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ABSTRACT Modern societies are facing an ageing problem that is accompanied by increasing healthcare
costs. A major share of this ever-increasing cost is due to fall-related injuries, which urges the development
of fall detection systems. In this context, this paper paves the way for the development of radio-frequency-
based fall detection systems, which do not require the user to wear any device and can detect falls without
compromising the user’s privacy. For the design of such systems, we present an activity simulator that
generates the complex path gain of indoor channels in the presence of one person performing three different
activities: slow fall, fast fall, and walking. We have developed a machine learning framework for activity
recognition based on the complex path gain. Additionally, we propose a novel method that accurately
estimates the instantaneous Doppler frequency (IDF) from the complex path gain. Then, we extract six
features from the IDF and provide the feature vector as input to the classifier, which has to predict the
user’s activity. We assess the recognition accuracy of four different classification algorithms: K-nearest
neighbors (KNN), decision tree, artificial neural network (ANN), and cubic support vector machine (SVM).
Our analysis reveals that the KNN, decision tree, ANN, and cubic SVM achieve an overall recognition
accuracy of 86.1%, 94%, 98.9%, and 99.9%, respectively. The best performing algorithm, cubic SVM, has
a fall detection accuracy of 100% with zero false alarms and zero undetected falls, which represents the
best achievable performance. By comparing our fall detection system with existing ones in the literature,
we demonstrate the superiority of our proposed solution.

INDEX TERMS Fall detection, machine learning, activity recognition, instantaneous Doppler frequency,
complex path gain, feature extraction, hypothesis testing.

I. INTRODUCTION
Advances in the diagnosis and treatment of diseases are
leading to increasing life expectancy in modern societies,
which has resulted in an aging population and new societal
challenges. In western countries, most of these elderly people
prefer to live in their own houses and are therefore prone to
fall accidents. Statistics show that falls are the main cause
of fatal and non-fatal injuries for older people [1]. Every
19 minutes, an older adult dies from a fall, while 3 million
elders are treated for fall injuries [2]. In 2015, the total cost of
fall-relatedmedical care exceeded 50 billion dollars [3]. After
a fall, rapid medical care can significantly diminish the poten-
tial damage from fall injuries, which could reduce the number
of casualties from falls and lower healthcare costs. There-
fore, fall detection systems that can detect and report falls
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as fast as possible are of great importance. In recent years,
a plethora of fall detection systems have been developed using
different approaches. Existing fall detection systems can be
divided into three main classes [4]: (i) context-aware systems,
(ii) wearable device-based systems, and (iii) radio-frequency
(RF)-based systems.

Context-aware systems leverage sensors deployed in spe-
cific monitoring areas. Monitoring sensors include mainly
cameras, microphones, and pressure sensors. In camera-
based fall detection systems, a classification algorithm is
applied to recorded video to detect falls [5]. Although such
an approach has a high fall detection accuracy, it suffers from
many limitations, such as high deployment costs, limited
monitoring area, and violation of the user’s privacy.

In wearable-based fall detection systems, the user must
wear a device capable of collecting acceleration data, while
the user is performing daily activities. This recorded acceler-
ation can be analyzed in real time by an activity recognition
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algorithm to determine if a fall has occurred. The use of
wearable devices for activity recognition and fall detection
has been extensively investigated in the literature [6]–[8].
Wearable-based fall detection systems have numerous advan-
tages: (i) they can detect falls without violating the user’s
privacy, (ii) they have a low cost, and (iii) they have an
unlimited monitoring area. However, if the user forgets to
wear the device or avoids wearing the device for comfort rea-
sons, fall detection becomes impossible, which is the biggest
disadvantage of wearable-based systems.

The third category of fall detection systems is based on
RF techniques and are therefore referred to as RF-based fall
detection systems. These systems are device-free and do not
require the user to wear a device. These systems do not
compromise the users’ privacy, but have a limited monitoring
area. In RF-based fall detection systems, a machine learning
algorithm analyzes the received RF signal to extract the fin-
gerprint of human activity and to detect falls. In [9], falls
are detected based on the channel state information (CSI)
obtained from a Wi-Fi network card. A three-dimensional
(3D) motion tracking system using wireless signals to detect
falls of a single person is developed in [10]. Several research
studies take advantage of the wide spread use of Wi-Fi
systems to develop solutions for indoor localization, ges-
ture recognition, and motion detection, while few focus on
fall detection. Numerous studies leverage Wi-Fi signals for
indoor localization [11], [12]. The variations in the received
signal strength of Wi-Fi are utilized for gesture recognition
in [13]. The authors of [14] propose a method for human
tracking based on wireless signals, but this method cannot be
used for human activity recognition.

In this paper, our primary objective is to recognize human
activity and detect falls by applying machine learning tech-
niques on the instantaneous Doppler frequency (IDF). This
objective is achieved through the following steps. First,
we develop an activity simulator that generates the complex
path gain of indoor channels in the presence of a single mov-
ing person. This RF-activity simulator is developed by build-
ing on the results of [15]. In our model, the person is replaced
by a single moving scatterer representing the movement of
the head. We simulate mainly 3 activities: walking, slow fall,
and fast fall. The activity simulator generates time-series of
complex path gains pertaining to each of these activities by
randomizing the trajectory of the participants, their heights,
and their speeds within typical interval ranges. We propose
a signal processing technique to estimate the IDF from the
generated complex path gain. Using supervised learning,
we train classifiers to recognize the type of performed activity
based on the IDF. We evaluate the recognition accuracy of
four classification algorithms: K-nearest neighbors (KNN),
decision tree, artificial neural network (ANN), and cubic
support vector machine (SVM).
Note that the IDF has never been used before for activity

recognition. As the user performs an activity, his/her body
parts move and cause a Doppler shift in the received radio
signal, which is captured by the IDF. The latter illustrates how

the Doppler shift varies as time progresses. This time-variant
aspect of the IDF is due to the time-variant nature of the
speed, angles of departure, and angles of arrival. As such,
the IDF contains the fingerprints of the user’s movement and
represents a promising data source to recognize the user’s
activity accurately. The IDF can be estimated from the com-
plex path gain as explained in Section IV. A model of the
complex path gain is provided in Section III together with
the physical meaning of the complex path gain and how it
can be measured using a Wi-Fi network card.

The main contributions of our paper are as follows:
• We develop an activity simulator that generates the com-
plex path gain of indoor channels in the presence of
one person performing three different activities: slow
fall, fast fall, and walking. This approach represents
a paradigm shift from the current experimental-based
design to a software-based design. In software-based
design, mathematical models are used to describe the
trajectory of the body for various activities. An RF-
activity simulator, takes this trajectory as input and
generates the corresponding radio signal that contains
the fingerprint of the user movement. By using a soft-
ware based approach, it is not needed to carry real-field
experiments to collect RF-data associated with different
activities and users, as this data can be generated by the
activity simulator. One of the main advantages of this
software-based approach that it allows speeding up the
development of RF-based human activity recognition
systems.

• We propose a novel method to extract the IDF with
high accuracy from the complex path gain. The IDF can
be utilized to predict accurately the user’ activity. The
use of the IDF to detect human activity is motivated by
its high sensitivity to the movement compared to the
amplitude of the complex path gain.

• We build a machine learning framework for activity
recognition based on the IDF.

• We assess the recognition accuracy of four different
classification algorithms: KNN, decision tree, ANN, and
cubic SVM.

• We consider different subsets of features and investi-
gate their impact on the activity recognition accuracy
and precision with respect to the four classification
algorithms.

• We demonstrate that the KNN, decision tree, ANN,
and cubic SVM algorithms achieve an overall accuracy
of 86.1%, 94%, 98.9%, and 99.9%, respectively. These
results are achieved by extracting only six features from
the IDF, which makes the proposed solution accurate,
while its computational costs are low.

