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Abstract—This paper presents a geometry-based statistical
model (GBSM) of polarimetric wideband multipath radio chan-
nels for vehicle-to-vehicle (V2V) communications. The proposed
model captures the effects of depolarization caused by multipath
propagation, and it also accounts for the non-stationary char-
acteristics of wideband V2V channels. This is a novel feature,
because the existing polarimetric channel models are built on
the assumption that the channel is a wide-sense stationary
random process. In the modeling framework described in this
paper, the channel depolarization function is given by a linear
transformation in the form of a simple rotation matrix. This
linear transformation is transparent to the polarization of the
transmitting and receiving antennas, and to the geometry of the
propagation scenario. Compared to other GBSMs for polarimet-
ric V2V channels, the one proposed here is more flexible, and it
simplifies the computation of the channel depolarization function.

Index Terms—Fading channels, mobile communications, non-
stationary channels, vehicle-to-vehicle channels, vehicular com-
munications, wave polarization.

I. INTRODUCTION

The growing demand for the services of mobile radio

communication systems has fostered a continuous search for

novel transmission techniques with high spectral efficiency

[1]. In this search, antenna polarization is investigated as an

option to double or even triple the channel capacity using

compact antenna arrays [2]. However, such an increase in

channel capacity can be obtained only when the transmitted

signal arrives at the receiver with the same polarization as

the receiving antenna. In practice, the polarization match-

ing between the signal and the receiving antenna cannot

be guaranteed, due to the depolarization effects caused by

multipath propagation [3]. To exploit the full potential of

antenna polarization, proper channel models are needed that

take into account these depolarization effects. Channel models

with such characteristics are known as polarimetric channel

models [4].

Initial efforts to characterize the polarimetric multipath

radio channel followed an approach in which the channel

depolarization function was modeled by a matrix with random

coefficients obtained from measured data, or by using ray-

tracing simulators, e.g., see [5], [6]. These statistical models

provide a closed system (black box) description of the pro-

cess of channel depolarization. To deepen the understanding

of the origin of channel depolarization, Kwon and Stüber

proposed a novel geometry-based statistical model (GBSM)

of polarimetric channels for single-input single-output (SISO)

narrowband vehicle-to-vehicle (V2V) communication systems

[7]. This polarimetric channel model was formulated assuming

the reflection of waves from interfering objects (IOs) randomly

located on the surface of two cylinders. The concept of the

conservation-of-polarization (COP) plane was employed as a

baseline to determine the rotation of the reflected signal’s

polarization vector. This modeling approach has been applied

to the characterization of other relevant polarimetric channels,

e.g., see [8], [9]. However, in the modeling framework of

[7]–[9], the rotation of the polarization vector is computed

from a pure trigonometrical perspective. Although effective,

the methods of [7]–[9] involve lengthy mathematical compu-

tations. Moreover, these methods have been applied only to

the case of antennas with linear polarization and to the two-

cylinders scattering (reflection) propagation model.

In this paper, we revisit the idea of [7] from a vector analysis

perspective, which simplifies the calculations considerably. We

describe our modeling approach by presenting a new GBSM

for polarimetric wideband V2V channels that not only captures

the depolarization effects caused by multipath propagation,

but also accounts for the non-stationary characteristics of

wideband V2V channels. This is an important feature, because

measurement data shows that the statistical properties of V2V

channels are non-stationary [10]. The existing GBSMs for

polarimetric channels do not take into account the channel’s

non-stationary characteristics (e.g., see [5]–[9]). In the model-

ing framework of this contribution, the channel depolarization

function is given by a linear transformation in the form

of a simple rotation matrix. This linear transformation is

transparent to the polarization of the transmitting and receiving

antennas, and to the geometry of the propagation scenario.

Compared to the GBSMs of polarimetric V2V channels pre-

sented in [7]–[9], the one proposed here is more flexible and

mathematically more tractable.

The remainder of the paper is organized in three sec-

tions: The proposed GBSM of non-stationary polarimetric

V2V channels is presented in Section II. Our approach for



computing the channel depolarization function is described

in Section III. The correlation properties of the proposed

polarimetric wideband V2V channel model are analyzed in

Section IV to demonstrate that this model is jointly non-wide-

sense stationary (non-WSS) in the time and frequency do-

mains. Finally, our conclusions and future research directions

are summarized in Section V.

