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Abstract. Distribution of computation is well-known, and there are
several frameworks, including some formal frameworks, that capture dis-
tributed computation. As yet, however, models of distributed computa-
tion are based on the idea that data is conceptually centralized. That
is, they assume that data, even if it is distributed, is consistent. This
assumption is not valid for many of the database systems in use today,
where consistency is compromised to ensure availability and partition
tolerance. Starting with an informal definition of eventual consistency,
this paper explores several measures of inconsistency that quantify how
far from consistency a system is. These measures capture key aspects of
eventual consistency in terms of distributed abstract state machines. The
definitions move from the traditional binary definition of consistency to
more quantitative definitions, where the classical consistency is given by
the highest possible level of consistency. Expressing eventual consistency
in terms of abstract state machines allows models to be developed that
capture distributed computation and highly available distributed data
within a single framework.

Keywords: Distributed state · Eventual consistency · Formality · Ab-
stract State Machine.

1 Introduction

Over time, and particularly since the invention of the Internet, computation has
more and more become distributed. Today, almost all computation is achieved
by cooperating computing entities communicating over a network. There are
numerous frameworks to support distributed computing, and formal methods
have provided the means to study distributed computation in depth.

In the public Internet, data is central to computation. This represents a
change from the earliest days, where computers were thought of primarily as
computing engines. Nowadays, persistent data forms the heart of almost all
computation. In terms of distribution, the leading idea is still that we want
to distribute the computation. This means both distribution of processing and
distribution of data.
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Current formal models of distributed computation [2,10,11,17,18,22,23,24]
rely on data given by a centralized state, i.e. data that is not distributed. How-
ever, reality is different [1,26]. This is also captured in the Java memory model
[20]. Data really is distributed and it is possible to have several copies of the
same data that are not consistent.

This means we need to come to an agreement about distributed state in
addition to distributed computation, see also [25]. Both of them are closely
connected. When we talk about distributed state, we want to do this on the right
level of abstraction. This is needed in order to be able to handle the complexity
involved. The abstraction cannot mean that we have to look into all the existing
copies of data entities and their updates by connected servers. This is obviously
too detailed. It is also not enough to look at a centralized data model - that
would be too coarse. The right level of abstraction lets us see possible states of
the data without going too deep into detail of how these come about.

In noSQL databases, such an understanding is evolving and it is revolving
around the term of eventual consistency. This means that data can be stored
in the system with a certain amount of inconsistency, but that this is resolved
over time and finally, the system is consistent. This paper aims at making this
idea more formal, based on an understanding of state changes in the presence of
distributed data.

We base our discussion on the model of Abstract State Machines (ASM) [8],
because they provide a high-level and abstract view of computation. ASM can
be considered formalized pseudo-code, such that ASM programs are readable
even without much introduction. ASM are using a centralized state model, and
we will combine this model with data that is distributed over several locations.

This paper starts with an introduction of eventual consistency and abstract
state machines in Section 2. In Section 3, we define distributed state in ASM.
After than, we look into ways to quantify inconsistency in Section 4. Afterwards,
we define eventual consistency in Section 5. We discuss related work in Section 6
before we conclude in Section 7.

2 Background

2.1 Distributed Data and Eventual Consistency

A first idea of handling data for distributed computation is to store it in one
place, and allowing multiple agents at different locations to access this data.
This kind of data is called centralized data and is how data is managed in
classical relational databases. Coordination of access to the data and timely
fulfilment of client requests relies on effective transaction management. Enlarging
the database is costly, as it normally requires migrating to a larger, expensive
database server.

An alternative to the single-server, centralized relational database is a dis-
tributed database, where as well as splitting the data across servers, some data
items are replicated. Distribution is designed to optimize performance against
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expected client requirements, and extra processing is needed to ensure that repli-
cated data remains consistent. In this way, we still keep the conceptual idea of
centralized data, and leave detailed management of distributed, possibly repli-
cated, data to the implementation. This is the place where the classical SQL
databases are. From a users point of view, such a database should work as if
the data was stored in one place. The famous ACID (atomicity, consistency,
isolation, durability) rules for transaction processing ensure that this is the case.

