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Abstract—Spectrum cartography constructs maps of metrics
such as channel gain or received signal power across a geographic

area of interest using spatially distributed sensor measurements.
Applications of these maps include network planning, inter-
ference coordination, power control, localization, and cognitive
radios to name a few. Since existing spectrum cartography
techniques require accurate estimates of the sensor locations,
their performance is drastically impaired by multipath affecting
the positioning pilot signals, as occurs in indoor or dense urban
scenarios. To overcome such a limitation, this paper introduces
a novel paradigm for spectrum cartography, where estimation of
spectral maps relies on features of these positioning signals rather
than on location estimates. Specific learning algorithms are built
upon this approach and offer a markedly improved estimation
performance than existing approaches relying on localization, as
demonstrated by simulation studies in indoor scenarios.

I. INTRODUCTION

Spectrum cartography constructs maps of a certain channel

metric, such as received signal power, power spectral density

(PSD), or channel gain over a geographical area of interest by

relying on measurements collected by radio frequency (RF)

sensors [2]–[4]. The obtained maps are of utmost interest in

a number of tasks in wireless communication networks, such

as network planning, interference coordination, power control,

and dynamic spectrum access [5]–[7]. For instance, power

maps can be useful in network planning since the former

indicate areas of weak coverage, thus suggesting locations

where new base stations must be deployed. Since PSD maps

characterize the distribution of the RF signal power per

channel over space, they can play a major role in increasing

frequency reuse to mitigate interference. These maps may

also be of interest to speed up hand-off in cellular networks

since they enable mobile users to determine the power of

all channels at a given location without having to spend

time measuring it. Additional use cases may include cognitive

radios, where secondary users aim at exploiting underutilized

spectrum resources in the space-frequency-time domain, or

source localization, where the locations of certain transmitters

may be estimated by inspecting a map [3].

Existing methods for mapping RF power apply spatial inter-

polation or regression techniques to power measurements col-

lected by spatially distributed sensors. Some of these methods

include kriging [2], [8], [9], orthogonal matchning pursuit [4],

matrix completion [10], dictionary learning [11], [12], sparse
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Bayesian learning [13], or kernel-based learning [14], [15].

Since these works can only map power distribution across

space but not across frequency, different schemes have been

devised to construct PSD maps, for instance by exploiting

the sparsity of power distributions over space and frequency

with a basis expansion model [3], [16] or by leveraging the

framework of kernel-based learning [5]. Rather than mapping

power, other families of methods construct channel-gain maps

using Kriged Kalman filtering [17], non-parametric regression

in reproducing kernel Hilbert spaces (RKHSs) [18], low rank

and sparsity [19], or hidden Markov random fields [20].

All the aforementioned schemes require accurate knowl-

edge of the sensor locations. For this reason, they will be

collectively referred to as location-based (LocB) cartography.

However, location is seldom known in practice and therefore

must be estimated from features such as the received signal

strength, the time (difference) of arrival (T(D)oA), or the di-

rection of arrival (DoA) of positioning pilot signals transmitted

by satellites (e.g. in GPS) or terrestrial base stations (e.g. in

LTE or WiFi [21]) [22], [23]. Unfortunately, accurate location

estimates are often not available in practice due to propagation

phenomena affecting those pilot signals such as multipath,

which limits the applicability of existing cartography tech-

niques, especially in indoor and dense urban scenarios. To

see the intuition behind this observation, Figs. 1a and 1b

respectively show the x and y coordinates of the location

estimates obtained by applying a state-of-the-art localization

algorithm to TDoA measurements of 5 pilot signals received

in free space (details of the specific simulation setting can be

found in Sec. V). On the other hand, Figs. 1c and 1d depict

the same estimates but in an indoor propagation scenario. As

observed, the estimates in the second case are neither accurate

nor smooth across space, which precludes any reasonable

estimate of a spectrum map based on them.

To counteract this difficulty, there are three main types of

indoor positioning systems [24]: (i) Those based on ultra-

wideband (UWB) [25]–[27], which require a dedicated infras-

tructure and relatively high costs, e.g. synchronized anchor

nodes in the area where the map has to be constructed.

Therefore, localization cannot be carried out in an area where

such hardware is not present. (ii) Other indoor positioning

systems are based on fingerprinting [24], [28], [29], which

involves a manual collection and storage of a dataset. This

dataset may comprise the measured power of multiple beacons

at a set of known locations. Note that this process is time

consuming and typically expensive because a human or robot

should physically go through several known locations to take

measurements. Furthermore, if there are significant changes

in the propagation environment, these methods would require

the acquisition of a new dataset. (iii) There exist other indoor
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positioning systems that combine UWB or fingerprinting with

ultrasound [30] or RFID [31]. Thus, they inherit the limitations

of (i) and (ii) and require furthermore special sensors and/or

line-of-sight propagation conditions. To sum up, all existing

cartography schemes require accurate location information,

which is not available in dense multipath and indoor scenarios

when there are no special localization infrastructure or finger-

printing datasets.

The main contribution of this paper is to address this

limitation by proposing the framework of location-free (LocF)

cartography. The key observation is that inaccurate location

estimates introduce significant errors in spectrum map es-

timation. To bypass this limitation, the proposed approach

obtains spectrum maps indexed directly by (or as a function

of) features of the received pilot signals. Although many

algorithms can be devised within this framework, the present

paper develops an algorithm based on kernel-based learning

for the sake of exposition. This is not only because of the

simplicity, flexibility, and good performance of kernel-based

estimators, but also because they have well-documented merits

in spectrum cartography [5], [16]. Similarly, the discussion fo-

cuses on constructing power maps, but the proposed paradigm

carries over to other metrics such as PSD. Remarkably, as a

byproduct of skipping the localization step, the resulting car-

tography algorithm is typically computationally less expensive

than its LocB counterparts and does not require additional

localization infrastructure or the costly creation of finger-

printing datasets. The second main contribution is a design

of pilot signal features tailored to multipath environments.

The third contribution is a special technique to accommodate

scenarios where a sensor can only extract a subset of those

features due to low signal-to-noise ratio (SNR). Finally, the

proposed LocF cartography scheme is studied through Monte

Carlo simulations in realistic propagation environments. As

expected, the proposed scheme outperforms LocB cartography

in multipath scenarios, but traditional LocB approaches are

still preferable when accurate location estimates are available.

The rest of this paper is structured as follows: Sec. II

describes the system model, states the problem, and reviews

LocB cartography. Sec. III introduces LocF cartography along

with the proposed map estimation algorithm, whereas Sec. IV

deals with feature design. Numerical tests are presented in

Sec. V, and conclusions in Sec. VI.

Notation: Scalars are denoted by lowercase letters. Bold up-

percase (lowercase) letters denote matrices (column vectors),

IN is the N × N identity matrix and 1 is the vector of all

ones of appropriate dimension. The symbol  :=
√
−1 is the

imaginary unit, (·)∗ stands for the complex conjugate, while

∗ denotes convolution. Furthermore, operators (·)⊤ and || · ||F
represent transposition and the Frobenius norm, respectively.

II. PROBLEM FORMULATION AND LOCB CARTOGRAPHY

This section formulates the general spectrum cartography

problem and reviews the basics of LocB cartography.

