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Abstract— This paper investigates the tracking control of
a class of strict-feedback uncertain nonlinear systems in the
presence of unknown signs of control coefficients and unknown
time-varying parameters as well as unknown disturbances. A
robust adaptive controller and a new decoupled backstepping
approach to stability analysis are developed by constructing a
new compensation scheme. By introducing a Nussbaum function
and a new type of hyperbolic tangent function, the effects
of unknown time-varying parameters and unknown control
coefficients are effectively compensated. By using the decoupled
backstepping technique, it is proved that under the proposed
control, all closed-loop states are uniform ultimate bounded. A
numerical example is presented to demonstrate the effectiveness
of the proposed control scheme.

I. INTRODUCTION

Adaptive control of strict-feedback nonlinear systems has
received a lot of attention since the appearance of recursive
backstepping design in [1] and a great deal of work has been
done for this class of systems in the past decades, see for
examples, [2], [3], [4], [5], [6], [7], [8] and many reference
therein.

Time-variations in dynamical systems occur in many phys-
ical systems. The development of adaptive control schemes
for uncertain time-varying nonlinear systems has been a task
of major practical interest as well as theoretical significance.
Several results are available for nonlinear systems with time-
varying parameters and/or without the knowledge on the sign
of the term multiplying the control [4], [5] and the high
frequency gain in the case of linear systems [9].

When the signs of virtual control coefficients or high-
frequency gain are unknown, the adaptive control problems
are quite involved and Nussbaum-type functions are normally
adopted. In [3], the problem of adaptive control with un-
known sign of high-frequency gain for linear time invariant
systems was studied. In [4], Nussbaum gain incorporating
with the backstepping technique was used to design adaptive
output stabilizer for high order uncertain time invariant
nonlinear systems with unknown sign of high-frequency
gain in the absence of external disturbances, where the
nonlinearities considered should satisfy sector conditions.
In [10], disturbance decoupling was addressed for nonlinear
time invariant systems with known sign of the high frequency
gain. In [11], a flat zone was used to handle the problem
of nonlinear time invariant systems with unknown sign of
high frequency gain in the presence of disturbances. In [12],
an adaptive output-feedback controller for uncertain linear

systems without knowledge of the plant high-frequency-gain
sign was proposed. Output feedback control was studied for
time-varying systems with or without the knowledge of the
sign of high-frequency gain, for examples, [13],[14] and [15].
In [5], the adaptive control was considered for uncertain
time-varying nonlinear systems with time-varying control
coefficients by using the Nussbaum function, where the time-
varying control coefficients were assumed to take value in
a bounded interval. When this condition is not satisfied, for
example, the control coefficients are time-varying functions
of the states with unknown signs, the problem was solved
recently by proposing a novel Nussbaum function in [8].
However in[8], the unknown parameters considered are con-
stants and only stabilization is achieved.

This paper investigates adaptive control for a class of
uncertain nonlinear systems in the presence of the unknown
time-varying control coefficients and unknown time-varying
parameters, as well as unknown disturbance. The control
coefficients are time-varying functions of the states with
unknown signs and unknown parameters are time-varying.
By introducing a new hyperbolic tangent function and in-
corporating a Nussbaum function, the effects of unknown
control coefficients, unknown time-varying parameters and
disturbance are effectively compensated. By proposing a
decoupled backstepping approach to stability analysis, it is
shown that the proposed controller can guarantee the whole
system uniformly stable. A numerical example is presented
to illustrate the effectiveness of the proposed control scheme.
The main contributions of this paper can be summarized as
follows.

1) A decoupled backstepping approach to stability anal-
ysis is developed which avoids to considering of the
summation of multiple Nussbaum-type functions in the
Lyapunov stability analysis.

2) A Nussbaum function is proposed to handle the un-
known signs of high frequency gains.

3) A novel hyperbolic tangent function is proposed and
used in the control strategy, which gives great conve-
nience to the stability analysis.

4) Estimation of bounds of time-varying parameters and
disturbances are developed by incorporating with the
hyperbolic tangent function.

5) Asymptotic tracking control is achieved in the pres-
ence of unknown time-varying control coefficients,



unknown time-varying parameters, and external distur-
bance.

