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The essential amino acid L-tryptophan (Trp) is the precursor of the monoaminergic

neurotransmitter serotonin (5-hydroxytryptamine, 5-HT). Numerous studies have shown

that elevated dietary Trp has a suppressive effect on aggressive behavior and post-stress

plasma cortisol concentrations in vertebrates, including teleosts. These effects are

believed to be mediated by the brain serotonergic system, even though all mechanisms

involved are not well understood. The rate of 5-HT biosynthesis is limited by Trp

availability, but only in neurons of the hindbrain raphe area predominantly expressing the

isoform TPH2 of the enzyme tryptophan hydroxylase (TPH). In the periphery as well as in

brain areas expressing TPH1, 5-HT synthesis is probably not restricted by Trp availability.

Moreover, there are factors affecting Trp influx to the brain. Among those are acute stress,

which, in contrast to long-term stress, may result in an increase in brain Trp availability.

The mechanisms behind this stress induced increase in brain Trp concentration are not

fully understood but sympathetic activation is likely to play an important role. Studies in

mammals show that only a minor fraction of Trp is utilized for 5-HT synthesis whereas

a larger fraction of the Trp pool enters the kynurenic pathway. The first stage of this

pathway is catalyzed by the hepatic enzyme tryptophan 2,3-dioxygenase (TDO) and

the extrahepatic enzyme indoleamine 2,3-dioxygenase (IDO), enzymes that are induced

by glucocorticoids and pro-inflammatory cytokines, respectively. Thus, chronic stress

and infections can shunt available Trp toward the kynurenic pathway and thereby lower

5-HT synthesis. In accordance with this, dietary fatty acids affecting the pro-inflammatory

cytokines has been suggested to affect metabolic fate of Trp. While TDO seems to be

conserved by evolution in the vertebrate linage, earlier studies suggested that IDO was

only present mammals. However, recent phylogenic studies show that IDO paralogues

are present within the whole vertebrate linage, however, their involvement in the immune

and stress reaction in teleost fishes remains to be investigated. In this review we

summarize the results from previous studies on the effects of dietary Trp supplementation

on behavior and neuroendocrinology, focusing on possible mechanisms involved in

mediating these effects.
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INTRODUCTION

Tryptophan (Trp) is an essential amino acid in all animals,
which is synthesized and provided to higher trophic levels by
bacteria, fungi and plants. In addition to being a component
for protein synthesis, Trp is also the obligatory substrate
for the production of several important bioactive substances.
For example, tryptophan is a substrate for the synthesis of
serotonin (5-hydroxytryptpamine, 5-HT) in the brain and gut,
and melatonin in the pineal gland. In vertebrates, central 5-HT
plays an integrative role in the behavioral and neuroendocrine
stress response (1–3). Accordingly, effects of dietary Trp on the
neuroendocrine stress response have been reported in a variety of
species, spanning from teleosts to humans (4–10). However, the
mechanisms underlying this link between Trp metabolism and
the stress response are not fully understood.

In mammals, the majority of Trp is catabolized and
transformed through the kynurenic pathway to bioactive
substances which potentially can interact with the stress response
(11). Moreover, infections, stress, and changes in the gut
microbiome have all been shown to shunt Trp metabolism from
5-HT production toward this pathway (12, 13). Consequently,
pathological changes in stress responsiveness, as in depression,
have been related to nutritional factors, stress and immune
function in humans (14, 15). However, in non-mammals,
information on the kynurenic pathway and its interactions with
central 5-HT signaling and the stress response is scattered
and/or limited.

Dietary manipulations affecting Trp availability to the brain
have been used as a tool to investigate involvement of the 5-
HT system in behavior, mood and cognition in humans (16–
18). Likewise, the dietary Trp content have been shown to
affect endocrine and behavioral responses to stress in teleost
fishes (10, 19, 20). This review summarizes the results from
previous studies on the effects of dietary Trp supplementation
on the behavioral and neuroendocrine stress response, focusing
on possible mechanisms involved in mediating these effects. We
also present a hypothesis on how the diet could be used to
improve fish stress tolerance through interactions with the Trp
metabolic pathways.

