
Concurrent Computing with Shared Replicated
Memory

Egon Börger1, Andreas Prinz2, Klaus-Dieter Schewe3

1 Università di Pisa, Dipartimento di Informatica, Pisa, Italy, boerger@di.unipi.it
2 University of Agder, Department of ICT, Agder, Norway, andreas.prinz@uia.no

3 Zhejiang University, UIUC Institute, China, kdschewe@acm.org

Abstract. Any concurrent system can be captured by a concurrent Ab-
stract State Machine (cASM). This remains valid, if different agents can
only interact via messages. It even permits a strict separation between
memory managing agents and other agents that can only access the
shared memory by sending query and update requests. This paper is
dedicated to an investigation of replicated data that is maintained by a
memory management subsystem, where the replication neither appears
in the requests nor in the corresponding answers. We specify the be-
haviour of a concurrent system with such memory management using
concurrent communicating ASMs (ccASMs), provide several refinements
addressing different replication policies and internal messaging between
data centres, and analyse their effects on the runs with respect to consis-
tency. We show that on a concrete level even a weak form of consistency
is only possible, if view serialisability can be guaranteed.

1 Introduction

Abstract State Machines (ASMs) have been used successfully to model
sequential, parallel and concurrent systems [7]. They are mathematically
grounded in behavioural theories of sequential algorithms [10], parallel
algorithms [3, 8] and concurrent algorithms [4], by means of which it is
proven that they capture the corresponding, axiomatically defined class
of algorithms.

In particular, the behavioural theory of asynchronous concurrent sys-
tems shows that every concurrent system can be step-by-step simulated
by a concurrent Abstract State Machine (cASM) [4]. The theory provides
an important breakthrough in the theory of concurrent and distributed
system, as it avoids mimicking concurrent behaviour by means of sequen-
tiality using techniques such as interleaving and choice by an unspecified
super-agent (see the semantics defined in [12]). This modernised theory of
concurrency is so far only realised in cASMs. The proof of the concurrent
ASM thesis was first only conducted for families of sequential algorithms,

but the generalisation to families of parallel algorithms does not cause
serious difficulties as sketched in [16].

The theory can be applied to many different models of concurrent
computation (see e.g. [1, 2, 9, 13, 18, 19]). It also remains valid, if different
agents can only interact via messages [5]. This includes the case of a strict
separation between memory managing agents and other agents that can
only access the shared memory by sending query and update requests.
Naturally, the expectation of an agent a sending a request to a memory
management agent b is that the returned result is the same as if the agent
a executed its request directly on the shared locations. This is challenged,
if the memory management subsystem replicates the data as e.g. in the
noSQL database system Cassandra [15].

In this paper we investigate the case of replicated data maintained
by a memory management subsystem, where the replication should not
appear in the requests nor in the corresponding answers, which is a stan-
dard requirement in distributed databases with replication [14, Chap.13].
Our objective is that the behaviour of the memory management sub-
system must be understandable from the specification so that additional
consistency assurance measures can be added if necessary.

For instance, consider four agents a1, . . . , a4 having the following re-
spective programs (where ; denotes sequential execution, and Print(x)
means to read the value x and to copy it to some output):

x := 1 | y := 1 | Print(x);Print(y) | Print(y);Print(x)

Then there is no concurrent run where (1) initially x = y = 0, (2) each
agent makes once each possible move, (3) a3 prints x = 1, y = 0, and (4)
a4 prints x = 0, y = 1. However, if x and y are replicated, say that there
are always two copies, and an update by the programs a1 or a2 affects
only a single copy, such an undesirable behaviour will indeed be enabled.

We assume a rather simple model, where shared data is logically or-
ganised in relations with primary keys, and data can only be accessed by
means of the primary key values. We further assume relations to be hori-
zontally fragmented according to values of a hash function on the primary
key values, and these fragments are replicated. Replicas are assigned to
different nodes, and several nodes together form a data centre, i.e. they
are handled by one dedicated data management agent. In addition, val-
ues in replicas carry logical timestamps set by the data centres and stored
in the records in the nodes of the memory management subsystem. This
allows us to formulate and investigate policies that guarantee consistency.

2

For retrieval of a set of records a specified number of replicas has to be
read, and for each record always the one with the latest timestamp will
be returned. Depending on how many replicas are accessed the returned
records may be (in the strict sense) outdated or not. Likewise, for the
update of a set of records timestamps will be created, and a specified
number of replicas of the records will be stored. Success of retrieval or
update will be returned according to specified read- and write-policies.

In Section 2 we will first specify the behaviour of a concurrent system
with shared data requiring that all agents interact with this subsystem for
data retrieval and updates using appropriate SEND and RECEIVE actions.
The memory management subsystem is specified by a separate collection
of agents. In Section 3 we investigate a refinement concerning policies
how many replicas are to be read or updated, respectively. We show that
some combinations of replication policies enable view compatibility, which
formalises the expectation above. In Section 4 we refine our specification
taking the communication between data centres into account, and address
the enforcement of the read and write policies. We obtain a complete,
though not necessarily correct refinement, and as a consequence view
compatibility cannot be guaranteed anymore. We even show that view
compatibility implies view serialisability. Finally, we conclude with a brief
summary and outlook.