The implementation itself will typically manage transactions so that a change
is not committed before enough information is put into the system. This way,
conflicting changes are avoided. Here, it is possible to choose whether the com-
plexity should be on the read or on the write or shared between the two. It
is important to notice that the read and write activities are finished when the
database is in a consistent state and the returned value is correct. However, in
case of much access and poor connectivity, client applications may find it slow
or impossible to use the data.

Finally, based on the kind of application, we can relinquish the demand for
absolute consistency. Now we are working with a truly distributed system, which
is sometimes not connected, and which handles the data such that the user is
not aware of connectivity problems. Of course, in this model, conflicting changes
are possible, and they have to be sorted out at some point in time. The typical
method for sorting out conflicting changes is timestamps, i.e. the later one of
two changes is the more current one. Now the complexity of handling updates is
moved partly out of the agents, and dealt with by their environment3. This allows
for quick access to the database, but it means that there has to be an underlying
process of cleaning up the database while the agents are doing something else.

The term eventual consistency is often used to describe how consistency is
compromised in NoSQL databases, but its roots go back to the creation of the
internet domain name system (DNS) created by Paul Mockapetris4 in 1983.

Here is one definition of eventual consistency.

“Eventual consistency is a characteristic of distributed computing
systems such that the value for a specific data item will, given enough
time without updates, be consistent across all nodes5.”

Eventual consistency compromises consistency in a distributed data store
for availability and network partition tolerance. The need for compromise was
famously articulated as the CAP Theorem or Brewer’s Theorem [15] which states
that you can have at most two of

– Consistency
– Availability
– Partition tolerance

3 In the conceptually centralized model, the read and write handling is also moved
out of the agent code, but it is still inside the agent activity, which is not completed
until everything is sorted out.

4 https://internethalloffame.org/official-biography-paul-mockapetris
5 https://whatis.techtarget.com/definition/eventual-consistency

https://internethalloffame.org/official-biography-paul-mockapetris
https://whatis.techtarget.com/definition/eventual-consistency
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in a shared-data system. Conventional, relational database systems apply the
ACID (atomicity, consistency, isolation, durability) rules for transaction pro-
cessing to ensure consistency. They sacrifice partition tolerance or availability to
ensure consistency.

Availability is not negotiable in the internet DNS, and distribution is also
essential to ensure scalability, and so consistency is compromised in the DNS in
order to ensure availability and network partition tolerance. Brewer [15] coined
the term BASE (basic availability, soft state, eventual consistency) to describe
the rules for transaction processing applied in the DNS and more recently in
several NoSQL database systems.

This way, eventual consistency is tightly coupled with the concept of a soft
state, i.e. a state that is changed even without user agent interactions. The soft
state repairs consistency problems until the state becomes consistent.

2.2 Abstract State Machines

The basic definitions of locations and updates in abstract state machines (ASMs)
are as follows. Variations of these definitions can be found in many sources,
including, but not limited to [3,4,6,7,8,9].

At its most basic, an abstract state machine (ASM) consists of abstract states
with a transition rule, or ASM program, that specifies how the ASM transitions
through its states.

An ASM has a signature of symbols and a base set of values. The symbols
of the signature are function symbols. Each function symbol has an arity. The
symbols are interpreted over the base set so that a symbol with arity zero is
interpreted as a single element of the base set, and a symbol with arity n is
interpreted as an n-ary function over the base set. Expressions (terms) of the
signature are constructed in the usual way, and are interpreted recursively over
the base set.

Names can be classified with respect to change. Names like True, False and
undef, whose interpretation is the same in all the states of an abstract state
machine, are called static names, while all other names (called dynamic names)
are subject to updates. Dynamic names can again be classified with respect
to which agents are allowed to change them, which will be explained later. To
support readability, new symbols can be defined as abbreviations for complex
terms. In SDL such symbols are called derived names [19].

The signature includes the predefined names True, False and Undefined, and
three distinct values of the base set serve as interpretations for these. The in-
terpretations of True and False are called truth values. Function symbols whose
interpretations deliver truth values are called predicate names.

