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Abstract—Modern societies are facing an ageing prob-
lem which comes with increased cost of healthcare. A
major share of this ever-increasing cost is due to fall
related injuries, which urges the development of fall
detection systems. In this context, this paper paves the
way for building of a radio-frequency-based fall detection
system. This paper presents an activity simulator that
generates the complex channel gain of indoor channels
in the presence of one person performing three different
activities, namely, slow fall, fast fall, and walking. We
built a machine learning framework for activity recogni-
tion based on the complex channel gain. We assess the
recognition accuracy of three different classification al-
gorithms: decision tree, artificial neural network (ANN),
and cubic support vector machine (SVM). Our analysis
reveals that the decision tree, ANN, and cubic SVM
achieve an overall recognition accuracy of 73%, 84.1%,
and 92.6%, respectively.

I. INTRODUCTION

Advances in the diagnosis and treatment of diseases
have led to an increase in the average age of the
population and a surging number of older persons.
Statistics show that the total number of people aged
65 and above reached 650 million in 2015 [1], and
by 2050, this number will exceed two billion [2].
The society ageing problem leads to higher healthcare
costs. For older people, the costs of non-fatal fall
injuries reached USD 50 billion in 2015 [3], while falls
were the leading cause of death in 2013 [4]. All these
facts urge the development of fall detection systems to
reduce the death toll of falls, decrease healthcare cost,
and assist adults with an independent living difficulty.

In recent years, a plethora of fall detection systems
have been developed using different approaches. Exist-
ing fall detection systems can be classified into three
main classes: (i) context-aware systems, (ii) wearable
device-based systems, and (iii) radio-frequency (RF)-
based systems [5].

Context-aware systems leverage sensors deployed
in specific monitoring areas. The monitoring sensors
include mainly cameras, microphones, and pressure
sensors. Camera-based fall detection systems apply
classification algorithms to recorded video to detect
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falls [6]. The main limitations of camera-based context-
aware systems are that they can violate users’ privacy,
cause a high deployment cost, and have a very limited
monitoring area.

Wearable fall detection systems employ a device
equipped with an accelerometer to detect changes in
the acceleration. These changes are due to the user
activity and can be analyzed to determine if a fall event
has occurred. The use of wearable devices for activity
recognition and fall detection has been extensively
investigated in the literature [7], [8]. Wearable device-
based systems have numerous advantages: (i) they can
detect falls without violating user privacy, (ii) they have
a low cost, and (iii) they have an unlimited monitoring
area. However, if the user forgets to wear the device,
fall detection becomes impossible, which is the major
disadvantage of wearable device-based systems.

The third kind of fall detection systems is based on
RF techniques. They do not require wearable devices
and have limited privacy issues. The main idea behind
RF-based fall detection systems is to extract the finger-
prints of human activity from the received RF signal
of a wireless system to detect falls. In [9], the authors
use the channel state information obtained from a
WiFi network card to detect falls. A three-dimensional
(3D) motion tracking system that uses wireless signals
to detect falls of a single person is developed in
[10]. Several research works take the advantage of the
widespread deployment of WiFi systems to develop
solutions for human motion detection, gesture recog-
nition, and indoor localization, while few focus on fall
detection. The variations in the received signal strength
of WiFi are utilized in [11] for gesture recognition.
The authors of [12] propose an approach for human
tracking based on wireless signals, but this approach
cannot be used for human activity recognition.

As opposed to [9], where the channel state informa-
tion is used to detect falls, we propose a new method
for fall detection based on the instantaneous Doppler
frequency. The main contributions of our paper are as
follows:
• We develop an activity simulator that generates

the complex channel gain of indoor channels in
the presence of one person performing three dif-



ferent activities: slow fall, fast fall, and walking.
• We propose a novel method for extracting the

instantaneous Doppler frequency with high accu-
racy from the complex channel gain.

• We build a machine learning framework for ac-
tivity recognition based on the complex channel
gain and the instantaneous Doppler frequency.

• We assess the recognition accuracy of three dif-
ferent classification algorithms: decision tree, ar-
tificial neural network (ANN), and cubic support
vector machine (SVM).