This paper contains only a short version of our work on the subject,
but a technical report with full details is available in [17]. In particu-
lar, proofs are only sketched here, but full-length proofs appear in this
technical report.

2 Shared Memory Management with Replication

We assume some familiarity with Abstract State Machines (ASMs) (see [7,
Sect.2.2/4]). The signature Σ of an ASM is a finite set of function symbols
f , each associated with an arity arf . A state S is a set of functions fS of
arity n = arf over some fixed base set B, given by interpretations of the
corresponding function symbol f . Each pair (f, (v1, . . . , vn)) comprising
a function symbol and arguments vi ∈ B is called a location, and each
pair (`, v) of a location ` and a value v ∈ B is called an update. A set
of updates is called an update set. The evaluation of terms is defined as
usual by valS(f(t1, . . . , tn)) = fS(valS(t1), . . . , valS(tn)). ASM rules r are
composed using

assignments. f(t1, . . . , tn) := t0 (with terms ti built over Σ),
branching. IF ϕ THEN r+ ELSE r−,

3

parallel composition. FORALL x WITH ϕ(x) r(x),
bounded parallel composition. r1 . . . rn,
choice. CHOOSE x WITH ϕ(x) IN r(x), and
let. LET x = t IN r(x).

Each rule yields an update set ∆(S) in state S. If this update set
is consistent, i.e. it does not contain two updates (`, v), (`, v′) with the
same location ` and different values v 6= v′, then applying this update set
defines a successor state S +∆(S).

2.1 Concurrent Communicating Abstract State Machines

A concurrent ASM (cASM) CM is defined as a family {(a, asma)}a∈A
of pairs consisting of an agent a and an ASM asma. Let Σa denote the
signature of the ASM asma. Taking the union Σ =

⋃
a∈AΣa we distin-

guish between CM-states built over Σ and local states for agent a built
over Σa; the latter ones are simply projections of the former ones on the
subsignature.

A concurrent run of a concurrent ASM CM = {(a, asma)}a∈A is a
sequence S0, S1, S2, . . . of CM-states, such that for each n ≥ 0 there is a
finite set An ⊆ A of agents such that Sn+1 results from simultaneously
applying update sets ∆a(Sj(a)) for all agents a ∈ An yielded by asma

in some preceding state Sj(a) (j(a) ≤ n depending on a), i.e. Sn+1 =

Sn +
⋃

a∈An
∆a(Sj(a)) and a /∈

⋃n−1
i=j(a)Ai.

In order to isolate agents responsible for a memory management sub-
system we exploit communicating concurrent ASMs (ccASM) [5]. In a
ccASM the only shared function symbols take the form of mailboxes.
Sending of a message m from a to b means to update the out-mailbox
of a by inserting m into it. This mailbox is a set-valued shared location
with the restriction that only the sender can insert messages into it and
only the environment, i.e. the message processing system, can read and
delete them. The message processing system will move the message m to
the in-mailbox of the receiver b. Receiving a message m by b means in
particular that b removes m from its in-mailbox and performs some local
operation on m. Therefore, in ccASMs the language of ASM rules above
is enriched by the following constructs (see [5] for further details):

Send. SEND(〈message〉, from:〈sender〉, to:〈receiver〉),
Receive. RECEIVE(〈message〉, from:〈sender〉, to:〈receiver〉),
Received. RECEIVED(〈message〉, from:〈sender〉, to:〈receiver〉), and
Consume. CONSUME(〈message〉, from:〈sender〉, to:〈receiver〉).

4

If all shared data is organised in relations with a unique primary key,
this can be modelled by a set of function symbols Σmem = {p1, . . . , pk},
where each pi has a fixed arity ai, and a fixed co-arity ci, such that in
each state S we obtain partial functions4 pSi : Bai → Bci .

A read access by an agent a ∈ A aims at receiving a subset of relation
pi containing those records with key values satisfying a condition ϕ, i.e.
evaluate a term pi[ϕ] = {(k,v) | ϕ(k) ∧ v 6= undef ∧ pi(k) = v}. As
pi is not in the signature Σa, the agent a must send a read-request and
wait for a response, i.e. it executes SEND(read(pi, ϕ),from:a,to:home(a))
and waits until RECEIVED(answer(ans, pi, ϕ),from:home(a),to:a) becomes
true. Then it can execute RECEIVE(answer(ans, pi, ϕ),from:home(a),to:a)
to obtain the requested value.

We abstract from the details of the communication but assume the
communication to be reliable. If there is no confusion, we omit the sender
and receiver parameters in SEND and RECEIVE. The ans in the message
must be a relation of arity ai + ci satisfying the key property above. The
agent can store such an answer using a non-shared function pai or process
it in any other way, e.g. aggregate the received values. This is part of the
ASM rule in asma, which we do not consider any further.

In the SEND and RECEIVE rules we use a fixed agent home(a) with
which the agent a communicates. It will be unknown to the agent a,
whether this agent home(a) processes the read-request or whether it com-
municates with other agents to produce the answer.

Analogously, for bulk write access an agent a may want to execute the
operation pi :& p to update all records with a key defined in p to the new
values given by p. As this corresponds to an ASM rule FORALL (k,v) ∈ p
pi(k) := v, the agent a must send a write-request and wait for a re-
sponse, i.e. it executes SEND(write(pi, p),to:home(a)) and waits to receive
an acknowledgement, i.e. to RECEIVE(acknowledge(pi, p), from:home(a)).