Unary predicate names can serve as sort names, whose interpretations classify
base set elements as belonging to the sort in question.

An interpretation of the symbols over the base set defines a state of the ASM.
An ASM program is composed of assignments, if statements, forall state-

ments, and several more statement kinds. We will not formally introduce all
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the kinds, but rather refer to [8]. ASM is designed to look like pseudo-code and
normally ASM programs can be read without further explanation.

The main means of change in a program is an assignment, taking the form
exp := e, meaning that the value (object) represented in a given state by the
expression exp is changed to the value (object) represented in the given state by
the expression e. More generally, expressions at the left-hand side of an update
can take the form exp = f(e1, . . . , en), where f is an n-ary function symbol and
ei are expressions.

The ASM model is a dynamic model. Starting from an initial state, an ab-
stract state machine repeatedly produces new states from existing states by
updating the interpretation of its symbols. Such a sequence of states is called a
run of the ASM. The transition (or move or step) from one state to the next is
specified as a set of updates to locations, where an update is the change to the
current state imposed by an assignment.

More precisely, a function symbol f with a tuple of elements a that serves
as an argument of f identifies a location. The term f(a) identifies a location
and evaluates to a value in a state. In a subsequent state, the value of that
location may have changed, and f(a) may evaluate to a new value. In that case,
an update indicates what the new value will be, and is expressed using the values
of terms in the current state. Updates are written as triples (f, a, b), to indicate
that f(a) = b will be true in the new state.

2.3 Distributed ASM

The abstract state machine model is very flexible and only asserts that state
changes are given based on the current state. From here, a natural extension is
to look into several ASM agents, each with an ASM program providing state
changes. The agents share the (global) state and they start in a common initial
state. Because the agents only use part of the state, they would normally not
see the complete state, but only the part that is visible based on their signature.
Therefore, we can distinguish different kinds of functions names for a distributed
agent: monitored functions are only read by the agent and updated by other
agents or the environment, controlled functions are only visible to the agent
itself and can be considered private, while shared functions are joint between
different agents for reading and writing.

The execution model of ASM ensures that the agents do not clash in their
updates of shared locations. The important idea here is that the underlying
memory model is a global model with all locations being in principle available
to all agents.

For the sake of the discussion in Sections 3 and 5, we also assume the avail-
ability of a synchronized global time, which is accessed using the monitored
function NOW . In reality, it is not possible to completely synchronize time
in a distributed system, but here it is enough when time drift between two
agents is smaller than their communication delay. This can be achieved using
the NTP protocol [21]. There is also an assumption that time-stamps are never
accidentally the same. Although that seems like a strong assumption, it is easily
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implemented by either sorting the servers issuing time-stamps and using this to
sort out the time-stamp order, or to just use an ordering on the values to do the
same. In practice, both these solutions, and others, are used [1]. This means we
can safely assume that the time-stamps used by different agents are disjoint.

3 Abstract State Machine Model of Distributed State

3.1 Distributed, Duplicated Persistent Data

We start by looking at the user or client view of the database. The following def-
initions use the ASM method to model multiple agents that read, write, update
and delete data that is duplicated, distributed and persistent. The definitions
of communicating ASMs provided by Börger and Raschke [9], are modified to
take account of duplicated data. This provides a basis for defining soft state as
meaning that an update to a location is propagated to all copies. Based on this,
several definitions of inconsistency are explored in Section 4.

Useful concepts that have already been developed, and that are relevant to
consistency in a persistent data store with multiple ASM clients, include:

– persistent queries [5,6]
– independent concurrent ASMs [28]
– communicating ASMs [9]
– communicating concurrent ASMs with shared memory [27]

Consider a distributed algorithm with several ASM agents, where the agents’
persistent data is stored in a distributed database. The database management
system (DBMS) can be a classical distributed SQL or a distributed NoSQL
DBMS. The DBMS distributes its data across a number of servers, which can be
viewed as nodes in a network. Data and functionality is replicated across server
nodes, and storage is increased by adding more nodes, an approach called hori-
zontal scaling. To optimise availability and partition tolerance, the requirement
for consistency is relaxed to a requirement for eventual consistency.

