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Model-free sliding-mode-based detection and
estimation of backlash in drives with single encoder

Michael Ruderman and Leonid Fridman

Abstract—Backlash is a frequently encountered problem for
various drives, especially those equipped with a single encoder
onside of the controlled actuator. This paper proposes a sliding-
mode differentiator-based estimation of unknown backlash size,
while measuring the actuator displacement only. Neither actuator
nor load dynamics are explicitly known, while a principal second-
order actuator behavior is assumed. We make use of the different
perturbation dynamics distinctive for different backlash modes
and an unbounded impulse-type perturbation at impact. The
latter leads to transient lost of the sliding-mode and allows for
detecting an isolated time instant of the backlash occurrence. The
proposed method is simple and unsensitive to residual system
dynamics. The approach is experimentally evaluated on the data
collected from a two-inertia-system with backlash in the coupling.

Index Terms—sliding-mode observer, backlash, super-twisting
algorithm, estimation, mechanical play, nonlinearities

I. INTRODUCTION

For estimating unavailable states of dynamic systems, the
sliding-mode observers, see e.g. [1], are particularly interesting
since featuring the finite-time convergence [2]–[4] and robust-
ness against the bounded matched perturbations. That means
the estimated dynamic states can be used in an application
(instead of the real quantities) after a finite-time, that starting
from some initial conditions and independently of the time
constants of the system dynamics under consideration. The
backlash phenomenon in mechanical systems [5] constitutes
a demanding case, where the unavailable state(s) and/or pa-
rameter(s) of a mechanical play need to be known either for
the system control or monitoring purposes. Once the backlash
size correspondingly state are known, these can be used in
control, therefore reducing the undesirable lost motion own
to the play and attenuating the impact and thus reducing wear
and aging effects in mechanical drives with backlash; examples
can be found in [5]–[9]. One should notice that the analysis of
backlash disturbances in control engineering is not new, and
the effects of backlash on the stability of closed-loops have
been already addressed at a very early stage [10].

The sliding-mode-based approaches have been also shown
for systems with backlash, considering the velocity obser-
vation [11] and switched twisting control [7]. However, the
sliding-mode-based observation [11] requires both sides of
the backlash system, to say motor and load, to be equipped
with encoders for the relative displacement measurement.
The largest part of mechanical systems with backlash are
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yet equipped with one-side sensing of displacement only, so
that reliable backlash estimation constitutes a significant and
challenging task desirable for various applications. Examples
can be found in the motor drives [6], [12], vehicle steering
and powertrain systems [13], [14], and others [15], [16]. It
is also worth noting that the nonlinear, and even fractional-
order, dynamics of systems with backlash has been addressed
in [17], and as hybrid piecewise affine dynamics in [8], [9].
An approach for backlash identification, using a relay feedback
velocity control loop, has been recently proposed in [18]. This
requires, however, a high-precision motor encoder and can
reveal sensitive to uncertain systems with a limited knowledge
of system parameters and lower sampling, correspondingly
quantization, characteristics of the feedback control. Another
recent approach for robust backlash estimation in industrial
drive-train systems can be found in [19], which relies on the
sliding-mode perturbation observation and adaptive estimation
principles. However, the approach requires a full vector of the
motion system states, i.e. of motor and load, to be available.

The challenges with one-side backlash identification or
online estimation, depending on the application requirements,
are often due to uncertain parameters of the modeled motion
dynamics and disturbing factors that cannot be taken into
account when designing an estimation algorithm. Examples
for that are the unknown and varying loads, uncertain damping
across and inside of mechanisms containing backlash, sticking
and drifting by-effects, and temporal propagation of crack
effects and wear. Due to robustness, in regard to the system
uncertainties, a sliding-mode-based approach for backlash
estimation appears promising, especially when taking into
account a variable structure feedback dynamics of the backlash
load. Yet, to the best of our knowledge, neither of previous
works made use of the mode-switching backlash behavior and
its impact on the sliding-mode estimation errors.