We use the notation CM0 = {(a, asmc
a)}a∈A ∪ {(db, asmdb)} for the

ccASM with a single memory agent db and home(a) = db for all a ∈ A.
Thus, the rule of asmdb looks as follows:

IF RECEIVED(read(pi, ϕ),from:a) THEN
CONSUME(read(pi, ϕ),from:a)
LET ans = {(k,v) | ϕ(k) ∧ pi(k) = v ∧ v 6= undef } IN

SEND(answer(ans, pi, ϕ),to:a)
IF RECEIVED(write(pi, p),from:a) THEN

4 In ASMs partial functions are captured by total functions using a dedicated value
undef .

5

CONSUME(write(pi, p),from:a)
FORALL (k,v) ∈ p pi(k) := v
SEND(acknowledge(pi, p),to:a)

2.2 Memory Organisation with Replication

For replication we use several data centres, and each data centre comprises
several nodes. The nodes are used for data storage, and data centres cor-
respond to physical machines maintaining several such storage locations.
Let D denote the set of data centres. Then instead of a location (pi,k)
there will always be several replicas, and at each replica we may have a
different value.

Let us assume that each relation pi is fragmented according to the
values of a hash-key. That is, for each i = 1, . . . , k we can assume a static
hash-function hi : Bai → [m,M] ⊆ Z assigning a hash-key to each key
value. We further assume a partition [m,M] =

⋃qi
j=1 rangej such that

rangej1 < rangej2 holds for all j1 < j2, so each range will again be an
interval. These range intervals are used for the horizontal fragmentation
into qi fragments of the to-be-represented function pi: Fragj,i = {k ∈ Bai |
hi(k) ∈ rangej}.

All these fragments will be replicated and their elements associated
with a value (where defined by the memory management system), using a
fixed replication factor ri. That is, each fragment Fragj,i will be replicated
ri-times for each data centre. A set of all pairs (k,v) with key k ∈ Fragj,i
and an associated value v in the memory management system is called a
replica of Fragj,i.

Assume that each data centre d consists of ni nodes, identified by d
and a number j′ ∈ {1, . . . , ni}. Then we use a predicate copy(i, j, d, j′) to
denote that the node with number j′ in the data centre d ∈ D contains
a replica of Fragj,i. We also use Di = {d ∈ D|∃j, j′.copy(i, j, d, j′)}. To
denote the values in replicas we use dynamic functions pi,j,d,j′ of arity ai
and co-arity ci + 1 (functions we call again replicas). So we use function
symbols pi,j,d,j′ with j ∈ {1, . . . , qi}, d ∈ D and j′ ∈ {1, . . . , ni}, and we
request hi(k) ∈ rangej for all k ∈ Bai , whenever copy(i, j, d, j′) holds and
pi,j,d,j′(k) is defined. For the associated values we have pi,j,d,j′(k) = (v, t),
where t is an added timestamp value, and values v may differ from replica
to replica.

Each data centre d maintains a logical clock clockd that is assumed to
advance (without this being further specified), and clockd evaluates to the
current time at data centre d. Timestamps must be totally ordered, differ
if set by different data centres, and respect the inherent order of message

6

passing, i.e. when data with a timestamp t is created at data centre d and
sent to data centre d′, then at the time the message is received the clock
at d′ must show a time larger than t. This condition can be enforced by
adjusting clocks according to Lamport’s algorithm [11]. For this let us
define adjust clock(d, t) = clockd := t′, where t′ is the smallest possible
timestamp at data centre d with t ≤ t′.

2.3 Internal Request Handling for Replicated Memory

When dealing with replication the request messages sent by agents a
remain the same, but the internal request handling by the memory man-
agement subsystem changes. This will define a refined ccASM CM1 =
{(a, asmc

a)}a∈A∪{(d, asmd)}d∈D. We will use the notions of complete and
correct refinement as defined in [7, pp.111ff.].

Let M and M∗ be cASMs (or ccASMs). We fix a correspondence
relation ∼ between some states of M and some states of M∗. Then M∗

is called a correct refinement of M iff for each run S∗0 , S
∗
1 , . . . of M∗ there

is a run S0, S1, . . . of M together with sequences 0 = i0 < i1 < . . . and
0 = j0 < j1 < . . . such that Sik ∼ S∗jk holds for all k, and if both runs are
finite with final states S∗f and Sf , respectively, then there exists an index
` with Si` = Sf and S∗i` = S∗f . We call M∗ a complete refinement of M iff
M is a correct refinement of M∗.

Consider a read request read(pi, ϕ) received from agent a by data
centre d. As data is horizontally fragmented, we need to evaluate several
requests read(pi,j , ϕ) concerning keys k with hi(k) ∈ rangej , one request
for each fragment index j, and then build the union so that pi[ϕ] =⋃qi

j=1 pi,j [ϕ]. In order to evaluate pi,j [ϕ] several replicas of Fragj,i will
have to be accessed. Here we will leave out any details on how these
replicas will be selected and accessed, but the selection of replicas must
comply with a read-policy that is left abstract for the moment.