Actions are performed by ASM agents following their ASM programs. Client
agents issue requests to the DBMS, and DBMS server agents retrieve or update
some of the replicated data in response to the client request. DBMS server
agents also generate requests to other servers to propagate updates so as to
make updated values available on those other servers.

Each location has multiple copies (replicas) on different DBMS servers. We
consider servers to be agents themselves.

domain Location
domain Server ⊆ Agent
static replicas: Location→ P Server
shared value: Server, Location→ Value
shared timestamp: Server, Location→ Time

We also define the latest timestamp amongst all the replicas of a location.
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derived maxTime(loc) ≡ maxr∈replicas(loc)timestamp(r,loc)

We assume that different values for a location have different timestamps. This
is obviously true when the different values come from different agents, as times-
tamps of different agents are disjoint. If the different values come from the same
agent, then they have to come from different steps, as it is an inconsistency
to assign two different values to the same location in the same step. However,
because time advances, the timestamps of different steps of the same agent are
different.

As discussed above, each location has a value that was allocated at a time
that is universally comparable. Within a set of replicas, there will be a most
recent update, defined as an update with the latest timestamp.

Server agents run a soft state update program which is detailed in the next
subsection. The client programs run their code, which includes reads and writes
of locations. This is the usual ASM handling, where for a given agent with its
ASM program, an update set is determined. The update set is the set of writes,
while the reading of values is given by the reads of locations. The replicas of
shared variables are handled in the definition of read and write.

Connectivity between servers is of interest insofar as an update of a replica
on one server is visible to another server. This is modelled using a monitored
function connected.

monitored connected : Agent, Agent→ Boolean

From the perspective of a client agent, database handling is an activity conducted
by the environment, and the actions of DBMS agents are perceived as updates
to shared or monitored locations.

Client agents can read values, where reading is a function providing a value.
In reality, reading a value might be more than a function with an immediate
outcome, and will rather have several steps that might or might not provide a
result. For the discussion in this paper, it is sufficient to consider immediate
results and keep a refinement into action sequences for later.

Reading in the presence of replicas means to read selected replicas and to
use the value with the most recent time stamp among them. We abstract the
possible replicas to be read with a predicate ReadPolicyOK, which represents
an unspecified database policy that limits the subsets of replicas that need to be
consulted for reading by a client agent.

static ReadPolicyOK: PServer, Location→ Boolean

Read(loc) ≡
choose S ⊆ replicas(loc)
with ReadPolicyOK(S,loc) ∧ ∀s ∈ S : connected(SELF,s)
in

choose s0 ∈ S
with maxs∈S(timestamp(loc,s)) = timestamp(loc, s0)
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in
value(s0, loc)

Client agents can also write a value, which means a state is changed. This way,
writing is an activity. Again, writing will normally be an activity with many
steps, which we abstract here to just one step. These updates bring all the repli-
cas to the latest value. Like ReadPolicyOK, the function WritePolicyOK checks
a subset of the replicas for validity to be updated, and allows write operations
to be specified independently of the underlying database activity.

static WritePolicyOK : P Server, Location→ Boolean

Write(loc,val) ≡
choose S ⊆ replicas(loc)
with WritePolicyOK(S,loc) ∧ ∀s ∈ S : ConnectedReplica(SELF,s)
in
forall s ∈ S do

value(s,loc):= val
timestamp(s,loc):= NOW

As an example, in a client program there might be an assignment x:= y+z. This
means, y and z are handled with Read(y) and Read(z), respectively. The variable
x gets a new value (lets assume 42) and this is handled with Write(x,42).

An example for read and write policies could be that reading requires two
replicas while writing requires all replicas. This would mean the following.

ReadPolicyOK example(S,l) ≡ S ⊆ replicas(l)∧ | S |≥ 2
WritePolicyOK example(S,l) ≡ S = replicas(l)

3.2 Replicas and Updates

The DBMS has also an internal view on the data. DBMS agents handle the soft
state and update locations in the background. The duplicates of the different
locations are considered to be one from the client perspective, but the DBMS
handles them individually and keeps consistency high. The state of the system
and the different values present are later used to define eventual consistency.

