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Abstract. In this paper we examine work with communal data in the context of clinical genetic 

testing. Drawing from prior research on digital research infrastructures and from the analysis 

of our empirical data on genetic testing, we describe how data generated in laboratories 

distributed all over the world are shared and re-used. Our research findings point to human-

driven activities related to expanding, disambiguating, sanitizing and assessing the relevance, 

validity and combinability of data. We contribute to research within Health Informatics with a 

framework that foregrounds human-driven activities for data interoperability. 
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Introduction 

Starting more than three decades ago, different scientific communities within molecular biology 

used database management software and computer networks to create communal data 

repositories advancing collaborative genetic research [1-3]. Before the advent of communal 

repositories, scientists in the domain relied on their own data that they complemented with data 

gathered from literature or through direct contact with scientists from other laboratories. 

Nevertheless, the rapid rate of findings and the establishment of teams all over the world 

rendered “traditional sources of information — such as books and journals inadequate” [2] and 

motivated the creation of shared electronic databases. The aim was to "hook our individual 

computers into the worldwide network that gives us access to daily changes in the database and 
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also makes immediate our communications with each other” [4]. Communal data repositories 

made possible the rapid dissemination of information and the coordination of work across 

different sites [5, 6] and soon became key components of the infrastructure for scientific work 

in the domain.  

Scientists within human genomics pioneered data sharing through the implementation of 

several mechanisms to institutionalize rapid data release. For instance, the need to coordinate 

globally distributed teams and to advance progress in the Human Genome Project (1990-2003, 

so far the largest collaborative project in biology) led to establishing the Bermuda Principles in 

1996. These principles stipulate that DNA sequence data should be published (i.e. uploaded to 

public repositories) and this should preferably happen within 24 hours of production. 

Nowadays, the big journals in the field demand disclosure of software code, algorithms and 

sequence data upon publication. Human Mutation was the first journal to adopt a full data 

sharing requirement, in 2010, and the European Journal of Human Genetics has gone a step 

further, hiring curators to check that each paper’s variant descriptions have been accurately 

transmitted to a public database [7]. In a sense, work within human genomics can be viewed as 

a quintessential project on collaborative work [8]; the contributions of participants from 

disparate geographical locations and the use of information and communication technologies 

made it possible to produce results that otherwise could not be realized.  

The role of data as a communal resource is today being widely discussed both in the context of 

innovation policies and strategies for growth and development and in the context of strategies 

for research advancement and knowledge generation [9-12]. Overall, the discussions at the 

policy and strategy level are fuelled by the increasing availability of digital data and it is 

common to refer to data as general purpose resources. In that sense, data are conceptualized as 

long-term assets, that can be pervasive in their benefits [13, 14]. Data are not only instrumental 

for informating and automating work [15] but also, for desegregating work when shared across 
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localities. In the research reported in this paper we investigated what is entailed in making data 

communal within a scientific domain focusing on the human-driven activities required. We  

reviewed prior research on digital infrastructures for scientific collaboration and synthesized 

the insights of this literature stream by placing them within a concise framework covering 

activities related to both data sharing and data re-use. Furthermore, we conducted empirical 

work with a view to elucidating the literature-derived framework and refining it for the clinical 

genetics testing domain studied. Specifically, our research examines “how data generated in 

distributed laboratories are becoming communal resources?” Answering this question, we point 

to the different dimensions of the work entailed in making data shareable and re-usable and 

contribute to research on data interoperability within Health Informatics by providing insights 

that foreground the human-driven activities required.  

The remainder of the paper is structured as follows. First, we describe our methodological 

approach and provide an overview of the empirical case investigated. Then, we present key 

insights from prior research focusing on the human-driven activities required for making data 

shareable and re-usable. We continue with the empirical study on communal data for genetic 

testing related to the BRCA genes (BReast CAncer genes) which are associated with breast and 

ovarian cancer. Subsequently, we discuss the insights from our analysis, we point to the 

contribution of our research and we conclude by pointing to limitations of our study and further 

research directions.  