This paper is organized as follows. In Section II, the problem
formulation and the preliminary result are given. In Section
III, the illustration of the design of an adaptive backstepping
control scheme is presented and the proof of the stability of
the closed-loop system is shown in Section IV. An illustrate
numerical example is shown in Section V. Finally, we draw
the conclusions in Section VI.

II. PROBLEM FORMULATION AND PRELIMINARY
RESULTS

A. Problem Formulation

Consider the following class of single-input-single-output
(SISO) nonlinear time-varying systems in the feedback form

ẋi = bi(t)βi(x̄i, t)xi+1 + θi(t)
Tψi(x̄i) + φi(x̄i) + di(t)

ẋn = bn(t)βn(x, t)u(t) + θTn (t)ψn(x) + φn(x) + dn(t)

y = x1 (1)

where x = [x1, · · · , xn]T ∈ Rn, u ∈ R and y are system
states, input and output respectively, x̄i = [x1, · · · , xi]T ∈
Ri, βi(x̄i, t) 6= 0 and φi(x̄i) are known smooth functions,
ψi(x̄i) = [ψ1

i (x̄i), ..., ψ
pi
i (x̄i)]

T ∈ Rpi is known smooth
function vectors, di(t) denotes unknown time-varying
bounded disturbances, θi(t) = [θ1

i (t), ..., θ
pi
i (t)]T ∈ Rpi are

vectors of uncertain time-varying parameters belonging to
known compact sets Ωθi with unknown bounds, bi(t) 6= 0
are uncertain time-varying parameters belonging to known
compact sets Ωbi with unknown bounds and they are
referred to as virtual control coefficients. In particular, bn(t)
is referred to as the high-frequency gain.
For the considered system in (1), the following assumptions
are imposed.
Assumption 1. The reference signal yr and its (n − 1)th
order derivatives are assumed to be known and bounded.
Assumption 2. The uncertain time-varying parameters
bi(t) 6= 0 and θi(t) ∈ Rpi are inside the compact sets Ωbi
and Ωθi with unknown bounds.

The control objective is to design an adaptive controller
for system (1) satisfying Assumptions 1-2 such that the
closed-loop system is stable and the system output can
asymptotically track a given reference signal yr(t).

Remark 1: Similar class of strict-feedback nonlinear sys-
tems to (1) was considered in [8]. However in [8], only
stabilization is achieved and the unknowns bi and θi are con-
stants, which makes the control design more simple because
the derivatives of the unknown time-varying functions are
needed to be considered. In this paper, the control coefficients
and the unknown parameters considered are time-varying and
the asymptotic tracking is achieved. As far as we know,
the asymptotic tracking control of time-varying nonlinear
systems remains unsolved when the control coefficients
are time-varying functions of the states with time-varying
parameters and unknown signs.

B. Preliminary Results

In order to cope with the unknown control coefficients, the
Nussbaum-type function is exploited in this paper, which has
the following properties

lims→∞sup
1

s

∫ s

0

N (χ)dχ = ∞ (2)

lims→∞inf
1

s

∫ s

0

N (χ)dχ = −∞. (3)

Commonly used Nussbaum-type functions include
eχ

2

cos(π2χ), χ2 sin(π2χ), cosh(χ) cos(π2χ), etc.
The following Lemma will be employed in later analysis
and is presented here.

Lemma 1: Let V (t) and χ(t) be a smooth function
defined on [0, tf ) with V (t) ≥ 0, ∀t ∈ [0, tf ), and N(χ)
be an even smooth Nussbaum-type function. If the following
inequality holds:

V (t) ≤ f0 + e−f1t
∫ t

0

(g(τ)N(χ) + 1) χ̇ef1τdτ (4)

where constant f0 > 0 and f1 > 0, g(τ) is a time-
varying parameter which takes values in the unknown closed
intervals I1 = [g−, g+] with 0 6∈ I1, and f0 represents a
suitable constant, then V (t), χ(t) and

∫ t
0
g(τ)N(χ)χ̇dτ must

be bounded on [0, tf ).
Proof: See [6], [14].

