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Abstract. This paper proposes a non-stationary channel model that
captures the impact of the time-variant (TV) phase distortion caused by
hardware imperfections. The model allows for studying the spectrogram
of in-home radio channels influenced by walking activities of the home
user under realistic non-stationary propagation conditions. The resolu-
tion of the spectrogram is investigated for the von-Mises distribution
of the phase distortion. It is shown that high-entropy distributions con-
siderably mask fingerprints of the user activity on the spectrogram of
the channel. For an orthogonal frequency-division multiplexing (OFDM)
system, a computationally simple method for mitigating the undesired
phase rotation is proposed. Both theoretical and simulation results con-
firm that the proposed method significantly reduces the impact of the
phase distortion, allowing us to retrieve the desired spectrogram im-
printed by the activity of the home user. The results of this paper are
useful for the development of software-based radio frequency (RF)-based
activity recognition systems.

Keywords: RF-based human activity recognition · non-stationary chan-
nel modelling · spectrogram analysis · phase distortion.

1 Introduction

The World Health Organization (WHO) states that the global average life ex-
pectancy increased by 5.5 years between 2000 and 2016, the fastest increase since
the 1960s [1]. With such a trend, more and more seniors are expected to live a
longer independent life. To assure the quality of independent living, in-home
activity monitoring systems, such as video cameras, vision sensors, wearable
devices, and smart floors, are emerging. These systems send healthcare infor-
mation, such as daily activity information and multimodal bio-sensors data, to
remote caregivers, who act accordingly. These systems are often expensive, but
more importantly, intrusive in terms of privacy and comfort of the home user.
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Such drawbacks have triggered a so-called radio frequency (RF)-based activity
recognition approach, according to which no user involvement in the monitoring
mechanism is required.

In this approach, a transmit antenna emits radio waves throughout the in-
home propagation area, while a receive antenna receives the waves reflected off
the body of the home occupant, and thus collecting fingerprints of the user ac-
tivity in the environment. The new approach indeed allows for a passive indoor
radar solution without the active participation of the users and without compro-
mising their privacy. The collected radio waves are imprinted quite differently
depending on the type of the activity. Therefore, sophisticated recognition algo-
rithms and machine learning methods are required to distinguish activities from
each other. The number of proposed activity recognition systems is increasing.
Employing principles of radar systems [3, 14], ultrawide band sensors [8], re-
ceived signal strength indicator (RSSI) [7], and the channel state information
(CSI) [4, 9, 18–20] are the main levers for the development of activity recogni-
tion systems. A comprehensive survey of the existing literature on the RF-based
activity recognition can be found in, e.g., [5].

To the best knowledge of authors, all the proposed activity recognition sys-
tems have been developed using an experimental design approach, which is very
time-consuming and costly. Often, numerous repetitions of the measurement
are required in distinct experimental setups, such that machine learning algo-
rithms can be sufficiently trained. However, a software-based design approach,
in which channel models/simulators generate numerous datasets under different
propagation conditions and different mobility patterns in a very short time, can
save time and money compared to conducting a large number of real experi-
ments. The data can then be used to train and to test detection algorithms. The
software-based design approach has been very rarely, if at all, addressed in the
literature. The channel model proposed in [2] is an exception that can generate
experimentally verifiable complex channel gain data. However, the model in [2]
does not capture the time-variant (TV) phase distortion, which in practice exists
due to the hardware imperfection, such as carrier frequency offset (CFO) and
sampling frequency offset (SFO). In fact, the undesired phase rotation caused by
the imperfection of a device, e.g., Intel NIC 5300, significantly interferes with the
desired phase rotation caused by the human activities, which ultimately reduces
the performance of detection algorithms. Coping with the phase distortion has
been a challenge for most of the literature listed above, as well as [6, 16,17].

In this paper, we propose a non-stationary channel model that incorporates
the effect of phase distortion in terms of a stochastic process. To study the time-
frequency distribution of the channel, the spectrogram of the complex channel
gain is computed. The spectrogram provides useful information about the varia-
tions of Doppler frequency components in time, allowing us to track the human
walking pattern. The impact of different distributions of the phase distortion
on the spectrogram of the complex channel gain is analyzed, showing that the
expected observations are considerably spoiled when the undesired phase ro-
tation is integrated into the model. To mitigate the impact of phase distor-
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tion, a computationally efficient method based on the principles of orthogonal
frequency-division multiplexing (OFDM) systems is proposed. It is shown that
the proposed method retrieves the desired spectrogram imprinted by the activity
of the user.