We define a background process that improves consistency in the system by
updating the values to newer versions. The abstract program that the DBMS
agents are running in parallel to the client agents is as follows.

SoftStateUpdate ≡
choose l ∈ Location with SELF ∈ replicas(l) do
choose r ∈ replicas(l) with SELF 6= a ∧ connected(SELF, r)
∧timestamp(r,l) > timestamp(SELF,l)
do

value(SELF,l):= value(r,l)
timestamp(SELF,l):= timestamp(r,l)
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4 Defining Inconsistency Formally

Eventual consistency means that from any starting state, in the absence of client-
initiated updates, the system will reach a consistent state. Classical consistency
is a qualitative measure, which can be true or false.

To model eventual consistency, we need a more quantitative measure of con-
sistency as a way to express how far our system is from consistency. This will
allow to express how a mechanism like SoftStateUpdate will, given sufficient time
without client-initiated updates, cause the system to become consistent. There-
fore, we do not measure consistency, but inconsistency.

In the following, we present alternative measures of inconsistency, some based
on the count of outdated values, and others on the age of outdated values. To
serve as a meaningful model of eventual consistency, a measure of inconsistency
should have the following properties.

– P1: Inconsistency should decrease when values become less outdated. This
could happen, for example, by a DBMS agent executing SoftStateUpdate.

– P2: Inconsistency should increase when a new value is introduced incom-
pletely as a consequence of a client’s request. In this case, the value is up-
dated only in some replicas, which outdates the remaining values. Inconsis-
tency should not change when consistent locations are updated consistently.

– P3: Changes to the network partitioning should not influence inconsistency.
When replicas of a location become disconnected from one another, DBMS
activities will not be able to reverse increases in inconsistency caused by
client activities, such that the inconsistency does not decrease.

4.1 Total and Sufficient Consistency

Before defining measures of consistency, we first define total consistency, the ideal
state which, given sufficient time, the system as a whole will reach in the absence
of client-initiated updates. We then define sufficient consistency, a condition that
means that each client read will yield the most recent value even though there
might be inconsistencies in the data.

Total consistency is a state in which all the members in a set of replicas
have equal values, and those equal values all have the latest timestamp. Please
remember that the same timestamp implies the same value.

Definition 1 (Total consistency). All replicas of a location have the same
time stamp and the same value.

TotallyConsistent(loc) ≡
∀s0 ∈ replicas(loc) •maxTime(loc) = timestamp(s0, loc)

Sufficient consistency is then defined as stating that there might be different
values for a location in the system, but these are not visible to clients due to the
read policy.
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Definition 2 ((Sufficient) consistency). All possible reads of a location lead
to the same, most recent, available value.

Consistent(loc) ≡
∀S ⊆ replicas(loc) • ReadPolicyOK(S,loc)→

maxTime(loc) = maxs∈S(timestamp(s,loc))

4.2 Consistency as a Count of Inconsistent Replicas

In a distributed database system, consistency means having the same value for
each location regardless of which server provides the value. For such a system,
the number of extra, inconsistent replicated values in the system is a good mea-
sure of inconsistency. These extra values are the extra values that might be
externally available to client agents. For distributed databases, there might be
other hidden values in the system that are not yet presented to the users before
their update operation is finished, but such values are at the level of the DBMS
implementation and will not be considered further here.

Definition 3 (Outdated Values). The measure of consistency in a distributed
system is the total number of outdated values in the system. These are values
that do not have the latest timestamp.

OutdatedValueCount(loc) ≡
| {r ∈ replicas(loc) : timestamp(r,loc) 6= maxTime(loc)} |

OutdatedValues ≡
∑

l∈Location OutdatedValueCount(l)

When an old value is updated to the latest value, OutdatedV alues decreases,
as needed for P1. It does not decrease when the update goes to a new, but not
the latest value. P2 is true as an incomplete client-initiated update will cause
OutdatedV alues to increase. The measure is independent of the network thus
making P3 trivially true.