The remainder of the paper is organized as follows.
Section II provides an overview of the proposed activity simu-
lator, while the expression of the complex path gain is derived
in Section III. In Section IV, we discuss the pre-processing
methods used to estimate the IDF. Section V describes the
machine learning framework and how we use it to recog-
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FIGURE 1. A typical 3D indoor propagation scenario with one moving
person walking straight forward.

nize different types of activities. In Section VI, we assess
the performance of the proposed framework and discuss
the obtained experimental results. Finally, Section VII offers
concluding remarks.

II. ACTIVITY SIMULATOR OVERVIEW
The aim of this paper is to develop a machine learning
framework that recognizes the user activity based on the com-
plex path gain. Testing of such machine learning solutions
requires to perform many experimental trials with different
persons. Moreover, a huge amount of data must be collected,
processed, and stored. This experimental-based approach is
time consuming and costly. For instance, the data collec-
tion process in [9] involved 10 participants, each performing
4 activities at eight different locations. At each location,
the activity is repeated 25 times. Considering that the data
collected in each trial lasts for 1 minute, the total recorded
data has a duration of 8000 minutes, which corresponds to
5.5 days of actual recorded data. If we consider that we
collect in each day 4 hours of recording, the data collection
would last 34 days. Clearly the data collection process is time
consuming. To solve this problem, we use a software-based
approach in which an RF-activity simulator can generate syn-
thetic data that emulates the complex path gain of an indoor
3D environment in the presence of a single moving person
as illustrated in Fig. 1. The RF-activity simulator takes as
input the user’ trajectory and provides as output the complex
path gain. In this section, we provide an overview of the
activity simulator and describe how the data was generated
for different activities.

In our simulator, a person is modelled by a single scatterer
representing the head.1 As the user performs his activity,
the position of this scatterer changes over time. In the lit-
erature, we find head trajectory models for some activities,
such as walking [16]. This trajectory is fed to the RF-activity
simulator, which uses the plane wave propagation theory to
compute the complex path gain at the receiver. To make
the synthetic data generic and realistic, we consider in our
simulation 30 different participants with different heights,

1In our investigation, both the transmitter and the receiver are attached
to the ceiling. Therefore, as the person moves, the head movement has the
dominant effect on the radio waves, since it is the nearest body part to the
transmitter and the receiver.

walking with various speeds along different paths. These
participants perform three activities: walking, slow fall, and
fast fall. During the data collection, only one person moves
inside a room with a size of 5 m by 10 m.

Inside the room, we have static objects (e.g., furniture and
walls) and one moving person. The room is equipped with a
transmitter and a receiver denoted by Tx and Rx , respectively,
operating in the 2.4GHzWi-Fi band. The transmitter Tx emits
electromagnetic waves that propagate in the indoor environ-
ment. These waves are reflected by the objects located in the
room before arriving at the receiver Rx as shown in Fig. 1.
All the objects in the room are static except for the moving
person. A Doppler shift of the transmitted signal is caused by
the person’s movement which affects the received RF signal.
Thus, the received signal contains the fingerprints of the user
activity. With signal processing techniques, we can extract
the IDF from the complex path gain. Finally, by applying
machine learning, we can recognize the user activity based
on the IDF.

The height L of each participant is randomly generated
and evenly distributed in the interval [1.5 m, 1.9 m]. The
stride length Ls can be computed as Ls = 0.413 ∗ L
which implies that Ls is uniformly distributed in the interval
[0.62 m, 0.78 m]. Each participant follows a path composed
of 60 straight lines. The start and end points of each line
are randomly generated. Hence, different participants follow
different paths which makes the collected data more generic
and more realistic. For each participant, the complex path
gain is recorded for 120 s and then divided into 30 buffers of
length 4 s. Each data buffer is labeled with the corresponding
actual activity.

For the walking activity, the subject moves with a constant
speed along a straight line for 2 s, then changes the direction
of motion and walks along a new straight line for 2 s. For the
activity ‘‘walking’’, the path of each participant is composed
of 20 straight lines with random starting and ending points.
Along this path, the speed of the participant is kept constant.
In each walking scenario, the speed is the outcome of a
random generator. The speed values are uniformly distributed
in the interval [0.8 m/s, 1.2 m/s] [17].

A fall comprises three main stages: (i) the pre-fall, (ii) the
fall, and (iii) the post-fall. In the pre-fall stage, the participant
is walking with a constant speed, while for the post-fall stage
the participant is lying on the ground with zero velocity. Dur-
ing the fall stage, the body posture changes gradually from
vertical to horizontal and the speed increases until reaching
its maximum value right before the body hits the ground. The
walking speed in the pre-fall phase for a fast fall is equal to
0.9m/s and for slow fall is 1.2m/s. The duration of the fast fall
and the slow fall are equal to 1 s and 2 s [18], respectively. The
maximum speeds for the fast fall and the slow fall are equal
to 2.6 m/s and 1.8 m/s, respectively [19]. These parameters
results in a maximum achievable Doppler shift of 19.2 Hz for
walking, 28.8 Hz for slow fall, and 41.6 Hz for fast fall.

Using the described mobility model, we can compute the
time-variant coordinates of the persons as they move inside
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the room. Knowing the positions of the transmitter Tx and the
receiver Rx , we can determine the Doppler frequency associ-
ated with the human movement and subsequently compute
the complex path gain characterizing the wireless link from
the transmitter Tx to the receiver Rx . This complex path gain
is the output of the RF-activity simulator, which is provided
as input for themachine learning framework. This latter has to
predict the person’s activity based on the complex path gain.

III. COMPLEX PATH GAIN
The room is equipped with a transmitter Tx and a receiver Rx
having as coordinates (xT , yT , zT ) and (xR, yR, zR), respec-
tively. The transmitter Tx emits electromagnetic waves that
propagate in the indoor environment. These waves are
reflected by the objects located in the room before arriving
at the receiver Rx . With this setup, we can measure the CSI
of the indoor propagation channel. The complex path gain
can be determined from this measured CSI. During the data
collection, all objects in the room are static, while a single
participant is moving inside the room. We model this moving
person by a single moving scatterer SM corresponding to the
movement of the head.

For the walking activity, the person moves with a constant
speed along a path consisting of 20 straight lines. The start
and the end points of each line are generated randomly. For
a given line in this path, the direction of motion αv and the
speed of motion vh in the horizontal plane are constants. If the
person walks along a new line, the direction of motion αv is
updated to a new value, while the speed vh in the horizontal
x − y plane remains the same.

During walking, the time-variant positions x(t) and y(t)
along the x- and y-axis of the moving scatterer SM can be
expressed as

x(t) = xM + vh cos(αv) t (1)

y(t) = yM + vh sin(αv) t (2)

where (xM , yM ) denotes the initial position of SM in the x − y
plane at time t = 0. The time-variant position z(t) of the
scatterer SM (the head) along the z-axis can be written as [16]

z(t) = hstep cos
(
2π fstept

)
+ hhead (3)

where hhead, hstep, and fstep stand for the body height, the step
height of the head during walking, and the walking frequency,
respectively. The walking frequency can be expressed as
fstep = vh/Ls, where Ls denotes the stride length [17]. The
value of the stride length is proportional to the body height.
The vertical speed vv(t) along the z-axis can be determined
by deriving z(t) with respect to t , i.e., vv(t) = dz(t)/dt =
−2π fstephstep sin(2π fstept). It is worth mentioning that the
validity of the head trajectory model in (3) was confirmed by
fitting the trajectory model to real-world data obtained from
tracking the head trajectory using video recording [16].

In [16], the head trajectory was obtained by processing
successive frames captured by a camera as the person walks.
Applying video processing techniques, the real head trajec-
tory data was computed [16]. A sinusoidal model for the

movement of the head was then assumed with three model
parameters. A fitting problem was formulated by defining an
objective function that measures the error between the model
and the actual data [16]. The optimal values of the model
parameters were determined by minimizing the objective
error function using non-linear optimization methods [16].
The head trajectory model obtained through this fitting pro-
cess is provided in (3). The simulated walking trajectories
are generated according to equations (1), (2), and (3), which
makes the simulated trajectories fit with real-world data.