Empirical Background and Research Method 

The impetus for our study comes from our involvement in a research and development project 

within genetics. This is a collaborative project between the Department of Medical Genetics in 

Oslo University Hospital and the University of Oslo. The aim of the project was to develop a 

secure IT platform that facilitates distributed collaboration and access to a high-performance 

analysis and storage facility accommodating the increased demand for “personalized 
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medicine”. As one of the research activities in this project, we conducted interviews and 

observations of how molecular biologists and other specialists conduct their work. Of special 

interest has been the work of interpretation after the DNA sequencing is conducted, where 

scientists assess the clinical significance of variants found in the patient’s DNA. During our 

observations we were struck with the role of shared databases and we delved into the significant 

body of research on digital infrastructures for scientific collaboration within the CSCW 

(Computer-Supported Collaborative Work) and IS (Information Systems) fields. Within this 

body of literature, our interest was focused on human-driven activities entailed in making data 

communal within a scientific domain.  

We turned to infrastructures studies for scientific collaboration, as this stream of literature 

adopts a socio-technical perspective with an attention to “the work to make things work” [16].  

We selected studies on infrastructures specifically oriented towards distributed scientific 

collaboration where data sharing is a central aim and requirement. These studies explore 

different scientific domains ranging from life sciences [17-20], to engineering [21, 22], and 

even papyrology and archaeology [23, 24]. In most studies, researchers explored the processes 

through which technological arrangements have been shaped and built. Nevertheless, research 

has also explored activities that are not purely technical pointing to challenges of e.g. 

establishing shared taxonomies, data models and standards [17, 25, 26], the need for cleaning 

data, adding metadata and in general curating the information resource [18] and the need for 

facilitating the actual collaboration and linking of information [27-29]. Going through this 

literature, we traced and synthesized insights related to activities required for making data 

communal in a scientific domain. We first mapped the activities associated with producing 

shareable data (“upstream”), and then the activities associated with re-using shared data 

(“downstream”). The outcome of this work is a literature-derived framework that maps 

activities of both sharing and re-using shared data. Drawing from this framework, we analyzed 
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the empirical case with a view to elucidating and refining the insights from prior research for 

the clinical genetics testing domain studied.  

Empirically, we studied a paradigmatic case [30] of data sharing for scientific collaboration. 

Specifically, we explored the use of data generated in distributed laboratories as communal 

resources for BRCA gene testing. BRCA1 and BRCA2 are two genes which influence humans’ 

susceptibility to breast and ovarian cancer. This is a domain where global communal data 

repositories have been in use since the 90s. Furthermore, this is a significant domain within 

genetics as “a large proportion of the work in genetic services is the management of familial 

breast and ovarian cancer, and this clinical area exemplifies both the opportunities and 

challenges to increasing access to gene testing” [31]. We collected empirical material for the 

BRCA case using a combination of fieldwork, documents’ analysis and hands-on inspection of 

shared data (Table 1). We observed and interviewed scientists as they were (re)using data from 

communal data sources. We also inspected one key communal repository in order to learn about 

the processes of data sharing. This repository is the Breast Information Core database (BIC) 

which is a globally shared database for BRCA1 and BRCA2 variants established in 1995. BIC 

hosts data deposited by individual investigators, research, hospital-based and commercial labs 

and publishes deposited data after having them examined and edited by several members of its 

steering committee. After observing the work performed for BRCA variant assessment, reading 

related documents to familiarise ourselves with the domain, and inspecting the BIC database, 

we interviewed BRCA scientists with a focus on data sharing and re-use.  

Table 1  Data Sources for the Empirical Case 

Source Description 
Interviews 12 semi-structured interviews with scientists engaged in medical genetics.  

Work observation On site observation of work related to gene variant interpretation.  

Repository inspection Downloaded and inspected the BIC data repository 

Document analysis Scientific Guidelines, Nomenclature Documents, Publications on BRCA1 & BRCA2 
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We analyzed our empirical data using the framework that was derived from the literature. This 

allowed us to foreground the case specifics without losing sight of the multiple aspects of work 

entailed in making data communal. In Figure 1, we provide a schematic overview of the 

approach followed. 

 

Figure 1  Methodological approach 

 Finally, we returned to the field and checked our understanding of BRCA data sharing and re-

use by discussing the different data related tasks included in the framework.  