When reading actual data, i.e. evaluating pi,j,d,j′(k) for selected key
values k, we obtain different time-stamped values (v, t), out of which a
value v with the latest timestamp is selected and sent to a as the up-
to-date value of pi(k). The requirement that timestamps set by different
data centres differ implies that for given k the value v with the latest
timestamp is unique. All records obtained this way will be returned as
the result of the read request to the issuing agent a. Thus, we obtain the
following ASM rule AnswerReadReq:

AnswerReadReq =
IF RECEIVED(read(pi, ϕ), from:a) THEN

7

CONSUME(read(pi, ϕ), from:a)
FORALL j ∈ {1, . . . , qi} CHOOSE Gi,j WITH complies(Gi,j , read-policy)
∧ Gi,j ⊆ {(d′, j′) | copy(i, j, d′, j′) ∧ d′ ∈ Di ∧ 1 ≤ j′ ≤ ni}

LET tmax(k) = max{t | ∃v′, d̄, j̄.(d̄, j̄) ∈ Gi,j ∧ pi,j,d̄,j̄(k) = (v′, t)} IN
LET ansi,j = {(k,v) | ϕ(k) ∧ hi(k) ∈ rangej ∧ v 6= undef ∧

∃d′, j′.((d′, j′) ∈ Gi,j ∧ pi,j,d′,j′(k) = (v, tmax(k)))} IN
LET ans =

⋃qi
j=1 ansi,j IN SEND(answer(ans, pi, ϕ), to:a)

Note that the unique value v with pi,j,d′,j′(k) = (v, tmax(k)) may be
undef and that the returned ans may be the empty set.

For a write request write(pi, p) sent by agent a to data centre d we
proceed analogously. In all replicas of Fragj,i selected by a write-policy the
records with a key value in p will be updated to the new value provided
by p—this may be undef to capture deletion—and a timestamp given by
the current time clockd. However, the update will not be executed, if the
timestamp of the existing record is already newer. In addition, clocks that
“are too late” will be adjusted, i.e. if the new timestamp received from
the managing data centre d is larger than the timestamp at data centre
d′, the clock at d′ is set to the received timestamp. Thus, we obtain the
following ASM rule PerformWriteReq to-be-executed by any data centre
d upon receipt of an update request from an agent a:

PerformWriteReq =
IF RECEIVED(write(pi, p), from:a) THEN

CONSUME(write(pi, p), from:a)
FORALL j ∈ {1, . . . , qi} CHOOSE Gi,j WITH complies(Gi,j ,write-policy)
∧ Gi,j ⊆ {(d′, j′) | copy(i, j, d′, j′) ∧ d′ ∈ Di ∧ 1 ≤ j′ ≤ ni}

LET tcurrent = clockself IN

FORALL (d′, j′) ∈ Gi,j

FORALL (k,v) ∈ p WITH hi(k) ∈ rangej
IF ∃v′, t.pi,j,d′,j′(k) = (v′, t) ∧ t < tcurrent THEN
pi,j,d′,j′(k) := (v, tcurrent)

IF clockd′ < tcurrent THEN adjust clock(d′, tcurrent)
SEND(acknowledge(pi, p), to:a)

Proposition 1. The ccASM CM1 = {(a, asmc
a)}a∈A∪{(d, asmd)}d∈D is

a complete refinement of CM0 = {(a, asmc
a)}a∈A ∪ {(db, asmdb)}.

Proof (sketch, see also [17]). The only differences between the ccASMs
CM0 and CM1 are that home(a) ∈ D differs in the refinement, but in
both cases the handling of a request is done in a single step. For both
cases the determination of the answer requires a more sophisticated rule
in the refinement. ut

8

3 Refinement Using Replication Policies

We define view compatibility formalising the intuitive expectation of the
agents that answers to sent requests remain the same in case of replica-
tion as without, because replication is completely transparent. We show
that for particular combinations of concrete read- and write-policies CM1

guarantees view compatibility, which further implies that the refinement
of CM0 by CM1 is correct.

3.1 View Compatibility

Informally, view compatibility is to ensure that the system behaves in a
way that whenever an agent sends a read- or write-request the result is
the same as if the read or write had been executed in a state without
replication. For a formal definition we need the notion of an agent view of
a concurrent run S0, S1, . . . of the cASM {(a, asmc

a)}a∈A for an arbitrary
agent a ∈ A. Its view of the run is the subsequence of states Sa,0, Sa,1, . . .
in which a makes a move (restricted to the signature of a). For any state
Sk = Sa,n its successor state in the a-view sequence depends on the move
a performs in Sa,n.

If a in Sa,n performs a send step, it contributes to the next state Sk+1

by an update set which includes an update of its out-mailbox, which in
turn yields an update of the mailbox of home(a). But Sk+1 is not yet the
next a-view state, in which a will perform its next move. This move is
determined by the atomic request/reply assumption for agent/db runs: If
in a run an agent performs a send step, then its next step in the run is
the corresponding receive step, which can be performed once the answer
to the sent request has been received. By this assumption the next a-view
state Sa,n+1 = Sl is determined by (what appears to a as) an environment
action enabling the receive step by inserting the reply message into a’s
mailbox.

If a in Sa,n = Sk performs a receive or an internal step, then besides
the mailbox update to consume the received message it yields only up-
dates to non-shared locations so that its next a-view state is the result
of applying these updates together with updates of other agents to form
Sk+1 = Sa,n+1.

