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Abstract—This paper1 deals with the Finite-Time Analysis
(FTA) of Learning Automata (LA), which is a topic for which
very little work has been reported in the literature. This is as
opposed to the asymptotic steady-state analysis for which there
are, probably, scores of papers. As clarified later, unarguably,
the FTA of Markov Chains, in general, and of LA, in particular,
is far more complex than the asymptotic steady-state analysis.
Such a FTA provides rigid bounds for the time required for the
LA to attain to a given convergence accuracy. We concentrate
on the FTA of the Discretized Pursuit Automaton (DPA), which
is probably one of the fastest and most accurate reported LA.
Although such an analysis was carried out many years ago, we
record that the previous work is flawed. More specifically, in all
brevity, the flaw lies in the wrongly “derived” monotonic behavior
of the LA after a certain number of iterations. Rather, we claim
that the property that should be invoked is the submartingale
property. This renders the proof to be much more involved and
deep. In this paper, we rectify the flaw and re-establish the FTA
based on such a submartingale phenomenon. More importantly,
from the derived analysis, we are able to discover and clarify,
for the first time, the underlying dilemma between the DPA’s
exploitation and exploration properties. We also non-trivially
confirm the existence of the optimal learning rate, which yields
a better comprehension of the DPA itself.

Keywords Learning automaton, Pursuit algorithms, DPA,
Finite-time analysis

I. INTRODUCTION

The field of Learning Automata (LA) [14] has been studied
as a typical model of reinforcement learning for decades.
The LA operates in conjunction with an Environment, with
the goal of learning the optimal action from among a set of
actions offered by the Environment. LA have been applied
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in many dozens of fields2. Conceptually, the LA works with
an Environment in an iterative manner. In each iteration,
the LA selects one action, which triggers either a stochastic
reward or a penalty from the Environment. Then, based on the
responses received from the Environment, the LA adjusts its
action selection strategy in order to make a “wiser” decision
in the next iteration. In such a way, the LA learns the optimal
decision via repeated interactions with the Environment.

Non-Estimator LA: The development of LA has gone
through three periods: the Fixed Structure Stochastic Automata
(FSSA), the Variable Structure Stochastic Automata (VSSA)
and the Estimator Algorithms (EAs). The FSSA are LA whose
state update function and decision function are time invariant.
The Tsetlin, Krylov and Krinsky automata [14] are the most
notable examples of this type. As opposed to FSSA, in VSSA,
either the state update function or the decision function (or
both) vary with time. Interestingly, VSSA can be characterized
by functions that update the probability of selecting the
various actions. Typical examples of VSSA include the Linear
Reward-Penalty (LR−P) scheme, the Linear Reward-Inaction
(LR−I) scheme, the Linear Inaction-Penalty (LI−P) scheme and
the Linear Reward-εPenalty (LR−εP) scheme [14].

Estimator-based LA: Among the families of LA, Estimator
Algorithms (EAs) are the fastest and the most accurate type of
LA. They augment an action probability updating scheme with
the use of estimates of the respective actions’ reward probabil-
ities. Typically, EAs maintain running Maximum Likelihood
(ML) reward probability estimates to determine whether any
specific action is “better” than another. Within this family, the
set of Pursuit Algorithms (PAs) were the pioneering schemes,
whose design and analysis were initiated by Thathachar and
Sastry [28]. The first PA was designed to operate by updating
the action probabilities based on the LR−I paradigm. In each
iteration, the current “Best” action is pursued by linearly
increasing its action probability. As the PA considers both
the short-term responses of the Environment and the long-
term reward probability estimates in formulating the action
probability updating rules, it outperforms traditional VSSA
schemes in terms of its accuracy and its rate of convergence.

2With regard to applications, the entire field of LA and stochastic learning
has had a myriad of applications [8], [13], [14], [23], [29], which (apart from
the many applications listed in these books) include solutions for problems
in network and communications [12], [17], [22], network call admission,
traffic control, quality of service routing [1], [2], [31], distributed scheduling
[26], training hidden Markov models [7], neural network adaptation [11],
intelligent vehicle control [30] service selection [32] and even fairly theoretical
problems such as graph partitioning [20] and string taxonomy [18]. Besides
these fairly generic applications, LA have been used to assist in solving
numerous other optimization problems in stochastic domains, for example,
in telecommunications [4], [5], [38] and in the energy sector [25], [27].
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On Using Bayesian estimates: Another family of EAs,
called the family of Bayesian Pursuit Algorithms (BPAs)
has been designed within the Pursuit learning paradigm. It
enhances the rate of convergence by substituting ML estimates
with more optimistic Bayesian estimates.

Discretized EAs: To enhance the convergence, Oommen
and Lanctot [21] presented the Discretized Pursuit Algorithm
(DPA) by discretizing3 the action probability space. The DPA
was shown to be superior to its continuous counterpart in terms
of its rate of convergence. Besides, the DPA has the potential
to be processed in a batch mode, and a fast version of the DPA
was proposed in [6] to achieve a lower computational complex-
ity. Along the same vein, the continuous BPA [33] has also
been discretized to yield the Discretized BPA (DBPA) [34],
with the latter being shown to be superior to its continuous
counterpart in terms of its speed of convergence.

II. PROOF METHODOLOGIES FOR LA

Like other randomized learning algorithms, in the develop-
ment of LA, one of the most important aspects to validate
the design of an LA is to mathematically analyze its con-
vergence, i.e., to investigate if the LA is able to converge
to the optimal action with an arbitrarily large probability.
If the answer is positive, the LA is considered “ε-optimal”.
The mathematical techniques used for the various former-
mentioned families of LA are quite distinct. The methodology
for the family of FSSA involves formulating the Markov chain
for the LA, computing its equilibrium probabilities, and then
computing the asymptotic action selection probabilities. The
proofs of convergence for VSSA involve the theory of small-
step Markov processes, distance diminishing operators, and
the theory of regular functions. The proofs for discretized
LA involve the asymptotic analysis of the Markov chain that
represents the LA in the discretized space, whence the total
probability of convergence to the various actions is evaluated.