This paper introduces a sliding-mode differentiator-based
approach for detecting backlash and estimating its size in the
drive systems, by using the position feedback of the actuated
motor only. We use the fact of zero-converged error of position
estimate at steady-state and discontinuous loss of sliding-mode
upon backlash impact. From the associated and isolated time
instants of the sliding-mode error we identify the backlash
size within available motor displacement time-series. In what
follows, the system dynamics is addressed in section II in
context of system perturbations associated with backlash and
unknown load dynamics. The second-order sliding mode STA
algorithm is also briefly summarized for completeness. In
section III, the backlash detection and estimation approach
is explained in details, alongside with an application example.
Evaluation on the experimental data from a two-inertia motor
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setup with backlash in the geared coupling is provided in
section IV. Finally, the conclusions are drawn in section V.

II. SYSTEM DYNAMICS WITH BACKLASH

A. Backlash perturbed second-order system

We consider a general class of the motion systems, driven
by an actuator (further as motor), for which a stiff connection
to load contains backlash. Having no explicit knowledge about
drive-chain of the load, a principle structure of a two-inertia
system with backlash, as shown in Fig. 1, can be assumed. The
total unknown backlash size (denoted also as backlash gap) is
2β . The first inertial body is actuated by a generalized force
u, which is an available system input. Both connected bodies
are on the common ground with normal contact interfaces
that induce counteracting forces, generally known as uncertain
friction, see e.g. [20]. Note that independently whether a
translational or rotational motion is in place, the generalized
coordinates x1 and x2 of both rigid bodies with the total masses
(inertias) m1 and m2 can be considered. Since our approach is
model-free, neither load mass nor friction parameters (corre-
spondingly models), are required to be explicitly known. While
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Fig. 1. Structure of two-inertia system with backlash

the motor and load dynamics are unknown, a principal second-
order motor behavior in general form f (t,x1,w1,u) can be
assumed. The resulted system dynamics is then written as

ẋ1 = w1,

ẇ1 = f (t,x1,w1,u)+ξ (t), (1)
y = x1,

where y is the single measured output state. The given input
force u is assumed to be not affected by any process or
measurement noise and is rather computational onside of an
overlaying control system. The entire system uncertainties,
correspondingly perturbations, are captured by ξ (·).

With respect to the system has backlash in the drive-chain
(cf. Fig. 1) different operation modes appear depending on
the backlash state x1 − x2. During the so-called engagement
mode, i.e. when both backlash sides are in contact, it is valid
ẋ2 ≡ ẋ1 = w1. At the same time, nothing exact can be said
about ẋ2 within a gap mode, i.e. when the motor and load
are decoupled from each other. During the impact, with the
corresponding changes of momentum γ = m1ẋ1, the motor
dynamics is subject to an impulse-type excitation, cf. [21].
Without an explicit knowledge of the load dynamics one can

write for the backlash perturbation

ξ =


α ẇ1 +g1(t)+g2(t) in engagement mode,
g1(t) in gap mode,
γ̇ at impact,

(2)

cf. with backlash modeling introduced in [18]. The functions
g1(·) and g2(·) are associated with unknown parts of the motor
and load dynamics, correspondingly. The negative constant of
the mass ratio is denoted by α =−m2/m1 with −∞ < α < 0.
Note that depending on the motor and load dimensions α ∈
(−10,−0.1) can be assumed in the most of application cases,
while some nominal gear ratio is already included.

From (2) it turns out that an upper boundary for the backlash
perturbations can be found, correspondingly approximated,
for a given system, except the impact transitions at which
the momentum experiences discontinuously. For showing this,
consider an ideal elastic impact of two colliding masses, i.e.
with unity restitution coefficient, which is yet valid in case
of minor plastic deformations. We note that an, otherwise,
non-negligible plastic impact is something rather unusual for
constructive elements containing backlash. Even though ẋ2 is
generally not given before and during the backlash impact, the
changes of ẋ1, and therefore γ , can be directly assessed from

ẋ+1 =
ẋ1(1+α)−2α ẋ2

1−α
, (3)

which follows from the Newtons law for unity restitution
coefficient. Here ẋ+1 denotes the motor velocity immediately
after the backlash impact. It is evident that, except the case
ẋ1 = ẋ2 = 0, the motor velocity will always experience a step-
wise change, leading to an impulsive excitation by perturbation
term. This allows considering the perturbation term, further
denoted with subscript index i for ‘impact’, as a weighted
Dirac (delta) impulse, cf. with [18],

ξi =Wm1δ (t − ti), (4)

while a relative impulse weight −∞ <W < ∞ remains uncer-
tain, due to uncertainties in (3). Here we should also recall that
the delta function δ (t − ti) is defined, in terms of distribution
theory, at ti only and is zero elsewhere. Yet delta is satisfying
the identity property of integration over the argument∫

δ (z)dz = 1.