F The goal is to determine the power p(x) of a certain

channel, termed channel-to-map (C2M), at every location

x ∈ X of a geographical region of interest X ⊂ Rd, with

(a) (b)

(c) (d)

Fig. 1: Estimation of spatial coordinates using TDoA: (a)-

(b) in free space, (c)-(d) indoor where the solid black lines

represent the walls of the building; the black dots represent

the locations of the anchor base stations. The color of each

pixel represents the value of the estimated location coordinate

at each point in the 150 × 150 grid area. Because location

estimates in (a)-(b) coincide with the true locations, they can

act as colorbars to the estimates in (c)-(d).

d = 2 or 3. For example, this C2M can be an uplink or

downlink channel of a cellular network as well as a radio

or TV broadcasting channel. To this end, a collection of

sensors gather N measurements at locations {xn}Nn=1 ⊂ X
not necessarily known. The noisy measurement of the power

p(xn) at location xn will be represented as p̃n. Since the

sensors collect measurements at multiple locations in X , the

number of measurements may be significantly greater than the

number of sensors.

In LocB cartography [2]–[5], [9]–[13], [15], [16], [18]–[20],

a fusion center is ideally given pairs {(xn, p̃n)}Nn=1, which

include the exact sensor locations {xn}Nn=1, and obtains a

function estimate p̂(x) that provides the power of the C2M

at any query location x ∈ X . With this function, a node at

location x can determine the power of the C2M if it knows x.

In practice, however, location is typically unknown and hence

the sensor at the n-th measurement point must estimate xn

by relying on pilot signals {yl,n[k]}Ll=1, where yl,n[k] denotes

the k-th sample of the pilot signal transmitted by the l-th base

station1 and received at the n-th measurement point. For con-

venience, form the L×K matrix Y n whose (l, k)-th entry is

yl,n[k]. Note that these pilot signals are generally transmitted

through a separate channel, not necessarily the C2M. However,

both channels may coincide, as it occurs in certain cellular

communication standards.

From Y n, the sensor at the n-th measurement point ob-

1Although the discussion assumes for simplicity that the pilot signals are
transmitted by terrestrial base stations, the proposed scheme can also be
applied when these pilot signals are transmitted by satellites.
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tains the estimate x̂n := x̂(Y n) of xn by means of some

localization algorithm [22], [23]. A fusion center then uses

{(x̂n, p̃n)}Nn=1 to obtain an estimate p̂(x) of the function p(x).
Therefore, if the location estimates {x̂n}Nn=1 are noisy, so will

be p̂(x). If a node at an unknown query location wishes to

determine the power of the C2M, it will use the pilot signals

Y to obtain an estimate x̂ := x̂(Y ) of its location and

will evaluate the map estimate as p̂(x̂). In this case, Y is

a matrix whose (l, k)-th entry is given by the k-th sample of

the l-th pilot signal yl[k] at the query location. Thus, such

an estimation has two sources of error: first, the location

estimation error in x̂ and, second, the map estimation error

in p̂(x).
Remark 1: One may argue that a node can determine the

power of the C2M at its location more efficiently by measuring

it rather than by receiving the pilot signals, applying a local-

ization algorithm, and evaluating the map. Whereas this may

be the case for a single C2M, if the aim is to determine the

PSD, the power of many C2Ms, or the impulse response, then

the associated measurement time may be prohibitive, which

favors the adoption of spectrum cartography approaches.

III. LOCATION-FREE CARTOGRAPHY

This section proposes LocF cartography, which bypasses

the localization step involved in all existing cartography

approaches. To this end, the LocF cartography problem is

formulated as a function estimation task in Sec. III-A and

solved via kernel-based learning in Sec. III-B.

A. Map Estimate as a Function Composition

As detailed in the previous section, existing spectrum car-

tography techniques are heavily impaired by localization errors

since the maps they construct are functions of noisy location

estimates. The main idea of the proposed framework is to

bypass such a dependence.

To this end, it is worth interpreting LocB cartography from

a more abstract perspective. As detailed in Sec. II, the LocB

map estimate is of the form p̂(x̂) with x̂ := x̂(Y ) denoting

the output of the selected localization algorithm when the pilot

signals are given by Y ∈ Y . Thus, this estimate can be seen

as a function of Y , i.e. p̂Y (Y ) := p̂(x̂(Y )), which can be

expressed schematically as:

Y
x̂

−−−→ X
p̂

−−−→ R

Y −−−→ x̂(Y ) −−−→ p̂(x̂(Y )).
(1)

As mentioned in Sec. II, existing (LocB) cartography

approaches obtain an estimate p̂ of p using the data

{(x̂(Y n), p̃n)}Nn=1 for instance by searching for a function in

an RKHS [5], [14], [15]. When x̂(Y ) is a reasonable estimate

of the location x at which Y has been observed, such a LocB

approach works well. However, due to multipath propagation

effects impacting the pilot signals in Y , x̂(Y ) may be very

different from x, which drastically hinders the estimation of p.

Thus, in those cases where the location estimates {x̂(Y n)}Nn=1

are noisy, the resulting estimate p̂, and consequently p̂Y , will

be correspondingly noisy.

(a) (b)

Fig. 2: Multi-lateration using ToA measurements with circles

as possible sensor locations: (a) consistent ToA with the sought

sensor location being the intersection of the circles (black

square) and (b) inconsistent ToA measurements. The red stars

represent the locations of the anchor base stations.

Since the source of such an error is the dependency of

p̂Y (Y ) = p̂(x̂(Y )) on the estimated location x̂(Y ), one could

think of bypassing this dependence by directly estimating p̂Y
as a general function of Y :

Y
p̂Y

−−−→ R

Y −−−→ p̂Y (Y ).
(2)

When pursuing an estimate of this general form, p̂Y (Y )
would not be confined to depend on Y only through the

estimated location. However, finding such an estimate given

{(Y n, p̃n)}Nn=1 by searching over a generic class of functions

such as an RKHS would be extremely challenging due the

so-called curse of dimensionality [32], [33]. To intuitively

understand this phenomenon, note that the number of input

variables of function p̂Y (Y ) is LK , typically in the order of

hundreds or thousands. Since learning a multivariate function

up to a reasonable accuracy generally requires that the number

of data points be several orders of magnitude larger than the

number of input variables, this approach would need N to be

significantly larger than LK , and therefore prohibitively large.

To summarize, the structure imposed by (2) is too generic,

whereas the one imposed by (1) is too restrictive. To attain

a sweet spot in this trade-off, it is worth decomposing x̂(Y )
as detailed next. Recall that x̂(Y ) is the result of applying a

localization algorithm to the pilot signals Y . For most existing

algorithms, x̂(Y ) can be thought of as the composition of

two functions: a function φ : Y → F ⊂ RM that obtains M
features from Y , such as T(D)oA or DoA, and a function l̂ :
F → X , that provides a location estimate l̂(φ) given a feature

vector φ ∈ F . In this case, p̂Y (Y ) can be decomposed as:

Y
φ

−−→ F
l̂

−−→ X
p̂

−−→ R

Y −−→ φ(Y ) −−→ l̂(φ(Y )) −−→ p̂(̂l(φ(Y ))).
(3)

Observe that the reason why the location estimate x̂(Y ) =
l̂(φ(Y )) is inaccurate in multipath environments is because

the algorithm that evaluates l̂ adopts a model where there

is a certain “agreement” among features φ(Y ). To see this,

consider Fig. 2, which illustrates the task of estimating the
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location of a sensor in an area with L = 3 base stations. The

features in φ ∈ RM , with M = L = 3, used in this example

are noiseless ToA features. For each pilot signal, there is a

circle centered at the base station and whose radius equals

c times the ToA, where c is the speed of light. Thus, when

there is no multipath, the ToA features are accurate and the

sensor to be located must lie in the intersection of the three

circles, as shown in Fig. 2a. Thus, the localization algorithm

(embodied in l̂) just needs to return the location at which

these circles intersect. However, in multipath environments,

the ToA features obtained from Y do not generally equal the

time it takes for an electromagnetic wave to propagate from

the corresponding base station to the sensor. As a result, the

aforementioned circles will not generally intersect; see Fig. 2b.