Understandably, the most difficult proofs involve the fam-
ily of EAs. This is because the convergence involves two
intertwined phenomena, i.e., the convergence of the reward
estimates and the convergence of the action probabilities them-
selves. Ironically, the combination of these in the updating
rule is what renders the EA fast. However, if the accuracy of
the estimates are poor because of inadequate estimation (i.e.,
the sub-optimal actions are not sampled “enough number of
times”), the convergence accuracy can be diminished, which is
really a dilemma! The original proofs of convergence of PAs
erroneously invoked the monotonicity property. These have
since been rectified to invoke the submartingale property in
[19], [33], [37].

A. Prior Flawed “Proofs” for EAs

As PAs hold the pioneering status in the development of
EAs, a lot of work has been done on the analysis of the PAs
[9], [10], [19], [21] and [24]. A thorough investigation on

3In order to highlight the distinct characteristics of the DPA and the original
PA, for the rest of the paper, the latter is referred to as the Continuous Pursuit
Algorithm (CPA), and PAs refers to the general family of Pursuit algorithms,
including both the CPA and the DPA.

the convergence and finite-time behavior of PAs were done in
[24], where the probability of selecting the optimal action was
considered monotonically increasing after some time instant
“t0”, and where the number of iterations that guarantees this
t0 and the number of iterations that allows the LA to converge
to the optimal action after t0, were bounded. Though the work
in [24] was innovative and compass both the CPA and the
DPA, there was a flaw in its reasoning, which rendered the
analysis incorrect. To correct this flaw, new proofs for the
CPA and DPA’s convergence were proposed in [36] and [35]
respectively, where the authors investigated the submartingale
property of the probability of selecting the optimal action,
and invoked the theory of regular functions to prove that the
PAs converge to the optimal action in probability. They also
claimed that the new proof methodology could be extended to
prove the convergence of other Pursuit-based LAs. Though the
proof for the convergence of PAs has been rectified by [36]
and [35], the corresponding finite-time analyses is still open.

B. Complexity of Finite-time Analysis

Most of the analysis of Markov chains and LA deal with
the scenario after the transient phase of the chain has elapsed.
This is because the asymptotic analysis of Markov chains
is well established. In the case of ergodic Markov chains
it involves determining the eigenvector associated with the
eigenvalue λ = 1, and this eigenvector can be computed by
an explicit eigenvalue computation or by repeatedly multiply-
ing the underlying Markov matrix. It can also be computed
by simulation and recording the ensemble average of the
time after a reasonable number of observations have passed.
Alternatively, in the case of absorbing Markov chains, the
analysis is obtained by computing the absorption probabilities
determined by the solution of the first passage probabilities
(from the Kolmogorov-Chapman equations). Both of these
have formed the basis for analysis even when the number of
actions are large and when they are arranged hierarchically.

The Finite-time analysis of Markov chains and LA is far
more complex. The reason for this is that these depend on the
non-unity eigenvalues of the Markov matrix and the way by
which they lead to the convergence to the asymptotic value
in a geometric matter. Unlike the asymptotic case, which only
involves the case when λ= 1, the Finite-time analysis involves
all the eigenvalues. Due to the complexity of the situation,
understandably there is very little work done on the Finite-
time analysis of any family of LA, including the families of
FSSA and/or VSSA.

C. Goal and Contributions of this Paper

With the above as a backdrop, we state that this is precisely
the contribution of this present paper, i.e., to achieve a Finite-
time analysis for a specific PA. Since we have argued on the
complexity of such an analysis, we consider the process by
which the specific LA can converge to the optimal action.
Thereafter, by invoking the submartingale property of the
underlying random process, we succeed in achieving this
Finite-time analysis.
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More specifically, in this paper, we aim at re-analyzing the
Finite-time behavior of the DPA. That being said, we state that
we are not providing a Finite-time analysis for the CPA based
on submartingale property because the state space of the CPA
is open and varies with time. As far as we know, this renders
the analysis impossible, and the previous “proof” inaccurate.
This is because one cannot prove this result by alluding to the
monotonic property of the random process because the process
is, quite simply, not monotonic. Our proof for the DPA is based
on the new methodology used in [35] and [36], using which
we succeed in obtaining bounds on the Finite-time behavior.

Thus, we can summarize the main contributions of this
paper to be as follows:
• We rectify the error in the previous Finite-time analysis

of the DPA, which has existed as a benchmark for over
20 years.

• We illustrate, for the first time, the dilemma between
the DPA’s exploitation and exploration. Using these, and
based on our theoretical study, the existence of the DPA’s
optimal learning rate is justified via numerical analysis.

To pictorially clarify the main contribution of the paper, we
include, in Figure 1, a schematic of how the DPA’s finite time
analysis is achieved4.
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Fig. 1: A schematic of how the proof of the DPA’s convergence is achieved.

III. NOTATIONS AND A BRIEF REVIEW OF THE DPA

Before we analyze the Finite-time behavior of the DPA, we
present the notations used in the DPA and the algorithm (and
the proofs), as follows:
• r: The number of actions.
• αi: The ith action that can be selected by the LA, αi ∈
{α1, . . .αr}.

• t: Time index of the learning process and t belongs the
natural numbers.

• P(t): The action probability vector P(t) =
[p1(t), p2(t), ..., pr(t)] at time step t.

• pi(t): The ith element of the action probability vector,
P(t), at time step t.

• ui(t): The number of times that action αi has been
rewarded by time step t.

• vi(t): The number of times that action αi has been
selected by time step t.

4We are grateful to the anonymous Referee who requested this figure.

• D = [d1,d2, . . . ,dr]: The true reward probability vector of
the Environment.

• di: The ith element of the true reward probability vector
D.

• D̂(t) = [d̂1(t), d̂2(t), . . . , d̂r(t)]: The reward probability es-
timates vector of the Environment at time step t.