From Local Data to Communal Resources: a Framework 

Prior research on digital infrastructures for scientific collaboration has shown that although it 

is nowadays possible to pool together unprecedented volumes of scientific data generated by 

measurements, analyses, and simulations performed all over the world, exploiting the data pools 

is far from straightforward. Data can cross local scientific teams’ boundaries physically by 

being deposited in common depositories, but do not automatically become intelligible and 

useful for other users. Humans and machines often face distinct barriers when attempting to 

find and process data that have been produced in different settings [32]. Additional work is 

required both for successful sharing and for re-using data, including both machine-driven and 

human-driven activities. Our study is focused on human-driven activities. 
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There are a number of steps that need to be taken before sharing data beyond local settings. 

First of all, data captured during ongoing scientific work need to be extended to include 

information customarily implied without being articulated. This can be done by including a 

richer representation of the context from which the data was taken [33]. Furthermore, data need 

to be disambiguated to allow as little uncertainty as possible about their meaning. 

Disambiguation can be achieved by adopting well-defined nomenclatures or by converting  

data to different coding formats. For instance, ambiguous geographical references can be 

converted to geographical coordinates via geoparsing. The minimization of ambiguity is an 

important prerequisite for data sharing; as Baker and Millerand note, the reluctance of scientists 

to allow their data to travel can be attributable to: ‘scientifically salient concerns about the lack 

of maturity of data classification efforts, the risk of misinterpretation of complex data’ [20]. 

Moreover, data need to be sanitized before being deposited to common repositories. 

Sanitization can include anonymization and treatment of data gaps and data outliers. Ensuring 

anonymity is a concern salient to scientific areas where data are sensitive and personal in nature 

(e.g. health related data at the individual’s level). Anonymizing takes more than simply 

stripping-off data from all personal identifiers; in order to preserve data linkability it is common 

practice to create new identifiers that link different records while secreting the persons’ identity, 

this process (known as pseudonymization), permits scientists to combine anonymized data [34]. 

Furthermore, data are often pre-processed before being shared because data anomalies (such as 

missing values or discontinuities due to addition or deletion of parameters) are commonplace 

[18] and scientists responsible for data production are the ones best positioned to make sense 

and treat anomalies (e.g. by fixing or filtering existing data). To ensure meaningful use by 

remote others, data are logically sanitized before being shared.  

On the ‘downstream’ side (data re-use) further work is required. Before using shared data, 

scientists need to assess their relevance and understandability [21]. Data can only be used if it 
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is possible to make sense of them. In some cases, software and algorithms may be needed to 

interpret datasets [35]. Furthermore, the data need to be trusted before being reused. For this 

assessment different strategies are employed: inspecting data and exercising professional 

judgment about their pertinence and the scientific congruence of methods, drawing from the 

reputation of scientific teams, communicating with the scientists that deposited the data in 

common repositories to get clarifications and confirm assumptions. Assessing if the 

information content can be trusted requires significant experience and an eye for detail. For 

instance, a senior cancer researcher from Australia questioned the veracity of results reported 

in a series of journal publications on a specific gene in 2015 after realizing that the nucleotide 

sequences reported were not right [36]. She also identified unexpected similarities between 

these unconvincing publications, flaws in experimental design, and mismatches between some 

described experiments and the reported results [37]. Following communications with journal 

editors, some of these gene-specific publications have been retracted. Another particularly 

challenging aspect of this work relates to the assessment of the combinability of data. Sampling 

and measurement compatibility have to be ensured to avoid drawing false conclusions out of 

pooled data. For example, differences between sites due to calibration of medical imaging 

equipment could lead analysts to false conclusions about population differences [25] or 

differences in the timing of pH measurements (e.g. immediately during fieldwork or at the lab 

during a later time) would incorrectly indicate differences in acidity [17]. Assessing data 

combinability brings forward ”complexities of scale due to data heterogeneity, semantic 

relations and interdisciplinary collaborations” [38].  

Overall, prior research indicates that data accessibility is not sufficient for scientific 

collaboration. In addition, work is required to make the data “shareable” and “re-usable”. We 

summarize the different data-related tasks entailed in creating shareable and re-usable 

infrastructural resources out of mere data tokens in Table 2. 
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Table 2  Making data shareable and re-usable  

 Data related 
tasks 

Aimed data 
characteristics 

Description / examples  

Making 
data 
shareable 

Expanding  Containing sufficient 
information for 
meaningful use without 
reliance on further 
information exchanges.  

Extension e.g. by including 
metadata on context. 

Disambiguating  Expressed in a way that 
minimizes ambiguity 
and the risk of 
misinterpretation.  