Remark 2: In the existing papers [5], [6], [14] which
use Nussbaum-type functions to deal with unknown signs
of control coefficients, the proof of stability relies on a
single Nussbaum-type function or multiple Nussbaum-type
functions with the same control signs. In order to compen-
sate for the effects from multiple Nussbaum-type functions
with different unknown control signs,a novel Nussbaum-
type function was proposed in [8]. In this paper, we will
propose a new approach to stability analysis that the common
Nussbaum-type functions satisfying properties (3)-(4) are
able to deal with this problem.

Remark 3: If a reference signal does not satisfy Assump-
tion 1, for example that a ramp function used in start up of
industrial systems, we can smooth the reference signal at first
and then apply the proposed backstepping control scheme.

III. ADAPTIVE CONTROL DESIGN

A. Design Procedure

In this section, we present the adaptive control design
using the backstepping technique in n steps. We take the
change of coordinates as follows,

z1 = y − yr (5)
zi = xi − αi−1, i = 2, 3, . . . , ρ, (6)

where αi−1 is the virtual control at each step and will be
determined in later discussions.
We now illustrate the backstepping design procedures incor-
porating with Nussbaum function to avoid using the control
coefficients, with details given for the first step.



Step. 1
It follows from (1) and (5) that

ż1 = b1(t)β1(x1, t)(z2 + α1) + θ1(t)Tψ1(x1) + φ1(x1)

+d1(t)− ẏr (7)

Without using the sign of b1(t), the following virtual control
law α1 is designed

α1 = N1(χ1)ᾱ1 (8)

N1(χ1) = exp(χ2
1) cos(

π

2
χ1) (9)

where χ1 is generated by

χ̇1 = β1(x1, t)ᾱ1z1 (10)

and ᾱ1 is designed as

ᾱ1 =
1

β1(x1, t)

[
c1z1 +

1

4
β2

1(x1, t)z1 − ẏr + φ1(x1)

+ D̂1tanh

(
z1

%

)
+ Θ̂T

1 tanh(
z1ψ1(x1)

%
)ψ1(x1)

]
(11)

and the parameter estimators are designed as

˙̂
Θ1 = Γ1Tanh

(
z1ψ1(x1)

%

)
ψ1(x1)z1 − Γ1kθ1Θ̂1(12)

˙̂
D1 = l1z1tanh(z1/%)− l1kd1D̂ (13)

where Tanh(·) is defined as a p1-by-p1 diagonal matrix
a Tanh

(
z1ψ1

%

)
= diag

[
tanh

(
z1ψ

1
1

%

)
, ..., tanh

(
z1ψ

p1
1

%

)]
,

tanh(·) is a hyperbolic tangent function c1, l1, kθ1 ,and kd1
are positive constants, Γ1 is a positive definite matrix. D̂1

is the estimate of D1 and D1 is the bound of disturbance
d1(t), such as |d1(t)| ≤ D1. Θ̂1 denotes the estimate of
Θ1 = [Θ1

1, ...,Θ
p1
1 ]T , where Θj

1, j = 1, ..., p1 is the bound of
each component of the time-varying parameter vector θ1(t),
% is a positive constant. The hyperbolic tangent function
tanh(·) has the following property.

0 ≤ X −Xtanh(X/%) ≤ 0.2785%, ∀ X ∈ <. (14)

Remark 4: A hyperbolic tangent function is introduced
in the virtual control (11) and parameter updating laws (12)
and (13). Note that a positive constant % is introduced in the
hyperbolic tangent function,
Then from (7) and (11) we have

ż1 − β1(x1, t)ᾱ1

= b1(t)β1(x1, t)z2 + (b1(t)N1(χ1) + 1)β1(x1, t)ᾱ1

+ θ(t)Tψ1(x1)− Θ̂T
1 Tanh

(
z1ψ1(x1)

%

)
ψ1(x1)

− c1z1 −
1

4
β2

1(x1, t)z1 + d1(t)− D̂1Tanh

(
z1

%

)
(15)

where Θ̃1 = Θ1−Θ̂1, D̃1 = D1−D̂1. To proceed, we define
the Lyapunov function

V1 =
1

2
z2

1 + Θ̃T
1 Γ−1

1 Θ̃1 +
1

2l1
D̃2

1 (16)