• d̂i(t): The ith element of the reward probability estimates
vector D̂(t), d̂i(t) =

ui(t)
vi(t)

.
• m: The index of the optimal action.
• h: The index of the greatest element in D̂(t).
• R(t): The response from the Environment at time step t,

where R(t) = 0 corresponds to a Reward, and R(t) = 1 to
a Penalty.

• ∆: The discretized step size, where ∆ = 1
rN , with N being

a positive integer.
The DPA follows a “pursuit” paradigm of learning, which con-
sists of three steps. Firstly, it maintains an action probability
vector P(t) = [p1(t), p2(t), ..., pr(t)] to determine the action to

be selected, where
r
∑

i=1
pi(t) = 1, ∀t. More specifically, at time

t, an action is chosen according to the probability distribution
P(t). Secondly, it maintains running ML reward probability
estimates to determine which action can be reckoned to be
the “best” in the current iteration. Thus, it updates d̂i(t) based
on the Environment’s response as:

ui(t) = ui(t−1)+(1−R(t)),
vi(t) = vi(t−1)+1,
d̂i(t) =

ui(t)
vi(t)

.

Thirdly, based on the response of the Environment and the
knowledge of the current best action, the DPA increases the
probability of selecting this action as per the Discretized LR−I
rules. So if d̂h(t) is the greatest element in D̂(t), we update
p(t) as:

If R(t) = 0 Then
pi(t +1) = max{pi(t)−∆,0}, ∀ i 6= h,
ph(t +1) = 1− ∑

∀i, i6=h
pi(t +1).

Else
P(t +1) = P(t).

EndIf
We now consider the various methods by which the Finite-

time analysis for the DPA has been tackled.

IV. PREVIOUS FINITE-TIME ANALYSIS ON THE DPA

To place our current result in the right perspective, it is
prudent to consider the previous Finite-time analysis on the
DPA submitted in [24]. In that work, t0 is defined as the time
instant after which the probability of selecting the optimal
action, i.e., pm(t), ∀t > t0, is assumed to be monotonically
increasing. The Finite-time analysis can thus be divided into
two periods, namely, the one before the time instant t0 and
the one after t0. For ease of expression, we call the learning
process before time t0 as the Learning Period (LP), and the
learning process after t0 as the Converging Period (CP). We
will outline how the previous paper [24] analyzed the DPA’s
behavior during both the Learning Period and the Converging
Period, and then point out where the flaw of the analysis lies.
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We first summarize the analysis on the LP [24], where the
aim is to calculate the bound of t0. Since pm(t) is assumed
to be monotonically increasing ∀t > t0, a certain accuracy
for the reward probability estimates is required at t0 for all
actions. To achieve the required accuracy for these estimates,
each action needs to be selected at least a certain number
of times. We denote Mi(t0),1 ≤ i ≤ r, as the number of
times that each action is required to be selected in order
to achieve the accuracy of the estimate, and then define
M = max{Mi(t0),1≤ i≤ r}. Let ni(t) be the number of times
that αi has been selected by time t, and θ be a positive number
close to 0. The next step is to determine the time instant t0,
after which, Pr(ni(t)≥M)≥ 1−θ holds5. Note that we have
to describe the event “ni(t)≥M” from the perspective of the
corresponding probability for the given parameter θ, due to
the randomness of the behavior of the DPA. The method to
achieve this is briefly explained below, while the reader is
referred to [24] for additional details.

First of all, we have

Pr(ni(t)≥M)≥ 1−θ

⇐⇒ Pr(ni(t)< M)< θ

⇐⇒
M−1

∑
j=0

Pr(ni(t) = j)< θ

⇐= Pr(ni(t) = j)<
θ

M
,∀ j, (1)

where the symbol ⇐⇒ is meant to state “is equivalent to”,
while the symbol ⇐= indicates “can be deduced by”. Obvi-
ously, if we can find the upper bound of Pr(ni(t) = j) as a
function of t0, we can derive the requirement of t0 as a function
of M and θ.

Clearly, pi(t)≥ pi(0)− t∆ holds. Therefore, we have

Pr(α(t) 6= αi)≤ 1− (pi(0)− t∆) = 1− pi(0)+ t∆,

and accordingly,

Pr(ni(t) = j)<
(

t
j

)
(1) j[1− pi(0)+ t∆]t− j

< t j[1− pi(0)+ t∆]t− j (2)

holds. Hence, considering Eq. (1) and Eq. (2), if

t j[1− (pi(0)− t∆)]t− j <
θ

M
(3)

holds, Eq. (1) follows.
Moreover, the authors of [24] determined that if

∆ =
1

r×2t
(4)

is satisfied, Eq. (3) is implied.
Given the value of ∆ as shown in Eq. (4), t0 can be

calculated as a function of M and θ. This is done by denoting
t0 as t0 = f (M,θ) as shown in Eq. (5):

f (M,θ) =

⌈
2M

ln(1/σ)
ln

[
M

ln(1/σ)

1
σ

(
M
θ

) 1
M
]⌉

, (5)

5The expression Pr(A) refers to the probability of the event A.

where σ = 2r−1
2r .

The deduction of f (M,θ) involves quite a lot of algebraic
manipulations, omitted here due to space limitations. But it can
be seen as Lemma 4.1 and the corresponding proof in [24].
The final consequential result is that if ∆ = 1

r×2t , then till the
time instant t0 = f (M,θ), the probability that each action is
selected at least M times is greater than or equal to 1−θ. Note
that the derivation of Eq. (5) does not require any monotonic
property. It just returns the required time span by considering
the required number of times, M, and the required probability
resolution, θ, as inputs, both of which are entirely based on
the nature of DPA. Therefore, Eq. (5) can still be reused in
our new submartingale-based analysis, detailed in Section V.

A. “Analysis” on the Converging Period

We now revisit the “analysis” on the CP, where by this
juncture, a proper learning parameter, ∆, has been determined,
as shown in Eq. (4). Given ∆, and according to the updating
rule of pi(t), it is ensured6 that pi(t0) ≥ pi(0)

2 , which implies
that before t0, each action gets no less than half of the initial
probability of being selected, and whence each action can been
selected a sufficiently large number of times (for example, M
times) before the time instant t0. However, it should be noted
that Eq. (4) is only a theoretical assumption for ∆, which is
very conservative. In practice, the learning parameter can be
much greater than the theoretical assumption.