• We demonstrate that the decision tree, ANN, and
cubic SVM achieve an overall accuracy of 73%,
84.1%, and 92.6%, respectively. These results are
achieved by extracting just four features from the
instantaneous Doppler frequency, which makes
the proposed solution accurate, while its compu-
tational cost is low.

The remainder of the paper is organized as follows.
Section II provides an overview of the proposed ac-
tivity simulator, while the expression of the complex
channel gain is derived in Section III. In Section IV, we
discuss the pre-processing methods used to estimate the
instantaneous Doppler frequency. Section V describes
the machine learning framework and how we use it to
recognize different types of activities. In Section VI,
we assess the performance of the proposed framework
and discuss the obtained results. Finally, Section VII
offers concluding remarks.

II. ACTIVITY SIMULATOR OVERVIEW

Our objective is to recognize human activities using
machine learning applied to the complex channel gain
of the radio propagation channel. To test this approach,
we generate synthetic data emulating the complex
channel gain of an indoor 3D environment in the
presence of a single moving person as illustrated in
Fig. 1. In this section, we provide a high-level overview
of the channel simulator and describe how the data
was generated for different activities. We consider 30
different participants with different heights performing
three activities. The simulated activities include fast
fall, slow fall, and walking. Each participant performs
these activities inside a room with a size of 5 by 10 m.
During the simulation, only one person is inside the
room.

As the person moves inside the room, their co-
ordinates change with time and a Doppler effect is
generated by this movement. Our objective is to rec-
ognize the person’s activity by analyzing the variation
of the complex channel gain and the instantaneous
Doppler frequency. This latter reflects how the Doppler
frequency varies with time. To measure the complex
channel gain, the room is equipped with fixed transmit-
ter and receiver denoted by Tx and Rx, respectively.

The Tx and Rx operate in the 2.4 GHz WiFi band.
The transmitter Tx emits electromagnetic waves that
propagate in the indoor environment. These waves are
reflected by the objects located in the room before
arriving at the receiver Rx. All the objects in the
room are static apart from the moving person. Thus,
the received signal contains the fingerprints of the
user activity. Our objective is to use signal processing
techniques together with machine learning to determine
human activity based on the signal measured at the
receiver Rx.

Fig. 1: A typical 3D indoor propagation scenario with
one moving person.

For each participant, the complex channel gain is
recorded for 120 s and then divided into 30 buffers
of length 4 s. Each data buffer is labeled with the
corresponding actual activity. For a given activity,
the path followed by the participant is composed of
10 straight lines. The start and end points of each
line are randomly generated. Hence, different partici-
pants follow different paths which makes the collected
data more generic and more realistic. The height of
each participant is randomly generated and evenly
distributed in the interval [1.5 m, 1.9 m].

For the walking activity, the subject moves with a
constant speed along a straight line. The value of the
speed is the outcome of a random generator and is
uniformly distributed in the interval [0.8 m/s, 1.2 m/s]
[13]. For the falling activity, the participant first walks
and then the fall starts. The duration of the fast fall and
the slow fall are equal to 1 s and 2 s [14], respectively.
When the fall starts, the participant’s speed increases
and reaches its maximum value right before the person
hits the ground. The maximum speeds for the fast fall
and the slow fall are equal to 2.6 m/s and 1.8 m/s,
respectively [15]. After the fall, the person remains on
the ground and their speed becomes equal to zero.

Using the described mobility model, we can com-
pute the time-variant coordinates of the persons as
they move inside the room. Knowing the locations
of the transmitter Tx and the receiver Rx, we can
determine the Doppler frequency associated with the
human movement and subsequently compute the com-



plex channel gain measured at the receiver Rx.

III. COMPLEX CHANNEL GAIN

To measure the complex channel gain, the room
is equipped with a transmitter Tx and a receiver Rx
having as coordinates (xT , yT , zT ) and (xR, yR, zR),
respectively. The transmitter Tx emits electromagnetic
waves that propagates in the indoor environment. These
waves are reflected by the objects located in the room
before arriving at the receiver Rx. During the data
collection, only one person is moving and performing
their activities in the room, while all the objects in the
room are static. We model this moving person by a
single moving scatterer SM corresponding to the head.
The initial position of SM in the x− y plane is given
by (xM , yM ) at time t = 0.