We model the static objects in the room, such as walls and
furniture, by N fixed scatterers SFn (n = 1, 2, . . . ,N ). Thus,
the channel transfer function H (t, f ′) can be expressed as

H (t, f ′) = cm exp [jθm(t)]+
N∑
n=1

cn exp (jθn) (4)

where the symbols cm and cn denote the path gains associated
with the moving scatterer and nth fixed scatterer, respec-
tively. The phases θn are independent identically distributed
random variables with uniform distribution in the interval
[0, 2π ). The phase θm(t) associated with the moving scatterer
is time-variant and can be computed as [20]

θm(t) = θm − 2π f ′τ ′m(t) (5)

where θm represents the initial phase at t = 0, which is
uniformly distributed in the interval (0, 2π ]. The symbol
f ′ refers to the frequency, while τ ′m(t) is the time-variant
delay associated with the moving scatterer SM . Alternatively,
the phase can be expressed in terms of the IDF fm(t) as [21]

θm(t) = 2π
∫ t

−∞

fm(u)du = θm + 2π
∫ t

0
fm(u)du. (6)

The IDF fm(t) can be determined as [15]

fm(t) = −fmax (t)
{
cos (βv (t))

[
cos

(
βT (t)

)
cos

(
αT (t)− αv

)
+ cos

(
βR(t)

)
cos

(
αv − α

R(t)
) ]

+ sin (βv (t))
[
sin
(
βT (t)

)
+ sin

(
βR(t)

)]}
(7)

where

fmax(t) =
v(t)
c0
f ′ (8)

is the maximum Doppler frequency, with c0 being the speed
of light. The term v(t) refers to the speed of motion, which
can be expressed as v(t) =

√
vv(t)2 + vh(t)2. The symbols

βT (t), αT (t), βR(t), αR(t), and βv(t) denote the elevation
angle of departure, azimuth angle of departure, elevation
angle of arrival, azimuth angle of arrival, and vertical angle of
motion, respectively. All these angles are illustrated in Fig. 2.
According to [15], all these angles can be computed knowing
the positions of the transmitter Tx and receiver Rx , the time
variant position (x(t), y(t), z(t)), and speed v(t) of the scat-
terer SM . The 3D geometrical model provided in Fig. 2 is a
more abstract representation of the 3D propagation scenario
illustrated in Fig. 1.
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FIGURE 2. A 3D geometrical model of indoor propagation scenario with
N fixed scatters SF

n (n = 1, 2, . . . , N) and one moving scatterer SM .

Using a Wi-Fi network card, it is possible to collect CSI
data that contains the fingerprint of the user’s activity. In gen-
eral, the collected CSI data contains K rows each of which
is associated with a subcarrier k , which will be denoted by
µk (t). In fact, the kth row of the CSI data corresponds to the
channel transfer function evaluated at the kth subcarrier f ′k ,
i.e., µk (t) = H (t, f ′k ). The expression of f ′k is given by
f ′k = f ′0 + k1f ′, where f ′0 stands for the carrier frequency,
k denotes the subcarrier index, and1f ′ refers to the subcarrier
bandwidth. Henceforth, the quantity µk (t) will be referred
to as the complex path gain. For ease of notation, the sub-
script k will be dropped and the complex path gain will be
denoted as µ(t). The expression of µ(t) can be obtained
as

µ(t) = cm exp [jθm(t)]+
N∑
n=1

cn exp (jθn) . (9)

Our assumptions about the speed profile, body height, head
trajectory during the walk, maximum speed during the fall,
and the duration of the fall are all supported by measurements
published in the literature [16], [18], [19]. To make our
synthetic data generic, we simulated the activity of 30 par-
ticipants with different heights, different walking speeds, and
following different paths while performing their activities.
This makes the data statistically uncorrelated and reflects the
diversity generally observed in real-world data. All these facts
support the argument that our synthetic data is a reasonable
approximation of real-word data.

In this paper, we use a software-based design as opposed
to experimental-based design adopted in existing studies.
In software-based design, mathematical models are used to
describe the trajectory of the body for various activities.
An RF-activity simulator, takes this trajectory as input and
generates the corresponding radio signal that contains the
fingerprint of the user movement. This RF-activity simula-
tor is flexible and allows generating RF-data pertaining to
different activities, speed profiles, and users’ height. One of
the main advantages of this software-based approach that
it allows speeding up the development of RF-based human
activity recognition systems.

IV. DATA PRE-PROCESSING
A. DATA FILTERING
Using the developed RF-activity simulator, we generate the
complex path gain data associated with the activity of 30 dif-
ferent individuals. These data contain the fingerprint of the
activity performed by the user. To determine which activity
the user is performing during the data collection, we must
first pre-process the measured complex path gain µ(t). As it
is obvious from (9), the complex path gainµ(t) comprises the
contribution of both moving and fixed scatterers. Intuitively,
the classification accuracy would improve if it were based
solely on the complex path gain component associated with
the moving scatterer. Consequently, it is important to remove
the multipath components pertaining to the fixed scatterers.

Note that the contribution of the fixed scatterers to the
channel gain is an unknown constant term. This implies
that this term is a zero-frequency component. Thus, we can
remove the contribution of all fixed scatterers by applying a
high-pass filter to the complex path gain µ(t). To this end,
we use a Chebyshev filter of Type II [22] with a stopband
attenuation of 40 dB and a stopband frequency of 0.05 Hz.
The choice of a Type II Chebyshev filter is motivated by
two main reasons. First, Type II Chebyshev filters are sharper
than Butterworth filters, which makes it possible to filter out
the contribution of all fixed scatterers [22]. Second, Type II
Chebyshev filters can extract the contribution of the moving
scatterers to the complex path gain µ(t) with very minor
distortions, since Type II Chebyshev filters have no ripples
for frequencies larger than the passband frequency [22].
Subsequently, the filtered complex path gain µ̂(t) is a good
approximation of the contribution of the moving scatterer,
i.e.,

µ̂(t) = µ(t) ∗ h(t) ≈ cm exp [jθm(t)] , (10)

where h(t) refers to the impulse response of the Chebyshev
filter of Type II.

B. IDF ESTIMATION
In this section, we propose a method for estimating the
IDF of non-stationary signals. Our starting point is the fil-
tered complex path gain µ̂(t), which can be regarded as
a mono-component signal with time-variant frequency. Our
proposed estimation method comprises the following steps:
leftmargin=0.5cm

1) Extract the phase θ̂m(t) of the signal µ̂(t).
2) Determine an estimate f̂m(t) of the IDF as f̂m(t) =

d(θ̂m(t))
2π dt .

3) Apply a Gaussian smoothing filter to remove the rip-
ples in the estimated IDF f̂m(t). The obtained IDF after
smoothing is denoted as f̃m(t).

Next, we numerically evaluate the accuracy of the pro-
posed estimation method. We consider three data buffers
associated with a walking, slow fall, and fast fall scenario.
Fig. 3 illustrates both the estimated and the exact IDF fm(t) for
a walking, slow fall, and fast fall scenario. This figure shows
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FIGURE 3. IDF fm(t) for a walking, slow fall, and fast fall scenario.

the high accuracy of the proposed estimation method in deter-
mining the IDF fm(t). For the slow fall scenario in Fig. 3,
the participant walks for 1 s, and then starts falling. The fall
lasts for 2 s, i.e., from t = 1 s to t = 3 s. For the fast fall
scenario, the participant walks for 2 s, and then starts falling.
The fall lasts for 1 s, i.e., the fall time interval is [2 s, 3 s].
After the fall, the person remains on the ground without any
movement from t = 3 s to t = 4 s. In this post-fall phase,
the IDF fm(t) becomes zero, since the participant does not
move. For the walking scenario, the IDF is positive for t ∈
[1 s, 2.6 s], which implies that in this phase the user is moving
towards the transmitter/receiver.2 The IDF is negative for t ∈
[2.6 s, 4 s], which indicates that the user is moving away from
the transmitter/receiver.