Let t1 be the number of iterations that the LA takes to
converge after t0. The goal is to determine t1 such that
pm(t0 + t1)> 1−ε. As in [24], pm(t), ∀t > t0 is considered to
be monotonically increasing7, and thus:

pm(t0 + t1)> 1− ε

⇐⇒ ∑
∀ j, j 6=m

p j(t0 + t1)< ε,

⇐⇒ ∑
∀ j, j 6=m

(p j(t0)− t1∆)< ε, Monotonicity is used.

⇐= p j(t0)− t1∆ <
ε

r−1
,

⇐= 1− t1∆ <
ε

r−1
,

⇐⇒ t1 >
1− ε

r−1

∆
. (6)

Hence, if after time t0, the LA goes on running for more than⌈
1− ε

r−1
∆

⌉
iterations, then pm(t)= pm(t0+t1)> 1−ε. Therefore,

if we denote T0 = t0 +
⌈

1− ε

r−1
∆

⌉
= f (M,θ) +

⌈
1− ε

r−1
∆

⌉
, then

when t > T0, the LA converges. This leads to the finite-time
instant required for the LA to converge. Again, one should note
that T0 is very conservative because of the small theoretical
learning parameter ∆.

Flaw in the previous “Proof”: In the above analysis of the
DPA’s finite-time behavior, the second part that focuses on the
CP, has an inherent infirmity. It is based on the flawed “asser-
tion” that attempts to prove the DPA’s ε-optimality, namely the
one that claims that pm(t) is monotonically increasing after

6 pi(0) is most commonly set to be 1
r .

7This is, precisely, the juncture where the argument is flawed.
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t0. This is a very strong claim that actually is unfounded.
Rather, instead of the strong phenomenon of monotonicity,
pm(t), t > t0, the property that does, indeed, hold true is its
martingale-related property. After a certain time instant, pm(t)
is, in fact, a submartingale [35], [36], which is a weaker
phenomenon than monotonicity. Thus, to render the proof
accurate, we need to re-define t0 as the time instant after which,
pm(t), t > t0 is a submartingale, and analyze the converging
period based on such a submartingale phenomenon.

Having clarified this, it is also prudent to crystallize the
differences and similarities between [35] and this current
paper. With regard to the similarity: Both [35] and this current
paper abandon the futile attempt to use the monotonicity
property of the random process. The difference between the
two papers is that whereas [36] deals with the asymptotic
properties of the process, this current paper deals with the
process’ finite-time behavior, which as explained above, is far
more cumbersome and difficult to formalize.

V. OUR PROPOSED FINITE-TIME ANALYSIS OF THE DPA

Before we proceed, we first mention that our presently-
proposed Finite-time Analysis does not depend on an
eigenvalue-based strategy but rather by invoking the theory
of martingales. First of all, we split the convergence into
two phases. The first involves the period when the estimates
converge accurately enough so that the Pursuit phenomenon
can take over, and the second involves the LA converging to
the best action. To achieve this, we first calculate the required
number of times that each action has to be selected, say
M. This is to guarantee that the stochastic process becomes
a submartingale, which is required so as to attain the final
convergence. Thereafter, even though the number M is known,
we do not yet know the time instant at which all the actions
will have been selected at least M times. To estimate this time,
we devise a scheme to compute the quantity t0, after which
each action will have been selected at least M times with
the high probability 1− θ, where due to the randomness of
the learning process, t0 can only be bounded probabilistically
with a parameter θ. Once the quantity t0 is calculated, we can
guarantee that after t0, the process becomes a submartingale
with a high probability. Thereafter, we show how we can
calculate the average time required in the convergence stage.
These steps lead to a very interesting proof, and amazingly
fascinating results that are quite distinct from the state-of-the-
art.

As the submartingale property is weaker than the property
of monotonicity, we are not able to bound t1 but rather, provide
a conservative bound for its expected value. The new finite-
time analysis has two parts. The first phase (Section V-A) is
to calculate t0, where pm(t) becomes a submartingale. The
second phase (Section V-B) is to derive E[t1]. Therefore, if
we denote T0 = t0 +E[t1], we can assert that on the average,
(i.e., in the Expected sense), the LA converges when t > T0.

A. Analysis of the Submartingale pm(t), ∀t > t0, and t0
In this subsection, we briefly introduce the submartingale

property of pm(t), ∀t > t0, and then proceed to derive the

time span required for the random process to become a
submartingale, i.e., t0.

We define q(t) as the probability that the reward probability
estimate of the optimal action is the greatest among all the
reward probability estimates at time t, i.e.,

q(t) = Pr(d̂m(t)> d̂i(t)),∀i 6= m. (7)

According to the description of the DPA algorithm, we see
that the quantity q(t) increases as pm(t) grows. Therefore,
based on the action probability updating rules of the DPA
where we have worked within the Reward-Inaction paradigm8:

E[pm(t +1)|P(t)]
= pm (dm (q(pm + ct∆)+(1−q)(pm−∆))+(1−dm)pm)+

∑
∀ j, j 6=m

p j (d j (q(pm + ct∆)+(1−q)(pm−∆))+(1−d j)pm)

=
r

∑
j=1

p j (d j (q(pm + ct∆)+(1−q)(pm−∆))+(1−d j)pm)

=
r

∑
j=1

(p jd jqct∆)−
r

∑
j=1

p jd j∆+
r

∑
j=1

p jd jq∆+
r

∑
j=1

p j pm

= pm +
r

∑
j=1

p jd j (q(ct∆+∆)−∆),

where, ct represents the number of actions’ probabilities, other
than pm, that have not converged to zero at time t. Therefore,
ct is bounded by 0 and r− 1, and it is non-increasing as t
grows. Note that the condition ct = 0 implies that pm = 1
holds, and this further implies that the entire random process
has converged to a unit vector. However, in this phase of our
analysis, our intention is to study the time span when ct is in
between 1 and r−1. The difference between E[pm(t+1)] and
pm(t) can be expressed as:

Di f fpm(t) = E[pm(t +1)|P(t)]− pm(t)

=
r

∑
j=1

p j(t)d j (q(t)(ct∆+∆)−∆). (8)

Based on Eq. (8), q(t)(ct∆+∆)−∆ > 0 implies that q(t)>
∆

ct ∆+∆
. Thus, we conclude that the sequence pm(t), ∀t > t0, is a

submartingale if there exist a time instant t0 such that for every
time instant t > t0, q(t) > max{ ∆

ct ∆+∆
} = 1

2 . Therefore, if we
can prove that for δ ∈ (0, 1

2 ), ∀t > t0, q(t) > 1− δ, it implies
that for the specific value of δ = 1

2 , ∀t > t0, q(t) > 1− δ,
guaranteeing the submartingale property.