Disambiguation e.g. by 
recoding or adopting common 
nomenclatures. 

Sanitizing Conforming to general 
regulatory, ethical and 
scientific standards. 

Sanitization by e.g. 
anonymizing, filtering, fixing.   

Making 
data re-
usable  

Relevance 
assessment 

Understandable content.  Assessment by e.g. exercising 
professional judgment or using 
software and algorithms for 
interpretation. 

Validity 
assessment 

Trusted information 
content. 

Assessment by e.g. inspecting, 
drawing from reputation of 
scientific teams, 
communicating with the 
scientists. 

Combinability 
assessment  

Linkable to other data 
sets used. 

Assessment by e.g. examining 
sampling and measurement  

 

Case Vignettes and Analysis 

In the paragraphs that follow we present two vignettes from our empirical material. First, we 

present a vignette of data work in a medical genetics lab where molecular biologists and other 

specialists assess the clinical significance of genetic variants for the BRCA1 and BRCA2 genes. 

The work described in the vignette is performed after gene sequencing is completed with the 

identification of variants (i.e. differentiations from the common sequence). After a variant is 

identified, it can be assessed as: a variant that indicates pathogenicity (clearly or most 

probably); a variant that does not indicate pathogenicity (clearly or most probably); or a variant 

of uncertain/unclassified significance (VUS). To perform the assessment, specialists search for 
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past variant classifications in datasets containing anonymized test results for the same gene. 

Search can be performed in local datasets (containing results from tests performed in the lab) 

or in shared ones (where many labs deposit data) including both structured data repositories 

and published scientific papers and reports. Hence, the first vignette presents data re-use in the 

BRCA variant assessment context. Then, we present a second vignette which offers a snapshot 

of the BIC repository (a globally shared database for BRCA1 and BRCA2 variants established 

in 1995). The second vignette illustrates the work entailed in data sharing by exposing the 

content of the different fields needed for creating a new entry in the shared database.  

Vignette 1: data re-use: genetic variant evaluation in a medical genetics lab 

The following vignette is based on our on-site observations and illustrates how the genetic 

specialist draws on multiple information resources, including data from a number of global, 

shared repositories  during the evaluation of genetic variants. 

Alice wants to show us how she works with a VUS (variant of uncertain significance). It is a 

variant that was found in the BRCA1 gene of a patient, in DNA position 5504 of the gene. 

Usually there would be a “G” nucleotide in the DNA sequence, but here it has changed to an 

“A”. This is captured by the G>A notation. “This is a missense variant, they are always 

uncertain” Alice says. The reason is that these variants result in an amino acid change in the 

corresponding protein (the product of the gene). She opens a supporting analysis software, and 

enters information about the variant. She clicks the button called “Frequency” and the system 

queries an external database. The query response is “No frequency data available”. This means 

that there have not been enough observations of this variant to estimate a frequency in the 

general population. The frequency of the variant can therefore not be used to exclude it as a 

common (and therefore benign) variant. Alice decides to change strategy and clicks a button 

that links to a BRCA1 specific database and a new window opens. Here she finds information 

about a previously observed variant in the same position, but this one involves a change to “C”, 
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not “A” as in the current patient. The G>C variant results in a different amino acid with different 

chemical properties in the corresponding protein product than G>A, and is therefore not likely 

to be relevant. She leaves this database and clicks on “HGMD”. This presents data from the 

large Human Gene Mutation Database to her. Here she chooses “missense” and looks for 5504, 

but does not find anything. She goes back to her software and clicks on a button with the Google 

logo. A Google search result page opens up, with results of a search string of multiple 

alternative names for the G>A variant. From the Google search, Alice identifies a number of 

relevant articles where the specific G>A variant is mentioned. For one of them she sees a note 

in a local database that she also consulted in order to see whether the variant had been 

encountered in house earlier. Here another specialist at the department had noted that the HGVS 

and BIC notations (two alternative ways to express the position within a gene) were mixed up 

in the article. She explains this could indicate that the article has to be interpreted with caution. 