For the walking activity, the person moves with a
constant speed along a path composed of 10 straight
lines. For a given line in this path, the direction of
motion αv and the speed of motion vh in the horizontal
plane are constants. When the person walks along a
new line, their direction of motion αv is updated to a
new value, while their speed vh in the horizontal x−y
plane remains the same.

During walking, the time-variant positions x(t) and
y(t) along the x- and y-axis of the moving scatterer
SM can be expressed as

x(t) = xM + vh cos(αv) t (1)
y(t) = yM + vh sin(αv) t. (2)

The time-variant position z(t) of the scatterer SM (the
head) along the z-axis can be written as [16]

z(t) = hstep cos (2πfstept) + hhead (3)

where hstep, hhead, and fstep refer to the step height
of the head during walking, the person height, and
the walking frequency, respectively. The walking fre-
quency can be determined as fstep = vh/Ls, where Ls
is the stride length [13]. The value of the stride length
is proportional to the person height. The vertical speed
vv(t) along the z-axis can be computed by deriving
z(t) with respect to t, i.e., vv(t) = dz(t)/dt. It is
worth to mention that the validity of the head trajectory
model in (3) has been confirmed by fitting it to real-
world data obtained from tracking the head trajectory
obtained from video recording [16].

We model the static objects in the room, such as
the walls and the furniture, by N fixed scatterers SFn
(n = 1, 2, . . . , N). Thus, the complex channel gain can
be expressed as a sum of two terms: (i) the first term
captures the contribution of the moving scatterer SM

and (ii) the second term are the multipath components
stemming from the N fixed scatterers SFn , i.e., [17]

µ(t) = cm exp [jθm(t)] +

N∑
n=1

cn exp (jθn) (4)

where the symbols cm and cn stand for the path gains
associated with the moving scatterer and nth fixed
scatterer, respectively. The phases θn are independent
identically distributed random variables with uniform
distribution in the interval [0, 2π). The phase θm(t)
associated with the moving scatterer is time-variant
and can be determined as θm(t) = 2π

∫ t
−∞ fm(u)du

[17], where fm(t) denotes the instantaneous Doppler
frequency. This quantity can be computed as [18]

fm(t) = −fmax (t)

{
cos (βv (t))

[
cos
(
βT (t)

)
cos
(
αT (t)− αv

)
+ cos

(
βR(t)

)
cos
(
αv − αR(t)

) ]
+ sin (βv (t))

[
sin
(
βT (t)

)
+ sin

(
βR(t)

)]}
(5)

where fmax(t) = v (t) /λ is the maximum Doppler
frequency, with λ being the wavelength of the carrier
signal and v(t) =

√
v2v + vh(t)2 the speed of motion.

The symbols βT (t), αT (t), βR(t), αR(t), and βv(t)
stand for the elevation angle of departure, azimuth
angle of departure, elevation angle of arrival, azimuth
angle of arrival, and vertical angle of motion, respec-
tively. According to [18], all these angles can be com-
puted knowing the positions of the transmitter Tx and
receiver Rx, the time variant position (x(t), y(t), z(t)),
and speed v(t) of the scatterer SM .

Our assumptions on the speed profile, the person
height, the head trajectory during the walk, the maxi-
mum speed during the fall, and the duration of the fall
are all supported by measurements reported in the lit-
erature [14]–[16]. All these facts support the argument
that our synthetic data is a reasonable approximation
of real-word data. Moreover, to make our data generic,
we simulated the activity of 30 participants with dif-
ferent heights, different walking speeds, and following
different paths while performing their activities. This
makes the data statistically uncorrelated and reflects
the diversity generally observed in real-world data.