In other words, the expected agreement among features is

absent and, hence, the localization algorithm will return an

inaccurate estimate of the position.

In view of these arguments, the key idea in this paper is to

pursue estimates p̂Y (Y ) of the form:

Y
φ

−−−→ F
d̂

−−−→ R

Y −−−→ φ(Y ) −−−→ d̂(φ(Y )).
(4)

In this setting, the problem is find an estimate d̂(φ) given

{(φn, p̃n)}Nn=1, where φn := φ(Y n). By following this

approach, the estimated map p̂(Y ) = d̂(φ(Y )) does not

involve a high number of inputs as in (2) and does not depend

on the location estimate as in (1). For the latter reason, this

approach will be referred to as LocF cartography. Since this

approach does not need the agreement among entries of φ(Y )
illustrated in Fig. 2b, it is expected to outperform traditional

spectrum cartography methods when such an agreement is not

present, as occurs in multipath environments.

B. Kernel-based Power Map Learning

This section applies kernel-based learning to provide an

algorithm capable of learning the function d̂ introduced in

Sec. III-A.

Given pairs {(φn, p̃n)}Nn=1, where φn := φ(Y n), the

problem can be informally stated as finding a function d̂
that satisfies two conditions: C1) d̂ fits the data, that is,

d̂(φn) ≈ p̃n, n = 1, . . . , N ; and C2) d̂ generalizes well to

unseen data, i.e., if a new pair (φN+1, p̃N+1) is received, then

d̂(φN+1) ≈ p̃N+1. A popular approach to solve the afore-

mentioned function learning problem is kernel-based learning,

mainly due to its simplicity, universality, and good perfor-

mance [34]. Furthermore, multiple works have demonstrated

the merits of this framework for spectrum cartography; see

Sec. I.

The first step when attempting to learn a function is to

specify in which family of functions d̂ must be sought. In

kernel-based learning, one seeks d̂ in a set known as a

reproducing-kernel Hilbert space (RKHS), which is given by:

H :=

{

d : d(φ) =

∞
∑

i=1

αiκ(φ,φ
′
i), φ′

i ∈ F , αi ∈ R

}

, (5)

where κ : F × F → R is a symmetric and positive

definite function known as reproducing kernel [35]. Although

kernel methods can use any reproducing kernel, a com-

mon choice is the so-called Gaussian radial basis function

κ(φ,φ′) := exp
[

−‖φ− φ′‖2/(2σ2)
]

, where σ > 0 is a

parameter selected by the user. As any Hilbert space, H has

an associated inner product and norm. For an RKHS function

d(φ) =
∑∞

i=1 αiκ(φ,φ
′
i), the latter is given by:

‖d‖2
H

:=

∞
∑

i=1

∞
∑

j=1

αiαjκ(φ
′
i,φ

′
j). (6)

Kernel-based learning typically solves a problem of the form:

d̂ = argmin
d∈H

1

N

N
∑

n=1

L (p̃n,φn, d(φn)) + ω (‖d‖
H
) , (7)

where L is a loss function quantifying the deviation between

the observations {p̃n}Nn=1 and the predictions {d(φn)}Nn=1

returned by a candidate d; and ω is an increasing function.

The first term in (7) promotes function estimates satisfying

C1. The second term promotes estimates satisfying C2 by

limiting overfitting. Intuitively, ‖ · ‖H captures a certain form

of smoothness that limits the variability of d.

Although there exist different candidate functions for

L and ω in kernel-base learning, typical choices are

L(p̃n,φn, d(φn)) = (p̃n − d(φn))
2 and ω(‖d‖H) = λ‖d‖2

H
,

where λ > 0 is a regularization parameter that balances

smoothness and goodness of fit. For this choice, d̂ is termed

kernel ridge regression estimate [34, Ch. 4], and is the one

used in our experiments for simplicity. The goal is therefore to

solve (7). However, since H is generally infinite dimensional,

(7) cannot be directly solved. Fortunately, one can invoke the

representer theorem [35], which states that the solution to (7)

is of the form:

d̂(φ) =
N
∑

n=1

αnκ(φ,φn), (8)

for some {αn}Nn=1. Although the representer theorem does

not provide {αn}Nn=1, these coefficients can be obtained by

substituting (8) into (7) and solving the resulting problem

with respect to them. Applying this procedure for kernel ridge

regression results in the problem:

α̂ = argmin
α

1

N
‖p̃−Kα‖2 + λα⊤Kα, (9)

where α := [α1, ..., αN ]
⊤

, p̃ := [p̃1, ..., p̃N ]
⊤

, and K is

a positive-definite N ×N matrix whose (n, n′)-th entry is

κ(φn,φn′). Problem (9) can be readily solved in closed-form

as α̂ = (K + λNIN )
−1

p̃. The estimate d̂ solving (7) for

kernel ridge regression can be recovered by substituting the re-

sulting {αn}Nn=1 into (8). To obtain the predicted power of the

C2M at a query location x where the pilot signals are given by

Y , one just evaluates the LocF estimate p̂Y (Y ) = d̂(φ(Y )).

IV. LOCATION-FREE FEATURES

As described in Sec. III-A, LocB cartography algorithms

learn a function of the location estimate. In the machine

learning terminology, the features are the spatial coordinates
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of the sensor locations. On the other hand, the features used by

LocF cartography are the entries of φ(·). In principle, φ(Y )
could be set to contain the same features as the ones used

by l̂(·); see Sec. III. However, it is generally preferable to use

features specifically tailored to LocF cartography. This section

accomplishes the design of these features in several steps.

A. Feature Extraction

In Sec.III-A, φ(Y ) comprised M features used by typical

localization algorithms, e.g. T(D)oA or DoA. The key ob-

servation is that, although these features are appropriate for

localization, a different set of features may be preferable for

LocF cartography. To come up with a natural feature design,

this section first reviews the features used by typical localiza-

tion algorithms (hence for LocB cartography) and analyzes

their limitations. Inspired by this analysis, a novel feature

extraction approach is proposed. To simplify the exposition,

the scenario where sensors are synchronized with the base

stations is presented first. A more practical setup, where this

synchronization is not required, will be considered next.

