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Abstract—Massive machine-type communication (mMTC) is
expected to play a pivotal role in emerging 5G networks.
Considering the dense deployment of small cells and the existence
of heterogeneous cells, an MTC device can discover multiple cells
for association. Under traditional cell association mechanisms,
MTC devices are typically associated with an eNodeB with
highest signal strength. However, the selected eNodeB may not
be able to handle mMTC requests due to network congestion
and overload. Therefore, reliable cell association would provide
a smarter solution to facilitate mMTC connections. To enable
such a solution, a hidden Markov model (HMM) based machine
learning (ML) technique is proposed in this paper to perform
optimal cell association. As such, we consider MTC devices with
network-assisted decision-making capabilities for selecting the
most appropriate eNodeB for data transmission. The proposed
HMM based ML technique focuses mainly on the reliability and
availability of network resources. Correspondingly, two schemes
are developed based on the classical reliability function and the
next probable state of the HMM. Based on simulations under
various configurations, we demonstrate the advantage of the
proposed schemes over a random cell selection scheme.

I. INTRODUCTION

Upcoming 5G mobile and wireless networks provide signifi-
cant advancements in three broad categories, namely enhanced
mobile broadband (eMBB), massive machine-type communi-
cations (mMTC), and ultra-reliable and low latency commu-
nications (URLLC). Due to a massive number of devices,
high-density deployment, small-sized packet transmissions,
and a large uplink-to-downlink traffic volume ratio, providing
mMTC services appears as a challenging task in 5G. For
instance, one of the essential requirements for mMTC applica-
tions is high availability and reliability to ensure low latency,
accurate, and flawless operations.

To provide mMTC services, multiple technical challenges
need to be addressed. Those challenges include quality of
service (QoS) provisioning, radio access network (RAN) con-
gestion control for dynamic and sporadic MTC traffic [1]. On
the other hand, dealing with huge signaling overhead generated
by a massive number of autonomous connections is another
tedious and resource-demanding task. Fig. 1 illustrates a
prospective network architecture for MTC applications where
a heterogeneous network (HetNet) consisting of multiple small
cells is deployed in an area of interest [2] [3]. These cells are
overlapped in design to prevent blind spots and achieve seam-
less handover. In LTE-A, the co-existence of heterogeneous
cells (including relays, picocells, and femtocells) is expected
in order to provide better coverage and capacity. Moreover,
network slicing is recognized as a promising technology in
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Fig. 1. An envisioned MTC architecture by 3GPP [4].

mMTC to create multiple end-to-end virtual networks over
a common infrastructure [5]. Consequently, MTC devices
should be able to dynamically select an appropriate cell for
association to fit the MTC requirements since they may be
covered by multiple cells.

In a heterogeneous network with overlapping cells, cell
association could be a critical decision for MTC performance
considering the needed radio resources during and after the cell
selection process. In such scenarios, MTC devices are expected
to select the most appropriate eNB without calling the expen-
sive core network functions based on the instantaneous value
of the received signal strength, e.g., reference signal received
quality (RSRQ) [6] or access barring information received via
system information blocks (SIBs) [7]. Therefore, MTC devices
need to be designed with decision making capability to select
the target eNB in a network assisted manner. This also leads to
a considerable reduction of overhead traffic. However, due to
a massive number of low power and low complex devices and
heavy burst, MTC devices are not able to estimate accurately
the random access intensity or load condition of each eNB [8].
In an overload condition, random access attempts can be re-
jected frequently by the eNB. Correspondingly, it has become
an interesting issue to analyze how MTC devices are aware
of the ongoing status of each eNB in order to perform an
effective cell association.

In [9], a cell association scheme is proposed for small cell
networks by considering load balancing to optimize the base
station (BS) idle time. In another study, [10], a cell association
scheme is designed for HetNets based on joint consideration
of the signal-to-interference-plus-noise ratio (SINR) and the
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traffic load of the BS. Moreover, [11] investigates effective
cell association for load balancing in HetNets. However, those
approaches do not consider cell association for MTC scenarios
in 5G networks. This paper proposes an HMM based machine
learning (ML) algorithm with two cell association schemes to
let MTC devices select an appropriate cell among the available
cell set. The proposed ML algorithm runs on MTC devices
and enables the devices to select the eNB intelligently, hence
aiming at mitigating signaling overhead in random access and
thus achieving better performance.