IV. DATA PRE-PROCESSING

A. Data Filtering

The developed channel simulator allows us to gener-
ate complex channel gain data pertaining to the activity
of 30 different individuals. This data is fingerprinted by
the activity performed by the user. In order to recognize
the performed activity from the complex channel gain
µ(t), we need first to pre-process the collected data.
As it is obvious from (4), the complex channel gain
µ(t) encompasses the contribution of both moving
and fixed scatterers. Intuitively, it would be easier to
classify the activity based on the complex channel
gain component associated with the moving scatterer.
Therefore, it is of interest to remove the multipath
components pertaining to the fixed scatterers. Note that



the fixed scatterers’ contribution to the channel gain is
an unknown constant term, which implies that this term
is a zero-frequency component. Hence, it is possible
to remove the contribution of all fixed scatterers by
applying a high-pass filter to the complex channel gain
µ(t). To this end, we utilize a Chebyshev filter of
Type II [19] with a stopband attenuation of 40 dB and a
stopband frequency of 0.05 Hz. The choice of a Type II
Chebyshev filter is motivated by its sharpness and the
fact that it has no ripples for frequencies larger than the
passband frequency [19]. These characteristics allow
extracting the contribution of the moving scatterers
in the complex channel gain µ(t) with very minor
distortions. The filtered complex channel gain µ̂(t) is a
good approximation of the contribution of the moving
scatterer, i.e.,

µ̂(t) = µ(t) ∗ h(t) ≈ cm exp [jθm(t)] , (6)

where h(t) denotes the impulse response of the Cheby-
shev filter of Type II.

B. Instantaneous Doppler Frequency Estimation

In this section, we propose a method for estimating
the instantaneous Doppler frequency of non-stationary
signals. Our starting point is the filtered complex
channel gain µ̂(t) which can be regarded as a mono-
component signal with time-variant frequency. Our
proposed estimation method comprises the following
steps:
1) Extract the phase θ̂m(t) of the signal µ̂(t).
2) Determine an estimate f̂m(t) of the instantaneous

Doppler frequency as f̂m(t) = d(θ̂m(t))
2π dt .

3) Apply a Gaussian smoothing filter to remove the
ripples in the estimated instantaneous Doppler fre-
quency f̂m(t). The obtained instantaneous Doppler
frequency after smoothing is denoted as f̃m(t).

Next, we numerically evaluate the accuracy of the
proposed estimation method. We consider two data
buffers associated with walking and slow fall. In Fig. 2,
we illustrate the estimated and the exact instantaneous
Doppler frequency fm(t) for a walking and slow
fall scenarios. From this figure, the high accuracy of
the proposed estimation method in determining the
instantaneous Doppler frequency fm(t) is noticeable.
For the slow fall scenario in Fig. 2, the participant
walks for 1 s, and then he starts falling. The fall lasts
for 2 s, i.e., from t = 1 s to t = 3 s. After the fall, the
person remains on the ground without any movement,
and consequently his instantaneous Doppler frequency
fm(t) becomes zero.

V. MACHINE LEARNING FRAMEWORK

Our aim is to recognize three different human ac-
tivities based on the recorded complex channel gain.
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Fig. 2: Instantaneous Doppler frequency fm(t) for a
walking scenario.

These activities are walking, slow fall, and fast fall. To
achieve our goal, we use a supervised machine learning
approach and train a set of classification algorithms
to recognize human activity based on the recorded
complex channel gain in an indoor environment. The
various building blocks of the activity recognition
scheme are illustrated in Fig. 3.

Fig. 3: Machine learning framework for activity recog-
nition.

The first block is the channel simulator described in
Sections II and III. The output of the channel simulator
is the complex channel gain µ(t) that captures the
impact of the fixed scatterers in the indoor environ-
ment as well as the impact of the moving person.
The complex channel gain µ(t) is then fed to the
data pre-processing block. This block first removes
the impact of fixed scatterers using a high-pass filter
as described in Section IV-A. Afterwards, we esti-
mate the instantaneous Doppler frequency using the
method proposed in Section IV-B. The instantaneous
Doppler frequency becomes the input signal for the
feature extraction block, which extracts four features
from the instantaneous Doppler frequency, namely,
the mean value, variance, root mean square (RMS),
and maximum of the absolute value. These features
are then stacked in a vector, called feature vector.
The classification algorithm determines the type of
the performed activity based on the feature vector. In
the following, we discuss in more detail the feature
extraction and the classification algorithm blocks.



