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Abstract 

 

Safe and reliable operations of industrial machines are highly prioritized in 

industry. Typical industrial machines are complex systems, including electric 

motors, gearboxes and loads. A fault in critical industrial machines may lead to 

catastrophic failures, service interruptions and productivity losses, thus condition 

monitoring systems are necessary in such machines. The conventional condition 

monitoring or fault diagnosis systems using signal processing, time and frequency 

domain analysis of vibration or current signals are widely used in industry, 

requiring expensive and professional fault analysis team.  Further, the traditional 

diagnosis methods mainly focus on single components in steady-state operations. 

Under dynamic operating conditions, the measured quantities are non-stationary, 

thus those methods cannot provide reliable diagnosis results for complex gearbox 

based powertrains, especially in multiple fault contexts.  

In this dissertation, four main research topics or problems in condition 

monitoring of gearboxes and powertrains  have been identified, and novel solutions 

are provided based on data-driven approach. The first research problem focuses on 

bearing fault diagnosis at early stages and dynamic working conditions. The 

second problem is to increase the robustness of gearbox mixed fault diagnosis 

under noise conditions. Mixed fault diagnosis in variable speeds and loads has 

been considered as third problem. Finally, the limitation of labelled training or 

historical failure data in industry is identified as the main challenge for 

implementing data-driven algorithms. To address mentioned problems, this study 

aims to propose data-driven fault diagnosis schemes based on order tracking, 

unsupervised and supervised machine learning, and data fusion. All the proposed 

fault diagnosis schemes are tested with experimental data, and key features of the 

proposed solutions are highlighted with comparative studies. 
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Chapter 1  

 

Introduction 

 

1.1 Background  

 

Safe and reliable operations of industrial machines, such as electric motors and 

gearboxes, are important in industry. A failure of a critical machine may end up 

with huge financial losses, not only because of the failed machine, but also the loss 

of production. Therefore, appropriate maintenance practices are required to 

increase the availability of machines. The main objective of a maintenance 

operation is to improve system reliability and safety while reducing the cost of 

maintenance manpower, monitoring equipment, parts inventories, etc. In addition, 

early diagnosis of potential catastrophic failures and estimating remaining useful 

life (RUL) of components are also important for proper maintenance planning and 

scheduling.   

Electric powertrains are widely used in manufacturing, wind energy and 

transportation sectors. The industrial applications of powertrains can be found in 

various mechanical systems such as pumps, fans, conveyor belts, robotics and 

wind turbines. An electric powertrain typically consists of an electric motor, a 

gearbox and a control system to drive the motor.  

The reliability and failure modes of motors used in various industrial 

applications are presented in [1-6]. These studies conclude that 40-50 % induction 

motor faults occur in bearings, and faults on stator winding, being the second most 

common fault, contribute 15-30 % faults in the machines while the rest is a 

combination of other mechanical and electrical faults. Therefore, this research 



Online Condition Monitoring of Electric Powertrains using Machine Learning and Data Fusion 

2 

 

mainly deals with bearing faults and inter-turn stator winding faults of electric 

motors. Further, bearing and gear faults of gearboxes are also of interest in this 

study.   

 

 

 

Figure 1.1: Gearbox based motors in an electric powertrain 

 

This dissertation aims to propose and develop data-driven fault diagnostic 

algorithms for online condition monitoring (CM) of electric motors and gearboxes. 

A laboratory test setup is built to collect required data for training and validating 

the developed algorithms. Figure 1.1 shows some gearbox based motors used in 

an in-house test setup. An industrial motor drive is used as the control unit, and a 

permanent magnet synchronous generator (PMSG) connected to a variable resistor 

bank is used as the load. Vibration and current sensors are connected for data 

collection. Further, public datasets provided by reputed research organisations are 

also used for validating the proposed diagnostics schemes.  
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1.2 Motivation and research problem 

 

Early detection of faults in critical components of electric powertrains, e.g  

bearings or stator windings, is significant in industrial applications because it gives 

an additional time for planning maintenance [7, 8]. Existing fault diagnosis 

methods mainly analyse stationary signals in steady state. Unlike industrial 

productions, electric powertrains for wind turbine and electric vehicles 

dynamically operate based on drive commands or wind conditions, rendering 

additional difficulties for a fault diagnosis. New fault diagnostic schemes are 

required to deal with non-stationary signals and dynamic operations. 

The robustness and accuracy of CM and fault diagnosis systems are highly 

important in industry because the false diagnosis can result in unnecessarily forced 

system shutdowns, and the inaccurate diagnosis may cause unexpected failures. A 

CM system may work properly for a single fault in an ideal condition. However, 

background or sensor noise is present in a complex system like gearboxes [9, 10], 

fault diagnosis is a challenging task. Hence, finding novel methods to improve the 

robustness and accuracy of fault diagnosis algorithms are of importance for both 

academia and industry.  

Dynamic operating conditions such as variable loads and speeds are 

common in industrial applications such as wind turbines and robotics. Further, 

concurrent faults in a system might cause missing alarms. Traditional diagnosis 

techniques focusing on single faults at steady state may not work for those 

applications [9]. CM and diagnostic of multiple faults under variable speeds and 

loads are very challenging, requiring new advanced diagnostic schemes.  

Online CM systems aim to improve the effectiveness of systems and reduce 

the maintenance cost [11, 12]. The new wireless sensors, cloud data storage and 

modern artificial intelligent (AI) algorithms are the driving forces to make smart 

CM systems. Machine learning (ML), deep learning (DL) algorithms, and its 

applications in CM and diagnostics are necessary for industry 4.0 [13-15]. In ML 

and DL based CM, fault diagnosis algorithms require a lot of historical data for 

training and validation, but the training data is difficult to obtain in reality, or the 

available datasets are unbalanced or unlabeled. For example, data from a healthy 

machine is usually available in industry, but  historical data for faults is limited or 

not available due to regular maintenance [18-19]. Maximizing the use of healthy 

machine data is important for developing novel diagnostic schemes.  
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1.3 Contributions of the dissertation 

 

The scientific contributions of this dissertation are withdrawn from six research 

papers published or submitted to international journals and conference 

proceedings.   

 

Paper A: Early Detection and Classification of Bearing Faults using                                                          

Support Vector Machine Algorithm 

Summary: In paper A, an algorithm is proposed for early detection and 

classification of bearing faults. Time-domain and frequency-domain features are 

extracted using envelop analysis and the energies of signal at characteristic 

frequency bands for early fault detection. A support vector machine (SVM) 

algorithm is used for fault classification and severity detection. The algorithm can 

detect and classify bearing fault at the early stage. The use of envelope analysis 

allows for capturing the features for early fault diagnosis, and the SVM algorithm 

ensures the classification of different fault severities in the multi-dimensional 

feature space. The proposed algorithm is validated using a well-known run-to-

failure test dataset. 

 

Contributions: A data-driven diagnosis method is proposed for detecting bearing 

faults in early stage using envelope analysis-based feature generation and SVM 

algorithm. 

 

This paper has been published as: 

J. S. L. Senanayaka, S. T. Kandukuri, H. V. Khang and Kjell. G. Robbersmyr, 

“Early Detection and Classification of Bearing Faults using Support Vector 

Machine Algorithm”, IEEE Workshop on Electrical Machines Design, Control 

and Diagnosis (WEMDCD), Nottingham, pp. 250-255, 2017. 

 

 

Paper B: Fault Detection and Classification of Permanent Magnet 

synchronous Motors in Variable Load and Speed Conditions using Order 

Tracking and Machine Learning 

Summary: Common faults in the permanent magnet machines occur in the 

bearing and stator winding, being mainly detected in steady-state operating 



Chapter 1. Introduction 

5 

 

conditions under constant loads and speeds. However, variable loads and speeds 

are typical operations of  powertrains in wind turbines. Therefore, it is important 

to detect bearing and stator winding faults in variable speed and load conditions. 

Paper B proposes an algorithm to diagnose multiple faults in variable speed and 

load conditions. The proposed algorithm is based on tracking the frequency orders 

associated with faults from the normalised order spectrum. The normalised order 

spectrum is generated by resampling the measured vibration signal via estimated 

motor speeds. The fault features are then generated from the tracking orders in 

addition to the estimated torque and speed features. Finally, a support vector 

machine (SVM) algorithm is used to classify the faults. The proposed method is 

validated using experimental data, and the validated results confirm its usefulness 

for practical applications. 

 

Contributions: A fault diagnosis scheme  based on SVM and order tracking of 

fault-related characteristic frequencies is proposed for diagnosing bearing and 

stator winding faults of a permanent magnet synchronous motor at variable loads 

and speeds. 

 

This paper has been published as: 

J.S.L Senanayaka H. V. Khang, Kjell. G. Robbersmyr, “Fault Detection and 

Classification of Permanent Magnet Synchronous Motors in Variable Load and 

Speed Conditions using Order Tracking and Machine Learning”, Journal of 

Physics: Conference Series, vol. 1037, no. 3, 2018 

 

 

Paper C: Multiple Classifiers and Data Fusion for Robust Diagnosis of 

Gearbox Mixed Faults 

Summary: Accurate diagnosis of gearbox mixed faults is a challenging task as a 

faulty gearbox, consisting of several bearings, shafts and gears, generates a 

complex vibration spectrum. A novel diagnosis scheme is proposed for diagnosing 

multiple faults in a gearbox. Two parallel classifiers based on convolutional neural 

networks (CNN) and multilayer perceptrons (MLP) are used in the proposed 

scheme. Continuous wavelet transformation (CWT) is used to generate a time-

frequency representation of vibration measured at two locations of the gearbox, 

being fed to CNN for feature learning, feature fusion and classification. The 

features for MLP are generated using time and frequency domain signals, and the 
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energies associated with faults at characteristic frequencies. Furthermore, the naïve 

Bayes (NB) combiner is used for decision level data fusion to improve the accuracy 

and robustness of the proposed algorithm under noises. This algorithm 

demonstrates that both feature level and decision level data fusion could improve 

the accuracy and robustness of a fault diagnosis system under noise. 

 

Contributions: A novel fault diagnosis scheme based on MLP, CNN and NB 

combiner is proposed for a robust diagnosis of gearbox mixed faults. 

 

This paper has been published as: 

J. S. L. Senanayaka, H. V. Khang and Kjell. G. Robbersmyr, “Multiple Classifiers 

and Data Fusion for Robust Diagnosis of Gearbox Mixed Faults,” in IEEE 

Transactions on Industrial Informatics, vol. 15, no. 8, pp. 4569-4579, 2019. 

 

 

Paper D: Multiple Fault Diagnosis of Electric Powertrains under Variable 

Speeds using Convolutional Neural Networks 

Summary: In this paper, a new fault diagnosis system is proposed to diagnose 

multiple faults (bearing, gear and inter-turn short circuit stator winding faults) for 

electric powertrains at variable load and speed conditions. The order tracking 

method is used to generate order normalised short-time Fourier transform (STFT) 

based spectrograms from current and vibration signals of the powertrain. This 

method helps to deal with variable speed conditions, and CNN algorithm is used 

as a classification algorithm. The combined vibration and current STFT 

spectrograms fed to CNN for feature level fusion can deal with load variations.  

Further, the algorithm requires only training data for single faults, but the 

algorithm can detect multiple faults, reducing the training data requirements. The 

experimental results show that the algorithm can detect multiple faults at variable 

load and speed conditions. 

 

Contributions: A new algorithm is proposed for diagnosing electric powertrain 

multiple faults at variable load and speeds. The proposed method can reduce the 

required training data as it can be trained by using only data from single faults, but 

the algorithm can detect multiple faults. 
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This paper has been published as: 

J. S. L. Senanayaka, H. V. Khang and Kjell. G. Robbersmyr, “Multiple Fault 

Diagnosis of Electric Powertrains under Variable Speeds using Convolutional 

Neural Networks”,  XXIII International Conference on Electrical Machines 

(ICEM), Alexandroupoli, pp. 1900-1905, 2018. 

 

 

Paper E: Online Fault Diagnosis System for Electric Powertrains using 

Advanced Signal Processing and Machine Learning 

Summary: The online implementation of the algorithm proposed in paper D is 

considered in paper E. The fault diagnosis algorithm proposed in paper D is 

improved by adding online data acquisition, diagnostics, decision-making and 

visualisation components. Online data acquisition, decision making, and 

visualisation aspects were tested using experimental data. 

 

Contributions: An online fault diagnosis algorithm is proposed for  accurate 

decision making in  electric powertrains by utilising historical diagnosis results. 

 

This paper has been published as: 

J. S. L. Senanayaka, H. V. Khang and Kjell. G. Robbersmyr, “Online Fault 

Diagnosis System for Electric Powertrains using Advanced Signal Processing and 

Machine Learning”, XXIII International Conference on Electrical Machines 

(ICEM), Alexandroupoli, pp. 1932-1938, 2018. 

 

 

Paper F: Towards Self-Supervised Feature Learning for Online Diagnosis of 

Multiple Faults in Electric Powertrains 

Summary: This paper proposes a novel online fault diagnosis scheme for 

industrial powertrains while addressing the challenges of limited labelled training 

data. The proposed method combines one-class SVM anomaly detection and 

supervised CNN algorithm. The one-class SVM aims to derive a score for 

detecting faults, and the detected fault results are used as the training data for the 

CNN classifier. Within the framework, an online diagnosis scheme is developed 

with two stages, utilizing the two algorithms in self-supervised feature learning 

passion. The proposed online diagnosis scheme can detect multiple faults at 
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variable loads and speeds in powertrains. The proposed diagnosis scheme is 

validated using experimental data from an in-house test setup. 

Contributions:  A new online fault diagnosis system is proposed to learn the 

features for fault diagnosis in self-supervised online passion using limited 

historical data, while minimizing expertise demand.  

 

This paper has been submitted as: 

 J. S. L. Senanayaka, H. V. Khang and Kjell. G. Robbersmyr, “Towards Self-

Supervised Feature Learning for Online Diagnosis of Multiple Faults in Electric 

Powertrains”, Submitted to IEEE Transactions on Industrial Informatics (Under 

review). 

 

 

1.4 Structure of this dissertation 

 

This dissertation consists of seven chapters. The introduction chapter gives an 

overview of the dissertation. The remaining chapters of this dissertation are 

organized as follows. In the second chapter, the state-of-the-art of CM, fault 

diagnostics and prognostics methods are presented, and the research direction is 

identified. The experimental works and the datasets used for validating the perused 

algorithms are summarized in Chapter 3. Chapter 4 covers the algorithms proposed 

for bearings fault diagnosis at early stages and dynamic working conditions 

through papers A and B.  Chapter 5 provides a summary of the fault diagnostics 

schemes proposed for gearbox and electric powertrain applications through papers 

C, D and E, respectively. A self-supervised online CM system is given in Chapter 

6, which summarizing  the online fault diagnosis scheme proposed in paper F.  The 

conclusions of the dissertation and future improvements are presented in Chapter 

7. The contents of each chapter are summarised in Figure 1.2. 
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Figure 1.2: Summary of chapter contents 
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Chapter 2  

 

State-of-the-art 
 

 

The state-of-the-art condition monitoring, fault diagnostics, prognostics and data 

fusion methods for gearboxes, electric motors and bearings are discussed in this 

chapter. This is important to define the baseline and identify the research direction 

for this dissertation.  

 

2.1 Maintenance strategies 

 

Depending on applications, various types of maintenance, namely reactive, 

preventive, predictive and proactive maintenance, are used in industry [16, 17]. In 

the reactive maintenance, the maintenance tasks are conducted to fix a machine 

when it breaks. The main issue of reactive maintenance is the cost of unexpected 

failures. In critical machines, the loss of production hours may lead to huge 

financial costs. Therefore, reactive maintenance is generally used for non-critical 

machines. Preventive maintenance can be adopted to reduce unexpected 

breakdowns in critical machines, where maintenance is conducted in regular time 

intervals and sometimes known as time-based maintenance (TBM) [17]. This 

method reduces the unexpected breakdown cost, but the maintenance cost can be 

higher than the reactive maintenance, because of the increased cost of the spare 

parts, tools and maintenance manpower. Preventive maintenance sometimes can 

lead to unnecessary costly component replacements. Since the failures of 

components are based on the operating condition, failures can happen at any time, 
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depending on the condition of the machine. Enhancing maintenance is required to 

reduce the cost.  

To minimise unexpected failures, more efficient predictive maintenance can 

be used [18]. In the predictive maintenance, the condition of a machine or 

component is continuously monitored by condition indicators (vibration, 

temperature, etc.) in order to identify a significant change, which is indicative of a 

developing fault. The fault diagnostic and prognostic functions can be performed 

using the results of CM. The International Standard Organization (ISO) -13374 - 

condition monitoring and diagnostics of machines, defines the functionality in a 

condition monitoring system in eight blocks [19]. Each subunit has a defined 

function and interrelation with other subunits. Anyone who develops CM and 

diagnostics systems shall follow this standard. Furthermore, the ISO-18436-

2:2014 specifies the necessities for the training, relevant experience, and 

examination of personnel performing condition monitoring and diagnostics of 

machines using vibration analysis [20]. Various terms used in condition 

monitoring and diagnostics of machines are defined in ISO-13372 [21]. 

 Condition-based maintenance (CBM) is a predictive maintenance strategy 

that uses CM, fault diagnosis and prognosis to determine the health of machines 

and schedule the maintenance accordingly. Generally, CM is performed on 

working machines, and CBM can reduce the cost of unexpected failures and the 

downtime,  and improve the system reliability and safety [18]. However, the 

maintenance cost can be further increased in CBM due to the cost of condition 

monitoring technologies, sensors and expert manpower for analyzing the data 

generated from CM. Timely and reliable monitoring and maintenance decisions 

can reduce the unexpected breakdown cost, and increasing the system availability. 

In this way, the increased maintenance cost can be compensated with an overall 

cost benefit. The predictive maintenance is suitable for critical machines, requiring 

high reliability and availability. For general applications, it may not be cost-

effective. In a proactive maintenance, CM and failure-root-cause analysis are 

utilised for additional maintenance activities such as ensuring proper lubrication, 

alignment and balancing of rotating components in order to eliminate possible 

future failures.  

Different maintenance methods, rather than being applied independently, 

can be combined to maximize  their corresponding strengths in order to optimize 

the facility and equipment efficiency while minimizing life-cycle costs. The 

reliability centred maintenance (RCM) is an advanced control strategy, that can be 
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implemented to optimize the maintenance program of a company or facility [16]. 

An optimal mix of reactive, preventive, predictive and proactive maintenance 

practices is adopted in RCM.  When implementing RCM, first, the criticality level 

of the machine should be analysed. Then depending on the critical level of the 

machine, proper maintenance strategy should be selected for relevant components. 

For non-critical components, reactive or preventive maintenance may be 

sufficient, but critical components may require predictive or proactive 

maintenance. In RCM, a systematic methodology is used to identify the 

maintenance tasks that are necessary to realise the essential reliability of 

components at the lowest possible cost.  

Another emerging maintenance discipline is prognostics and health 

management (PHM). The key duties of the PHM technology are to detect emerging 

component or system fault, performing failure diagnostics and health management 

[22]. The concept of prognostics is to diagnose and predict remaining useful life 

(RUL) of an item (e.g. device, component, or system). Systems with a prognostic 

capability will be able to identify potential failures in advance and provide 

information on the system health. This information could be used to reduce an 

unscheduled maintenance or to extend scheduled maintenance intervals. PHM can 

be considered as an evolution of the CBM and RCM. 

CBM, RCM and PHM methods focus on different aspects of industrial 

maintenance strategies and asset management. However, the CM, fault diagnostics 

and prognostics are the key functions of any advance maintenance program. Thus, 

it is important to have reliable and accurate CM, fault diagnosis and prognosis 

schemes for industrial applications.  

 

2.2 Data-driven fault diagnostics 

 

Fault diagnostics includes fault detection, isolation and severity quantification.  

The fault diagnostic systems can be established through model-based, data-driven 

or hybrid algorithms  [23-26]. The model-based diagnosis requires a detailed 

physical model of the system and accurate parameters.  In a model-based 

diagnosis, the model output variables and actual output variables are compared, 

and a residual of the comparison is used for fault diagnosis. In electric powertrains, 

components, such as bearings and gearboxes, are difficult to build their precise 

mathematical models. The data-driven method using statistical or machine 
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learning algorithms does not need such a physical model [27], and it is attractive 

for an automatic CM and diagnosis system of bearings and gearboxes.  

In a data-driven machinery fault diagnosis, the machine condition is 

monitored using various sensors, and collected signals are fed to a data-driven fault 

diagnosis system. The measured data could be temperature, thermography images, 

chemical and wear monitoring information (e.g. lubricant oil contamination), 

vibration signals, acoustic emission signals, shock pulses, motor current signals, 

etc. [28, 29]. The operating temperature is a primary indicator of machine health, 

and the temperature or infrared image analysis is one of the easiest methods to 

monitor the machine condition. Lubricant oil analysis is often used for detecting 

bearing and gearbox faults. Vibration analysis is the most common technique for 

analysing mechanical faults, such as bearing and gear faults. The electrical 

signature analysis can be used to detect the mechanical and electrical faults in 

electrical machines. In CM of electric powertrains, the vibration and the current 

signals are the common choice in industry as they are easy to be implemented and 

integrated into the systems.  

A basic fault detection system can be built by measuring the root mean 

square (RMS) vibration of the machine and defining a threshold for normal 

vibration level. A deviation of the measured RMS vibration from the threshold can 

be an indicator for a variation from a normal operating status, but it is not sufficient 

to isolate a fault as the increased vibration may be generated from other sources 

such as unbalance, misalignment, etc. Therefore, fault isolation or classification 

and severity quantification are necessary despite requiring additional features from 

signal processing, statistics or machine learning methods.  

As shown in Figure 2.1, a data-driven fault diagnostics system typically 

consists of several subunits, namely data acquisition, data processing and feature 

extraction, fault diagnosis and maintenance decision.  

 

 

Figure 2.1: A simplified block diagram of a data-driven fault diagnosis system. 
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Data acquisition is to collect signals from sensors such as vibration, current 

or acoustic emission. The collected signals can be processed to identify the most 

useful abstract information for fault diagnosis. If using deep learning algorithms, 

both feature learning and classification are combined into one algorithm. In a 

machine learning or deep learning algorithm, the feature learning and fault 

diagnosis can be achieved in a supervised, unsupervised or semi-supervised way. 

The fault diagnosis includes fault detection, fault isolation and fault severity 

quantification [30]. The fault diagnosis results will be used for making a 

maintenance decision. 

 

2.2.1 Feature extraction using signal processing and statistical methods 

 

To monitor rotating machinery health, the machine vibration, acoustic emission or 

motor current are measured and analyzed for finding fault-related features in time 

(e.g. RMS of signal), frequency (e.g. Fourier transformation and signal energies at 

characteristic frequencies) or time-frequency analysis (e.g. short-time Fourier 

transformation, wavelet transformation). In addition, statistical features of signals,  

e.g. mean, standard deviation or kurtosis,  may be appropriate features [30, 31]. 

Fixed or statistical thresholds (e.g. ISO vibration thresholds, multivariate statistical 

methods) can be used for a fault diagnosis [18]. 

The above mentioned methods are suitable for a componenet level single-

fault diagnosis. Strong features can be manually produced by expert knowledge. 

For example, if the characteristic frequencies are easy to be identified, the high-

quality features can be produced with signal processing skills. However, in a 

complex fault context with multiple faults under variable load and speed 

conditions, the feature generation is time-consuming and expensive, and may 

result in missing or false alarms [32]. Therefore,  enhanced methods for feature 

generation are required to be developed for accurate fault diagnostics. 

 

2.2.2 Fault diagnosis based on supervised machine learning and deep 

learning  

 

To address problems in fixed or statistical thresholds based fault diagnosis, 

supervised machine learning methods can be used. The first step of the machine 
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learning algorithm is the feature generation.  The signal processing and statistical 

methods discussed in Section 2.2.1 can be used to manually generate features for 

machine learning algorithms. Several classification algorithms, such as SVM [33], 

k-nearest neighbour (k-NN) [34], decision tree (DT) and numerous neural network 

architectures [35], can be applied to find complex relations on the feature space 

via the time-frequency features extracted by the domain knowledge [36] or 

statistical methods. Thus, machine learning methods are appropriate for both single 

and multiple fault diagnostics.  

Performance of supervised machine learning highly depends on the feature 

generation and selection. In early fault detections and noisy conditions, additional 

signal processing methods are required for capturing hidden features from original 

signals. To obtain the better results from a machine learning algorithm, features 

have to be relevant and strong. Irrelevant and redundant features will result in a 

high-dimensional feature space or complex machine learning model, requiring 

more data for training [37, 38]. Additional statistical or optimization methods, e.g. 

principal component analysis, particle swarm optimization and independent 

component analysis, are thus useful to find the best features for classification 

algorithms.  

A deep learning algorithm can be used to address challenges on feature 

generation, selections and extra optimizations by extracting and transforming 

features via nonlinear processing layers, and learn itself the best features by 

detecting patterns from the training data of a signal or an image to differentiate 

faults [34]. Thus, deep learning provides one advanced step towards smart fault 

diagnosis systems. For example, a CNN based supervised deep learning algorithm 

can combine feature generation and classification [39]. The algorithm can learn 

the features from data, and the fault diagnosis problem is solved as a pattern 

recognition problem using automatically detected features [15, 40, 41].  

Deep learning methods are widely used in fault diagnosis due to their merit 

of analyzing complex or big data while the improved technologies of sensors, cost-

effective processors, graphics processing units (GPUs) and their parallel 

processing capabilities allow for collecting and processing big data effectively [13-

15]. The deep learning algorithms are completely based on the information 

gathered from training data to identify patterns and relations within the data. In 

other words, the deep learning algorithms are advanced pattern recognizers 

without using domain knowledge. Therefore, expert knowledge is not required as 

characteristic frequencies are not considered separately, being suitable for a 
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complex fault diagnosis of multiple faults under variable load and speed 

conditions. Supervised deep learning methods can reduce the difficulty of feature 

generation and selection, but labelled training data or historical faulty data is 

required for fault diagnosis.  

 

2.2.3 Unsupervised and semi-supervised learning methods 

 

Even though supervised deep learning methods have many merits over traditional 

machine learning and statistical methods, the practical implications of these 

algorithms require labelled training data, which is difficult to obtain or is limited 

in reality. Feature learning and fault diagnosis are combined in a supervised CNN 

deep learning algorithm [39]. There are other classes of deep learning algorithms, 

where the feature extraction and fault diagnosis are separated, without using 

labelled training data or requiring considerably smaller training data than the 

supervised CNN.  

Most widely used deep learning-based feature extraction methods are 

unsupervised autoencoders (AEs) [42], or semi-supervised feature learning using 

transfer learning methods [43]. AEs are neural networks designed to learn features 

from unlabeled input data. Unlabelled healthy and faulty status data can be fed into 

an AE to learn features without labels. AE feature learning is suitable for 

applications, where healthy and faulty data is offered  without being labelled to 

differentiate the healthy and faulty data. In transfer learning, features can be 

extracted using a pre-trained CNN network or AlexNet [41], which is designed for 

image classifications. The internal layers of pre-train CNN represent a set of filters 

to identify different patterns of input images. Since the fault diagnosis problem is 

solved as a pattern recognition problem using spectrograms of fault signals, the 

extracted filters can be fine-tuned using less healthy and faulty data.  The transfer 

learning is able to extract features, and implements fault diagnosis systems using 

less amount of labelled training data. 

Data for healthy conditions is much more than faulty conditions in industry. 

Unsupervised fault detection algorithms, such as one-class SVM [44-46], can be 

used in such situations. The one-class SVM algorithm requires features from 

healthy status and faulty status features are not mandatory for training.  Once 

trained, one-class SVM can calculate a hyper distance in the feature space for new 

data, thus a threshold can be defined to differentiate the healthy and faulty classes 
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Combination of AE feature learning and one-class SVM fault detection might be 

a promising solution to deal with unlabeled training data. 

 

2.2.4 Data fusion for fault diagnosis 

 

The data fusion algorithms can be integrated to improve the accuracy and 

robustness of a fault diagnosis system [27]. Various data fusion algorithms can be 

found in statistical estimation, pattern recognition, and artificial intelligence 

disciplines. The widely used definition of data fusion is defined by Joint Directors 

of Laboratory (JDL) as “a multi-level process dealing with the association, 

correlation, combination of data and information from single and multiple sources 

to achieve refined position, identify estimate and complete and timely assessment 

of the situation, threats and their significance” [47]. By considering the 

relationship among the data sources, three types of data fusion methods have been 

proposed by Durrant-Whyte [48], namely complementary, redundant and 

cooperative fusion. Based on the abstraction level, data fusion algorithms are 

categorised into four levels in [49], namely; low-level fusion (signal level), 

medium level (feature level), high level (decision level) and multiple level fusion 

(data from the signal, feature or decision level). Another widely used classification 

of data fusion algorithms is proposed by Dasarathy [50], namely, data in data out 

(DAI-DAO), data in features out (DAI-FEO), feature in feature out (FEI-FEO), 

features in decision out (FEI-DEO), and decision in decision out (DEI-DEO). 

Depending on the applications, proper data fusion methods can be adopted. 

In complementary fusion, the data is generated from different sources, and the 

fusion is applied to get broad evidence by combining the complementary 

information. For example, using both vibration and current signals for a fault 

diagnosis  is a complementary data fusion because the vibration and current signals 

give different viewpoints of the fault information.  In the redundant fusion, two or 

more information are fused to increase the confidence of data fusion. For example, 

signals from two accelerometers in each side of the motor are used in the redundant 

fusion to enhance the confidence and accuracy of vibration information. In a 

cooperative fusion, the information from sources is fused to get new, and more 

complex information, representing a better reality. Further, the selection of a 

proper abstract level is important in CM and fault diagnosis applications.  
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2.3 Prognostics 

 

Prognostics is the process of estimating the remaining useful life (RUL) of a 

system or a component, after which the system or component will not perform its 

intended function. The RUL estimation is usually based on model-based or data-

driven methods, and their combination [51]. The physical degradation models, e.g. 

crack propagation via fatigue, corrosion or wear, are required for model-based 

prognostics. In the data-driven approach, data of the health condition of a 

component is collected by various sensors,  such as vibration, acoustic emission, 

temperature, etc. Then the collected data is used to model the component 

degradation process via data-driven models, namely, statistical or machine 

learning [52].  An accurate RUL estimation requires a reliable health indicator 

(HI), which should be sufficiently sensitive to capture defects in early degradation 

stages and consistent over an entire degradation process.  Various RUL estimation 

methods are reported in literature [53, 54]. Due to the randomness of RUL, there 

is no universal approach for identifying a HI and estimating RUL [55]. Most 

existing bearing and gearbox prognosis algorithms are based on vibration signals, 

and their features are extracted in time, frequency and time-frequency domains. 

These features are evaluated to identify the best features, being applied to 

statistical or machine learning methods to track the degradation process and predict 

the remaining useful life [56, 57]. Recurrent neural networks (RNNs) are another 

supervised deep learning algorithm, which can be used for time-series predictions 

and suitable in prognostic applications. The availability of low-cost sensors, data 

storages, data processing, deep learning, and data fusion algorithms unveils the 

capabilities of data-driven prognostics. When more data is available, the data-

driven algorithms can capture more features to identify more failure modes and 

improve the accuracy of prognostic results.  

 

2.4 Condition monitoring of electric powertrains: The 

research directions 

 

As highlighted in Section 2.1, CM is the key function of CBM, RCM or PHM 

maintenance strategies. Implementing a CM system faces certain challenges, e.g. 

cost or expertise demand. A CM system requires various sensors and large 
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databases to store data. These equipment costs can be reduced through the 

innovation and improvement of sensors, data acquisition, data transmission and 

storage systems. Further, diagnostics, prognostics and decision-making process are 

mostly done by the expert personal, increasing the maintenance cost. CM and 

diagnostics of powertrains, including gearboxes and bearings, face challenges due 

to the following factors. 

▪ Detecting faults in the early stages in dynamic operating conditions is 

challenging since the fault indicator is very small or difficult to capture in 

such contexts.  

▪ Various background noises available in the working environment can reduce 

the accuracy and robustness of CM systems of gearboxes and powertrains, 

especially in  multiple fault conditions. Finding novel methods to deal with 

background noises is important to improve the accuracy and robustness of 

the CM systems.  

▪ Variable load and speed operations of industrial machines cause measured 

quantities non-stationary, thus a mixed fault diagnosis under such conditions 

is difficult if using conventional signal processing techniques. 

▪ Labelled training data is required for supervised data-driven algorithms, but 

labelled training data is limited or restricted in industry and academia. 

Therefore, developing new algorithms to deal with limited training data is 

very important.  