V. MACHINE LEARNING FRAMEWORK
This work aims to recognize three different human activities
based on the recorded complex path gain. The considered
activities are walking, slow fall, and fast fall. Towards our
objective, we use a supervisedmachine learning approach and
train a set of classification algorithms to recognize human
activity. The input signal provided to the classifier is a
recorded complex path gain in an indoor environment where
a single person performs three activities. The various build-
ing blocks of the activity recognition scheme are illustrated
in Fig. 4.

The first block is the RF-activity simulator described in
Sections II and III. The output of the activity simulator is
the complex path gain µ(t) that captures the impact of the
fixed scatterers in the indoor environment as well as the
impact of the moving person. The complex path gain µ(t)
is then fed to the data pre-processing block. This block first

2In our simulation scenario, the transmitter and the receiver are collocated.

FIGURE 4. Machine learning framework for activity recognition.

TABLE 1. List of features.

removes the impact of fixed scatterers using a high-pass filter,
as described in Section IV-A. Afterwards, we estimate the
IDF using the method proposed in Section IV-B. The IDF
becomes the input signal for the feature extraction block,
which extracts six features from the IDF, namely the mean
value, variance, root mean square (RMS), maximum of the
absolute value, slope during fall, and slope after fall. These
features are then stacked in a vector, called feature vector.
The classification algorithm determines the type of the per-
formed activity based on the feature vector. In the following,
we discuss in more detail the set of extracted features and
explain how statistical tools can be used to determine to what
extent these features can improve the recognition accuracy.
Additionally, we describe the classification algorithm block.

A. FEATURE EXTRACTION
If the classification algorithm uses the raw data of the IDF
to determine the type of the performed activity, the obtained
results would have very poor accuracy. To deal with this issue,
we must extract a set of features that captures a quantitative
description of each activity and allows us to distinguish dif-
ferent activities. We extract six features from the IDF. These
features and their corresponding feature number are listed
in Table 1.

The third feature, which is the RMS of the IDF f̃m(t) can
be determined as

f̃ rmsm =

√
1
T

∫ T

0

[
f̃m(t)

]2
dt (11)

where T is the length of the buffer which is equal to 4 s.
The fifth feature that we extract from the IDF is the IDF

slope during fall which is denoted as Sfall. During the fall,
the speed increases until the maximum value is reached just
before the body touches the ground. This coincides with
an increasing absolute value of the IDF that reaches its
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maximum as the body touches the ground. By determining
the time instant tf , at which the absolute value of the IDF is
maximum, we can localize the time interval during which the
fall occurs. This fall time interval is located right before the
time instant tf . Since the fall interval is larger or equal to 1 s,
we can easily select two time instants tf0 and tf1 that belong
to the fall interval. Subsequently, we can compute the slope
of the IDF during the fall Sfall. In fact, the IDF during the fall
is well approximated by a linear function whose slope can
be determined with two values of the IDF measured at two
distinct time instants tf0 and tf1 belonging to the fall phase,
i.e.,

Sfall =
f̃m(tf1 )− f̃m(tf0 )

tf1 − tf0
. (12)

For a walking scenario, there is actually no fall event and
the feature slope during the fall does not reflect a meaningful
physical parameter. However, we compute this feature for a
walking scenario in the way described above. Our expectation
is that the absolute value of the slope would be large for falls
and small for walking scenarios. Moreover, larger absolute
values of the slope are expected for fast falls compared to
slow falls. This feature will improve the activity recognition
accuracy as it will be shown in Section VI.
The IDF slope after the fall is the sixth feature that we

extract from the IDF. This feature is referred to as Spost-fall.
After the fall, the person remains on the ground and the value
of the IDF becomes equal to zero. The post-fall interval is
located in the time domain right after the instant tf . Hence,
by selecting two time instants tf2 and tf3 that belong to the
post-fall interval, we can compute the slope after fall as

Spost-fall =
f̃m(tf3 )− f̃m(tf2 )

tf3 − tf2
. (13)

Fig. 5 illustrates the histogram of the variance of the IDF
f̃m(t) for walking, slow fall, and fast falls. This figure shows
that the variance of f̃m(t) is mostly below 40 Hz2 for walking.
For slow fall and fast fall, the values of the variance of the
IDF f̃m(t) are mainly within the intervals [10 Hz2, 100 Hz2]
and [30 Hz2, 210 Hz2], respectively. Note that for fast fall,
we obtain larger variance values compared to walking and
slow fall. This is due to the fact that the IDF f̃m(t) has a larger
dynamic range for fast falls compared to walking and slow
falls.

Fig. 6 depicts the histogram of the maximum value of
|f̃m(t)| for the activities walking, slow fall, and fast fall. From
this figure, one can see that the maximum value of |f̃m(t)|
is between 0 and 20 Hz for the activity walking, while for
slow falls and fast falls the range of the maximum value of
|f̃m(t)| is in the intervals [8 Hz, 24 Hz] and [12 Hz, 38 Hz],
respectively. In fact, for fast falls, the velocity reaches larger
values compared to slow fall and walking scenarios, which
result in much larger values of |f̃m(t)|.
Fig. 7 provides the histogram of the slope Sfall of the

IDF for the activities walking, slow fall, and fast fall. This
figure shows that this parameter is negative. Actually, during

FIGURE 5. Histogram of the variance of the IDF f̃m(t) for the activities
walking, slow fall, and fast fall.

FIGURE 6. Histogram of the maximum value of |f̃m(t)| for the activities
walking, slow fall, and fast fall.

the fall, the head of the person moves towards the ground
and away from the transmitter and the receiver which are
located at the ceiling. This leads to decreasing values of
the Doppler frequency and a negative slope of the IDF. The
slope values are within the intervals [0 Hz/s,−12 Hz/s]
for walking, [−8 Hz/s,−40 Hz/s] for slow falls, and
[−20 Hz/s,−80 Hz/s] for fast falls. Note that the absolute
value of the slope reaches larger values for fast falls compared
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FIGURE 7. Histogram of the slope Sfall of the IDF for the activities
walking, slow fall, and fast fall.

to slow falls. This is due to the fact that the speed during the
fall is larger for fast falls compared to slow falls. The mean
value of the slope equals -20 Hz/s and -42 Hz/s for slow and
fast falls, respectively.

B. STATISTICAL ANALYSIS OF THE DATA
In this section, we perform a statistical analysis of the data
to find the most relevant features that allow differentiating
between activities. The data is divided into buffers which are
labeled with an activity identity (ID). We have three activity
IDs: 1, 2, and 3 corresponding to walking, slow fall, and fast
fall, respectively. First, let us introduce some useful notation.
Let C denote the set containing the three possible activity IDs,
i.e., C = {1, 2, 3}. The training data contains M input-output
pairs (x(i), y(i)). The vector x(i) ∈ Rn is the feature vector
associated with the ith training example. The scalar y(i) ∈
C indicates the class of the ith training example with i =
1, . . . ,M . The vector x(i) = {x1(i), . . . , xj(i), . . . , xn(i)},
where xj(i) is the value of feature j for the ith training exam-
ple. Let xcj = {x

c
j (1), . . . , x

c
j (i), . . . , x

c
j (M )} where xcj (i) =

{xj(i)|y(i) = c ∈ C}. The set xcj contains all the values of
the feature j for a given class c. Thus, the sets x1j , x

2
j , and x3j

contain all the values of the feature j pertaining to the classes
walking, slow fall, and fast fall, respectively.