Two of the studies relate to Malayan and Indonesian patients. When she opened the pdf of one 

of these articles, she searches through the text for the number 1835, which is the amino acid 

position corresponding to the DNA variant. She finds it in a table, where it is accompanied by 

a question mark and a comment that it is “possibly important, may influence”. Even though 

these studies are non-conclusive, Alice says she has still learnt something; that the variant is in 

the BRCT domain which is an important part of the protein. She goes back to her software, and 

chooses “BIC”. In the new window that opens she selects “Search Database”, writes “exon 22” 

and “codon 1835” and pushes “search”. She finds nothing. She then goes back to do the final 

step and check whether the variant is located near to or in a splice site. This is important for the 

protein product. The software she uses integrates several prediction tools, and all of them 

predict “no effect on splice site”. Alice concludes by classifying this variant as of uncertain 

significance. She explains that she was led to this conclusion because she cannot find frequency 

data, there are some articles describing a possible relation to disease but with no clear 
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conclusions and there is likely no impact on the splice site. Alice records her classification in 

the local database, as it may be useful if she or her collegues later encounter the same variant. 

However, the entry is not automatically shared beyond the laboratory. To share the data, a 

special preparation and submission process is required which is not part of Alice´s everyday 

work tasks. In the second vigniette, we turn into examining the accompanying information 

required for submitting a variant assessment to one globally shared BRCA database. The first 

vignette reflects the work required for searching and assessing the found information, and 

shows how Alice approaches the communal data repositories with an interest in using them for 

genetic variant evaluation in a clinical context.  

 

Vignette 2: data sharing: genetic variants as entries in the BIC repository 

In this vignette, we investigate what is required for data to be shared in common data 

repositories. This we do by examining the content and procedures of one such repository, the 

Breast Information Core (BIC). The content of BIC is both accessible via an interactive web 

interface and as downloadable flat files. We performed a full download of the database instance 

of September 2014 and investigated its content. Each entry in the database relates to a specific 

genetic variant identified during genetic testing for a specific patient. For each entry, a number 

of fields needs to be filled-in (Table 3). The fields relate to the variant itself (e.g. its location), 

the assessment of the variant’s importance and a number of contextual details. Going through 

the database it is easy to observe that not all fields’ content is standardized. For instance, the 

field “detection method” in the BRCA1 dataset downloaded included 98 “distinct” methods. A 

simple visual inspection reveals that the big number of methods is not only attributable to the 

heterogeneity of testing arrangements among laboratories but also to different levels of 

specificity adopted for method description, non-standardized data entry (e.g. “FCCM” vs 

“FCCM (Fluorescent Ch)”) and entry slips (e.g. a space makes the records “ SSCP” and “SSCP” 
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to be distinct, “PPT” instead of “PTT”). Most searches within the database are performed on 

the basis of variants. When a particular variant is identified, the additional information about 

the specific entry (e.g. the “detection method”) may become of interest. Genetic experts can 

make sense of the non-standard descriptions as they have a good sense of their semantics.  

Table 3  List of fields per BIC entry on the clinical importance of BRCA1 and BRCA2 variants 
accession number  unique identifier generated at the time an entry is added to database 

exon  BRCA1 or BRCA2 exon in which mutation has been identified 

cDNA nucleotide  nucleotide # in the transcript (cDNA) at which mutation occurs; Reference sequences: BRCA1 GenBank 
U14680; BRCA2 GenBank U43746 

gDNA nucleotide  nucleotide # in genomic DNA at which mutation occurs; reference sequences: Field to be filled in using 
data from Human Genome Project 

codon  triplet codon # (ATG is +1) in which mutation occurs 

base change  description of nucleotide difference compared to reference sequence 

amino acid change  description of resulting change in the encoded amino acid sequence 

BIC Designation  designation of described mutation according to BIC nomenclature guidelines 

HGVS Genomic  designation of described mutation according to HGVS nomenclature guidelines for genomic sequence 

HGVS cDNA  designation of described mutation according to HGVS nomenclature guidelines for cDNA sequence 

HGVS Protein  designation of described mutation according to HGVS nomenclature guidelines for protein sequence 

dbSNP  NCBI dbSNP accession of described mutation 

mutation type  standard abbreviations e.g. IVS for Intervening Sequence, IFD for In Frame Deletion 

mutation effect  frameshift, nonsense, missense, splice, unclassified variant, polymorphism 

depositor  contributor of mutation report 

patient sample source  hospital or research institute from which patient sample originated 

ID number  patient identifier designation in publications, or used by hospital or research institute 

number reported  number of family members carrying mutation 

detection method  free text description of method, e.g. SSCP, direct sequencing, DGGE etc. 