Notation: Throughout the paper, scalar quantities are de-

noted by variables in plain face, whereas variables in bold

face are used for vector quantities. Bold-face variables with a

hat (circumflex) are reserved for unit vectors. The operators

(·)∗, | · |, ‖ · ‖, (·)†, and E{·} denote the complex conjugate,

the absolute value, the Euclidean norm, the transpose, and

the statistical expectation, respectively. The scalar product

and the vector cross-product between an arbitrary pair of

vectors z1 and z2 is indicated by 〈z1, z2〉 and z1 ⊗ z2,

respectively. Vectors are written in spherical coordinates as

an ordered triplet (r, θ, φ), where r, θ, and φ are the vector’s

magnitude, inclination angle, and azimuth angle, respectively.

The inclination and azimuth angles are defined as in [11], [12].

II. THE PROPOSED GEOMETRICAL MODEL OF

NON-STATIONARY POLARIMETRIC V2V CHANNELS

A. Geometrical Model of the Propagation Scenario

The polarimetric V2V channel is characterized in this paper

considering a SISO communication system, and multipath

propagation is supposed to be caused by single interactions of

the transmitted signal with L static (non-moving) interfering

objects (IOs). An abstraction of the geometrical configuration

of the considered propagation scenario is shown in Fig. 1. In

this figure, the initial positions of the moving transmitter (TX )

and receiver (RX ) are indicated by the markers ‘▽’, whereas

the position of the ℓth IO is indicated by the marker ‘♦’.

The vectors introduced in Fig. 1 are defined in Table I. The

interpretation of the parameters of such vectors is straight-

forward, but some remarks on the wave vectors wℓ
T and wℓ

R

are worth mentioning. First, k0 = 2π/λ is the wavenumber,

where λ is the transmitted signal’s wavelength. The angles ϑℓT
and ϑℓR characterize the inclination angle-of-departure (IAOD)

and the inclination angle-of-arrival (IAOA), respectively, of

the signal that travels from the TX to the RX via the ℓth
IO. Likewise, the angles ϕℓ

T and ϕℓ
R characterize the azimuth

angle-of-departure (AAOD) and the azimuth angle-of-arrival

(AAOA), respectively, of the aforementioned signal. Finally,

the wave vector ŵℓ
k and the relative position vector dℓ

k are

characterized by the same inclination and azimuth angles,

because we assume that wℓ
k is collinear with dℓ

k, in such a

way that

dℓ
k = dℓkŵ

ℓ
k, k ∈ {T,R} (1)

where ŵℓ
k = ŵk/‖ŵk‖.

The geometrical model of the propagation scenario shown in

Fig. 1 has a generic structure that lends itself to the analysis

of communication links between vehicles of any type, both

terrestrial and airborne. However, in this paper, we focus

on terrestrial vehicles. Therefore, we assume that the TX is
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Fig. 1. The reference 2D propagation scenario at time t0 = 0.

TABLE I
VECTORS THAT CHARACTERIZE THE GEOMETRICAL CONFIGURATION OF

THE PROPAGATION SCENARIO.

Description Form

Initial positions of the moving TX q0

T
=

(
q0
T
, θ0

T
, φ0

T

)

Initial positions of the moving RX q0

R
=

(
q0
R
, θ0

R
, φ0

R

)

Initial position of the RX as seen
from the initial position of the TX

rD =
(
D, θD , φD

)

Position of the ℓth IO qℓ

IO
=

(
qℓ
S
, θℓ

S
, φℓ

S

)

Velocity vector of the TX vT =
(
vT , γT , βT

)

Velocity vector of the RX vR =
(
vR, γR, βR

)

Position of the ℓth IO as seen from
the initial position of the moving TX

dℓ

T
=

(
dℓ
T
, ϑℓ

T
, ϕℓ

T

)

Initial position of the moving RX as
seen from the ℓth IO

dℓ

R
=

(
dℓ
R
, π + ϑℓ

R
, π + ϕℓ

R

)