To determine if a feature j allows a classifier to distin-
guish two classes c1 and c2, it suffices to show that there
is a significant statistical difference between the two vectors
xc1j and xc2j . Towards this aim, the statistical framework of
hypothesis testing can be invoked [23]. This problem is sim-
ilar to the problem of comparing two population means [23].
The vectors xc1j and xc2j can be regarded as two separate
random samples from two populations. Let us denotes byµc1j

and µc2j the true means of feature j for classes c1 and c2,
respectively. The sample means µ̄c1j and µ̄c2j of feature j for
classes c1 and c2 can be computed as

µ̄c1j =
1
M

M∑
i=1

xc1j (i) (14)

µ̄c2j =
1
M

M∑
i=1

xc2j (i). (15)

It is well known that the samplemean is an unbiased estimator
of the true mean [23]. An unbiased estimator [σ̂ c1j ]2 of the
first population variance [σ c1j ]2 is obtained as [23]

[σ̂ c1j ]2 =
1

M − 1

M∑
i=1

(xc1j (i)− µ̄c1j )2. (16)

Similarly, an unbiased estimator [σ̂ c2j ]2 of the second popu-
lation variance [σ c2j ]2 can be determined as

[σ̂ c2j ]2 =
1

M − 1

M∑
i=1

(xc2j (i)− µ̄c2j )2. (17)

The null hypothesis H0 states that the two population means
are the same, i.e.,H0 : µ̄

c1
j −µ̄

c2
j = 0. The alternative hypoth-

esis Ha states that the two population means are different,
i.e., Ha : µ̄c1j 6= µ̄c2j . The test statistic for comparing the
two means (also known as the zscore) can be expressed as [23]

zscore =
µ̄c1j − µ̄

c2
j√

[σ̂ c1j ]2+[σ̂ c2j ]2

M

. (18)

The pvalue of the test statistic can be obtained as

pvalue = 2Q(|zscore|). (19)

where Q(·) is the complementary cumulative distribution
function of the standard normal distribution known as the
Q-function. If the pvalue is less than the significance level α
of the hypothesis test, i.e., pvalue < α, we say that we have
enough evidence to reject H0, and thus, there is a significant
statistical difference between the vectors xc1j and xc2j . This
implies that the feature j allows us to distinguish the classes
c1 and c2. Otherwise, if pvalue > α, we do not have enough
evidence to rejectH0, which means that there is no significant
statistical difference between the vectors xc1j and xc2j . Thus,
we cannot distinguish the classes c1 and c2 using feature j.
The value of the significance level α is typically set to 0.01.
This corresponds to a 99% confidence interval.

For our data we obtain the following Pvalue matrix

Pvalue =


0.0028 0.0059 0.8413

0 0 0
0.0020 0 0

0 0 0
0 0 0

0.5606 0.1956 0

 (20)
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where the first column Pvalue(j, 1) provides the pvalue associ-
ated with the feature j [see Table 1] for the activities walking
and slow fall (activity ID 1 and 2). The second column
Pvalue(j, 2) shows the pvalue related to the activities walking
and fast fall, while the third column Pvalue(j, 3) represents
the pvalue for the activities slow and fast fall. Row j in the
matrix Pvalue coincides with feature j (j = 1, . . . , 6). The list
of feature names and their corresponding feature numbers are
provided in Table 1.
Most of the elements of the matrix Pvalue are smaller than

α = 0.01 expect for Pvalue(1, 3), Pvalue(6, 1), and Pvalue(6, 2)
which are larger than α. The term Pvalue(1, 3) represents the
pvalue associated with the mean value of the IDF for the
activities slow fall and fast fall. Since Pvalue(1, 3) > α, there
is no significant statistical difference between the mean value
of the IDF for the activities slow and fast fall. However, this
first feature (i.e. the mean value of the IDF) allows us to
distinguish walking from slow fall and walking from fast fall,
since Pvalue(1, 1) and Pvalue(1, 2) are less than α.

The last row in the Pvalue matrix is associated with the
last feature, i.e., the slope of the IDF after the fall. We note
that this feature does not allow us to distinguish walking and
fast fall as well as walking and slow fall, since there is no
significant statistical difference between these activities in
terms of the Feature 6. To explain this, let us introduce the
following notation. Let us denote by IW the interval indicating
the range of values of Feature 6 associated with the activity
walking. Similarly, let us denote by ISF and IFF the interval
indicating the range of values of Feature 6 associated with the
activities slow fall and fast fall, respectively.

In fact, for slow fall and fast fall, the value of this Feature
6 should be equal to zero. However, due to estimation errors
of the IDF, we find that the mean value of Feature 6 is equal
to 0.1867 for slow fall and -1.25 10−6 for fast fall, while the
variance of Feature 6 is 0.6289 for slow fall and 7.39 10−6 for
fast fall. For the activity walking, we find that the mean value
and the variance of Feature 6 are equal to 0.3433 and 21.1,
respectively. Based on these facts, we can conclude that both
ISF and IFF are included in the interval IW , i.e., ISF ⊂ IW and
IFF ⊂ IW .

This is confirmed by Fig. 8 that provides the histogram
of Feature 6, i.e., the parameter Spost-fall of the IDF, for the
activities walking, slow fall, and fast fall. Fig. 8 shows that
the range of values of Spost-fall for slow fall and fast fall is
included in the interval of values of Spost-fall for the activity
walking, i.e., ISF ⊂ IW and IFF ⊂ IW . In other words,
the values of the parameter Spost-fall pertaining to the activities
slow fall and fast fall cannot be distinguished from their coun-
terpart associated with the activity walking. This explains
why the values of Pvalue(6, 1) and Pvalue(6, 2) are larger
than α.

Note that 15 elements of the matrix Pvalue are smaller than
the significance level α. Thus, using the proposed features,
the classifier should be able to distinguish the three consid-
ered activities (walking, slow fall, and fast fall) with a good
accuracy.

FIGURE 8. Histogram of the slope Spost-fall of the IDF for the activities
walking, slow fall, and fast fall.

C. CLASSIFICATION ALGORITHM
Classification algorithms follow a supervised learning
approach to recognize different types of activities. The super-
vised learning approach consists of two phases: the training
phase and test phase. First, the data is divided into buffers
which are labeled with three activity IDs: 1, 2, and 3 cor-
responding to walking, slow fall, and fast fall, respectively.
Each data buffer has a length of 4 s and contains the recording
of the complex path gain, while a person is performing one
of the three activities.

This data is pre-processed to remove the impact of fixed
scatterers and to estimate the IDF, which contains the fin-
gerprint of the user activity. We extract six features from the
IDF and arrange them into two subsets: Subset A and Sub-
set B. Subset A contains the mean value, variance, RMS, and
maximum absolute value. Subset B comprises the features of
Subset A augmented with the slopes of the IDF during fall
and after fall. The feature vectors associated with Subset A
and Subset B have a length of 4 and 6, respectively.

During the training phase, the classification algorithm is
exposed to the labeled training data. This means that, for each
data buffer in the training data, we provide the corresponding
feature vector together with the activity ID. In this way,
the classification algorithm can tune its internal parameters
such that its recognition accuracy is maximized.

After the training phase, the trained classifier is exposed
to the test data. In the test phase, for each buffer of the test
data, the classifier is provided with the corresponding feature
vector without the activity ID. The trained classifier uses the
feature vector to determine the probability that the data buffer
pertains to one of the three possible activities. If the activity
class c (c = 1, 2, 3) has the highest probability, the classifier
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decides that the performed activity has the ID c. The correct-
ness of the classifier decision can be determined using the
data buffer label. For each buffer in the test data, the classifier
predicts the performed activity. At the end of the test phase,
we can assess the performance of the trained classifier as well
as the accuracy and precision of its predictions.

There are two main approaches for evaluating the per-
formance of a classification algorithm, namely the hold-
out method and the cross-validation method. In the holdout
method, the data is divided into two parts: the training data set
and the testing data set. For instance, 70% of the data is used
for training, while the remaining 30% are used for testing.
In general, the samples belonging to the training set and the
test set are chosen randomly. Thus, if we do two consecutive
evaluations of the classifier’s performance, we might obtain
two different results, since the samples belonging to the
training and test set have changed randomly in the second
evaluation compared to the first one.