proband tumor type  breast, ovarian, other 

#Chr number of normal control chromosomes screened 

A/ C/ G/ T information on the frequency of variants in normal control chromosomes, if known 

literature reference  literature citation in which mutation was first reported 

contact person  email address of individual to whom inquiries should be addressed 

notes  additional information describing the mutation, family history, age of onset, etc. 

creation date  date on which mutation is entered into the public database 

ethnicity  Information on patient ethnicity, if known 

nationality  Information on patient nationality, if known 

 
As the search within BIC is variant oriented, the most important piece of data that facilitates 

use is the variant designation itself. Interestingly, there are many different fields for the variant 

designation. There is one field following the BIC nomenclature and also, fields following the 

HGVS nomenclature (Table 3). To make sense of this redundancy in the database, we had to 
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trace the roots of the different nomenclatures. Since the identification of variants is of critical 

importance in the use of the database, BIC introduced a specific nomenclature for the 

designation of BRCA variants to ensure consistency and unambiguity. Nevertheless, in the 

years that elapsed since BIC’s introduction (back in 1995), the Human Genome Variation 

Society (HGVS) developed a universal nomenclature for the description of sequence variants 

in any gene (not only the BRCA genes). The first version of the HGVS nomenclature was 

published five years after BIC´s nomenclature, in 2000 [39]. Since then, the HGVS 

nomenclature has been continuously updated and amended to include special cases and new 

insights and soon became the preferred standard for variant descriptions as it is more 

unambiguous than the BIC one. The two different nomenclatures use different reference points 

for nucleotide numbering (for example, 1184G>A in BIC, is c.1065G>A in HGVS) and have a 

number of syntactic differences (for example, 1014delGT in BIC, is c.895_896delGT in 

HGVS). To facilitate variant look-up within BIC, each variant has to be described both in the 

“legacy” BIC nomenclature and in HGVS. Built-in redundancies in data entry facilitate variant 

look-up and validation. 

The broad range of fields required for creating a single entry in the common database shows 

the extent of work required for sharing the lab findings. The data need to include sufficient 

contextual information (e.g. information on sample source, detection method, tumour type). 

Furthermore, they need to be expressed in a way that minimizes ambiguity and the risk of 

misinterpretation (hence, the multiple fields for designation, the identification of exon, codon 

etc.). Finally, while being anonymous, BIC entries also include identifiers to link with different 

records in other databases in case further investigations need to be performed. This vignette 

illustrates the effort required for ensuring that the data deposited in the repository can be re-

usable by other scientists. 
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Analysis: sharing and re-using BRCA data  

The medical genetics community for BRCA testing is an exemplary case of a technology-

enabled collective that is built and sustained around rich communal data sets. Every new 

analysis is based on the outputs of laboratories distributed around the world, and as these past 

outputs are continuously reworked, evaluated and amended, the knowledge basis keeps 

evolving, becoming more mature and comprehensive. We use this case to revisit and elaborate 

on the literature-derived framework. 

Expanding 

The assessment of clinical importance can only have one out of five possible values: positive 

(indicating pathogenicity clearly or most probably); negative (indicating no pathogenicity 

clearly or most probably); or unknown (i.e. VUS, “variant of uncertain significance”). 

Nevertheless, a significant volume of accompanying context-related data is required for each 

variant assessment entry. The accompanying information is meant to support genetic experts to 

make better sense of the variant assessment and are not provided in standardized format, but as 

free text. This indicates that the additional data are not intended for computer processing but 

for being interpreted by humans. Issues of scale (large volumes) and speed (dynamics of 

change) are not present in the handling of BIC data. Although there are thousands of entries in 

the database (more than 30,000 in the downloaded instance) the average number of records per 

variant is less than 8. The small dataset is rich in contextual information to support a critical 

assessment process. A balance is needed between providing rich enough information for 

downstream work, while not imposing a too heavy workload for the submission of information.  