We further need the notion of a flattening which reduces the mul-
tiple values associated with replicas of a location ` to a single value: If
S0, S1, S2, . . . is a run of CM1 = {(a, asmc

a)}a∈A∪{(d, asmd)}d∈D, then we
obtain a flattening S′0, S

′
1, S
′
2, . . . by replacing in each state all locations

9

(pi,j,d′,j′ ,k) by a single location (pi,k) and letting the value associated
with (pi,k) be one of the values in {v | ∃j, d′, j′.∃t.pi,j,d′,j′(k) = (v, t)}.

Obviously, a flattening is a sequence of states of the concurrent ASM
{(a, asmc

a)}a∈A, but in most cases it will not be a run. Therefore, take
an arbitrary subsequence S′j0 , S

′
j1
, . . . of an arbitrary flattening S′0, S

′
1, . . .

(restricted to the signature of the agent a) of S0, S1, Then S′j0 , S
′
j1
, . . .

is called a flat view of agent a of the run S0, S1, . . . if the following condi-
tions hold: Whenever a performs a request in state Sk there is some S′ji
such that k = ji. If the corresponding reply is received in state Sm for
some m > k, then S′ji+1

= Sm. Furthermore, there exists some n with
k < n ≤ m such that if the request is a write-request, then for each lo-
cation ` with value v in this request valS′

n
(`) = v holds, provided there

exists an agent reading the value v, and if the request is a read-request,
then for each location ` with value v in the answer valS′

n
(`) = v holds.

Whenever a performs a RECEIVE or an internal move in state Sk there
is some ji such that Sk = S′ji and Sk+1 = S′ji+1

.

We say that {(a, asmc
a)}a∈A ∪ {(d, asmd)}d∈D is view compatible with

the concurrent ASM {(a, asmc
a)}a∈A ∪ {(db, asmdb)} iff for each run R =

S0, S1, S2, . . . of {(a, asmc
a)}a∈A ∪ {(d, asmd)}d∈D there exists a subse-

quence of a flatteningR′ = S′0, S
′
1, S
′
2, . . . that is a run of {(a, asmc

a)}a∈A∪
{(db, asmdb)} such that for each agent a ∈ A the agent a-view of R′ co-
incides with a flat view of R by a.

3.2 Specification of Replication Policies

In the specification of ASM rules handling read and write requests by
a fixed data centre d we used sets Gi,j ⊆ Ci,j with Ci,j = {(d′, j′) |
copy(i, j, d′, j′)} as well as an abstract predicate complies(Gi,j ,policy).
Let us now define the most important policies All, One, and Quorum—
more policies are handled in [17]. These policies differ in the number of
replicas that are to be accessed. As the name indicates, the predicate
complies(Gi,j ,All) can be defined by Gi,j = Ci,j , i.e. all replicas are to
be accessed. For One at least one replica is to be accessed, which defines
complies(Gi,j ,One) by |Gi,j | ≥ 1. For Quorum(q) we use a value q with
0 < q < 1, and complies(Gi,j ,Quorum(q)) is defined by q · |Ci,j | < |Gi,j |.

For consistency analysis we need appropriate combinations of read-
and write-policies. If the write-policy is Quorum(q) and the read-policy
is Quorum(q′) with q + q′ ≥ 1, then the combination is appropriate.
Furthermore, a combination of the write policy (or read-policy) ALL
with any other policy is also appropriate.

10

Proposition 2. If the combination of the read and write policies is ap-
propriate, then CM1 is view compatible with the cASM {(a, asmc

a)}a∈A
and a correct refinement of CM0.

Proof (sketch, a full proof is available in [17]). If the write-policy is Quo-
rum(q), then for each location ` the multiplicity of replicas considered to
determine the value with the largest timestamp is at least dm+1

2 e with m
being the total number of replicas. Consequently, each read access with
a policy Quorum(q′) (with q+ q′ ≥ 1) reads at least once this value and
returns it. That is, in every state only the value with the largest times-
tamp for each location uniquely determines the run, which defines the
equivalent concurrent run. ut

4 Refinement with Internal Communication

We will now address a refinement of the memory management subsystem
taking into account that data centres refer to different physical machines,
whereas in CM1 we abstracted from any internal communication. The
gist of the refinement is therefore to treat the handling of a request as a
combination of direct access to local nodes, remote access via messages
to the other relevant data centres, and collecting and processing return
messages until the requirements for the read- or write-policies are fulfilled.
That is, the validation of the policy accompanies the preparation of a
response message and is no longer under control of the home agent.

4.1 Request Handling with Communicating Data Centres

In Section 2 we specified how a data centre agent d handles a request
received from an agent a. Now, we first specify an abstract rule which
manages external requests, i.e. coming from an agent a and received by
a data centre d, where request is one of these read or write requests. An
external request is forwarded as internal request to all other data centres
d′ ∈ Di, where it is handled and answered locally (see the definition of
HandleLocally below), whereas collecting (in answera′) and sending the
overall answer to the external agent a is delegated to a new agent a′. SELF
denotes the data centre agent d which executes the rule.

To Initialize a delegate a′ it is equipped with a set answera′ , where
to collect the values arriving from the asked data centres and with coun-
ters counta′(j) (for the number of inspected replicas of the j-th frag-
ment). The counters are used for checking compliance with the policies.