This research focuses on proposing data-driven methods for online CM and fault 

diagnostic schemes while addressing above challenges, reducing the manpower of 

CM and making it feasible for a wide range of industrial applications.  
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Chapter 3  

 

The experimental test setup and data 
 

 

Proper experimental data is required to validate the proposed CM, fault diagnosis 

schemes. Real industrial machine failure data is generally difficult to obtain due to 

confidentiality and limited availability. Therefore, the proposed algorithms are 

validated using in-house experimental data and published external datasets.  This 

chapter presents experimental works carried out during the research and other 

datasets used in the dissertation.  

 

 

3.1 Types of experiments 

 

Two types of datasets are used to verify the proposed algorithms. Some algorithms 

are tested using seeded faults. This type of data is relatively easy to produce in 

laboratory conditions. Noise can be added to data to make the data more practical. 

Other types of data are from the run-to-failure test datasets. In such a test, 

additional forces, speed or temperature are added to the components, and run until  

they completely fail. This type of data is more suitable for prognosis applications, 

as the data is for a complete life cycle of the component. A description of the 

experiments and datasets used in this dissertation is given in Table 3.1.  
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Table 3.1: Description of experiments and datasets used in this dissertation. 

 

Section Experiment Focus Papers 

3.2 Seeded faults with 

different severities 

for electric 

powertrain faults 

Mixed Fault diagnosis at 

variable speeds and loads, 

unsupervised fault detection 

and online implementation 

Paper D, -E, 

and -F. 

3.3 Seeded faults for 

PMSM 

Fault diagnosis at variable 

speeds and loads 

B 

3.4.1 Bearing run-to-

failure tests 

CM and early fault diagnosis A 

3.4.2 Seeded faults of a 

gearbox 

Robust fault diagnosis at 

mixed fault conditions 

C 

PMSM: permanent magnet synchronous motor 

 

3.2 The developed in-house test bench  

 

A schematic of the experimental test bench used for electric powertrain fault 

diagnosis is shown in Figure 3.1, and the details of actual test bench components 

are given in Figure 3.2. The powertrain includes a 1.1 kW, 1450 rpm induction 

motor (IM) coupled to the 2-stages parallel shaft gearbox (GB) with 1:8.01 gear 

reduction.  

 

 

Figure 3.1: Schematics of the test bench. 

powertrain 
IM GB 

Data Aqusision system 

Computer (data storage, MATLAB) 

Motor drive PMSG 
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Figure 3.2: Components of the experimental test bench. 
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Data acquisition system Motor drive 

 

Variable resistor Computer (data storage, MATLAB) 
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The internal components of the complete powertrain are shown in Figure 3.3, 

including 8 bearings, 4 gears and 3 shafts. The gearbox output shaft is coupled to 

a permanent magnet synchronous generator (PMSG), and the generator output is 

connected to a variable resistive load. When the resistance of the load is fixed, the 

powertrain load is proportional quadratically to the rotational speed. The output 

currents of the PMSG are measured and used to estimate the rotational speed of 

the electric powertrain. However, in real applications, an encoder is required to 

measure the speed. An acceleration sensor is placed on top of the gearbox, and the 

accelerometer data and motor input currents are collected. Depending on the test 

type, the induction motor can be operated at constant speeds or variable speed 

profiles. More details of operating profiles can be found in the published papers. 

Data files at the sampling rate of 20 kHz and 120 seconds duration are collected 

by the data acquisition system. Several repeated tests were conducted to collect 

more data and improve the performances of data-driven algorithms. 

 

 

 
 

Figure 3.3: The internal components of the electric powertrain. 

 

Electric discharge machining (EDM) is used to produce seeded faults in 

bearings and gears. Figure 3.4 shows the EDM equipment used for making the 

seeded faults in a controlled way. An outer-race defect on the induction motor 

bearing is made as shown in Figure 3.5 (a). As shown in Figure 3.5 (b), a small-

scale damage is produced in the large gear using EDM.  There were identical 5-

units of the powertrain. Different fault severities are produced for bearings and 

gears of each powertrain. The details of fault severities can be found in the 

published papers. For stator winding faults, 10% inter-turn short circuit is seeded 

to one phase of the stator winding as shown in Figure 3.5 (c).  

 

B1  G1  
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Figure 3.4: The electric discharge machining equipment. 

 

 

 

   

(a) (b) (c) 

                

Figure 3.5: The faulty components of electric powertrain. 

(a) outer-race damaged bearing (b) damaged gear (c) 10% inter-turn short circuit 

fault in the stator. 
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3.3 The modified in-house test bench   

 

The in-house test bench is modified to collect the data for the proposed fault 

diagnosis scheme in paper B.  As shown in Figure 3.6, the electric powertrain used 

in Section 3.2 test bench is replaced by a PMSM motor while the data acquisition 

system remain same. A vibration sensor is attached to the PMSM for collecting 

vibration signal, and a current sensor is used for collecting motor current signal. A 

seeded fault with 2 mm surface damage of the outer race is applied to a bearing in 

the PMSM using EDM, and 10% inter-turn short circuit fault is applied to one 

phase of the stator winding. 

 

 

 

Figure 3.6: The experimental setup used for PMSM fault data 

 

3.4 External datasets  

 

3.4.1 Bearing run-to-failure tests by University of Cincinnati 

 

A run-to-failure test conducted by Intelligent Maintenance Systems, University of 

Cincinnati, USA [58, 59] is used in paper A. In this experiment, four bearings were 

connected to a shaft rotating at 2000 rpm. A 2700 kg radial load was applied to the 

shaft. Four accelerometers were used to collect vibration signals at 20 kHz 

sampling frequency. One-second samples were recorded every 10 minutes. Inner-

race, outer-race and rolling element faults have been observed at the end of the 

test. Early fault detection and classification  of outer-race and inner-race bearing 

faults are considered in paper A.  
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3.4.2 PHM challenge dataset for gearbox fault diagnosis 

 

An experimental data provided by PHM society data challenge in [60] is used to 

validate the algorithm proposed in paper C. A two-stage parallel shaft gearbox is 

used for collecting the vibration data. It consists of four gears, three shafts and six 

bearings. The gears are removable, and two types of gears, namely spur and helical, 

are used. Eight fault cases of the spur gearbox and six fault cases for the helical 

gearbox have been tested. Each fault case includes multiple faults from gears, 

bearings or shafts. Two accelerometers and one tachometer are used to collect the 

vibration data and input-shaft speed. The accelerometers are placed on the input 

and output shafts of the gearbox. The data of each channel is sampled at 200 kHz. 

Each fault class was tested at five different speeds (30 Hz, 35 Hz, 40 Hz, 45 Hz, 

and 50 Hz) and two different load conditions (high and low), and repeated, thus 20 

data files were collected. The data is used to train and validate the proposed robust 

fault diagnosis system for diagnosing the gearbox mixed faults.  
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Chapter 4  

 

Diagnostics of bearings faults in electric 

motors 

 

 

Bearings are the most critical elements in rotating machinery systems, and bearing 

faults are the main reasons for failures in electrical motors [1, 2, 5]. Therefore, 

early bearing fault detection is very important to prevent critical system failures.  

With the proposed diagnostic method in Section 4.1, the bearing faults can be 

detected at early stages, and the machine operators will have time to take 

preventive action before a large-scale failure. More details of the proposed 

diagnosis algorithm are given in Paper A. The bearing fault diagnosis in electric 

motors at variable speeds and loads is proposed in paper B. In addition to single 

bearing fault diagnosis, a mixed bearing and inter-turn stator winding fault is given 

in Section 4.2. The summary of the chapter is presented in Section 4.3.  

 

4.1 Early detection and classification of bearing faults 

 

Numerous bearing fault diagnosis schemes can be found in literature [8, 14, 33, 

35, 37, 54, 58, 61], but the focus on early-stage fault diagnosis is limited. Some 

patented high-frequency techniques, such as PeakVueTM , Shock PulseTM Method 

(SPM) and Spike EnergyTM [62-64], have been used in industry for early fault 

detections, but those methods are expensive or applicable in certain applications. 

Combination of suitable signal processing and machine learning methods can be 
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an useful approach for early fault detection at a reasonable cost. Envelop analysis 

provides more information about bearing characteristic frequencies than the 

original vibration signal [65]. Using the strong features allows a SVM algorithm 

to detect  bearing faults in early stages in the multidimensional feature space, 

which is the main content of paper A. 

 

4.1.1 The proposed algorithm  

 

The proposed fault diagnosis algorithm consists of two main sections. First, the 

vibration signals are processed to collect relevant time and frequency domain 

features. Then the SVM algorithm given in Figure 4.1 is used to train a classifier 

for fault detection and classification.  

 

 

SVM classifier

New data

Known data

Known response

Fault 
classification 

results

Bearing 
health 
status

RMS BSF BPFOBPFIFTF

Features
 

 

Figure 4.1: Block diagram of the SVM classifier. 

 

Feature extraction is the first step for building the data-driven SVM 

algorithm. Time and frequency domain features are extracted from the vibration 

signals. Root mean square (RMS) of vibration signal is selected as the time domain 

feature. For frequency-domain features, envelop analysis is applied to get the 

envelope signal from the time domain signal, and fast Fourier transformation is 

used to convert the envelope signal into the frequency domain. Then, fault 

characteristics frequencies located in the frequency spectrum and energy 

associated with frequency bands are extracted. The characteristic frequency bands 

of the bearing  consist of fundamental train frequency (FTF), ball spinning 
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frequency (BSF), ball pass frequency inner race (BPFI), and ball pass frequency 

outer race (BPFO) [66, 67]. Five fault cases were considered: healthy, inner race 

degradation (IR_D), inner race failure (IR_F), outer race degradation (OR_D), and 

outer race failure (OR_F). The SVM classification algorithm is used to classify the 

faults.  

In SVM classification, the objective is to make a multidimensional 

hyperspace using the available features, and then draw an optimum hyperplane to 

separate fault classes. 80% of the available data is used for training the algorithm, 

and the remaining 20% data is used for validating the algorithm. The trained 

classifier is applied to detect and classify the faults in early stages from new data. 

 

4.1.2 The experimental results and discussion 

 

A run-to-failure dataset explained in Section 3.4.1 is used to validate the algorithm. 

Figure 4.2 shows the RMS of vibration signal for a complete life of an inner-race 

faulty bearing.  

 

 

 

Figure 4.2: RMS of the vibration signal for a complete life in case of an inner-race 

faulty bearing. 

 

The green dotted area is related to healthy duration, and the yellow dotted 

area is related to IR_D. The IR_F region is given in red dotted lines. Similarly, the 

RMS of vibration signal for outer race fault is given in Figure 4.3, in which the 

green, yellow and red dotted areas show the healthy, OR_D, and OR_F of the 

bearing, respectively. 
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Figure 4.3: RMS of vibration signal for complete life of outer-race faulty bearing. 

 

Figure 4.4 shows the frequency spectrum of vibration signals for the inner 

race fault and healthy cases. The expected frequency for the inner race fault is 

300.6 Hz and 1X (shaft rotating frequency = 33.75 Hz) sidebands. The observed 

frequencies are 301.3 Hz and 1X sidebands. For the healthy case, the fault-related 

frequency components are not present in the vibration spectrum. Therefore, the 

inner race faults can be clearly seen from the vibration spectrum.  

 

 

 

Figure 4.4: The frequency spectrum of a vibration signal for inner race fault. 

 

As shown in Figure 4.5, the expected frequency associated with an outer race 

fault is also present in the frequency spectrum. The expected frequency is 239.3 Hz, 

and the observed frequency is 236.3 Hz. The deviation is small, and this small 

frequency variation is normal in detecting bearing faults since the right value of 
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contact angles is unknown. In the healthy case, fault-related frequency components 

are not visible, being closer to zero.  

 

 

Figure 4.5: The frequency spectrum of the vibration signal for an outer race fault. 

 

Two types of SVM kernels are used for a comparison of the SVM algorithm,  

and the results are summarised in Table 4.1. The accuracies of fault classification 

are about 86% in the IR_D class, and 96% in the OR_D class. Both linear SVM 

and quadratic SVM classifiers are able to detect faults in early stages, and the 

accuracy of classification is reliable since a bearing fault can be detected 2.5-3.5 

days ahead in the run-to-failure test. The proposed method can be extendable to an 

online fault diagnosis system. 

 

Table 4.1: Performance summary of the proposed algorithms. 

 

 

 

 

 

Fault Class 

Classification accuracies : 

True positve rates (TPR) / False negative rates (FNR) 

Linear SVM classifier 

TPR              FNR 

Quadratic SVM classifier 

TPR           FNR 

H 99.4%           0.6% 99.3%        0.7% 

IR_D 87.0%           13.0% 86.2%       13.8% 

IR_F 90.2%           9.8% 87.8%       12.2% 

OR_D 96.0%          4.0% 97.7%       2.3% 

OR_F 78.9%          21.1% 84.2%       15.8% 
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4.2 Fault diagnostics of electric motors under variable load 

and speed conditions 

 

The bearing and stator winding faults are common faults in electrical machines, 

and conventionally detected in steady states, e.g. constant speeds and loads. 

However, variable loads and speeds are typical operations in wind turbines and 

powertrains. Therefore, it is important to detect bearing and stator winding faults 

in variable speed and load conditions. This section provide a summary of the 

proposed fault diagnosis scheme used to address above challenges. More details 

of the proposed method are given in paper B.  

 

4.2.1 The proposed algorithm 

 

A block diagram of proposed algorithm is given in Figure 4.6, and the algorithm 

focuses on tracking the frequency orders associated with faults from the 

normalised order spectrum. The normalised order spectrum can be generated by 

resampling the measured vibration signal via estimated motor speeds [68, 69]. 

 

 
 

Figure 4.6:  Block diagram of the proposed fault diagnosis and classification 

algorithm. 
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The fault features are then derived from the RMS of tracked charasteristic 

frequency orders, estimated torque and speed of the motor. The details of the 

features used in the algorithm is given in Table 4.2. Finally, a SVM algorithm is 

used to classify the faults.  

 

Table 4.2: The features used in the SVM classification algorithm. 

 

Signal 

source 

Feature name Description 

Current Speed Represent the motor speed  

Torque Represent the motor torque  

2𝑓𝑠 Characteristic frequency of inter-turn winding 

fault from the extended Park’s vector (EPV) 

[70] current 𝑖𝑝  

Torque 

Variance 

Moving variance of 10 consecutive values of 

the torque signal 

Vibration 3.05X order Characteristic frequency of outer-race bearing 

fault = 3.05 × Motor rotating speed/frequency 

1X Motor rotating speed 

8X order Motor rotating speed × No. of motor pole pairs 

16X order Motor rotating speed × 2 × No. of motor pole 

pairs (2nd harmonics) 

 

4.2.2 The experimental results and discussion 

 

The experimental test setup explained in Section 3.3 is used to collect the data. 

Manually seeded faults are applied to the bearing and stator winding. The single 

and mixed faults are tested at constant speeds (150, 250 and 350 rpm), and 2 types 

of variable speed profiles. A speed profile used in the study is given in Figure 4.7.  

In the speed profiles, 10 repeated tests have been conducted, and 50 samples 

of 2 minute data are recorded. The sampling rate was 20 kHz. After the order 

normalisation, the number of samples per 2 minute signal is approximately 360. 

This value is selected by compensating for both order and time resolutions. Finally, 

a table of 18000 sample rows and 9 columns (8 features and the health class labels) 
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have been produced. Then 75% of available data is used to train the SVM 

algorithm, and 25% data is applied for validating the algorithm. 

 

 

 

Figure 4.7: A variable speed profile used in experiments. 

 

The average order spectrum of 𝑖𝑝  is given in Figure 4.8. The 2nd order (peak 

at 1.989) is the strongest feature for stator winding fault. The 2nd order of 𝑖𝑝 is 

tracked over time, and the tacked signal for healthy and faulty cases are given in 

Figure 4.9. The amplitude of  signal variation according to the dynamic operating 

conditions, but, the amplitude is greater than healthy case.  

 

Figure 4.8: Average 𝑖𝑝 order spectrum for stator winding fault. 

 

Similarly, as given in Figure 4.10, the 3.05X order of the vibration signal is 

tracked for the outer race bearing fault. A mixed fault condition is also established. 

The RMS amplitude of 3.05X order vibration signal fluctuates over dynamic 
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operation, and a fixed threshold cannot be defined to detect bearing faults in single 

or mixed fault conditions. Therefore, a statistical threshold or classification rule 

using machine learning is mandatory, and a SVM algorithm with additional 

features is used in the proposed diagnosis scheme.  

 

 

Figure 4.9: Tracked 2nd order of 𝑖𝑝 order spectrum for stator winding fault. 

 

 

 

 

Figure 4.10: Tracked 3.05X order of vibration signal for a bearing fault. 

 

The confusion matrix for validating dataset is given in Figure 4.11. The overall 

accuracy of the SVM classifier is about 92.9%. For all the fault classes, more than 

90% classification accuracy is obtained, and the maximum classification accuracy 

is 94%. These results are highly acceptable, proving that the SVM can detect and 

classify the two faults in variable speed and load conditions. 
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SH 
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HB (Stator winding healthy and bearing fault) 

HH (both stator winding and bearing are healthy) 

SB (both stator winding and bearing are defective) 

SH (stator winding is faulty and bearing is healthy). 

 

Figure 4.11: The confusion matrix for the test dataset. 

 

4.3 Summary  

 

This chapter focuses on condition monitoring of bearings in electric motors, 

presenting two schemes for fault diagnosis. The algorithm presented in Section 4.1 

is applied for early fault diagnosis at constant speed and load conditions. The 

diagnosis scheme introduced in Section 4.2 is suitable for  fault diagnosis at 

variable speeds and loads. The mixed fault diagnosis performances is also tested, 

and promising results have been obtained for both cases. The fault diagnosis 

algorithms proposed in this chapter, are based on traditional machine learning 

procedure, in which the features are manually derived by signal processing and 

collected energies at fault-related characteristic frequency bands. In Section 4.1, 

the envelope analysis of vibration signal is used to produce strong features for 

detecting bearing faults in early developing stages. An order tracking algorithm is 

used to detect bearing faults related characteristics frequency orders at variable 

speed conditions in Section 4.2. These algorithms work well for considered two 
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fault cases. However, in practice, the fault types might be unknown, thus  the 

manual feature generation is a challenging task. For detecting faults in complex  

gearboxes and powertrains, the traditional machine learning process is time-

consuming, requiring automatic feature generation methods.   
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Chapter 5  

 

Diagnostics of mixed faults in gearboxes 

and electric powertrains   

 

As discussed in the state-of-the-art,  new algorithms and diagnosis schemes are 

required for dealing with mixed faults under dynamic operations. This chapter 

provides solutions for such contexts via two application studies in Papers C, D and 

E. In paper C, being summarized in Section 5.1, the machine learning and data 

fusion methods are used to improve the accuracy and robustness of a gearbox fault 

diagnosis system under noises and steady-state operations. The performance of the 

proposed algorithms are compared with those without using data fusion. Being 

summarized in Section 5.2, as a summary of papers D and E, briefly presents an 

electric powertrain fault diagnosis scheme for diagnosing mixed faults at variable 

loads and speeds, and gives a short introduction of  the online implementation  the 

proposed diagnosis system. The conclusion of the chapter is given in Section 5.3. 

 

5.1 Robust fault diagnosis system for gearbox mixed faults 

 

A gearbox has a complex structure with many bearings, shafts, and gears. Under  

a mixed fault context, using traditional signal processing to the vibration spectrum 

is difficult, requiring the details of gearbox internal structure. In [71], a review of 

gear fault diagnosis using various vibration signal condition indicators (CI) and 

features, such as RMS, crest factors, kurtosis, and spectral kurtosis, is presented, 

and  performances of the different CIs are compared in the work. However, most 

existing methods focus on single fault diagnosis of gearbox faults. A gearbox 
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multi-fault diagnosis scheme is proposed in [72], but the robustness of the system 

under noises is not considered. Other studies also deal with either single or multi-

fault diagnosis, but the details of robustness analysis under noises are very limited 

or missing [9, 10, 30, 73-75]. Increasing performance of the detection system 

might be more important than looking for a highly reliable feature since the 

machine cannot be completely healthy due to the absence of clear characteristic 

frequencies as argued in [73]. AI algorithms and data fusion might be a solution 

for increasing the accuracies and robustness of a fault diagnosis system [34]. 

The main objective of paper C is to implement a robust fault diagnosis 

system, which can give accurate results at various noise conditions. The 

experimental dataset provided by PHM society data challenge is used to validate 

the proposed algorithm.. Figure 5.1 shows the structure of the gearbox used in the 

experiments. More details of experiments and data can be found in paper C.  

 

 

Figure 5.1: The structure of the gearbox [60]. 

 

In the given experiments, a two-stage parallel shaft gearbox is used for 

collecting the vibration data at the sampling rate of 200 kHz. The gearbox consists 

of four gears, three shafts and six bearings (B1,2,…6) as described in Chapter 3. 

There are 8 different fault classes for spur gearbox and 6 fault classes for helical 

gearbox. A summary of fault classes are given in Table 5.1. Each fault class 

represents a combination of faults in gears, bearings and shafts of respective 

B1 
B4 

B2 

B5 

B3 B6 
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gearbox arrangements. Each fault class is tested at five constant speeds (30 Hz, 35 

Hz, 40 Hz, 45 Hz, and 50 Hz), two load levels (high and low) and two repeated 

tests, making 20 test conditions for each fault class  

 

 

Table 5.1: Fault classes of the gearbox [60] 

 

 

 

5.1.1 The proposed hybrid algorithm 

 

A block diagram of the proposed hybrid fault diagnosis algorithm is shown in 

Figure 5.2. Two vibration sensors are connected at two different places of the 

gearbox (input shaft and output shaft sides) to collect the vibration data of gearbox 

from two different viewpoints. A redundancy data fusion scheme is implemented 

to enhance the accuracy and robustness of the diagnosis, which includes both 

feature level and decision level data fusion. 

Two types of features, namely domain knowledge features and time-

frequency pattern features, are extracted. The domain knowledge features (20 

features) are extracted using time-domain signal and a bank of filters where centre 

frequencies are defined by the frequencies of the gearbox shafts and gear meshing 

frequencies. 

Fault 

Class 32T 96T 48T 80T B1 B2 B3 B4 B5 B6 Input Output

Spur 1 Good Good Good Good Good Good Good Good Good Good Good Good

Spur 2 Chipped Good Eccentric Good Good Good Good Good Good Good Good Good

Spur 3 Good Good Eccentric Good Good Good Good Good Good Good Good Good

Spur 4 Good Good Eccentric Broken Ball Good Good Good Good Good Good Good

Spur 5 Chipped Good Eccentric Broken Inner Ball Outer Good Good Good Good Good

Spur 6 Good Good Good Broken Inner Ball Outer Good Good Good Imbalance Good

Spur 7 Good Good Good Good Inner Good Good Good Good Good Good Keyw ay Sheared

Spur 8 Good Good Good Good Good Ball Outer Good Good Good Imbalance Good

Fault 

Class 16T 48T 24T 40T B1 B2 B3 B4 B5 B6 Input Output

Helical 1 Good Good Good Good Good Good Good Good Good Good Good Good

Helical 2 Good Good Chipped Good Good Good Good Good Good Good Good Good

Helical 3 Good Good Broken Good Good Good Good Combination Inner Good Bent Shaft Good

Helical 4 Good Good Good Good Good Good Good Combination ball Good Imbalnce Good

Helical 5 Good Good Broken Good Good Good Good Good Inner Good Good Good

Helical 6 Good Good Good Good Good Good Good Good Good Good Bent Shaft Good

Gear Bearing ID Shaft
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Figure 5.2: Block diagram of the proposed hybrid fault diagnosis for the gearbox. 

 

The time-frequency pattern features are extracted using the continuous 

wavelet transformation (CWT) from the collected vibration signal. For each 

sample, two CWT images are produced from each vibration signals and merged 

into one image. In addition, STFT based images were also produced for a 

comparative study to find the best images or pattern generation for this application. 

Figure 5.3 shows 2-D representation of a vibration signal for a gearbox fault class.  

Classifiers based on  MLP and CNN are used for feature level fusion and to 

increase the confidence of fault classification. In addition to the feature level data 

fusion, decision level fusion is used for increasing the robustness of classification 

in noisy conditions.  More details of this feature extraction and fusion algorithms 

can be found in paper C. 
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Figure 5.3: The 2-D representation of the signal using wavelet transform. 

 

5.1.2 The experimental results and discussions 

 

There are 280 files for 14 different fault classes or 20 files for each class in the 

original dataset. More data samples are required to enhance the effectiveness of 

the proposed algorithm. A complete time-frequency representation of a vibration 

signal requires the data of one complete cycle of rotation. Based on this rule, one 

data file is subdivided into 20 samples, so 400 samples are created for each fault 

class. Therefore, 5600 samples for 14 fault classes are used for training and testing 

of the algorithm, in which 75% of the data is used for training. 

 

Accuracy and robustness of individual classification algorithms 

First, the classification accuracies of each individual MLP and CNN algorithms 

are tested (without naïve Bayes combiner) using nine test cases as given in Table 

5.2. Then, the performance of the proposed feature level fusion scheme is 

evaluated and compared with that of the baseline without using data fusion. The 

test cases 1, 2 and 3 represent the individual MLP algorithm performances, where 

vibration data from a single sensor is used in cases 1 and 2. In case 3, vibration 

data from both sensors are used for feature level data fusion.  

The test cases 4 to 9 represent the performance of CNN classifier, where 

STFT images are used as input for CNN in test cases 4, 5 and 6. CWT-based 
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images are used in test cases 7,8 and 9. The results in Table 5.2 show that the 

feature level fusion can  increase the classification accuracies (by 0.5% to 21.8% 

depending on test case) of the individual MLP and CNN algorithms. Furthermore, 

in case of CNN, the CWT images give best results for both helical and spur 

gearbox tests. According to the results in Table 5.2, the CWT based CNN, and 

domain feature-based MLP with feature level fusion can be selected as the best 

classifier in this application.  

 

Table 5.2: Overall performances of individual MLP and CNN classifiers. 

 

 

Two types of noises are added to the original signals to test the robustness 

of the proposed individual algorithms. The noise type-1 signals are generated by 

adding white Gaussian noises to the signals with a signal to noise ratio (SNR) of 

14 dB. Noise type-2 signals are generated by mixing each signal to another signal. 

This scenario demonstrates a practical beating situation in a gearbox, where the 

original vibration signal (𝑅𝑠𝑢) being measured is mixed with a fraction (f %) of 

another vibration source (𝑅𝑒). The helical fault class 2 is selected as 𝑅𝑒  in case of 

helical gearbox. The mixing weight (f %) is selected at 0.5, and the helical fault 

class 2 is added as noise to all other helical fault classes. In spur gear faults, a 

similar rule is applied, and the spur fault class 2 is used as a noise (𝑅𝑒) for other 

spur fault classes.  

Test 

case 

Algorithm Signal Spectrogram 

images 

Feature 

fusion 

Accuracy and difference 

compared to feature level 

fusion (%) 

Spur Helical 

1  

MLP 

 

Input  - No 94.1 - 4.2 81.8 - 16.2 

2 output - No 97.0 - 1.3 86.2 - 11.8 

3 both - Yes 98.3  98.0  

4  

 

CNN 

input STFT No 94.0 - 3.5 59.5 - 21.8 

5 output STFT No 90.3 - 7.2 80.8 - 0.5 

6 both STFT Yes 97.5  81.3  

7 input CWT No 92.0 - 6.0 87.8 - 8.4 

8 output CWT No 90.6 - 7.4 90.8 - 5.4 

9 both CWT Yes 98.0  96.2  
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To further compare the accuracy and robustness of the proposed individual 

MLP and CNN algorithms, other classification algorithms are also used. The 

comparison results are given in Figure 5.4.  

 

 

 

 

Figure 5.4: Accuracy and robustness comparison of individual algorithms. 

 

The DF-MLP represents the proposed domain features (DF) and MLP 

algorithm combination, while DF-SVM represents a DF with a SVM algorithm.  

When comparing the DF-MLP and DF-SVM, both algorithms can produce 

relatively high accuracies for noiseless case (Org) and the noise type-1 case. 

However, compared to DF-MLP, the classification accuracies of DF-SVM are 

significantly lower for noise type-2, showing that the DF-MLP algorithm is more 

robust than the DF-SVM algorithm. Similarly, the performance of the proposed 

CWT-CNN algorithm is compared with that of three different algorithms. In raw-

CNN, the raw vibration signal is fed to CNN without generating CWT images. 
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Other two algorithms use, autoencoder based feature learning and SVM 

classification. The raw vibration signal is used for feature generation in Raw-SVM 

while CWT images are used in CWT-SVM. The comparative study results  show 

that the CWT-CNN is more accurate and robust under the considered noises. 

 

Accuracy and robustness of the multiple-fault classification using the hybrid 

neural networks and decision level fusion 

 

The comparison study in Figure 5.4 shows that both DF-MLP and CWT-CNN are 

the best classifiers for the considered diagnosis application.  Next, a decision level 

fusion based on naïve Bayes algorithm is applied to the output of each individual 

classifiers, and the accuracies and robustness of the algorithm are further 

increased. Table 5.3 summarises the performance of the proposed decision level 

fusion.  

 

Table 5.3: Overall performances of MLP and CNN classifiers with noise. 

 

 

 

The test case 3 shows the performance of decision level fusion without 

noise, and the test cases 6 and 7 show the performance of decision level fusion for 

noise type-1 and type-2, respectively. Other test cases represent individual 

algorithm performances without decision level fusion. For the noiseless case, there 

is no much improvement of classification accuracies (from 0.1 to 2.0% 

Test 

case 

Algorithm Noise 

type 

Decision 

level 

fusion 

Accuracy and difference compared to 

decision level fusion (%) 

Spur Helical 

1 MLP 

- 

No 98.3 - 0.1 98.0 - 0.2 

2 CNN No 98.0 - 0.4 96.2 - 2.0 

3 MLP + CNN Yes 98.4  98.2  

4    MLP  

Noise 1 

 

No 97.1 - 0.4 97.0 - 0.7 

5 CNN No 90.4 - 7.1 94.8 - 2.9 

6 MLP + CNN Yes 97.5  97.7  

7 MLP 

Noise 2 

No 85.3 - 5.8 74.5 - 19.0 

8 CNN No 84.1 - 7.0 93.2 - 0.3 

9 MLP + CNN Yes 91.1  93.5  
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improvement). For the noise type-1 case, the classification accuracy improvement 

of  the proposed decision level fusion is in between 0.4 and 7.1%,  being 

considerable. In the case of noise type-2, the improvement is in between 0.3 and 

19%, which is a significant improvement.  

The mean and standard deviation of classification accuracy improvement in 

individual algorithms and the proposed decision level fusion are shown in Figure 

5.5. For example, the mean and deviation of the MLP algorithm are 91.7% and 

8.92% using the six classification accuracies (98.3%, 98.0%, 97.1%, 97.0%, 85.3% 

and 74.5%) given in test cases 1, 4 and 7 in Table 5.3. This means that the MLP 

classifier has the mean accuracy of 91.7%, but it is not robust under noises due to 

the big variation. As seen from Figure 5.5, the mean accuracy is maximized, and 

the deviation is minimized if using decision fusion of the CNN and MLP results. 

 

 

Figure 5.5: Mean and deviation in different test cases. 
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5.2 Fault diagnosis system for an electric powertrain 

 

Reliable diagnosis for defects in the critical components of electric powertrains 

such as bearings, gears and stator windings, is important to prevent failures and 

enhance the system reliability. Most existing fault diagnosis methods are based on 

measuring specific characteristic frequencies to single faults at constant speed 

operations. As mentioned, the measured quantities are non-stationary under 

variable loads and speeds, thus multiple fault diagnosis of gearboxes or electric 

powertrains under such contexts are challenging. Once multiple faults occur in the 

system, the existing  methods may not detect the faults effectively and may give 

false alarms. In [76], a machine learning method is proposed for fault diagnosis of 

electric motors, but this study focuses only on single faults under fixed speeds. 

Although various bearing faults and gear faults are analysed in a gearbox multi-

fault diagnosis system in [72], the test conditions were at single faults with fixed 

loads and speeds. Most recent studies consider either multiple fault diagnosis at 

constant speeds, or single fault diagnosis at constant or variable loads and speeds. 

It is difficult to find a study dealing with both multiple faults and variable load and 

speed levels in literature. Further, research on multiple fault dignosis under 

variable loads and speeds using limited data is missing in both academia and 

industry. 

In this section, a deep learning based fault diagnosis method is proposed to 

detect common faults in the electric powertrains. The proposed method is based 

on pattern recognition using a convolutional neural network to detect effectively 

not only single faults at constant speed but also multiple faults in variable speed 

operations. In addition, the algorithm is trained only using single faults, but the 

trained algorithm can detect multiple faults. This allows to reduce the training data 

requirements. The developed in-house test bench discussed in Section 3.2 is used 

for data collection. The internal components of the complete powertrain are 

disassembled as shown in Figure 3.3. They include 8 bearings, 4 gears and 3 shafts. 