A. Features Extraction

If the classification algorithm uses the raw data of
the instantaneous Doppler frequency to determine the
type of the performed activity, the obtained results
would have very poor accuracy. To deal with this
issue, we must extract a set of features that captures
a quantitative description of each activity and allow
us to distinguish different activities. We extract four
features from the instantaneous Doppler frequency: (i)
the mean, (ii) variance, (iii) RMS, and (iv) maximum
of the absolute value. The RMS of the instantaneous
Doppler frequency f̃m(t) can be expressed as

f̃rmsm =

√
1

T

∫ T

0

[
f̃m(t)

]2
dt (7)

where T is the length of the buffer which is equal to
4 s.

Fig. 4 depicts the histogram of the maximum value
of |f̃m(t)| for the activities walking and fast fall.
From this figure, one can see that the maximum value
of |f̃m(t)| is between 7 and 20 Hz for the activity
walking, while for fast falls the range of the maximum
value of |f̃m(t)| is between 10 and 55.5 Hz. In fact, for
fast falls, the velocity reaches larger values compared
to walking scenarios, which results in much larger
values of |f̃m(t)|.

Fig. 4: Histogram of the maximum value of |f̃m(t)|
for the activities walking and fast fall.

Fig. 5 illustrates the histogram of the variance of
the instantaneous Doppler frequency f̃m(t) for walking
and fast falls. This figure shows that the variance of
f̃m(t) is mostly below 50 Hz2 for walking, whereas,
for fast falls the variance of f̃m(t) is mostly ranging
from 10 to 200 Hz2. This is due to the fact that the
instantaneous Doppler frequency f̃m(t) has a larger
dynamic range for fast falls compared to walking.

Fig. 5: Histogram of the variance of the instantaneous
Doppler frequency f̃m(t) for the activities walking and
fast fall.

B. Classification Algorithm

Classification algorithms follow a supervised learn-
ing approach to recognize different types of activi-
ties. The supervised learning approach consists of two
phases: the training phase and test phase. First, the
data is divided into buffers which are labeled with an
activity identity (ID). We have three activity IDs: 1, 2,
and 3 corresponding to walking, slow fall, and fast fall,
respectively. Each data buffer has a length of 4 s and
contains the recording of the complex channel gain,
while a person is performing one of the three activities.
The data buffer is then preprocessed, its features are
extracted, and stored in a feature vector.

The data is divided into training and test data rep-
resenting 70% and 30% of the total data, respectively.
During the training phase, the classification algorithm
is exposed to the labeled training data. This means that,
for each data buffer in the training data, we provide the
corresponding feature vector together with the activity
ID. In this way, the classification algorithm can tune its
internal parameters such that its recognition accuracy
is maximized.

After the training phase, the trained classifier is
exposed to the test data. In the test phase, for each
buffer of the test data, the classifier is provided with
the corresponding feature vector without the activity
ID. The trained classifier uses the feature vector to
determine the probability that the data buffer pertains
to one of the three possible activities. If the activity
class i (i = 1, 2, 3) has the highest probability, the
classifier decides that the performed activity has the
ID i. The correctness of the classifier decision can be
determined using the data buffer label. For each buffer
in the test data, the classifier predicts the performed
activity.

At the end of the test phase, we can assess the
performance of the trained classifier and evaluate the



accuracy and precision of its predictions. In this paper,
we evaluated the performance of three classification
algorithms, namely, decision tree, ANN, and cubic
SVM. Principles and background information about
these classification algorithms can be found in [20].

VI. EXPERIMENTAL RESULTS

The performance of the proposed activity recogni-
tion framework is evaluated in this section. We use a
supervised learning approach in which the classifica-
tion algorithm is trained using 70% of the data. Once
the training phase is complete, the trained classifier
is tested using the remaining 30% of the data. We
assess the performance of three different classification
algorithms, namely, decision tree, ANN, and cubic
SVM algorithms.