The remainder of this paper is structured as follows. The
network scenario and the discrete time Markov chain (DTMC)
model are described in Sec. II. The HMM problems and
solutions are outlined in Sec. III. Thereafter Sec. IV describes
the proposed cell association schemes based on our network
scenario. The simulation results are provided in Sec. V.
Finally, we conclude this paper in Sec. VI.

II. NETWORK SCENARIO AND DTMC MODEL

This section presents the adopted network scenario and as-
sumptions, and then the underlying DTMC model is described.

A. Network Scenario and Assumptions

Consider a RAN with N cells and that each cell consists
of a single eNB. Let Z be the number of resources available
at each eNB for admitting users. These resources can repre-
sent preambles, resource blocks (RBs), or simply channels.
Although a huge number of MTC devices are connected to a
given eNB, only a subset of them becomes active and attempts
to send their data at a given time following a random arrival
distribution, for instance, Poisson or Beta distribution.

As illustrated in Fig. 1, an MTC device can be covered
by more than one eNB. According to the basic positioning
support introduced in 3GPP Release 13, RSRQ is available
for devices [12]. This information will be transformed into
an observation output which is detected by a device. In this
study, we consider a time-slotted structure where the time slots
are indicated as t ∈ {1, 2, · · · , T} such that an active device
detects one observation output at each time slot.

B. eNB Status and DTMC Modeling

In this study, we model the status of each eNB by a set
S = {y1, y2} where y1 represents that eNB can accommodate
resources (preambles, RBs, or channels) to an MTC device
and y2 indicates that eNB blocks communication requests
from MTC devices due to insufficient resources. In other
words, when the status of an eNB is y2, all Z resources are
occupied or not allocatable to devices. Then, by assuming the
memoryless property, a general state of the corresponding first-
order DTMC can be represented as x = {x1, x2, · · · , xN}
where xi ∈ (y1, y2) denotes the channel occupancy status
of the ith cell. Therefore the total number of states in this
system becomes 2N . Moreover, the states are denoted as
1, 2, 3, · · · , i, · · · , 2N and i is simply the ith state. Note
however that the DTMC is not observable by MTC devices.
Instead, only the observation output is detected at each time
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Fig. 2. A DTMC model for a 2 cell scenario. Each cell can be in one of the
two modes, i.e., {y1, y2}. The observation outputs are denoted as v1 and v2.
The dashed lines indicate the observation probabilities of each state towards
the two observation outputs.

slot. That is, the state transition probabilities and observation
probabilities are hidden to the devices.

As an example, the corresponding DTMC of the HMM
when N = 2 is illustrated in Fig. 2. Herein, aij denotes the
transition probability from state i to state j. Denote by A
the state transition matrix. A contains the probability that a
hidden state will evolve to another state, given the current
state. Moreover, denote the system state at time slot t as
St. An initial state probability value which indicates how
likely it is for an input measure to start in state i is given
as πi = P (S0 = i).

Without knowing the cell status of eNBs, MTC devices are
not able to select their eNB properly. Therefore, in order to
solve this problem, we can apply an unsupervised machine
learning technique. Therein, HMM has shown better results
in earlier studies due to its capability of modeling sequential
data. In the next section, we present the mathematical structure
of the HMM as the required preliminaries for proposing ML
based cell association schemes.

III. CELL ASSOCIATION PRELIMINARIES: HMM BASED
MACHINE LEARNING

Assume that each MTC device obtains an observation output
ot at every time slot t. The observation output sequence during
period (0, T ] is represented as OT = {o1, o2, · · · , oT }. Let
V = {v1, v2, · · · , vL} be the set of possible observations. The
probability of observing the output vk, k ∈ (1, 2, · · ·L) at time
slot t given that the system is in state j, j ∈ (1, 2, · · · , 2N )
is denoted as bj(vk), i.e., bj(vk) = P (ot = vk|St = j).
For instance, in Fig. 2 and also in our simulations, each
hidden state of the DTMC model contributes to two possible
outputs, denoted as v1 and v2. Let B = {bj(vk)} be the
observation probability matrix of the HMM. Correspondingly,
B contains the probability that a particular measurable output
can be observed, provided that the model is in one of the
hidden states. After all these notations, the HMM can be
denoted in a compact form as λ = (A,B,π0) where π0

is the initial probability distribution of DTMC states, i.e.,
π0 = {π1, π2, · · · , π2N }. To perform the proposed cell as-
sociation, we need to solve the following three problems first.