To obtain a more accurate performance evaluation, we use
the cross-validation method. In this method, the data is
divided into K folds. In the first iteration, the first fold is used
for testing and the remainingK−1 folds are used for training.
In the kth iteration, the k-th fold is used for testing, while the
remaining K −1 folds are used for training. In each iteration,
the performance of the classification algorithm is evaluated
and then the average performance over the K iterations is
computed. By using averaging, we ensure that the obtained
performance using K -folds cross-validation is more accurate
compared to the holdout method which is more prone to
randomness.

In this paper, we evaluated the performance of four classi-
fication algorithms, namely KNN, decision tree, ANN, and
cubic SVM. Principles and background information about
these classification algorithms can be found in [24].

VI. EXPERIMENTAL RESULTS
The performance of the proposed activity recognition frame-
work is evaluated in this section. In our performance eval-
uation, we use a 10-fold cross-validation. We assess the
performance of four classification algorithms: KNN, decision
tree, ANN, and cubic SVM. Moreover, we compare the per-
formance of our proposed fall detection solution to existing
fall detection systems in the literature.

A. KNN ALGORITHM
TheKNN algorithm takes as input an unlabeled feature vector
associated with a test example and aims to recognize the class
of this test example. The KNN algorithm determines the K
closest training examples to the test example in the multi-
dimensional feature space. We use the Euclidian distance as
a distance metric to identify the K closest neighbors. KNN
measures the Euclidian distance between the feature vector of
the test example and the feature vectors associated with all the
training examples, and then selects the K nearest neighbors.
Using a majority voting, KNN determines the most common
class among the K closest neighbors and labels the test

FIGURE 9. Confusion matrix of the KNN algorithm obtained using the
features from Subset A.

example with that class. In our investigation, the parameter
K of the KNN classifier is set to 100.

The confusion matrix of the KNN algorithm is provided
in Fig. 9. This confusion matrix is obtained using the features
from Subset A. The labels 1, 2, and 3 at the bottom of the
confusion matrix correspond to the activities walking, slow
fall, and fast fall, respectively. While the labels 1, 2, and 3 at
the bottom of the confusion matrix indicate the actual class,
the labels 1, 2, and 3 on the side of the confusion matrix refer
to the class predicted by the classifier. The diagonal elements
of the matrix indicate the number of correct classifications,
while the off-diagonal elements show the number of misclas-
sified cases.

The first column contains the number of actual walking
cases that are correctly classified as well as those that are
misclassified. For instance, the top left element of the matrix
indicates that in 243 cases the classifier predicted the activity
correctly as walking. The second element of the first column
indicates that in 54 cases, the KNN algorithm misclassified
walking as slow fall. The KNN algorithmmisclassified walk-
ing as fast fall in 3 cases as shown in the third row of the
first column of the confusion matrix in Fig. 9. Based on
these numbers, we can evaluate the classification accuracy
for the activity walking to 81% as shown in the bottom cell
of the first column. The first line of the confusion matrix
illustrates the precision of the algorithm in predicting the
activity walking. From the first line of the confusion matrix,
we observe that in 14 cases, the KNN algorithm predicted the
activity as walking, while the actual activity is slow fall. The
activity walking is never misclassified as fast fall. This yields
a classification precision of 94.6% for the activity walking.

The last column of the confusion matrix shows the classifi-
cation precision of the algorithm, while the last row contains
the classification accuracy of the algorithm. Note that the
precision and the accuracy of the classification have two
different meanings. The classification precision focuses on
the predicted activity. For a particular activity, the precision
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FIGURE 10. Confusion matrix of the KNN algorithm obtained using the
features from Subset B.

quantifies the percentage of correct classifications out of the
buffers predicted to belong to that certain activity. In contrast,
the classification accuracy focuses on the actual activity and
indicates the percentage of successful classifications out of
the actual buffers belonging to a particular class.

For the KNN algorithm, we obtain a classification accu-
racy of 81%, 84.3%, and 81.7% for the activities walk-
ing, slow fall, and fast fall, respectively. The classification
precision of the algorithm is equal to 94.6%, 69.9%, and
87.2% for the activities walking, slow fall, and fast fall,
respectively. The overall accuracy of the classifier is equal
to 82.3%

Fig. 10 illustrates the confusion matrix of the KNN algo-
rithm using the features from Subset B. Compared to Fig. 9,
where the features from Subset A are utilized, we notice that
the overall accuracy increases from 82.3% to 86.1%. More-
over, the classification accuracy for the activities walking,
slow fall, and fast fall is enhanced by 0.3%, 7%, and 4%,
respectively, if the features from Subset B are used instead
of the features from Subset A. Additionally, the precision in
predicting the activities walking, slow fall, and fast fall is
improved by 5.4%, 3.6%, and 3.6%, respectively, compared
to Fig. 9.

In Table 2, we provide the confusion matrix of the binary
classification problem, where we classify the data into fall
and non-fall classes. The fall class encompasses the activities
slow fall and fast fall, whereas the non-fall class includes the
activity walking.

Table 2 is computed using the confusion matrix in Fig. 10.
From the binary confusion matrix in Table 2, we can deter-
mine the number of false negative (FN) and false positive (FP)
classifications as well as the FN rate and FP rate for fall
detection. As shown in Table 2, the number of FP clas-
sifications equals 56 and the number of FN is 0. Table 2
indicates the number of true negative (TN) and the num-
ber of true positive (TP), which refer to the number of
correctly classified non-falls and the number of correctly

TABLE 2. Confusion matrix of the binary classification problem of the
KNN algorithm obtained using the features from Subset B.

classified falls, respectively. The FP rate can be computed as

FP Rate =
FP

Number of actual non-falls
=

FP
FP+ TN

=
56
300
= 18.66%. (21)

The FP rate shows the percentage of false alarms. If the
KNN algorithm is given a non-fall event, it misclassifies it
as a fall in 18.66% of the cases. The FP rate of the KNN
algorithm is relatively high which is undesirable for a fall
detection system. Later in this section, wewill show that other
classification algorithms can overcome this deficiency and
reduce the rate of false alarms.

The FN rate indicates the percentage of undetected falls
by the system. The FN rate can be computed by dividing the
number of FN classifications by the number of actual falls,
i.e.,

FN Rate =
FN

Number of actual falls
=

FN
TP+ FN

=
0
600
= 0%. (22)

Since the FN rate is 0%, this implies that there are no unde-
tected falls. It is desirable that the fall detection system has a
very low FN rate.
Using Table 2, we can compute the accuracy and precision of
fall detection as follows

Accuracy =
TP

TP+ FN
=

600
600
= 100% (23)

Precision =
TP

TP+ FP
=

600
600+ 56

= 91.46%. (24)

B. DECISION TREE ALGORITHM
The decision tree algorithm is an interpretable machine learn-
ing algorithm, as opposed to the ANN and SVM algorithms,
which are considered as black boxes. A decision tree is a tree
where each node represents a feature, each branch contains
a decision rule, and each leaf represents a classification out-
come (a class). Several branches can emerge from a feature
(a node), while no branch can come out from a leaf. There are
two possible ways to build a decision tree: the first approach
relies on the Gini index, while the second approach uses
entropy function and information gain as metrics. In this
paper, we use the first approach to create our decision tree.
The first step for building the tree consists of finding the
root node, which corresponds to the feature with the smallest
Gini index. At each node, the process of determining the
feature with the smallest Gini index is repeated until a leaf is
reached for each branch. At this stage, no further expansion
is needed, which implies that the building process of the
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FIGURE 11. Confusion matrix of the decision tree algorithm obtained
using the features from Subset A.

FIGURE 12. Confusion matrix of the decision tree algorithm obtained
using the features from Subset B.

tree is complete. Note that the tree is built using the training
data. After the training period, the built decision tree is used
to classify the test data set.