Small-scale damage is artificially produced in the large gear G1 and an outer-race 

defect on the induction motor bearing B1 using an EDM.  For stator winding faults, 

10% inter-turn short circuit is seeded to one phase of the stator winding. Eight fault 

cases are conducted with individual and multiple faults. The gearbox is coupled to 

a  PMSG, and the generator output is connected to a fixed resistive load. Therefore, 

the powertrain load is proportional quadratically to the rotational speed. The output 
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currents of the PMSG are measured and used to estimate the rotational speed of 

the electric powertrain.  

 

5.2.1 The proposed algorithm 

 

A block diagram of the proposed fault diagnosis system for electric powertrains is 

shown in Figure 5.6. Motor currents and the vibration sensors are used to diagnose 

faults. An order tracking algorithm is applied for collecting currents and vibration 

signals to deal with the variable speeds. Then spectrograms of both currents and 

vibration signals are generated and combined into large images. This combination 

provides an enlargement in the feature space. Based on the generated 

spectrograms, CNN can fuse the current and vibration spectrograms and 

implement a fault classification.  

 

 

Order tracked and 

normalised current 

spectrogram

Current signal Vibration signal

Feature fusion and 

CNN classifier 

Order tracked and 

normalised vibration 

spectrogram

Health class

C1: trained CNN classifier 

(stator winding fault) 

Order tracked and 

normalised current 

spectrogram

New 

current 

signal

New 

vibration 

signal

Order tracked and 

normalised vibration 

spectrogram

Health 

status

C2: trained CNN classifier 

(bearing fault)

C3: trained CNN classifier 

(gear fault)

T
ra

in
e
d
 i

n
d

iv
id

u
al

 c
la

ss
if

ie
rs

 f
o

r 
st

a
to

r 

w
in

d
in

g
, 
b
e
ar

in
g
 a

n
d

 g
ea

r 
fa

u
lt

s

Health 

status

Health 

status

Electric motor Geabox Load
Electric power 

source

Control 

unit

T
ra

in
ed

 c
la

ss
if

ie
r 

fo
r 

m
u

lt
ip

le
 

fa
u

lt
s 

(s
ta

to
r 

w
in

d
in

g
,b

e
ar

in
g
 

a
n
d
 g

e
ar

 f
au

lt
s)

Speed measurement

 

 

Figure 5.6: A block diagram of training and testing of the fault diagnosis system. 
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Although CNN is widely used in many applications of image classification, 

a CNN based fault diagnosis needs to be carefully implemented on spectrograms. 

The information of faults is hidden in the collected signals, thus proper signal 

processing methods are required to extract the hidden information from the signals 

and convert into spectrograms. For this purpose, the order normalization for 

vibration signals and the Park’s vector of currents are used together with CNN. 

In the training phase, three classifiers, namely C1, C2 and C3, as shown in 

Figure 5.6, are individually trained to detect stator winding faults, bearing faults, 

and gear faults, respectively. After the training process, the trained classifiers are 

employed to detect multiple fault cases. More details of this system are given in 

Paper D. The extension of this algorithm for online implementation is given in 

Paper E.   

 

5.2.2 The experimental results and discussion 

 

The classification accuracies for individual classifiers are summarized in Table 

5.4. The C1 classifier is trained to detect stator winding faults, giving an accuracy 

of 100 %. The classification accuracy of C2 bearing outer-race fault classifier is 

98.8 %, and the classification accuracy of C3 gear fault classifier is 99.8%. In other 

words, all three classifiers work very effectively for detecting single faults. 

 

Table 5.4: Performance summary of individual classifiers. 

 

Case 

ID 

Classifier ID Component Fault 

class 

Test Accuracy 

(%) SW B1 G1 

1 - H H H HHH - 

2 C1 F H H SHH 100 

3 C2 H F H HBH 98.8 

4 C3 H H F HHG 99.6 

 

SW: stator winding, B1: bearing 1, G1: gear 1, H: healthy, F: faulty. 

HHH: all components are healthy. 

SHH: faulty stator, healthy bearing and healthy gear. 

HBH: healthy stator, faulty bearing and healthy gear. 

HHG: healthy stator, healthy bearing and faulty gear. 
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The classification accuracies for multiple fault cases are summarized in 

Table 5.5. The C1 classifier works well for detecting stator winding faults at any 

multiple fault cases considered in the study, and classification accuracies are 

greater than 98.8% in all the cases. The C3 classifier also effectively detects the 

damaged teeth gear fault in multiple fault conditions with a minimum accuracy of 

87.8%. The weakest classifier in this study is the C2 classifier, which performs 

well in some multiple faults (Case 5 and Case 8), but not well for the outer-race 

bearing faults in Cases 6 and 7, with the accuracies of 76.2% and 71.5%, 

respectively.  

 

Table 5.5: Performance of multiple fault diagnosis. 

 

Case 

ID 

Component Fault class Test Accuracy (%) 

Sw B1 G1 C1 C2 C3 

5 F F H SBH 100 86.8 87.8 

6 H F F HBG 99.8 76.2 98.6 

7 F H F SHG 100 71.5 100 

8 F F F SBG 98.4 90.2 99.4 

 

SW: stator winding, B1: bearing 1, G1: gear 1, H: healthy, F: faulty. 

SBH: faulty stator, faulty bearing, and healthy gear. 

HBG: healthy stator, faulty bearing and faulty gear. 

SHG: faulty stator, healthy bearing and faulty gear. 

SBG: faulty stator, faulty bearing and faulty gear. 

 

The classifiers for the stator and gear fault diagnosis have an excellent 

performance for fault classification under individual and multiple fault conditions. 

The experimental results confirm that the proposed algorithm can detect single and 

multiple faults under variable speed conditions. Although the classifier for the 

bearing fault detection works well for single fault conditions, it has a limited 

capacity for classifying some multiple fault conditions. Three types of localized 

faults in the stator winding, bearing and gearbox have been studied in this study, 

but the concept can be extended to other types of faults such as shaft unbalance, 

shaft misalignments, bearing inner race faults, gear misalignments, and broken 

gear tooth.  
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5.2.3 Online implementation of the powertrain fault diagnosis system  

 

Online fault diagnosis systems are important in industry to monitor the machine 

condition over a period of time, and automatically get the decisions about the 

machine health. The online implementation details of an electric powertrain fault 

diagnosis system are discussed in this section, being detailed in papers D and E. 

The procedure used for development of the online fault diagnosis system is given 

in Figure 5.7.  

 

`

Development of 

machine learning 

model 

Algorithm implementation 

as an embedded system

Development of online fault 

diagnosis system using the 

trained model

Collect data from 

several test cases

Build a virtual test setup 

using stored data
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powertrain
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acquisition system

Step 1

Step 2

Step 3

Advanced 

signal 

processing

 
 

Figure 5.7: The procedure used for development of the online fault diagnosis 

system 

 

In the first step, the required machine learning algorithm is developed as 

summarised in Section 5.2.1. Next, the online fault diagnosis system is developed 

by considering the collected experimental data as a virtual system. The latest step 

considers aspects of an embedded system development, which is out of scope of 

this dissertation. 

A block diagram of the developed online fault diagnosis system is shown in 

Figure 5.8, including two subunits, namely health class predictor and decision-

maker. In the first subunit, the health classes of the collected signals are predicted 

using the trained machine learning and data fusion algorithm. Several consecutive 

prediction results are collected and analyzed in the second subunit for the final 

decision. 
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Figure 5.8: The algorithm used in the online fault diagnosis system in the step 2. 

 

The online operation of the algorithm uses two buffers. In the data 

acquisition buffer, the data inflow is controlled. A large data processing buffer is 

used in case the length of the dataset is not sufficient for data processing. Further, 

this dataset is sent for data preprocessing and feature generation. The trained CNN 

classifier bank is applied on these processed spectrograms to classify the faults.  

Confusion matrixes and Receiver Operating Characteristic (ROC) are 

commonly used to analyse the performance of a trained machine learning model. 

In online fault diagnosis applications, these measures cannot be obtained because 

the prior information of the faults is unknown. Therefore, a new decision criterion 

is proposed. Each classifier has three parallel buffers to store the predictions. In 

each buffer, the health class label with the maximum count is selected as the final 

decision. This method can compensate for false predictions from unexpected 

noises or interferences. The interface of the developed online fault diagnosis 

system is given in Figure 5.9. 
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Figure 5.9: The interface of the developed online fault diagnosis system for the 

electric powertrain. 

 

The performance of the online fault diagnosis system for three fault cases 

is given in Figure 5.10. Each pie chart shows the percentage of the predicted class 

labels in each classifier for 20 consecutive predictions. The prediction label with 

the highest count is selected as the believed fault type. 
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(a) (b) (c) 

 

Figure 5.10: A snapshot of online fault diagnosis system performance: 

 (a) bearing fault (b) stator winding and bearing faults (c) bearing and gear faults 

 

5.3 Summary  

 

In this chapter, two novel fault diagnostics schemes are proposed for mixed fault 

diagnosis of gearboxes and electric powertrains at challenging working conditions, 

e.g. presence of noise, variable speeds and loads. The foundation for proposed 

solutions is based on CWT and STFT based time-frequency representation of input 
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signals, deep learning and data fusion. The proposed algorithms are validated using 

experimental data, and following remarks are drawn from the experimental results.  

▪ Due to the complexity of feature generation, the traditional machine learning 

process used in Chapter 4 is time-consuming for fault diagnosis of complex 

gearboxes and powertrains. Alternatively, time-frequency spectrograms and a 

CNN deep learning algorithm are suitable to combine feature learning and 

classification within a unified supervised training scheme. The CNN algorithm 

can learn complex features for mixed fault diagnosis, which is difficult to do 

manually.    

▪ Feature-level data fusion can significantly improve the accuracy of a fault 

diagnosis irrespective of the type of machine learning algorithms.  

▪ If an individual fault classifier is not robust under noisy conditions, using an 

additional classifier and decision fusion can enhance its robustness. 

▪ Accuracy of the CNN-based classification depends on the quality of input data, 

image or patterns. Using the spectrograms as input data for CNN gives a higher 

classification accuracy than the raw vibration signals.  

▪ Fusion of order normalised vibration and current spectrograms at feature level 

using a CNN algorithm allows for detecting multiple faults at variable speeds 

and loads of an electric powertrains. 

▪ The online implementation of such algorithms as decision support systems 

would reduce the workload of maintenance personnel and downtime, and 

increase the productivity. 
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Chapter 6  

 

Online self-supervised condition 

monitoring system 
  

6.1 Introduction 

 

Various data-driven supervised machine learning, and data fusion based fault 

diagnosis schemes are proposed in Chapters 4 and 5, confirming that the proposed 

algorithms can work well in challenging working conditions, namely, variable 

speeds and loads, and noisy conditions. However,  those proposed schemes require 

labelled training data or historical data at faults. Labelled training data is limited 

in reality, rendering a challenge for any data-driven algorithm. To address the 

challenge of limited data, unsupervised and supervised learning methods can be 

combined, and a proper combination of different techniques can give an overall 

improvement of performance by compensating the weaknesses of each method.  

Online implementation of data-driven algorithms is important to obtain an 

autonomous diagnostics, and reduce the manpower requirement for fault 

diagnosis. Commercial online condition monitoring systems are available in the 

market [11, 12], but they are expensive and require high expertise of the system 

operators. On the other hand, most published research works focus on proposing 

new condition monitoring algorithms [9, 10, 30, 71-75], but details on their online 

implementation are limited. As stated in [12], online implementation based on 

artificial intelligence, and wireless multi-sensor data fusion is a possible direction 

to achieve an intelligent CM system.  
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In this research, a novel online condition monitoring system is proposed to 

deal with limited data. The proposed solution in this chapter is suitable for fault 

diagnosis of new powertrains without prior data of faulty cases. The proposed 

diagnosis scheme is summarized in Section 6.2 while Section 6.3 briefly presents 

the developed online diagnosis system and its performance. Paper F details 

information in this chapter.   

 

6.2 The proposed fault diagnosis scheme 

 

A block diagram of the proposed fault diagnosis scheme comprised of two stages 

is given in Figure 6.1.  

Order tracked and 
normalised current 

spectrogram

Current signal Vibration signal

Order tracked and 
normalised vibration 

spectrogram

Electric motor Gearbox Load
Electric power 

source
Control unit

Speed measurement

Stage-1 Fault detection: one-class 
SVM anomaly detection 

Stage-2 Self-supervised feature 
learning, feature-level data fusion, 

supervised CNN  and decision

Health class deviation 
warnings for the machine 

operator

Fault classification results

Cloud data storage

Maintenace 

department

Fa
ul

t 
cl

as
s 

la
b

el
s

Sp
e

ct
ro

gr
am

s 

 

Figure 6.1: A block diagram of the proposed fault diagnosis scheme for electric 

powertrain. 
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The first stage is fault detection, and the second stage is fault isolation. A 

combination of one-class SVM anomaly detection and supervised CNN algorithms 

have been used for fault detection and isolation. The powertrain vibration, speed 

and input current signals are measured in online passion and stored in the cloud 

storage for stage-1.  The order normalised spectrograms are generated using 

measured speeds and stored for the stage-2 algorithm. The detailed flowchart of 

the operation of the proposed fault diagnostics scheme is given in Figure 6.2. 

Cloud data storage

HealthyFeatures for fault 
detection (RMS of signals )

Trained one-class 
SVM

Fault type 1 Fault type 2 Fault type N

Supervised 
classification: 

CNN 1 

Health class deviation 
warnings for the machine 
operator/analysis expert

Supervised 
classification: 

CNN 2

Supervised 
classification: 

CNN N

New 
spectrograms

Self-learned features 
from CNN feature 

learning

Calculate the class 
score using CNNs

Maintenace 

departmentSelf feature learning, online diagnosis and decision making

RMS of vibration, 
current and speed

Order normalised 
vibration and current 

spectrograms

Class 
labels

Fault classification 
results

Fault diagnosis results

 
Note: The green colour boxes and lines represent the stage-1 algorithm, and the remaining boxes and lines 

represent the stage 2 algorithm 

 

Figure 6.2: Detailed flowchart of stages-1 and -2 of the proposed diagnosis 

scheme. 

 

There are three main steps in the fault detection algorithm in stage 1;  

1) Train the boundaries for healthy class data using features (RMS of the vibration 

signal, RMS of IM current signal and IM speed) and one-class SVM.  

2) Calculate the score from the trained one-class SVM for incoming data in a 

dynamic manner and take the average of the latest samples. 

3) Compare the average score and make the decision. If the score is greater than 

zero, the machine is assumed to be healthy and otherwise faulty. 
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The fault detection results in generating the training data for CNN classifiers 

in stage 2. Once a fault is detected in stage 1, a temporary class label (e.g. Fault 

type 1 (FT-1)) is assigned. In the stage 2, the supervised CNN algorithm is trained 

using healthy data and the FT-1 data.  In this self-supervised feature learning 

method, the algorithm can learn features related to multiple faults (FT-1, 2, …). 

The algorithm keeps a bank of feature types learned from the cloud data storage. 

For new data, the learned feature set is applied to generate a score, which 

represents the similarity of new data respective to the corresponding feature type. 

The final decision is taken based on a defined decision criteria. When the 

powertrain is repaired, the actual label is available, and maintenance department 

can update the FT-1 with a correct label. 

 

6.3 The experimental results and discussion 

 

The laboratory test setup explained in Section 3.2 is used to generate data for single 

and multiple faults with different fault severities. As given in Figure 6.3, the 

powertrain operates at variable speeds and loads, making a realistic diagnosis 

scenario.  

 
 

Figure 6.3: The constant and variable speeds of each fault class. 

 

Three levels of gear damage scenario are tested (GF1, GF2 and GF3), where GF1 

is a small gear tooth damage, and GF2 has a further damaged gear tooth. The GF3 
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is a complete broken tooth gear. Three severity levels of outer-race defects on the 

induction motor bearing (BF1, BF2 and BF3) were tested. For stator winding 

faults, 6% (SF1) and 10% (SF2) inter-turn short circuit faults are applied in one 

phase. The sampling rate of the data was 20 kHz for the vibration, motor current 

and speed measurements. After preprocessing, there are 3820 samples for each 

fault class. More details of experimental data and data preprocessing can be found 

in Paper F.  

 

6.3.1 Stage-1 - unsupervised fault detection  

 

As discussed in Section 6.2, the one-class SVM is trained, using healthy system 

data, and the trained algorithm is used to generate scores for fault class data. The 

scores greater than zero is considered as data from healthy powertrain, and the 

scores less than zero is considered as faulty. Table 6.2 shows the summary of one-

class SVM performances for the first 9 fault classes. The high detection accuracies 

of Table 6.1 confirm that proposed one-class SVM algorithm can detect fault 

reliably in variable speed and loads conditions. However, the stage-1 is to find 

whether a component is healthy or faulty, but in this stage the fault type or severity 

is unknown.  

 

Table 6.1: One-class SVM performances for fault detection. 

 

Fault class 

ID 

Fault 

class 

Detection score 

(%) 

Detection 

criteria 

Powertrain 

Status 

1 H 99.9 Score > 0 Healthy 

2 GF1 98.6 Score < 0 Faulty 

3 GF2 95.9 Score < 0 Faulty 

4 GF3 92.0 Score < 0 Faulty 

5 BF1 100.0 Score < 0 Faulty 

6 BF2 99.9 Score < 0 Faulty 

7 BF3 100.0 Score < 0 Faulty 

8 SF1 100.0 Score < 0 Faulty 

9 SF2 99.9 Score < 0 Faulty 
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6.3.2 Stage-2 - supervised CNN fault diagnosis algorithm  

 

The proposed stage-2 algorithm is implemented as explained in Section 6.2, and 

the classification accuracies for 11 fault classes are tested. To compare the 

performance of stage-2 CNN algorithm, a comparison study is designed using 

domain features, binary SVM and MLP algorithms. The average order spectrums 

of time-domain signals (vibration and current) are derived, and the amplitude of 

fault-related characteristics frequency orders are extracted as features. In this 

study, nine features are generated as domain features. The details of fault-related 

characteristics frequency orders used for domain feature generation can be found 

in paper F. In the comparison study, nine classifiers are trained using the data from 

lowest severity fault classes (GF1, BF1 and SF1), and the classification accuracies 

are tested for 11 fault classes as shown in Table 6.2. All gear fault algorithms (GF1-

SVM, GF1-MLP and GF1-CNN) classify the healthy class with accuracies over 

97.1%. 

 

Table 6.2: The classification accuracies of different classifiers. 

 

Fault 

Class 

ID Fault Class 

 

Classification 

accuracies (%) 
 

GF1-

SVM 

GF1-

MLP 

 

GF1-

CNN 

BF1-

SVM 

BF1-

MLP 

BF1-

CNN 

SF1-

SVM 

SF1-

MLP 

SF1-

CNN 

1 H 97.1 97.8 98.6 94.8 93.7 99.6 100.0 100.0 99.8 

2 GF1 97.4 97.6 94.2 67.5 65.1 99.6 95.4 97.0 100.0 

3 GF2 68.4 91.6 98.6 55.0 67.0 99.5 43.4 98.0 100.0 

4 GF3 71.4 81.3 99.1 53.0 57.1 99.6 60.0 100.0 100.0 

5 BF1 81.1 75.3 94.9 94.7 94.0 90.0 99.0 100.0 100.0 

6 BF2 54.1 82.7 96.2 79.0 80.5 99.0 90.0 100.0 100.0 

7 BF3 51.0 77.0 82.5 99.0 99.0 99.0 63.0 100.0 100.0 

8 SF1 76.0 94.0 80.1 60.0 99.0 99.0 100.0 100.0 99.7 

9 SF2 71.0 95.0 82.7 61.0 98.0 99.0 100.0 100.0 99.7 

10 GF2_BF2 88.0 80.0 93.4 86.0 89.0 67.4 60.0 100.0 99.6 

11 GF2_BF2_SF1 97.0 84.0 97.1 96.0 70.0 72.1 98.0 75.0 98.1 

  Average 77.5 86.9 92.5 76.9 82.9 93.1 82.6 97.3 99.7 

  Minimum 51.0 75.3 80.1 53.0 57.1 67.4 43.4 75.0 98.1 

  Maximum 97.4 97.8 99.1 99.0 99.0 99.6 100.0 100.0 100.0 
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The GF1-SVM has the lowest performance with minimum and average 

accuracies of 51.0% and 77.5%, respectively, while those minimum and average 

accuracies of the GF1-MLP are 75.3% and 86.9%. The proposed GF1-CNN 

classifier has the best performance with the minimum and average accuracies of 

80.1% and 92.5%, respectively. The GF1-SVM classifier has the lowest average 

performances, but still, the classification accuracy of its original trained class 

(GF1) is 97.4% while having moderate accuracies for other fault classifications.  

Domain feature-based classifiers (binary SVM and MLP) have some lower 

accuracies due to the limitations of DF, and the amplitudes of characteristic 

frequency bands are calculated from average order spectrum, which contains 

approximations for the dynamic load and speed operations. However, the CNN 

feature learning covers the local regions in the spectrograms for dynamic 

operations, resulting in a better feature learning. The CNN-based classifier can 

compensate for spatial deviation of fault-related frequency bands in the 

spectrograms produced in the order normalization algorithm during sudden speed 

changes. This cannot be achieved in DF-SVM and DF-MLP. Therefore, the 

performances of CNN classifiers are better than other two methods. 

 

6.3.3 Online implementation 

 

The proposed fault diagnosis system is implemented as an online system. The 

interface in Figure 6.4 shows the result of one-class SVM score in stage-1 for a 

healthy powertrain at variable speeds. The score is online calculated, and the 

average score from historical scores is used for fault detection decision. After 

detecting a fault, a temporary label is assigned to new data (e.g. FT1), and a CNN 

is trained using data from healthy and fault (FT1). The learned CNN feature dataset 

can be used for generating a score (from 0 to 1) to define the similarity level of 

new spectrogram data with respect to the learned fault type. A bank of CNN 

classifiers are trained for other fault types, and the CNN scores are calculated for 

new spectrogram data. The scores of five CNNs for a gear fault case are given in 

Figure 6.5. The score for GF1-CNN classifier is very high, and the scores of other 

CNN classifiers are low. This clearly indicates a gear fault. The historical score of 

each CNN classifier is given in Figure 6.6, and the maintenance personnel can 

have more confidence on the final decision based on historical scores.  
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Figure 6.4: One-class SVM fault detection interface. 

 

 

 

Figure 6.5: CNN fault score and decision-making interface. 
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Figure 6.6: CNN fault score history interface. 

 

6.4 Summary 

 

This chapter introduces an outline for an online fault diagnosis system consisting 

of  self-supervised feature learning. The rationale for using such a concept is to 

eliminate the requirement of historical fault data for data-driven algorithms. In the 

proposed method, the data from single faults and temporary labels are used for 

initial self-supervised feature learning process. Then, the learned features are used 

for detecting future single and multiple faults. The proposed algorithm is validated 

using data from signals and multiple faults under variable speeds and loads, 

obtaining promising results.  A basic similarity score calculation and decision rule 

are introduced, working well in the considered fault scenario. More experimental 

data is required for improving the decision rule. The generalisability of the 

proposed CNN feature learning is tested. The features learnt from initial fault 

severity levels are used for detecting faults at higher severity levels, which are not 

used in the training process. 
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The proposed algorithm has some limitations. In the case of initial multiple 

faults, the proposed method cannot learn single fault features separately, requiring 

further improvements. An insight for improvements can be obtained from self-

supervised image segmentation applications, where the individual objects in the 

images are assigned for each object in self-supervised manner. A similar concept 

can be applied for initial multiple fault diagnostics using spectrograms and CNN, 

where the local fault features related to individual faults might be detected in the 

local context of spectrograms. Therefore, the proposed algorithm, together with 

wireless sensors and cloud data storages, might be a possible future direction for 

realizing intelligent and online condition monitoring systems for industrial 

machines. 
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Chapter 7  

 

Conclusions and future work 
 

7.1 Conclusions 

 

This research focuses on online condition monitoring of gearboxes and electric 

powertrains. Existing research and industrial products aimed at component level 

fault diagnosis for single faults at steady-state operating conditions. Condition 

monitoring of complex gearboxes and electric powertrains under dynamic 

conditions is limited in literature. Within the framework, four major research 

topics or problems were identified within condition monitoring of gearbox-based 

electric powertrains, and novel diagnosis schemes based on data-driven approach 

were presented to solve the problems.  

First research problem focuses on bearing fault detection at early stage and 

dynamic operating conditions. Bearing failures modes may depend on its operating 

conditions, and it is difficult to detect bearing faults in early-stage. Therefore, an 

early-fault diagnosis scheme based on envelop analysis, domain feature generation 

and SVM, is proposed via paper A. The envelope analysis generates strong features 

for  SVM classifier and the trained SVM can detect faults in a multidimensional 

hyperspace. The bearing fault diagnosis at variable speeds and loads are solved by 

tracking the fault related characteristics frequencies and generating additional 

strong features manually for a SVM. The results of Paper B show that the proposed 

method is useful for fault diagnosis in wind turbines and powertrain applications. 
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The second research problem identified in this work is improving the 

robustness of gearbox mixed faults diagnosis. A robust fault diagnosis scheme 

consisting of CNN, MLP and data fusion is proposed through paper C, and a 

comparative study is used to highlight performance of the proposed method using 

experimental data. The results of the gearbox fault diagnosis study show that the 

feature level and decision level data fusion can improve the robustness of gearbox 

mixed fault diagnosis under noise conditions.  

The third research problem focuses on multiple fault diagnosis in variable 

speed and load conditions. A new fault diagnosis scheme based on CNN is 

proposed via paper D. The spectrograms generated from vibration and motor 

current signals are fed in CNN algorithm for feature level fusion to diagnose the 

fault at variable speeds and loads.  The order tracking process can generate order 

normalised spectrograms for CNN algorithm. The CNN can compensate the 

frequency overlappings at order normalisation process by compensating the 

variations of frequencies in the spectrograms. Based on the proposed algorithm, an 

online fault diagnosis scheme is implemented for autonomous fault classification 

at dynamic operating conditions in paper E.  

This work proposes new data-driven diagnosis methods. The main 

challenge of  any data-driven approach is requirement of training data. Therefore, 

the fourth research topic focuses on finding methods to reduce the training data 

requirements of data-driven algorithms. A self-supervised feature learning 

algorithm is proposed for online diagnosis of powertrain mixed faults under 

dynamic operating conditions. The proposed solution in paper F is based on two 

stages. In the first stage, fault are detected, and temporary labels are assigned. The 

results of stage-1 algorithm were used for training CNN algorithms. The order 

normalisation process allows for detecting faults at variable speeds, and the 

proposed CNN scores and decision criteria have the capability to isolate single and 

multiple faults.  

The existing diagnosis methods based on  signal processing, statistical or 

domain feature generation and machine learning have limitations for complex 

machines at dynamic operating conditions. The domain feature generation may 

generate strong features for single fault diagnosis at steady-state operating 

conditions, but it is time-consuming and may generate weak features for multiple 

fault diagnosis at dynamic operations. The results of this research confirm that the 

pattern features from time-frequency spectrograms using CNN learning and data 
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fusion algorithms can be used to diagnose multiple faults at variable speeds and 

loads. In addition, the usage of many sensors  (e.g. vibration and current)  allow 

for detecting the physical fault information in different domains or viewpoints,  

thus data fusion results in more robust diagnosis decisions. The proposed self-

supervised online condition monitoring system can work without historical data 

for faults, and the algorithm can learn features for online fault detection and give 

automatic decisions to the machine operator. 

 

7.2 Limitations  and future works 

 

The deep learning algorithms used in this research are pattern recognisers, which 

can detect the difference of patterns for healthy and faulty data. However, to detect 

fault patterns, proper spectrogram images should be fed into algorithms. For 

example, the quality of input images affects performance of fault detection. The 

input spectrogram image quality is constrained by several factors such as 

sensitivity of sensors used for data collection, the sampling rate and number of 

samples, and the signal processing methods used for image generation. For 

example, CWT based images are better than STFT based images. Further, order 

tracking at variable speeds has limitations, where the frequency resolution and time 

resolution cannot increase at same time to adjust image quality. In this research, 

reasonable size spectrograms (maximum dimension :113×226×3) are generated 

from each vibration and current signal to represent the time-frequency patterns. A 

detailed study is required to find the tradeoff between the size of input data, 

classification accuracies, complexity of machine learning algorithms and 

computational burden. High-resolution large spectrogram images may capture 

large portion of time-frequency patterns from the signals. However, this increases 

the complexity and computational burden of the algorithm.  

The selection of proper sensors, location and number of sensors is important 

in fault diagnosis. For example, the vibration sensor data is more useful for 

mechanical faults than current sensor data. In the proposed gearbox fault diagnosis 

scheme, two vibration signals are used. In the powertrain application, one vibration 

sensor is used, and the vibration sensor is placed on top of the gearbox in the 

powertrain for measuring the gearbox vibration. However, using more than one 
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vibration sensor and data fusion may give a better result in powertrain applications. 

Future study should investigate this issue further. 

In this work, the spectrograms of IM currents are mainly used for detecting 

electrical faults, and mechanical fault detection using current signatures was not 

focused. The deep learning approach with pattern recognition may be relevant for 

this task. However, when generating spectrograms, the time  and frequency 

resolution and frequency ranges are the main parameters to consider. The 

mechanical fault signatures in stator current signal can be hidden, weak and present 

in diferent frequecy ranges. High resolution spectrograms with large frequency 

range may results in high computational burden. Therefore, instead of using one 

large spectrograms, many spectrograms can be used with different range (e.g. 0-

1000 Hz covered by one spectrogram, 1kHz to 10 kHz covered by another and 

more than 10 kHz by another spectrogram). In this way, complete time-frequency 

patterns can be identified using CNN and data fusion. 

In this study, the early fault detection of electric powertrain components are 

focused and the RUL estimation problem was not studied. Intergration of RUL 

estimation capability to proposed online solution is a suitable direction for future 

studies. In addition, there is high potential to improve the proposed online self-

supervised feature learning fault diagnosis scheme. The diagnosis scheme should 

be tested with further experimental data using various operating conditions, and 

the decision criteria should be improved. The local time-frequency patterns 

learning and detection capabilities of CNN for single and multiple fault features 

should be improved. In this research, three types of faults (gear, bearing and inter-

turn stator winding) are considered. However the proposed concept can be 

extended for detecting other types of faults such as misalignment, unbalance, etc. 

Proper combinations of wireless sensors, cloud data storage and deep learning 

algorithms will be attractive topics for condition monitoring of complex 

machineries under dynamic operations.  The online implimentaion of such 

diagnostic schemes will help to reduce the overall maintenance cost, and ensure 

safe and reliable operations. 
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     Abstract— Bearings are one of the most critical elements in rotating 

machinery systems. Bearing faults are the main reason for failures in 

electrical motors and generators. Therefore, early bearing fault detection is 

very important to prevent critical system failures in the industry. In this 

paper, the support vector machine algorithm is used for early detection and 

classification of bearing faults. Both time and frequency domain features are 

used for training the support vector machine learning algorithm. The trained 

classier can be employed for real-time bearing fault detection and 

classification. By using the proposed method, the bearing faults can be 

detected at early stages, and the machine operators have time to take 

preventive action before a large-scale failure. The usefulness of the algorithm 

is validated by using a run-to-failure experimental test data.  

 

Index Terms-- Fault diagnosis, Fault detection, Support vector machines, Ball 

bearings   
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A.1  Introduction 

 

Rotating machinery systems are one of the fundamental pillars of modern human 

society. They can be found in most household appliances, industrial manufacturing 

processes, electric power generation, wind turbines, automobiles, etc. Early fault 

detection is necessary for large industrial machines as those faults may lead to 

catastrophic failures, service interruption and productivity losses. The rotating 

machines normally fail because of mechanical or electrical stresses which can be 

either structural or dynamic. The primary mechanical failures of rotating machines 

can be categorised as static, fatigue and surface failures. Based on the study of 

EPRI, 41–42 % of induction motor failures are due to bearing faults, and stator 

faults are followed by 36% [1]. Early detection of bearing faults is significant in 

industrial applications since the rotating machines are the heart of industrial 

processes. Proper maintenance practice is required to reduce the impact of failures 

and increase the service availability of these machines.  

 The oldest maintenance method was breakdown maintenance where the 

maintenance tasks were conducted after the failure of the machinery. The 

breakdown maintenance practice is suitable for non-critical machinery where 

reliability and availability are not very important. For critical machines, such as 

electric power plants, manufacturing machines, breakdown maintenance is not an 

option since unexpected failures can result in service interruptions and massive 

financial losses. 

Consequently, preventive maintenance has been used in industry where the 

maintenance was conducted at scheduled regular intervals. The major 

disadvantages of preventive maintenance are needless planned shutdown and high 

maintenance cost. Later, condition-based maintenance (CBM) practices were 

slowly adopted by industry. The primary objectives of CBM are reducing the 

maintenance cost, increasing the machine reliability and service availability, etc. 