Wavevector of the signal that travels
from the TX to the ℓth IO

wℓ

T
=

(
k0, ϑ

ℓ

T
, ϕℓ

T

)

Wavevector of the signal that travels
from the ℓth IO to the RX

wℓ

R
=

(
k0, π + ϑℓ

R
, π + ϕℓ

R

)

initially located at the origin of the coordinate system, whereas

the RX is initially located on the positive x-axis, such that

q0
T = (0, 0, 0) and q0

R = rD = Dx̂. We also assume that

the IOs are randomly located around the RX . We model the

IAOA ϑℓR and the AAOA ϕℓ
R of dℓ

R (and wℓ
R) by random

variables characterized by a joint probability density function

(PDF) pRΘ,Φ(ϑ, ϕ). The magnitude of dℓ
R (distance from q0

R

to qℓ
IO) is modeled by a function G of ϑℓR and ϕℓ

R, i.e.,

dℓR = G(ϑℓR, ϕ
ℓ
R), G : S 7−→ [0,∞) (2)

where S is the set of points on the sphere of unit radius. The

function G can be specified in different ways. For example,

for the cylinder scattering (reflection) propagation model of

radius Rc and height hc [7], G can be expressed as

G(ϑℓR, ϕ
ℓ
R) =




R
sin(ϑℓ

R
)
, ∀ϕℓ

R, and ϑR ∈
[
arctan

(
hc

Rc

)
, 90◦

]

0 ∀ϕℓ
R, and ϑR /∈

[
arctan

(
hc

Rc

)
, 90◦

] .

(3)



Once the parameters of the vector dℓ
R (wR) are known, those

of dℓ
T (and wT ) can be determined by noting that dℓ

T = rD−
dℓ
R (and taking account of (2)). We model the parameters of

the velocity vectors vT and vR by deterministic quantities.

B. Impulse Response and Transfer Function of the Proposed

Polarimetric Wideband Multipath V2V Channel

For the characterization of the impulse response and transfer

function of the polarimetric V2V channel, we consider the

transmission of an unmodulated carrier having a time-varying

electric field intensity equal to

EEET (t) = exp{j2πfct}ET (4)

where fc is the carrier signal’s frequency, and ET is a

complex-valued vector describing the distribution in space of

the electric field intensity. This time-invariant vector can be

written as

ET = ET p̂T . (5)

In the previous equation, ET and p̂T are the transmitting

antenna’s electric field pattern and the polarization vector,

respectively. For an arbitrary elliptical polarization, p̂T can

be modeled as a complex-valued unit vector given by

p̂T = êHT cos(ξT ) + êVT sin(ξT ) exp{jηT } (6)

where êHT and êVT are real-valued unit vectors, ξT is the axial

ratio of the transmitting antenna’s polarization ellipse, and ηT
stands for the phase difference between the scalar components

of the real part of EEET (t) in the directions of êHT and êVT [12].

The unit vectors êHT and êVT are orthogonal to each other, and

they are given in such a way that their cross-product êHT ⊗ êVT
points in the same direction as the transmitted signal’s wave

vector wT . To fully specify the orientation of êHT and êVT , we

assume with reference to Fig. 1 that if the normalized wave

vector ŵT is equal to x̂, then êHT = ŷ and êVT = ẑ.

The interaction with the ℓth IO produces an attenuation, a

phase shift, and a depolarization of the transmitted signal’s

time-varying electric field intensity EEET (t). Hence, the time-

varying electric field intensity of the signal that arrives at the

RX via the ℓth IO can be expressed as

EEEℓ
R

(
t
)

= gℓET Dℓ{p̂T }

× exp
{
−j

(
ψℓ − 2πfc

[
t− τℓ(t)

)]}
. (7)

The scalar variables gℓ and ψℓ stand for the attenuation and

phase shift produced by the interaction with the IO. We

characterize the attenuation factors gℓ by positive random

variables satisfying the condition
∑L

ℓ=1 E{|gℓ|
2} = 1. In turn,

we model the phase shifts ψℓ by independent and identically

distributed (i.i.d.) random variables characterized by a uniform

distribution over the interval [−π, π). The operator Dℓ desig-

nates a linear transformation that rotates the polarization of

EEEℓ
T

(
t
)
. The computation of this linear transformation is the

subject of the following section. The time-varying variables

τℓ(t) stand for the propagation delay of the ℓth received signal.