L-TRYPTOPHAN AVAILABILITY AND
BRAIN SEROTONERGIC ACTIVITY

In serotonergic neurons Trp serves as the precursor for 5-
HT. The 5-HT metabolic pathway is initiated by Trp being
hydroxylated to the intermediate 5-hydroxytryptophan (5-
HTP), which is subsequently decarboxylated to become 5-HT.
Tissue levels of 5-HTP are usually low since this substance
is rapidly decaroxylated by the enzyme aromatic amino acid
decarboxylase [for review see (21)]. Thus, the rate limiting
step in the biosynthesis of 5-HT is the hydroxylation of Trp
which is catalyzed by the enzyme tryptophan hydroxylase (TPH)
(Figure 1). This enzyme is specific for 5-HT producing cells,
however, it is present in two different isoforms, TPH1 and TPH2
[reviewed in (22, 23)].

FIGURE 1 | Biosynthetic pathway of serotonin.

In amniotes 5-HT neurons are only present in the raphe
area of the hind brain whereas in anamniotes, including teleosts,
5-HT cell bodies are also located in pretectal areas and basal
forebrain. In zebrafish (Danio rerio) raphe and pretectal 5-
HT cells express TPH2, whereas diencephalic and hypothalamic
5-HT cells express TPH1 (TPH1a and TPH1b) and TPH3,
respectively (23). Interestingly, TPH2 show a Km for its substrate
which is in the range of in vivo brain levels of Trp (24).
Consequently, the rate of 5-HT synthesis in cells expressing
TPH2 is drastically affected by changes in Trp availability, an
effect which is probably not seen in 5-HTergic cells expressing
other TPH isoforms (22). Moreover, the rate of 5-HT synthesis is
believed to be reflected in the release of 5-HT, often quantified as
the concentration of the catabolite 5-hydroxyindole acetic acid
(5-HIAA), or the 5-HIAA/5-HT ratio. Thus, changes in Trp
availability may have direct effects on 5-HTergic tone. Coherent
to this, Russo et al. (25) made the interesting suggestion that
Trp may act as signal to the brain, transferring information on
peripheral homeostasic challenges to the 5-HT system which in
turn could act to defend homeostasis. Dietary composition as
well as stress, physical activity and immune system activation
will all have effects on plasma Trp concentrations, and thus on
brain Trp availability and raphe 5-HTergic activity (25). Such
Trp related changes in 5-HTergic activity could have direct
effects on behavior as well as endocrine status through 5-HT
projections to telencephalic and hypothalamic areas. It could be
argued that such effects may be less important in teleost fish since
they have extra-raphe located 5-HT cell populations expressing
the TPH1 isoform, making them less responsive to changes
in Trp availability. However, in teleosts, as well as in other
vertebrates, the raphe 5-HTergic cells have a wide projection
pattern innervating most brain regions (23). Still, it has to be
acknowledged that very little is known about the role of telesost
forebrain 5-HT cell population in the control of behavior and
endocrine functions (23).
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FIGURE 2 | Effects of the proteins and carbohydrates on influx of tryptophan

(Trp) to the brain. Green arrows indicate activation of carbohydrate induced

pathway, resulting increased muscle uptake of large neutral amino acids

(LNAAs; Tyr, tyrosine; Phe, phenylalanine; Iso, isoleucine; Leu, leucine; Val,

valine and Met, methionine) which in turn increases plasma Trp/LNAA ratio and

brain Trp levels. Red arrows indicate how a normal dietary protein source, with

relatively low Trp content, decreases the plasma Trp/LNAA ratio and brain Trp

levels.

