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Appendix S1. Model code. 

// The following is the STAN model code 

 

data { 

  int<lower=0> N; // number of years  

  int<lower=0> K; // number of species that are dynamically modelled  

  int<lower=0> cop_N; // number of years with copepod data 

  int<lower=0> krill_N; // number of years with krill data 

  int<lower=0> amph_N; // number of years with amphipod data 

  int<lower=0> cap_N; // number of years with capelin data 

  int<lower=0> pc_N; // number of years with polar cod data 

  int<lower=0> cop_noNA[cop_N]; // rows (years) with copepod data 

  int<lower=0> krill_noNA[krill_N]; // rows (years) with krill data 

  int<lower=0> amph_noNA[amph_N]; // rows (years) with amph data 

  int<lower=0> cap_noNA[cap_N]; // rows (years) with capelin data 

  int<lower=0> pc_noNA[pc_N]; // rows (years) with polar cod data 

  vector[cop_N] cop_obs; // observed copepod abundance  

  vector[krill_N] krill_obs; // observed krill biomass  

  vector[amph_N] amph_obs; // observed amphipod biomass  

  vector[cap_N] cap_obs; // observed capelin biomass  

  vector[pc_N] pc_obs; // observed polar cod biomass  

  vector<lower=0>[cop_N] cop_se; // s.e. of cop_obs 

  vector<lower=0>[krill_N] krill_se; // s.e. of krill_obs 

  vector<lower=0>[amph_N] amph_se; // s.e. of amph_obs 

  vector<lower=0>[cap_N] cap_se; // s.e. of cap_obs 

  real<lower=0> pc_se; // s.e. of pc_obs 

  vector[N] her;  // herring biomass  

  vector[N] cod;  // cod biomass  

  vector[N] ice;  // ice anomaly dec-may  

  vector[N] cap_F;  // capelin fishing mortality  

} 

 

parameters { 

  real c10;  // intercept copepods 

  real c11;  // autoregressive parameter copepods 

  real c13;  // amphipod effect on copepods 

  real c14;  // capelin effect on copepods 

  real c15;  // polar cod effect on copepods 

  real c16;  // ice effect on copepods 

 

  real c20;  // intercept krill 

  real c22;  // autoregressive parameter krill 

  real c24;  // capelin effect on krill 

  real c26;  // ice effect on krill 

 

  real c30;  // intercept amphipods 

  real c31;  // copepod effect on amphipods 

  real c33;  // autoregressive parameter amphipods 

  real c35;  // polar cod effect on amphipods 

  real c36;  // ice effect on amphipods 

 

  real c40;  // intercept capelin 

  real c41;  // copepod effect on capelin 

  real c42;  // krill effect on capelin 

  real c44;  // autoregressive parameter capelin 

  real c46;  // ice effect on capelin 

  real c47;  // cod effect on capelin 

  real c48;  // herring effect on capelin 

  real c49;  // fishing on capelin 

 

  real c50;  // intercept polar cod 

  real c51;  // copepod effect on polar cod 

  real c53;  // amphipod effect on polar cod 

  real c55;  // autoregressive parameter polar cod 

  real c56;  // ice effect on polar cod 

  real c57;  // cod effect on polar cod 
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  real<lower=0.8> s1o;   // multiplication factor observation error copepods 

  real<lower=0.8> s2o;   // multiplication factor observation error krill 

  real<lower=0.8> s3o;   // multiplication factor observation error amphipods 

  real<lower=0.8> s4o;   // multiplication factor observation error capelin 

  real<lower=0.5> s5o;   // multiplication factor observation error polar cod 

 

// covariance matrix process errors of (cop,krill,amph,cap,pc) 

  cholesky_factor_corr[K] L_Omega; 

  vector<lower=0.1>[K] L_sigma;      

 

// latent values of (cop,krill,amph,cap,pc) 

  matrix<lower = -4, upper = 4>[N,K] Latent;    

} 

 

model { 

  matrix[K,K] L_Sigma; 

 