Assuming the propagation of plane waves and following [13],

we model this delay as

τℓ(t) =

〈
qℓ
T (t),w

ℓ
T

〉
+
〈
qℓ
R(t),w

ℓ
R

〉

k0C0
(8)

where C0 is the speed of light. The time-varying vector qℓ
T (t)

characterizes the position of the ℓth IO as seen from the

instantaneous position of the moving TX , whereas the time-

varying vector qℓ
R(t) characterizes the position of the ℓth IO

[13] as seen from the instantaneous position of the moving

RX . These two vectors are equal to

qℓ
T (t) = dℓ

T − tvT (9)

qℓ
R(t) = dℓ

R + tvR. (10)

The total received signal detected by the receiving antenna

can be expressed as

Y(t) =
L∑

ℓ=1

〈
EEEℓ
R

(
t
)
,A∗

R

〉
(11)

where AR = ARâR is known as the vector effective length

of the receiving antenna [12]. The scalar component of AR,

which is denoted by AR, has units of distance, and therefore

differs from the electric field pattern of the receiving antenna.

However, the vector component of AR, denoted by âR, is

equal to the receiving antenna’s polarization vector. Thus, for

an arbitrary elliptical polarization, we can characterize âR as

a complex-valued unit vector given by

âR = êHR cos(ξR) + êVR sin(ξR) exp{jηR}. (12)

The real-valued vectors êHR and êVR are chosen in a similar

way as êHT and êVT . The sole difference is that êHR and êVR are

given such that their cross-product, êHR ⊗ êVR , and the wave

vector ŵℓ
R point in opposite directions. We assume that if the

normalized wave vector ŵR is equal to x̂, then êHR = −ŷ

and êVR = ẑ. The variables ξR and ηR introduced in (12) have

a similar meaning as their transmitting antenna’s counterparts

introduced in (6). By substituting (7) into (11), we find

Y(t) =

L∑

ℓ=1

〈Dℓ{p̂T } , â
∗
R〉 gℓARET

× exp
{
−j

(
ψℓ − 2πfc

[
t− τℓ(t)

]}
. (13)

From the previous result, it follows that the polarimetric

channel impulse response (CIR) can be expressed in the

complex baseband equivalent as

u(t; τ) =

L∑

ℓ=1

〈Dℓ{p̂T } , â
∗
R〉 gℓARET

× exp
{
−j

[
ψℓ + 2πfcτℓ(t)

]}
δ(τ − τℓ(t)). (14)

Hence, the polarimetric channel transfer function (CTF)

U(t; f) ,
∫∞

−∞
u(t; τ) exp{−j2πfτ} dτ is equal to

U(t; f) =

L∑

ℓ=1

〈Dℓ{p̂T } , â
∗
R〉 gℓARET

× exp
{
−j

[
ψℓ + 2π(fc + f)τℓ(t)

]}
. (15)



III. CHARACTERIZATION OF THE CHANNEL

DEPOLARIZATION FUNCTIONS

The problem to be solved is to find the linear transformation

Dℓ that characterizes the rotation of p̂T due to the interaction

with the ℓth IO. Such a linear transformation should be

computed following the fundamental principles of electro-

magnetic (EM) wave propagation and taking into account

the geometrical configuration of the propagation scenario. To

solve this problem, we assume that the transmitted signal

interacts with the IOs by the mechanism of reflection. We can

therefore apply the concept of the COP plane [7], [8] (a.k.a.

the incident plane [11]) to determine the orientation of p̂T

after the reflection by the ℓth IO.

The COP plane can be defined as the plane spanned by

the wave vectors of the transmitted (incident) and received

(reflected) signals [11]. The reflection of the transmitted signal

by the ℓth IO is illustrated in Fig. 2 from the perspective of

the COP plane. In this figure, the signal’s angle of incidence

and angle of reflection are denoted by Θi and Θr, respectively,

whereas

Φℓ = cos−1
(
〈ŵℓ

T , ŵ
ℓ
R〉

)
(16)

stands for the shortest angle between ŵℓ
T and ŵℓ

R. In the

COP plane, signals reflected by perfect conductors and lossless

dielectrics maintain the polarization of the incident wave.