FACTORS AFFECTING TRP UPTAKE TO
THE BRAIN

Dietary Effects on Trp Availability
The essential amino acid Trp enters the brain in competition with
other large neutral amino acids (LNNAs; i.e., valine, isoleucine,
leucine, tyrosine, phenylalanine and methionine) through a
common transporter protein. Thus, the amount of Trp entering
the brain depends on the plasma concentrations of Trp in
relation to the other LNAAs [for references see reviews (26, 27)].
Hence, ingestion of a normal protein source, usually containing
0.5–1% Trp, results in a relatively small increase in Trp but
a larger elevation of plasma concentrations of other LNNAs
(28). This results in a decrease in the plasma Trp/LNAA ratio
and thus reduced Trp influx to the brain (Figure 2). Dietary
carbohydrates, on the contrary, increase brain Trp levels. This
is due to elevated insulin which in turn promote uptake of
LNAAs except Trp to the skeletal muscles, thereby increasing
plasma Trp/LNAA ratio and Trp influx to the brain (Figure 2)
(26, 27). This differential amino acid uptake to skeletal muscles is
caused by the fact that Trp in blood plasma is bound to albumin
whereas other LNAA are not. Trp influx to the brain is then
promoted by the common LNAA transporter protein in the blood
brain barrier having a much higher affinity for Trp compared
to albumin (27).

Studies in rainbow trout (Oncorhynchus myliss) show that
the amino acid composition of trout albumin differs from that

of mammalians and lacks the binding site for indoles (29, 30).
Thus, in rainbow trout, the majority of plasma Trp is in its free
non-protein bound state (31, 32). This assumption is further
strengthened by a study by Ruibal et al. (33) showing that
hyperglycemia induced elevation of plasma insulin levels did not
affect brain 5-HT activity in rainbow trout. It is not known if the
lack of Trp binding by albumin is specific for rainbow trout or
if it represents a more general trait of teleost albumin. However,
it is possible that in teleost fishes brain influx of Trp could be
more dependent of the dietary amino acid composition than
on carbohydrates.

The Kynurenic Pathway
In fact, only a minor fraction of the Trp pool is utilized for
5-HT biosynthesis. In mammals, the majority of Trp enters
the kynurenic pathway and is converted to other bioactive
substances than 5-HT, such as kynurenic acid and quinolinic
acid (Figure 3) [for references see review (11)]. The first
stage of this pathway is catalyzed by the hepatic enzyme
tryptophan 2,3-dioxygenase (TDO) and the extrahepatic enzyme
indoleamine 2,3-dioxygenase (IDO), enzymes that are induced
by glucocorticoids and pro-inflammatory cytokines, respectively
(34). Thus, chronic stress and infections can shunt available Trp
toward the kynurenic pathway and thereby lowering brain 5-
HT synthesis while simultaneously increasing the production
of other Trp based bioactive substances. Moreover, since a
majority of Trp follows the kynurenic pathway (<95%, Figure 3)
relative small changes in the activity of this pathway can
have rather big impact on the Trp influx to the brain (35).
Accordingly, decreased Trp influx to the brain as a result of stress
or inflammation/infection induced activation of the kynurenic
pathway have been suggested to be an underlying factor for
mental illnesses and dysregulation of the neuroendocrine stress
axis (12, 14, 15).

Generally, IDO ismore nonspecific than TDO, and catabolizes
other indoleamines than Trp. Moreover, two distinct IDO genes,
IDO1 and IDO2, have been identified in vertebrates. Earlier
studies suggested that IDO1 arose by a gene duplication in
mammals (36). However, recent phylogenetic analyses show
that IDO1 are present in reptiles and in teleosts, indicating
that the gene duplication occurred in the common ancestor
of vertebrates (37). In mammals, the activation of dendritic
cells results in IDO1 induction with the depletion of Trp
levels locally or systemically, a mechanism by which interferons
inhibit the growth of certain bacteria, intracellular parasites,
and viruses (34). Moreover, an elevation of the activity of
the kynurenic pathway also inhibits T lymphocyte replication
which results in immunosuppression and tolerogenicity. In line
with this, IDO1 have been suggested to play an important
role in preventing fetal rejection and in facilitating immune
escape of tumor cells (34). In addition, some products of the
kynrunic pathway may act anti-inflammatory (38, 39). However,
to which extent these anti-inflammatory Trp catabolites acts
back on the activity kynurenic pathway and thereby affecting
Trp influx to the brain and/or central 5-HT signaling is to our
knowledge unknown.
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FIGURE 3 | Major metabolic pathway of tryptophan in mammals.