  // prior distribution of parameters  

  c10 ~ cauchy(0, 5);               

  c11 ~ cauchy(0, 5); 

  c13 ~ cauchy(0, 5); 

  c14 ~ cauchy(0, 5); 

  c15 ~ cauchy(0, 5); 

  c16 ~ cauchy(0, 5); 

  c20 ~ cauchy(0, 5); 

  c22 ~ cauchy(0, 5); 

  c24 ~ cauchy(0, 5); 

  c26 ~ cauchy(0, 5); 

  c30 ~ cauchy(0, 5); 

  c31 ~ cauchy(0, 5); 

  c33 ~ cauchy(0, 5); 

  c35 ~ cauchy(0, 5); 

  c36 ~ cauchy(0, 5); 

  c40 ~ cauchy(0, 5); 

  c41 ~ cauchy(0, 5); 

  c42 ~ cauchy(0, 5); 

  c44 ~ cauchy(0, 5); 

  c46 ~ cauchy(0, 5); 

  c47 ~ cauchy(0, 5); 

  c48 ~ cauchy(0, 5); 

  c49 ~ normal(-1, .2); 

  c50 ~ cauchy(0, 5); 

  c51 ~ cauchy(0, 5); 

  c53 ~ cauchy(0, 5); 

  c55 ~ cauchy(0, 5); 

  c56 ~ cauchy(0, 5); 

  c57 ~ cauchy(0, 5); 

 

  s1o ~ normal(1.2, .2); 

  s2o ~ normal(1.2, .2); 

  s3o ~ normal(1.2, .2); 

  s4o ~ normal(1.2, .2); 

  s5o ~ normal(1, .4); 

 

  L_Sigma = diag_pre_multiply(L_sigma, L_Omega); 

  L_Omega ~ lkj_corr_cholesky(4); 

  L_sigma ~ normal(0, 5);   

 

  // process model 

  Latent[1,1] ~ normal(0, 3); 

  Latent[1,2] ~ normal(0, 3); 

  Latent[1,3] ~ normal(0, 3); 

  Latent[1,4] ~ normal(0, 3); 

  Latent[1,5] ~ normal(0, 3); 

  for(n in 2:N){                                 

      // Expected: 

      vector[K] Mu;    

      //cop: 
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      Mu[1] = c10  

            + c11 * Latent[n-1, 1]  

            + c13 * Latent[n-1, 3]   

            + c14 * Latent[n-1, 4]  

            + c15 * Latent[n-1, 5]  

            + c16 * ice[n];  

      // krill: 

      Mu[2] = c20  

            + c22 * Latent[n-1, 2]  

            + c24 * Latent[n-1, 4]   

            + c26 * ice[n];   

      //amph: 

      Mu[3] = c30  

            + c31 * Latent[n-1, 1]  

            + c33 * Latent[n-1, 3]  

            + c35 * Latent[n-1, 5]  

            + c36 * ice[n];  

      // cap: 

      Mu[4] = c40  

            + c41 * Latent[n-1, 1]  

            + c42 * Latent[n-1, 2]  

            + c44 * Latent[n-1, 4]  

            + c46 * ice[n]      

            + c47 * cod[n] 

            + c48 * her[n]  

            + c49 * cap_F[n] ; 

      // pc: 

      Mu[5] = c50  

            + c51 * Latent[n-1, 1]  

            + c53 * Latent[n-1, 3] 

            + c55 * Latent[n-1, 5]  

            + c56 * ice[n]    

            + c57 * cod[n] ; 

      // Latent = Expected + process error: 

      Latent[n,] ~ multi_normal_cholesky(Mu, L_Sigma);   

      } 

  

  // observation model: 

  cop_obs ~ normal(Latent[cop_noNA,1], s1o * cop_se); 

  krill_obs ~ normal(Latent[krill_noNA,2], s2o * krill_se); 

  amph_obs ~ normal(Latent[amph_noNA,3], s3o * amph_se); 

  cap_obs ~ normal(Latent[cap_noNA,4], s4o * cap_se); 

  pc_obs ~ normal(Latent[pc_noNA,5], s5o * pc_se); 

       

} 

 

 generated quantities { 

 corr_matrix[K] Omega; 

 Omega = multiply_lower_tri_self_transpose(L_Omega); 

 } 
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Appendix S2. Supplementary Methods. 