A. HMM Evaluation Problem

The first problem is to determine the probability of the
observed sequence OT given the DTMC model λ′ =
(A′,B′,π′

0) where A′,B′, and π′
0 denote the initial esti-

mation of the state transition matrix, observation probability
matrix, and the probability distribution of DTMC states re-
spectively. To do so, we define a forward variable αt(i) as
the probability of the partial observation sequence up to time
t and state i at time t. According to the initial conditions, we
can state that αj(1) = πjbj(o1), ∀j. To recursively calculate
αj(t), j = 1, 2, · · · , 2N through dynamic programing, we can
use the above initial condition and the following equation

αj(t+ 1) = bj(ot+1)

2N∑
i=1

αi(t)× aij .

Then, the probability of the observation sequence, OT , when
the model λ′ is given, can be expressed as

P (OT |λ′) =
2N∑
i=1

αi(T ). (1)

The above expression will be applied in our proposed ML
procedure to check the accuracy of the obtained decision.

B. HMM Decoding Problem

In the second problem, we can find the most likely sequence
of the hidden states which could have generated a given output
sequence. Unlike in the evaluation problem, herein, we need
to define an optimality criterion. Without loss of generality,
the states which are individually most likely at each time slot
are considered. Denote the probability of being in state i at
time t, given the model λ′ as γt(i). We have γt(i) = P (St =
i|OT , λ′). To compute this, we need a backward variable,
βt(i), i.e., the probability of the partial observation sequence
from t+1 to the end, given state i at time t. Initially, βT (i) =
1, ∀i. Similar to the forward variable calculation, the following
recursion needs be used to compute the backward variable

βt(i) =

2N∑
j=1

aijbj(ot+1)βt+1(j).

Correspondingly,

γt(i) =
αt(i)βt(i)∑2N

i=1 αt(i)βt(i)
. (2)

Once we know the likelihood of all states being at time t, the
individually most likely state at time t becomes

wt = argmax
1≤i≤N

γt(i). (3)

C. HMM Learning Problem

In this final problem, the model parameters, i.e., A,B,
and π0 need to be accurately estimated from the observation
sequence assuming that N and L are known parameters. With
the recent advances in ML, there exist several techniques to
solve this type of parameter estimation problems based on
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Fig. 3. The relationship between the proposed cell association schemes and
the hidden Markov model. The initially assumed HMM is denoted as λ′.

both supervised and unsupervised learning. However, it is
infeasible to solve this hidden state problem by supervised
learning since the observation sequence cannot be used to
generate any outcome. On the other hand, unsupervised ML
techniques can provide a promising solution to this problem.
To do so, the HMM needs to be trained in order to estimate
the hidden model. In this paper, we adopt the training process
proposed in [13] by utilizing the well-known Baum-Welch
algorithm. It is worth mentioning that this algorithm consumes
a short time period (in our simulations less than 1 second
to generate converged parameters within 100-400 training
rounds). Therefore, high power consumption is not required
for MTC devices.

IV. PROPOSED CELL ASSOCIATION SCHEMES

The schematic diagram of the main components of the
proposed HMM based ML algorithm is illustrated in Fig. 3.
For cell association, two schemes are proposed in Algorithm 1
in which an MTC device can select one of the two schemes.
In this algorithm, Lines 1-5 indicate the collection of obser-
vation outputs at each time step by an MTC device. Line 6
extracts the required observation sequence, OT , upon the
MTC request. Based on this and the other input parameters,
Lines 7 and 8 estimate the model parameters by using the
HMM learning process. The accuracy of the output parameters
is checked in Line 9 by computing the likelihood of the
observation sequence. If the likelihood value is sufficiently
greater than a predefined value, Pth, the algorithm can pro-
ceed. Otherwise, the MTC device is advised to restart the
algorithm with another observation sequence or go for random
cell selection as indicated in Lines 10-15. Lines 16-27 and
Lines 28-40 correspond to Scheme 1 and Scheme 2 described
in the next two subsections respectively.
A. Scheme 1: Reliability Function based Cell Association