1) Sensors are Synchronized with Base Stations: The re-

ceived pilot signal is generally modeled as:

yl,n[k] := al[k] ∗ hl,n[k] + wl,n[k], (10)

where al[k] is the k-th sample of the l-th transmitted pilot

signal, hl,n[k] is the discrete-time channel impulse response

between the l-th base station and the sensor at the n-th

location, and wl,n[k] is the noise term. The discrete-time

impulse response hl,n[k] is obtained next from its analog

counterpart hl,n(t), which follows the conventional multipath

channel model with Pl,n components:

hl,n(t) =

Pl,n
∑

p=1

α
(p)
l,nδ

(

t− t
(p)
l,n

)

, (11)

where δ(·) is the Dirac delta distribution and α
(p)
l,n ∈ R and t

(p)
l,n

are respectively the amplitude and delay of the p-th path. After

up-conversion to the carrier frequency fc, the pilot signal of

the l-th base station is transmitted and received by the sensor

at the n-th measurement point, which bandpass-filters with

bandwidth B, down-converts, and samples at the Nyquist rate

T = 1/B. Therefore, the received noiseless samples are given

by yl,n[k] in (10), where [36], [37]:

hl,n[k] =

Pl,n
∑

p=1

α
(p)
l,ne

−2πfct
(p)
l,n sinc

(

k −
t
(p)
l,n

T

)

. (12)

In view of these expressions, one of the most natural

estimators for the ToA τ l,n := t
(1)
l,n is:

τ̂l,n := T ·min{k : |ĥl,n[k]| ≥ γ}, (13)

where ĥl,n[k] is an estimate of hl,n[k] and γ is typically set

as a function of the signal-to-noise ratio [27].

It will be argued next that such a ToA feature does not

evolve smoothly over space in presence of multipath, and

therefore, this may negatively impact estimation performance,

as occurs with LocB cartography; see discussion about Fig. 1

(a) (b)

Fig. 3: Extraction of ToA from digital impulse response

measured at two points that are spatially close. In (a), the

ToA estimate is proportional to k2; whereas in (b), the ToA

estimate is proportional to k1.

in Sec. I. For simplicity, assume that al[k] = δ[k], where

δ[k] is the Kronecker delta. In this case, one can directly

estimate hl,n[k] as ĥl,n[k] = yl,n[k] = hl,n[k] + wl,n[k],
which is a noisy version of hl,n[k]. To see the impact of

multipath, consider a simple example where the measurement

points xn1 and xn2 lie close to each other and the channel

impulse responses are given by ĥl,n1 [k] = α
(1)
l,n1

δ[k− k
(1)
l,n1

] +

α
(2)
l,n1

δ[k− k
(2)
l,n1

]+wl,n1 [k] and ĥl,n2 [k] = α
(1)
l,n2

δ[k− k
(1)
l,n2

]+

α
(2)
l,n2

δ[k − k
(2)
l,n2

] + wl,n2 [k]. Due to their spatial proximity, it

follows that:

α
(1)
l,n1

≈ α
(1)
l,n2

, α
(2)
l,n1

≈ α
(2)
l,n2

, (14a)

k
(1)
l,n1

≈ k
(1)
l,n2

≈ k1, k
(2)
l,n1

≈ k
(2)
l,n2

≈ k2, (14b)

for some k1 and k2. Assuming for simplicity that the effects of

noise are negligible, if |α(1)
l,n1

| < γ < |α(2)
l,n1

| and γ < |α(1)
l,n2

|,
then the ToA estimates are:

τ̂n1 := T ·min{k : |ĥl,n1 [k]| ≥ γ} = Tk
(2)
l,n1

≈ Tk2,

τ̂n2 := T ·min{k : |ĥl,n2 [k]| ≥ γ} = Tk
(1)
l,n2

≈ Tk1.

This scenario is illustrated in Fig. 3. Despite how close

their locations and observed impulse responses are, the ToA

estimates at locations xn1 and xn2 can be quite different,

which establishes that the ToA estimate in (13) is not a smooth

function of the spatial location.

Since this non-smoothness negatively affects the perfor-

mance of the proposed LocF cartography estimator (and since

the latter does not need ToA estimates that are proportional

to the distance, as occurs in LocB cartography), a promising

candidate for feature would be the center of mass (CoM) of

the estimated impulse response:

CoMl,n :=

∑K−1
k=0 |ĥl,n[k]|2k
∑K−1

k=0 |ĥl,n[k]|2
,

where K is the number of samples. To see why such a feature

evolves smoothly over space, suppose that the effects of noise

are negligible and note that this CoM feature applied to the



6

channel impulse responses in the previous example yields:

CoMl,n1 =
k
(1)
l,n1

|α(1)
l,n1

|2 + k
(2)
l,n1

|α(2)
l,n1

|2

|α(1)
l,n1

|2 + |α(2)
l,n1

|2
,

CoMl,n2 =
k
(1)
l,n2

|α(1)
l,n2

|2 + k
(2)
l,n2

|α(2)
l,n2

|2

|α(1)
l,n2

|2 + |α(2)
l,n2

|2
.

From (14), it follows that CoMl,n1 ≈ CoMl,n2 , which indi-

cates that the CoM is indeed a feature that evolves smoothly

over space, and therefore preferable for LocF cartography. In

this case, the feature vector at the n-th sensor location becomes

φn = [CoM1,n, . . . ,CoML,n]
⊤.

2) Sensors are not Synchronized with Base Stations:

Since synchronization requires more expensive equipment and

becomes challenging in multipath scenarios, TDoA estimates

are generally preferred for localization. TDoA estimates are

typically obtained by extracting the lag corresponding to the

maximum cross-correlation of a pair of received pilot sig-

nals [38]. Assuming zero-mean, the cross-correlation between

two pilot signals received by the sensor at the n-th location is

defined as:

cl,l′,n[i] := E{yl,n[k]y∗l′,n[k − i]} with l 6= l′. (15)

With al[k] = al′ [k] a white process with power σ2
a and

uncorrelated with wl,n[k] and wl′,n[k], also uncorrelated with

each other, it can be easily seen that:

cl,l′,n[i] = σ2
a

(

hl,n[i] ∗ h∗

l′,n[−i]
)

.

A common estimate of the TDoA ∆l,l′,n is (see e.g. [38]):

∆̂l,l′,n = T · argmax
i

{
∣

∣ĉl,l′,n[i]
∣

∣}, (16)

where ĉl,l′,n[i] is an estimate of cl,l′,n[i]. To see the intuition

behind this estimator, note that ĥl,n[k] = α
(1)
l,nδ[k − k

(1)
l,n ] and

ĥl′,n[k] = α
(1)
l′,n

δ[k − k
(1)
l′,n

] in a free-space channel with large

bandwidth B. This implies that:

cl,l′,n[i] = σ2
aα

(1)
l,n

(

α
(1)
l′,n

)∗

δ
[

i−
(

k
(1)
l,n − k

(1)
l′,n

)]

= σ2
aα

(1)
l,n

(

α
(1)
l′,n

)∗

δ
[

i−∆l,l′,n/T
]

,

and therefore the lag of the maximum magnitude of cl,l′,n[i]
provides the TDoA in this simple scenario.

Similar arguments to those used in Sec. IV-A1 to conclude

that the ToA estimates are not spatially smooth can also be

invoked to reach the same conclusion for TDoA. Likewise,

following the same rationale as in Sec. IV-A1, this section

proposes alleviating the aforementioned issue by adopting

features of the form:

CoMl,l′,n :=

∑K−1
i=−K+1 |cl,l′,n[i]|2 i
∑K−1

i=−K+1 |cl,l′,n[i]|2
, (17)

where CoMl,l′,n is the CoM of the cross-correlation between

the l-th and l′-th pilot signals. The proposed feature has three

advantages: i) it is smooth, as portrayed later in Sec. V-A, ii)

it does not require synchronization between the localization

base stations and the sensors, and iii) it does not require the

Fig. 4: Singular values σ1 ≥ σ2 ≥ . . . ≥ σM ≥ 0 of Φ in

non-increasing order for a multipath environment with L = 4
transmitters.

knowledge of the impulse responses. With this choice, the

feature vector at the n-th measurement location becomes:

φn =[CoM1,2,n,CoM1,3,n, . . . ,CoM1,L,n,

CoM2,3,n, . . . ,CoML−1,L,n]
⊤.