CBM is one of the modern maintenance practices where the conditions of 

machines are continuously monitored to detect system faults. Based on the 

observed machine conditions, the maintenance tasks can be arranged. The basis 

for condition/health monitoring is that machine faults can be diagnosed based on 

measured quantities of the rotating machines. The measured data could be 

temperature, thermography images, chemical and wear monitoring (e.g. lubricant 

oil contamination), vibration signals, acoustic emission signals, shock pulses, 
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motor current signals, etc. [2-3]. Operating temperature is a primary indicator of 

the machine health. Temperature or infrared image analysis is one of the easiest 

methods to monitor the machine condition. Lubricant oil analysis is often used for 

detecting bearing and gearbox faults. The electrical signature analysis is applied to 

detect the mechanical and electrical faults in electrical machines. However, 

vibration analysis is the most common technique for analysing mechanical faults, 

typically bearing, gearbox, misalignments, etc.  

 In the broad category, most fault diagnosis approaches can be summarised 

into model-based or data-driven. In the model-based fault diagnosis approach, a 

predetermined system/process model is required. The system can be modelled 

using physical system modelling, system identification techniques or system 

observers. Based on the system model, the system status can be predicted, and the 

predictions can be compared with the measured system status. The final step is 

analysing the residual of the comparison for fault diagnosis and prognosis purpose. 

The primary challenge of this method is making an accurate system model. 

However, in the data-driven approach, sensor data is used in statistical or machine 

learning algorithms to identify and classify the faults of the system. In this method, 

the predetermined system model is not required. The data- driven approach 

together with advanced signal processing techniques are very powerful tools for 

rotating machinery fault diagnosis and prognosis. Therefore, the data-driven 

approach is selected for this study. 

 In the most common system of vibration analysis, root mean square (RMS) 

of vibration signal and/or frequency spectrum is analysed in a monitoring process. 

Normally the data collection and processing are conducted one a manual 

inspection basis and have several limitations, for instance, expensive manpower, 

lack of statistical and machine learning fault detection. To solve the above 

problems, a system for online classification of bearing faults in electric motors is 

proposed in this study. For the proposed system, an accelerometer must be placed 

on the motor, and short-duration (e.g. 1 second) vibration signals should be 

recorded at predefined time intervals (e.g. in every 60 minutes). During the first 

time, there may not be sufficient data to train the classifier. If a manufacturing or 

process plant has a large collection of similar motors, it is economical to make this 

training data by using few motors, and once the data is available, the classier can 

be trained. Then the real-time vibration data can be applied to the trained classier 

for detecting possible faults in early stages. In this paper, A support vector machine 

algorithm is used for early detection and classification of bearing faults. A data-
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driven condition monitoring approach is adopted for the study. The next task after 

the fault detection is predicting the remaining lifetime of the faulty bearing, and 

this information can be used to make CBM schedules. The final objective is 

reducing the downtime and overall maintenance cost of the system. 

 This paper is organised as follows: in Section A.2, vibration signal-based 

bearings fault diagnosis method is discussed. Then the details of the fault 

classification algorithm are presented in section A.3. The experimental results are 

analysed in section A.4. The conclusion of the work is provided in section A.5. 

 

A.2 Vibration signal-based diagnosis of bearing faults 

 

The main components of rotating machines are bearings, gears and shafts. 

Vibration signal analysis is the traditional method used for fault diagnosis in above 

components. The failures can happen in any element of the rolling bearing such as 

inner race, outer race, rolling elements and cage. Faults in the bearings, gears and 

shafts are presented in the vibration signal, and such faults can be detected by using 

time, frequency and time-frequency analysis. The primary task of the signal 

processing is to extract fault-related features from the raw data. Most common 

time-domain features are RMS, kurtosis, crest factor, time synchronous average, 

etc. The essential features in frequency domain include amplitude and power of 

frequency components, the length of sidebands, natural frequency, harmonics, etc. 

Various combination of signal processing, statistics and machine learning 

techniques for the fault diagnosis and prognosis can be found in the literature [4-

12].  

Signal processing has been used as the enabling technique in many fault 

diagnosis algorithms. The selection, location and orientation of sensors are very 

important in detecting the expected faults. Vibration sensors should be selected 

based on the rotational speed of the machines and placed closer to the bearing or 

gearbox under consideration. Features or fault characteristics can be derived from 

different analysis domains. Statistical and machine learning algorithms can be 

utilised for automatic detection and classification of faults [4-12]. Moura et al. [4] 

demonstrated a data-driven approach for bearing fault diagnosis. First, the 

vibration signal of the bearings is recorded, and time domain features were 

extracted. Then the principle component analysis (PCA) and artificial neural 

networks (ANN) are used to classify the severities of the bearing faults. An 
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evaluation of fault recognition efficiency was completed for each combination of 

signal processing and pattern recognition techniques. It is determined in [4] that 

all four schemes of classification yielded reasonably good results and were thus 

shown to be a promising approach for rolling bearing fault diagnosis. 

Multiresolution analysis (MRA) is used in [5] to extract the features from vibration 

signals. Afterwards, a supervised neural network (NN) is adopted for classification 

purposes which can classify four bearing statuses (healthy, inner race fault, outer 

race fault and ball fault). Subsequently, the algorithm has been extended to extract 

the features from wavelet packet transformation (WPT) and classify them with 

ANN [6]. Other studies on feature extraction techniques and classification methods 

could be found in [7-12]. In this paper, the SVM algorithm is used for early bearing 

fault detection and classification. 

 A typical rolling element bearing consists of four elements namely, inner 

race, outer race, rolling elements and cage. Depending on applications different 

types of rolling elements are selected. Ball bearings provide the best 

performance/price ratio and are widely used in industry. Other types of bearings 

are cylindrical rollers, taper rollers and spherical bearings which are often 

designated for high load applications. Figure A.1 shows the spherical roller bearing 

used in this study.  

 

 

Figure A.1: A typical spherical roller bearing [19]. 

 

When a bearing starts its degradation process, very high-frequency (5-40 

kHz or level 1) components associated with bearing faults begin appearing in the 

vibration spectrum. At the second stage, in addition to the high-frequency 

components, medium frequency (1-5 kHz or level 2) also begin appearing. 
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However, detecting faults at these levels are difficult.  At the next, fault associated 

frequency components are visible at low-frequency range (< 1 kHz or level 3) in 

the vibration spectrum [18]. Based on the geometry, dimensions of the bearing and 

the rotational speed, these characteristic frequencies can be calculated. At the level 

4, the bearing drives to a complete failure and vibration spectrum becomes a noisy 

spectrum. Thus, diagnosis of bearing faults should be focused on the level 3 where 

the frequencies associated with bearing defects are given in (A.1) -(A.5) [16], [20]. 

 

The fundamental train frequency/cage frequency is defined as 

 

 

𝐹𝑇𝐹 =
𝑓𝑠

2
 (1 −

𝐷𝑏

𝐷𝑐
 𝑐𝑜𝑠𝜃)                                                                               (A.1) 

 

The ball/roller spinning frequency (BSF) can be defined as 

 

 

𝐵𝑆𝐹 =  
𝐷𝑐

2𝐷𝑏
 𝑓𝑠(1 − (

𝐷𝑏

𝐷𝑐
 𝑐𝑜𝑠𝜃)2)                                                                   (A.2) 

 

The characteristic frequency of an outer race defect is given by 

 

 

𝐵𝑃𝐹𝑂 =
𝑁𝑏

2
 𝑓𝑠(1 −

𝐷𝑏

𝐷𝑐
 𝑐𝑜𝑠𝜃)                                                                        (A.3) 

 

The characteristic frequency of an inner race fault can be calculated as 

 

 

𝐵𝑃𝐹𝐼 =
𝑁𝑏

2
 𝑓𝑠(1 +

𝐷𝑏

𝐷𝑐
 𝑐𝑜𝑠𝜃)                                             (A.4) 

 

 

The characteristic frequency of a rolling element fault is defined as 

 

𝑅𝐸𝐹 =  
𝐷𝑐

𝐷𝑏
 𝑓𝑠(1 − (

𝐷𝑏

𝐷𝑐
 𝑐𝑜𝑠𝜃)2)                                                                    (A.5) 

where 𝑁𝑏 is the number of rolling elements in the bearing, 𝐷𝑏 denotes the diameter 

of a rolling element, 𝐷𝑐 represents the pitch diameter, 𝜃 is the contact angle 

between the outer-race and rolling element, and 𝑓𝑠 is the shaft speed.  
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A.3 Fault diagnosis and classification algorithm 

 

The fault diagnosis and classification algorithm consists of two main sections. 

First, the vibration signals are processed to collect relevant time and frequency 

domain features. Then the SVM algorithm is used to train a classifier for fault 

detection and classification. Experimental data is used to train and validate the 

algorithm.  

A.3.1 Signal processing and feature extraction 

 

The steps of signal processing and the feature extraction process are shown in 

Figure A.2. First, the time domain signal is collected, and the RMS of the signal is 

calculated. Then the Hilbert transformation is applied to detect the envelope of the 

time domain signal. Fast Fourier transformation is used to convert the envelope 

signal into the frequency domain.  

 

 

 

Figure A.2: The steps of signal processing and feature extraction process.. 

 

Finally, fault specific frequencies located in the frequency spectrum and 

energy associated with each frequency bands are extracted. Five fault cases were 

considered: healthy, inner race degradation (IR_D), inner race failure (IR_F), outer 
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race degradation (OR_D), and outer race failure (OR_F). SVM classification 

algorithm is used to classify the faults.  

A.3.2 SVM-based Classification algorithm 

 

In the previous section, five features used to predict about bearing faults were 

selected. Since the status of bearings in each data sample is already known, it is 

possible to train a SVM classifier using collected data. However, only 80% of the 

collected data is used to train the classifier, and the remaining 20% of data can be 

applied to validate the fault detection and classification capability of the system. 

In real time applications, after the validation process, this classifier can be used to 

make an online fault detection and classification system. Figure A.3 shows a block 

diagram of the online fault detection and classification system. When new data is 

collected, trained classifier can be used to detect and classify the faults in early 

stages. 

SVM Classifier

New Data

Known Data

Known Response

Fault 
Classification 

Results

Bearing 
Health 
Status

RMS BSF BPFOBPFIFTF

 
 

Figure A.3: Block diagram of the SVM classifier. 

 

 In the algorithm of SVM classification, the objective is to make a 

multidimensional hyperspace using the available features and then draw an 

optimum hyperplane to separate fault classes. Figure A.4 shows an example 

including two features and two classes.  



Paper A. Early Detection and Classification of Bearing Faults using Support Vector Machine… 

93 

 

 

Figure A.4: An example of SVM classification. 

 

 Many possible lines can be drawn to separate two classes. However, the 

objective of SVM is to draw an optimum line to separate two classes with 

maximum separating margins. This idea can be conceptualised to make an 

optimisation problem [17].  

Consider the training data set in Figure A.4 with inputs 𝑥𝑖 ∈  𝑅𝑙 and outputs 𝑦𝑖 ∈

 {±1} ; 

 

(𝑥𝑖 , 𝑦𝑖) ∈  𝑅𝑙 ∗ {±1}  , 𝑖 = 1, … 𝑁                                                                    (A.6) 

 

There are two classes, and ‘+1’ represents one class, and ‘-1’ accounts for the other 

class. After the training, it is expected to get a decision function given by; 

 

𝑓𝑤,𝑏(𝑥) = 𝑠𝑔𝑛 (𝑤. 𝑥 + 𝑏)                                                                               (A.7) 

 

Where 𝑤  is the coefficient vector and b is the bias of the hyperplane. The 

‘𝑠𝑔𝑛’ represents the bipolar sign function. Ideally the, following condition should 

be satisfied by the hyperplane of the classifier. 

 

𝑦𝑖 [𝑤. 𝑥𝑖 + 𝑏] ≥ 1 , 𝑖 = 1,2, … . . , 𝑁                                                                 (A.8) 
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Among all the separating hyperplanes satisfying (8), the one with the maximum 

distance to the closest point is considered as the optimum separating hyperplane. 

Based on structural risk minimization inductive method, the training of an SVM is 

to minimise the guaranteed risk bound as follows.  

 

min 𝐽(𝑤, 𝑒, 𝑏) =
1

2
𝑤𝑇 . 𝑤 +

1

2
 𝐶 ∑ 𝑒𝑖

2𝑁
𝑖=1                                                       (A.9)              

 

Subject to 

𝑦𝑖 [𝑤. 𝑥𝑖 + 𝑏] ≥ 1 − 𝑒𝑖  , 𝑖 = 1,2, … . . , 𝑁                                                     (A.10)           

 

where 𝑒𝑖  is a slack variable 𝑒𝑖  > 0  which allows to manage when the ideal 

hyperplane in (A.8) is not possible. 

 The SVM algorithm doesn’t consider complete dataset, but the boundary 

data. SVM can work with both linear and non-linear classification problems. For 

nonlinear problems, the data can be mapped to another dot product space 𝐹 via 

nonlinear map ∅: 𝑅𝑁 → 𝐹 , and then perform the above analysis in 𝐹. Two 

commonly used kernel functions are polynomial kernels and Gaussian RBF 

kernels [17]. However, it may be tricky to find the kernel function for a non-linear 

classification. 

 

A.4 Experimental setup and results 

 

The primary objective of this study is to make an algorithm for detecting and 

classifying the bearing faults. The data for this study was collected from a run-to-

failure test conducted by Intelligent Maintenance Systems, University of 

Cincinnati, USA [14-15]. In this experiment, four bearings were connected to a 

shaft rotating at 2000 rpm. A 2700 kg radial load was applied to the shaft as shown 

in Figure  A.5. Four accelerometers were used to collect vibration signals at 20 

kHz sampling frequency. One second samples were recorded every 10 minutes. As 

shown in Figure A.6, inner-race, outer-race and rolling element faults have been 

observed at the end of the test. In this study, the healthy, outer race and inner-race 
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faults are considered. Dimensions of the bearing are given in Table A.1. Based on 

the bearing dimensions, characteristic frequencies of the faults are calculated via 

(A.1)-(A.5) and shown in Table A.2.  

 

Table A.1: Dimensions of a test bearing. 
 

Parameter Value 

Number of rolling elements (𝑁𝑏) 16 

Diameter of a rolling element (𝐷𝑏) 8.4074 mm 

Pitch diameter (𝐷𝑐) 71.501 mm 

Contact angle (𝜃) 0.265 rad 

Rotational speed (𝑓𝑠) 33.75 Hz 

 

Bearing 1

Motor

Bearing 4Bearing 3Bearing 2

Radial loadAccelerometers

Temperature Sensor 

 

Figure A.5: Experimental setup [13-14]. 
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Figure A.6: Failed bearings components after the test.  

(a) inner race failure, (b) roller element failure and (c) outer race failure [14-15]. 

 

 

Table A.2: Expected characteristics frequencies. 
 

Frequency component Expected frequency 

Fundamental train frequency (FTF) 15 Hz 

Shaft Rotational frequency (1X) 33.75 Hz 

Ball/roller spinning frequency (BSF) 141.6 

Outer-race fault (BPFO) 239.3 Hz 

Inner-race fault (BPFI) 300.6 Hz and 1X side bands 

 

Figure A.7 shows the frequency spectrum of vibration signals for the inner 

race fault and healthy cases. The expected frequency for the inner race fault is 

300.6 Hz and 1X sidebands. The observed frequency is 301.3 Hz and 1X 

sidebands. For healthy case, fault related frequency components are not present in 

the vibration spectrum. Therefore, the inner race faults can be clearly seen from 

the vibration spectrum. As shown in Figure A.8, the expected frequency associated 

with an outer race fault is also present in the frequency spectrum. The expected 

frequency is 239.3 Hz, and the observed frequency is 236.2 Hz. The deviation is 

small, and this small frequency variation is normal in detecting bearing faults since 

the right value of contact angles is unknown. In the healthy case, fault related 

frequency components are not visible, and it remains closer to zero. 
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Figure A.7: The frequency spectrum of a vibration signal for inner race fault. 

 

 

 

Figure A.8: The frequency spectrum of the vibration signal for an outer race fault. 

 

In the above analyses, only healthy and faulty cases of inner race and outer 

race faults have been considered. However, in most cases, bearing faults are 

subjected to a pre-degradation process, and if a proper condition monitoring 

process is applied, an early fault detection is possible. 

The RMS of a vibration signal for the complete life of inner-race fault 

bearing is shown in Figure A.9.  There is a significant increase of vibration after 

12 days of continues working. Then degradation process starts, and it gradually 

increases for 2.5 days until failure. Based on RMS signals, it is possible to detect 

a fault in the bearing. However, to find the type of the fault, further analysis is 

required. Other frequency domain features have to be analysed to examine the fault 

type. Figure A.10 shows the energy content of fault specific frequencies of a 
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vibration signal for the complete life of the inner-race faulty bearing. There is a 

significant deviation of energy in inner-race fault related frequencies. 

 

 

 

Figure A.9: RMS of the vibration signal for a complete life in case of an inner-race 

faulty bearing. 

 

  

Figure A.10: The energy content of fault specific frequencies of the vibration 

signal for the complete life of inner race fault bearing. 
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The RMS of a vibration signal for the complete life of an outer race fault bearing is 

shown in Figure A.11.  

 

Figure A.11: RMS of vibration signal for complete life of outer race fault bearing. 

 

 

Figure A.12: The energy content of fault specific frequencies of the vibration 

signal for the complete life of the outer-race faulty bearing. 
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For 3.5 days, the bearing remains in the healthy stage. Then the bearing 

starts degrading, and after 3.5 days of degradation process, the bearing completely 

fails. When analysing other features of the signal, a clear energy increase in outer 

race fault associated frequencies is visible. Figure A.12 shows the energy content 

of fault specific frequencies of a vibration signal for the complete life of the outer-

race faulty bearing. There is a significant deviation of energy in outer race fault 

related frequencies. 

Based on above analysis and extracted features, two SVM classifiers have 

been trained.  Linear SVM and quadratic SVM algorithms have been applied for a 

comparison. A portion of available data (80%) has been used to train the classifier 

and remaining (20%) of the data is used to validate the classifier. The confusion 

matrix for a decision tree fault classification is given in Figure A.13 and Figure 

A.14. Y-axis represents the true fault classes which are already known, and x-axis 

denotes the predicted fault class by the classifier. The diagonal of the matrix gives 

the accuracy of the prediction of the classifier. 
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Figure A.13: Confusion matrix of linear SVM classifier. 
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Figure A.14: Confusion matrix of quadratic SVM classifier. 

  

Other boxes represent the prediction errors. There is an accuracy of about 

86% in the inner-race degradation (IR_D) class and an accuracy of 96% in the 

outer-race degradation (OR_D) class. Furthermore, both classifiers show a high 

accuracy. This means that an early fault detection and classification can be done 

in both linear SVM and quadratic SVM classifiers, and the accuracy of 

classification is trustworthy. 

A.5 Conclusion 

 

In this study, the possibility of making a real-time bearing fault detection and 

classification algorithm is examined. The support vector machine algorithm is 

selected as a classifier. Once experimental data is collected, both time and 

frequency domain features can be extracted for training the classifiers. The trained 

classifiers are validated using experimental data and shown reliable results. A 

Bearing fault can be detected 2.5-3.5 days ahead in the run-to-failure test. 

Therefore, the proposed method can be extended to make a trustworthy real-time 

fault diagnosis system. 
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Abstract: Permanent magnet synchronous machines have gained popularity 

in wind turbines due to their merits of high efficiency, power density, and 

reliability.  The wind turbines normally work in a wide range of operations, 

and harsh environments, so unexpected faults may occur and result in 

productivity losses. The common faults in the permanent magnet machines 

occur in the bearing and stator winding, being mainly detected in steady-state 

operating conditions under constant loads and speeds. However, variable 

loads and speeds are typical operations in wind turbines and powertrain 

applications. Therefore, it is important to detect bearing and stator winding 

faults in variable speed and load conditions. This paper proposes an algorithm 

to diagnose multiple faults in variable speed and load conditions. The 

algorithm is based on tracking the frequency orders associated with faults 

from the normalised order spectrum. The normalised order spectrum is 

generated by resampling the measured vibration signal via estimated motor 

speeds. The fault features are then generated from the tracking orders in 

addition to the estimated torque and speed features. Finally, support vector 

machine algorithm is used to classify the faults. The proposed method is 

validated using experimental data, and the validated results confirm its 

usefulness for practical applications. 
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B.1 Introduction 

 

Condition monitoring (CM) is necessary to guarantee the healthy and safe 

operation of critical rotating machines. The CM is an important part of condition-

based maintenance (CBM) program and based on CM results, the maintenance 

schedules can be arranged. Moreover, by analysing the CM data with failure 

mechanisms, the remaining useful life (RUL) of the component can be estimated. 

This complete process is covered in the Prognostics and Health Management 

(PHM) of engineering systems.  

 In wind turbines, vibration and current sensors are widely used for CM. The 

mechanical faults can be detected by investigating the trends of root mean square 

(RMS) of measured vibration signal. but, the overall RMS of vibration signal can 

be only used to detect faults, and the classification of multiple faults is not possible. 

Mechanical faults produce forcing frequencies associated with the faults which can 

be differentiated by searching those forcing frequencies in the vibration spectrum. 

Therefore, Faults can be classified by further analysing the frequency spectrum of 

the vibration signal [1]. Signal processing and statistical detection methods are 

useful for the analysis due to the noise and stochasticity of vibration signals and 

machine behaviour.  With spectrum analysis, good performances can be expected 

for individual fault classification tasks, but multiple faults classification can be 

difficult. Understanding complex spectrum regions is required for the 

classification of multiple faults. Statistical and machine learning methods have 

been used in the multiple-fault classifications. Fault-related features can be derived 

using the statistical methods, or domain knowledge of forcing frequencies, and 

those features can be used in statistical and machine learning algorithms to classify 

the faults. A review on different signal processing, statistical and machine learning 

algorithms can be found in [2]. Decision tree algorithm [3] and support vector 

machine (SVM) algorithm [11] are used for bearing fault detection under a 

constant load and speed or in the steady-state.  Most of the existing fault diagnosis 

algorithms are mainly implemented at such conditions, which are not the case for 

wind turbine applications. This work focuses on fault classification for a 

permanent magnet synchronous motor (PMSM) working in variable load and 

speed conditions. The rest of this paper is organised as follows. The details of 

proposed fault diagnosis Algorithm are discussed in Section B.2. The experimental 

results are presented in Section B.3. Finally, the conclusion is given in Section B.4. 
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B.2 Proposed fault diagnosis algorithm 

 

A block diagram of the proposed algorithm is shown in Figure B.1, in which the 

rotational speed and torque of PMSM are estimated using the current 

measurements. For the fault classification, features of the variable speed and load 

torque are required. The speed can be estimated from the Hilbert transformation, 

and the torque is calculated from the measured currents [4-5]. Since the mechanical 

rotational speed of a PMSM is directly proportional to the AC supply frequency, 

it is possible to estimate the rotational speed by estimating the frequency of the 

current waveform. First, the complex-valued analytic signal of the current signal 

is extracted using the Hilbert transformation, and the phase angle of the current 

signal is derived. Next, the rotational speed is calculated by taking the first order 

derivation of the cumulative angle of the current waveform and multiplying with 

the number of pole pairs. The collected vibration signal is resampled based on the 

estimated rotational frequency, and the order normalized frequency spectrum is 

calculated from the resampled signal.  

 

 
 

Figure B.1: The block diagram of proposed fault diagnosis and classification 

algorithm. 

 

Several features based on vibration and current signals are calculated from the 

order normalized spectrogram. The faults related orders of the vibration spectrum 

are tracked. Furthermore, additional features of speed and torque are produced 

based on measured currents and calculated rotational speed. In this study, a 

nonlinear SVM algorithm is used as the classifier.  Gaussian radial basis function 
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(RBF) kernel is used in the SVM algorithm, which produces a better nonlinear 

classification in the feature space. This study focuses on 4 types of health classes 

based on the health status of stator winding and bearing on a PMSM. The first class 

is the healthy class where both stator winding and bearings are healthy. In health 

class 2, the stator has 10% inter-turn winding short-circuit fault, and bearing is 

healthy. In health class 3, the stator is healthy, and an outer-race defect occurs on 

the bearing. In health class 4, both the stator winding and bearing fault are 

defective. As shown in Figure B.2, the SVM algorithm is trained using labelled 

training data. After the training process, the algorithm can be employed for 

predicting the health statuses using new current and vibration signals. 

 

B.2.1 Hilbert transformation and motor speed estimation 

 

In a PMSM, the current signal is usually sinusoidal with varying frequency and 

amplitude. Therefore, the current signal can be considered as a mono-component 

signal and Hilbert transformation can be used to extract the instantaneous 

frequency, amplitude and the phase.  

 

 

Figure B.2:Frequency and angle estimation of a mono-component signal:  Hilbert 

transformation. 

 

The instantaneous frequency and the angle estimation example of a mono-

component signal using Hilbert transformation are given in Figure B.2. An analytic 
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signal of the original signal is required to extract the instantaneous frequency, 

amplitude and the phase of the original system. The analytic signal is a complex-

valued function, which has no negative frequency values shown as follows [6].  

      The Fourier transform 𝑆(𝑓) of a time-domain signal 𝑆(𝑡) has a Hermitian 

symmetry at zero frequency axis, which is 𝑆(−𝑓) = 𝑆(𝑓)∗.  where 𝑆(𝑓)∗ is the 

complex conjugate of  𝑆(𝑓). The analytic function in the frequency domain is 

defined as: 

 

where 𝑢(𝑓) is the unit step function and 𝑠𝑔𝑛(𝑓) is the sign function. The analytic 

function holds only non-negative frequency components of  𝑆(𝑓) and the operation 

is reversible due to the Hermitian symmetry of 𝑆(𝑓). 

 

𝑆(𝑓)  = {

0.5 𝑆𝑎(𝑓),                   𝑖𝑓 𝑓 > 0

 𝑆𝑎(𝑓),                         𝑖𝑓 𝑓 = 0
0.5 𝑆𝑎(−𝑓)∗               𝑖𝑓 𝑓 < 0

 

  

(B.2) 

 

 

 

The analytic signal of 𝑆𝑎(𝑡) can be drived using the inverse Fourier transform of 

𝑆𝑎(𝑓): 

 

𝑆𝑎(𝑡) = 𝐹−1[𝑆𝑎(𝑓)]  

 = 𝐹−1[𝑆(𝑓) + 𝑠𝑔𝑛(𝑓) ∙ 𝑆(𝑓)]  

 = 𝐹−1[𝑆(𝑓)] +  𝐹−1[𝑠𝑔𝑛(𝑓)] ∗ 𝐹−1[𝑆(𝑓)] (B.3) 

 
= 𝑆(𝑡) + 𝑗 [

1

𝜋𝑡
∗ 𝑆(𝑡)] 

 

 = 𝑆(𝑡) + 𝑗�̂�(𝑡)  

 = 𝑆𝑚(𝑡)𝑒𝑗∅(𝑡) 

 

 

 

where �̂�(𝑡) = 𝐻[𝑆(𝑡)] is the Hilbert transformation, * is the convolution operator 

and j is the imaginary unit operator. 𝑆𝑚(𝑡) = |𝑆𝑎(𝑡)| is called the instantaneous 

amplitude or envelope, and ∅(𝑡) = 𝑎𝑟𝑔 [𝑆𝑎(𝑡)] is called the instantaneous phase. 

 

𝑆𝑎(𝑓) 

 

= {

2 𝑆(𝑓),       𝑖𝑓 𝑓 > 0

 𝑆(𝑓), 𝑖𝑓 𝑓 = 0

0                 𝑖𝑓 𝑓 < 0

 

 

 

(B.1) 

  = 2𝑢(𝑓) ∙ 𝑆(𝑓) 

  = 𝑆(𝑓) + 𝑠𝑔𝑛(𝑓) ∙ 𝑆(𝑓) 
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The instantaneous angular frequency in hertz can be extracted by differentiating 

the unwrapped ∅(𝑡).  

 

𝑓(𝑡) = (
1

2𝜋
)

𝑑

𝑑𝑥
∅(𝑡) 

(B.4) 

 

B.2.2 Resampling order normalized FFT and order tracking 

 

In steady-state fault diagnoses, the frequencies are assumed as constants, and the 

constant time sampling rates can be used.  Therefore, Fourier transform can be 

used for such a frequency domain analysis. However, in variable speed operations, 

the Fourier transform cannot be used because the analysis signals are not stationary 

or the frequencies change in time.  
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Figure B.3: Constant angle sampling of a variable speed signal. 

 

         To deal with nonstationary signals, short time Fourier transform (STFT) with 

constant time sampling may be used as it assumes that the frequency is constant 
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for a small-time period and Fourier transform is performed for those short time 

signal windows. However, using STFT requires a wise selection of window sizes 

in advance to archive the best resolution, which is not a solution to tackle the 

characteristic frequencies in variable speed operations as the characteristic 

frequency is changed according to the shaft speed. The solution is instead of using 

constant time sampling, using the constant angular sampling and order normalised 

FFT which is demonstrated in Figure B.3 for a simple frequency varying sine 

wave. The constant angle sampling method can be used to capture the underline 

constant-frequency sine wave from a varying frequency sine wave where the signal 

is resampled using the rotor position information, which is calculated in the 

previous section. More details on this method can be found in [7-8]. This method 

can be extended for complex vibration and current signals in variable speed 

operations. 

 

B.2.3 Torque estimation 

 

The voltage equations of a PMSM in 𝑑𝑞0 transformation can be expressed as [9]: 

 

𝑣𝑠𝑑 = 𝑅𝑠𝑖𝑠𝑑 +
𝑑𝜆𝑠𝑑

𝑑𝑡
+ 𝜔𝑟𝜆𝑠𝑞

𝑣𝑠𝑞 = 𝑅𝑠𝑖𝑠𝑞 +
𝑑𝜆𝑠𝑞

𝑑𝑡
+ 𝜔𝑟𝜆𝑠𝑑

                                 } 

 

 

 

(B.5) 

 

where 𝑅𝑠 is resistance of the stator windings. 𝜔𝑟 is the rotational speed of the 

motor.  𝜆𝑠𝑑 and 𝜆𝑠𝑞 are the flux linkages in the 𝑑 and  𝑞 axes, respectively.  

 

𝜆𝑠𝑑 = 𝐿𝑠𝑖𝑠𝑑 + 𝜓𝑃𝑀

𝜆𝑠𝑞 = 𝐿𝑠𝑖𝑠𝑞
                                                    } 

(B.6) 

 

where 𝐿𝑠 is the inductance of the stator windings. 𝜓𝑃𝑀 is the flux of rotor 

permanent magnets. The electromagnetic torque generated by a PMSM with 

𝑛𝑝 pole pairs and 𝑚𝑠 phases can be expressed as: 

 

𝑇𝑒 =
𝑚𝑠𝑛𝑝

2
(𝜆𝑠𝑞𝑖𝑠𝑑 − 𝜆𝑠𝑑𝑖𝑠𝑞) = −

𝑚𝑠𝑛𝑝

2
𝜓𝑃𝑀𝑖𝑠𝑞 

(B.7) 
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Based on (B.7), the electromagnetic torque can be estimated and used as 

a feature for the classification algorithm. 

 

B.2.4 Feature generation 

 

Based on estimated rotor speed and measured vibration and current signals features 

are derived. As given in Table B.1, the devised features are used as inputs to the 

SVM algorithm. The motor speed is calculated by (B.4), and the motor torque is 

calculated by (B.7). 

 

Table B.1: The features used in the SVM classification algorithm. 

 

Signal 

Source 

Feature name Description 

Current Speed Represent the speed  

Torque Represent the torque  

2𝑓𝑠 Characteristic frequency of Inter-turn winding 

fault from the Park’s vector current 𝑖𝑝  in (B.9) 

Torque 

Variance 

Moving variance of 10 consecutive values of the 

torque signal 

Vibration 3.05X order Characteristic frequency of outer-race bearing 

fault 

1X Motor rotating speed 

8X Motor rotating speed *No of rotor pole pairs 

16X Motor rotating speed *2nd harmonics of no of 

rotor pole pairs 

 

An inter-turn stator winding fault can be analysed by calculating the extended 

Park’s vector (EPV) of the motor current as below [10]. 

 

𝑖𝑑 = √2 3⁄ 𝑖𝑎 − √1 6⁄ 𝑖𝑏 − √1 6⁄ 𝑖𝑐

𝑖𝑞 = √1 2⁄ 𝑖𝑏 − √1 2⁄ 𝑖𝑐

}       
 

(B.8) 

𝑖𝑝 = |𝑖𝑑 + 𝑗𝑖𝑞| (B.9) 
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where 𝑖𝑑 and 𝑖𝑑 are the direct and quadratic components of the Park’s vector 𝑖𝑝. 