It is evident that no upper bound can be given for (4), the
matter of fact which brings us in the position to derive an
approach of detecting and identifying backlash by using the
second-order sliding mode.

B. Second-order sliding mode differentiator

For observation of the motor states, i.e. x1 and w1, we are
using the second-order sliding-mode super-twisting algorithm
(STA) [22]. Here we stress that if a model of the nominal
system dynamics is available, an explicit second-order sliding-
mode observer [1] can be used for faster convergence and
robust state estimation while applying lower feedback gains. In
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this work we, however, refrain from an explicit system knowl-
edge and assume general lack of the identified parameters, thus
relying solely on a STA-based differentiator [23].

The second-order sliding-mode differentiator takes the form

˙̂x1 = ŵ1 + k1|y− x̂1|1/2sign(x1 − x̂1), (5)
˙̂w1 = k2 sign(y− x̂1), (6)

where the estimator gains can be assigned as k2 = 1.1L and
k1 = 2.028

√
k2, according to the methodology [24] that has

been also recently confirmed in an experimental study [25].
Note that the second-order upper bound ÿ ≤ L of an uncertain
system dynamics is generally not given, so that L is the single
design parameter we address in the following for various
perturbation modes of (1). Here one should recall that for an
appropriate k1, k2 selection and an upper bounded dynamics
perturbation, i.e. L ≥ | f + ξ |, the STA ensures the equalities
(y− x̂1) = (ẏ−ŵ1) = 0 hold after finite-time transients. Further
we note that the convergence time of a STA-based estimate
can be explicitly determined, e.g. as proposed in [4], for the
given initial values of the state estimation errors. However,
we are not making use from the convergence time values
since the initial values remain unavailable in our case. At
the same time, we use a fact that for L << |ξ |, where L
appears as a boundness constant for STA parameterization, the
second-order sliding-mode is lost. In this regard, an unbounded
impulse-type perturbation produces discontinuity in trajectory
of the estimation error as addressed below.

III. BACKLASH DETECTION AND ESTIMATION

A. Estimation error dynamics

Introducing the state estimation errors ex = x1 − x̂1 and
ew = w1 − ŵ1 and substituting (1) into (5), (6) one obtains
the estimation error dynamics as

ėx + k1|ex|1/2 sign(ex) = ew, (7)

correspondingly

ėw = f +ξ − k2 sign(ex). (8)

It is evident that the left-hand side of (7) describes a stable
first-order dynamics, provided k1 > 0, so that ex → 0 for ew →
0. It is also worth noting that for a steady-state motion, i.e. f =
0, the ew dynamics is excited once by the system perturbation
and once by an alternating (chattering) sign of the ex value.
Recall that the finite-time stability of an unperturbed case,
i.e. ξ = 0, follows directly from the strict Lyapunov function
candidate derived for STA according to [3]. Following to that,
the stability of (ex,ew) = 0 equilibrium is entirely determined
by stability of the gains matrix [3]

A =

(
−0.5k1 0.5
−k2 0

)
,

which is the estimator design parameter.
For the perturbed case, more precisely partially-perturbed

since ξ affects only (8) but not (7), the STA requires that
| f +ξ | ≤ L holds, see [3] and related references therein. That
means the perturbation term has to be globally bounded by
L− | f |, which appears as a design parameter dependent on

the system dynamics (1), (2). From (2), (4) on can recognize
that the upper bound can be determined for the engagement
and gap modes of backlash, but not for the impact mode of
one-way transitions between both. An unbounded impulse-
type perturbation occurs during the backlash impact, therefore
representing a short-term transient excitation of (8) and step-
wise excitation of (7) correspondingly. Following to that, an
apparent peaking in the ex-trajectories is expected, allowing for
backlash detection and identification, and that for a relatively
arbitrary periodic motion with an amplitude > 2β .