Then the derivative of V1 along with (8) and (15) is given
by

V̇1 ≤ −c1z2
1 −

1

4
β2

1(x1, t)z
2
1

+b1(t)β1(x1, t)z1z2 + (b1(t)N1(χ1) + 1)χ̇1

+|z1|D1 − D̂1z1Tanh

(
z1

%

)
− 1

l1
D̃1

˙̂
D1

−Θ̃TΓ−1
1

˙̂
Θ + |z1θ1(t)Tψ1(x1)|

−Θ̂T
1 tanh

(
z1ψ1(x1)

%

)
ψ1(x1)z1 (17)

Using Young’s inequality, the following properties are ob-
tained and used later.

|z1|D1 − D̂1z1tanh

(
z1

%

)
≤ D1z1tanh

(
z1

%

)
+ 0.2875%D1 − D̂1z1tanh

(
z1

%

)
≤ D̃1z1tanh

(
z1

%

)
+ 0.2785%D1 (18)

and

|z1θ1(t)Tψ1(x1)| ≤ |z1ΘT
1 ψ1(x1)|

≤ ΘT
1 Tanh

(
z1ψ1(x1)

%

)
z1ψ1(x1)

+0.2785% ‖ Θ1 ‖ (19)

and

b1(t)β1(x1, t)z1z2 ≤
1

4
β2

1(x1, t)z
2
1 + b̄21z

2
2 (20)

where b̄1 is a positive constant, such as |b1(t)| ≤ b̄1. Then
the derivative of V1 is derived as

V̇1 ≤ (b1(t)N1(χ1) + 1)χ̇1 − c1z2
1 + b̄21z

2
2

+ M1%+
1

l1
D̃1

(
l1z1Tanh

(
z1

%

)
− ˙̂
D1

)
+ Θ̃T

1 Γ−1
1

(
Tanh

(
Γ1
z1ψ1(x1)

%

)
z1ψ1(x1)− ˙̂

Θ1

)
≤ −c1z2

1 + (b1(t)N1(χ1) + 1)χ̇1 + b̄21z
2
2(t) +M1

−kθ
2
‖ Θ̃1 ‖2 −

kd
2
D̃2

1

≤ −σ1V1 + (b1(t)N1(χ1) + 1)χ̇1 + b̄21z
2
2 +M1 (21)

where

M1 = 0.2785%(D1+ ‖ Θ1 ‖) +
kθ1
2
‖ Θ1 ‖2 +

kd1
2
D2

1 (22)

σ1 = min{2c1, kd1k1, kθ1λmin(Γ1)} (23)

Remark 5: In the cancellation based backstepping de-
sign, the coupling term b1(t)β1(x1, t)z1z2 in (17) will be
compensated for in the next step by augmenting the Lya-
punov candidate then. In decoupled backstepping design, we
use the Young’s inequality to transform this coupling term
to two terms as in (20). Thus there is only the decoupled
term b̄21z

2
2 is left in (21), where the boundedness of z2 will

be proved in the next step. According to Lemma 1, if we



could prove that z2 is bounded, then the stability of z1 is
apparent and easy. It is this fundamental change that makes
control system design for this problem solvable.
Multiplying of (21) by eft and integrating both sides over
the interval [0, t] gives∫ t

0

V̇1e
fτdτ ≤

∫ t

0

(b1(t)N(χ1) + 1)χ̇1e
fτdτ

−
∫ t

0

σ1V1(τ)2efτdτ +

∫ t

0

M1e
fτdτ

+

∫ t

0

b̄21z2(τ)2efτdτ (24)

This yields

V1(t) ≤ V1(0) + e−ft
∫ t

0

(b1(t)N(χ1) + 1)χ̇1e
fτdτ

+ M1

∫ t

0

e−f(t−τ)dτ +

∫ t

0

b̄1z
2
2e
−f(t−τ)dτ

(25)

Since
∫ t

0
%(τ)dτ is bounded and therefore M̄1 =

V1(0) + M1

∫ t
0
%e−f(t−τ)dτ is bounded. If there is no

extra term
∫ t

0
b̄21z2(τ)2e−f(t−τ)dτ in the inequality (25),

together with Lemma 1, we can conclude that V1(t) and
χ1(t), hence z1, Θ̂1, and D̂1 are bounded.