The remainder of this paper is organized as follows. Sections 2 and 3 describe
the in-home propagation scenario and present the phase distortions, respectively.
The complex channel gain and its time-frequency distribution are presented in
Sections 4 and 5. Section 6 proposes the distortion mitigation technique. Simu-
lation results are presented in Section 7. Finally, Section 8 concludes the paper.

2 Propagation Scenario

With reference to Fig. 1, a fixed-to-fixed propagation scenario is assumed in
which an omnidirectional transmitter (Tx) antenna is placed on the floor and an
omnidirectional receiver (Rx) antenna is mounted on the ceiling of the room. The
position of the Tx (Rx) is denoted by (xT , yT , zT ) ((xR, yR, zR)), while the po-
sitions of NF fixed scatterers (black stars in Fig. 1) are given by (xSnF , y

S
nF , z

S
nF ),

where nF = 1, 2, ..., NF . It is assumed that the line-of-sight (LOS) between the
Tx and the Rx is blocked.

A cluster of NM moving scatterers SMn (nM = 1, 2, ..., NM ) accounts for the
human body parts, such as the head, hands, and legs. The random trajectory
approach in [2] is used to model a moving person, starting from (xs, ys, zs)
and terminating at a predefined destination point (xd, yd, zd). In particular, a
realization of the random trajectory (based on the first primitive of Brownian
fields) gives a set of triples (xl, yl, zl), where l denotes the position index (or
equivalently t represents the corresponding time). It is assumed that the random
bridge is fully established, while the drift to the destination point exists. For
simplicity reasons, the horizontal displacement of the path from the shortest
path is assumed to be zero. A single realization of the random trajectory model
generates a master trajectory T , explaining the spatial behavior of each body
part if it is shifted to its corresponding starting point (xs, ys, zs). The temporal
features of the motion are added to the spatial trajectory model by employing
horizontal and vertical speed vectors (similar to those used in [2]), describing
the temporal behaviour of the body parts along the path (see Sec. 7 for details).

It is assumed that a plane wave emitted from the Tx with an azimuth angle-
of-departure (AOD) αTn (t) and an elevation AOD βTn (t) reaches the Rx with
an azimuth angle-of-arrival (AOA) αRn (t) and an elevation AOA βRn (t) after a

single bounce with the nth scatterer S
(.)
n . Note that in case of NF fixed scatterers

SFn , none of those angles change in time, but they change in time according to
the trajectory of the NM moving scatterers SMn . It is also assumed that the
reverberation effect between the fixed and moving scatterers does not exist.

Furthermore, it is assumed that the communication is established through
K subcarriers of an OFDM WiFi system. This corresponds to the principles of
a typical commodity WiFi system, such as Intel NIC 5300, which has been the
core tool of many experimental studies in this field, e.g., [4].
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Fig. 1. The schema of an in-home propagation area, illustrating the trajectories of a
person’s head, arms, and legs, if the person walks from the starting point (0, 0) to the
destination point (3,4).

3 Phase Distortions

In practice, the phase of the received multipath components is often determined
by two main factors, namely the phase shift caused by the propagation delay
and the phase shift caused by the device characteristics (imperfection). The
propagation delays and the corresponding phase shifts remain constant in time
if the environment is stationary. However, if some objects (herein, the user) starts
moving, the corresponding propagation delay and thus the associated phase vary
in time. Such variations carry fingerprints of the user activities in the propagation
area, which can be used for activity recognition purposes. With this token, the
phase rotation caused by a change of the propagation delay is called the desired
phase rotation.

In contrast, device imperfections result in an undesired phase rotation that
can hardly be characterized, mainly because it is a superposition of several phase
shifts originating from different sources [6]. The carrier frequency offset, sam-
pling frequency offset, packet boundary offset, and the phase-locked loop offset
are the main hardware-related sources of phase distortion in experimental stud-

ies [15, 17, 18, 20]. The undesired phase distortion Φ
(k)
1 (t) changes across both

the OFDM subcarrier index k and the time variable t, making coping more chal-

lenging. Let us assume H
(k)
1 (f, t) denotes the channel transfer function (CTF)

associated with the kth subcarrier of an OFDM WiFi system with phase dis-
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tortions. This function can then be written as H
(k)
1 (f, t) = H̃(k)(f, t)ejΦ

(k)
1 (t), in

which H̃(k)(f, t) is the corresponding undistorted CTF.

In the literature, there exists a number of phase sanitization techniques1,

transforming the distorted CTF H
(k)
1 (f, t) to the calibrated CTF H(k)(f, t) =

H
(k)
1 (f, t)e−jΦ2

(k)(t) = H̃(k)(f, t)ej(Φ
(k)
1 (t)−Φ2

(k)(t)), where Φ2
(k)(t) accounts for

the phase shift originated from the employed sanitization technique. However,
these techniques cannot fully retrieve the desired phase rotation [6], meaning that

the residual phase Φ(k)(t) = Φ
(k)
1 (t) − Φ2

(k)(t) still distorts the time-frequency
observations.