However, the polarization vector of the reflected signal, p̂ℓ
R,

has a different orientation in space than the polarization

vector of the incident signal, p̂ℓ
T , because the direction of

propagation of these signals is different [11]. This is illustrated

in Fig. 2, where both p̂ℓ
T and p̂ℓ

R are parallel to the COP

plane, but point in different directions to fulfill the condition

of perpendicularity with the corresponding wave vector, and

to satisfy the right-hand rule (this latter requirement was

neglected in the diagram of the COP plane shown in [7]).

Based on the propagation mechanism described above,

the orientation of the received signal’s polarization vector is

computed in [7]–[9] by applying tools of pure trigonome-

try. Although effective, the trigonometrical approach of [7]–

[9] complicates the computation of the rotated polarization

vectors. Another limitation of [7]–[9] is that the obtained

results are valid only for a particular geometrical configuration

of the propagation scenario. We bypass such limitations by

approaching the problem from a vector analysis perspective.

To that end, we note from Fig. 2 that the polarization vector

p̂ℓ
R can be obtained from p̂ℓ

T by a simple rotation about the

normal to the COP plane. Specifically, to obtain p̂ℓ
R, we only

need to conduct a counter-clockwise rotation of p̂ℓ
T by an

angle Φℓ about the unit vector

n̂ℓ =
ŵℓ

T ⊗ ŵℓ
R

‖sin(Φℓ)‖
= x̂Nx

ℓ + ŷNy
ℓ + ẑNz

ℓ (17)

(cf. Fig. 2). Hence, for the case of non-collinear wave vectors,

the linear transformation Dℓ, which accounts for the effects

of channel depolarization caused by wave reflection, can be

modeled in a compact and simple form as

Dℓ{p̂
ℓ
T } = Mℓp̂

ℓ
T (18)

ŵℓ

T

p̂ℓ

T

p̂ℓ

R

ŵℓ

R Φℓ

Θi

Θr

ŵℓ

T ⊗ ŵℓ

R

Fig. 2. Geometry of the reflection of an EM wave in the COP plane.

where Mℓ is a rotation matrix defined for a counter-clockwise

rotation by an angle Ψℓ about an axis in the direction of n̂ℓ.
1

A rotation matrix with these characteristics already exists [14],

which is given by (20) at the top of the next page. It is worth

noting that the evaluation of (17) produces a singularity for

collinear wave vectors. However, if ŵℓ
T is collinear to ŵℓ

R,

then it means that the transmitted signal is blocked by the IO

(Φℓ = π), or that the signal reaches the RX before the IO

(Φℓ = 0). Taking account of (18), we can rewrite (15) as

U(t; f) =

L∑

ℓ=1

(p̂ℓ
T)

† M
†
ℓ â

∗
R gℓARET

× exp
{
−j

[
ψℓ + 2π(fc + f)τℓ(t)

]}
. (19)

The mathematical model of the polarimetric CTF given by (19)

is similar to the one proposed in [6]. However, the elements

of the depolarization matrix Mℓ are modeled in [6] by i.i.d.

random variables whose statistical distribution does not take

into account the geometry of the propagation scenario. This

contrasts with (20), where the geometry of the propagation

scenario is embedded by means of Φℓ and n̂ℓ.

IV. CORRELATION PROPERTIES OF THE PROPOSED

GEOMETRICAL POLARIMETRIC V2V CHANNEL MODEL

For the analysis of the correlation properties of the proposed

geometrical polarimetric V2V channnel model, we consider

the definition of the four-dimensional time-frequency correla-

tion function (4D-TFCF) given in [15] as follows

R(t, f ; ∆t,∆f) = E{U∗(t−∆t; f)U(t; f +∆f)}. (22)

Under the assumptions discussed in Section II, we obtain by

a direct evaluation of (22) the result presented in (21) at the

top of the next page, where

f0
D =

〈vT , ŵT 〉 − 〈vR, ŵR〉

λ
(23)

GD =
〈dT , ŵT 〉+ 〈dR, ŵR〉

C0
. (24)

1Equation (18) is given under the assumption that the polarization vector
p̂ℓ

T
is arranged in the form of a column vector. The same consideration will

be made for âℓ

R
.