Figs. 11 and 12 illustrate the confusion matrix of the
decision tree algorithm when using the features from
Subset A and B, respectively. We observe that the overall
accuracy as well as the classification precision and accu-
racy per activity improve when utilizing the features from
Subset B instead of those from Subset A. The overall
accuracy increases from 83.3% to 94% by using the fea-
tures from Subset B. The classification precision for the
activities walking, slow fall, and fast fall is enhanced by
4.2%, 21.6%, and 2%, respectively. Similarly, the classifi-
cation accuracy is improved by 20%, 2.4%, and 9.7% for
the activities walking, slow fall, and fast fall, respectively,
when using the features from Subset B instead of Sub-
set A. By comparing Figs. 11 and 12, we notice that the
number of misclassifications drop significantly. For instance,

the number of walking cases that are misclassified as slow
fall decreases from 55 to 1, while the number of fast falls that
are misclassified as slow fall drops from 47 to 18, when using
the features from Subset B.

Fig. 13 shows the decision tree of the trained classification
algorithm obtainedwith the features from Subset B. From this
tree we notice that the trained algorithm uses three features to
predict the type of performed activity. These three features are
the mean value of the IDF, the maximum of the absolute value
of the IDF, and the IDF slope during fall, which correspond to
the first, fourth, and fifth feature, respectively [see Table 1].
The first feature is denoted as Feat. 1 in Fig. 13. Similarly,
the fourth and fifth features are referred to as Feat. 4 and
Feat. 5, respectively.

From Fig. 13, we observe that the classification algorithm
uses the following decision rules when predicting the per-
formed activity.

1) If the value of Feature 5 (the IDF slope during
fall) exceeds -10.47 Hz/s, the activity is classified as
walking.

2) If Feature 5 is less than -27.27 Hz/s and Feature 4 larger
than 13.96 Hz, then the activity is classified as fast fall.

3) If Feature 5 is less than -34.66 Hz/s and Feature 4 less
than 13.96 Hz, then the activity is classified as fast fall.

4) If Feature 5 belongs to the interval [-34.66 Hz/s, -
27.27 Hz/s) and Feature 4 less than 13.96 Hz, then the
activity is classified as slow fall.

5) If Feature 5 belongs to the interval [-27.27 Hz/s, -
10.47 Hz/s), Feature 4 larger than 22.25 Hz, and Fea-
ture 1 larger than -11.81 Hz, then the activity is classi-
fied as fast fall.

6) If Feature 5 belongs to the interval [-27.27 Hz/s, -
10.47 Hz/s), Feature 4 larger than 22.25 Hz, and Fea-
ture 1 less than -11.81 Hz, then the activity is classified
as slow fall.

7) If Feature 5 belongs to the interval [-27.27 Hz/s, -
10.47 Hz/s), Feature 4 less than 22.25 Hz, and Fea-
ture 1 larger than 8.98 Hz, then the activity is classified
as fast fall.

8) If Feature 5 belongs to the interval [-27.27 Hz/s, -
10.47 Hz/s), Feature 4 less than 22.25 Hz, and Fea-
ture 1 smaller than 8.98 Hz, then the activity is
classified as slow fall.

Table 3 shows the confusion matrix of the binary classifi-
cation problem. From this table, we see that the number of FP
and FN classifications is equal to 2 and 3, respectively. The
FP rate can be computed using (21) and is equal to 0.66%.
The FP rate coincides with the rate of false alarms. Compared
with the KNN algorithm, the decision tree algorithm has a
much lower FP rate. The FN rate captures the percentage of
undetected falls by the system. The FN rate can be determined
using (22) and is equal to 0.5%. The FN rate of the decision
tree algorithm is larger than that of the KNN algorithm.
In addition, the decision tree algorithm has a fall detection
accuracy of 99.5% and a fall detection precision of 99.66%,
which are computed using (23) and (24), respectively.
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FIGURE 13. Decision tree of the trained model using the features from Subset B.

TABLE 3. Confusion matrix of the binary classification problem of the
decision tree algorithm obtained using the features from Subset B.

C. ANN ALGORITHM
The ANN classifier is a machine learning algorithm mimick-
ing the functioning of the human brain. The ANN can be seen
as a network of neurons. In this paper, the considered ANN
algorithm comprises three layers: the input layer, the hid-
den layer, and the output layer. The hidden layer comprises
20 nodes. The hyperbolic tangent function is utilized as an
activation function instead of the sigmoid function. It is well
known that the use of the hyperbolic tangent function leads
to a better performance compared with the sigmoid activation
function. During the training phase, the optimal weights for
different branches of the neural network are determined using
the scaled conjugate gradient backpropagation algorithm.

Fig. 14 shows the confusion matrix of the ANN algo-
rithm obtained with the features from Subset A. The overall
accuracy reaches 94.1%, while the classification precision
for the activities walking, slow fall, and fast fall is 96.9%,
90.4%, and 95.4%, respectively. The classification accuracy
equals 92.3%, 94%, and 96% for the activities walking, slow
fall, and fast fall, respectively. When using the features from
Subset B instead of A, the overall accuracy is enhanced by
4.8% as illustrated in Fig. 15. Whereas, the classification
precision is improved by 7.4% for walking, 4.3% for slow
fall, and 2.7% for fast fall. The classification accuracy of the
activities walking, slow fall, and fast fall is enhanced by 2.8%,
8.3%, and 2.9%, respectively, when using the features from
Subset B.

FIGURE 14. Confusion matrix of the ANN algorithm obtained using the
features from Subset A.

In Table 4, we provide the confusion matrix of the binary
classification problem. From this table, we see that the num-
ber of FP classifications is 1, while the FP rate is 0.33%. The
number of FN classifications equals 1, whereas the FN rate
is 0.16%. The ANN algorithm outperforms the decision tree
algorithm by achieving lower FP and FN rates. On the other
hand, the ANN algorithm has a fall detection accuracy and
precision of 99.83%.

D. CUBIC SVM ALGORITHM
The first SVM algorithm was developed for binary classi-
fication problems. Subsequently, two approaches were pro-
posed to extend SVM to multi-class classification problems:
(i) the one-versus-all approach and (ii) the one-versus-one
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FIGURE 15. Confusion matrix of the ANN algorithm obtained using the
features from Subset B.

TABLE 4. Confusion matrix of the binary classification problem of the
ANN algorithm obtained using the features from Subset B.

approach. In this work, the one-versus-all strategy is adopted.
This strategy consists of building 3 SVM models. The first
SVMmodel is trained with the walking data samples as posi-
tive points and all the other samples (slow falls and fast falls)
as negative points. The second and third SVM models can
recognize slow and fast falls, respectively. In SVM, the aim
is to find the optimal boundary between different classes.
This objective is achieved by first finding the support vectors
for each class, and then by determining the boundary that
maximizes the margin around the separating hyperplanes.
This approach is efficient if the classes are linearly separable.
Otherwise, a transformation is applied to the data, which
allows to map it to a higher dimensional space where the
classes are linearly separable. A kernel function defines in
this case the inner product in the transformed higher dimen-
sional space. In this section, the cubic SVM algorithm is used.
For this algorithm, the kernel function is a polynomial of
order 3.

The confusion matrix of the cubic SVM algorithm is pro-
vided in Fig. 16. This matrix is obtained using the features
from Subset A. From Fig. 16, we observe that the overall
accuracy of the cubic SVM algorithm reaches 96.9%. The
classification accuracy for the activities walking, slow fall,
and fast fall is 93.7%, 98.7%, and 98.3%, respectively. The
classification precision equals 99.3%, 95.5%, and 96.1% for
walking, slow fall, and fast fall, respectively.

By utilizing the features from Subset B together with the
cubic SVM algorithm, we obtain the confusion matrix pro-
vided in Fig. 17. From this figure, we conclude that the use
of the features from Subset B instead of those from Subset A

FIGURE 16. Confusion matrix of the cubic SVM algorithm obtained using
the features from Subset A.

FIGURE 17. Confusion matrix of the cubic SVM algorithm obtained using
the features from Subset B.

improves the overall accuracy by 3%, while the classification
precision is enhanced by 0.7%, 4.5%, and 3.6% for walking,
slow fall, and fast fall, respectively. Similarly, in terms of
the classification accuracy, we observe an improvement by
6.3%, 1%, and 1.7% for walking, slow fall, and fast fall,
respectively. It has to be noted that when using the cubic
SVM algorithm together with the features from Subset B,
the overall accuracy, the classification precision, and the
classification accuracy per activity are very close to 100%
which is the best achievable performance.

