HL2. The same trend occurs in data from
systems A and B1, shown in Table 3. The levels for system
B2 are generally higher than for B1 in the axial direction and
lower in radial direction. Sensor placement is the only differ-
ence between systems B1 and B2, indicating that the adapter
plate transfer function has an effect on the measurements.
System B2 has the shortest signal transmission path and the
stiffest connection, which should produce the most accurate
results.

Interestingly, results from the AE measurements (system
C) show a different trend. As shown in Figure 7 and Table 3,
there is an increase in AE RMS at HL1 and HL2. At HL1,
radial RMS values increase with a factor of 1.5-2.2, whereas
axial RMS increase by a maximum factor of 1.2 at 250 RPM.
At HL2 the increase is distinct in both directions, with a
relative increase from HL0 of 5.1 and 4.2 for radial and axial
RMS respectively. The radial measurement point, shown in
Figure 1, is located closer to the bearing. The longer signal
transmission path can explain the higher AE RMS levels,
assuming that the bearing is a source of AE activity. The AE
RMS increases with RPM, but less than the corresponding
vibration measurements. For an increase in RPM from 50 to
250 RPM, System A and B RMS increase by a factor in the
range from 2.6 to 12.9, while for system C the range is 1.6 to
2.3.

The power spectrum of the AE signal is shown for 150
RPM in Figure 8. The reveals an overall, broadband increase
in activity. The power spectrum P (f) is calculated as shown
in Equation 1, simply by applying the Fast Fourier Trans-
form, denoted FFT{·} to the squared signal. Peaks in the
spectrum can not be related to the bearing fault frequencies,
but is addressed in section 4.2.

P (f) = FFT{|x(t)|2)} (1)

Figure 6. RMS trend for system B2

Figure 7. RMS trend for system C
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Table 3. RMS Values

Acceleration RMS-value [10−3 g]

Axial Radial
RPM 50 100 150 200 250 50 100 150 200 250

System A
HL 0 11.5 30.9 40.0 59.9 85.7 15.7 32.5 46.8 44.6 99.8
HL 1 12.2 17.1 28.0 36.0 46.0 8.0 13.0 19.8 31.7 41.5
HL 2 11.6 15.3 23.6 29.3 39.0 9.9 14.1 17.9 33.0 33.7

System B1
HL 0 96.6 256.7 352.8 764.1 819.3 83.2 216.9 278.7 479.5 1069.3
HL 1 74.8 136.4 183.9 316.7 390.7 81.0 156.9 237.0 461.7 521.0
HL 2 94.8 146.6 212.4 416.6 438.2 111.1 159.8 207.4 364.3 541.0

System B2
HL 0 266.9 466.0 584.8 973.0 1094.5 45.6 106.5 142.1 195.1 311.7
HL 1 219.5 325.7 413.2 570.1 780.6 33.8 59.7 85.1 158.9 183.5
HL 2 293.6 312.5 425.4 558.1 752.6 45.4 54.1 74.1 140.6 171.3

AE RMS-value [10−3 V]

System C
HL 0 59,9 64,2 71,9 87,0 113,3 94,5 93,6 104,2 134,0 168,1
HL 1 61,4 66,1 72,6 85,9 135,0 203,9 201,2 174,2 196,4 327,4
HL 2 167,8 266,2 197,4 211,6 337,4 261,2 479,2 313,7 356,2 589,8

Figure 8. System C power spectrums at 150 RPM

4.2. Forcing Frequency Identification

The processing of recorded data did not reveal any clear indi-
cations of faults on component level. Still, the systems show
differences in the ability to identify forcing frequencies. Fig-
ure 9 and 10 show the envelope power spectrum from HL2 at
150 RPM, using data from system A and C, respectively. 1X
and 8X harmonics with 1X sidebands dominates the spectrum
from vibration measurements, shown in Figure 9. However,
one particular, non-synchronous feature was detected in 14
of 15 AE measurements. Table 4 shows the peak frequency
at the different operating speeds and health levels.

Table 4. Identified pump frequencies

Health Level 0 1 2

RPM Observed Frequency [Hz]

50 17.24 16.71 18.91
100 17.30 16.78 16.9
150 17.34 17.04 18.87
200 17.38 17.19 18.76
250 17.47 - 17.1

The peak appeared at similar frequencies regardless of
operating speed. The source of this frequency is assumed
to be a small lubrication pump located on the side of the
machine, shown in Figure 1, approximately 1 meter from the
measurement point. Completely uncoupled from the main
shaft, it was identified as the only component rotating in the
detected frequency range.
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Figure 9. System A envelope power spectrum

Figure 10. System C envelope power spectrum

Computation of the fast kurtogram, as described in (Antoni,
2007b), was used to identify frequency bands with elevated
kurtosis. However, no clear improvement in forcing fre-
quency identification was observed. The results shown in
table 4 are calculated for the top level of the kurtogram,
which corresponds to low-pass filtering up to the Nyquist
frequency before calculating the envelope. For the vibration
measurements, the envelope power spectrum is calculated
from the square of time-waveform x. The envelope is then
the absolute value of the analytic signal, computed using the
Hilbert transform, denoted H{·}, as shown in Equation 2.

Envelope = |x(t)2 + jH{x(t)2}| (2)

For the AE measurements, an approximation of the analytic
signal is created by analog pre-processing as described in sec-
tion 2.4.

5. DISCUSSION AND CONCLUSION

In this paper, 3 different CM systems utilizing accelerometer
and AE transducers have been applied to an offshore drilling
machine. A healthy bearing was used as reference for a worn
bearing, which then was tested at two stages of declining
health.

Despite low utilization of the axial load capacity, it was
possible to detect an increase in RMS of the AE signal that
corresponds to the change in bearing health. The fact that
vibration measurement systems gave higher RMS values for
the healthy bearing simply highlights the need for compa-
rable operating conditions when trending. The process of
replacing the healthy bearings with the used one, implied
complete disassembly of the machine, effectively changing
the basis of comparison. The consistent increase in AE
RMS makes this CI more promising. AE RMS measure-
ments were also less affected by rotational speed, which is
an advantage for machines under varying operating condi-
tions. AE measurements also showed an ability to detect
some modulation frequencies not visible in the acceleration
spectrum. In particular, a frequency which is assumed to be
a lubrication pump was detected, in spite of a long signal
transmission path. In the authors’ opinion, this illustrates that
measurement systems using AE transducers can complement
vibration based systems.

The observed failure mode lacks a dominant localized fault,
which results in a lack of periodic impacts. Hence, methods
based on detection of bearing fundamental frequencies were
ineffective. Artificially induced indentations were applied to
a roller end, but a roller fault could not be identified from
the measurements. Due to low utilization of bearing load
capacity, the bearing is less prone to breakage of the oil film
on the roller ends, which is a requirement for detection of
roller end damage. While the overall increase in AE activity
still corresponded to declining bearing health, it is unlikely
that the increase is due to formation of new scratches. The re-
sults support AE as a CM technology for axial tapered roller
bearings in drilling machines and other rotating machinery.
The shown fault frequency identification capabilities com-
bined with possible detection of scratch formation on roller
ends motivates further research on the topic, in particular to
capture and identify the failure mode propagation.
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