Disambiguating 

Gene variants are complex scientific objects, and it is no surprise that the development of 

suitable nomenclatures is an ongoing project that has not been concluded yet. To minimize the 

risk of misinterpretation, BIC includes redundancies in variant descriptions. These 
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redundancies serve the practical purpose of quick data retrieval and at the same time, help the 

members of the community to quickly identify data contributors that are not rigorous enough 

and contribute inconsistent information (this relates also to the assessment of the validity of 

data entries). At the same time, the ambiguity in the description of detection methods can be 

tolerated and compensated by expert knowledge of the domain. So, the level of rigorousness 

and standardization varies among the different data fields. Ambiguity in variant description is 

unacceptable as it may lead to wrong conclusions. What we find in the BRCA case is that 

disambiguating is not a universal aim for all data shared but it is specific to each different piece 

of information. While some level of ambiguity is tolerated for supplementary information, 

disambiguation is critical for the critical data (variant designations). 

Sanitizing 

The BIC database is variant-centric, not patient centric. The data relate to the variant itself, the 

assessment, and contextual details including contact information. To assess BRCA variants for 

susceptibility to breast and ovarian cancer there is no need to cross examine the information 

about other genes for the same patient. This holds for studying diseases related to monogenic 

alterations (such as for BRCA1 and BRCA2). In general, information about single variants is 

considered anonymous. While being anonymous, BIC entries also include identifiers to link 

with records in local databases but these identifiers are of no practical use without the 

depositor´s collaboration. Overall, the BIC database does not include any data beyond those 

that are strictly necessary for assessing variants based on our current knowledge. This allows 

the dataset to conform to general regulatory and ethical standards but bounds its generative 

potential and limits its combinability with other datasets.  

Relevance assessment 

Following Alice in her work, we find that relevance assessment is facilitated by searching in 

gene-specific databases. If there were no special-purpose archives she would have to spend 
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significant time for data discovery and assessment. The use of specific repositories allows her 

also to familiarize with their structure and conventions. Furthermore, the precise description of 

the variants with the use of specific notations allows her to screen quickly search results for 

relevance even when using a search engine on the web and to put together a set of informative 

resources (e.g. about the frequency and location of the variant). In the case studied, 

standardization plays a significant role for relevance assessment. 

Validity assessment 

As observed during Alice´s work, when data retrieved indicate sloppiness or inadequate 

mastery of notations (as in the case of mixing HGVS and BIC notations) scientists can be 

reluctant to re-use the data. In this way, a distinction between credible and less credible 

members of the community can be made. Other ways to assess the credibility of the data include 

the appraisal of the reputation of scientific teams that have deposited the data and also, direct 

communication. For this reason, the details of the depositing laboratories are included in the 

databases. Furthermore, in the genetic domain, most repositories are “curated”. Curation 

includes a range of activities to validate, manage and maintain the information deposited in the 

repository. In the case of BIC, the data deposited are assessed for relevance by the BIC scientific 

committee before becoming accessible by all. Alice still has the responsibility for assessing the 

validity of the data she uses but her work is facilitated by central curation.  

Combinability assessment  

For the limited combinatorial usages of BRCA datasets the variant designation is key. BRCA 

datasets tend to be linked mostly with other BRCA datasets and not with other types of data 

(e.g. other health-related data for the same individuals). Furthermore, for BRCA testing there 

is no need to use longitudinal data analyses. Another interesting aspect of these data, is that 

they are continuously updated and renewed based on new scientific findings. The more recent 

assessments normally include also the latest findings in the domain.  
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Discussion  

The case we studied is special as it relates to a scientific domain where the data to be shared 

are well-defined and with relatively little heterogeneity. This facilitates the creation and use of 

communal data repositories, especially when comparing with situations where scientists engage 

with less well-defined scientific objects as for instance, in the case of communities of 

archaeologists facing much greater challenges in data-sharing [24]. The BRCA datasets are 

deep and not wide [40]. Deep datasets have big numbers of records but not a lot of diversity. In 

other words, they are characterized by “trimness” as they include only objects from a specific, 

common scientific subject pool [19]. Studying such a trimmed dataset allowed us to get a 

comprehensive view on the different aspects of work entailed in making data shareable and re-

usable.  