In this scheme, we define a reliability function based on
the classical dependability theory. First we use Ti to denote
the number of time steps spent at state i when it is visited.
This is a discrete random variable (RV) which has a geometric
distribution with parameter aii. Therefore, the distribution of
the state holding time Ti is geometric with parameter aii as
P (Ti = n) = (1− aii)(aii)n−1. Based on this, we obtain

P (Ti ≤ n) =

n∑
k=1

P (Ti = k),

= (1− aii)[1 + aii + · · ·+ aii
n−1] = 1− aii

n.

(4)



Algorithm 1: HMM based ML algorithm for cell association
in MTC following the reliability function R(t) and the next
probable state for Scheme 1 and Scheme 2 respectively.

Input: λ′ = ((A′,B′,π′
0) : Initial HMM

Input: N : Total number of states in the HMM
Input: T : Length of the required observation sequence
Output: W : The selected cell for channel access

[1] Device requests MTC at time step n
[2] Observation output at time step l is Obs(l)
[3] for l = 1 : 1 : n do
[4] ol = Obs(l)
[5] end
[6] OT = {on−(T−1), on−(T−2), · · · , on−1, on}
[7] Run HMM Learning algorithm with the inputs λ′ and OT

[8] Calculate λ = (A,B,π0)
[9] Evaluate P (OT |λ) via HMM evaluation

[10] if P (OT |λ) > Pth then
[11] Follow the rest of the procedure from Line [16]
[12] else
[13] Restart the algorithm with another observation sequence
[14] or go for random cell selection
[15] end
[16] end
[17] if Scheme 1 is selected then
[18] Select K = argmax

i
aii

[19] Consider Kth state for the following code:
[20] if ∃j : xj = y1, j ≤ N then
[21] Select cell W where W = min{W |xW = y1,W ≤ N}
[22] else
[23] Select K′ = argmax

i, i6=K
aii

[24] Consider (K′)th state for the following code:
[25] Select cell W where W = min{W |xW = y1}
[26] end
[27] end
[28] end
[29] if Scheme 2 is selected then
[30] Calculate π(T ) = π0A

T = {π1
T ,π

2
T , · · · ,π

2n

T } where
πi

T = P (ST = i)
[31] Select K = argmax

i
πi

T

[32] Consider Kth state for the following code:
[33] if ∃j : xj = y1, j ≤ N then
[34] Select cell W where W = min{W |xW = y1,W ≤ N}
[35] else
[36] Select K′ = argmax

i, i6=K
πi

T

[37] Consider (K′)th state for the following code:
[38] Select cell W where W = min{W |xW = y1}
[39] end
[40] end
[41] end

Consequently, the probability that the number of time steps
spent at state i is greater than n can be derived as

P (Ti > n) = 1− P (Ti ≤ n) = aii
n. (5)

This is equal to the nth power of the transition probability
to the state itself. In dependability analysis, the reliability
function is analytically related to the probability of success
time and it is defined as R(t) = P (T > t) where t > 0
and T is the RV representing time to failure. Therefore the
expression derived in (5) is corresponding to the reliability
function, i.e., R(t) = P (Ti > t) = aii

t. This result is adopted
when selecting the most reliable cell in Scheme 1.

Therein, the state which has the maximum self-transition
probability is selected in Line 17. Line 19 checks whether the
selected state has at least one cell with an idle channel. If

not, from Line 22, the state which has the second maximum
self-transition probability will be selected. The algorithm does
not need to go for a third maximum self-transition probability
calculation since in our system model, there exists only a
single state which has the condition of all occupied cells. The
statements in Line 20 and Line 24 suggest the appropriate cell
for starting the requested MTC.

B. Scheme 2: Next Probable State based Cell Association

Instead of selecting the state at which channel availability
continues for the next n time slots as in Scheme 1, Scheme 2
checks only the most probable state at the next time slot.
Therefore, availability is considered as having high priority
than reliability. The corresponding selection procedure is ex-
plained in Algorithm 1 from Line 28.