Consider a two-action Environment. Without loss of gener-
ality, let α1 be the optimal action and α2 the inferior one. We
are to prove that ∀t > t0,

Pr(d̂1(t)− d̂2(t)> 0)> 1−δ.

If we define

H = d1−d2, Ĥ(t) = d̂1(t)− d̂2(t),

then

Pr(d̂1(t)− d̂2(t)> 0)⇔ 1−Pr(Ĥ(t)−H ≤−H), and

8In the interest of conciseness, pm(t) and q(t) are respectively written as
pm and q whenever there is no confusion.
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Pr(d̂1(t)− d̂2(t)> 0)> 1−δ⇔ Pr(Ĥ(t)−H ≤−H)≤ δ.

Hence, we can equivalently prove that

Pr(Ĥ(t)−H ≤−H)≤ δ.

To achieve this, we denote n1(t) as the number of times
that α1 has been selected up to time t. Then, by invoking the
“two-action” version of Hoeffding’s Inequality [3] (Page 16),
we have:

Pr(Ĥ(t)−H ≤−H|n1(t) = n)≤ e
− 2H2

n−1+(t−n)−1 .

We thus are to find a proper value of n such that

e
− 2H2

n−1+(t−n)−1 ≤ δ, (9)

which guarantees that Pr(Ĥ(t)−H ≤−H)≤ δ.
Considering n as the variable, we solve Eq. (9) and get

e
− 2H2

n−1+(t−n)−1 > δ, when t <
−2lnδ

H2 ,

and when t ≥ −2lnδ

H2 ,

e
− 2H2

n−1+(t−n)−1

{
≤ δ, when nr1 ≤ n≤ nr2,
> δ, otherwise.

,

where nr1 and nr2 are the two real roots of Eq. (9):

nr1 =
t
2
−
√

H2t2 +2t lnδ

2H
, and

nr2 =
t
2
+

√
H2t2 +2t lnδ

2H
. (10)

Therefore, to make sure that Eq. (9) holds, we need to
ensure that ∀t > t0, nr1 ≤ n ≤ nr2. Omitting the algebraic
manipulations here9, we present the conclusion that t0 ≥ −2lnδ

H2

and n≥ − lnδ

H2 .
As the above analysis is also applicable to α2, which

is, indeed, symmetric to α1 in this two action Environment
considered, the consequence is the following: Let us suppose
that we define the time instant t0 such that within the time
defined by t0, α1 and α2 have each been selected more than⌈
− lnδ

H2

⌉
times. As a result of this, in such a case:

e
− 2H2

n−1+(t−n)−1 ≤ δ,

whence we can conclude that for the given δ∈ (0, 1
2 ), ∀t > t0,

q(t) = Pr(d̂1(t)− d̂2(t)> 0)> 1−δ.

The result can be easily extended to the r-action Environ-
ment, where if we define:

H j = dm−d j, j 6= m,

Ĥ j(t) = d̂m(t)− d̂ j(t), j 6= m.

Then, given any δ ∈ (0, 1
2 ), if we denote δ? = 1− r−1

√
1−δ,

we can show that there exists a time instant t0, such that
within the time defined by t0, αm has been selected more than⌈
− lnδ?

(min{H j})2

⌉
times, and α j, ∀ j 6= m, has been selected more

9The reader is referred to [35] for additional details.

than
⌈
− lnδ?

H2
j

⌉
times. Consequently, for ∀t > t0, q j(t)> 1−δ?

holds and q(t)≥ ∏
j, j 6=m

q j(t)> 1−δ.

As there exists a t0 such that if ∀t > t0, q(t) > 1
2 , holds,

pm(t), ∀t > t0, is indeed a submartingale. Thus, according to
the submartingale convergence theory [14] (Page 440),

pm(∞) = 0 or 1.

If we denote e j as the unit vector with the jth element being 1
and 0 otherwise, then pm(∞) = 1⇐⇒ P(∞) = em. If we define
the convergence probability

Γm(P) = Pr(P(∞) = em|P(0)),

where P(0) is the initial action probability vector, then by
utilizing the theory of Regular functions, we can prove that
Γm(P) → 1 [35]. Thus the DPA being ε-optimal is proven
based on the submartingale property of pm(t), ∀t > t0. Be-
sides, the number of times each action is required to be
selected to achieve the reward probability estimates accuracy,
q(t)> 1−δ, can be provided by

M =

⌈
− lnδ?

(min{H j})2

⌉
, where δ

? = 1− r−1
√

1−δ. (11)

Given the ∆ and M as in Eq. (4) and Eq. (11), respectively,
by the same deduction as in [24], t0 can be calculated as t0 =
f (M,θ).

B. The Average Converging Period of the Submartingale

We now present the new analysis on the behavior of the
DPA in the Converging Period. Note that in the new analysis,
the fundamental difference is the definition of t0, which is,
after t0, the probability sequence of pm(t), t > t0, does not
monotonically increase, but is a submartingale.

We shall utilize Wald’s Equality to achieve this analysis. In
Wald’s Equality [15], we have Xi, i = 1,2, ..., as a sequence
of Independent and Identically Distributed (IID) random vari-
ables, and I as a random variable that is a stopping time for
the sequence of Xi. Let SI = X1 +X2 + ...+XI , if E(I) and
E(X) are finite, then E(SI) = E(X)E(I).