B. Upper bound of dynamics perturbation

For having estimate on the upper bound of L, consider
first the nominal motor dynamics and that for an unperturbed
case, i.e. ξ = 0. In the most simple case, the nominal motor
dynamics can be captured by

f =−d1/m1 w1 +Km/m1 u, (9)

where the linear motor damping is denoted by d1 and the
motor torque constant by Km correspondingly. Assuming the
inherent actuator saturations i.e. |u| ≤Umax, and capturing the
input-output motor behavior by an associated transfer func-
tion w1(s)/u(s) = Km(m1s− d1)

−1, with s to be the Laplace
variable, one can easily obtain

| f |= Umax

m1

(
Km −Km

d1

m1s+d1

)
. (10)

From (10) it becomes evident that the maximal amplitude of
f appears at s → ∞, meaning a high-frequent motor actuation.
On the contrary, for s → 0, meaning a steady-state or very
low-frequent input excitation, | f | → 0. The above implies

| f | ≤ UmaxKm

m1
. (11)

Here it is worth of recalling that (11) remains valid indepen-
dently of the instantaneous backlash mode.

Now consider the first two backlash modes, i.e. engage-
ment and gap, while for the impact mode a perturbation is
unbounded according to (4). It can be recognized from (2)
that during the engagement mode a perturbation amplitude
is larger than within the gap mode – not surprisingly since
both the motor and load motion systems become coupled.
Further it is apparent that (11), modified in the denominator
by m1 + m2 instead of m1, represents a maximal possible
acceleration of the actuated motion when the motor and load
are coupled. For both unknown dynamic functions, cf. (2),
assume an upper bound so that |g1|, |g2| ≤ Gm−1

1 and that for
some constant G > 0. Note that G has physical dimension of a
force and, therefore, can be considered as a design parameter
available for the given mechanical system. Substituting the
above assumptions into (2), and that for engagement mode
further indicated by the subscript index e, one can obtain

| f +ξe| ≤
|α |UmaxKm +(1−α)(UmaxKm +2G)

m1(1−α)
. (12)

The inequality determines an upper bound L for the entire
motion dynamics, except the backlash impact at which it
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undergoes an impulse-type discontinuity. It is worth empha-
sizing that while Umax, Km, and m1 can be assumed as the
known system parameters – all related to the motor drive –
the α and G constants give solely the boundness conditions
for an external load system. For making the engagement and
gap modes well-distinguishable, and that from a sliding-mode
estimation point of view, it is suggested to assign

UmaxKm +G
m1

< L <
|α|UmaxKm +(1−α)(UmaxKm +2G)

m1(1−α)
.

(13)
Consequently, the second-order sliding mode should converge
within the gap, provided the system remains there sufficiently
long, and becomes continuously excited, correspondingly di-
verges from zero estimation error, during the engagement
mode. During impact transitions between both, the ex(t) error
state undergoes a distinctive peaking, and that independently
of the upper bound assignment (13). In real applications,
where 2β is significantly smaller comparing to x1 and x2
displacements, a zero convergence of sliding-mode within
the backlash gap can be hardly expected. The latter will be,
namely, passed through relatively quickly, i.e. before the finite-
time convergence of the sliding-mode. Nevertheless, a varying
pattern of ex(t) trajectory distinctive between the backlash
modes and containing the impact-related peaking allows for
estimating the backlash sizes as shown below for applications.

C. Estimation procedure

For systems with backlash satisfying the above assumptions
about dynamics and upper bounds, the estimation of backlash
size can be performed by the sequence of following steps (S).

S1: Fed the motor with u(t) =U sin(ωt), with U <Umax
yet sufficient for inducing a periodic motion, and
ω−1 ≫ time constant of the system (9);

S2: Monitor the estimation error ex, amplified by factor
N for x1 and ex are on a comparable scale, after zero
convergence, i.e. ex ≈ 0 with respect to noise;

S3: Detect divergence of ex(t) and set t1 = t;
S4: Detect backlash impact by an abrupt reversal of ex(t)

and set t2 = t;
S5: From the measured motor position, compute the

backlash size by 2̂β = |x1(t2)− x1(t1)|;
S6: To increase generalizability of the estimate, average

2̂β by repeating S1-S5 over multiple periods.