In this scheme, we perform a transient analysis of the
DTMC. The main tool for transient analysis is provided by
the recursive relation π(t + 1) = π(t)A where π(t) denotes
the state probability vector at time t. We can express this
relationship in terms of a given initial state probability vector
π(0) as π(t) = π(0)At, t = 1, 2, · · · . Using this result, we
obtain the state probability vector of the solved HMM after T
time steps as noted in Line 29. Then the state which has the
maximum probability of becoming the next state is selected
in Line 30. The rest of the code follows a similar procedure
as mentioned in Scheme 1.

To calculate the state probability vector in Line 29, we can
also adopt an alternative method based on the HMM decoding
output as illustrated in Fig. 3 instead of the aforementioned
one. Therein, the state probability vectors corresponding to the
most probable state sequence can be obtained. Then, π(T ) =
π(T − 1)A can be calculated in Line 29. In simulations,
we adopt π(T ) = π0A

T to evaluate the performance of
Scheme 2.

V. SIMULATION RESULTS AND DISCUSSIONS

In this section, we provide comprehensive simulations to
illustrate the performance of the proposed schemes.

A. Network Scenario Setup and Simulation Procedure

Consider a network with N = 2 cells similar to the scenario
presented in Fig. 2. For the sake of simplicity, we consider
channels as the required resources in an MTC network.
Furthermore, we assume that each cell consists of Z = 2
channels. A cell is said to be in mode y2 if both channels
are occupied and in mode y1 if there is at least one available
channel. At each time slot, an MTC device observes an output,
either v1 or v2. Note that v1 and v2 indicate the signs of the
channel available and unavailable conditions respectively.

Upon an MTC request, the device runs the proposed
HMM based ML algorithm by admitting its observa-
tion sequence of length T = 4 and the initial model
λ′. Correspondingly, the states of the HMM become
{(y1, y1), (y1, y2), (y2, y1), (y2, y2)} where the first and the
second elements of each state are representing the mode of
Cell 1 and Cell 2 respectively. The elements of the initial
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state transition probability matrix A′ and the observation
probability matrix B′ can be selected randomly since the
initial estimation of them is not much critical on the final
output. However, each row sum of A′ and the column sum
of B′ should be equal to 1. Furthermore, we assume that the
system’s initial state is (y1, y1). Therefore π′

0 = {1, 0, 0, 0}.
In our simulations, we consider up to 20k MTC devices and

MTC arrivals are modeled either as a Poisson process with
rate λm or as a Beta distribution with two shape parameters
α, β. Beta distribution is one of the proposed traffic models
for MTC arrivals by 3GPP [14] since it precisely captures
the burstiness of MTC traffic. On the other hand, when MTC
devices do not follow a synchronized access, MTC arrivals can
be modeled as a Poisson process. In both cases, the admitted
service stays in the system for a random amount of duration
that follows exponential distribution with mean 1/µ. During
the simulation period, the arrivals and completions of MTC
services are checked, processed, and tracked. At the end of
each simulation, the statistics of the system are calculated. For
example, blocking probability, PB , is obtained based on the
number of blocked MTC requests divided by the total number
of MTC requests during the simulation period.

In order to generate the observation sequence at an MTC re-
quest, we adopt the following approach. First the set of feasible
observation sequences of length T is obtained. For instance,
when T = 2 and L = 2, we have four possible observation
sequences as seq1 = {v1, v1}, seq2 = {v1, v2}, seq3 =
{v2, v1}, and seq4 = {v2, v2}. Therein, output v1 indicates a
sign of channel available condition while output v2 indicates
a sign of channel unavailable condition. For simulations, the
observation sequences are randomly selected by considering
the channel occupancy status. For instance, if all channels are
available in the system at time t, seq4 is not selected as the
observation sequence of the MTC device at time t since it
implies the occupied status of all channels.