On the other hand, the randomness of the phase distortion adds a signif-
icant level of uncertainty to the residual phase rotation Φ(k)(t), spoiling the
performance of activity recognition algorithms based on the time-frequency dis-
tribution of the channel. Therefore, it is of great importance to understand the
impact of the undesired phase rotation Φ(k)(t) on the spectrogram of the com-
plex channel gain.

In this paper, the undesired (residual) phase rotation Φ(k)(t) is modelled by
a stochastic process following the von-Mises distribution, i.e.,

pΦ(k)(t)(Φ|Φ0, κ) =
eκ cos(Φ−Φ0)

2πI0(κ)
(1)

where Φ0 and κ are the parameters of the circular distribution, while I0(.) de-
notes the zeroth-order modified Bessel function. The values of the undesired
phase rotation across both subcarrier k and time t are independent outcomes of
the distribution function in (1). The reason for this choice is the flexibility of the
von-Mises distribution, ranging from the uniform distribution for κ = 0, over
approximating the Gaussian distribution, and up to very concentrated distribu-
tions for large values of κ. Indeed, the von-Mises distribution allows us to assess
the impact of different distortion entropies on the spectrogram of the channel.

4 Non-Stationary Channel Model

Given the propagation scenario in Sec. 2, the complex channel gain µ(k)(t) as-
sociated with the kth subcarrier equals the CTF H(k)(f, t) of the same subcar-

rier frequency f (k). It follows µ(k)(t) = µ̃(k)(t)ejΦ
(k)(t), in which µ̃(k)(t) is the

undistorted complex channel gain and Φ(k)(t) represents the TV residual phase
distortion discussed in Sec. 3. Under NLOS propagation conditions, the non-
distorted complex channel gain µ̃(k)(t) is modelled by a process representing the
sum µF of the scattered components due to the NF fixed scatterers and the sum
µM (t) of TV components due to the NM moving scatterers. It follows

1 A known example is to compensate the phase rotation by linearly removing the mean
and the slope of the measured CSI phase [16, 17]. This technique removes parts of
the desired CSI, but more importantly has no physical justification [6].
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µ(k)(t)= µ̃(k)(t)ejΦ
(k)(t) =

(
µ̃F + µ̃

(k)
M (t)

)
ejΦ

(k)(t)

=

(
NF∑
nF=1

cnF e
jφnF +

NM∑
nM=1

cnM (t)ejφ
(k)
nM (t, τ ′nM )

)
ejΦ

(k)(t) (2)

in which φ(k)
nM (t, τ ′nM ) = φnM − 2πf

(k)
0 τ ′nM (t). In (2), the propagation path gain

cn(.)
(t) is given by a negative path loss exponent γ applied to the total travel-

ling distance Dn(.)
(t) of the n(.)th plane wave, i.e., cn(.)

(t) = CD−γn(.)
(t), where

the constant C accounts for the Tx(Rx) antenna gain, transmission power, and
the wave length (see [11,12]). The total travelling distance Dn(.)

(t) can be read-
ily calculated by using the known coordinates of the trajectory T and those of
the Tx/Rx. The constant phase shifts φnF and φnM account for the physical
interaction of the emitted wave with the nF th fixed scatterer and nM th mov-
ing scatterer, respectively. These two shifts are assumed to be uniformly and
independently distributed random variables ranging from −π to π [13, p. 47].
The propagation delay τ ′(.)(t) is proportional to the propagation path length

Dn(.)
(t), and is also related to the Doppler frequency f

(k)
(.) (t) via (without proof)

f
(k)
(.) (t) = −f (k)

0 τ̇ ′(.)(t), where τ̇ ′(.)(t) represents the derivation of the TV delay

τ ′(.)(t) with respect to time t. From the latter relationship, it is straightforward
to confirm that fixed scatterers contribute to the time-frequency distribution of
the channel with zero Doppler shifts, as τ̇ ′nF (t) = τ̇ ′nF = 0.