11

The mediator and requestor information serves to retrieve sender and
receiver once the delegate completes the answer to the request.

DelegateExternalReq =
IF RECEIVED(request , from:a) THEN
CONSUME(request , from:a)
LET tcurrent = clockSELF, a

′ = new(Agent) IN
Initialize(a′)
HandleLocally(request , a′, tcurrent)
ForwardToOthers(request , a′, tcurrent)

WHERE

ForwardToOthers(request , a′, tcurrent)=
FORALL d′ ∈ Di WITH d

′ 6= SELF SEND((request , a′, tcurrent), to:d′)
Initialize(a′) =

answera′ := ∅
FORALL 1 ≤ j ≤ qi counta′(j) := 0
IF request = read(pi, ϕ)
THEN asma′ := CollectRespondToRead

ELSE asma′ := CollectRespondToWrite

requestora′ := a
mediatora′ := SELF

requestTypea′ := request

In this way the request handling agent d simply forwards the request
to all other data centre agents and in parallel handles the request locally
for all nodes associated with d. The newly created agent (a ‘delegate’) will
take care of collecting all response messages and preparing the response
to the issuing agent a. Request handling by any other data centre d′ is
simply done locally using the following rule:

ManageInternalReq =
IF RECEIVED((request , a′, t), from:d) THEN

HandleLocally(request , a′, t)
CONSUME((request , a′, t), from:d)

Each data centre agent d is equipped with the following ASM rule, where
the components HandleLocally and the two versions of CollectRespond
are defined below.

asmd = DelegateExternalReq ManageInternalReq

For local request handling policy checking is not performed by the data
centre agent but by the delegate of the request; check the predicates

12

all messages received and sufficient(policy) below. We use a predicate
alive to check, whether a node is accessible or not. For a read request we
specify HandleLocally(read(pi, ϕ), a′, tcurrent) as follows:

HandleLocally(read(pi, ϕ), a′, t)=
LET d′ = SELF IN

LETGi,j,d′ = {j′ | copy(i, j, d′, j′) ∧ alive(d′, j′)} IN
LET tmax(k) = max({t | ∃v′, j̄.j̄ ∈ Gi,j,d′ ∧ pi,j,d′,j̄(k) = (v′, t)}) IN
LET ansi,j,d′ = {(k,v, tmax(k)) | ϕ(k) ∧ hi(k) ∈ rangej ∧

∃j′ ∈ Gi,j,d′ .pi,j,d′,j′(k) = (v, tmax(k))} IN
LET ans =

⋃qi
j=1 ansi,j,d′ , x = (|Gi,1,d′ |, . . . , |Gi,qi,d′ |) IN

SEND(answer(ans,x), to:a′)

Here we evaluate the request locally, but as the determined maximal
timestamp may not be globally maximal, it is part of the returned re-
lation. Also the number of replicas that contributed to the local result
is returned, such that the delegate a′ responsible for collection and final
evaluation of the request can check the satisfaction of the read-policy.
Therefore, the created partial result is not returned to the agent d that
issued this local request, but instead to the delegate.

Rule HandleLocally(write(pi, p), a
′, tcurrent) handles write requests:

HandleLocally(write(pi, p), a
′, t′)=

LET d′ =SELF IN

IF clockd′ < t′ THEN adjust clock(d′, t′)
LETGi,d′(j) = {j′ | copy(i, j, d′, j′) ∧ alive(d′, j′)} IN
FORALL j ∈ {1, . . . , qi} FORALL j′ ∈ Gi,d′(j)

FORALL (k,v) ∈ p WITH hi(k) ∈ rangej
IF ∃v′, t.pi,j,d′,j′(k) = (v′, t) ∧ t < t′ THEN pi,j,d′,j′(k) := (v, t′)

LET x = (|Gi,1,d′ |, . . . , |Gi,qi,d′ |) IN SEND(ack write(pi, p,x), to:a′)

Again, the partial results acknowledging the updates at the nodes asso-
ciated with data centre d′ are sent to the collecting agent a′ to verify
the compliance with the write-policy. For the delegate a′ that has been
created by d to collect partial responses and to create the final response
to the agent a issuing the request we need predicates sufficient(policy)
for policy checking, in which case the response to a is prepared and sent:

sufficient(All) ≡ ∀j.(1 ≤ j ≤ qi ⇒ count(j) = γi,j)

with γi,j = |{(d′, j′) | copy(i, j, d′, j′)}|
sufficient(One) ≡ ∀j.(1 ≤ j ≤ qi ⇒ count(j) ≥ 1)

13

sufficient(Quorum(q)) ≡ ∀j.(1 ≤ j ≤ qi ⇒ γi,j · q < count(j))

It remains to specify the delegate rules CollectRespondToRead and
CollectRespondToWrite, i.e. the programs associated with the agent a′

created upon receiving a request from an agent a. The CollectRespond

action is performed until all required messages have been received and
splits into two rules for read and write requests, respectively.

The delegate a′ collects the messages it receives from the data cen-
tres d′ to which the original request had been forwarded to let them
HandleLocally(request, a′). If the set of collected answers suffices to re-
spond, the delegate sends an answer to the original requester and kills
itself.