Fitting the model 

All data series were normalised to zero mean and unit standard deviation prior to analysis to 

facilitate convergence. For ease of interpretation, the estimated parameters and state variables were 

transformed back to the original (i.e., natural logarithm) scale of the data when presenting model 

output. To further facilitate convergence, we used Cholesky factorisation of the variance-covariance 

matrix Σ. That is, we parameterized the model so that we estimated a scale vector τ1,..., τ5 and the 

Cholesky factor of the correlation matrix Ω, which was inverse transformed to Ω after estimation 

(Stan Development Team, 2018). The squared elements of the scale vector (τ1
2,..., τ5

2) represented 

the variance components of Σ. The Stan model code is given in the online Appendix S1. 

We used four independent chains with 20 000 iterations, where the first 10 000 iterations 

were used as ‘warm-up’ iterations. In addition, we thinned the chains with a factor 20 to reduce 

autocorrelation in the posterior samples and to produce a reasonable amount of output. In the end, 

we had 500 samples from each chain, leading to a total of 2000 samples. To avoid divergent 

transitions in the sampling of the posterior distribution (Stan Development Team, 2018), the 

‘adapt_delta’ parameter was set to 0.995 and maximum tree depth to 15.  

Prior distributions 

We chose non-informative priors for most model parameters to let the data drive the inferences. 

Specifically, Cauchy distributions with means zero and standard deviations 5 were used as priors for 

all parameters cij except for c49, i.e., the coefficient for the effect of fishing, FCAP. The variable FCAP was 

defined so that we expected c49 to be close to -1, but with uncertainty due to uncertainty and trend 

in population biomass during the period of fishing and uncertainty in fisheries’ catch. Hence, we used 

a normal distribution with mean -1 and standard deviation 0.2 as prior for c49. 

 We used informative priors for the standard deviations for the observation noise σ1,T,..., σ5,T. 

For the first four time-series, Cop, Krill, Amph and Cap, the priors were based on annual nominal 

standard errors, sCop,T, sKrill,T, sAmph,T, sCap,T (calculated as described in Appendix S2. Supplementary 

Methods). The annual standard deviations σ1,T,..., σ4,T for Cop, Krill, Amph and Cap were assumed to 

scale with the respective annual nominal standard errors, so that we only estimated term-specific 

scaling factors σ1,..., σ4. Specifically, we assumed σ1,T = σ1 sCop,T, σ2,T = σ2 sKrill,T, σ3,T = σ3 sAmph,T, and σ4,T 

= σ4 sCap,T. The prior for each scaling factor was a truncated normal distribution centred around 1.2 

(to account for underestimation of uncertainty by the nominal standard errors) with a standard 

deviation of 0.2 and a lower bound of 0.8. While we lacked quantitative information about the 
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uncertainty of Pol, polar cod and capelin were estimated acoustically at the same surveys, so many 

uncertainty sources were similar. The survey mainly targeted the commercially important capelin 

however, and the distribution area of polar cod was not fully covered in all years. We therefore 

expected the uncertainty of Pol to be of the same order of magnitude as that of Cap, but somewhat 

higher. For Pol we assumed the same observation error for all years, σ5,T = σ5, with the prior for σ5 

being a truncated normal distribution with mean 0.3, standard deviation 0.12 and a lower bound 

0.15, i.e. with both higher mean and higher standard error than capelin for most years (as the 

median nominal standard error for capelin was 0.14). 

 The priors for the scales of the process noise, τ1,..., τ5, were also assumed to follow a 

truncated normal distribution with mean zero, standard deviation 5 and lower bound 0.1. As the 

priors referred to the normalized scale the model was fitted to, these lower bounds meant that 

process noise was assumed to contribute at least 1 % of the observed variance. We used an LKJ prior 

with shape 4 for the Cholesky factor of the correlation matrix Ω. With a shape parameter of 1, the LKJ 

correlation distribution reduces to the uniform distribution over correlation matrices of order 5; as 

the shape parameter increases, the prior increasingly concentrates around the unit correlation 

matrix (Stan Development Team, 2018). These restrictions on the process error variance-covariance 

(i.e., lower bounds on scale and shape parameter larger than 1) were applied due to difficulties in 

sampling unrealistically low or strongly correlated process errors (causing divergent transitions, Stan 

Development Team, 2018). 