The confusion matrix of the decision tree algorithm
is provided in Fig. 6. The labels 1, 2, and 3 at the
bottom of the confusion matrix correspond to the
activities walking, slow fall, and fast fall. The overall
accuracy of the decision tree algorithm is 73% as
shown in the bottom diagonal cell of the confusion
matrix. The remaining diagonal cells indicate the num-
ber and percentage of correct classifications by the
trained decision tree algorithm. The classifier correctly
predicts the activities walking, slow fall, and fast fall
in 68, 82, and 47 cases, respectively. The first column
of the confusion matrix in Fig. 6 shows that there are
a total of 90 walking buffers, of which 68 buffers are
correctly classified, while 22 buffers are misclassified
as slow fall. This implies that the accuracy of the
algorithm in recognizing the activity walking is 75.6%.
By examining the bottom cells of the second and third
columns, we can see that the accuracy of the classifier
for the activities slow fall and fast fall equals 91.1%
and 52.2%, respectively.

Fig. 6: Confusion matrix of the decision tree algorithm.

The rows of the confusion matrix in Fig. 6 indicate
the precision of the classifier for the three activities.
For instance, the second row shows the buffers which
are classified as slow fall. In total there are 146 buffers
classified as slow fall. Out of these, 82 buffers are real
slow falls, while 22 and 42 buffers correspond to the
activities walking and fast fall, respectively. Thus, the
precision of the classifier for slow falls is 56.2%. The
last cell in the first row and the third row indicate a
precision of 90.7% and 95.9% for walking and fast
fall, respectively.

Note that the precision and the accuracy of the
classification have different meanings. The classifica-
tion precision focuses on the predicted activity. For a
given activity, the precision quantifies the percentage
of correct classifications out of the buffers predicted
to belong to that certain activity. On the contrary, the
classification accuracy focuses on the actual activity
and indicates the percentage of successful classifica-
tions out of the actual buffers belonging to a given
class.

The confusion matrices of the ANN and cubic SVM
algorithms are illustrated in Figs. 7 and 8, respec-
tively. From these figures, we observe that the overall
accuracy of the ANN and cubic SVM is 84.1% and
92.6%, respectively, which represents an enhancement
of 11.1% and 19.6% compared to the decision tree
algorithm. For the ANN algorithm, the classification
accuracy for the activities walking, slow fall, and fast
fall is equal to 91.1%, 84.5%, and 77%, respectively.
The classification precision of the ANN for the activi-
ties walking, slow fall, and fast fall is equal to 85.9%,
74.7%, and 92.8%, respectively.

Fig. 7: Confusion matrix of the ANN algorithm.

The cubic SVM algorithm outperforms the decision
tree and the ANN algorithms in terms of overall



accuracy, precision, and accuracy per activity. Com-
pared with the decision tree algorithm, the cubic SVM
enhances the classification accuracy of the activities
walking, slow fall, and fast fall by 18.8%, 6.7%,
and 33.4%, respectively. Moreover, the cubic SVM
improves the classification precision by 8.1%, 28.4%,
and 0.4% for the activities walking, slow fall, and
fast fall, respectively, compared to the decision tree
algorithm.

Fig. 8: Confusion matrix of the cubic SVM algorithm.

VII. CONCLUSION

This paper has developed an activity simulator that
generates the complex channel gain of indoor channels
in the presence of one person performing three differ-
ent activities, namely, slow fall, fast fall, and walk-
ing. Using this activity simulator, we created complex
channel gain data associated with 30 participants hav-
ing different heights, speed profiles, and trajectories.
We have proposed a novel method for extracting the
instantaneous Doppler frequency with high accuracy
from the complex channel gain. Moreover, we have
built a machine learning framework for activity recog-
nition based on the instantaneous Doppler frequency.
Using the generated complex channel gain, we have
tested the performance of the decision tree, ANN, and
cubic SVM classification algorithms in recognizing
human activities. First, these three algorithms have
been optimized using the training data, then their
performances have been evaluated using the test data.
Our investigation reveals that the cubic SVM algorithm
outperforms the decision tree and ANN algorithms in
terms of overall accuracy. The decision tree, ANN,
and cubic SVM achieve an overall activity recognition
accuracy of 73%, 84.1%, and 92.6%, respectively.
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