Firstly, we set a new time system t ′ = t− t0, which differs
from the old time system t, by t0. As we are dealing with the
LA’s behavior after time t0, by working within the new time
system, we are able to get rid of the notation that involves
t0, and to affirm that for the sequence after t0, the time index
starts from the time instant 0.

Secondly, we define

X(t ′) =

{
(r−1)∆, with probability q(t ′)
−∆, with probability 1−q(t ′)

. (12)

For ease of analysis, if we further freeze the update of q(t ′)
and adopt a fixed value of q(t ′) when t ′ = 0, denoted by q0,
then X(t ′) becomes a sequence of IID random variables, whose
expectation can be calculated as

E(X(t ′)) = q0(r−1)∆+(1−q0)× (−∆)

= (q0r−1)∆. (13)
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Thirdly, we consider pm(t ′) as a random point walking
between the interval of [0,1], with its initial position being
at pm(t = t0)10. According to the action probability updating
rules of the DPA,

pm(t ′) = pm(t0)+X(1)+X(2)+ ...+X(t ′),

and so, if we define St ′ = pm(t ′)− pm(t0), then

St ′ = pm(t ′)− pm(t0) = X(1)+X(2)+ ...+X(t ′).

Obviously, pm(t ′) stops walking when it reaches the point
of 0 or 1. Accordingly, St ′ stops at the point of −pm(t0) or
1− pm(t0). The probability of pm(t ′) stopping at point 1 (i.e.,
when St ′ = 1− pm(t0)) is Γm(P), and the probability11 of pm(t ′)
stopping at point 0 (i.e, when St ′ = −pm(t0)) is 1−Γm(P).
Therefore, we calculate the expectation of St ′ as:

E(St ′) = Γm(P)(1− pm(t0))+(1−Γm(P))(−pm(t0))

= Γm(P)− pm(t0). (14)

The number of times it takes for pm(t ′) to reach 0 or 1
(or equivalently, for St ′ to reach −pm(t0) or 1− pm(t0)) is
called the Stopping Time, which, we also denote as t1 in the
interest of keeping the notation consist with what has been
defined in the flawed analysis. According to Wald’s Equality,
the expectation of the Stopping Time t1 is:

E(t1) =
E(St1)

E(X(t ′))
=

Γm(P)− pm(t0)
(q0r−1)∆

. (15)

We thus have given an explicit expression for E(t1).
The consequence of the above is the following: We see from

Eq. (15) that if Γm(P), pm(t0), q0 and ∆ can be determined,
E(t1) can be estimated yielding a rough idea about the number
of time instances it takes for the LA to converge.

In summary, the main hurdles that we encountered when
arriving at these results are the following12:

1) To calculate M, i.e., the required number of times that
each action has to be selected for the given probability
parameter θ. This is to guarantee that the stochastic
process becomes a submartingale. With M and θ avail-
able, we can bound the time that the stochastic process
requires to become a submartingale. The key to this
involves invoking Hoeffding’s Inequality.

2) To estimate the mean time of the convergence period
for the given probability parameter Γm(P). When the
process becomes a submartingale, it is necessary to
bound, in a statistical sense, the time horizon that the
process requires to converge. The key to obtain this
estimate is to invoke Wald’s Equality.

10 pm(t = t0) is pm(t0) in the old time system. Without causing any
confusion, we consider pm(t ′ = 0) = pm(t = t0) a constant, and will write
them simply as pm(t0) in the rest of the paper.

11Γm(P) is precisely the probability of the absorbing LA converging to the
unit vector em. This is exactly the notation used in the literature [14].

12We are grateful to the Anonymous Referee who requested this and the
following Sub-section.

C. Details of the Terms Involved

Although the various terms have been derived above, we
believe that it will be prudent to explain their respective
significances. Thus, in this section, we shall examine these
four items one by one.

1) We first explain the meaning of the term Γm(P). Γm(P)
is the probability of the LA converging to the correct
unit vector, and so its value must be as close to unity
as desired to guarantee ε-optimality. Generally speaking,
one uses a value of Γm(P) which is smaller than 1−θ.
The reason for this is that 1− θ is the lower bound
of the probability that each action has been selected a
sufficient number of times in order to make the process
a submartingale. Once the process exhibits the property
of a submartingale, it is possible for the LA to become
ε-optimal with accuracy Γm(P).

2) We now consider the learning parameter ∆ and how
it is related to Eq. (4). To reach a given converging
probability, the parameter that one can adjust is ∆. This
is because for every ∆, there exists a corresponding
Γm(P). The smaller the value that ∆ is, the closer Γm(P)
is to unity. From a pragmatic perspective, a small ∆

ensures that each action is selected enough number of
times before the LA converges, and this, in turn, ensures
that that the estimation of each reward probability is
accurate enough to rank the actions properly. Once the
ranking of the actions becomes accurate enough, the LA
will be more likely to converge to the best action, thus
enhancing the converging probability, Γm(P). This ratio-
nale is precisely what Eq. (4) is based on. Indeed, if ∆

is defined as in Eq. (4), the given converging probability
can be guaranteed. Therefore, we set ∆ = 1

r×2t . Since t
is required to be greater than t0, we can configure t as
t0 +1.

3) The next question is that of setting pm(t0). Observe that
as mentioned in Section IV, pi(0) is configured as 1

r , as
is customarily done. If the step size is ∆ = 1

r×2(t0+1) , at
time instant t0, in the worst case, this action probability
will become:

pm(t0) =
1
r
−∆t0 =

1
r
− t0

2r(t0 +1)
=

1
2r

+
1

2r(t0 +1)
.

(16)
This means that in the worst case, the probability pm(t0)
is decreasing for all those t0 iterations. In other words,
pm(t0) ≥ 1

2r +
1

2r(t0+1) holds. We can thus set pm(t0) =
1
2r +

1
2r(t0+1) .