 The priors for the initial values of the state variables x1,T,..., x5,T at time T = 1 were normal 

distributions with means zero and standard deviations 3, and the state variables were bounded to be 

between -4 and 4 at all time steps (at the normalised scale the model was fitted in). 

Uncertainty estimates 

Information about the uncertainty of the time-series was used as input to the analysis (as described 

in the section Prior distributions). 

Annual nominal standard errors (sCop,T) of Cop were calculated by averaging the nominal 

standard errors of the regional abundance indices (sCopC,T and sCopN,T, respectively, obtained from the 

regression models used to calculate the logarithmic scale indices CopC and CopN, see Stige et al. 

(2014)). Specifically, we used sCop,T = (sCopC,T
2 + sCopN,T

2) 0.5 / 2.  Median and range of sCop,T were 0.06 and 

(0.05, 0.14), contributing to around 4 % of the observed variance in Cop. 

Annual nominal standard errors (sKrill,T) of Krill were calculated from nominal standard errors 

sKrill,D,T and sKrill,N,T of the arithmetic scale indices KrillD and KrillN. The standard errors sKrill,D,T and sKrill,N,T 
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were calculated from the between-station standard deviation (sd) and number of stations (n) for 

each sampling period (day or night) and year using s = sd / n0.5. A joint arithmetic scale coefficient of 

variation was calculated as CVKrill,T = (sKrill,D,T
2 + sKrill,N,T

2)0.5/([KrillD + KrillN]). The logarithmic scale 

standard error (sKrill,T) was calculated from CVKrill,T using s = ln(1 + CV2)0.5. Median and range of sKrill,T 

were 0.43 and (0.27, 0.78), contributing to around 12 % of the observed variance in Krill. 

Annual nominal standard errors sAmph,T of Amph were obtained from the regression model 

used to calculate Amph (Dalpadado et al., 2012). Median and range of sAmph,T were 0.12 and (0.08, 

0.29), contributing to around 5 % of the observed variance in Amph. 

To calculate annual nominal standard errors sCap,T of Cap, we first calculated the arithmetic 

scale coefficients of variation for biomass at ages a = 1−4, CVCapBM,a,T = (exp[sCapN,a,T
2

 + sCapW,a,T
2] – 1)0.5. 

Here, sCapN,a,T  is the standard error of log-abundance-at-age, sCapW,a,T is the standard error of log-

weight-at-age, and sCapN,a,T 
2+ sCapW,a,T

2 is the squared standard error of log-biomass-at-age (for 

simplicity assuming independent observation errors of abundance and weight).  Estimates of sCapN,a,T  

were mainly based on Tjelmeland (Tjelmeland, 2002; see Stige et al., 2018 for details), i.e., 0.2 for 

most years but 0.5 or 1 for some ages in some years. We used sCapW,a,T = sCapW = 0.06 for all ages and 

years, based on an estimated standard error of log-length-at-age around 0.02 (Stige et al., 2018) and 

an approximately cubic relationship between length and weight (corresponding to a multiplication 

factor of 3 on log-scale). The coefficient of variation for total biomass of ages 1−4 was calculated as 

𝐶𝑉𝐶𝑎𝑝𝐵𝑀,𝑇 = [∑ (𝐶𝑉𝐶𝑎𝑝𝐵𝑀,𝑎,𝑇
2𝐵𝑀𝐶𝑎𝑝,𝑎,𝑇

2)]𝑎=4
𝑎=1

0.5
/∑ (𝐵𝑀𝐶𝑎𝑝,𝑎,𝑇)

𝑎=4
𝑎=1 , based on the simplifying 

assumption that observation errors for different ages are independent. Annual nominal standard 

errors s = sCap,T were calculated from CV = 𝐶𝑉𝐶𝑎𝑝𝐵𝑀,𝑇 using s = ln(1 + CV2)0.5. Median and range of 

sCap,T were 0.14 and (0.12, 0.38), contributing to around 2 % of the observed variance in Cop.  