(18)

B. Cartography from a Reduced Set of Features

As argued earlier in Sec. III-A, learning becomes difficult

when the number of input features M is high. This section

develops a scheme to reduce this number of features to

improve estimation performance in LocF cartography.

As stated in the previous section, in LocB cartography, the

feature vectors correspond to the coordinates of the estimated

location. Application of the localization algorithm represented

by the function l̂ in (3) naturally reduces dimensionality from

the original M features to just 2 or 3. On the other hand, in the

case of LocF cartography, a larger number N of measurements

to learn d̂ in (4) may be necessary to attain a target accuracy

if M is large. This observation calls for a dimensionality

reduction step that condenses the information of the feature

vectors {φn}Nn=1 ⊂ RM into vectors {φ̄n}Nn=1 ⊂ Rr of a

reduced size r. Intuitively, r should be the minimum number

that preserves most information while eliminating most of

the noise in {φn}Nn=1. Even if some information is lost, the

reduction in the error entailed by the fact that the function

to be estimated has fewer input arguments may pay off in

practice.

In the cases where the feature vectors {φn}Nn=1 lie close to

a low-dimensional subspace, the coordinates of these vectors

with respect to a basis for such a subspace may constitute a

suitable reduced set of features. To see this, it is instructive to

start by considering the scenario of TDoA features. Suppose,

for simplicity, that the effects of noise are negligible, so

that the TDoA estimates ∆̂l,l′,n approximately equal the true

TDoAs ∆l,l′,n. Then, the rows of Φ := [φ1, . . . ,φN ] are

of the form ∆l,l′ := [∆l,l′,1,∆l,l′,2, . . . ,∆l,l′,N ]⊤. If τ l :=
[τ l,1, . . . , τ l,N ]⊤ collects the ToA from the l-th base station to

all sensor locations, then it clearly holds that ∆l,l′ = τ l−τ l′ .

Consequently, ∆1,l−∆1,l′ = τ 1−τ l−(τ 1−τ l′) = τ l′−τ l =
∆l′,l, which implies that all rows of Φ are linear combinations

of the L− 1 rows {∆1,l}Ll=2. Thus, the rank of Φ is at most

L− 1 or, equivalently, the vectors {φn}Nn=1 lie in a subspace

of dimension L−1. When effects of noise are noticeable, one

would expect that the vectors {φn}Nn=1 lie close to a subspace

of dimension L− 1.
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Similarly, one can expect that when the entries of the vectors

{φn}Nn=1 are given by (17), these vectors also lie close to a

low-dimensional subspace since CoM features are proportional

to the TDoAs in absence of multipath; see Sec. IV-A. This

phenomenon can be illustrated through simulation (see Sec. V

for more details). Fig. 4 depicts the singular values σ1 ≥ σ2 ≥
. . . ≥ σM ≥ 0 of Φ in non-increasing order for a multipath

environment described in Sec. V with L = 4. As expected,

roughly r = L − 1 = 3 directions capture almost all the

energy of the rows of Φ.

When a set of random vectors lie close to a subspace, an

appealing approach for dimensionality reduction is principal

component analysis (PCA) [32, Ch. 12], which obtains the

reduced feature vectors by projecting the input data vectors

onto the subspace that preserves most of the energy. Since in

this paper no probabilistic assumptions have been introduced

on {φn}Nn=1, the typical formulation of PCA is not directly

applicable. However, as detailed next, it is not difficult to

extend this idea to the fully deterministic scenario, which

furthermore provides intuition.

Assume w.l.o.g. a centered set of feature vectors, i.e.,

(1/N)
∑N

n=1 φn = 0. If not centered, just subtract the

mean by replacing Φ with Φ − (1/N)Φ11
⊤. The subspace

that captures most of the energy of the observations can be

determined using the singular value decomposition (SVD) of

Φ, which for M < N is given by:

Φ =
[

U1 U2

]

[

Σ1 0

0 Σ2

0

0

] [

V ⊤
1

V ⊤
2

]

, (19)

where Σ1 := diag {σ1, . . . , σr} contains the r largest singular

values of Φ, Σ2 := diag {σr+1, . . . , σM} contains the M − r
smallest, and the columns of U :=

[

U1 U2

]

(respectively

V := [V1,V2]) are the left (right) singular vectors of Φ.

Clearly, if the data vectors {φn}Nn=1 are multiplied by the

orthogonal matrix U⊤, the resulting vectors {φ′
n}Nn=1, with

φ′
n := U⊤φn, contain the same information. Thus, one can

replace Φ with Φ
′ := U⊤

Φ.

By applying this transformation, which can be thought of as

a generalized rotation, most of the energy of Φ′ is concentrated

in its first r rows. To see this, note that the energy of the first

r rows of Φ′ is given by:

||U⊤
1 Φ||2F = ||Σ1V

⊤
1 ||2F = Tr

(

Σ1V
⊤
1 V1Σ

⊤
1

)

= Tr
(

Σ1Σ
⊤
1

)

= ||Σ1||2F =

r
∑

m=1

σ2
m,

whereas the energy of the last M − r rows of Φ′ is given by:

||U⊤
2 Φ||2F = ||Σ2||2F =

M
∑

m=r+1

σ2
m.

When r = L − 1, since the rows of Φ lie approximately

in a subspace of dimension r, it follows that σm ≈ 0 for

m > r. Therefore
∑r

m=1 σ
2
m ≫ ∑M

m=r+1 σ
2
m and, hence,

||U⊤
1 Φ||2F ≫ ||U⊤

2 Φ||2F . Equivalently, most of the energy of

the vectors {φ′
n}Nn=1 is concentrated in their first r entries.

This observation suggests using the first r entries of the

vectors {φ′
n}Nn=1 as features, while discarding the rest. That

is, the reduced dimensionality feature vectors will be given

by {φ̄n}Nn=1, where φ̄n := U⊤
1 φn. Note that φ̄n is just the

vector of coordinates of φn with respect to the basis composed

of the columns of U1.

The number r of entries of the new feature vectors {φ̄n}Nn=1

may be potentially much smaller than M and can there-

fore boost estimation performance meaningfully. For instance,

when {φn}Nn=1 are given by (18), this reduction is from

M = L(L− 1)/2 features to r = L− 1 features.