4) The last quantity to be determined is q0 < 1. The value
of q0 < 1 needs only to be greater than 1

2 to keep
pm(t), ∀t > t0 to be a submartingale. Note also that
q0 ≥ 1−δ holds. Thus, q0 can be set to be any value in
the interval of

(
max{1−δ, 1

2},1
)
. The equality, where it

is set to 1−δ, is when the process is neither a submartin-
gale or a supermartingale, but a “pure” martingale.

In summary, for the required Γm(P), if we set:

∆ = 1
r×2(t0+1) ,

pm(t0) = 1
2r +

1
2r(t0+1) , and
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q0 to be any value from the interval
(
max{1−δ, 1

2},1
)
,

the quantity E(t1) can be calculated. This would thus yield a
rough estimate as to how much time the LA would spend after
time t0 to converge.

Note that as ∆= 1
r×2(t0+1) is a very conservative assumption

and pm(t0) = 1
2r +

1
2r(t0+1) is the lowest value that pm(t0) can

be. In addition, q(t ′) will increase as the iterations proceed
while the value utilized in the calculation, i.e., q0 is when
t ′ = 0, which is also very conservative. Thus the results stated
for E(t1) and t0 +E(t1) are very conservative.

VI. NUMERICAL RESULTS

In the previous sections, we derived closed-form expressions
for the number of iterations needed for the DPA (with its
specified resolution parameters) to converge. We now formally
summarize the sequence of tasks that this entails, and then
discuss the result of the bound itself by providing certain
concrete values for the parameters. The three resolution pa-
rameters utilized in our calculation are Γm(P), θ and δ, where:
• Γm(P) is the final accuracy of the LA after convergence;
• θ is the resolution of the probability that each action has

been selected at least M times till the time instant t0;
• As per Item (4) above, δ can be used to derive the required

number of times that an action is selected, i.e., M. It is
also utilized for calculating t0.

Based on the results of Sections IV and V, we now formally
outline the procedure to calculate the bound when one uses
concrete values for the parameters. To calculate the total
bound, one can follow the following steps:

1) We first calculate the required number of times that each
action has to be selected, i.e., M, by using Eq. (11).
This is to guarantee that the stochastic process becomes
a submartingale, which is required so as to attain the
final convergence. Although M is calculated by invoking
Eq. (11), the required time span to fulfill this condition
is not yet bounded. Thus, even though the number M is
known, we do not yet know the time instant at which
all the actions will have been selected at least M times.

2) To estimate this time, we adopt Eq. (5). This yields
the quantity t0, after which each action will have been
selected at least M times with the high probability 1−θ.
Note that due to the randomness of the learning process,
the time instant t0 can only be bounded probabilistically
with a parameter θ. In other words, when t0 approaches
infinity, all actions will surely be selected at least M
times, which is also indicated from Eq. (5). However,
once the quantity t0 is calculated, we know that after
t0, the process becomes a submartingale with a high
probability. Thereafter, one can use Eq. (15) to calculate
the average time required in the convergence stage.

Figure 2 illustrates how the time bound for the DPA’s
convergence has been calculated.

A. Numerical Examples for the Bounds

To clarify the above, we have numerically calculated the
value of the bound for a few specific configurations.
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Fig. 2: A schematic of how the time bound of the DPA’s convergence is calculated.

1) In the first set of experiments (in Table I), we have fixed
the final accuracy of the LA, (Γm(P)), and the resolution
of the probability that the optimal action has to converge
to, for it to be considered as being optimal at time t0,
(δ). We have then varied the resolution of the probability
that each action has been selected at least M times, (θ).

2) In the second set of experiments (in Tables II and III),
we have fixed the final accuracy of the LA (Γm(P), and
resolution of the probability that each action has been
selected at least M times, (θ). We have then varied the
resolution of the probability that the optimal action has
to converge to for it to be considered as being optimal
at time t0, (δ).

3) In the final set of experiments (in Table IV), we have
fixed the resolution of the probability that each action
has been selected at least M times, (θ), and the resolution
of the probability that the optimal action has to converge
to for it to be considered as being optimal at time t0,
(δ). We have then varied the final accuracy of the LA,
(Γm(P)).

The results obtained have been recorded in Tables I, II, III
and IV respectively. To generate those results, we have set
the number of actions, r, to be 2, and the difference between
the true reward probabilities, H, to be 0.2. For the results in
Table I, we configured Γm(P) as 1−θ−0.001, δ as 0.2, and
q0 as 0.96. The reason to configure Γm(P) as 1− θ− 0.001
was to make sure that Γm(P)< 1−θ holds.

TABLE I: The times required for the DPA to converge when θ varies for the setting
where Γm(P) as 1−θ−0.001, δ as 0.2, and q0 as 0.96.

θ M t0 E(t1) t0 +E(t1)
0.1 41 1,538 4,312 5,880

0.05 41 1,543 4,691 6,234
0.04 41 1,544 4,762 6,306
0.03 41 1,546 4,834 6,380
0.02 41 1,549 4,912 6,461
0.01 41 1,554 4,995 6,549

For the results in Table II, we configured Γm(P) as 0.98, θ

as 0.015, and q0 as 1− δ+ 0.001. To further illustrate these
convergence phenomena, we also illustrated the numerical
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results when we configured Γm(P) as 0.99, θ as 0.005, and
q0 as 1−δ+0.0005. These results are given in Table III.

TABLE II: The times required for the DPA to converge when δ varies for the settings
where Γm(P) as 0.98, θ as 0.015, and q0 as 1−δ+0.001.

δ M t0 E(t1) t0 +E(t1)
0.5 18 603 881,330 881,940
0.4 23 798 11,545 12,343
0.3 31 1,124 8,169 9,293
0.2 41 1,151 7,526 9,077
0.1 58 2,314 8,427 10,741
0.08 64 2,591 8,988 11,579
0.06 71 2,920 9,669 12,589
0.04 81 3,398 10,764 14,162
0.02 98 4,230 12,841 17,071

TABLE III: The times required for the DPA to converge when δ varies for the settings
where Γm(P) as 0.99, θ as 0.005, and q0 as 1−δ+0.0005.