Note that these nominal standard errors are likely to underestimate uncertainty, for example 

due to unaccounted spatial correlations in the construction of zooplankton indices, and across-age-

correlations for capelin. For capelin, our data allows assessing the potential magnitude of this effect: 

If observation noise is correlated across capelin ages so that the uncertainty around the total 

biomass is equal to the uncertainty around a single age-class, the standard error for capelin becomes 

approximately 50 % higher than the nominal values calculated above (with a median value of 0.21 

instead of 0.14). 

We lacked quantitative information about the uncertainty of Pol and the other time-series 

analysed.  
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Appendix S3. Supplementary tables and figures. 

Table S1. Alternative climate variables. In a series of alternative models, winter sea ice (Ice), used as 

climate variable in the main analysis, was replaced by each of the alternative climate variables. 

Climate variable Description 

Sea ice cover in April Area of sea ice in April, which is the month of maximal ice coverage 
(ICES, 2018). The index was calculated based on sea ice concentration 
data from the National Snow and Ice Data Center for 72−82 °N, 
10−60 °E. 

Area of Arctic water 
masses in autumn 

Area of Arctic water masses (temperature < 0 °C) in the area 72–80˚N, 
20–50˚E (ICES, 2018). The index was calculated based on the mean 
50−200 m temperature fields from temperature measurements taken 
during annual scientific surveys in the third quarter. The index has 
been shown to be positively associated with the occurrence of pelagic 
amphipods in the Barent Sea (Dalpadado et al., 2012). 

Summer SST Annual mean summer (May−September) sea surface temperature 
(SST) in the area 74−80 °N, 20−50 °E (Fig. 1). This period covers the 
main primary and secondary production season in the central and 
northern Barents Sea (Wassmann et al., 2006). The index was 
calculated from monthly sea surface temperature data at a 2×2° grid 
(NOAA_ERSST_V3 data set) provided by the NOAA/OAR/ESRL PSD, 
Boulder, Colorado, USA, from their Web site at 
http://www.esrl.noaa.gov/psd/. 

Spring SST SST in May−June, calculated from the same data as Summer SST. SST 
is hypothetically most critical early in the season, e.g. through 
association with the timing of the spring bloom.   

Previous autumn SST Previous year’s SST in August−November, calculated from the same 
data as Summer SST. Previous-autumn temperature has been 
negatively associated with variation in copepod biomass in the central 
and northern Barents Sea (Stige et al., 2014).  

Previous autumn water 
column temperature 

Previous year’s water column temperature in August−September, 
measured at 50−200 m depth at the Vardø North section at 72°15´N – 
74°15´N, 31°13´E (Trofimov and Ingvaldsen, 2016, with missing value 
for 2010 interpolated between values for 2009 and 2011). High water 
column temperature in autumn is hypothetically a proxy for high 
overwintering temperature and -metabolism, which have been 
suggested to negatively affect copepod survival in the Bering Sea 
(Coyle and Gibson, 2017).  
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Table S2. Prior and posterior distributions of model parameters. Values are at the normalised scale 
the model was fitted to†. Numbers in bold: 95 % credibility intervals that exclude zero. 