Step.i (i = 2, . . . , n)
The virtual control αi is designed as

αi = Ni(χi)ᾱi (26)

Ni(χi) = exp(χ2
i ) cos

(π
2
χi

)
(27)

χ̇i = βi(x̄i, t)ᾱizi (28)

ᾱi =
1

βi(x̄i, t)

(
cizi +

1

4
β2
i (x̄i, t)zi + φ̄i

+ηi + D̂T
i Tanh

(
zihi
%

)
hi

+Θ̂T
i Tanh

(
ziψ̄i
%

)
ψ̄i

)
(29)

and the parameter estimation laws are designed as

˙̂
Θi = ΓiTanh

(
ziψ̄i
%

)
ziψ̄i − Γikθi θ̂i (30)

˙̂
Di = liTanh

(
zihi
%

)
zihi − kdiD̂i (31)

where ci, li, kdi and kθi are positive definite constants, Γi
is a diagnal positive matrix, Θ̂i is the estimate of Θi =
[Θ1
i , ...,Θ

p̄i
i ]T , Θj

i which is the bound of θ̄ji , j = 1, ..., p̄i,
D̂i is the estimate of Di = [D1

i , ..., D
i
i]
T , Dj

i which is the
bound of d̄ji , j = 1, ..., i, Tanh

(
ziψi

%

)
and Tanh

(
ziβi

%

)
are p̄i-by-p̄i and i-by-i diagonal matrices, respectively, p̄i =

(
∑i
j=1 pj) + i− 1, and

θ̄i = [θi, θi−1, ..., θ1, bi−1, ..., b1]T ∈ Rp̄i (32)

ψ̄i = [ψi,
∂αi−1

∂xi−1
ψi−1, ...,

∂αi−1

∂x1
ψ1,

−∂αi−1

∂xi−1
xi, ...,−

∂αi−1

∂x1
x2]T ∈ Rp̄i (33)

d̄i = [di, di−1, ..., d1]T ∈ Ri (34)

hi = [1,−∂αi−1

∂xi−1
...,−∂αi−1

∂x1
]T ∈ Ri (35)

φ̄i = φi −
i−1∑
j=1

∂αi−1

∂xj
φj (36)

ηi = −
i−1∑
j=1

∂αi−1

∂Θ̂i

˙̂
Θi −

i−1∑
j=1

∂αi−1

∂D̂i

˙̂
Di

−
i−1∑
j=1

∂αi−1

∂y
(j−1)
r

y(j)
r (37)

The final adaptive controller u(t) is given by

u(t) = Nn(χn)ᾱn (38)

The control Lyapunov function is chosen as

Vi =

(
1

2
z2
i +

1

2
Θ̃T
i Γ−1

i Θ̃i +
1

2li
D̃T
i D̃i

)
(39)

Following the similar procedure in step 1, the derivative of
Lyapunov function Vi satisfies

V̇i ≤ −σiV 2
i + (bi(t)Ni(χi) + 1) χ̇i + b̄2i z

2
i+1 +Mi

i = 1, ..., n− 1 (40)

where b̄i is the unknown bound of bi(t) and

M1 = 0.2785%(Di+ ‖ Θi ‖) +
kθi
2
‖ Θi ‖2 +

kdi
2
D2
i (41)

σi = min{2ci, kdiki, kθiλmin(Γi)} (42)

Remark 6: Unlike the normal stability analysis for back-
stepping control design, the decoupled backstepping tech-
nique will do the backward stability analysis for the single
Lyapunov function Vi at each step. It is the fundamental
change to solve the multiple Nussbaum-type functions with
different signs of control coefficients.

IV. STABILITY ANALYSIS

Theorem 1: Consider the time-varying nonlinear system
(1) satisfying Assumptions 1-2, with the application of the
controller (38), virtual control laws (8)-(11) and (26)-(29),
the parameter updating laws (12), (13), (30), (31). All signals
contained in the closed-loop systems are uniformly bounded.