B. Reliability Function of eNBs in Scheme 1

In Fig. 4, the impact of observation sequence on relia-
bility function of eNBs is studied. Consider two possible
observation sequences given by seq1 = {v1, v1, v2, v2} and
seq2 = {v2, v2, v1, v1}. As shown in the figure, if an MTC
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device receives seq1, the reliability function value of the eNB 1
is higher than that of eNB 2. In other words, the chance of
acquiring a vacant channel during the next t > 0 slots is
higher in eNB 1. Therefore, with this observation sequence,
the MTC device which employs Scheme 1 selects eNB 1.
However, for seq2, eNB 2 shows higher reliability than eNB 1.
This difference can be expected since the two sequences are
complement to each other. Note that the reliability function
always monotonically decreases, i.e., R(u) ≤ R(v) ∀ u > v.
C. Channel Availability

In this paper, channel availability, PA, is calculated as
1 − PB , i.e., the fraction of MTC requests which received
channel access with respect to the total number of requests.
We study the impact of the MTC arrival rate on channel
availability in Fig. 5 based on a Poisson process. As illustrated
in this figure, when we increase the arrival rate, the channel
availability decreases. Clearly, the more the MTC requests in
the unit time, the higher the possibility that an MTC request
is blocked due to a fixed amount of resources (channels).
The most evident observation we can make from this figure
is that the proposed two schemes outperform the random
cell selection scheme. In the random scheme, MTC devices
arbitrarily select one of the available eNBs for communication
regardless of the observation sequence. In Scheme 1, however,
MTC devices search for the most reliable cell based on the
reliability function estimated after the HMM learning process.
On the other hand, MTC devices which adopt Scheme 2 search
for the most available cell based on the next probable state
estimated after HMM learning. Therefore, both schemes lead
to higher availability compared to the random cell selection.

In addition, it can be observed in Fig. 5 that Scheme 1
outperforms Scheme 2 in terms of channel availability. The
reason can be explained as follows. Scheme 1 employs the
reliability function as the main criterion for cell selection.
Thus, in cell association, Scheme 1 checks the availability of
channels for the next set of time slots. Instead of this reliability
check, Scheme 2 evaluates only the next probable state to
decide the appropriate cell. Therefore, the available time of
idle channels is relatively higher in Scheme 1. Consequently,
the probability of blocking an MTC device by the selected cell
can be reduced in Scheme 1 compared to Scheme 2.
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D. MTC Arrivals under Beta Distribution

Fig. 6 demonstrates the results corresponding to the Beta
distribution given by Beta(α, β). Herein, we select a 3GPP
recommended model, Beta(3, 4), to represent bursty traffic
conditions [14]. In order to model synchronized arrival pat-
terns, we need to keep α < β [15]. The first observation we
can draw from this figure is that the increase in the number of
MTC devices has a negative impact on channel availability. A
larger MTC population will lead to a higher number of access
requests and correspondingly a higher blocking probability
since the amount of resources is fixed. On the other hand,
increasing the service rate of MTC connections reduces the
blocking probability of new requests since a large number
of MTC requests can be completed within a time unit as
illustrated in Fig. 6. Again, it is evident that the proposed cell
selection schemes perform better than the random selection
when MTC traffic is bursty.

E. Impact of the Observation Sequence Length

As already presented, the output of the ML algorithm highly
depends on the observation sequence. Furthermore, Fig. 7
shows the impact of the observation sequence length, i.e., T
time slots, on the performance of the two schemes. It can
be observed that the highest channel availability of the MTC
network is achieved when T = 4. When MTC devices select
a short sequence (e.g., T = 2), the HMM may not be able to
predict the actual channel condition accurately. Therefore, in
order to improve the performance of the proposed schemes, an
observation sequence with a sufficient length is required. To
follow this point, an accuracy check is performed in Line 10
of Algorithm 1.

VI. CONCLUSIONS

This paper addresses the problem of optimal cell associa-
tion in MTC networks through a network assisted decision
making procedure. Accordingly, an HMM based machine
learning technique is proposed together with two cell selection
schemes. The proposed algorithm can be applied to MTC
networks where devices can observe a sequence of symbols
corresponding to the hidden states of the system. Based on
this observation sequence, the proposed algorithm determines
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Fig. 7. Impact of the length of observation sequence on the performance of
proposed two schemes.

the most appropriate cell for association. Simulation results
demonstrate that our schemes improve the network perfor-
mance in terms of channel availability since it takes both
availability and reliability of channels into account. In the
simulations, both Poisson and Beta arrival distributions are
applied to evaluate the performance under different MTC
traffic conditions.
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