A second measure of consistency is presented below that takes account of the
connectivity of the servers. It is not meaningful to expect nodes to be updated
as long as they are disconnected from the current value.

Definition 4 (Outdated Reachable Values). The measure of consistency in
a distributed system is the number of outdated values that are reachable from the
most up-to-date replicas but that are not (yet) up to date.

OutdatedReachableValueCount(loc) ≡
| {r ∈ replicas(loc) : timestamp(r,loc) 6= maxTime(loc)∧
∃ r′ ∈ replicas(loc) • timestamp(r′, loc) = maxTime(loc)∧
connected(r′, r)} |

OutdatedReachableValues ≡∑
l∈Location OutdatedReachableValueCount(l)
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Corollary 1.
OutdatedReachableValues ≤ OutdatedValues

When everything is connected, this measure is the same as the previous one.
When some parts are disconnected, then OutdatedReachableV alues captures
the connected part of the network. Again, P1 and P2 are true as long as they
are in the connected parts, as we can assume that values cannot be updated
in the unconnected parts. Still, OutdatedReachableV alues is not a satisfactory
measure of inconsistency because partitioning the network actually leads to in-
creased consistency according to this measure, making P3 invalid.

Therefore we consider a measure that takes account of network partitioning.

Definition 5 (Outdated Isolated Values). The measure of inconsistency in
a distributed system is the number of outdated values that are isolated from the
most recent update of a location, and so cannot be made consistent by the DBMS
propagation mechanism characterized by SoftStateUpdate.

OutdatedIsolatedValueCount(loc) ≡
| {r ∈ replicas(loc) : timestamp(r,loc) 6= maxTime(loc)∧
∃r′ ∈ replicas(loc) : timestamp(r′, loc) = maxTime(loc)∧
not connected(r′, r)} |

OutdatedIsolatedValues ≡
∑

l∈Location OutdatedIsolatedValueCount(l)

Corollary 2.
OutdatedIsolatedValues ≤ OutdatedValues

Corollary 3.
OutdatedIsolatedValues + OutdatedReachableValues = OutdatedValues

Inconsistency as measured by OutdatedIsolatedValues will not increase as a con-
sequence of DBMS activities. However, the measure does not capture the fact
that DBMS activities will increase consistency within connected parts of the
system. Thus, P1 is not true. In fact, there are cases where also P2 and P3 are
invalid for OutdatedIsolatedValues.

Combining OutdatedIsolatedValues with OutdatedReachableValues provides a
measure that fulfils all three of the required properties of a meaningful measure
of inconsistency. OutdatedValues is such a combination and therefore provides
the most meaningful of the measures of inconsistency explored above.

4.3 Time-based Measures of Inconsistency

Instead of counting inconsistent replicas of locations, the measures explored be-
low describe inconsistency in terms of the time delay of the inconsistent replica
values.
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Definition 6 (Least Consistency Time). For a location l, the consistency
time is NOW in case the location is consistent. Otherwise, it is the latest times-
tamp with a value for this location. This leads to a measure of consistency that is
the longest distance between NOW and the consistency times of all the locations
in the system.

ConsistencyTime(loc) ≡
if Consistent(loc) then NOW else maxTime(loc)

LeastConsistencyTime ≡ minl∈Location(NOW - ConsistencyTime(l))

When an inconsistent location is made consistent, LeastConsistencyTime de-
creases, as needed for P1. It does not decrease when the update goes to a new,
but not the latest value. It also does not decrease when there are still other
outdated values around for the location. P2 is not true, because applying an
incomplete client-initiated update to an inconsistent state will cause LeastCon-
sistencyTime to decrease. As the measure is independent of the network, P3 is
valid.

As this definition uses only the oldest update to a location, it does not take
into account changes to other outdated values. An alternative time-based mea-
sure of inconsistency is the distance in time to the latest timestamp for all the
replicas of a location. This is a measure of how out of date the replicas are.

Definition 7 (Delta Consistency Time). The timestamp differences for all
the replicas of a location.