Thus each of the rules CollectRespondToRead and CollectRespond-

ToWrite has a subrule Collect and a subrule Respond with corresponding
parameter for the type of expected messages.

CollectRespondToRead=
IF RECEIVED(answer(ans,x), from:d′) THEN

CONSUME(answer(ans,x), from:d′)
Collect((ans,x), from:d′)

IF sufficient(read-policy) THEN
Respond(requestTypeSELF)

WHERE

Respond(read(pi, ϕ))=
LET d=mediator(SELF), a=requestor(SELF) IN
LET ans = {(k,v) | ∃t. (k,v, t) ∈ answerSELF} IN

SEND(answer(ans, pi, ϕ), from:d, to:a)
DELETE(SELF,Agent)

Collect((ans,x), from : d′)=
FORALL k WITH ∃v, t. (k,v, t) ∈ ans

LET (k,v, t) ∈ ans IN
IF ∃v′, t′. (k,v′, t′) ∈ answerSELF THEN

LET (k,v′, t′) ∈ answerSELF IN

IF t′ < t THEN
DELETE((k,v′, t′), answerSELF
INSERT((k,v, t), answerSELF

ELSE INSERT((k,v, t), answerSELF)
LET (x1, . . . , xqi) = x IN

FORALL j ∈ {1, . . . , qi}
count(j) := count(j) + xj

14

The analogous collection of messages for write requests is simpler, as the
final response is only an acknowledgement.

CollectRespondToWrite=
IF RECEIVED(ack write(pi, p,x), from:d′) THEN

Collect(ack write(pi,x), from:d′)
CONSUME(ack write(pi, p,x), from:d′)

IF sufficient(write-policy) THEN
SEND(acknowledge(pi, p), from:mediator(SELF), to:requestor(SELF))
DELETE(SELF,Agent)

WHERE

Collect(ack write(pi,x), from:d′) =
LET (x1, . . . , xqi) = x IN

FORALL j ∈ {1, . . . , qi}
count(j) := count(j) + xj

Note that our specification does not yet deal with exception handling. We
may tacitly assume that eventually all requested answers will be received
by the collecting agent.

4.2 Analysis of the Refinement

Let CM2 denote the refined ccASM {(a, asmc
a)}a∈A ∪{(d, asm ′d)}d∈D∪Ext

together with the dynamic set Ext of delegates. Note that the delegates
are created on-the-fly by the agents d ∈ D, needed for collecting partial
responses for each request and preparing the final responses (a full proof
is given in [17]).

Proposition 3. CM2 is a complete refinement of CM1.

Proof (sketch). Take a concurrent run of CM1 and first look at it from
the perspective of a single agent a ∈ A. Updates brought into the state S
by a are read and write requests. If a continues in some state S′ = Si+x,
then the transition from S to S′ is achieved by means of a step of asmd

for d = home(a). Therefore, there exist states S̄, S̄′ for CM2, in which
the asmc

a brings in the same read and write requests and receives the last
response, respectively. In a concurrent run for CM2 the transition from
S̄ to S̄′ results from several steps by the subsystem {(d, asm ′d)}d∈D∪Ext.

With respect to each of the requests received from a the agent d =
home(a) contributes to a state S̄1 with requests for each agent d′ ∈ D,
d′ 6= d, the creation and initialisation of a response collecting agent a′,
and the local handling of the request at nodes associated with data centre

15

d. Then each agent d′ ∈ D contributes to some state S̄k (k > 1), in which
the partial response to the request sent to d′ is produced. Concurrently
the collection agent a′ on receipt of a partial response updates its own
locations, and thus contributes to some state S̄j (j > 1). Finally, a′ will
also produce and send the response to a. This response will be the same as
the one in state S′, if the refined run from S̄ to S̄′ uses the same selection
of copies for each request referring to pi and each fragment Fragj,i.

This implies that CM2,a = {(a, asmc
a)}∪{(d, asm ′d)}d∈D∪Ext is a com-

plete refinement of CM1,a = {(a, asmc
a)} ∪ {(d, asmd)}d∈D, from which

the proposition follows immediately. ut

Unfortunately, view compatibility cannot be preserved, unless addi-
tional conditions are enforced in the specification. Any such condition
already implies serialisability (a full proof is given in [17]).

Proposition 4. If CM2 is view compatible with the cASM CM0, then
every run R of CM2 is view serialisable. If all runs of CM2 are view
serialisable and an appropriate combination of a read and a write policy
is used, then CM2 is also view compatible with the concurrent ASM CM0.

Proof (sketch). For a run R = S0, S1, . . . of CM2 view compatibility
implies that there exists a subsequence of a flattening R′ = S′0, S

′
1, . . .

that is a run of {(a, asmc
a)}a∈A ∪ {(db, asmdb)} such that for each agent

a ∈ A the agent a-view of R′ coincides with a flat view of R by a. Let
∆′` be the update set defined by S′` +∆′` = S′`+1, and define ∆` =

{((pi,j,d,j′ ,k), (v, t`)) | ((pi,k),v) ∈ ∆′` ∧ copy(i, j, d, j′)∧ hi(k) ∈ rangej}

using timestamps t0 < t1 < t2 < This defines a run R̄ = S̄0, S̄1, . . .
of CM2 with S̄0 = S0 and S̄`+1 = S̄` +∆`, which implies that R′ is serial.