The characteristics of the BRCA domain facilitated the actual establishment of communal data 

resources. Relevant aspects of the domain are the descriptive particularities of the variants, the 

limited categories for classifying their impact, the fact that the phenomenon under study 

(diseases related to hereditary genetic alterations) is invariant over time, the monogenic nature 

of the BRCA alterations and the fact that there are no privacy and anonymity issues to be 

addressed. These characteristics can explain how it was possible for BIC (which is the first 

communal data repository in the BRCA domain) to emerge out of a scientific initiative that 

established an infrastructure with maximum simplicity adapted to the characteristics of BRCA 

data [2]. One key characteristic of the data, is that they do not raise privacy and anonymity 

issues. The non-sensitive nature of single-gene data and the focused type of tests, allowed the 

community to evolve without being challenged by issues related to patient consent, 

confidentiality and incidental findings. As genome-wide testing is becoming more common, 

data sharing is increasingly relying on complex arrangements for patient consent [41, 42] but 

these are not integral parts of BRCA sharing configurations today.  
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Although the datasets in the domain are well-defined, relatively narrow and non-sensitive, the 

work involved in making BRCA data shareable and re-usable is still significant. The amount of 

effort required is one of the reasons explaining why the data in communal repositories are only 

a small part of what is generated in laboratories. The number of entries in BIC is significant 

(more than 30,000) but far from all-inclusive. It has been reported that more than 100,000 

BRCA tests are performed annually in the United States alone [43]. For the growth of 

communal data resources, the work of data curators and repository managers is instrumental. 

These new roles can perform some of the work that is required for primary data depositors and 

data users. Specifically, in the BRCA case, data curators and repository managers can 

significantly contribute in disambiguating, sanitizing and validating entries becoming part of 

the overall communal data infrastructure.  

In the empirical case we followed, variant data were retrieved, processed and evaluated by 

human experts. This creates requirements that are different to those for automated processing. 

When aiming for automated processing it is important to ensure that data are consistently 

expressed in a way that is decipherable by computers. Computer decipherability has some 

common characteristics with human oriented disambiguation and data expansion (making data 

sets understandable and self-contained) but is also quite different. For instance, while elaborate 

domain models are required for automated data integration and analysis [25], humans can make 

good inferences from complete and coherent but unstructured text. The term “data 

interoperability” is used in scholarly work pointing to requirements for making data re-usable 

and itinerant within multiple sites. Nevertheless, frequently there is no distinction between 

requirements for making data more suitable for remote collaboration versus requirements 

related to automated processing. The two different aims are not always compatible. Requiring 

scientists to use rigid vocabularies and coding schemes can impede collaboration by making 

coding and decoding information more challenging: “rigid data standardisation may even 
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diminish semantic interoperability … information that is readable but not understood may lead 

to incorrect conclusions” [44]. Even more significantly, rigid coding could direct scientists to 

be more specific and definitive than they are able to be or limit their capacity to express 

emerging understandings that are not yet concrete.  

Conclusion 

The significance of machines in data-rich research environments will be continuously 

increasing, while the role of human experts in critical domains such as healthcare is also 

expected to remain strong. One of the grand challenges of data-intensive science, is to assist 

both humans, and computational agents, in the identification and analysis of data [32]. Our 

research contributes to the literature on health informatics interoperability by foregrounding the 

human-driven activities complementing prior health informatics research that has mostly 

focused on the machine-driven aspects [e.g. 45, 46]. We complement this technically oriented 

research stream by synthesising insights about human-driven activities required for data 

interoperability drawing both from prior related research and from an empirical case of 

established sharing and re-use arrangements in clinical genetics testing. Our research shows 

how data generated in distributed laboratories become communal resources that contribute to 

everyday work by pointing to six different activities for making data shareable and re-usable. 

These activities are shaped by the characteristics of data that need to be shared and re-used. 

In our study, we were limited by exploring one specific domain (BRCA testing). We expect 

that further interesting and complementary insights can be found in related fields. Of special 

interest, are areas where considerations of privacy and confidentiality prevail. In such areas, the 

activities related to sanitizing and assessing data combinability are expected to be increasingly 

complex. Unlike BRCA-specific data, sharing and re-using comprehensive individual genome–

phenome datasets entails significant privacy issues [47, 48] and there is a growing interest for 

empirical research in this area. Another significant area for further research is the exploration 
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of work allocation between genetic experts that generate and use data and data managers and 

curators. Studies in this direction can provide insights for expediting and sustaining communal 

data sharing through arrangements that include both the scientific laboratories and data 

custodians (curators, data managers, or other data related roles). As the findings of our study 

demonstrate, there is significant effort required related to expanding, disambiguating, sanitizing 

and assessing the relevance, validity and combinability of data. The distribution of this effort 

among multiple actors is instrumental for the growth and sustainability of communal data 

resources.  
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