𝑖𝑎 , 𝑖𝑏 and 𝑖𝑐 are the stator currents in each phase. A stator winding fault can be 

detected by analysing the frequency spectrum ip since the inter-turn fault results 

in an increase in 2𝑓𝑠 (two times of supply frequency) components of the 𝑖𝑝. Further, 

moving variance of 10 consecutive values of torque signal is also used as a feature, 

which represents any short-term variation of the torque profile. The vibration 

signals can be used to detect bearing faults. The characteristic bearing outer-race 

fault frequency is the ball pass frequency outer-race (BPFO), which can be 

calculated as [11]: 

 

𝐵𝑃𝐹𝑂 =
𝑁𝑏

2
 𝑓𝑠(1 −

𝐷𝑏

𝐷𝑐

 𝑐𝑜𝑠𝜃) 
 (B.10) 

  

 where 𝑁𝑏 is the number of rolling elements in the bearing, 𝐷𝑏 represents the 

diameter of a rolling element, 𝐷𝑐 denotes the pitch diameter, 𝜃 is the contact angle 

between the outer-race and rolling element, and 𝑓𝑠 is the shaft speed. above BPFO 

frequency can be divided by the shaft rotational frequency, and a frequency order 

can be found which is a constant for any rotational speed. The related order of the 

bearing fault studied in this study is the 3.05 order (3.05X) of the shaft speed. In 

addition, the 1X, 8X and 16X frequency components are also used as the features 

for SVM classification algorithm. 

 

B.2.5 SVM classification algorithm 

 

SVM is a vector-space–based machine-learning method where the goal is to find 

a decision boundary between two or more classes that are maximally far from any 

point in the training data. The simplest SVM algorithm can be built to separate 

data linearly into two classes. This concept can be extended for multi-class cases 

and for nonlinear classification tasks [12-14].  In this study the fault, classification 

problem is solved as a nonlinear SVM classification problem. First, the linear case 

is studied.  

Consider a set of training data points in Figure B.4 with inputs 𝑥𝑖   and two 

output class labels 𝑦𝑖 ∈  {±1} ;  𝑖 = 1, … 𝑁 . A linear classifier can be defined as: 
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𝑓𝑤,𝑏(𝑥) = 𝑠𝑔𝑛 (𝑤𝑇 . 𝑥 + 𝑏) (B.11) 

  

where the decision hyperplane is defined by an intercept term  b and a decision 

hyperplane normal weight vector  𝑤, which is perpendicular to the hyperplane. A 

value of −1 specifies one class, and a value of +1 the other class. For a given data 

set and decision hyperplane, the functional margin of the 𝑖𝑡ℎ  example 𝑥𝑖  with 

respect to a hyperplane (𝑤, 𝑏) can be measured by 𝑦𝑖 (𝑤𝑇 . 𝑥𝑖 + 𝑏). 

 

𝜌  𝒘 
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𝑟𝑖  
𝒙𝒊 

 

 

Figure B.4: Linear SVM classification. 

 

The functional margin can be scaled to solve SVM problems, |𝑤| can be set to 1. 

The functional margin of all data points is at least 1 and there exist support vectors 

for which the inequality is equality. 

 

𝑦𝑖 (𝑤𝑇 . 𝑥𝑖 + 𝑏) ≥ 1 , 𝑖 = 1,2, … . . , 𝑁 (B.12) 

 

For each sample, distance from the hyperplane is 𝑟𝑖 =
𝑦𝑖 (𝑤𝑇.𝑥𝑖+𝑏)

|𝑤|
 and the geometric 

margin is 𝜌 =
2

|𝑤|
. The objective is to maximise the geometric margin. This means 

finding w and b such that 𝜌 =
2

|𝑤|
 maximising for all (𝑥𝑖 , 𝑦𝑖) and   𝑦𝑖 (𝑤𝑇 . 𝑥𝑖 +

𝑏) ≥ 1. Maximising the 𝜌 =
2

|𝑤|
 is the same as minimizing 

|w|

2
 and the final 

optimisation problem with a hard margin (without tolerating for wrong 

classification) is given in (B.13) and the solution is in (B.14). 



Paper B. Fault Detection and Classification of Permanent Magnet Synchronous Motors… 

117 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑠𝑒
1

2
𝑤𝑇 𝑤 and for all {(𝑥𝑖 , 𝑦𝑖)}, 𝑦𝑖 (𝑤𝑇 . 𝑥𝑖 + 𝑏) ≥ 1  (B.13) 

 

 𝑓𝑤,𝑏(𝑥) = 𝑠𝑔𝑛 (∑ 𝛼𝑖𝑦𝑖𝑖 𝑥𝑖
𝑇𝑥 + 𝑏) (B.14) 

 

where most of  𝛼𝑖 are zero and the each non-zero 𝛼𝑖 represents that the 

corresponding  𝑥𝑖  is a support vector. If a data set is not linearly separable, a soft 

margin can be assigned where wrong classifications are allowed when solving the 

optimisation problem. The new optimisation problem is: 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑠𝑒 
1

2
𝑤𝑇 𝑤 + 𝐶 ∑ ℇ𝑖𝑖  and for all  

 {(𝑥𝑖 , 𝑦𝑖)}, 𝑦𝑖 (𝑤𝑇 . 𝑥𝑖 + 𝑏) ≥ 1 − ℇ𝑖  

 

(B.15) 

 

where the parameter C is the regularisation term, ℇ𝑖 is the slack variable and non-

zero ℇi allows xi to not meet the margin requirement at a cost proportional to value 

of ℇ𝐢.  The linear SVM classifier solution in (B.14) depends on the dot product. By 

using a function 𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑥𝑖
𝑇𝑥𝑗 , the equation (B.14) can be modified as: 

 

 𝑓𝑤,𝑏(𝑥) = 𝑠𝑔𝑛 (∑ 𝛼𝑖𝑦𝑖𝑖 𝐾(𝑥𝑖 , 𝑥) + 𝑏) (B.16) 

 

The original data points can be mapped into a higher dimension space via some 

transformation 𝛷: 𝑥 →  𝜙(𝑥). Then dot product become 𝜙(𝑥𝑖)𝑇𝜙(𝑥𝑗). Therefore, 

by using a proper transformations (kernels), the solution in (B.14) can be solved 

efficiently. With this kernel trick, the solution can be extended to nonlinear 

classification also.  A kernel function K is such a function that related to a dot 

product in some extended feature space. The radial basic function (RBF) kernel 

[12-14] is used in this study. An RBF is equivalent to mapping the data into an 

infinite dimensional space, which is defined as 

 

𝐾(𝑥, 𝑧) = 𝑒−(𝑥−𝑧)2/(2𝜎2) (B.17) 

 

where 𝜎 is a constant and (𝑥 − 𝑧)2 is the squared Euclidian distance between two 

feature vectors. 
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B.3 Experimental setup and results 

 

B.3.1 The experimental setup 

 

Experimental results are used to validate the proposed algorithm. Figure B.5 shows 

the experimental setup used to collect the data. There are two 400V, 2.5 kW, 375 

rpm, 16 poles PMSMs which are directly coupled each other. One motor is used 

as the test motor, and another one is used as the load motor. The load motor is 

connected to a resistor bank. The vibration sensor is located on top of the bearing 

housing of test PMSM.  

 

 

 

Figure B.5: The experimental setup. 

 

 

(a)                     (b) 

Figure B.6:Faulty components (a) outer race bearing fault (b) stator winding 

fault. 
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Manually seeded faults are introduced for the bearing and the stator winding. The 

seeded faulty components of the PMSM are given in Figure B.6. The faults are 

tested at constant speeds (150, 250 and 350 rpm) and 2 types of variable speed 

profiles. A variable speed profile of 120 seconds used in the study is given in 

Figure B.7. Ten repeated testes have been conducted with this speed profile. 

Therefore, 50 samples of 2-minute data are recorded. Both vibration and current 

signals have been collected at the 20 kHz sampling rate. After making the order 

normalisation, the number of samples per 2-minute signal is approximately 360. 

This value is selected by balancing both order and time resolutions. Finally, a table 

of 18000 sample rows and 9 columns (8 features and the health class label) have 

been generated, and the proposed algorithm is used to generate features. Then 75% 

of available data in the table is used to train the SVM algorithm, and 25% data is 

used to validate the algorithm. 

 

 

 

Figure B.7: The variable speed profile used in experiments. 

 

B.3.2 Order normalized spectrum and order tracking for a bearing 

outer-race fault  

 

The average 𝑖𝑝  order spectrum is given in Figure B.8. There is no any significant 

difference of the 𝑖𝑝 order spectrum in healthy and fault cases.  
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Figure B.8: Average 𝑖𝑝  order spectrum 

 

Figure B.9 shows the average order spectrum of the vibration signals in the healthy 

and faulty conditions, where 3.05X order and its 2nd harmonic (6.1X) has a 

significant increase when the outer-race bearing fault is present. The tracked 3.05X 

frequency component over time is given in Figure B.10 where the instantaneous 

amplitude is varying over time due to variable speed, load and noise conditions. 

Therefore, a simple decision based on threshold values will not work well and may 

produce many false or missing alarms. Therefore, a machine learning or statistical 

detection method is required and, in this work the SVM algorithm is trained to 

detect these variations.  

 

  

 

Figure B.9: Average vibration order 

spectrum. 

 

 

 

Figure B.10: Tracked 3.05X order. 
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B.3.3 Order normalized FFT and order tracking for stator winding 

fault  

 

The average 𝑖𝑝 order spectrum is given in Figure B.11, where there is a significant 

increase in the 2nd and 4th orders with a stator winding fault over healthy case. 

Figure B.12 shows the tracked 2nd order from the 𝑖𝑝 spectrum over time, and which 

shows a clear variation for variable speed, load and noise over the healthy case. In 

the average vibration order spectrum given in Figure B.13, the 16th order shows a 

significant increase for stator winding fault. When this 16th order is tracked over 

time a significant increase of instantaneous amplitudes can be seen from Figure 

B.14. The 8th order has a similar behaviour. Therefore, both current and vibration 

information are useful for detecting stator winding faults. 

 

  

 

Figure B.11: Average 𝑖𝑝  order 

spectrum. 

 

Figure B.12: Tracked 2nd order 

 

 

  

 

Figure B.13: Average vibration order 

spectrum. 

 

Figure B.14: Tracked 16.05 order. 
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B.3.4 Order normalized FFT and order tracking for stator winding 

and bearing outer-race fault  

 

The analysis conducted in previous sections is focused on individual fault cases. 

In this section, the order spectrums are applied to multiple fault cases where both 

stator winding and bearing faults occur.  

 

 

 

Figure B.15: Average 𝑖𝑝 order 

spectrum. 

 

 

Figure B.16: Average vibration order 

spectrum. 

 

The average 𝑖𝑝 order spectrum is shown in Figure B.15 where only the 2nd and 4th 

orders of the supply frequency have significantly increased amplitudes when both 

faults exist. This is mostly like the individual stator winding fault since only the 

stator winding fault related information can be found. However, the average 

vibration spectrum in Figure B.16 shows both the bearing fault related 

characteristic order of 3.05X and the stator winding fault related order at 16X. 

These results show that it is possible to detect multiple faults and individual faults 

from the same order tracking method discussed in the previous Sections for 

individual faults.  

 

B.3.5 Performance SVM classification algorithm  

 

The confusion matrix for validating dataset is given in Figure B.17. Four fault 

classes are predicted by SVM namely HB (Stator winding healthy and bearing 

fault), HH (both stator winding and bearing are healthy), SB (both stator winding 

and bearing are defective) and SH (stator winding is faulty and bearing is healthy). 
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The overall accuracy of the SVM classifier is about 92.9%. For all the fault classes 

more than 90% classification accuracy is obtained and the highest classification 

accuracy is 94%. These results are highly acceptable, and the SVM can detect and 

classify considered two faults in variable speed and load conditions. 

 

Tr
u

e 
cl

as
s 

HB 
90% 10% < 1%    90%  10% 

HH 
6% 94% < 1%    94%  6% 

SB 
< 1% < 1% 93% 6%  93%  7% 

SH 
    6% 94%  94%  6% 

 

 
HB HH SB SH     

  

Predicted class 

 

True 

Positive 

Rate 
 

False 

Negative 

Rate 

 

Figure B.17: The confusion matrix for the test dataset. 

 

B.4 Conclusion 

 

In this paper, a fault classifier is introduced for fault diagnosis of PMSMs in 

variable speed and load conditions. Features for the fault classification are 

produced based on the resampled vibration, current signals and estimated torque 

and speed. The fault detection and classification are implemented by a supervised 

machine learning algorithm, namely Support Vector Machine. The proposed 

method is validated by variable speed experimental data, and excellent 

performances have been obtained. Following contributions are provided in this 

study; 

 

(1) The proposed method is based on estimated rotor speeds and separate speed 

sensor is not required. In PMSMs, the rotor speed can be accurately estimated 

using the measured current signals. 
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(2) In a real wind turbine, the generator is also vibrating on a flexible frame. This 

vibration can be very different depending on the operating conditions. 

However, in proposed method, only the fault related characteristic frequency 

bands of vibration signal are considered for fault diagnosis purpose and other 

parts of the signals are neglected. Also, current signal may not affect much by 

additional vibration and the feature level fusion method can give a robust result.  

 

Therefore, the proposed method can be implemented in wind turbines and other 

similar industrial applications. In this study, only two types of individual faults and 

one multiple fault cases are considered. However, the proposed method can be 

extended to other types of faults in both motoring and generating operations.  
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 Abstract—Detection and isolation of single and mixed-faults in a gearbox are 

very important to enhance the system reliability, lifetime, and service 

availability. This paper proposes a hybrid learning algorithm, consisting of 

Multilayer Perceptron (MLP)- and Convolutional Neural Network (CNN)-

based classifiers, for diagnosis of gearbox mixed faults. Domain knowledge 

features are required to train the MLP classifier, while the CNN classifier can 

learn features itself, allowing to reduce the required knowledge features for 

the counterpart. Vibration data from an experimental setup with gearbox 

mixed faults is used to validate the effectiveness of the algorithms and 

compare them with conventional methods.  The comparative study shows that 

accuracies and robustness of the individual MLP- and CNN-algorithms are 

better than those of the compared methods and can be significantly improved 

using data fusion at the feature level. Furthermore, the robustness of the 

algorithm is secured under noises by combining the results of individual 

classifiers. 

 

Index Terms— Convolutional neural network, data fusion, fault diagnosis, 

gearbox, mixed faults, multilayer perceptron. 
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C.1 Introduction 

 

Fault detection for gearboxes has gained an increased attention in both research 

and industry since the gearboxes are among the most essential components in 

mechanical power transmission and industrial machineries [1-3]. A gearbox is a 

complex mechanical system, consisting of spur-, helical-, bevel- or worm gears, 

shafts, and bearings. A defect on a gear can produce a fluctuation in the gearbox 

bearing, resulting in a false alarm [4]. Once mixed faults occur in a gearbox, the 

fault diagnosis is very challenging, and the faulty parts can only be found offline 

by dissembling the gearbox.  

A localized defect on a gearbox can be detected by current signature, 

lubrication oil or vibration analysis. The current signature can be used to detect 

certain faults in a gearbox when being connected to an electric drive [5-6]. The on-

line or on-site lubrication oil analysis is relatively new and requires expensive 

equipment for monitoring, and testing, thus only economically viable in very 

critical machines. The off-line oil analysis is time-consuming as oil samples are 

collected and sent to separate laboratories for testing and reporting. This method 

can cause productivity loss due to longer monitoring cycles and slow analysis 

process [7]. The vibration analysis is more preferred than the lubricant oil analysis 

since it can be done without interrupting the system and collecting the analysis 

data is easier than the counterpart. The main challenge of the vibration analysis is 

that processing the collected data and understanding faulty features need a skilled 

manpower with an advanced knowledge of the gearbox fault. International 

Standard Organization (ISO) with ISO 18436-2:2014 specifies the necessities for 

the training, relevant experience, and examination of personnel performing 

condition monitoring and diagnostics of machines using vibration analysis [8]. 

An automatic fault detection and classification system based on vibration 

signals can reduce the manpower dependence and time consumption for condition 

monitoring of the gearboxes in industry. Increasing performance of the detection 

system might be more important than looking for a highly reliable feature since 

the machine cannot be completely healthy due to the absence of clear characteristic 

frequencies as argued in [9]. Table C.1 summarizes common faults on a gearbox 

and features captured by vibration analysis [10-11]. Gear defects result in an 

increased vibration energy at gear natural- and mesh frequencies, sidebands, and 

their higher harmonics. A localized fault on a bearing can be detected using 
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envelop detection [12], empirical mode decomposition and wavelet transformation 

[13] based on characteristic frequencies associated with the faults. Defining 

amplitude limits to distinguish healthy and faulty cases in the spectrum analysis is 

very difficult if the energy of the signals associated with a fault is very low or 

masked by random noises. Furthermore, the vital information on mixed faults are 

normally similar or overlapping in the spectra [9].  

 

Table C.1: Common faults of a gearbox and features of vibration signals. 

 

Component  Fault modes Features 

Gear Crack in gear Gear natural frequency, the 

sidebands around  

Cracked/broken tooth Sidebands around gear mesh 

frequency 

Excessive wear / clearance Sideband spacing 

Bearing Bearing inner race Characteristics frequency 

Bearing outer race Characteristics frequency 

Bearing rolling element Characteristics frequency 

Excessive bearing clearance Sub-synchronous whirl 

Shaft Rotor imbalance 1X shaft speed 

Shaft misalignment 2X shaft speed, high axial 

vibration 

Mechanical looseness Higher harmonics of shaft 

speed 

 

To reduce a false alarm in the spectrum analysis, an automatic fault 

diagnosis can be used. The automatic fault diagnosis can be developed via model-

based, data-driven or hybrid algorithms [14-17]. The model-based diagnosis 

requires not only a detailed physical model of the system but also its accurate 

parameters, which are difficult to be obtained in case of gearboxes. Data-driven 

approach using statistical or machine learning algorithms does not need such a 

physical model [13], making it attractive for an automatic diagnosis system of a 

gearbox. A statistics method is usually based on the frequency spectrum to enhance 

the accuracy of fault detection techniques and reduce false and missing alarms 

[18]. However, mixed faults in a gearbox make the vibration spectrum very 
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complicated, causing the statistics-based fault classification costly, time-

consuming and expertise-demanding. Alternatively, supervised machine learning 

methods, namely support vector machine (SVM) [19-20], decision tree (DT) [12], 

various neural network architectures [21-22] combined with advanced signal 

processing can be used to find the complex relations on the feature space by using 

predefined time-frequency features extracted by the domain knowledge [23]. 

Performance of the supervised machine learning highly depends on the feature 

selection. Irrelevant and redundant features will result in high-dimensional feature 

space, highly complex machine learning model, requiring more data for the 

training. Additional statistical and optimizations, e.g. principal component 

analysis, particle swarm optimization and independent component analysis, are 

thus required to find the best features for the classification algorithms [24-25].  

To address challenges on feature selections and extra optimizations, a deep 

learning algorithm can be used to extract and transform features via nonlinear 

processing layers and learn itself the best features by detecting patterns from the 

training data of a signal or an image to differentiate faults. It therefore provides 

one advanced step towards online automatic fault detection systems. Deep learning 

methods are widely used in fault diagnosis due to their merit of analyzing complex 

or big data while the improved technologies of sensors, cost-effective powerful 

processors, graphics processing units (GPUs) and their parallel processing 

capabilities allow collecting and processing big data effectively [5], [26-31]. The 

algorithms are completely based on the information gathered from training data to 

identify patterns and relations within the data. In other words, the deep learning 

algorithms are advanced pattern recognizers without using domain knowledge. 

Consequently, the validity and accuracy of training dataset are the most important 

tasks in deep learning algorithms. To sum up, the most common analyses based on 

vibration signals for fault detection and classification are summarized in Table C.2. 

Root mean square (RMS) of the vibration signal can be used to detect single faults 

of a gearbox. Time domain analysis and time synchronous average (TSA) are 

simple tools for detecting gearbox faults, but the analysis requires a highly skilled 

manpower. Spectrum analyses are not applicable to an automatic diagnostic 

system for gearboxes due to the difficulty of fault classification and manpower 

demands. Machine- and deep learning algorithms are capable of highly-accurate 

fault classifications, providing a better solution to detect single or mixed faults in 

a gearbox effectively.  

 



Paper C. Multiple Classifiers and Data Fusion for Robust Diagnosis of Gearbox Mixed Faults 

133 

 

Table C.2: Different methods for fault diagnosis of Gearboxes. 

 

Method Advantages Disadvantages 

RMS, TSA and 

time domain 

analysis 

Low computational cost, 

simple 

Fault classification is 

difficult. Skilled 

manpower is required 

Spectrum 

analysis and 

statistics. 

Moderate cost, fault 

classification with skilled 

workers  

Low-accurate fault 

classification required 

knowledge on advanced 

analysis 

Machine 

learning + signal 

processing  

Moderate cost, highly-

accurate classification, 

improvable with data fusion 

Accuracy of the fault 

classification depending 

on applications, difficult 

feature generation. 

Deep learning + 

signal processing 

Highly-accurate 

classification, improvable 

with data fusion, automatic 

feature detection, applicable 

to complex data. 

Computational burden, 

classification based on 

pattern recognition, 

without using domain 

knowledge  

 

This work first proposes a novel fault detection and classification scheme, 

taking both advantages of domain knowledge analysis in the machine learning and 

pattern recognition in the deep learning. The domain knowledge of gearbox is 

captured by measuring energies from several frequency bands in the vibration 

spectrum and applied to the MLP algorithm for classifying mixed faults in a 

gearbox. The CNN algorithm is trained to identify patterns in the spectrograms of 

vibration signals via Short-time Fourier transform (STFT) and Continuous 

Wavelet transform (CWT). Secondly, a data fusion algorithm is introduced to 

improve the robustness and accuracy of the learning algorithms so that the 

proposed diagnosis scheme can work effectively regardless of noises in the 

measured data. The data fusion is used at feature and decision levels in the fault 

diagnosis systems. The feature space dimension is enlarged at the feature level to 

identify complex relations in the feature space. Finally, Naïve Bayes combiner is 

selected to fuse results of the individual classifiers at decision level to enhance the 

reliability of the fault classification. Beside the Naïve Bayes combiner, weighted 
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majority and multinomial distribution are among the widely used ensemble 

learning methods [32]. This study focuses on developing a hybrid fault diagnosis 

system consisting of supervised - MLP and - CNN, and data fusion for a complex 

gearbox and enhancing its robustness, so selecting a best combiner or algorithm is 

out of scope of the work. 

 

C.2 The proposed hybrid fault diagnosis scheme 

 

A simplified diagram of the proposed hybrid fault classification is shown in Figure 

C.1. First, the individual classifiers based on MLP and CNN with feature-level 

fusion will be trained using the training dataset of vibration signals from 2 

accelerometers and shaft speeds.  

 

Domain knowledge 

generation 

Image or pattern 

generation

Vibration signals

Feature fusion and

MLP-based 

classifier

Naïve Bayes 

combiner 

Fault classification results

Feature fusion and

CNN-based 

classifier

 

Figure C.1: Flowchart of the proposed hybrid fault diagnosis for gearbox. 
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Then the trained algorithms will be used to predict probabilities of the 

mixed health classes or individual decisions, and the individual decisions of the 

MLP and CNN - classifiers will be used to train the decision-level fusion algorithm 

or Naïve Bayes combiner for enhancing robustness of the proposed scheme. 

Finally, the trained combiner model will be used to predict multiple faults in the 

gearbox. The MLP classifier uses domain knowledge or physical-based knowledge 

to classify the faults while the CNN-based classifier is based on the image or 

pattern features. The MLP based classifier needs inputs of time and frequency 

domain features, characteristic frequencies calculated by bearing and gear 

parameters, filter designing and energy calculations at interested frequencies. The 

CNN based classifier needs a proper generation of spectrograms or images. This 

section describes the features used in each classifier and basic principles of the 

fault classification. 

 

C.2.1 Domain knowledge and MLP-based classifier. 

 

The MLP-based classifier requires the predefined features. As shown in Table C.1, 

the faults in a gearbox can be detected via features. In this work, both time- and 

frequency-domain features are selected for the domain-knowledge analysis [35]. 

The time-domain features are defined by RMS and crest factor of the vibration 

signal. Unlike the statistics approach using vibration spectra, the frequency-

domain features for the MLP-based classifier are the energies at interested 

frequencies, which are extracted via bandpass filters as shown in Figure C.2. 

Bandpass filters are designed based on the fault-related characteristics frequencies 

[12]. 

Time-domain signals

Signal energies at

designed bandpass- 

filter frequencies 

RMS and crest 

factor

 

Figure C.2: Domain knowledge extraction for the MLP-based classifier. 
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Figure C.3 shows an exemplary vibration signal collected from a gearbox 

with mixed faults in the time- and frequency- domain. Various forcing frequencies 

are excited in different bands of the spectrum as indicated in Figure 3.C (b).  As 

mentioned earlier, the vibration spectrum of multiple faults in a gearbox is very 

complicated, thus a statistics-based fault classification based on such a vibration 

spectrum alone is not feasible. The MLP-based classifier needs only the signal 

energies captured by the filters at different bands, in which the centre frequency of 

each filter is selected based on characteristic frequencies and the gearbox’s 

specification.  

 

 

(a) 

 

(b) 

Figure C.3: Exemplary vibration signal of a gearbox with multiple faults in time- 

and frequency-domain: (a) time-domain (b) frequency-domain. 

 

The MLP-based classifier can be trained from the features as shown in 

Figure C.2 and health classes, e.g. good or defective, of the subcomponents on a 

gearbox, namely bearings, gears, and shafts. Figure C.4 shows the MLP 

architecture for multiple-fault detection. Without a data fusion, the feature 
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dimension N is enlarged to k×N2 via k hidden layers. A small number of features 

renders a problem of identifying complex relations within the data and results in a 

low-accurate fault identification. Therefore, a data fusion among vibration sensors 

is implemented in this work to increase the feature number. If the number of 

vibration sensors is L and the number of input features is N, the number of features 

after k hidden layers is enlarged to k×(LN)2, enhancing effectiveness of learning a 

non-linear relationship within the data [36]. The output of the MLP-based classifier 

is the probability of each health class. 

 

feature 1

feature 2

feature N

Input layer k hidden layers Output layers

Prob. value 1

Prob. value 2

Prob. value m

 

 

Figure C.4: The MLP architecture for gear-box fault detection. 

 

C.2.2 Pattern Recognition and CNN-based classifier. 

 

The domain knowledge or spectrum-based analysis is useful for explaining 

physical meanings of a gearbox defect.  However, the MLP- based classifier may 

miss important features or capture false information since the mixed faults in a 

gearbox produce a complex vibration spectrum. In addition, the passband filters 

were designed based on single forcing frequencies, which are highly dependent on 

shaft speeds and contact angles between one faulty part to another.  

To enhance the accuracy of mixed fault detection, the CNN is applied to 

reduce the dependence on domain knowledge or forcing frequencies. CNNs were 

highly successful in pattern recognition, and widely used in image classification. 

The CNN architecture for the gear-box fault classification in this study is shown 

in Figure C.5. If supplying the time-domain vibration signal directly to the 

classifier, the CNN pattern recognition is constrained by the 1-dimensional 

convolution [37]. For detecting signals associated with faults in both time and 

frequency domains, input data of the classifier are selected as 2-D images or 

spectrograms with 2-D convolution. The input spectrograms are used to train the 
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classifier via 3 layers: convolution, rectified linear unit, and pooling. After the 

training, probabilities of each fault class are calculated via flatten-, fully 

connected-, and SoftMax layers. Table C.3 describes layers and functionalities of 

each layer in the CNN-based classifier. 

 

Convolution +ReLU

Input spectrogram

Pooling

Convolution +ReLU

Pooling

Flatten

Fully Connection

SoftMax

Output fault Classes

F
eature L

earnin
g

C
lassification

 

 

Figure C.5: The CNN architecture for gear-box fault detection. 

 

Table C.3: Description of layers in the CNN. 

 

Section Layer Functionalities 

Feature 

learning 

Convolution 

Convolution operation with several kernels 

Reduce the dimensionality 

Learn local features 

REL (rectified 

linear unit) 

Activate or deactivate some neurons based on 

their impact  

Introduce the non-linearity to the system 

Pooling Reduce the dimensionality 

Classificati

on 

Flatten Convert 2D image to 1D array for classification 

Fully connected 

Implement the classification task based on 

derived features in convolution and pooling 

operation 

SoftMax 
Convert the classification probabilities to 

classes 
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STFT and CWT can be used to extract time-frequency features and show 

them as spectrogram images [38-40]. To study which transform or image 

generation can provide better features for the CNN-based classifier, both STFT 

and CWT are applied to analyze the vibration signals collected from a gearbox. 

Applications of the STFT and CWT to detect faults on a gearbox-based drivetrain 

via vibration signals are detailed in [41]. Figure C.6 shows an exemplary 

spectrogram generated by STFT of an accelerometer signal in the presence of 

multiple faults in the gearbox. The spectrogram generated by CWT on the same 

accelerometer is shown in Figure C.7. 

 

 

 

Figure C.6: The 2-D representation of 1-D non-stationary signals using STFT. 

 

 

Figure C.7: The 2-D representation of the signal using wavelet transform. 
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Image classification using the CNN results in a highly computational 

burden as each pixel represents an input in the neural network. The 2-dimensional 

(2-D) convolution can be applied to an image with different sets of shared weights 

(or kernels) using a neuron map, in which the weights are optimized through a 

backward propagation algorithm. The convolution provides two advantages for a 

mixed-fault classification. First, local features of the input images can be well 

identified for the classification. Second, the convolution combined with pooling 

can reduce the dimensionality of mixed-fault classification problem, thus 

simplifying the structure of fully-connected neural networks for the classification. 

Details of CNN training and analysis can be found in [42], and are summarized 

here. The CNN is trained by using a backpropagation algorithm by minimizing the 

cost function with respect to an unknown weight. 

 

ℒ = −
1

|𝑋|
 ∑ ln (𝑝(𝑦𝑖|𝑋𝑖))

|𝑋|
𝑖                                                                       (C.1) 

 

where |𝑋| is the number of training images, 𝑋𝑖 is the ith training image with the 

corresponding label 𝑦𝑖 and 𝑝(𝑦𝑖|𝑋𝑖) denotes the probability by which 𝑋𝑖 is 

correctly classified. 

 

If 𝑊𝑙
𝑡 denotes the weight of the lth convolutional layer at iteration t, and ℒ̂ 

denotes the cost over a mini-batch size T, then the updated weight in the next 

iteration is computed as follows: 

 

𝛾𝑡 = 𝛾(𝑡𝑇 |𝑋|⁄ )

𝑉𝑙
𝑡+1 = 𝜇𝑉𝑙

𝑡 − 𝛾𝑡𝛼𝑙
𝜕ℒ̂ 

𝜕𝑊𝑙

𝑊𝑙
𝑡+1 = 𝑊𝑙

𝑡 + 𝑉𝑙
𝑡+1

                                                                                 (C.2) 

 

where 𝛼𝑙 is the learning rate of the 𝑙𝑡ℎ layer, 𝜇 is the momentum to express the 

contribution of previous update, and 𝛾 is the scheduling rate, which reduces the 

learning rate at the end of each epoch. 
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C.2.3 Decision – level data fusion 

 

The outputs of the MLP- and CNN- based classifiers are large datasets of 

probability values in the heath classes. A probability classifier is required to 

combine the results from the neural networks. In this work, a Naïve Bayes model 

is used to combine the classification results of each individual classifiers since it 

is simple to build and effective to big and complicated datasets. The Naïve Bayes 

combiner needs to be trained before applying it to classification [32]. The training 

steps are implemented as:  

 

Step 1: Get an array 𝐸(𝑀,𝑞) , which contains specific outputs of the Q classifiers for 

M entities in the training set. The true health class labels are extracted from the 

training set and included in 𝑍(𝑀,1) array. 

 

Step 2: Obtain the numbers - 𝑀1, 𝑀2, … 𝑀𝑐 , which represent the number of entities 

in each health class within 𝑍(𝑀,1). Here the c represents the number of health 

classes. 

 

Step 3: For each classifier 𝐷𝑖, 𝑖 = 1, 2,.., Q, calculate a bespoke c × c confusion 

matrix 𝐶𝑖.  

 

𝐶𝑖(ℎ1, ℎ2) =
𝐾(ℎ1,ℎ2)+

1

𝑐

𝑀ℎ1+1
                                                                                   (C.3) 

 

where 𝐾(ℎ1, ℎ2) is the number of entities in training set with true class label ℎ1, 

labelled by classifier 𝐷𝑖 in class ℎ2. After the training process, the trained bespoke 

c × c confusion matrix 𝐶𝑖, can be used to fuse new results of individual classifiers. 

The calculation steps are as follows: 

 

Step 1: For each new entity, find the class labels 𝑠1, 𝑠2, … 𝑠𝐿 assigned by the L base 

classifiers. 