In scenarios of very strong multipath, the rows of Φ may

not lie close to any subspace of dimension L − 1. In those

cases, it may be worth choosing a value of r greater than

L − 1. A possibility is to specify a fraction η ∈ [0, 1] of the

energy of Φ that must be kept in Φ̄ := U⊤
1 Φ, and choose r

to be the smallest integer that guarantees this condition, that

is:

r = min

{

r′ :

∑r′

m̄=1 σ
2
m̄

∑M

m=1 σ
2
m

≥ η

}

. (20)

To summarize, the problem of LocF cartography with the

technique for reducing the set of features introduced in this

section is as follows. Given the original set of measurements

{φn}Nn=1 ⊂ RM , one must form the matrix Φ, compute

U1 from the SVD in (19), and obtain the reduced features

{φ̄n}Nn=1 ⊂ Rr where φ̄n = U⊤
1 φn. Then, the function d̂ is

obtained form the pairs {(φ̄n, p̃n)}Nn=1 using the approach in

Sec. III-B. To evaluate the resulting map at a query location

where the received pilot signals are given by Y , one must

simply obtain d̂(U⊤
1 φ(Y )).

C. Dealing with Missing Features

Due to propagation effects, the signal-to-noise ratio of some

of the received pilot signals may be too low for feature

extraction. In this case, the features associated with those pilot

signals may be unreliable or simply unavailable. This section

develops techniques to cope with such missing features.

Let Ω ⊂ {1, . . . ,M}×{1, . . . , N} be such that (m,n) ∈ Ω
iff the m-th feature is available at the n-th measurement

location and define the “incomplete” feature matrix Φ̆ ∈
(R ∪ {FiM})M×N

as:

(Φ̆)m,n =

{

(φn)m + ςm,n if (m,n) ∈ Ω

FiM otherwise,
(21)

where ςm,n explicitly models error in the feature extraction

and the symbol FiM represents that the corresponding feature

is missing. Since the matrix Φ̆ contains missing features,

the LocF cartography scheme presented so far is not directly

applicable. The missing features must be filled first. Hence,

the goal is, given Φ̆, find Φ ∈ R
M×N that agrees with Φ̆ on

Ω. A popular approach to address such a matrix completion

task is via rank minimization [39]:

minimize
Φ

rank (Φ)

subject to PΩ(Φ) = PΩ(Φ̆),
(22)

where

PΩ : (R ∪ {FiM})M×N −→ R
M×N

Φ̆ 7−→ PΩ(Φ̆),
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with

(

PΩ(Φ̆)
)

m,n
=

{

(Φ̆)m,n if (m,n) ∈ Ω

0 if (m,n) /∈ Ω.

Although this problem is non-convex, efficient solvers exist

based on convex relaxation [40], [41]. A legitimate ques-

tion would be what is the minimum number of available

features required to recover a reasonable reconstruction of

Φ. As a guideline, a result in [42] establishes that, under

certain conditions, the minimum number of available features

to recover Φ ∈ RM×N is O
(

Ñ rank(Φ) log(Ñ)
)

where

Ñ = max(M,N).
Although the aforementioned rank minimization approach

could, in principle, be used, it suffers from two limitations.

First, it does not exploit the prior information that Φ can

be well approximated by a matrix of rank r, where r is

typically L − 1; see Fig. 4. Second, the constraint in (22)

would render the reconstructed matrix sensitive to the noise

{ςm,n}m,n present in Φ̆. Thus, an appealing alternative to (22)

would be:

Φ̊ :=argmin
Φ

1

2
||PΩ(Φ)− PΩ(Φ̆)||2F

subject to Φ ∈ Mr,

(23)

where Mr := {Φ ∈ R
M×N : rank(Φ) = r} is the smooth

manifold of r-rank M ×N matrices.

There exist algorithms to find local minima of the non-

convex problem (23). One example based on manifold opti-

mization [43] is the linear retraction-based geometric conju-

gate gradient (LRGeomCG) method from [44]. A less compu-

tationally expensive alternative is the singular value projection

(SVP) method in [45], which is based on the traditional

projected subgradient descent method.

After solving (23), all the columns of Φ̊ := [φ̊1, . . . , φ̊N ]
clearly lie in a subspace of dimension r. From the arguments in

Sec. IV-B, learning the map can be improved by suppressing

this redundancy. To this end, one could use the technique

in Sec. IV-B, which would obtain the reduced-dimensionality

feature vectors as follows:

Φ̄ := [φ̄1, . . . , φ̄N ] = Ů⊤
1 Φ̊. (24)

Here, the columns of Ů1 are the left singular vectors corre-

sponding to the r largest singular values of Φ̊. Nevertheless,

since Φ̊ has rank r, it is not necessary to obtain Ů1 by

means of an SVD. Namely, the columns of Ů1 can be directly

obtained by orthonormalizing the first r linearly independent

columns of Φ̊, e.g. through Gram-Schmidt.

To sum up, to estimate a map using the proposed LocF

cartography in presence of missing features is as follows.

First, matrix Φ̆ is formed with the available features. Then,

the completed matrix Φ̊ is obtained using LRGeomCG or

SVP. Next, Ů1 is obtained through Gram-Schmidt over this

completed matrix. Finally, one learns d̂ from {(φ̄n, p̃n)}Nn=1,

where φ̄n is the n-th column of Φ̄ in (24), using the approach

in Sec. III-B.

To evaluate the estimated map at a test location, one would

require in principle the feature vector φ ∈ RM at that location

or, alternatively, its reduced-dimensionality version φ̄ ∈ Rr.

However, due to the phenomena described earlier, only some

of the features of φ may be available, which can be collected

in the vector φ̆ ∈ (R ∪ {FiM})M . The problem now is to find

the reduced-dimensionality feature vector φ̄ given φ̆.

Since the columns of Φ̊ lie in an r-dimensional subspace

for which the columns of Ů1 form an orthonormal basis, it is

reasonable to say that the feature vector at the testing point

φ ∈ RM also lies in that subspace, meaning that this vector

can be written as φ = Ů1φ̄ for some φ̄. The procedure to

recover φ̄ depends on whether φ̆ contains enough observed

features. Let Ω′ ⊂ {1, . . . ,M} be such that the m ∈ Ω′ iff

the m-th feature is available in φ̆. If M̆ := |Ω′| ≥ r, one

can think of finding φ̄ using the well-known regularized least

squares (RLS) method as:

ˆ̄φ = argmin
φ̄

∥

∥

∥
PΩ′(φ̆)− PΩ′(Ů1φ̄)

∥

∥

∥

2

+ µ(φ̄− φ̄avg)
⊤C−1(φ̄− φ̄avg),

(25)

where

PΩ′ : (R ∪ {FiM})M −→ R
M

φ̆ 7−→ φ, (φ)m =

{

(φ̆)m if m ∈ Ω′

0 if m /∈ Ω′,

µ > 0 is a regularization parameter, φ̄avg and C ∈ R
r×r are

respectively the sample mean vector and covariance matrix of

the coordinates of the completed features in the traning phase,

that is, φ̄avg = (1/N)Φ̄1 and C = (1/N)(Φ̄− φ̄avg1
⊤)(Φ̄−

φ̄avg1
⊤)⊤. To solve Problem (25), let the elements of Ω′ be

denoted as Ω′ := {m1, . . . ,mM̆
}. Then:

ˆ̄φ =
(

Ů⊤
1 S⊤SŮ1 + µC−1

)−1

(

Ů⊤
1 S⊤SPΩ′(φ̆) + µC−1φ̄avg

)

,
(26)

where S ∈ {0, 1}M̆×M is a row selection ma-

trix with all entries equal to zero except for the en-

tries (1,m1), . . . , (M̆,mM̆ ), which equal to 1. Thus,

SPΩ′(Ů1φ̄) = SŮ1φ̄. On the other hand, if M̆ := |Ω′| < r,

it is not possible to identify φ̄ from φ̆. The extreme case would

be when M̆ = 0. A natural estimate at such point can be the

spatial average of the signal power (1/N)
∑

n p̃n.