The Trp catabolizing efficiency of IDO2 and non-mammalian
IDO1 seems to be lower than mammalian IDO1, and
their function and involvement in the immune response in
comparative model species is far less understood (37). However,
recently, it has been demonstrated that treatment with bacterial
lipopolysaccharide (LPS) induces and upregulation of IDO
expression in rainbow trout, suggesting that this enzyme is
involved in the immune response in non-mammalian vertebrates
(40). Moreover, in the aforementioned study, expression of
IDO was induced by the pro-inflammatory cytokine interferon
gamma (IFNγ) in an in vitro cell model, indicating similar
induction mechanisms as those in mammalian IDO1 (40). This
suggests that systemic infection may decrease Trp influx to
the brain of teleost fishes in the same way as in mammals,
and result in behavioral and physiological changes (see section
Kynurenine pathway).

Acute Stress
As discussed above chronic stress may result in lowered
brain Trp availability as a consequence of a stress-induced
activation of the kynurenine pathway. However, acute stress
has been reported to have the opposite effect elevating brain
Trp levels in both mammals (41, 42) and teleost fish (3,
10). This stress-induced increase in brain Trp concentrations
appears at least in part related to a sympathetic activation
and elevated levels of circulating plasma catecholamines (43).
Plasma catecholamines stimulate lipolysis, resulting in elevated
plasma levels of non-esterified fatty acids, which in turn
could compete with Trp for binding to albumin and thus
elevate the plasma pool of free Trp available for uptake into
the brain [reviewed by (44)]. However, as discussed above,
rainbow trout albumin appears to lack the Trp binding site,

suggesting that mechanisms based on competition between
Trp and non-esterified fatty acids are not involved in stress-
induced increase in brain Trp in teleosts, at least not in
rainbow trout. It has also been suggested that sympathetic
activation results in increased permeability of the blood-brain
barrier, another mechanism that could increase brain Trp
influx (44).

TRP AND THE NEUROENDOCRINE
STRESS RESPONSE

Stress Responses Are Modified by Trp
Availability and Brain 5-HT Functions
As mentioned earlier in this review, the positive relationship
between Trp availability and brain 5-HT production is well
conserved within the vertebrate linage. Coherent to this, the
involvement of 5-HT in the neuroendocrine regulation of the
stress response seems to be similar within this linage. 5-HT
plays a central role in control of the hypothalamus–pituitary–
adrenal axis (HPA axis) in mammals, and the hypothalamic–
pituitary–interrenal axis (HPI axis) in fish. This, mainly through
its effects on the release of corticotropin-releasing factor
(CRF) from the hypothalamus (45, 46). In addition, extra
hypothalamic 5-HT appears be involved in appraisal and stress
coping mechanisms, modulating behavioral and neuroendocrine
responses to stressors (47, 48). Furthermore, as mentioned in
section The Kynurenic pathway and Acute stress, stress by itself
can influence the Trp influx to the brain, and thereby affect 5-HT
signaling and the stress response. Moreover, the HPA/HPI axis
are under feedback control on serval levels, including central 5-
HT signaling. Thus, the link between Trp and the 5-HT system
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and how they control behavioral and neuroendocrine stress
responses appears complex with 5-HT having context dependent
effects (19, 22, 49).