 

Step 2:  For each class 𝜔𝑘, 𝑘 = 1, … . . 𝑐 find the probability 𝑃(𝑘) of each health 

class. 
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Set 𝑃(𝑘) =
𝑀𝑘

𝑀
                                                                                          (C.4) 

 

Calculate 𝑃(𝑘) = 𝑃(𝑘)𝐶𝑖(𝑘, 𝑠𝑖) for 𝑖 = 1, … , 𝐿                                           (C.5) 

 

Step 3: Assign label  𝑘∗ to the entity, where 

 

𝑘∗ = arg 𝑚𝑎𝑥𝑘=1
𝑐 𝑃(𝑘)                                                                                  (C.6) 

 

Step 4: Return the final label of the new entity. 

 

C.3 Experimental data and pre-processing 

C.3.1 The experimental setup and data 

 

To validate the proposed algorithm, experimental data provided by PHM society 

data challenge in [43] is used. Figure C.8 shows the inside of the two-stage parallel 

shaft gearbox (with helical gears) used for collecting the vibration data 

 

 

 

Figure C.8: The structure of the gearbox. 

 

B1 
B4 

B2 

B5 

B3 B6 
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It consists of four gears, three shafts and six bearings. The gears are 

removable, and two types of gears, spur and helical, are used in this study. Eight 

fault cases of the spur gearbox and  six fault cases for the helical gearbox have 

been tested. Each fault case includes multiple faults from gears, bearings or shafts. 

Two accelerometers and one tachometer are used to collect the vibration data and 

input-shaft speed. The accelerometers are placed on the input and output shafts of 

the gearbox. The data of each channel is sampled at 200 kHz. Each fault class was 

tested at five different speeds (30 Hz, 35 Hz, 40 Hz, 45 Hz, and 50 Hz) and two 

different load conditions (high and low), and repeated, thus 20 data files were 

collected. The bearing dimensions shown in Table C.4 are used to calculate the 

characteristic frequencies associated with bearing faults in Table C.5 [19].  

 

Table C.4: Bearing dimensions. 

 

Number of Elements 8 

Roller Element Diameter 7.94 mm (or 0.3125 inch)  

Pitch Diameter 33.5 mm (or 1.319 inch) 

Contact Angle 0 

 

 

Table C.5: Forcing frequencies of bearing faults. 

 

Frequency component Order  

Fundamental train frequency (FTF) 0.38X 

Shaft rotational frequency (1X) 1X 

Ball/roller spinning frequency (BSF) 1.99X 

Outer-race fault (BPFO) 3.05X 

Rolling element fault (2*BSF) 3.98X 

Inner-race fault (BPFI) 4.94X 

 

In this work, 18 frequency-domain features described in [35] and 2 time-

domain features are selected for the domain knowledge analysis based on MLP. 

Since the MLP-based classifier requires the energies at interested frequencies, the 

filter banks are applied at different bands of the spectrum to capture the energies 

of those bands. The central frequency of each filter is defined based on forcing 

frequencies and the specification of the gearbox as shown in Table C.6.  
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Table C.6: Description of the Filter bank. 

 

  

Filter 01 Characteristic frequency of the input shaft unbalance 

Filter 02 Characteristic frequency of the bent input shaft 

Filter 03 Characteristic frequency of the outer-race defect of input-shaft 

bearing 

Filter 04 Characteristic frequency of the ball defect of input-shaft bearing 

Filter 05 Characteristic frequency of inner race defect of input-shaft 

bearing 

Filter 06 Natural frequency of rotating element  

Filter 07 Output-shaft helical 1X Gear Mesh Frequency (GMF) 

Filter 08 Input-shaft helical 1X GMF, Output-shaft helical 2X GMF or 

output-shaft spur 1X GMF 

Filter 09 Output-shaft helical 3X GMF 

Filter 10 Input-shaft helical 2X GMF, output-shaft helical 4X GMF, Input-

shaft spur 1X GMF or output-shaft spur 2X GMF 

Filter 11 Output-shaft helical 5X GMF 

Filter 12 Input-shaft helical 3X GMF, Output-shaft helical 6X GMF or 

Output-shaft spur 3X GMF 

Filter 13 Output-shaft helical 7X GMF 

Filter 14 Input-shaft helical 4X GMF, output-shaft helical 8X GMF, Input-

shaft spur 2X GMF or output-shaft spur 4X GMF 

Filter 15 Input-shaft helical 5X GMF or output-shaft spur 5X GMF 

Filter 16 Input-shaft helical 6X GMF, Input-shaft spur 3X GMF or Output-

shaft spur 6X GMF 

Filter 17 Input-shaft helical 7X GMF or output-shaft spur 7X GMF 

Filter 18 Input-shaft helical 8X GMF, input-shaft spur 4X GMF or output-

shaft spur 8X GMF 

 

Table C.7 shows fault classes of the spur and helical gearboxes under mixed 

defects in gears, bearings, and shafts. The fault classes Spur 3, Helical 2 and 

Helical 6 are single fault cases, which are useful to test whether the proposed 

algorithm is capable to detect single faults or not. In the study of gear faults, four 

health conditions, namely good, broken tooth, chipped tooth and eccentric gears, 
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are tested. In the case of the bearing, the health statuses of good, inner-race-, outer-

race- and ball faults are examined. For the shafts, the statuses of good, imbalance-

, bent- shaft and keyway sheared are tested. 

 

Table C.7: Fault classes of the gearboxes. 

 

 
 

C.3.2 Data pre-processing 

 

Accuracy and reliability of the MLP or CNN -algorithms are proportional to data 

samples for training. There are 280 files for 14 different fault classes, or 20 files 

for each class in the original dataset. Increasing data samples for training is to 

enhance the effectiveness of the proposed algorithm. A complete time-frequency 

representation of a vibration signal requires the data of one complete cycle of 

rotation. Based on this rule, one data file is subdivided into 20 samples, so 400 

samples are created for each fault class. Therefore, 5600 samples for 14 fault 

classes are used for training and testing of the algorithm, in which 75% of the data 

is used for training the classifiers, and 25% of the data is used to validate the trained 

algorithms. To test the robustness of the proposed algorithms, two types of noises 

are added to the original signals. The first type or noise type-1 signal is generated 

by adding white Gaussian noise at the signal to noise ratio (SNR) of 14 dB, which 

means the actual signal power to noise power ratio (𝑃𝑠𝑖𝑔 𝑃𝑛𝑜𝑖𝑠𝑒⁄ ) is approximately 

25. Figure C.9. shows the original signal and the noise type-1 signal. 

Fault 

Class 32T 96T 48T 80T B1 B2 B3 B4 B5 B6 Input Output

Spur 1 Good Good Good Good Good Good Good Good Good Good Good Good

Spur 2 Chipped Good Eccentric Good Good Good Good Good Good Good Good Good

Spur 3 Good Good Eccentric Good Good Good Good Good Good Good Good Good

Spur 4 Good Good Eccentric Broken Ball Good Good Good Good Good Good Good

Spur 5 Chipped Good Eccentric Broken Inner Ball Outer Good Good Good Good Good

Spur 6 Good Good Good Broken Inner Ball Outer Good Good Good Imbalance Good

Spur 7 Good Good Good Good Inner Good Good Good Good Good Good Keyw ay Sheared

Spur 8 Good Good Good Good Good Ball Outer Good Good Good Imbalance Good

Fault 

Class 16T 48T 24T 40T B1 B2 B3 B4 B5 B6 Input Output

Helical 1 Good Good Good Good Good Good Good Good Good Good Good Good

Helical 2 Good Good Chipped Good Good Good Good Good Good Good Good Good

Helical 3 Good Good Broken Good Good Good Good Combination Inner Good Bent Shaft Good

Helical 4 Good Good Good Good Good Good Good Combination ball Good Imbalnce Good

Helical 5 Good Good Broken Good Good Good Good Good Inner Good Good Good

Helical 6 Good Good Good Good Good Good Good Good Good Good Bent Shaft Good

Gear Bearing ID Shaft
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Figure C.9: The original signal and noise type 1 signal. 

 

Noise type-2 signals are generated by mixing each signal to another signal. 

This scenario demonstrates a practical beating situation in a gearbox, where the 

original vibration signal (𝑅𝑠𝑢) being measured is mixed with a fraction (f %) of 

another vibration source (𝑅𝑒). The final signal is normalized using the weighted 

average of both signals. The signal mixing rule is defined in (A.7) 

 

𝑅𝑠𝑛𝑢 =
(𝑅𝑠𝑢+𝑓∗𝑅𝑒)

1+𝑓
                                                                                          (C.7) 

 

where 𝑅𝑠𝑛𝑢 is the final noise type-2 signal of the uth fault class. u = 1, 2…, NG, in 

which NG = 8 for the spur gear and NG = 6 for the helical gear.  

In the cases of helical gearbox, 𝑅𝑒  is the helical fault class-2, which is 

selected as a noise to all other helical fault classes. The mixing weight (f %) is 

selected at 0.5. In spur gear faults, a similar rule is applied and the signal of the 

spur fault class-2 is used as a noise (𝑅𝑒) for other spur fault classes. Figure C.10 

shows the original and noise type-2 signal for the first 200 samples in the spur 1 

fault class. 
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Figure C.10: The original signal and spur-gear type 2 signal. 

 

C.4 Results and discussions 

 

In this study, each algorithm, namely MLP and CNN, was first applied to the 

dataset with and without using data fusion at the feature level. The effect of feature 

extraction using STFT and CWT on the accuracy of the individual neural networks 

was also assessed on the individual algorithms. Finally, the effectiveness of the 

proposed hybrid approach and data fusion at the decision level was validated by 

the same dataset. The accuracy is selected as the performance metric of machine 

learning in this fault diagnosis problem, thus the assessment of the proposed 

algorithm is only based on the accuracy and improvement of accuracy. 

 

C.4.1 Performance of the multiple-fault classification using MLP, CNN 

and feature level fusion 

The MLP architecture of a multiple-fault classification shown in Figure C.4 is 

used. It includes 20 input nodes from 20 features and 10 hidden layers. 8 fault 

classes of the spur gearbox and 6 fault classes for helical gearbox are studied, so 8 

nodes are used in the output layer of spur gearbox and 6 nodes for helical gearbox 

fault classification with SoftMax functions. The classification accuracy and the 
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difference of accuracy compared to respective decision fusion test case of each 

classifier with the test dataset is sumarized in Table C.8. The training process of 

neural networks holds a property of randomness. Therefore, 20 tests for each case 

are repetitively implemented to get the average accuracy values, minimizing the 

effect on randomness of the training process in this study.  

 

Table C.8: Overall performances of individual MLP and CNN classifiers. 

 

Test 

case 
Algorithm 

Signal Spectrogram 

images 

Feature 

fusion 

Accuracy and difference 

compared to feature level 

fusion (%)  

Spur Helical 

1  

MLP 

 

input - No 94.1 - 4.2 81.8 - 16.2 

2 output - No 97.0 - 1.3 86.2 - 11.8 

3 both - Yes 98.3  98.0  

4 

CNN 

input STFT No 94.0 - 3.5 59.5 - 21.8 

5 output STFT No 90.3 - 7.2 80.8 - 0.5 

6 both STFT Yes 97.5  81.3  

7 input CWT No 92.0 - 6.0 87.8 - 8.4 

8 output CWT No 90.6 - 7.4 90.8 - 5.4 

9 both CWT Yes 98.0  96.2  

 

 

In the first case – test case 1, 20 features from the input-shaft vibration 

accelerometer alone are applied to the MLP algorithm to classify the multiple 

faults. The classification accuracies for the spur and helical gearboxes are 94.1% 

and 81.8%, respectively. In the second case - test case 2, the classification 

accuracies of those gearboxes are 97.0% and 86.2% when using 20 features from 

the output-shaft vibration accelerometer alone. In the test case 3, the data fusion of 

40 features from the input- and output-shaft vibration accelerometers enhances the 

classification accuracies for the spur and helical gearboxes by 4.2% and 16.2%, 

respectively, compared to test case 1. In the test case 3, the feature level fusion 

improves the accuracy of classification for the spur gearbox only 1.3% as 

compared to test case 2. However, for the helical gearbox, it allows increasing the 

classification accuracy to 11.8%. 



Paper C. Multiple Classifiers and Data Fusion for Robust Diagnosis of Gearbox Mixed Faults 

149 

 

The CNN algorithm is applied to the image features extracted by STFT in 

the test cases:  4 (input-shaft signal), 5 (output-shaft signal) and 6 (fusion of the 

input- and output-shaft signals). The same procedure is implemented on the image 

features produced by CWT in the test cases from 7 to 9. The accuracy of the CNN 

algorithm on the fault classification of the spur gearbox is around 98% in case of 

using data- fusion on features extracted by either STFT or CWT, but the accuracy 

of the CNN algorithm reduces significantly to 81.3% if using data-fusion features 

extracted by STFT for the fault classification of the helical gearbox. Therefore, 

from the individual algorithm point of view, the MLP algorithm with feature-level 

fusion (case 3) and the CNN using CWT-base features with image fusion (case 9) 

are the best options for the multiple-fault classification for the gearbox in this 

study. 

The accuracy of the test case 6 for the helical gearbox is only increased by 

0.5 % as compared to the test case 5. However, for the spur gearbox the increase 

is 7.2% in the same test case. The classification accuracies for all test cases are 

improved from 0.5 % to 21.8%. From the type of gearbox point of view, the feature 

level fusion increases the accuracies for the spur-gearbox classification of about 

5% (mean difference in 6 cases), and those of the helical gearbox classification of 

10.7%, keeping consistent (less variant) for different test cases. 

A graphical representation of the overall accuracy is shown in Figure C.11, 

in which the blue dotted-line -IP, green dashed-line -Op, and red solid-line -IP+OP 

fusion curves are referred to the signal sources from the input-, output-shaft 

accelerometers and fused signals, respectively. In the next section, further 

improvements on the best options (cases 3 and 9) will be presented with and 

without the presence of noises in the collected data.  

Changing the time and frequency (scale in wavelets) resolution of the 

spectrograms has an impact on classification results. Low time-frequency 

resolution results in low classification accuracies due to low information contents. 

On the other hand, increasing the time-frequency resolution is effective up to some 

levels and after that more detailed information of the spectrogram will act as noises 

to the classifiers, reducing their accuracies. Increasing both time and frequency 

resolutions at same time is not feasible. For a given sampling rate, the frequency 

resolution is decreased, once time resolution is increased, and vice versa. Further, 

high time-frequency resolution and sampling rates require expensive data storage 

devices. Therefore, a balanced time and frequency (wavelet scale) resolution is 

experimentally selected as both are important for the classification, and high 
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classification accuracies are obtained in this study. 

 

 

Figure C.11: Overall performances of individual MLP- and CNN- classifiers. 

 

C.4.2 Accuracy and robustness comparison between the proposed 

method and other algorithms  

 

In this section, the accuracies and robustness of the proposed algorithms are 

compared with those from other algorithms, which are commonly used in feature 

detection and classification. Figure C.12 shows the comparison results. Domain 

features (DF) generated from filter banks are supplied to the proposed MLP and 

support vector machine (SVM) classifiers in the first two studies, and their 

performances are shown as DF-MLP and DF-SVM in Figure C.12. The main 

objective of the SVM classification is to define a hyperplane in the feature space 

to differentiate each class with a maximum margin between classes [44-46]. In this 

study, the SVM algorithm is tested with different kernel functions (linear, 

quadratic and gaussian), and the highest accuracy SVM with the gaussian kernel 

is used for classification in Figure C.12. 
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Figure C.12: Accuracy and robustness comparison of individual algorithms. 

 

From the first two studies, the classification accuracies of the proposed 

MLP and SVM classifier are high when fed by original- and the noise-type-1 

signals. However, under noise-2 signals the accuracy of the SVM classifier is 

considerably lower than the proposed MLP about 10% for the spur gearbox, and 

9% for the helical gearbox. This verifies that the proposed MLP classifier is more 

robust and accurate than the SVM classifier.  

The raw vibration signals (without any signal processing steps) are fed to 

the CNN in study 3 (Raw-CNN). In study 4 (CWT-CNN), first the raw vibration 

signals are converted to spectrograms by CWT, and then the supervised feature 

learning and classification are conducted using the proposed CNN. Using the raw 

vibration signal, the accuracy of the CNN classifier is significantly low as 

compared to the CNN using CWT spectrograms. These results confirm that using 

CWT spectrograms as inputs of the CNN classifier is better than using the raw 

signals. 
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To test the effectiveness of CNN feature learning, the raw vibration signals 

are used to derive pattern features in training a feed forward neural network, 

namely autoencoder (AE), and a SVM classifier is used in study 5 (Raw-AE-

SVM). In the study, sparse autoencoders are implemented to learn the features 

from inputs in an unsupervised way. In this study, two stages sparse autoencoders 

are used to derive 100 features from each input data type [47-49]. The overall 

accuracy in study 5 is lower than that of the proposed CNN method (Raw-CNN). 

This confirms that the combined feature learning and classification in the CNN 

result in a higher accuracy as compared to the combination between an individual 

feature learning and a classification.  

In study 6, the CWT spectrograms are used in training the autoencoders, 

and SVM is used as the classifier (CWT-AE-SVM). The classification accuracies 

in study 6 are lower than those in the proposed CNN method (study 4 or CWT-

CNN), but greater than those in study 5 (Raw-AE-SVM). Using CWT 

spectrograms and the CNN is a better option to enhance classification accuracy as 

compared to using raw signals and individual feature learning and SVM 

classification.  

The comparative study in this section confirms that the proposed domain 

features and MLP based algorithm and the CWT spectrogram-based CNN 

algorithm are the best individual algorithms in terms of average accuracies and 

robustness under noises. 

 

C.4.3 Accuracy and robustness of the multiple-fault classification using 

the hybrid neutral networks and decision level fusion. 

 

In the previous section, two best options of the multiple-fault classifications were 

identified: feature-level data-fusion based-MLP and feature-level data-fusion 

based CNN algorithm implemented on the CWT features. The next step is to 

enhance the accuracy and robustness of those best classifications by fusing the 

results of the two best individual classifiers at the decision level using the Naïve 

Bayes combiner. 9 different tests are conducted on the selected classifiers to verify 

the robustness of the proposed data fusion. Table C.9 summarizes the overall 

performance of the MLP and CNN classifiers with and without noises in the 

collected signals.  
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Table C.9: Overall performances of MLP and CNN classifiers with noise. 

 

Test 

case 

Algorithm Noise 

Type 

Decision 

level 

fusion 

Accuracy and difference compared to 

decision level fusion (%)  

Spur Helical 

1 MLP 

- 

No 98.3 - 0.1 98.0 - 0.2 

2 CNN No 98.0 - 0.4 96.2 - 2.0 

3 MLP + CNN  Yes 98.4  98.2  

4 MLP  

Noise 1 

 

No 97.1 - 0.4 97.0 - 0.7 

5 CNN No 90.4 - 7.1 94.8 - 2.9 

6 MLP + CNN  Yes 97.5  97.7  

7 MLP 

Noise 2 

No 85.3 - 5.8 74.5 - 19.0 

8 CNN No 84.1 - 7.0 93.2 - 0.3 

9 MLP + CNN  Yes 91.1  93.5  

 

Without noises in the first three test cases, the Naïve Bayes combiner allows 

maintaining the accuracy of the selected classifications at 98.4% in the spur 

gearbox and 98.2% in the helical gearbox. The effect of decision fusion on the 

accuracy improvement is small under this noise less case. 

Under the effect of noise type 1, the accuracies of the individual MLP and 

CNN classifiers to the spur gearbox reduce by 1.2 % (test case 4 is compared to 

test case 1) and 7.6 % (test case 5 is compared to test case 2), and those to the 

helical gearbox drop by 1% and 1.4 %. The white Gaussian noises affect slightly 

on the accuracy of the MLP classifier, but significantly deteriorate the performance 

(7.6 % compared to spur gearbox test case 2) of the CNN classifier. The decision 

fusion of the MLP and CNN results keeps the accuracy of the multiple-fault 

classification for both the spur and helical gearbox close to 98%. This verifies that 

the proposed decision-level fusion algorithm is well robust against the white 

Gaussian noise at SNR of 14 dB.    

When applying the type-2 noises to the signals collected from the spur 

gearbox, the accuracies of the MLP and CNN classification reduce by 13% 

(compared to the test case 1) and 13.9% (compared to the test case 2), respectively. 

The Naïve Bayes combiner enhances the accuracy of the overall classification by 

about 5.8% for MLP and 7.0% for CNN and keeps the final accuracy at 91.1% for 

spur-gearbox classification. For the helical gearbox dataset, the accuracy of the 
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MLP classifier drops significantly by 23.5% (compared to the test case 1) under 

the effect of the type-2 noise, but the accuracy of CNN classifier is only decreased 

by 3% (compared to the test case 2). The decision level fusion improves the 

classification accuracy by 19% for MLP and 0.3% for CNN and maintains 93.5% 

accuracy.  

Figure C.13 shows the mean and standard deviations of accuracies of each 

algorithm for different test cases. The standard deviation of an algorithm is the 

square root of its accuracy variance, quantifying the variation of accuracies around 

its mean under different noise conditions. For example, the mean and deviation of 

MLP algorithm are 91.7% and 8.92% using the six classification accuracies 

(98.3%, 98.0%, 97.1%,97.0%, 85.3% and 74.5%) given in test cases 1,4 and 7 in 

Table C.9. This means that the MLP classifier has the mean accuracy of 91.7%, 

but it is not robust under noise conditions due to the big variation. As seen from 

Figure C.13, the mean accuracy is maximized, and the deviation is minimized if 

using decision fusion of the CNN and MLP results.  

 

 

Figure C.13: Mean and deviation of algorithms in different test cases. 

 

The importance of decision fusion is substantially highlighted since the 

individual MLP or CNN classifier alone is sensitive to the noise. Under the noise 

type 1 and 2 cases, the classification accuracies are dropped as the information 
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contents on the inputs (MLP features and spectrograms) are distorted. The 

accuracy of machine learning reduces further once the information distortion is 

increased from noise-less, noise type 1 to noise type 2.   The proposed decision 

level fusion cannot prevent the dropping of accuracy, but it can minimize the 

accuracy reduction and standard deviation. It can be concluded that the individual 

algorithms are not robust against noise type-2 or external sources added to 

vibration signals, which are common in drivetrains of the wind turbines or heavy 

industry. 

 

C.5 Conclusion 

 

In this work, a hybrid neural network scheme, consisting of Multilayer Perceptron 

and Convolutional Neural Network, is proposed to detect mixed faults in a 

gearbox. Using the proposed MLP algorithm, CWT spectrograms as input data to 

CNN is recommended for the classification of gearbox mixed faults. The 

robustness and reliability of the proposed scheme are further improved by data 

fusion algorithms, and its accuracy is maintained at above 91% regardless of 

disturbances or noises in the collected data. The average accuracy of the proposed 

algorithm under different noise types is high as 96.07% with a standard deviation 

of 2.77%. This improvement is highly important since the main objective of 

multiple- fault classifications is to avoid the false and missing alarms. Other 

remarks are drawn from this work: 

▪ Feature-level data fusion can significantly improve the accuracy of a fault 

diagnosis irrespective of the type of machine learning algorithm.  

▪ Accuracy of the CNN-based classification depends on the quality of input data, 

image or patterns. Using the spectrograms as input data for CNN gives a higher 

classification accuracy than the raw vibration signals. In this application, the 

images extracted by continuous wavelet transform are more reliable than those 

from short-time Fourier transform or raw vibration signals.  

▪ If an individual MLP- or CNN-based fault classifier is not robust under noises, 

using an additional classifier and decision fusion can enhance its robustness. 
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Abstract – Electric powertrains are widely used in automotive and renewable 

energy industries. Reliable diagnosis for defects in the critical components 

such as bearings, gears and stator windings, is important to prevent failures 

and enhance the system reliability and power availability. Most of existing 

fault diagnosis methods are based on specific characteristic frequencies to 

single faults at constant speed operations. Once multiple faults occur in the 

system, such a method may not detect the faults effectively and may give false 

alarms. Furthermore, variable speed operations render a challenge of 

analysing nonstationary signals. In this work, a deep learning-based fault 

diagnosis method is proposed to detect common faults in the electric 

powertrains. The proposed method is based on pattern recognition using 

convolutional neural network to detect effectively not only single faults at 

constant speed but also multiple faults in variable speed operations. The 

effectiveness of the proposed method is validated via an in-house experimental 

setup. 

 

Index Terms – Fault diagnosis, convolutional neural networks, electrical fault 

detection, induction motors, electromechanical systems, gears, bearings. 
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D.1 Introduction 

 

Electric powertrains are one of the most demanding components in modern 

engineering systems. Electric drives, gearboxes and various types of loads, e.g. 

pumps, fans, mixers, conveyor systems, are the workhorses of manufacturing and 

food processing industries. According to a recent survey in Germany, electric 

drives consume more than 70% of electric energy in industries [1].  Furthermore, 

in modern automobiles there is an increased trend to replace combustion-engine 

powertrains by hybrid or electric powertrains due to the merits of efficiency, 

controllability and maintenance [2]. Electric powertrains together with the 

electricity generated from renewable sources can reduce the environmental 

impacts of human activities.  

Condition monitoring systems are necessary to prevent catastrophic failures 

in critical industrial machines via predictive maintenance. However, most of the 

condition monitoring techniques used for electric powertrains and other rotating 

machines are still based on manual or semi-automated techniques, which are costly 

and time-consuming. Manual condition monitoring methods are based on 

analysing the data collected from vibration, current, oil samples and acoustic 

sensors [3-4], which require maintenance teams with skilled human resources and 

proper training to deal with various signal processing and statistical analyses using 

time and frequency domain signals [5]. 

To address challenges associated with the conventional condition 

monitoring methods, online condition monitoring and fault diagnosis methods can 

be used to increase the monitoring reliability. However, implementing a full online 

condition monitoring and fault diagnosis systems is a challenging task, requiring 

expertise of analysing complex relations from many data sources and making 

combined or fused decisions. Modern machine learning, deep learning algorithms 

and cloud computing methods are among the best options for implementing an 

automatic fault diagnosis system [6-7]. In this work, a deep learning-based fault 

diagnosis method is proposed for electric powertrains. The proposed algorithm is 

based on convolutional neural network (CNN). The CNN algorithms are originally 

developed for image classification applications. The main advantages of using 

CNN for image classification is that it does not require any domain knowledge 

about images, and CNN can learn features from the training data. In fault 

classification applications, signal processing techniques are necessary to extract 
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the hidden fault signatures from the signals and later the processed signals can be 

used to generate spectrograms. Further, CNN can learn complex spatial 

relationships from the spectrograms of fault signals to compensate noises and other 

disturbances. 

Machine-learning and deep-learning algorithms have been widely used in 

fault classification, but most of them have been focused or limited to fault detection 

and classification under constant speed conditions for individual faults [8]. 

However, electric powertrains in automotive applications normally work in 

variable speeds and loads according to driver’s demands, and multiple faults may 

occur in such a condition. These situations render challenges for the existing 

techniques, i.e. nonstationary signals, or may cause false alarms. This work focuses 

on detecting multiple faults in variable speeds. Within the framework, individual 

CNN-based classifiers are trained to detect single faults, but the validation for the 

classification is done for both single and multiple faults. This suggested procedure 

of training and validation matches with practical implementation cases, where the 

classifiers can be easily trained for single fault cases, but there can be several 

combinations in multiple fault cases. By eliminating the training for multiple fault 

cases, the proposed method allows to reduce the training time and computational 

burden of the classifiers. This rest of paper is organised as follows: in Section D.2, 

the proposed fault diagnosis system is presented in detail. The experimental results 

are discussed in Section D.3. In Section D.4 the conclusion of the work is provided. 

 

D.2 Proposed fault diagnosis system 

 

A block diagram of the proposed fault diagnosis system for electric powertrains is 

shown in Figure D.1. A typical electric powertrain includes the electric power 

source, controller, electric motor, gearbox, mechanical power transmission 

components and load as described on the top of Figure D.1. This fault diagnosis 

system focuses on the most common faults in critical components. To identify the 

critical components, the important functionalities and component failure 

probabilities can be taken into consideration. For example, in electric motors, most 

of the faults occur in bearings and stator windings, which provide important 

functionalities [9]. Therefore, the diagnosis system has to detect common faults on 

bearing and stator winding. Within this study, multiple faults in electric motors, 

namely inter-turn fault on the stator and bearing outer-race fault, and a damaged 
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gear on the gearbox are selected as studied fault cases. For each fault, an individual 

classifier is designed to detect the fault.  
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Figure D.1: A block diagram of the proposed fault diagnosis system. 

 

Motor currents and the vibration sensors are used to diagnose faults in this 

work. Since the motor operates in variable speed conditions, the collected currents 

and vibration signals are order tracked and normalized to consider the variable 

speed operation. More details of this method are presented in Section D.2.2. Then 

spectrograms of both currents and vibration signals are generated and combined 

into large images. This combination provides an enlargement in the feature space. 

Based on the generated spectrograms, CNN can fuse the current and vibration 

spectrograms and implement a fault classification. 

Although CNN are widely used in many applications of image 

classification, a CNN based fault diagnosis needs to be carefully implemented on 

spectrograms. The information of faults is hidden in the collected signals, thus 

proper signal processing methods are required to extract the hidden information 

from the signals and convert into spectrograms. For this purpose, the order 

normalization for vibration signals and the Park’s vector of currents are used 
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together with CNN. In the training phase, three classifiers, namely C1, C2 and C3 

as shown in Figure D.1, are individually trained to detect stator winding faults, 

bearing faults, and gear faults, respectively. After the training process, the trained 

classifiers are employed to detect multiple fault cases. 

  

D.2.1 Fault diagnosis in constant speed operations 

 

In a fault diagnosis of rotating machines, faults are detected by tracking the 

characteristic frequencies associated with the faults. For example, the 

characteristic frequency associated with an outer-race bearing fault (ball pass 

frequency outer-race (BPFO)) is calculated in (D.1) [10]. Such a characteristic 

frequency can be observed in analysed vibration signals when there is a defect on 

the bearing outer race. 

 

𝐵𝑃𝐹𝑂 =
𝑁𝑏

2
 𝑓𝑠(1 −

𝐷𝑏

𝐷𝑐
 𝑐𝑜𝑠𝜃)                                                                     (D.1) 

 

where 𝑁𝑏 is the number of rolling elements in the bearing, 𝐷𝑏 denotes the diameter 

of a rolling element, 𝐷𝑐 represents the pitch diameter, 𝜃 is the contact angle 

between the outer-race and rolling element, and 𝑓𝑠 is the shaft rotational frequency.  

The BPFO frequency divided by the shaft rotational frequency is equal to a 

frequency order, which is a constant for any rotational speed. Based on the bearing 

dimensions, the order of the bearing fault in this study is defined at 3.6 order (3.6X) 

of the shaft rotational frequency. An inter-turn stator winding fault can be detected 

using Park’s vector (PV) analysis of motor currents [11]. 

 

𝑖𝑑 = √2 3⁄ 𝑖𝑎 − √1 6⁄ 𝑖𝑏 − √1 6⁄ 𝑖𝑐 

 

𝑖𝑞 = √1 2⁄ 𝑖𝑏 − √1 2⁄ 𝑖𝑐 

 

𝑖𝑝 = |𝑖𝑑 + 𝑗𝑖𝑞| 

 

 

 

               (D.2) 

  

where 𝑖𝑑 and 𝑖𝑞 are the direct and quadratic components of the Park’s vector 𝑖𝑝. 

𝑖𝑎 , 𝑖𝑏 and 𝑖𝑐 are the phase currents. A stator winding fault results in an unbalanced 
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winding, which produces a frequency of two times of the fundamental frequency 

in spectrum of  𝑖𝑝 [11]. This means the second order of supply frequency (2𝑓𝑠).  

Similarly, a damaged gear fault results in an increase of vibration in the first 

order (1X) of the gear rotating frequency, gear natural resonance frequency and 

gear mesh frequencies and its 1X sidebands [12]. By tracking the mentioned 

frequency orders, the gear faults can be detected. 

 

D.2.2 Fault diagnosis in variable speed operations using order tracking  

 

In the fault diagnosis in constant speed operations, the sampling rate of signals is 

kept as a constant, and Fourier transform can be used to analyse the collected 

signals in such a steady-state operation. In variable speed operations, the Fourier 

transform cannot be applied because the analysed signals are not stationary or the 

frequency changes in time. Short-time Fourier transform (STFT) can be an 

alternative option as it assumes that the frequency is constant in small-time 

windows, thus Fourier transform is performed for those short-time signal windows. 

However, parameters of STFT need to be correctly selected in advance to 

compromise time and frequency resolution in spectrograms, thus it might not be a 

good solution to observe the characteristic frequencies in wide-range variable 

speeds. To address this challenge, instead of using a constant time sampling, the 

constant angular sampling is used for extracting the hidden stationary signal.  

As shown in Figure D.2, the constant angle sampling method can be used 

to extract the underlined constant-frequency sine wave from a varying frequency 

sine wave. Details on this method can be found in [13-14]. Since the angle/phase 

information is required for this process. The rotational speed is measured from the 

test bench. 