Furthermore, the runs R and R̄ contain exactly the same requests
and responses, for each agent a the sequence of its requests and responses
is identical in both runs, and hence R and R̄ are view equivalent.

Conversely, for a run R′ of CM2 and a view equivalent serial run
R′ = S0, S1, . . . it suffices to show that that there exists a subsequence
of a flattening R′ = S′0, S

′
1, S
′
2, . . . that is a run of {(a, asmc

a)}a∈A ∪
{(db, asmdb)} such that for each agent a ∈ A the agent a-view of R′
coincides with a flat view of R by a. For this we only have to consider
states, in which a request or a response is issued to obtain the desired
subsequence, and the flattening is defined by the answers to the write
requests, which follows immediately from R being serial. ut

16

5 Concluding Remarks

Concurrent ASMs (cASMs) have been introduced to show that truly con-
current algorithms can be captured by an extension of ASMs [4]. In partic-
ular, cASMs overcome limitations in the theory of concurrency associated
with the presence of interleaving and unspecified selection agents that en-
able several agents to perform steps synchronously. This specification and
refinement study in this paper shows that oncurrent ASMs are well suited
to capture all requirements in distributed, concurrent systems.

We demonstrated the application of concurrent communicating ASMs
(ccASMs) [5] for the specification, refinement and consistency analysis
of concurrent systems in connection with shared replicated memory. We
first specified a ground model, in which all access to replicas is handled
synchronously in parallel by a single agent, then refined it addressing
the internal communication in the memory management subsystem. This
refinement significantly changed the way requests are handled, as repli-
cas are not selected a priori in a way that complies with the read- or
write-policies, but instead the acknowledgement and return of a response
depends on these policies. These refinements could be taken further to
capture also the means for handling inactive nodes and for recovery. Due
to space limitations for this conference version some explanations remain
terse and proofs are only sketched, but details are available in an extended
technical report [17].

We further showed that consistency, formalised by the notion of view
compatibility, cannot be preserved by the last refinement. We could show
that even such a rather weak notion of consistency can only be obtained, if
view serialisability is assured. Serialisability can be achieved by adopting
transactions for at least single requests. For instance, one might integrate
a transactional concurrent system [6] with the specification of a replicative
storage system as done in this paper.

References

1. G. Agha. A Model of Concurrent Computation in Distributed Systems. MIT Press,
Cambridge, Mass., 1986.

2. E. Best. Semantics of sequential and parallel programs. Prentice Hall, 1996.
3. A. Blass and Y. Gurevich. Abstract State Machines capture parallel algorithms.

ACM Trans. Computational Logic, 4(4):578–651, 2003.
4. E. Börger and K.-D. Schewe. Concurrent abstract state machines. Acta Inf.,

53(5):469–492, 2016.
5. E. Börger and K.-D. Schewe. Communication in Abstract State Machines. J. Univ.

Comp. Sci., 23(2):129–145, 2017.

17

6. E. Börger, K.-D. Schewe, and Q. Wang. Serialisable multi-level transaction control:
A specification and verification. Sci. Comput. Program., 131:42–58, 2016.

7. E. Börger and R. F. Stärk. Abstract State Machines. A Method for High-Level
System Design and Analysis. Springer, 2003.

8. F. Ferrarotti, K.-D. Schewe, L. Tec, and Q. Wang. A new thesis concerning syn-
chronised parallel computing – simplified parallel ASM thesis. Theor. Comp. Sci.,
649:25–53, 2016.

9. H. J. Genrich and K. Lautenbach. System modelling with high-level Petri nets.
Theoretical Computer Science, 13:109–136, 1981.

10. Y. Gurevich. Sequential abstract-state machines capture sequential algorithms.
ACM Trans. Comp. Logic, 1(1):77–111, 2000.

11. L. Lamport. Time, clocks, and the ordering of events in a distributed system.
Commun. ACM, 21(7):558–565, 1978.

12. N. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.
13. A. Mazurkiewicz. Trace theory. volume 255 of LNCS, pages 279–324. Springer,

1987.
14. M. T. Özsu and P. Valduriez. Principles of Distributed Database Systems, Third

Edition. Springer, 2011.
15. T. Rabl, M. Sadoghi, H.-A. Jacobsen, S. Gómez-Villamor, V. Muntés-Mulero, and

S. Mankowskii. Solving big data challenges for enterprise application performance
management. PVLDB, 5(12):1724–1735, 2012.

16. K.-D. Schewe, F. Ferrarotti, L. Tec, Q. Wang, and W. An. Evolving concurrent sys-
tems – behavioural theory and logic. In Proceedings of the Australasian Computer
Science Week Multiconference (ACSW 2017), pages 77:1–77:10. ACM, 2017.

17. K.-D. Schewe, A. Prinz, and E. Börger. Concurrent computing with shared repli-
cated memory. CoRR, abs/1902.04789, 2019.

18. A. S. Tanenbaum and M. Van Steen. Distributed systems. Prentice-Hall, 2007.
19. G. Winskel and M. Nielsen. Models for concurrency. In S. Abramsky, D. Gab-

bay, and T. S. E. Maibaum, editors, Handbook of Logic and the Foundations of
Computer Science: Semantic Modelling, volume 4, pages 1–148. Oxford University
Press, 1995.

18