5 Spectrogram Analysis

A practical approach to study the time-frequency distribution of the channel is
to perform a spectrogram analysis on the complex channel gain process µ(k)(t)
(a sample function of the process µ(k)(t) in (2)). To this aim, one first needs to
multiply µ(k)(t) with a sliding window function w(t′ − t), i.e.,

x(k)
µ (t′, t) = µ(k)(t)w(t′ − t) (3)

where w(t) is a positive even function with normalized energy. In this paper,
a Gaussian function is used to window the main signal µ(k)(t). Applying the

Fourier transform to the windowed signal x
(k)
µ (t′, t) with respect to t′ gives then

the short-time Fourier transform (STFT)

X(k)
µ (f, t) =

∫ ∞
−∞

x(k)
µ (t′, t)e−j2π ft

′
dt′ (4)

of the original signal µ(k)(t). The spectrogram S
(k)
X (f, t) is then defined as the

squared magnitude of the STFT X
(k)
µ (f, t), i.e., S

(k)
Xµ

(f, t) =
∣∣∣X(k)

µ (f, t)
∣∣∣2.
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6 Distortion Mitigation Method

The STFT X(k)(f, t) of the distorted complex channel gain µ(k)(t) suffers from
interfering terms, which can be analytically formulated as

X(k)
µ (f, t) =

∫ ∞
−∞

x
(k)
µ̃ (t′, t)ejΦ

(k)(t′)e−j2π ft
′
dt′

=

∫ ∞
−∞

x
(k)
µ̃ (t′, t)e−j2π ft

′

( ∞∑
l=0

(jΦ(k)(t′))l

l!

)
dt′

= X
(k)
µ̃ (f, t) + I1(f, t) + jI2(f, t) (5)

where X
(k)
µ̃ (f, t) represents the desired STFT, while I1(f, t) and I2(f, t) stand

for the interfering terms caused by the elements l = 1, 2, ...,∞ of the Maclaurin

series of the phase distortion. Consequently, the spectrogram S
(k)
Xµ

(f, t) of µ(k)(t)
includes complex-valued interfering terms that change not only in time t, but
also in frequency f .

To mitigate the impact of such undesired components, a simple (compu-
tationally inexpressive) approach is to first average over K distorted complex
channel gain µ(k)(t), and then to apply the spectrogram analysis on the average
µ̄(t). The theoretical justification of this technique is that µ̄(t) = E{µ(k)(t)}
equals to E{µ̃(k)(t)ejΦ

(k)(t)}, which after some mathematical manipulations can

be approximated by µ̃(.)(t) I1(κ)
I0(κ)e

jΦ0 , where κ and Φ0 are the parameters of the

von-Mises distribution describing the phase distortion Φ(k)(t) (see Sec. 3), and
I1(.) denotes the modified Bessel function of the first kind. The STFT Xµ̄(f, t)
of the averaged complex channel gain µ̄(t) can then be computed as follows

Xµ̄(f, t) =

∫ ∞
−∞

µ̄(t′)w(t′, t)e−j2π ft
′
dt′

≈ I1(κ)

I0(κ)
ejΦ0

∫ ∞
−∞
|µ̃(.)(t′)|ej]µ̃

(.)(t)w(t′, t)e−j2π ft
′
dt′

=
I1(κ)

I0(κ)
ejΦ0X

(.)
µ̃ (f, t). (6)

From the equation above, it can be concluded that Xµ̄(f, t) is a scaled version of

the desired STFT X
(k)
µ̃ (f, t), where the scaling factor I1(κ)ejΦ0/I0(κ) changes

neither in time t, nor in frequency f . Therefore, the corresponding spectrogram
SXµ̄(f, t) is also a scaled, yet non-interfered, version of the desired spectrogram

S
(.)
Xµ̃

(f, t). It can be shown that the proposed technique does not mitigate the im-
pact of the phase distortion if the undesired phase follows an absolutely uniform
distribution, i.e., if κ = 0.

7 Simulation Results

The central frequency f0 = 5.32 GHz (associated with Channel 64) of an OFDM
WiFi system is considered. The number of K = 30 equally spaced OFDM subcar-
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riers around this central frequency has been generated. The Tx and Rx antennas
are assumed to be placed on the floor and the ceiling of the room at a height
of 0.1 m and 2.2 m, respectively (see Fig. 1). The free-space path loss exponent
has been set to γ = 2, which matches our single-bounce scattering scenario,
while the constant C has been set to 1. A cluster of NM = 5 moving scatterers,
accounting for the head, hands, and legs of the person, as well as a number of
NF = 5 fixed scatterers are considered to be present in the propagation envi-
ronment. The height H of the person is assumed to be 178 cm. It is supposed
that the user starts walking from the origin (xs, ys) = (0 m, 0 m) of the Cartesian
coordinates to reach the preplanned destination point (xd, yd) = (3 m, 4 m) via
a single realization of the 3D random trajectory T . The user accelerates from a
zero speed to a constant vertical (horizontal) walking speed of 0.1 m/s (1 m/s),
followed by a deceleration to a zero speed when approaching the destination
point. A Gaussian window of size σω = 50 ms has been used in the spectrogram
analysis.