In Table 5, we provide the confusion matrix of the binary
classification problem. From this table, we see that the num-
ber of FP and FN classifications are both equal to zero. Con-
sequently, the FP rate and the FN rate are both equal to 0%.
This implies that the system has 0 false alarm, i.e., a walking
activity is never misclassified as fall. Moreover, the number
of undetected falls is equal to zero, i.e., a fall event is never
misclassified as non-fall. The fall detection accuracy and pre-
cision reach both 100%. In this way, the cubic SVMalgorithm
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TABLE 5. Confusion matrix of the binary classification problem of the
cubic SVM algorithm obtained using the features from Subset B.

TABLE 6. Comparison of the overall accuracy of the four classification
algorithms.

achieves the best possible performance in terms of FN rate,
FP rate, fall detection accuracy, and fall detection precision.

E. COMPARISON
In this section, we compare the performance of the four clas-
sification algorithms: KNN, decision tree, ANN, and cubic
SVM. The comparison of these four algorithms in terms of
overall accuracy is provided in Table 6. From this table,
we see that the overall accuracy improves when using the
features from Subset B instead of Subset A. This performance
improvement is equal to 3.8% for KNN, 10.7% for deci-
sion tree, 4.8% for ANN, and 3% for cubic SVM. The best
performance is archived by the cubic SVM algorithm with
an overall accuracy of 99.9%, while the worst performance
is obtained when using the KNN algorithm with an overall
accuracy of 86.1%. When using the features from Subset B,
the decision tree algorithm outperforms KNN by 7.9% in
terms of overall accuracy, while ANN outperforms decision
tree by 4.9%, and cubic SVM outperforms ANN by 1%.

When considering the binary problem of classifying fall
and non-fall activities based on the features from Subset B,
we obtain the following results for the FP and FN rates. The
FP rate for KNN, decision tree, ANN, and cubic SVM is
18.66%, 0.66%, 0.33%, 0%, respectively. The FN rate for
KNN, decision tree, ANN, and cubic SVM is 0%, 0.5%,
0.16%, 0%, respectively. The FP rate indicates the rate of
false alarms, while the FN rate coincides with the rate of
undetected falls. For a reliable fall detection system both the
FN and FP rate must be close to 0%. We note that the cubic
SVM algorithm achieves the best performance among the
four algorithms with 0% FN and FP rates, which is actually
the best achievable performance by any fall detection system.

In the following, we compare the performance of our
proposed fall detection system to other exiting solutions in
the literature. The systems that we consider as benchmarks
can be categorized into wearable-based and RF-based fall
detection systems. The comparison with wearable-based fall
detection system is motivated by the fact that these systems
are mature and can archive good performance. Many studies
have investigated the performance of different fall detection

TABLE 7. Confusion matrix of the binary classification problem of the
cubic SVM algorithm obtained using the features from Subset A.

algorithms using acceleration data [25], [26]. We compare
the performance of our proposed machine learning frame-
work to [25] and [26]. The choice of these two works as a
benchmark is due to their high fall detection accuracy and
precision.

In [25], the acceleration data is collected by two sensors
attached to the participants’ chests and thighs. From this col-
lected data a feature vector of length 4 is created and provided
to a decision tree algorithm. The considered classification
problem in [25] is binary where fall and non-fall activities
must be distinguished. The performance in terms of fall
detection reaches an accuracy of 92% and a precision of 81%.
In our case, the feature vector associated with Subset A has a
length of 4, which is the same size as the feature vector in [25].
Thus, it would be fair to compare the results obtained with
the features from Subset A to the results in [25]. In Table 7,
we provide the confusion matrix of the binary classification
problem obtained with the cubic SVM algorithm and the
features from Subset A. Using (23), (24), and Table 7, we can
compute the fall detection accuracy and precision, which
are equal to 99.66% and 96.92%, respectively. Clearly, our
solution outperforms the one proposed in [25] in terms of
both the fall detection accuracy and precision by 7.66% and
15.92%, respectively.

In [26], the authors built a binary classifier which can
distinguish between fall and non-fall events. A feature vector
of length 23 was provided to the classifier to decide if a
fall has occurred or not. The performance of three classifica-
tion algorithms was evaluated, namely decision tree, logistic
regression, and multilayer perceptron. The best performance
in [26] was achieved with the multilayer perceptron classifier
which has a fall detection accuracy of 93.5% and a precision
of 94.2%. In our case, the cubic SVM algorithm used together
with the features from Subset B reaches a fall detection accu-
racy of 100% and precision of 100%, which is the best achiev-
able performance. Compared to [26], our solution enhances
both the fall detection accuracy and precision by 6.5% and
5.8%, respectively. Note as well that the size of our feature
vector is much smaller than that used in [26], which implies
that our solution has a lower implementation complexity and
a better performance.

Additionally, we compare our results to those reported
by RF-based systems. Actually, our proposed solution falls
under the umbrella of RF-based fall detection systems. There-
fore, it is of interest to compare our solution to RF-based
fall detection systems. In [9], falls are detected based on the
CSI obtained from a Wi-Fi network card. The CSI data is
pre-processed then a feature vector containing seven features
is built. Two classification algorithms were used to detect
falls, namely One-class SVM and random forest. The authors
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of [9] reported only the fall detection precision and FP rate of
their fall detection system. The One-class SVM algorithm has
a fall detection precision of 90% and false alarm rate of 15%,
while the random forest algorithm yields a 94% precision and
13% false alarm rate. In our case, we use six features and
achieve a fall detection precision of 100% and false alarm rate
of 0% when using the cubic SVM algorithm. Compared to
the random forest classifier proposed in [9], our cubic SVM
algorithm improves the fall detection precision by 6% and
reduces the false alarm rate by 13%.

VII. CONCLUSION
We have developed an activity simulator that generates the
complex path gain of indoor channels in the presence of one
person performing three different activities: walking, slow
fall, and fast fall. Using this activity simulator, we generated
complex path gain data associatedwith 30 participants having
different heights, speed profiles, and trajectories. By random-
izing the height, speed, and trajectories of the participants
within typical ranges, we ensure that the generated complex
path gain data is generic and reflects the diversity observed
in real-world measurements.

We have proposed a novel method to extract the IDF
with high accuracy from the complex path gain. Moreover,
we have developed a machine learning framework for activity
recognition based on the IDF. We extracted six features from
the IDF. Using hypothesis testing, we evaluated the useful-
ness of these features in distinguishing the three considered
activities. With synthetic data of the RF-activity simulator,
we evaluated the performance of four classification algo-
rithms, namely KNN, decision tree, ANN, and cubic SVM,
in recognizing the three considered activities. First, the algo-
rithms were trained using the training data set, which allows
tuning the internal parameters of the classifier such that their
classification accuracy is maximized. Second, the trained
algorithms are tested using a cross-validation method, which
is known to produce accurate results compared to the holdout
method.

Our investigation reveals that the cubic SVM algorithm
has the best performance among the four tested algorithms.
The overall accuracy for the cubic SVM reaches 99.9%,
which allows it to outperform ANN by 1%, decision tree
by 5.9%, and KNN by 13.8%. The classification precision
of the cubic SVM algorithm for the activities walking, slow,
fall, and fast fall is 100%, 100%, and 99.7%, respectively.
The classification precision is 100% for walking, 99.7% for
slow fall, and 100% for fast fall. In terms of fall detec-
tion, the cubic SVM achieves the best possible performance
with 100% accuracy, 100% precision, 0% false alarm rate,
and 0% of undetected fall rate. In addition, we have com-
pared the performance of our system with that of existing
fall detection systems in the literature and demonstrated
that our system outperforms them in terms of accuracy
and precision in fall detection. Besides, our system gener-
ates fewer false alarms and has a lower rate of undetected
falls.
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