ConsistencyDelta(loc) ≡∑
r∈replicas(loc) maxTime(loc) - timestamp(r,loc)

DeltaConsistencyTime ≡
∑

l∈Location ConsistencyDelta(l)

DeltaConsistencyTime is a measure of the delay in propagating updates across
all the replicas of a location. It improves with each improvement for any outdated
value, such that P1 is true for all cases. It also fulfils P2 in all cases. Finally,
as it is not considering the network, it also fulfils P3. DeltaConsistencyTime is
more detailed than the other inconsistency measures.

5 Formal Definition of Eventual Consistency

5.1 Eventual Consistency

The previous definitions allow a formalization of eventual consistency as follows.

Definition 8 (Eventual Consistency). A DBMS, in particular its soft state
update functionality, is eventually consistent when its DeltaConsistencyTime is
decreasing if there are no client-initiated updates and OutdatedReachableValues
is not zero.
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This definition of eventual consistency demands that in the absence of other up-
dates, the predicate TotallyConsistent will eventually hold for all locations in the
system. In reality, the data is already consistent when the predicate Consistent
holds, such that users will experience consistency earlier than that.

This is related to the other parts of the DBMS who provide as much as
possible consistency already without the soft state.

The definition of eventual consistency and the use of DeltaConsistencyTime
in particular also allows a comparison of different DBMS mechanisms and data-
base configurations with respect to consistency.

Please note that this definition of eventual consistency does not define the
consistency of a state, but the possible behaviours of a DBMS.

5.2 SoftStateUpdate Implies Eventual Consistency

Theorem 1. The abstract soft state update functionality given in Section 3 pro-
vides eventual consistency. This means, in the absence of client-initiated updates,
DeltaConsistencyTime decreases due to DBMS propagation of updated values
across replicas.

Proof. Let OutdatedReachableValues > 0 6. This means that there is at least
one location l0 that has an outdated value. Let r0 be a replica with the up-to-
date value, and r1 be the outdated replica. We can choose r0 and r1 such that
connected(r0, r1) because OutdatedReachableValues > 0.

Now the conditions for l, r, and SELF in SoftStateUpdate are fulfilled by l0,
r0, and r1. SoftStateUpdate will run on r1, because it is a DB server and keeps
replicas. This means that SoftStateUpdate for r1 does not produce an empty
update set, but changes the value of at least one location. This will decrease
DeltaConsistencyTime by the time difference between the old and the new value.

ut

5.3 Example for Eventual Consistency

We consider the independent read - independent write (IRIW) algorithm A [10]
with four agents a1, . . . , a4 as follows.

a1 : x := 1
a2 : y := 1
a3 : Read(x); Read(y)
a4 : Read(y); Read(x)
initially x = y = 0

We consider three database servers db1, db2, db3, keeping a replica of x and y
each and running the SoftStateUpdate program. The user agents use the Read for
reading values (a3 and a4) and the Write for storing the assignments of values

6 Obviously, this also implies that DeltaConsistencyTime > 0
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(a1 and a2). We visualize the system state by the three replicated values for x
and y, such that the initial state is (x = (0, 0, 0), y = (0, 0, 0)).

First, we look at a database policy where writing and reading are allowed
already on just one replica. We run first a1 and a2 in parallel at time 1. They
store the values for x and y in db1 and db2, respectively. This leads to the system
state (x = (1, 0, 0), y = (0, 1, 0)) with DeltaConsistencyTime = 4. Now a3 and a4
read in parallel, where a3 consults db1 and a4 consults db2. This gives the result
x = 1, y = 0 for a3 and x = 0, y = 1 for a4. As [10] argues, this is not sequentially
consistent. However, still db1, db2, and db3 are active with SoftStateUpdate. All
of them can update at least one location, leading to (x = (1, 1, 1), y = (1, 1, 0))
and DeltaConsistencyTime = 1. The server db3 can do one more update step,
before everything is consistent.