Figure D.3. shows how the constant angle sampling and order tracking are 

used in this study to detect a stator winding fault. The variable speed profile used 

in this study is given Figure D.3 (a). Figure D.3 (b) shows the STFT of the Park’s 

vector 𝑖𝑝 of the current signals, in which the 2𝑓𝑠  is clearly visible in the spectrum 

of 𝑖𝑝. After using the order tracking based on constant angle sampling, a constant 

2X order is presented in the spectrogram for the variable speed operation as shown 

in Figure D.3 (c). 
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Figure D.2: Constant angle sampling of a variable frequency signal. 
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(a) 

 

(b) 

 
 

(c) 

Figure D.3: Variable speed operation and order tracking of EPV signal for stator 

winding fault. 

 (a) variable speed profile (b) the spectrogram of the extended Park’s vector (c) the 

spectrogram after order tracking and normalisation. 

Time (s) 
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Figure.D.4. shows the order tracking spectrogram of vibration signals for 

the outer-race bearing fault and the 3.6X characteristics order is visible in the 

spectrogram. Similarly, for a damaged gear fault, the order tracking spectrograms 

can be generated. 

 

 
 

Figure D.4: Order tracked and normalised spectrogram for the bearing fault. 

 

D.2.3 Convolutional neural network  

 

A simplified block diagram of a CNN architecture is presented in Figure D.5. 

There are two main subsections of the network: feature learning and classification.  

Image classification using the CNN is a high computational intensive task as each 

pixel represents an input in the neural network. The 2-dimensional (2-D) 

convolution can be applied to an image with different sets of shared weights (or 

kernels) using a neuron map, in which the weights are optimised by a backward 

propagation algorithm. With convolution operation, local features of the input 

images can be identified for the classification. The convolution combined with 

pooling can reduce the dimensionality, allowing to simplify the structure of a fully-

connected neural network for the classification. The rectified linear unit (ReLU) 

introduces the non-linearity to the system. Details of CNN training and analysis 

can be found in [15].  

 

 

Time (s) 
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Figure D.5: A block diagram of a CNN architecture. 

 

In the classification section, the learned features are utilised in a fully 

connected neural network architecture for classification. The Flatten operation is 

required to convert a 2-D image to the 1-D array for the classification. Based on 

derived features in the convolution and pooling operation, the classification task is 

done by the fully connected network, which finds the complex relations in the 

feature space. The SoftMax function converts the outputs of the fully connected 

network to probabilities of health classes. The highest probability value represents 

the output fault class of the network.  
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D.3 Experimental results and discussion 

D.3.1 Experimental setup 

The experimental test setup used in this study is shown in Figure D.6. The 

powertrain on the left side includes a 1.1 kW, 1450 rpm induction motor (IM) 

coupled to the 2-stages parallel shaft gearbox (GB) with 8.01 gear reduction. The 

internal components of the complete powertrain are disassembled and shown in 

Figure D.7. They include 8 bearings, 4 gears and 3 shafts. The gearbox is coupled 

to a permanent magnet synchronous generator (PMSG), and the generator output 

is connected to a fixed resistive load. Therefore, the powertrain load is proportional 

quadratically to the rotational speed. The output currents of the PMSG are 

measured and used to estimate the rotational speed of the electric powertrain. 

However, in real applications, an encoder is required to measure the speed. 

 

 
 

Figure D.6: The experimental setup. 

 

 
 

Figure D.7: The internal components of the electric powertrain. 

 

IM  PMSG GB  

B1  

G1  
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(a) (b) (c) 

Figure D.8: The faulty components of electric powertrain. (a) damaged gear (b) 

outer-race damaged bearing (c) 10% inter-turn short circuit fault in the stator. 

 

As shown in Figure D.8 (a), a small-scale damage is artificially produced in 

the large gear using an electric discharge machining.  An outer-race defect on the 

induction motor bearing is made as shown in Figure D.8 (b). For stator winding 

faults, 10% inter-turn short circuit is seeded to one phase of the stator winding as 

shown in Figure D.8 (c). Eight fault cases with individual and multiple faults are 

conducted as shown in Tables D.1 and D.2. 

 For each fault case, the induction motor operates at constant speeds of 500, 

1000, 1400 rpm and two variable speed profiles in Figure D.3 (a) the constant- and 

ramp speed and in Figure D.9 with the random speed. An acceleration sensor is 

placed on top of the gearbox, and the accelerometer data together with motor input 

currents are collected. The output currents and speed of the PMSG are also 

measured. With this test arrangement, data of 50 repeated runs for each fault class 

is collected, and each file contains 120-seconds data at the sampling rate of 20 

kHz. Each file is subdivided into 20 pieces, producing 1000 samples for each fault 

class or 8000 samples for training and validation of all fault cases. Data of single 

fault cases, from Case 1 to Case 4 as shown in Table I, are used to train individual 

classifiers, where 75% of samples are used to train, and 25% of the data is used to 

validate. Data of multiple-fault cases, from Case 5 to Case 8 in Table II, are not 

used for any training task, and 25% of those data is used for validation.  
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Figure D.9: A random-variable speed profile used in the experiments. 

D.3.2 The experimental results 

The confusion matrixes for individual classifiers are shown in Figure D.10 and the 

classification accuracies are summarized in Table I. The C1 classifier is trained to 

detect stator winding faults, and it gives an accuracy of 100 %. The classification 

accuracy of C2 - bearing outer-race fault classifier is 98.8 %, and the classification 

accuracy of C3 - gear fault classifier is 99.8%. In other words, all three classifiers 

work very effectively for detecting single faults. 

 

 
 

(a) 
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(b) 

 
 

 

(c) 
 

Figure D.10: The confusion matrixes of individual classifiers. (a) C1 classifier (b) 

C2 classifier (c) C3 classifier  

 

The classification accuracies for multiple fault cases are summarized in 

Table II. The C1 classifier works well for detecting stator winding faults at any 

multiple fault cases considered in the study and classification accuracies are 

greater than 98.8 % in all the cases. The C3 classifier also effectively detects the 
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damaged teeth gear fault in multiple fault conditions with a minimum accuracy of 

87.8 %. The weakest classifier in this study is the C2 classifier, which perform 

well in some multiple faults (Case 5 and Case 8), but not well for the outer-race 

bearing faults in Case 6 and Case 7, with the accuracies of 76.2 % and 71.5 %, 

respectively.  

 

Table D.1: Performance summary: individual classifiers. 

 

Case 

ID 

Classifier ID Component Fault 

class 

Test Accuracy 

(%) Sw  B1  G1 

1 - H H H HHH - 

2 C1 F H H SHH 100 

3 C2 H F H HBH 98.8 

4 C3 H H F HHG 99.6 

 

Sw: stator winding, B1: bearing 1, G1: gear 1, .H: healthy, F: faulty. 

 

 

 

 

Table D.2: Performance summary: multiple Faults. 

 

Case 

ID 

Component Fault 

class 

Test Accuracy (%) 

Sw  B1   G1 C1 C2 C3 

5 F F H SBH 100 86.8 87.8 

6 H F F HBG 99.8 76.2 98.6 

7 F H F SHG 100 71.5 100 

8 F F F SBG 98.4 90.2 99.4 

 

SBH: faulty stator, faulty bearing, and healthy gear. 

HBG: healthy stator, faulty bearing and faulty gear. 

SHG: faulty stator, healthy bearing and faulty gear. 

SBG: faulty stator, faulty bearing and faulty gear. 
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D.4 Conclusion 

 

In this study, a fault diagnosis system is proposed to detect faults in an electric 

powertrain in variable speeds and multiple fault conditions. The classifiers for the 

stator and gear fault diagnosis have given an excellence performance for fault 

classification under individual and multiple fault conditions. The experimental 

results confirm that the proposed can detect single and multiple faults under 

variable speed conditions Although the classifier for the bearing fault detection 

works well for single fault conditions, it has a limited capacity for classifying some 

multiple fault conditions. 

Three types of localized faults in the stator winding, bearing and gearbox 

have been studied in this work, but the concept can be extended to other types of 

faults such as shaft unbalance, shaft misalignments, bearing inner race faults, gear 

misalignments, broken gear tooth etc. Furthermore, following improvements are 

suggested for future works: 

1. Identify problems in the bearing fault classifier and improve its 

performance. 

2. In this study, 10% inter-turn short circuit fault is considered, and the 

accuracy of the stator winding fault classifier for lesser faults (severities 

less than 10%) was not tested. Furthermore, one level of fault severity is 

studied for bearing and gear fault. Thus, testing accuracies of the classifiers 

for different fault severities is a possible extension of study. 
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Abstract – Online condition monitoring and fault diagnosis systems are 

necessary to prevent unexpected downtimes in critical electric powertrains. 

The machine learning algorithms provide a better way to diagnose faults in 

complex cases, such as mixed faults and/or in variable speed conditions. Most 

of studies focus on training phases of the machine learning algorithms, but 

the development of the trained machine learning algorithms for an online 

diagnosis system is not detailed. In this study, a complete procedure of 

training and implementation of an online fault diagnosis system is presented 

and discussed. Aspects of the development of an online fault diagnosis based 

on machine learning algorithms are introduced. A developed fault diagnosis 

system based on the presented procedure is implemented on an in-house test 

setup and the reliably detected results suggest that such a system can be 

widely used to predict multiple faults in the power drivetrains under variable 

speeds online.  

 

Index Terms — online fault diagnosis, convolutional neural network, electrical 

fault detection, induction motors, electromechanical systems, gears, bearings. 
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E.1 Introduction 

 

Electric powertrains are one of critical building blocks in automotive and 

manufacturing industries. Proper condition monitoring and fault diagnosis 

methods are essential to enhance their reliability and availability. Online fault 

diagnosis systems are useful to monitor the health status of critical machines, 

detecting the faults and planning maintenance schedules accordingly. However, a 

procedure to develop these online systems is not well detailed in literature. 

Three main approaches, namely model-based-, signal-based- and 

knowledge-based, are widely used to implement fault diagnosis systems [1-3].  

Furthermore, a hybrid approach is also a promising option by combining the 

mentioned methods in various ways [4]. In the model-based approach, the dynamic 

model of a system is developed using first-principle physics. The developed model 

should be sufficiently sensitive to represent different fault situations. The model 

parameters should be tuned properly to match real-plant behaviours. Then the 

responses of the model are compared with those of the real system via measured 

system parameters. A threshold is applied to the residual signal of the comparison 

to diagnose the faults [1-3]. This diagnosis method is reliable if the system model 

and its parameters are well identified in advance. However, identifying a detailed 

mathematical model to represent various machine health statuses is very difficult 

and time consuming. To address such a challenge, system identification, parameter 

estimation and observers are used to improve performance of the model-based 

approach [2].  

In the signal-based approach, various signal processing methods, e.g. 

wavelet-, fast Fourier-, short-time Fourier transforms can be used to find fault 

characteristic frequencies for the fault diagnosis [5-6]. This approach requires 

expertise on signal processing and fault knowledge. However, missing harmonics 

of the characteristic frequencies associated with faults in the spectrum cannot 

guarantee that the system is healthy [7]. The knowledge-based approach combines 

the advantages of signal processing and modern artificial intelligent methods for a 

better fault diagnosis [1-3]. In this approach, a data-driven model can be developed 

from a large amount of measured data in various system conditions. Statistical and 

machine learning techniques can be used to develop such a data-driven model. If 

the data is sufficiently available, data-driven models can capture the health statuses 

of a system [8-9]. A predictive model based on data-driven models can detect the 
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faults without generation and analysis of the residual signals. Further details of 

data-driven models are discussed in section E.2. 

In complex fault scenarios, e.g. multiple faults occur in a system in variable 

speed conditions, defining a clear rule to detect and classify faults is difficult or a 

given rule can be complicated. In addition, the data collected via sensors can be 

noisy or interfered by other sources. For example, vibration signals can be mixed 

of internal machine- and external vibrations. Furthermore, the data can be affected 

by electromagnetic interference (EMI) in the motor drive system. Therefore, by 

considering all above factors, a hybrid approach based on an advanced signal 

processing and machine learning is selected in this work regardless of some 

challenges when building a data-driven model based on machine learning-

algorithm. The model accuracy, robustness, generalizability, complexity and 

computational speed are among important performance indicators, which should 

be addressed in designing an online fault diagnosis system [8]. In this study, a 

complete procedure to develop an online fault diagnosis system for an electric 

powertrain is presented and discussed. Further details of a fault diagnosis 

algorithm based on this procedure can be found in [9]. 

This paper is organised as follows: in Section E.2, the development 

procedure of an online fault diagnosis system is presented and discussed. In 

Section E.3, the development stages of integrating a predictive model into the 

online diagnosis system are described in detail. The experimental test setup, data 

and results are discussed in section E.4. The conclusion of the study is presented 

in section E.5. 

 

E.2 Development procedure of the online fault diagnosis 

system  

Figure E.1 shows a procedure for implementing an online fault diagnosis system. 

The system can be developed in three steps, namely development of a data-driven 

model, integration of the trained predictive model into the online diagnosis system, 

and development of an embedded system. In this study, the first two steps are 

presented and discussed. In many applications, the first two steps are sufficient for 

an online fault diagnosis. However, in more critical machines, the fault diagnosis 

system can be implemented as an embedded system or integrated into the existing 

control system, being placed closer to the machine for monitoring the health status. 

The algorithm development is an iterative process, which is to find the best 
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machine learning model [8]. In this iterative process, the important steps are: 

• Analysis of the system requirements 

• Sensor selection and raw data analysis 

• Signal processing, feature extraction and dimension reduction in the feature 

space 

• Integration of suitable data fusion methods 

• Analyzing the model performance, parameter optimization and selection of the 

best learning algorithm 
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Advanced 
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Figure E.1: The development procedure of the online fault diagnosis system. 

 

E.2.1 System requirements 

 

In this study, the requirements of a fully operational online fault diagnosis system 

are suggested. A block diagram of the developed fault diagnosis system is shown 

later in Figure E.2. The suggested system requirements are based on domain 

knowledge, critical components and failure rate analysis.  

• The diagnosis system shall be able to detect and classify multiple faults in 

variable speed conditions reliably. 

• The diagnosis system shall use a reasonably small number of sensors.  

• The algorithm shall use a minimum training data for multiple fault cases. 

• Fault types shall be detected: inter-turn fault in a stator winding, bearing and 

gear faults. 
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• The system shall be robust against sensor signal noises and interferences. 

E.2.2 Sensor selection and raw data analysis 

 

Current and vibration signals are selected as the inputs of the fault diagnosis 

system. Thus, a right selection of vibration and current transducers is important 

since each sensor is designed to work within certain operating ranges and sensitive 

levels, which should be matched with the fault diagnosis system requirements. 

Shielded cables must be used in the data acquisition system to reduce the external 

interference. The location of vibration sensors is very important to collect properly 

vibration information. The vibration sensors shall be tightly fixed to the machine 

to obtain sufficiently required information. 

After the sensor selection and installation, the data must be collected in 

different health statuses and operating conditions of the electric powertrain. Then 

the collected raw data shall be analysed to find the statistical distribution of the 

signals, and the analysed data shall be normalised via a suitable normalization 

method. After the normalization, the signals shall be further processed using 

advanced signal processing methods discussed in Section E.2.3.  

E.2.3 Advanced signal processing, feature extraction and dimension 

reduction 

 

Once having the normalization on the collected data, the next step is to process the 

data and extract the important features from the signals for detecting faults. The 

domain knowledge-based features are the most reliable among features extracted 

by domain knowledge-, statistical- and deep learning algorithms since they are 

based the physical phenomena of the powertrain. The features based on statistical- 

and deep learning algorithm or using pattern recognition do not represent a direct 

physical meaning. 

Domain knowledge-based features can be extracted by investigating the 

forcing frequencies associated with faults and powertrain parameters. If the fault 

severity and rotational speed are low, or signals are noisy, advanced signal 

processing methods are required to extract the hidden information associated with 

the faults in the collected signals. Various signal processing techniques used to 

extract the domain knowledge-based features can be found in literature [5], [10-

14], and key techniques are summarized in Table E.1. 
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Table E.1: Signal processing techniques for fault diagnosis applications. 

 

Signal processing objectives Techniques 

Noise and signal separation  

[5], [10-11] 

Digital filters 

Time synchronous analysis 

Order tracking and normalizing  

Wavelet denoising 

Denoising autoencoders 

Adaptive noise cancellation 

Discrete/random separation (DRS) 

Cyclostationary analysis and spectral 

correlation 

Time domain analysis [5] Root mean square and autocorrelation 

Frequency domain analysis [5], [12] Fast Fourier transformation (FFT) 

Spectrum averaging 

Time-frequency analysis [5], [13] Short time Fourier transformation 

(STFT) and Wavelet transform (WT) 

Instantaneous frequency and phase 

analysis [5], [14] 

Hilbert transform  

Envelop analysis 

Signals and system behavior [5] Convolution 

Analysis of the impulsivity [5]  Spectral kurtosis and the kurtogram 

 

Statistical features can be generated without any prior knowledge of faults. 

The statistical features can capture patterns in the signals in various working 

conditions, which can be used in the fault classification based on machine learning 

algorithms. Some commonly used statistical features from time and frequency 

domain signals are the signal mean, standard deviation, minimum, maximum, 

skewness, kurtosis, crest factor, etc. [15].  

Dimension reduction in the feature space is the next step after the feature 

extraction process. This step is to simplify the model and reduce the curse of 

dimensionality and training time. Further, it’s useful to avoid the model overfitting, 

recognising noises as a concept in the training phase. To reduce the dimensions, 

new features are created by combining existing features based on the dimensional 

methods such as principle component analysis, factor analysis, and complex 

nonlinear techniques [16]. Alternatively, the best features are selected by the 

filtering strategy (e.g using information gain), wrapper strategy (e.g. accuracy-
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guided search) and embedded strategy [17]. After reducing the feature space, those 

features can be fed to the supervised machine learning algorithms with the health 

class labels.  

Feature generation based on deep learning is an alternative way to extract 

features. The original concept of using deep learning algorithms, e.g. 

Convolutional neural network (CNN), is to combine feature extraction, dimension 

reduction and classification in one algorithm. The CNN algorithm combines those 

tasks in image classification applications [18]. Using sparse autoencoders, features 

can be also generated in an unsupervised way and then the generated features can 

be used in a supervised classification algorithm [19]. However, an automatic 

feature extraction from raw data is not feasible in most of fault diagnosis 

applications. The extraction process should be always combined with advanced 

signal processing methods. In other words, using CNNs alone, a feature extraction 

is partly automatic in fault diagnosis applications. 

 

E.2.4 Integration of data fusion methods 

 

To reduce the noise effect and increase the accuracy and robustness of machine 

learning based classifications, data fusion methods should be applied on collected 

data and extracted features. The fusion methods can be applied at sensor, feature 

or decision level. In the feature level fusion, the features from multiple signals are 

combined to increase the feature space. In the decision level fusion, the fault 

classification can be done based on individual signals and the output of each 

classifier can be fused to get the final decision. One of the widely used decision 

level methods is ensemble learners, namely probabilistic approach, majority 

voting, weighted majority vote and Naïve Bayes combiner, in which the outputs 

of several classifiers are combined to create a more accurate classifier [20].  

E.2.5 Analysing the model performance, parameter optimization and 

selection of the best learning algorithm 

 

To assess the performance of a data-driven model, the generalizability, accuracy, 

robustness, complexity and computational speed are selected as the main 

performance indicators. Based on these indicators and system constraints, the best 

algorithm among trained models is identified and the test data set is then used to 
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validate the final model. The most commonly used machine learning algorithms 

for fault diagnosis applications are given in Table E.2  [8], [21].  

 

Table E.2: Machine learning techniques for fault diagnosis applications. 

 

Algorithms Remarks 

Support vector machine 

(supervised 

classification) 

Linear SVM: fast training and prediction speed with 

less memory usage, used only for linear decision 

boundary cases. 

Nonlinear SVM: slow in both training and 

prediction, and requiring considerable memory, 

good performance for nonlinear cases. 

Multi-layer perceptron 

(supervised 

classification) 

Slow in training but moderate speed for prediction, 

requiring many training cases and large memory. 

Decision tree (supervised 

classification) 

Fast in both training and predations cases, requiring 

less training cases, possible model overfitting. 

Convolutional neural 

networks (supervised 

deep learning) 

large training samples and training time, but 

moderate prediction time, capturing complex 

spatial relationships from the spectrograms. 

Sparse-autoencoders 

(unsupervised deep 

learning) 

Applicable to feature extraction and feature 

dimension reduction, slow training process, 

requiring individual classifiers.  

 

The generalisability is an important indicator because the algorithm should 

be able to detect and classify faults other than training and test datasets. Otherwise, 

there is no use of the trained algorithm. Overfitting is one of the most critical issues 

of any machine learning algorithm and may result in a reduction of the 

generalisability since the random noises is defined as a concept in the model. If the 

model is not properly trained, the model will only try to mimic the input data, thus 

it cannot be used in generalized fault diagnosis applications [22]. To address the 

overfitting problem, the data should be sufficiently enhanced to train the model. 

Adding a regularisation term into the cost function of the model is an alternative 

solution in many neural network models. Using the dropout is another technique 

for reducing the model overfitting, where some of the neurons are randomly 

disabled in the training process. Furthermore, to avoid the overfitting, the data can 

be subdivided into three subsets, namely training-, validation- and test set.  The 
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training set is used to train the model, and the model performance is evaluated 

using the separate data set for validation.  

The accuracy of fault classifications is also an important performance 

measure of a machine learning model. Further, the algorithm should be able to give 

a consistent accuracy when the input data is noisy or distorted. If the model 

accuracy is not good, the model parameters can be optimized and retrained until 

obtaining a good model. Machine learning algorithms require hyperparameters, 

which should be properly set according to the intended application. Optimization 

methods can be applied for tuning the hyperparameters of machine learning 

algorithms, e.g Bayesian optimization and grid search. Further, complexity and 

computational burden of algorithms need to be carefully evaluated to reduce the 

cost and increase the implementation speed.  

 

E.3 Description of the development stages for an online fault 

diagnosis system 

 

The development procedure detailed in the section E.2 is used to develop an 

algorithm to detect multiple faults in electric powertrain under variable speeds. In 

this section, the development stages of a machine learning algorithm for online 

fault diagnosis system are presented, but the development of an embedded system 

is not considered.  

 

E.3.1 Stage-1: Advanced signal processing and development of machine 

learning algorithms 

 

According to the system requirements or objectives (in Section E.2. 1) of detecting 

multiple faults, namely inter turn in the stator winding, bearing and gear faults 

based on machine learning algorithms, a CNN based binary classifier bank is 

selected for the fault diagnosis application in this work. Park’s vector for the phase 

currents, order tracking and normalisation for vibration and current signals, short-

time Fourier transform (STFT) for generating patterns or spectrograms are tools to 

process the collected signals. The rationales of using the mentioned methods can 

be found in literature and summarized in the Table E.3.  
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Table E.3: Selection of signal processing and machine learning methods. 

 

Objectives Selected methods refs. 

Inter-turn faults in stator 

winding, bearing and gear 

faults  

Park’s vector for the phase currents, 

short-time Fourier transform (STFT), 

 

[23-25] 

Variable speeds  Order tracking and order normalisation  [10-11] 

Multiple fault detection 

and classification  

CNN for the semi-automated feature 

extraction and classification under 

noises, variable speed and load conditions. 

[18] 

 

A block diagram of the developed algorithm detailed in [9] is given in Figure 

E.2. First the current, vibration and the rotational speed signals of the electric 

powertrain are collected. Then the order tracking algorithm [10-11] is used to 

normalize the speed variation of the vibration and current signals. The shaft speed 

and angular sampling are used in the order tracking and normalisation algorithm.  

Next the processed signals are converted into spectrograms using STFT. Both 

vibration and current signal-based spectrograms are combined to create an 

extended spectrogram, which is fed into the CNN-based classifier. Based on the 

time-frequency features in the spectrograms, the CNN algorithm finds patterns or 

images to classify different health classes, e.g. good or defective, of the 

components.  

The individual classifiers of C1 – stator winding fault classifier, C2 – bearing 

fault classifier and C3 – gear fault classifier, are first trained using the known 

health classes. Since the binary classifiers are used for each fault type, 4 health 

classes, namely healthy, stator winding fault, bearing fault and gear fault are 

sufficient for the training. However, the algorithm can classify 8 health classes, 

which include the trained single health classes and untrained multiple fault health 

classes. After that, the trained model is used to predict health classes (healthy or 

faulty) from new signals. 
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Figure E.2: A block diagram of training and testing of fault diagnosis system in 

the step-1 of the development process. 

 

E.3.2 Stage-2: Development of online fault diagnosis system 

 

Figure E.3 shows a block diagram of the developed online fault diagnosis system. 

There are two subunits: health class predictor and decision maker. In the first 

subunit, the health class of the collected signal is predicted. Next, several 

consecutive results are collected and analyzed in the second subunit for the final 

decision. 

 

E.3.3 Data acquisition and processing buffer 

 

For an online operation of the algorithm, two nested buffers have been used. In the 

data acquisition buffer, the data inflow is controlled. A large data processing buffer 

is used in case the length of the dataset is not sufficient for data processing. Further, 

this data set is sent for data preprocessing and feature generation, where the 
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extracted features via spectrograms are order-normalized. The trained CNN 

classifier bank is applied on these processed spectrograms to classify the faults. 
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Figure E.3: The algorithm used in the online fault diagnosis system in the step 2. 

 

E.3.4 Decision criterion of the online diagnosis algorithm 

 

Confusion matrixes and Receiver Operating Characteristic (ROC) are commonly 

used to analyse the performance of the trained machine learning model. In online 

fault diagnosis applications, these measures cannot be obtained because the prior 

information of the faults is unknown. Therefore, a new decision criterion is 
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proposed in this study. Each classifier has three parallel buffers to store the 

predictions. In each buffer, the health class label with the maximum count is 

selected as the final decision. This method can compensate for false predictions 

from unexpected noises or interferences. 

 

E.4 Experimental tests and results 

 

An electric powertrain shown in Figure E.4 is used to collect data for training, 

validation and implementation of the developed online fault diagnosis algorithm. 

The internal components of the electric powertrain are shown in the Figure E.5. As 

shown in Figure E.6, seeded faults are introduced to the selected gear, bearing and 

stator winding. Then the data is collected from 8 different single and multiple fault 

conditions in various speed profiles.  

 

 
 

Figure E.4: The experimental setup (IM: Induction motor, GB: Gearbox, PMSG: 

Permanent magnet synchronous generator). 

 

 

 
 

Figure E.5: The internal components of the electric powertrain. 
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The speed profiles include constant speeds and variable speeds as described 

in [9]. Based on the collected data, 50% of the data is used to train the model. 15% 

of the data is used for the validation and another 15% of the data is used to test the 

algorithm. The remaining 20% of the data is used for testing the online fault 

diagnosis system performance. 

Three binary classifiers work in parallel, and each of them focuses on one 

type of fault. First, the individual CNN classifiers are implemented and trained 

using the training data. Then the parameters of the algorithm are optimized using 

Bayesian optimisation algorithm [26] until getting good performances for the 

validation dataset. Finally, the optimized algorithm is tested using the test dataset. 

Further, the online fault diagnosis system is implemented as discussed in section 

E.3. The interface of the implemented online fault diagnosis system is shown in 

Figure E.7, where the powertrain is in healthy condition. The measured vibration, 

currents and estimated rotor speed are shown using three graphs. The displayed 

signals are online analysed by the proposed algorithm and the results are displayed 

in the pie charts. 

 

 

   

(a) (b) (c) 

 

Figure E.6: The faulty components of the powertrain. (a) damaged gear (b) outer- 

race damaged bearing (c) 10% inter-turn short circuit fault in the stator. 
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Figure E.7: The interface of the developed online fault diagnosis system for the 

electric powertrain. 

 

E.4.1 Stage-1: The machine learning model performances  

 

The classification accuracies of the trained binary classifiers with the test 

dataset are shown in Table E.4. For all the test cases, high classification accuracies 

have been obtained. The classification accuracies for each classifier with mixed 

fault cases are given in Table E.5. The C1 and C3 classifiers perform well for 

multiple fault cases. However, the classification accuracy of the C2 is low in 

multiple fault cases. 
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Table E.4: Performance summary: individual classifiers. 

 

Case 

ID 

Classifier 

ID 

Component Fault 

class 

Test Accuracy 

(%) Sw  B1   G1 

1 - H H H HHH - 

2 C1 F H H SHH 100 

3 C2 H F H HBH 98.8 

4 C3 H H F HHG 99.6 

Sw: stator winding, B1: bearing 1, G1: gear 1, H: healthy, F: faulty. 

 

 

Table E.5: Performance summary: multiple faults 

 

Case ID Component Fault class Test Accuracy (%) 

Sw  B1   G1 C1 C2 C3 

5 F F H SBH 100 86.8 87.8 

6 H F F HBG 99.8 76.2 98.6 

7 F H F SHG 100 71.5 100 

8 F F F SBG 98.4 90.2 99.4 

 

SBH: faulty stator, faulty bearing, and healthy gear. 

HBG: healthy stator, faulty bearing and faulty gear. 

SHG: faulty stator, faulty bearing and faulty gear. 

SBG: faulty stator, faulty bearing and faulty gear. 

 

E.4.2 Stage-2: Performances of the online fault diagnosis system 

 

The performance of the online fault diagnosis system for three fault cases is 

given in Figure E.8. Each pie chart shows the percentage of the predicted class 

labels in each classifier for 20 consecutive predictions. The prediction label with 

the highest count is selected as the believed fault type. 

 

 



Paper E. Online Fault Diagnosis System for Electric Powertrains… 

199 

 

  
 

(a) (b) (c) 

Figure E.8: A snap shot of online fault diagnosis system performance (a) bearing 

fault (b) stator winding and bearing faults (c) bearing and gear faults. 

 

E.5 Conclusion 

 

In this study, a complete procedure of developing an online fault diagnosis system 

is presented. The developed fault diagnosis system based on this suggested 

procedure is tested with the experimental data and implemented online on an in-

house setup. The fault diagnosis system shows good performance in training cases, 

and the online fault diagnosis algorithm can predict multiple faults in the electric 

powertrain under variable speeds reliably. The developed fault diagnosis system 

can be used for online monitoring and detecting multiple faults in electric 

powertrains. 
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Towards Self-Supervised Feature 

Learning for Online Diagnosis of Electric 

Powertrain Faults 

 

Jagath Sri Lal Senanayaka, Huynh Van Khang, Kjell G. Robbersmyr 

 

 

Abstract— This paper proposes a novel online fault diagnosis scheme 

for industrial powertrains without using historical faulty or labelled training 

data. The proposed method combines one-class support vector machine 

(SVM) anomaly detection and supervised convolutional neural network 

(CNN) algorithm to online detect multiple faults and fault severities under 

variable loads and speeds. The one-class SVM algorithm is to derive a score 

for defining faults or health classes in the first stage, and the resulting health 

classes are used as the training data for the CNN -based classifier in the 

second stage. Within the framework, the self-supervised learning of the 

proposed CNN algorithm allows the online diagnosis scheme to learn the 

features based on latest data. The effectiveness of the proposed scheme is 

validated via a comparative study using experimental data from an in-house 

test setup. Finally, the online implementation of the proposed algorithm on 

the test setup is briefly introduced in this work. 

 

Index Terms— One-class support vector machine, convolutional neural 

network, fault diagnosis, electric powertrains, self-supervised learning 
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F.1 Introduction 

 

Reliable operation is the most important in industrial machines or electric 

powertrains, including electric motors [1], gearboxes and loads such as fans, 

pumps, conveyor belts, robotic arms, etc. Electrical and mechanical faults, namely 

inter-turn, bearing and gear faults, are common in interconnected complex 

systems. Condition monitoring (CM) and fault detection and diagnosis (FDD) 

techniques are therefore required to monitor the health status of industrial 

machines and ensure their safe and reliable operation. To achieve this, analysis 

methods of various sensor data, such as vibration, acoustic emission, motor 

current, temperature, lubricant oil, have been intensively developed for CM and 

FDD, mainly focusing on stationary quantities. Complexity of machines, variable 

loads and speeds renders challenges due to nonstationary signals, requiring lot of 

research in industrial and academic communities in recent years [2,3].  

A summary of the most recent research on CM and FDD is presented in 

Table F.1, showing different condition monitoring and fault diagnosis approaches 

and their suitability for a powertrain consisted of electric motors, gearboxes and 

loads. The FDD methods can be broadly classified into model-based, data-driven 

or hybrid algorithms [2-5]. The model-based fault diagnosis requires precise 

physical models and parameters of the implemented system, which is difficult to 

obtain in reality. A data-driven method using statistical or machine learning 

algorithms does not need such physical models, making it attractive for an 

automatic diagnosis system. Various combinations among signal processing, 

statistics and machine learning methods have been intensively proposed in data-

driven approaches for CM and FDD.  Signal processing and statistical methods 

[6,7] need an identification of the fault-related characteristic frequencies or 

statistical features from the data being used for FDD with fixed or statistical 

thresholds. These methods are simple but are only applicable to single fault 

diagnosis. Multiple faults in a complex system require more advanced solutions. 