D. Application example

A two-inertia system, cf. Fig. 1, is modeled as (1), (9), while
the backlash is described by means of a most simple dead-
zone-based approach [9], cf. with [5]. The assumed motor
parameters are Umax=0.5, Km=0.172, m1=8.78e–4, β=9.4e–3.
Note that the parameter values are approaching the identified
experimental system whose measured data are further used
for experimental evaluation in Section IV. The assigned mo-
tor damping is d1=6.2e–2 while an additional torsional (i.e.
structural) damping is also assumed when modeling backlash.
For more details on the backlash modeling used for the
simulation we refer to [9]. For the load boundness conditions,

the values α=–1 and G = 5e–5 are assumed, while the latter
results from g2(t) = −0.035ẋ2 − 0.05sign(ẋ2) which is taken
for numerical simulation of the load side. No additional motor-
side perturbations, meaning g1 = 0, are assumed for the sake
of simplicity. At the same time, it is worth noting that g2
contains a sign-dependent term that approximates nonlinear
Coulomb friction with discontinuity at zero crossing. The
assumed numerical values, substituted into (13), results in

98 < L < 147.

Following to that L = 100 is assigned as the design parameter
for determining the corresponding STA gains.

The sinusoid motor input u(t) = 0.5sin(0.1 · 2π · t) is ap-
plied, and the resulted motor output displacement x1(t), both
depicted in Fig. 2 (a), is used as the single measurement
for STA-based backlash detection and identification described
above. Despite the motor displacement discloses certain distor-
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Fig. 2. Motor input u versus motor output displacement x1 in (a), backlash
state x1 − x2 versus state estimation error ex in (b)

tions at the second half of the peaks (around time t = 5 and t =
10 sec), which can be associated with backlash perturbations,
no direct delectability appears possible when analyzing x1(t)
time series. Also we note that the shown motion trajectory
is under ideal numerical simulation conditions, while real
measurements can be additionally affected by noise. In Fig.
2 (b), the dynamic backlash state (x1 − x2)(t) is shown, for
the sake of comprehensibility, versus the state estimation error
ex(t). The latter is scaled down by the factor ×0.02 for making
both signals comparatively visible. One can see that close to a
motion reversal and low-level input excitation, meaning some
steady-state conditions, the state estimation error converges to
zero. Starting from the time instant t1, labeled in Fig. 2 (b), the
ex(t) value starts rapidly decreasing, i.e. diverging from zero,
as implication of a discrete change of the backlash mode. At
the time instant t2, the ex(t) value undergoes a stepwise change
which is well-detectable as labeled in Fig. 2 (b). This occurs
during the backlash impact as has been analyzed above, cf.
Section III-A. Note that the labeled t1 and t2 time instants
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coincide quite accurately with the backlash gap mode, i.e.
|x1(t)−x2(t)|< 2β , cf. with the backlash state depicted in Fig.
2 (b). While a stepwise discontinuity in the ex(t) trajectory
serves for detecting a backlash in the system, the estimated
gap size reads off directly as

2̂β = |x1(t2)− x1(t1)|.

IV. EXPERIMENTAL EVALUATION

A. Two-inertia system with backlash

Real-time experimental data we are using for practical
evaluation of our approach are recorded on a laboratory
setup consisting of two identical motors, with a 20-bit high-
resolution encoder each. The first one is low-level torque
controlled and denoted further as motor. The second one serves
as a passive rotary load. Note that solely the measured angular
displacement of the (first) motor is used by our approach, and
the available load encoder serves for the sake of reference
measurements only. The utilized geared coupling between
the motor and load contains backlash. For more technical
details on the laboratory experimental we refer to [9], [18].
The input-output backlash map has been measured, for the
sake of reference reference, with both encoders as shown in
Fig. 3. Note that due to an input excitation (applied to the
current- correspondingly torque-control) with 1 Hz frequency,
the recorded backlash trajectories are not entirely static and
contain certain transients during the impact. Furthermore, it
should be underlined that the trajectories going in positive
direction are not entirely symmetrical to those in negative di-
rection. They diverge from a poorly kinematical backlash, i.e.
ideal play-type hysteresis map, due to additional adhesive by-
effects in the geared coupling. Nevertheless, an unambiguous
backlash gap of about 2β = 0.019 rad can be read off and
assumed as a reference value.
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Fig. 3. Backlash measured by means of motor- and load-side encoder