Now we look at the case where two replicas are needed with reading and for
writing. The previous scenario is not possible now, as now the system is sequen-
tially consistent. Still, we run first a1 and a2 in parallel. They store the values for
x and y as follows: (x = (1, 1, 0), y = (0, 1, 1)) with DeltaConsistencyTime = 2.
Now a3 and a4 read in parallel, and independent of their choice of servers, they
both get the result x = 1, y = 1. The server db2 is already up-to-date, but
db1 and db3 run SoftStateUpdate, leading to (x = (1, 1, 1), y = (1, 1, 1)) and
DeltaConsistencyTime = 0.

Please observe that in the second case, the system is consistent all the time,
even though DeltaConsistencyTime is not 0. However, the soft state functionality
does not stop before everything is updated to the latest value.

In the case of partitions, not all needed updates are possible and have to be
delayed until the connection is restored.

6 Related Work

Bosneag and Brockmeyer [12] developed a formalism that enabled specification
of different forms of consistency for a given data object. Like the work presented
here, their approach is rooted in state machine models. Eventual consistency is
defined as the fact that in the absence of updates, all replicas of a data item
converge towards identical copies of each other. A history reduction operator is
defined based on whether or not operations in a history can be reordered without
affecting the end state that is reached, and a proof is given that any algorithm
that respects the history reduction operator will achieve eventual consistency.

The definitions provided here differ from [12] in that they deal with a measure
of distance from consistency rather than on dependencies between operations.
We maintain that this more abstract view of eventual consistency, which does
not need to refer to execution traces, provides a better basis for reasoning about
whether or not a database management system can be said to ensure eventual
consistency.

Burckhardt [16] provides ways to reason about the consistency of protocols
in terms of consistency guarantees, ordering guarantees and convergence guaran-
tees. Reasoning is in terms of states, where the current state is viewed as a graph
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of prior operations. Formal models are presented for protocol definitions and for
executions in distributed systems, and proofs are provided to show that imple-
mentations meet consistency guarantees. This goes far beyond the definitions
presented here, but has the disadvantage that it relies on a specially developed
formalism for specifying the observable behaviour of a system. Our work has the
advantage that it builds on the established ASM formalism, and so can be used
immediately to reason about existing specifications.

Bouajjani, Enea and Hamza [13,14] define eventual consistency as a property
over traces observed by an external witness. Eventual consistency is grounded in
the notions of safety and liveness, and is defined in terms of finite prefixes of a
global interpretation of method calls in a system where the result of a call is well-
defined (safety), and where there exists a global interpretation of all the method
calls in an infinite trace. This facilitates reasoning about speculative updates
and rollbacks, both of which are essential to a practically useful definition of
eventual consistency. Again, our definitions do not refer to histories or execution
traces, and so provide a more appropriate level of abstraction for reasoning about
eventual consistency than was previously available.

In summary, the work presented here differs from previous work in that
it builds on an existing ASM formalism and so can be used to reason about
existing specifications without the need to translate those into a new formalism.
It differs also in that it focuses on measures of distance from the desired state of
consistency rather than on execution traces of a distributed system. This enables
reasoning about consistency at a more appropriate level of abstraction than
was previously possible. Finally, the ASM formalism also provides the semantic
foundation for SDL [18], which provides an opportunity to provide automated
support for verifying eventual consistency by building on existing tools.

7 Conclusion

Different definitions aimed at quantifying consistency in a distributed database
with replicated data were presented above.

Some of the definitions are based on counts of inconsistent replicas of loca-
tions in the distributed system. These definitions capture the idea that client-
initiated updates will make the database system less consistent, and that DBMS
activities to propagate updates across replicas will make the system more con-
sistent.

Other definitions are based on calculating how out-of-date some replicas are.
Those definitions also capture the concept of a distributed database system that
becomes less consistent with client updates and more consistent as updates are
propagated by the DBMS.

However, none of the definitions fully captures the implications of network
failure and partitioning. This is not necessarily a problem, but indicates that
further metrics are needed to cover those aspects of distributed databases with
eventual consistency.
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For sure, distributed persistent data is essential to distributed computation,
and the ASM formalism supports formal modelling of persistent distributed
datastores with replicated values. Moreover, it enables such datastores to be
seamlessly modelled alongside independent client and DBMS server agents.

Overall, a foundation has been laid to conduct deeper investigation of even-
tual consistency than has previously been possible.
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