For example, mixed faults in a gearbox can be detected by a combination of 

traditional machine learning methods and data fusion [8]. However, expert 

knowledge to derive features manually for the algorithm, resulting in a time-

consuming work, is the main disadvantage of using conventional machine learning 

methods.  
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Table F.1:  Different methods for fault diagnosis of electric motors and gearboxes. 
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Supervised deep learning methods were suggested to address the difficulty 

of feature generation [8-11], but the supervised deep learning methods for CM and 

FDD applications require a lot of historical faulty data for training. Unsupervised 

feature learning methods such as autoencoders (AEs) [9] require unlabeled data 

for healthy and faulty conditions, but historical data for faults may not exist for 

new machines, and autoencoder feature learning becomes irrelevant for such cases. 

On the other hand, transfer learning [12] is suggested to reuse the learned feature 

from one application to another, but these methods must use labelled training data 

for fine-tuning. An online fault diagnosis algorithm for an electric powertrain, 

based on supervised learning is proposed in [13,14], and a lot of training data is 

required to train the algorithm, which is restricted in practice. To avoid labelled 

data demanding in an online diagnosis system, self-supervised learning can be a 

promising solution. The self-supervised learning is a relatively new concept, and 

their existing applications are mainly focus on image classification, pattern 

recognition and robotics [15-17]. The advantage of self-supervised learning is that 

it does not require prior labels and can learn features online.  No previously 

published work has tackled the labelled data problem for an online diagnosis of 

electric powertrains. 

To address limitations of the existing data-driven fault diagnosis methods 

shown in Table F.1, namely limited faulty data, computation burden, offline 

implementation, expertise demand, this work proposes an online fault diagnosis 

algorithm including two stages. The first stage based on one-class SVM is to online 

detect multiple faults of an electric powertrain under variable speed and load 

conditions in an unsupervised way as a component risk analysis, and automatically 

store healthy and faulty data for the second stage. In the first stage, any deviation 

from healthy status is defined as an anomaly or fault, but the location of the fault 

is unknown.  The one-class SVM algorithm [18, 19] calculates a distance or hyper-

length between data points in the feature space to define whether the machine is 

healthy or faulty based on healthy machine data alone. The trained SVM algorithm 

separates the healthy data from faulty one. In the second stage, the stored data from 

the first stage is fed in a supervised fault classifier using convolutional neural 

network (CNN) to make a self-supervised feature learning and accurately isolate 

multiple faults online (or fault classifications). Within this framework, a novel 

decision criterion based on classification scores is proposed for the multiple fault 

diagnosis. Further, a comparative study is presented to highlight the effectiveness 
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of the proposed method. Finally, an online implementation of the proposed scheme 

is validated on an in-house test setup.  

The rest of this paper is organized below. Section F.2 presents details of the 

proposed fault diagnosis scheme. The experimental details and results are 

discussed in Section F.3. The conclusion of this research study and future research 

directions are given in Section F.4. 

 

F.2 Proposed fault diagnosis scheme. 

 

A block diagram of proposed fault diagnosis scheme is given in Figure F.1, where 

the vibration, speed and current signals are collected from the gearbox, and motor. 

The collected vibration and current signals are order-normalised to remove the 

speed variation, and spectrograms are derived from the order normalised ones 

using short-time Fourier transform (SFFT) [14, 29-31].  These vibration and motor 

current spectrograms are combined as one spectrogram for each sample and stored 

in the cloud data storage.  

The proposed online diagnosis scheme consists of two main stages, namely 

 

1. Stage 1 - Unsupervised fault detection algorithm is to define the machine is 

healthy or faulty, but local faults or detailed locations of the faults are unknown. 

2. Stage 2 – online multiple fault classification and decision making based on self-

supervised feature learning, feature-level data fusion, supervised CNN fault 

classification. 

 

This study focuses on multiple faults on gear, bearing and stator winding under 

variable speeds and loads. However, the concept can be extended to other faults 

and working conditions. The details of each stage are given in the following 

sections. 
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Figure F.1: A block diagram of the proposed fault diagnosis scheme for Electric 

Powertrain. 

 

F.2.1 Stage 1: unsupervised fault detection  

 

In industrial applications, data of healthy machines can be easily obtained, but data 

for faulty ones is restricted or unavailable.  Training a data-driven model using 

healthy data alone is practically of importance in CM. In this study one-class SVM 

is used to identify the healthy cases using available healthy data, and then any data 

point different from healthy cases is considered as an anomaly. The aim of this 

anomaly detection (also referred as outlier detection) is to determine all such 

occurrences in a data-driven algorithm.  In the one-class SVM, the input data is 

mapped into a high dimensional feature space using a kernel function to find the 

maximum margin hyperplane or the best separation of the training data from the 

origin [18, 19, 32]. Figure F.2 shows the one-class SVM concept.  
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The hyperplane defines the classification rule. 

 

𝑓(𝐱) = < 𝐰, 𝐱 > + 𝑏                                                                                    (F.1) 

where 𝐰 is the normal vector, and 𝑏 is the bias term.  

Consider a test example x.  If 𝑓(𝐱) < 0 then x is an anomaly, otherwise x is 

normal. 

Support vectors
Outliers

Projection in 
feature space

Training samples Support vectors
Training samples

f  < 0

f  > 0

Original Feature space f  = 0

 

Figure F.2: A classification based on one-class SVM with two features. 

 

To get the above decision rule, solving the one-class SVM optimization problem 

(using kernel function), is equivalent to solving the following dual quadratic 

programming problem: 

 

𝑚𝑖𝑛
𝛼

 
1

2
 ∑ 𝛼𝑖𝛼𝑗𝐾(𝑥𝑖 , 𝑥𝑗)

𝑖,𝑗

 
    (F.2) 

Subject to the constraints  

0 ≤ 𝛼𝑖 ≤  
1

𝑣𝑙
  and ∑ 𝛼𝑖

𝑖

= 1  (F.3) 
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where 𝛼𝑖  is the Lagrange multiplier, and is the “weight” on example 𝑖 such that 

vectors associated with non-zero weights represent “support vectors” and uniquely 

determine the optimal hyperplane. 𝑣 is a parameter to control the trade-off between 

the maximum distance of the hyperplane from the origin and the number of data 

points contained by the hyperplane, 𝑙 is the number of points in the training dataset, 

and 𝐾(𝑥𝑖 , 𝑥𝑗) is the kernel function [18, 19, 32]. This study uses Gaussian kernel 

given in (4).  

𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑒
−

‖𝑥𝑖−𝑥𝑗‖
2

2𝜎2                                                                                       (F.4) 

where 𝜎2 is the variance. 

 

 

Three main steps in stage 1 of the proposed unsupervised fault detection 

algorithm are as follows  

 

1) Train the boundaries for healthy class using features (RMS of vibration 

signal, RMS of motor current signal and motor speed) and one-class SVM.  

2) Calculate the score from the trained one-class SVM for coming data in 

dynamic manner and take the average of latest samples. In this study, 20 

latest samples are selected for the average score calculation. Depending on 

application, better averaging criteria can be revised.  

3) Compare the average scores to define machine status. If the score is greater 

than zero, the machine is healthy, and otherwise, machine is faulty. 

 

F.2.2 Stage 2: online multiple fault classification 

 

The detailed flowchart of the operation of the proposed fault diagnostic scheme is 

given in Figure F.3, where the green colour boxes and lines represent the stage-1 

algorithm, and the remaining boxes and lines represent the stage 2 algorithm. Once 

a fault is detected in stage 1, a temporary class label (e.g. Fault type 1 (FT-1)) is 

assigned. In the stage 2, the supervised CNN algorithm is trained using healthy 

data and the FT-1 data.  In this self-supervised feature learning method, the 

algorithm can learn features related to multiple faults (FT-1, 2, …). The algorithm 

keeps a bank of feature types learned from the cloud data storage. For new data, 

the learned feature set is applied to generate a score, which represents the similarity 
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of new data respective to the corresponding feature type. The final decision is taken 

based on the decision defined in the Table F.2. When the powertrain is repaired, 

the actual label is available, and maintenance department can update the FT-1 with 

a correct label. 

 

Cloud data storage

HealthyFeatures for fault 
detection (RMS of signals )

Trained one-class 
SVM

Fault type 1 Fault type 2 Fault type N

Supervised 
classification: 

CNN 1 

Health class deviation 
warnings for the machine 
operator/analysis expert

Supervised 
classification: 

CNN 2

Supervised 
classification: 

CNN N

New 
spectrograms

Self-learned features 
from CNN feature 

learning

Calculate the class 
score using CNNs

Maintenace 

DepartmentSelf feature Learning, online diagnosis and decision making

RMS of vibration, 
current and speed

Order normalised 
vibration and current 

spectrograms

Class 
labels

Fault classification 
results

Fault Diagnosis Results

 
Note: The green color boxes and lines represent the stage-1 algorithm and the remaining boxes and lines 

represent the stage 2 algorithm 

 

Figure F.3: Detailed flowchart of stage-1 and -2 of the proposed fault diagnosis 

scheme. 

 

In most existing CNN based fault diagnosis methods, pre-labeled training 

data is required. In this work, the proposed self-supervised feature learning based 

on CNN in stage 2 does not require any pre-labeled training data. It uses only the 

temporary labels after stage 1 in self-supervised feature learning. A simplified 

block diagram of the CNN architecture is presented in Figure F.4. The algorithm 

consists of two main subsections: feature learning and classification. The 2-

dimensional (2-D) convolution can be applied to an image with different sets of 

kernels (or shared weights) using a neuron map, in which the weights are optimized 
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by using a backward propagation algorithm. The convolution operation used to 

identify the local features of the input images. The convolution combined with 

pooling is to reduce the dimensionality, allowing for simplifying the structure of a 

fully connected neural network for the classification. The rectified linear unit 

(ReLU) introduces the non-linearity to the system. Details of the CNN training and 

analysis can be found in [33]. 
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Figure F.4: A block diagram of a CNN architecture. 

 

The learned complex relations in the feature space are utilised in a fully 

connected neural network for the fault classification. The Flatten operation is 

essential for converting a 2-D image to the 1-D array. Based on derived features 

in the convolution and pooling operation, the classification task is done by the fully 

connected network and Softmax function. The Softmax function converts the 

outputs of the fully connected network to probabilities of health classes. The 

highest probability value represents the output fault class of the network. Once 

trained, the output of the Softmax layer is used to produce a score to define the 

similarity of given input images respective to the learned feature map.  
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Figure F.5: Order normalized vibration spectrogram with a gear fault. 

 

 

 

Figure F.6: Order normalized current spectrogram with a stator winding fault. 

 

CNN is well known as a pattern recognition algorithm, which can detect the 

patterns within data. Figure F.5 shows a sample of an order normalized vibration 

spectrogram of a gear tooth damage fault, where the amplitudes of gear meshing 

frequencies and its harmonics are clearly visible (within red dotted lines), being 

detected by a CNN classifier. Compared to healthy spectrograms, any visible 

changes are not observed in the current spectrum for gear faults. However, in the 

case of stator winding fault, 3-times supply frequency components appear in the 
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current signal spectrum as shown in Figure F.6. Since vibration and current 

spectrograms are combined as one image and fed to CNN, the feature level fusion 

is applied, allowing the CNN to learn from both vibration and current 

spectrograms. The trained CNN is used to generate a label for new data 

(spectrograms). As shown in Figure F.4, the Softmax layer output is a score, 

representing the similarity of new data with respect to a trained fault type. A bank 

of CNN-based classifiers are to generate scores for new data of multiple fault 

types. The generated scores are used for a final decision. An outline for a 

preliminary decision criterion is shown in Table F.2. 

 

 

Table F.2: Decision criteria for the final decision. 

 

 

HC: High confidence, MC: Medium confidence, LC: Low confidence 

 

  

  

DT1 score < 0.25 for 

each feature type  

- Healthy  HC 

DT2 0.25 < Score < 0.5 

for each feature 

type 

- Healthy MC 

DT3 0.5 < score < 0.75 

for only one 

feature type (e.g 

FT1) 

score < 0.25 for remaining 

feature types 

FT1 MC 

DT4 0.25 < score < 0.5 for least 

one remaining feature type 

FT1 LC 

DT5 0.75 < score < 0.9 

for only one 

feature type (e.g 

FT1) 

score < 0.25 for remaining 

feature types 

FT1 HC 

DT6 0.25 < score < 0.5 for least 

one remaining feature type 

FT1 MC 

DT7  

 

0.9 < score for 

only one feature 

type (e.g FT1) 

score < 0.25 for remaining 

feature types 

FT1 HC 

DT8 0.25 < score < 0.5 for least 

one remaining feature type 

FT1 MC 

DT9 

  

0.5 < score for 

more than one 

feature type   

- 

 

Multiple 

faults 

- 
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The proposed decision criteria in Table F.2 are suggested criteria, which have not 

been optimized and can be improved further in future work since no standard was 

defined or available in literature. The multiple fault decision criterion is simplified 

in this work. 

 

F.3 The Experimental data and results 

F.3.1 Experimental setup and data 

 

The in-house experimental setup shown in Figure F.7 is used to collect data and 

validate the proposed fault diagnosis scheme. The powertrain includes a 1.1 kW, 

1450 rpm induction motor (IM) coupled to the 2-stages parallel shaft gearbox (GB) 

with 8.01 gear reduction. The gearbox is coupled to a permanent magnet 

synchronous generator (PMSG), and the generator output is connected to a 

resistive load. The powertrain load is proportional quadratically to the rotational 

speed. The output currents of the PMSG are measured and used to estimate the 

rotational speed of the electric powertrain. However, in real applications, an 

encoder can be required for speed measurements. The internal components of the 

complete powertrain are disassembled as shown in Figure 8, including 8 bearings, 

4 gears and 3 shafts. 

 

 

 

Figure F.7: The experimental setup. 

IM  PMSG GB  
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Figure F.8: The internal components of the electric powertrain. 

 

 

     

(a) (b) (c) (d) (e) 

 

Figure F.9: The faulty gears of electric powertrain. 

(a) small gear tooth damage (GF1), (b) moderate gear tooth damage (GF2), (c) 

broken gear tooth (GF3), (d) Outer-race damaged bearing (BF2), (e) 10% inter-

turn short circuit fault in the stator (SF2). 

 

  The G1 gear in the powertrain, Figure F.8 has three fault severities: a 

small-scale gear tooth damage (GF1), a medium-scale tooth damage (GF2), and a 

broken tooth damage (GF3) as shown in Figures. F.9 (a), (b) and (c), respectively. 

Outer-race defects on the bearing B1 of the induction motor (IM) are made by 

using an electric discharge machining, and three bearing severities BF1, BF2 and 

BF3 are produced with 1, 2 and 3mm radius surface damages. The bearing shown 

in Figure F.9 (d) represents an outer race damage with 2 mm radius (BF2). Further, 

stator winding faults in the induction motor of 6% (SF1) and 10% (SF2) inter-turn 

short circuit faults are introduced in one phase as shown in Figure F.9 (e).  

Eleven fault classes with individual and multiple faults are tested, and the 

details of fault classes are given in subsections F.2.2 and F.3.3. As specified in 

B1  G1  
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Figure F.10, the induction motor operates at one constant speed of 1450 rpm and 

two variable speed profiles for each fault class.  Two load levels of 55% and 100% 

the rated motor torque are applied to the constant speed profile. In the variable 

speed operation, the load also dynamically varies. A vibration sensor is used to 

collect vibration data, and a current sensor is used to collect IM current. The rotor 

speed is estimated using the PMSG current signal.  

The sampling rate of the data acquisition system was 20 kHz. The data 

samples (120 seconds duration) are collected, and for each fault class, 5 repeated 

tests were conducted. Each 120-seconds file has  24×10^5 data points, and 191 

samples are derived from each file with a section window (120000 data points 

representing 6 second of data), shifting the window by 12000 data points. 

Therefore, each fault class has 3820 samples. As described in Figure F.3, RMS of 

vibration and current, and the speed are recorded for stage 1 - unsupervised fault 

detection algorithm. Stage 2 - CNN algorithm uses order-normalized spectrograms 

generated from each signal. The first 100 orders are clipped in the vibration 

spectrograms, while in the current spectrograms, the first 10 orders are clipped. 

The dimension of each signal is 113×226.  The spectrograms from each vibration 

and current samples are combined to produce images of 226×226 dimension, being 

fed to CNN-based multiple fault classifiers.  In the next subsections, performances 

of stages 1 and 2 are individually evaluated before combining them in the proposed 

online scheme as shown in Figure F.3.   

 

 

 

Figure F.10: Constant and variable speeds of each fault class. 
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F.3.2 Performance of Stage 1 - unsupervised fault detection  

 

The proposed anomaly detection algorithm based on one-class SVM is 

implemented as discussed in section F.2.1, detecting whether machine status is 

deviated from its healthy status or not. Figure F.11. illustrates the vibration RMS 

of four gear fault classes in the G1 gear. Using the RMS of vibration signal alone 

is not able to detect a gear fault in variable loads and speeds as the RMS of 

vibration depends on load and speed variations.   
 

 

 

Figure F.11: RMS vibration for fault classes in G1 gear. 

 

Figure F.12 shows the RMS of current under different gear fault cases, showing 

that the RMS current is not a reliable indicator to detect a gear fault since the RMS 

differences among fault severities are unclear. It is difficult to define a fixed 

threshold to detect a fault in both signals, thus a new health indicator is required 

for the fault detection in variable loads and speeds. In this work, a consistent health 

class indicator is produced by fusing the healthy classes based on RMS of vibration 

current signals, and rotor speed in the one-class SVM. 
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Figure F.12: RMS current for fault classes in G1 gear. 

 

The trained one-class SVM algorithm is used to calculate scores for 

different fault classes. Figures. F.13, F.14 and F.15 show the scores of gear, 

bearing, and stator winding faults at different fault severities, in which a 

component is defined as a healthy one if the score is greater than 0 (healthy: score 

> 0), otherwise it is a faulty one (faulty: score < 0). 

 

 
 

Figure F.13: One-class SVM score for gear faults. 
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Figure F.14: One-class SVM score for bearing faults. 

 

 

 

Figure F.15: One-class SVM score for stator winding faults. 

 

The average accuracies of the stage 1 - one-class SVM algorithm are summarised 

in Table F.3. For the healthy class (H), the one-class SVM score is greater than 0 

for 99.9% of the test samples. The scores become negative with the accuracies of 

98.6%, 95.9% and 92.0% for the gear fault severities GF1, GF2 and GF3 classes, 

respectively. More than 99.9% detection accuracies can be observed for other fault 
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classes, namely bearing and stator winding fault severities, and the proposed fault 

detection algorithm works well for detecting the tested fault classes. It is worth 

mentioning that the state 1 is to identify whether a component is healthy or faulty, 

which is not able to know a fault type or severity. In an online diagnosis 

application, the fault classes are unknown, and fault isolation is not possible at 

stage 1. 

 

Table F.3: One-class SVM performances for fault detection. 

 

Fault class 

ID 

Fault 

class 

Detection score 

(%) 

Detection 

criteria 

Powertrain 

Status 

1 H 99.9 Score > 0 Healthy 

2 GF1 98.6 Score < 0 Faulty 

3 GF2 95.9 Score < 0 Faulty 

4 GF3 92.0 Score < 0 Faulty 

5 BF1 100.0 Score < 0 Faulty 

6 BF2 99.9 Score < 0 Faulty 

7 BF3 100.0 Score < 0 Faulty 

8 SF1 100.0 Score < 0 Faulty 

9 SF2 99.9 Score < 0 Faulty 

 

Therefore, a self-supervised feature learning procedure is implemented at 

stage 2, where temporary labels are assigned to incoming data from the faulty 

component, being stored in the cloud data storage. In the stage 2, the spectrograms 

from healthy powertrain and faulty components (with temporary fault class labels) 

will be used to train a CNN for detecting the features of temporary fault class. The 

decision criteria explained in Table F.2 will be used for isolating the single and 

multiple faults. 

 

F.3.3 Performance of Stage 2 - supervised CNN fault diagnosis 

algorithm  

 

Consider a practical gear fault scenario, where a small fault originates, and the 

severity gradually increases over time. Hence, the lowest severity data is first 

available. Once a faulty case is detected as a gear fault 1 (GF1)  using stage 1 - 
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one-class SVM algorithm, the supervised CNN algorithm for GF1 or  GF1-CNN 

algorithm can be trained using data at healthy and at gear fault 1 (GF1) severity 

level,, which is a small gear tooth damage. Similar scenarios are trained for bearing 

and stator winding. The trained CNN algorithms of stage 2 have been tested with 

other fault classes, and classification accuracies are summarized in Table F.4. 

 

Table F.4: Classification accuracies of CNN classifiers. 

 

Fault 

Class ID Fault Class 

Accuracy (%) 

GF1-CNN BF1-CNN SF1-CNN 

1 H 98.6 99.6 99.8 

2 GF1 94.1 99.6 100 

3 GF2 98.6 99.5 100 

4 GF3 99.1 99.6 100 

5 BF1 94.9 90.0 100 

6 BF2 96.2 99.0 100 

7 BF3 82.5 99.0 100 

8 SF1 80.1 99.0 99.7 

9 SF2 82.7 99.0 99.7 

10 GF2_BF2 93.4 67.4 99.6 

11 GF2_BF2_SF1 97.1 72.1 98.1 

 

The GF1-CNN classifier can detect healthy class with high accuracy of 

98.6% as shown in the first row of Table F.4. Further, it can effectively detect other 

gear fault severities of GF1, GF2 and GF3   at accuracies of more than 94.1%. 

Moreover, the GF1 classifier classifies bearing fault severities (BF1, BF2 and BF3) 

as ‘healthy’ respective to the learned gear faults features with a minimum accuracy 

of 82.5%. Correspondingly, it classifies stator winding faults (SF1 or SF2), as the 

‘healthy’ respective to the gear fault features with a minimum accuracy of 80.1%. 

When a gear fault occurs with other faults, the GF1-CNN classifier can detect it 

correctly with accuracies of over 93.4% (93.4% for the fault class 10, and 97.1% 

for the fault class 11 in Table F.4). Similarly, single fault diagnosis with accuracies 

of over 90.0% and 99.7% can be obtained with BF1-CNN and SF1-CNN 

classifiers, respectively. However, the BF1-CNN classifier is able to detect 
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multiple faults at the moderate accuracy of 67.4% and 72.1%. In future studies, the 

reasons for low accuracies will be investigated. 

 

F.3.4 Comparison with other fault diagnosis algorithms 

 

A comparative study is used to highlight the performance of the proposed CNN 

fault diagnosis algorithm.  Classifiers (GF1-MLP, BF1-MLP, and SF1-MLP) 

based on domain features (DF) and multi-layer perceptron (MLP) algorithms are 

used in as the first baseline algorithms in the comparison. The MLP consists of 

two layers. The average order spectrums of time-domain signals are derived, and 

the amplitude of fault-related characteristic frequency orders are extracted as 

features. The fault-related characteristic frequency orders used for feature 

generation are summarized in Table F.5 with 9 features.  

 

Table F.5: Characteristics frequency orders for Domain features. 

 

Feature Signal Order 

1X IM rotational order Vibration 1X 

2X IM order Vibration 2X 

3.6X IM rotational order Vibration 3.6X 

Input shaft 1X gear mesh frequency 

(GMF)  

Vibration 23X 

Input shaft 2X GMF Vibration 46X 

Output shaft 1X Vibration 0.12X 

Output Shaft 1X GMF Vibration 8.1X 

Output Shaft 2X GMF Vibration 16.25X 

3X (three-time current frequency) Phase current 3X 

 

Domain feature generation is a time-consuming task, requiring the details of 

gearbox components (e.g: number of teeth in gears, number of balls in bearings 

etc.), signal processing and fault diagnosis expertise. However, the proposed CNN 

pattern recognition algorithm does not require the details of gearbox components 

and signal processing to calculate characteristic frequency features. The CNN 

algorithm can learn the fault-related time-frequency patterns from data. The 

second baseline classifiers (GF1-SVM, BF1-SVM, and SF1-SVM) consist of DF 
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with a binary SVM algorithm using Gaussian kernel Therefore, three types of 

classification methods for each fault type result in nine classifiers in Table F.6. 

showing the classification accuracies at different fault types and severities. 

 

 

Table F.6: The classification accuracies of different classifiers. 

 

Fault 

Class 

ID Fault Class 

 

Classification 

accuracies (%) 
 

GF1-

SVM 

GF1-

MLP 

 

GF1-

CNN 

BF1-

SVM 

BF1-

MLP 

BF1-

CNN 

SF1-

SVM 

SF1-

MLP 

SF1-

CNN 

1 H 97.1 97.8 98.6 94.8 93.7 99.6 100.0 100.0 99.8 

2 GF1 97.4 97.6 94.2 67.5 65.1 99.6 95.4 97.0 100.0 

3 GF2 68.4 91.6 98.6 55.0 67.0 99.5 43.4 98.0 100.0 

4 GF3 71.4 81.3 99.1 53.0 57.1 99.6 60.0 100.0 100.0 

5 BF1 81.1 75.3 94.9 94.7 94.0 90.0 99.0 100.0 100.0 

6 BF2 54.1 82.7 96.2 79.0 80.5 99.0 90.0 100.0 100.0 

7 BF3 51.0 77.0 82.5 99.0 99.0 99.0 63.0 100.0 100.0 

8 SF1 76.0 94.0 80.1 60.0 99.0 99.0 100.0 100.0 99.7 

9 SF2 71.0 95.0 82.7 61.0 98.0 99.0 100.0 100.0 99.7 

10 GF2_BF2 88.0 80.0 93.4 86.0 89.0 67.4 60.0 100.0 99.6 

11 GF2_BF2_SF1 97.0 84.0 97.1 96.0 70.0 72.1 98.0 75.0 98.1 

  Average 77.5 86.9 92.5 76.9 82.9 93.1 82.6 97.3 99.7 

  Minimum 51.0 75.3 80.1 53.0 57.1 67.4 43.4 75.0 98.1 

  Maximum 97.4 97.8 99.1 99.0 99.0 99.6 100.0 100.0 100.0 

 

All gear fault algorithms (GF1-SVM, GF1-MLP and GF1-CNN) classifies the 

healthy class with accuracies over 97.1%. The GF1-SVM has the lowest 

performance with minimum and average accuracies of 51.0% and 77.5%, 

respectively while those minimum and average accuracies of the GF1-MLP are 

75.3% and 86.9%. The proposed GF1-CNN classifier has the best performance 

with the minimum and average accuracies of 80.1% and 92.5%, respectively. The 

GF1-SVM classifier has the lowest average performances, but still the 

classification accuracy of its original trained class (GF1) is 97.4% while having 

moderate accuracies for other fault classifications. Domain feature-based 

classifiers (binary SVM and MLP) have some lower accuracies due to the 

limitations of DF, and the amplitudes of characteristics frequency bands are 

calculated from average order spectrum, which contains approximations for the 
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dynamic load and speed operations. However, the CNN feature learning covers the 

local regions in the spectrograms for dynamic operations, resulting in a better 

feature learning. The CNN-based classifier can compensate for spatial deviation 

of fault-related frequency bands in the spectrograms produced in order 

normalization algorithm during sudden speed changes. This cannot be achieved in 

DF-SVM and DF-MLP. Therefore, the performances of CNN classifiers are better 

than the other two methods.  

 

F.3.5 Classification score and decision criteria 

 

In the proposed algorithm, the score generated by Softmax layer of CNN is used 

for final decision. The reason is that the score gives more information than using 

final labels like existing studies [8, 27]. The scores of CNN-based classifiers for 

all data samples are calculated, and the average scores of all fault classes are 

summarized in Table F.7.   The decision criteria explained in Table F.2 are used 

for final decisions. The score of the GF1-CNN classifier for healthy data is 0. 

However, the scores for GF1, GF2 and GF3 are high and more than 0.95. 

Therefore, the GF1-CNN classifier can isolate gear faults at GF1, GF2 and GF3 

severities with high confidences. In the best case, the score of the GF1-CNN 

classifier is closer to zero except gear faults. When data of bearing faults - BF1, 

BF2 and BF3 is fed to the GF1-CNN classifier, the average scores are 0.01, 0.05 

and 0.37, respectively. This proves that the GF1-CNN classifier (gear fault 

classifier) classifies the first bearing fault severities BF1 and BF2 into being not a 

gear fault with high confidence at while the bearing fault severity is classified into 

a similar one at a medium confidence. Figure F.16 illustrates the average scores of 

each classifier for single fault classes. Each classifier can independently isolate 

faults for respective trained fault classes with minimum missing and false alarms 

for data samples of other fault classes. 

When multiple faults occur in the studied powertrain (fault classes 10 and 

11), the GF1-CNN can isolate gear faults (0.76 and 0.96 scores). The SF1-CNN 

classifier also performs well for single and multiple faults. The performance of the 

BF1-CNN classifier is good for all single bearing fault detections, but moderate 

(0.71 for class 10 and 0.74 for class 11) for multiple fault detection.  
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Table F.7: CNN scores for various fault classes 

 

Fault 

class 

ID 

Fault class 

Name 

Score  

Final 

Decision 

 

Decision 

type 

GF1-

CNN 

BF1-

CNN 

SF1-

CNN 

1 H 0.00 0.00 0.00 healthy DT1 

2 GF1 0.96 0.00 0.00 GF DT7 

3 GF2 0.95 0.06 0.00 GF DT7 

4 GF3 0.98 0.02 0.00 GF DT7 

5 BF1 0.01 0.90 0.00 BF DT7 

6 BF2 0.05 0.95 0.00 BF DT7 

7 BF3 0.37 0.93 0.00 BF DT8 

8 SF1 0.33 0.00 0.99 SF DT8 

9 SF2 0.33 0.00 1.00 SF DT8 

10 GF2_BF2 0.76 0.71 0.00 Multiple DT9 

11 GF2_BF2_SF1 0.96 0.74 1.00 Multiple DT9 

 

 

 
 

 

Figure F.16: Average scores of each CNN classifier for single fault classes. 
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F.3.6 Online implementation of the proposed algorithm 

 

The online implementation of the proposed diagnosis scheme is briefly discussed 

in this section. The first interface is for data acquisition, where the vibration and 

current spectrograms are displayed to the machine operator together with the 

rotational speed. The one-class SVM was trained using data in the healthy 

powertrain under variable loads and speed conditions. The trained algorithm is 

used for calculating the score for online fault detection, and the scores for latest 

800 samples are displayed in Figure F.17. The interface shown in Figure F.17 is a 

situation when the healthy machine operates at variable speed conditions, thus the 

health status indicator shows the green color (red for faults). After detecting a fault, 

a temporary label is assigned to new data (e.g. FT1), and a CNN-based classifier 

is trained using healthy and the fault data (FT1). The learned CNN feature set are 

used for generating a score (from 0 to 1) to define the similarity level of the new 

spectrogram data with respect to the learned fault types or severities. Multiple 

CNN classifiers are trained for detecting other fault types so that they calculate 

scores for new spectrogram data as shown in Figure F.3.  

 

 
 

Figure F.17: One-class SVM fault detection interface. 
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Figure F.18: CNN fault score and decision-making interface. 

 
 

 

 

Figure F.19: CNN fault score history interface. 
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The decision criteria defined in Table F.2 are used for the final decision or 

classification.  The scores for 3 CNN classifiers for GF2 data are shown in Figure 

F.18, where the score for fault type 1 (GF1-CNN) is closer to 1, and the scores for 

others are closer to zero. The CNN based classifiers for fault types 4 and -5 are not 

trained yet, being open for training next faults. The historical CNN scores are also 

displayed, being useful for a machine operator to define a machine condition. The 

historical scores of the CNN classifiers for the first 3 classifiers are shown in 

Figure F.19, in which some sudden score changes depend on the dynamic 

operation conditions, but the average scores are always consistent over time.   

 

 

F.4 Conclusion 

 

This paper proposes an online fault diagnosis scheme, aiming to use data in healthy 

condition alone by learning the features for fault diagnosis in a self-supervised 

manner. The powertrain health status or health class is defined in the first stage by 

using a one-class SVM. The resulting health classes are used to train the CNN -

based classifiers. The comparative study shows that the proposed method performs 

better than those using domain feature extraction and existing algorithms, namely 

binary SVM or MLP. The order normalization process and CNN feature learning 

allow the proposed fault diagnosis scheme to perform well in dynamic operating 

conditions. The effectiveness of the proposed fault diagnosis scheme is validated 

using experimental data from an in-house test setup. In the proposed scheme, data 

of the lowest fault severity is used for training the CNN classifiers, but the trained 

algorithm can detect faults at higher severities, proving the generalization ability 

of CNN feature learning. The proposed scheme can be improved by testing the 

robustness under noises, revising decision criteria, self-supervised image learning, 

wireless sensors, and online diagnosis.  
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