B. Identification of backlash gap

The experimental backlash identification is performed fol-
lowing the methodology provided in Section III-C. A periodic
torque excitation with 1 Hz frequency and 0.1 Nm amplitude
has been applied to the two-inertia system with backlash.
The measured backlash response is shown versus the input
torque in Fig. 4. One can recognize a periodic backlash
pattern, while the forward gap transitions are lagged behind
the input torque zero-crossings. Note that a relatively small
motor displacement, close to the backlash gap size (cf. with

Fig. 5 is purposefully induced for a better visualization.
The larger displacement amplitudes are equally applicable
without changing identification methodology. It is also worth
noting that a low displacement constitutes rather a ‘worst
case’ scenario, since the sliding-mode has less time for ex
convergence to zero.
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Fig. 4. Measured backlash state versus periodic torque excitation

The state estimation error ex, multiplied with factor 50
for a better visualization, is shown opposite to the measured
motor displacement in Fig. 5. One can recognize a sufficiently
uniform periodic pattern of ex(t), so that an arbitrarily picked-
out period can be used for signal analysis and identification
of the backlash gap size. The bound value L = 40 has been

0 1 2 3 4 5
−0.02

0

0.02

0.04

time (sec)

x 1 (
ra

d)
, 5

0e
x (

ra
d)

 

 motor position x
1

error e
x
 (times 50)

Fig. 5. Measured motor displacement x1(t) versus state estimation error
ex(t), multiplied by factor 50 for the sake of a better visualization
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Fig. 6. Zoom-in of the measured motor position (x1) and estimation error
(50× ex) for analysis and detection of the backlash gap

assigned based on pre-knowledge of the system parameters,
cf. [9], [18], and in order to deal with non-zero noise subject
to amplification. Note that a higher L value, like one deter-
mined from the model parameters in Section III-C, is equally
possible but will shortening the convergence time of ex(t) and
enhancing ist chattering pattern. Both would imped an accurate
isolation of t1 and t2 time instants.

A zoom-in of an arbitrary chosen period is shown in Fig. 6.
One can recognize that at steady-state of the motor position,
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i.e. before motion reversal, the ex(t) trajectory converges to
zero, labeled by tc. Afterwards, the observation error remains
zero until an apparent motion direction changes, i.e. the motor
‘decouples’ from the load due to the backlash. Apparently, this
structure-switching transition sufficiently excites ex(t) which,
in turn, diverges from zero, cf. with Fig. 2. The corresponding
time instant is labeled by t1. As next, a stepwise excitation of
the sliding-mode dynamics occurs due to the backlash impact,
once losing the gap mode at the time t2. One can see that,
due to an apparently stiff impact, the transient error dynamics
tends even to some minor oscillations, which are visible at time
close to t2 from the right. Following the procedure developed
in Section III the backlash gap is identified as

2̂β = |x1(t2)− x1(t1)|= 0.018 rad.

The estimated value differs from the measured nominal one
by about 5%, that is sufficiently accurate in regard to the
limited system knowledge and single motor-side measurement.
Auto-recording and averaging of 2̂β over multiple periods can
further improve the estimation accuracy.

V. CONCLUSIONS

This paper introduced a new approach for detecting and
identifying the unknown backlash in the drive systems which
are equipped with a single displacement sensor (encoder)
placed on the controlled actuator. The method incorporates
the second-order sliding-mode STA-based estimator. Neither
explicit system model nor additional system measurements are
required a priori. Only the second-order actuator dynamics
and the basic motor parameters, like torque constant and
limits, linear damping, and inertia, are assumed. Analyzing the
load- and backlash-related perturbations, the state estimation
error dynamics is derived, and the upper bound for the STA-
based differentiator is determined as a design parameter for
assignment of the STA gains. We demonstrated and formalized
how the backlash gap size can be accurately identified from
the time-series. Also an experimental evaluation, based on
recorded real-time data from a motor-bench setup, is shown as
efficient with the proposed identification method. Future works
can be concerned with sensitivity analysis of the proposed
method, in regard to lower sampling and quantization of the
actuator signals and evaluation with other application cases.
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