-20 -15 -10 -5 0 5 10 15 20
0

1

2

3

4

5

6
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8

9

10

Fig. 2. The spectrogram S
(1)
Xµ̃

(f, t) of the non-distorted complex channel gain µ̃(1)(t)

associated with the walking scenario.

Fig. 2 displays the spectrogram S
(1)
Xµ̃

(f, t) of the non-distorted complex chan-

nel gain µ̃(1)(t) associated with the walking scenario above. The illustrated spec-

trogram S
(1)
Xµ̃

(f, t) provides a non-distorted estimation of TV Doppler frequency
components, representing our benchmark for the time-frequency observation as-
sociated with the first OFDM subcarrier. For the first three seconds, the Doppler
shifts increase from zero (initial stop) to about 12 Hz, confirming the initial ac-
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celeration of the user for a normal walk. As the user approaches the vicinity of
the RX/TX, the Doppler shifts decrease because the direction of motion becomes
almost perpendicular to the direction of arrival. This trend continues almost to
the middle of the path, from where the user starts leaving the transceiver, indi-
cated by increasing Doppler frequency shifts towards negative values. For t > 7,
the Doppler components start vanishing, as the person starts decelerating to a
zero speed. The oscillatory behavior of the frequency components is caused by
the sinusoidal variations of the user’s height within a normal walk process. The
time-invariant zero frequency components are due to the presence of fixed scat-
terers in the propagation environment, while the small frequency spread around
f = 0 Hz is caused by interfering cross-terms as the artefact of the spectrogram
analysis [10]. In a nutshell, the phase rotation caused by the walking activity of
the user shapes the spectrogram into a clean S-pattern (see Fig. 2)2.

Fig. 3 exhibits the spectrogram S
(1)
Xµ

(f, t) of the distorted complex channel

gain µ(1)(t) for the same walking scenario and for four different values of κ. In

2 The spectrogram associated with the other OFDM subcarriers is also imprinted with
a similar S−pattern.

Fig. 3. The spectrogram S
(1)
Xµ

(f, t) of the distorted complex channel gain µ(1)(t) for

Φ0 = 0 and (a) κ = 4, (b) κ = 2, (c) κ = 0.5, and (d) κ = 0.
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Fig. 4. The spectrogram SXµ̄(f, t) of the averaged complex channel gain µ̄(t) for Φ0 = 0
and (a) κ = 4, (b) κ = 2, (c) κ = 0.5, and (d) κ = 0.

all subfigures, one can observe that the expected S-pattern is interfered by the
frequency contributions originating from the phase distortion. This interference
increases if the value of κ decreases. If the phase distortion approaches the uni-
form distribution, i.e., if κ = 0, no signature of the desired frequency components
can be identified in the plot. For small values of κ, the S−pattern in the spec-
trogram of the channel is hardly distinguishable, while higher values of κ allow
for the appearance of the expected pattern. This can be attributed to the fact
that higher values of κ result in more concentrated phase distortions with more
distinguishable fingerprints in the spectrogram.

Fig. 4 demonstrates the spectrogram SXµ̄(f, t) of the averaged complex chan-
nel gain µ̄(t) for the same walking scenario and for four different values of κ. This
set of figures is one-to-one comparable with those of the previous set shown in 3.
As can be observed, the proposed mitigation technique can considerably reduce
the interference caused by the phase distortion, so that the S−pattern can be
restored as the original contribution of the walking person to the time-frequency
distribution of the channel. The quality of the proposed sanitization technique
decreases if κ decreases. For κ = 0, the proposed algorithm cannot sanitize the
spectrogram of the channel any longer. Theoretically, it can be shown that a
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pure uniform distribution of the phase distortion over time completely fades the

desired spectrogram S
(.)
Xµ̃

(f, t). However, an interesting feature of the proposed
mitigation scheme is that even a slightly concentrated distribution of the phase
distortion, e.g., if κ = 0.5, allows us to restore the expected S−pattern, as can
be confirmed in Fig. 4(c).

8 Conclusion

A non-stationary channel model incorporating the impact of phase distortion
caused by device imperfections has been developed in this paper. It has been
shown that the phase distortion adds significant interference to the time-frequency
distribution of the channel. A distortion mitigation technique based on the prin-
ciples of OFDM systems was proposed. It has been shown that the proposal is
robust with respect to the entropy of the distortion distribution. The experi-
mental verification of the proposed method is a topic of future studies.
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