Parameter 
Prior 
Mean 

Prior 
SD 

Posterior 
median 

Posterior 
mean 

Posterior 
SD 

Posterior 
2.5% 

quantile 

Posterior 
97.5% 

quantile 

c10 0 5 0.02 0.03 0.14 -0.25 0.30 

c11 0 5 0.05 0.00 0.37 -0.81 0.64 

c13 0 5 0.00 -0.02 0.35 -0.71 0.63 

c14 0 5 -0.54 -0.57 0.28 -1.17 -0.04 

c15 0 5 0.20 0.21 0.31 -0.33 0.89 

c16 0 5 0.40 0.39 0.19 0.01 0.75 

c20 0 5 0.05 0.05 0.11 -0.17 0.26 

c22 0 5 0.59 0.59 0.17 0.25 0.91 

c24 0 5 -0.29 -0.29 0.15 -0.58 -0.01 

c26 0 5 -0.18 -0.18 0.13 -0.42 0.09 

c30 0 5 0.04 0.04 0.14 -0.22 0.33 

c31 0 5 0.40 0.39 0.23 -0.06 0.84 

c33 0 5 -0.07 -0.08 0.28 -0.65 0.47 

c35 0 5 -0.58 -0.60 0.30 -1.32 -0.05 

c36 0 5 0.40 0.40 0.18 0.06 0.78 

c40 0 5 -0.04 -0.04 0.08 -0.20 0.12 

c41 0 5 -0.01 -0.01 0.19 -0.41 0.35 

c42 0 5 0.74 0.74 0.23 0.29 1.19 

c44 0 5 1.04 1.04 0.15 0.72 1.33 

c46 0 5 -0.26 -0.26 0.12 -0.48 -0.01 

c47 0 5 -0.60 -0.59 0.20 -0.98 -0.20 

c48 0 5 -0.21 -0.20 0.12 -0.44 0.04 

c49 -1 0.2 -1.05 -1.06 0.20 -1.47 -0.69 

c50 0 5 -0.03 -0.03 0.13 -0.30 0.24 

c51 0 5 0.21 0.22 0.30 -0.41 0.82 

c53 0 5 -0.09 -0.07 0.41 -0.87 0.76 

c55 0 5 0.71 0.73 0.31 0.16 1.38 

c56 0 5 -0.11 -0.12 0.22 -0.59 0.27 

c57 0 5 -0.06 -0.08 0.27 -0.69 0.40 

σ1 1.2 0.2 1.22 1.23 0.20 0.87 1.63 

σ2 1.2 0.2 1.26 1.25 0.19 0.88 1.60 

σ3 1.2 0.2 1.23 1.24 0.19 0.88 1.63 

σ4 1.2 0.2 1.14 1.16 0.18 0.84 1.54 

σ5 0.3 0.12 0.41 0.40 0.10 0.19 0.58 

τ1 ‡ 5 0.65 0.66 0.13 0.41 0.94 

τ2 ‡ 5 0.57 0.59 0.12 0.38 0.85 

τ3 ‡ 5 0.46 0.46 0.16 0.17 0.77 

τ4 ‡ 5 0.30 0.30 0.11 0.11 0.53 

τ5 ‡ 5 0.57 0.58 0.22 0.17 1.02 

Ω[1,2] 0 § 0.37 0.35 0.23 -0.14 0.74 

Ω[1,3] 0 § 0.26 0.24 0.24 -0.26 0.67 

Ω[1,4] 0 § -0.15 -0.14 0.26 -0.62 0.39 

Ω[1,5] 0 § 0.15 0.14 0.25 -0.34 0.62 
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Ω[2,3] 0 § 0.16 0.16 0.25 -0.35 0.60 

Ω[2,4] 0 § -0.20 -0.19 0.26 -0.67 0.35 

Ω[2,5] 0 § 0.04 0.04 0.25 -0.45 0.50 

Ω[3,4] 0 § -0.21 -0.19 0.26 -0.65 0.35 

Ω[3,5] 0 § -0.05 -0.05 0.29 -0.62 0.50 

Ω[4,5] 0 § 0.08 0.07 0.26 -0.45 0.55 

† The coefficients can here be interpreted as standard deviation unit change in response 
variable per standard deviation unit change in predictor variable (except the coefficient for 
FCAP, which was scaled to be −1 if reported catch and stock biomasses were correct and 
natural mortality during the period of fishing was ignored). The standard deviations of Cop, 
Krill, Amph, Cap, Pol, Ice, Cod and Her were, respectively, 0.364, 1.43, 0.613, 1.20, 0.845, 
14.9, 0.563 and 1.26. These standard deviations allowed converting coefficient between 
normalised scale (this table) and the scale of the data (Fig. 4). Hence, for example, the ln-
scale change in copepods per ln-scale change in capelin (c14) was -0.54 · 0.364 / 1.20. The 
standard deviation of FCAP was 0.11, meaning that the standard deviation unit change in Cap 
per standard deviation unit change in FCAP was −1 · 0.11.  

‡ The priors for the scales of the process noise, τ1,..., τ5, were truncated normal distributions 
with means zero, standard deviations 5 and lower bounds 0.1. 