V. NUMERICAL TESTS

This section evaluates the performance of LocF cartography

in presence of multipath, where localization algorithms cannot

achieve accurate location estimates. To this end, the simula-

tions are carried out in a 42 × 27 m structure comprising

several parallel vertical planes modeling the external and

internal walls of a building, the latter is located in a 60

× 40 m rectangular area X . This area contains L active

transmitters. Some of these are positioned inside the building,

others outside. Matrix Y n ∈ CL×K containing the noisy

received pilot signals is generated according to (10), where

K is adjusted depending on B to capture all the multipath

components. For simplicity, the pilot signals are given by2

2Amplitude units are such that a signal x[k] = 1, ∀k, has power 1 W.
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Fig. 5: (left) True map, (middle) LocB (λ′ = 3.3×10−3, σ′ = 0.5 m), and (right) LocF (λ = 1.9×10−4, σ = 37 m) estimated

maps; N = 300, L = 5, B = 20 MHz, and K = 10. The black crosses indicate the sensor locations and the solid white lines

represent the walls of the building.

Fig. 6: Maps of the M = 10 LocF features with L = 5, B = 20 MHz, and K = 10. The solid black lines represent the walls

of the building and the black stars represent the transmitter locations.

Fig. 7: Performance comparison between the LocF cartography

(λ = 1.9× 10−4, σ = 37 m) and the LocB cartography (λ′ =
3.3× 10−3, σ′ = 0.5 m) with B = 20 MHz and K = 10.

al[k] = δ[k] which implies that the rows of Y n ∈ CL×K

contain the impulse responses of the bandlimited channels

between the L transmitters and the n-th measurement location.

The channel hl,n[k] is generated following (12) with a carrier

frequency of 800 MHz and pilot channel bandwidth B = 1/T .

The noise samples wl,n[k] are independent normal random

variables with zero-mean and variance -70 dBm. Propagation

adheres to the Motley-Keenan multi-wall radio propagation

model [46], which accounts for the direct path, up to 5 first-

order wall reflections, and up to 5 wall-to-wall second-order

reflections. Remarkably, the model captures the impact of

the angle of incidence on the power of the reflected ray.

For simplicity, the C2M is chosen to be the channel where

localization pilot signals are transmitted. In practice, this is the

case in the downlink of a cellular communication system such

as LTE where the base stations transmit both communication

signals and localization pilots.

To ensure that the measurements are obtained in the far-

field propagation region, sensor locations are spread uniformly

at random over X̄ , which comprises those points in X ly-

ing at least 3 wavelengths away from all transmitters. Note

that, although the number of sensor locations is sometimes

in the order of hundreds, this does not mean that a large

number of sensing devices must be used since each device

may gather measurements at tens or hundreds of spatial

locations. The power measurement pn (measured in dBW)

of the C2M at position xn is corrupted by additive noise
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TABLE I: Parameters used for the experiment in Fig. 8.

B (MHz) 50 100 200 700

K 25 50 100 350

LocB
σ′ (m) 10.1 8.9 9 7

λ′ 1.8× 10−3 9.1× 10−4 7.1× 10−4 2.1× 10−4

LocF
σ (m) 27 41 53 28

λ 3.81× 10−4 6.1× 10−5 1.1× 10−5 5× 10−4

Fig. 8: LocF and LocB map NMSE as a function of the number of walls for different values of the bandwidth, L = 5, N = 300.

ǫn to yield p̃n = pn + ǫn, where {ǫn}Nn=1 are independent

normal random variables with zero-mean and variance σ2
ǫ .

This variance is such that the signal-to-noise ratio defined as

10 log10(p̄
2/σ2

ǫ ) ≈ 40 dB, where p̄ :=
∫

X̄
p(x)dx/

∫

X̄
dx is

the spatial average of p(x). This SNR is considered practical

since the measurement noise power σ2
ǫ can be driven arbitrarily

close to zero in practice by averaging over a sufficiently long

time window.

Quantitative evaluation will compare the normalized mean

square error (NMSE) defined as:

NMSE =
E{|p(x)− p̂Y (Y (x), T )|2}

E{|p(x)− p̄|2} , (27)

where p̂Y (Y (x), T ) (measured in dBW) denotes the result

of evaluating the map constructed from the training set T :=
{(Yn, p̃n)}Nn=1 at the location x, where Y (x) comprises the

received pilot signals at x. The denominator in (27) normalizes

the square error of the considered algorithm by the error in-

curred by the best data-agnostic estimator, which estimates the

spatial average p̄ at all points. Thus, the adopted performance

metric is higher than traditional NMSE, meaning that it is more

challenging to obtain lower values. Furthermore E{·} denotes

the expectation over the sensor locations and noise.

A. LocF vs. LocB

To avoid the need for synchronization between transmitters

and sensors, the LocF algorithm utilizes the features in (17),

which additionally provide robustness to multipath and evolve

smoothly over space; see Sec. IV-A. Since this center of mass

can be thought of as a lag, it is scaled by the sampling period

T and speed of light c to obtain the corresponding range

difference, i.e.:

φn := Tc [CoM1,2,n,CoM1,3,n, . . . ,CoM1,L,n,

CoM2,3,n, . . . ,CoML−1,L,n]
⊤.

(28)

Fig. 9: LocF estimated map NMSE for different values of

number of features M and sensor locations N , with L = 5,

B = 20 MHz, K = 10, λ = 1.9× 10−4, and σ = 37 m.

Using these features, the LocF algorithm uses the kernel

ridge regression technique in Sec. III-B with Gaussian radial

basis functions with parameter σ. The reason is that this uni-

versal kernel is capable of approximating arbitrary continuous

functions that vanish at infinity [47]. On the other hand,

for LocB cartography, the feature vector φn = x̂n ∈ R2

comprises estimates of the spatial coordinates of the n-th

sensor location obtained by the iterative re-weighting squared

range difference-least squares (IRWSRD-LS) algorithm [48],

which features state-of-the-art localization performance. This

algorithm is applied over TDoA features extracted from

{Y n}Nn=1 through (16). At the n-th sensor location, these

features {∆̂1,l′,n}Ll′=2 comprise the TDoA between a reference

base station and the remaining L− 1 base stations. Enlarging

this set by including TDoA measurements ∆̂l,l′,n with l 6= 1
would not be beneficial for the estimation performance as
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(a)

(b)

Fig. 10: Maps of: (a) all the M = 10 features and (b) r = 4 reduced features with L = 5, B = 20 MHz, and K = 10.

The solid black lines represent the walls of the building and the black stars represent the transmitter locations. The maps are

obtained by representing the value of the feature at every location in X .

discussed in [49]. The reason is the redundancy inherent to

TDoA features described in Sec. IV-B. To ensure a fair com-

parison, LocB utilizes the same function learning algorithm

as LocF; see Sec. III-B. Specifically, given {(x̂n, p̃n)}Nn=1,

the map is estimated as p̂(x̂) = κ′⊤(x̂)β̂ where κ′(x̂) :=
[κ′(x̂, x̂1), . . . , κ

′(x̂, x̂N )]
⊤

, β̂ := (K ′ + λ′NIN )−1p̃, and

K ′ is an N ×N matrix with (n, n′)-th entry κ′(x̂n, x̂n′) and

κ′ is a Gaussian radial basis function with parameter σ′. In

this way, this benchmark LocB algorithm coincides with those

in [5], [14] when a power map must be estimated on a single

frequency and with a single kernel. In all experiments, the

values of λ, λ′, σ, and σ′ used by the LocF and LocB schemes

were tuned to approximately yield the lowest NMSE.