Mℓ =




cosΦℓ + (Nx
ℓ )

2(1− cosΦℓ) Nx
ℓ N

y
ℓ (1− cosΦℓ)−Nz sinΦℓ Nx

ℓ N
z
ℓ (1− cosΦℓ) +Ny sinΦℓ

Nx
ℓ N

y
ℓ (1 − cosΦℓ) +Nz sinΦℓ cosΦℓ + (Ny

ℓ )
2(1 − cosΦℓ) Ny

ℓ N
z
ℓ (1− cosΦℓ)−Nx sinΦℓ

Nx
ℓ N

z
ℓ (1− cosΦℓ)−Ny sinΦℓ Ny

ℓ N
z
ℓ (1 − cosΦℓ) +Nx sinΦℓ cosΦℓ + (Nz

ℓ )
2(1− cosΦℓ)


 (20)

R(t, f ; ∆t,∆f) =

2π∫

0

π∫

0

∣∣(p̂T )
† M† â∗R

∣∣2 (ARET )
2
exp

{
j2π

[
∆tf0

D

fc + f

fc
−∆f

(
GD − t

f0
D

fc

)]}
pRΘ,Φ(ϑ, ϕ) dϑ dϕ (21)

The scalar variable f0
D can be identified as the Doppler shift of

the carrier signal, whereas GD is a function that characterizes

the propagation delay of signals transmitted in all directions

at the time instant t = 0. In turn, the vector variables dk and

ŵk are given as dk =
(
dk, ϑk, ϕk

)
and

ŵℓ
k = x̂ sinϑk cosϕk + ŷ sinϑk sinϕk + ẑ cosϑk (25)

for k ∈ {T,R}. We note that the 4D-TFCF is evaluated in (21)

only with respect to the joint PDF of the IAOA ϑR and the

AAOA ϕR, because the IAOA ϑT and the AAOA ϕT can be

modeled as functions of the former pair of angles, as explained

in [13] for the case of a two-dimensional propagation scenario.

Three remarks about the results presented in (21) are as

follows: First, we can conclude that the proposed geometrical

polarimetric V2V channel model is non-stationary in both the

time and frequency domain, because its 4D-TFCF depends

on the time variable t and the frequency variable f . Second,

we note that the 4D-TFCF in (21) is a generalization with

respect to polarimetric channels of the result obtained in

[13] for the correlation function of co-polarized wideband

V2V channels. Third, while not shown in this paper, the

depolarization function has an indirect influence on the non-

stationary characteristics of the proposed polarimetric channel

model. The depolarization function has an impact on the shape

of the 4D-TFCF, and therefore on the decorrelation properties,

coherence intervals, and stationary intervals of the channel.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have shown that the effects of channel

depolarization produced by the reflection of waves from IOs

can be modeled by a linear transformation in the form of

a simple rotation matrix. The elements of such a rotation

matrix are defined considering the geometrical configuration

of the propagation environment, and conducting simple vector

algebra operations between the wave vectors of the trans-

mitted and received signals. We presented a new GBSM for

polarimetric wideband V2V channels that is transparent to the

polarization of the transmitting and receiving antennas, and we

derived an expression for the 4D-TFCF of this new model. The

obtained results show that its second-order statistics are non-

WSS in both time and frequency. This is a desirable feature, as

empirical investigations have shown that the V2V channel do

not fulfill the WSS condition. Our approach to the geometrical

modeling of polarimetric channels has been described in detail

in this paper. However, further work is needed to validate the

geometrical non-stationary polarimetric V2V channel model

presented here. For a future paper, we leave the analysis of the

cross-polarization discrimination, the derivation of compact

closed-form expressions for the 4D-TFCF, and the comparison

with other polarimetric V2V channel models, e.g., that of

Kwon and Stüber. In addition, we leave for future work

the extension of our modeling approach with respect to the

mechanisms of wave propagation by scattering and diffraction.
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ometrically based statistical model for polarized body-area-network
channels,” IEEE Trans. Veh. Technol., vol. 62, no. 8, pp. 3518–3530,
2013.
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