§ We used an LKJ prior with shape 4 for the Cholesky factor of the correlation matrix Ω. 
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Figure S1. Alternative climate variables. Sea ice cover in winter (Ice) was the climate variable used in 

the main analysis. The alternative climate variables were sea ice cover in April, area of Arctic water masses in 

autumn, summer sea surface temperature, spring sea surface temperature, previous-autumn sea surface 

temperature, and previous-autumn water column temperature (see Table S1 for definition of variables). 
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Figure S2. Log-biomass at year T versus log-biomass at year T−1 for the biological time-series in focus. The 
relationship should be linear if the Gompertz model is appropriate. As we saw no strong indications of non-

linearity, we considered this assumption reasonable. 
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Figure S3. Estimated model coefficients at the normalised scale the model was fitted to. The coefficients can 
here be interpreted as standard deviation unit change in response variable per standard deviation unit change 
in predictor variable (except the coefficient for FCAP, which is scaled to be −1 if reported catch and stock 
biomasses are correct and natural mortality during the period of fishing is ignored). 
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Figure S4. Correlation in parameter estimates. The figure shows pairwise associations between posterior 

samples of model coefficients that had product-moment correlation coefficient (r) above 0.4 in absolute value. 

Dashed lines show locations of zero (no effect). Several of the coefficients were correlated, meaning that they 

were best interpreted pairwise. For example, the density dependence parameter for copepods (c11) was 

correlated with several other parameters. We used a broad prior distribution for c11 and the posterior 

distribution included both positive and negative values of c11. Negative values of cii imply overcompensation, 

meaning that high biomass concentrations one year led to low values the next year, for example due to 

overexploitation of resources at high biomass or cannibalism. If we considered that overcompensation in 

copepods was unlikely and only considered posterior samples with c11 > 0, the posterior distributions of the 

correlated parameters changed: the effect of amphipods on copepods (c13) was more likely negative, the effect 

of capelin on copepods (c14) was more weakly negative and the effect of polar cod on copepods (c15) was closer 

to zero compared to the case where such restriction on c11 was not made. Similarly, if we considered that 

overcompensation in amphipods was unlikely and assumed that c33 > 0, the effect of copepods on amphipods 

(c31) was more weakly positive and the effect of polar cod on amphipods (c35) was more weakly negative. 
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Figure S5. Estimated model coefficients for alternative model formulations. Filled black circles and bars show 

posterior means and 95 % credibility intervals of the main model also shown in Fig. 4. Blue open circles and 

bars show results of a model that includes direct interactions between polar cod and krill (parameters c25 and 

c52). Green squares and bars show results of a model that model that includes direct interactions between 

copepods and krill (parameters c12 and c21). The alternative models show no strong interactions between polar 

cod and krill or between copepods and krill (95 % credibility intervals include zero). The other parameters are 

not very sensitive to these alterations in model formulation, but 95 % credibility intervals are generally broader 

in the alternative models. 
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Figure S6. Estimated coefficients for models with alternative climate variables (listed in Table S1). Points and 
bars show posterior means and 95 % credibility intervals at the normalised scale the model was fitted to (as in 
Fig. S3). Blue filled circles (and bars) show results for the baseline model with Ice as climate variable. In the 
alternative models, Ice was replaced by: sea ice cover in April (filled upward-pointing triangles), area of Arctic 
water masses in autumn (filled squares), summer sea surface temperature (open circles), spring sea surface 
temperature (open upward-pointing triangles), previous-autumn sea surface temperature (open downward-
pointing triangles), or previous-autumn water column temperature (open squares).  
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Figure S7. Estimated direct and indirect effects of climate for models with alternative climate variables (listed in 
Table S1). Points and bars show posterior means and 95 % credibility intervals for the standard deviation unit 
change in the response variable per standard deviation unit change in the climate variable. The direct effects 
are the estimated effects of a given climate variable on each organism. The indirect effects are the estimated 
effects of the climate variable through the other analysed organisms and occur with a 1-year time lag. Blue 
filled circles (and bars) show results for the baseline model with Ice as climate variable. In the alternative 
models, Ice was replaced by: sea ice cover in April (filled upward-pointing triangles), area of Arctic water 
masses in autumn (filled squares), summer sea surface temperature (open circles), spring sea surface 
temperature (open upward-pointing triangles), previous-autumn sea surface temperature (open downward-
pointing triangles), or previous-autumn water column temperature (open squares). 