δ M t0 E(t1) t0 +E(t1)
0.3 31 1,132 8,361 9,493

0.275 33 1,216 7,985 9,201
0.25 35 1,300 7,685 8,985
0.23 37 1,386 7,587 8,973

0.215 39 1,472 7,634 9,106
0.2 41 1,559 7,682 9,241
0.15 48 1,868 7,891 9,759
0.12 54 2,138 8,319 10,457
0.1 58 2,321 8,579 10,900

For the results in Table IV, we configured θ as 1−Γm(P)−
0.001, δ as 0.2, and q0 as 0.98.

TABLE IV: The times required for the DPA to converge when Γm(P) varies.

Γm(P) M t0 E(t1) t0 +E(t1)
0.7 75 1,530 2,870 4,400
0.8 75 1,533 3,514 5,047
0.9 75 1,538 4,167 5,751
0.95 75 1,543 4,502 6,045
0.96 75 1,545 4,573 6,118
0.97 75 1,547 4,643 6,190
0.98 75 1,550 4,717 6,267
0.99 75 1,555 4,767 6,352

VII. DISCUSSIONS ON THE NUMERICAL BOUNDS

From Tables I and IV, we can observe that both t0 and
E(t1) monotonically increase as θ decreases and as Γm(P)
grows. In fact, 1−θ and Γm(P) describe the same trend. As
mentioned before, Γm(P)≤ 1−θ holds because 1−θ describes
the probability of the learning process being a submartingale
from t0 onward, which is the preliminary phase of the final
convergence. Since we make one parameter as a function of
the other parameter in the calculation, i.e., θ = 1−Γm(P)−
0.001, the trends of the results in those tables are the same.
We also calculate the results when we decouple those two
parameters, whence we observe the same trend. The reason
of having this trend is, in general, because of the fact that
the greater the desired convergence accuracy, the larger is the
number of iterations that is needed.

As opposed to the results in Tables I and IV, the results in
Tables II and III are quite different. As shown in Tables II and
III, when δ decreases, M and t0 increase monotonically while
E(t1) has a decreasing trend in the beginning and increases
again when δ is greater than a certain value. This is a very

interesting trend which reveals the underlying characteristic
nature of the DPA. When δ is large, i.e., δ= 0.5, q0 is small. A
smaller value of q0 indicates a smaller t0 because less samples
are required for the underlying estimation. However, a smaller
value of q0 also provides less accurate reward probability
estimates and a consequent less proper ranking of the actions
till t0. In such a case, the LA is less certain about which
action is the best, and thus spends a significant amount of
time after t0, in converging to the correct action for the given
required accuracy. This, in turn, results in a larger E(t1). As δ

becomes smaller, q0 increases. A larger value of q0 requires a
larger number of samples for the estimation, and this results
in a larger t0. But after the time instant t0, as the LA is more
certain about the best action, it converges faster, resulting in a
smaller E(t1). This explains the falling trend of the required
number of iterations from 881,940 for δ = 0.5 to 7,526 for
δ = 0.2, which reveals the process of balancing between the
exploration and exploitation phases.

As δ becomes even smaller, i.e., when δ is 0.1 and smaller,
E(t1) increases again. This is due to the fact that the high
resolution of the initial accuracy at t0 results in a small learning
rate, ∆. The small value of ∆ leads to a very slow convergence
before and after t0, which makes E(t1) large again, i.e., from
7,526 for δ = 0.2 to 12,841 for δ = 0.02.

In general, as δ decreases, t0 increases and therefore ∆

decreases. From the results of Table II and Table III, we realize
that the total number of steps has a convex trend with respect
to δ, and thus ∆. To illustrate this trend more clearly, we
have also plotted the time bounds of the DPA based on the
configurations of the environment given of Tables II and III.
This plot is given in Figure 3. Obviously, the function is not a
convex function, but has a convex envelop. Therefore, we can
also understand, theoretically, that there exists an optimal13

∆, which can deliver a required overall convergence accuracy,
i.e., Γm(P), with a minimum number of steps.
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Fig. 3: The time bounds of the DPA’s convergence in different configurations as a
function of δ.

As the total time required for the LA to converge consists of
both t0 and t1, i.e., t0+E(t1), ∆ needs to be carefully chosen to

13It is worth mentioning that the result of this study indicates that although
large δ (and thus large ∆) can reduce t0, there is no way to reduce the
total number of steps in order to achieve the same given accuracy of the
convergence Γm(P). In reality, when ∆ is large, the total number of steps is
indeed reduced, but the convergence accuracy of the LA is also compromised,
which does not conflict with our theoretic analysis.
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minimize this sum. However, this is never easy, because there
are many parameters for a given Environment, including the
number of actions, r, the parameter, H, indicating the hardness
of the Environment etc., and these will collectively influence
the relationship between ∆ and Γm(P). That is why the task of
deciding the optimal learning rate for a specific Environment
is still open. This is precisely what research in reinforcement
learning has been trying to achieve for decades, namely to
balance between the dilemmas of exploration and exploitation
in an “optimal” way!

VIII. CONCLUSIONS

In this paper, we have concentrated on the the Finite-time
Analysis of the Discrete Pursuit Automaton (DPA), which
is probably one of the fastest and most accurate reported
LA. This analysis does not invoke an eigenvalue-eigenvector
strategy. Rather, we work with the time required for the LA
to attain a certain level of confidence and then proceed to
its absorption state. Although such an analysis was carried
out many years ago, we have shown how that the previous
monotonicity-based analysis was flawed. In this paper, we
have shown that the property that should be invoked is the
submartingale property, forcing the proof to be much more
intricate. We have rectified the flaw and demonstrated the
derivation of convergence probability based on such a sub-
martingale phenomenon. From the derived analysis, we are
able to discover and explicitly clarify, for the first time, the
underlying dilemma between the DPA’s exploitation and ex-
ploration properties. We also confirm, in a non-trivial manner,
the existence of the optimal learning rate, which yields a better
comprehension for the nature of the DPA.
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