Fig. 5 (left) depicts the true map generated through the

multi-wall model, where the black crosses indicate the sensor

locations and the solid white lines represent the walls of the

building. The middle and right panels respectively show the

LocB and LocF map estimates, obtained by placing a query

sensor at every location. It is observed that the quality of the

LocF estimate is considerably higher than that of the LocB

estimate. The cause for the poor perfomance of the LocB

algorithm is that the location estimates evolve in a non-smooth

fashion across space, and attempting to learn the C2M from

such non-smooth features is more challenging; see Figs. 1c

and 1d and the discussion in Sec. I. To illustrate how the LocF

approach alleviates this issue, Fig. 6 depicts the features used

by the LocF estimator across X . Specifically, if φ(x) denotes

the feature vector, obtained as in (28) for location x, then the

m-th panel titled ϕm in Fig. 6 corresponds to the m-th entry

of φ(x) for each x ∈ X . It is observed that the evolution of

these proposed features across space is significantly smoother

than the one in Figs. 1c and 1d. A quantitative comparison is

provided in Fig. 7, which shows the NMSE as a function of the

number of sensor locations N for L = 4 and 7 transmitters.

The error bars delimit intervals of 6 standard deviations of

the NMSE across the 200 independent Monte Carlo runs. It

is observed that, with high significance, the proposed LocF

cartography scheme outperforms its LocB counterpart for

both values of L provided that the number of measurement

locations is roughly larger than 150.

The rest of the section studies the impact of multipath on

the LocF and LocB cartography approaches by varying the

number of walls. Fig. 8 shows the NMSE as a function of

the number of walls for different values of B. The parameters

used for both LocF and LocB schemes are listed in Table I.

The NMSE is obtained by also averaging over wall locations,

which are confined to be in the positions of the walls in Fig. 6

plus an additional wall that divides the room in two.

As expected, for all the simulated values of B, the perfor-

mance of both LocF and LocB schemes is degraded (yet more

severely in LocB) as the number of walls increases. Moreover,

the performance of the LocB improves significantly with the

bandwidth, since a higher bandwidth allows a more accurate

estimation of the TDoA. This is because multipath components

arriving within a time interval of length T = 1/B cannot be

resolved; see Sec. IV-A and references therein. As intuition

predicts, when multipath is sufficiently low and the bandwidth
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Fig. 11: Estimated map NMSE with reduced features for

different r and without reduced features; L = 5, B = 20
MHz, K = 10, λ = 1.6× 10−3, and σ = 25 m.

is sufficiently high, LocB cartography outperforms LocF. It

is remarkable that LocF cartography exhibits robustness to

multipath since the NMSE remains approximately constant

even for a significant increase of multipath.

B. Feature Design

This section provides empirical support for the findings in

Sec. IV-B. From now on, all experiments will involve only the

LocF estimator. The first experiment investigates the impact

of the number of features, which in all previous simulations

was equal to M = L(L − 1)/2. To this end, Fig. 9 shows

the NMSE as a function of the number M of features for

two different numbers N of sensor locations. The expectation

operators in (27) also average with respect to all choices

of M features out of the L(L− 1)/2. As observed, the

NMSE improves from M = 4 to roughly M = 7 features,

and remains approximately the same for M ≥ 7. Although

this effect may look counter-intuitive at first glance, this is a

common phenomenon in machine learning related to the bias-

variance trade-off [33] and the curse of dimensionality [32],

[33]; see Sec. III-A. Clearly, this effect motivates the feature

dimensionality reduction techniques proposed in Sec. IV-B.

The rest of this section corroborates the merits of such

techniques. A more challenging scenario with more walls will

be considered. The first step is to determine the number of

reduced features to be used. It can be seen that r = 4 in (20)

retains at least η = 99% of the variance of the features in all

tested scenarios. Thus, in principle, a map can be learned using

the reduced features φ̄n := U⊤
1 φn ∈ R

4 without meaningfully

sacrificing estimation performance. Before corroborating that

this is actually the case, it is instructive to visualize the afore-

mentioned reduced features across space. Fig. 10a portrays

the maps of the M = 10 original features, which correspond

to the entries of φ(x); see Sec. V-A. On the other hand, the

panels of Fig. 10b depict the reduced features over space, i.e.,

the 4 entries of the vector φ̄(x) := U⊤
1 φ(x) for each x ∈ X .

These figures reveal that the reduced features inherit the spatial

smoothness of the original features.

To quantify the impact of reducing the dimensionality of

the feature vectors, Fig. 11 compares the NMSE of the LocF

Fig. 12: (top) Average number of missing features and (bot-

tom) estimated map NMSE, both as a function of Γ with

L = 5, B = 20 MHz, K = 10, λ = 1.9 × 10−4, µ = 5.42,

and σ = 37 m.

map estimate that relies on the original features (M = 10)

with the one that relies on the reduced features (r = 2, 3, 4).

As observed, using just the 4 reduced features attains a similar

performance to the estimator built on the 10 original features.

This is expected given the bias-variance trade-off mentioned

earlier. At this point, it might seem that the effects observed

in Fig. 9 contradict those of Fig. 11 since in the former the

NMSE is lower when 10 features are used relative to the case

where only 4 are used. However, that should not be concluded

since the features in Fig. 9 correspond to the entries of φn (see

(28)) whereas the features in Fig. 11 correspond to the entries

of φ̄n := U⊤
1 φn.

C. LocF cartography with Missing Features

This section assesses the performance of the techniques

developed in Sec. IV-C to cope with missing features.

A feature will be deemed missing at a given sensor location

if the received power of at least one of the two associated

pilot signals is below a sensitivity threshold Γ. The top panel

of Fig. 12 depicts the average number of missing features

as a function of Γ. The average is taken with respect to

the sensor locations and noise. The bottom panel of Fig. 12

shows the LocF map NMSE also as a function of Γ. The

matrix completion problem in (23) is solved with both SVP

and LRGeomCG; the implementation for the latter is the one

provided in the ManOpt toolbox [50]. For higher values of

N , the performance of both algorithms is clearly strongly

determined by the average number of missing features. SVP

seems to outperform LRGeomCG in terms of NMSE. Besides,

the computation time of SVP is roughly half the one of

LRGeomCG.
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VI. CONCLUSIONS

Location-free (LocF) cartography has been proposed as an

alternative to classical location-based (LocB) schemes, which

suffer a strong performance degradation when multipath im-

pairs the propagation of localization pilot signals. The central

idea is to learn a map as a function of certain features of the

localization pilot signals. Building upon this approach, kernel-

ridge regression was applied to estimate power maps from

these features. Practical issues addressed in the paper include

feature design, dimensionality reduction, and dealing with

missing features. Simulations corroborate the merits of LocF

cartography relative to LocB alternatives. Future research

will include mapping other channel metrics such as power

spectral density (PSD) and channel gain, as well as developing

distributed and online extensions.
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