Proof: In the decoupled backstepping stability analysis,
we will do the backward analysis. From the last step n, the
derivative of Lyapunov function Vn satisfies

V̇n ≤ −σnV 2
n + (bn(t)Nn(χn) + 1) χ̇n +Mn (43)



Multiplying of (43) by eft and taking the integration on both
sided gives

Vn(t) ≤ e−ft
∫ t

0

(bn(t)Nn(χn) + 1)χ̇ne
fτdτ

+Vn(0) +Mn

∫ t

0

%e−f(t−τ)dτ

−
∫ t

0

σnVne
−f(t−τ)dτ

≤ e−ft
∫ t

0

(bn(t)Nn(χn) + 1)χ̇ne
fτdτ + M̄n

(44)

where

M̄n = Vn(0) +Mn

∫ t

0

e−f(t−τ)dτ (45)

Since M̄n is bounded. Together with Lemma 1, we can
conclude that Vn(t) and χn(t), hence zn, Θ̂n, and D̂n are
bounded.
Applying Lemma 1 for (n − 1) times backward, it can be
seen from the above mentioned design procedures that Vi(t),
zi(t), and hence χi(t) are bounded. Thus the solution of the
closed-loop is bounded. The results established is concluded
in Theorem 1.

Remark 7: The difficulty to achieve the control objective
is to handle the effects of unknown time-varying parameters,
unknown signs of control coefficients and unknown distur-
bances. By applying the decoupled backstepping technique
and introducing a hyperbolic tangent function, a Nussbaum-
type function, and a new estimation of parameter bound, this
new control strategy achieves the goals of stabilization and
asymptotic tracking for the uncertain time-varying nonlinear
systems (1).

Remark 8: To compensate for the effects of unknown
time-varying parameters and disturbance, new estimation
methods are developed to estimate the bounds of time-
varying parameters in (12) and (30) and the bounds of
disturbance in (13) and (31).

Remark 9: A Nussbaum-type function is used in virtual
control laws αi (8) and final control law u (38) to deal
with unknown time-varying parameter with unknown signs
of control coefficients.

V. AN ILLUSTRATIVE EXAMPLE

For illustration of the proposed scheme, an example is
considered. The results of simulation will verify that our
adaptive controller makes the system stable. We consider the
following second-order system

ẋ1 = b1(t)β1(x1)x2 + θ1(t)x2
1

ẋ2 = b2(t)β2(x1, x2)u+ θ2(t)(x2 + x1) + d(t)

y = x1 (46)

where θ1(t) = 0.5 + cos(t); θ2(t) = 1 + cos(t), b1 = b2 =
1.5 + 0.2 cos(t), d(t) = 0.1 sin(2πt), β1(x1) = 1,β2 =
10.2x2

1 + x2
2 actually these parameters and disturbances are

not needed to be known in controller design. The objective
is to control the system output y(t) to follow a desired
trajectory yr = 0.2− 0.2 cos(3πt).
In the simulation, the design parameters were set as c1 =
c2 = 2, k1 = k2 = 1, l1 = l2 = 1.5. The simulation
results are shown in Figures 1-3. Figure 1 shows the sys-
tem states x1 and x2. Figure 2 shows the tracking error
y(t)−yr(t) converges to 0. Figure 3 shows the control input
u(t). Clearly, simulation results verify the effectiveness of
proposed scheme.
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Fig. 1. System states x1 and x2.
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Fig. 2. Tracking error y − yr

VI. CONCLUSION

In this paper, an adaptive backstepping control scheme
is proposed for uncertain time-varying nonlinear systems in
presence of unknown control coefficients which are functions
of states and unknown time-varying parameters with un-
known signs and functions, unknown time-varying parame-
ters as well as unknown bounded disturbances. The proposed
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Fig. 3. System input u.

robust adaptive controller is designed by incorporating new
hyperbolic tangent functions, Nussbaum-type functions, and
new estimations of parameter bounds. Two adaptation laws
are developed for estimation of bounds of unknown time-
varying parameters and unknown disturbances. A decoupled
backstepping approach to stability analysis is proposed. By
using the decoupled backstepping technique, it is proved
that under the proposed control, all closed-loop states are
uniform ultimate bounded.Simulation results illustrate the
effectiveness of the proposed adaptive control scheme. The
future work may be the output feedback control of nonlinear
systems with unknown control coefficients.
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