Effects of Elevated Dietary Trp
Long-term effects of Trp dietary manipulations on the
neuroendocrine stress response have been observed in both
mammals and teleost fishes [for a review see (49)]. For instance,
in pigs, elevated dietary Trp had stress suppressive effects,
including elevated hypothalamic 5-HT and lowered post
stress plasma cortisol levels, effects that peaked after 5 days
of dietary Trp enrichment (50). Similarly, (51) showed that
post-stress plasma cortisol levels returned to baseline earlier
after social stress in pigs fed Trp enriched feed for 7 days.
Interestingly, a similar time frame for the suppressive effects
of dietary Trp supplementation on glucocorticoid release has
also been demonstrated in fish (for references see Table 1). For
instance, studies in rainbow trout show that suppression of the
neuroendocrine stress response is present after 7, but not after
3 or 28 days of treatment with dietary Trp supplementation
(52). Furthermore, in the earlier studies showing a suppressive
effect of elevated dietary Trp on the neuroendocrine response
to an acute stressor the effects were investigated during or
directly following a period of dietary Trp supplementation
(10, 52). However, in recent studies in sea water reared Atlantic
salmon (Salmo salar), the suppressive effect on post-stress
plasma cortisol seems to appear between 2 and 8 days after
terminating the Trp supplementation. Moreover, in Atlantic
salmon, this suppressive effect was still present at 21 days post
Trp supplementation (7, 53). Basic et al. (53) suggested that
such slow acting Trp-induced alterations of HPI-axis reactivity
could be related to smoltification, a process where salmonid fish
adapt to sea water. Moreover, these long-term alternations of
HPI axis reactivity was not related to changes in hypothalamic
5-HT neurochemistry. Instead they coincided with changes in
dopaminergic neurochemistry in this brain part, effects which
may be related to elevated activity of the kynruneric pathway,
as discussed in section The Kynurenic pathway. Similar results
were shown in the study performed by Höglund et al. (7),
where 5-HTergic activity in hypothalamus did not follow the
long term Trp induced suppressive effect on post stress cortisol
levels. The latter study also included telencephalon and 5-HT
activity followed the same general pattern as cortisol in this
brain part. Höglund et al. (7) suggested that such region specific
differences could be related to 5-HT signaling in telencephalon
being more dependent on projections from the hindbrain
raphe, a nucleus where 5-HT neurons are highly sensitive to
available Trp, see section L-tryptophan availability and brain
serotonergic activity.

Generally, teleost fishes have a remarkable neurogenic
and regenerative capacity throughout ontogeny, and it has
been suggested that structural changes may underlie long-
lasting effects on telencephalic neurochemistry induced by
elevated dietary Trp in teleost fishes (7). This type of brain
architectural changes is supported by mammalian studies,
showing that the 5-HT system is involved in the organization
and development of its own neural projection pattern (65). In

addition, a positive relationship between dietary Trp content and
neural proliferation markers, such as (exogenous) 5-bromo-2-
deoxyuridine and brain derived neurotrophic factor (BDNF) has
been demonstrated in rats (66), which lends further support for
the suggestion that dietary Trp can induce structural changes in
the brain.

There are studies in teleost fishes showing effect of longer
Trp treatment periods than 7 days (Table 1). For example,
Tejpal et al. (60) showed that a 60 days of dietary Trp
supplementation decreased baseline plasma cortisol values as
well as the cortisol response to 60 days of crowding stress.
Moreover, longer Trp treatment periods have also been shown
to act stimulatory on plasma cortisol responses. For example, an
immune challenge by i.p. injection of inactivated Photobacterium
damselae suspension resulted in elevated cortisol values in
seabass fed Trp supplemented feed for 2 weeks as compared
to fish given standard feed fish (67). Furthermore, there is a
rather high variability in the effect of elevated dietary Trp on
baseline cortisol values (Table 1). This variability could reflect
interspecific differences in Trp metabolism and neuroendocrine
mechanisms (49). Moreover, Höglund et al. (19) suggested
that such variation could be related to differences in HPI axis
activation due to divergent rearing environments. For example,
in the studies performed by Lepage et al. (10, 52, 62), fish
were kept socially isolated while in other studies they were
group reared (4, 7, 53, 54). Considering the fact that the 5-
HT system is affected by social interaction (3, 22, 68), this
type of rearing differences may explain some of the variability
in the response to elevated dietary Trp. Moreover, studies
in humans and rats suggest that individual variation in 5-
HT neurotransmission underlies differences in the response to
dietary Trp manipulation (27). It has become increasingly clear
that individual variation in HPA/I axis reactivity is as widespread
phenomena in the vertebrate linage (69). Still, if such individual
variation is related to sensibility to dietary manipulations of
dietary Trp content in non-mammalian vertebrates remains to
be investigated.

Kynurenine Pathway
As mentioned above, in the section about factors affecting Trp
uptake to the brain. Trp influx to the brain and brain 5-HT
signaling can be modulated by the activation of the kynurenic
pathway. In addition, metabolites of this pathway may affect
neuronal signaling involved in stress coping processes [reviwed
by (14)]. The metabolite in the first step of this pathway,
kynurenine, readily passes the blood brain barrier (70). In the
brain it is further degraded to kynurenic acid or quinolinic
acid. Further down this pathway quinolinic acid produces
neurotoxic compounds such as NMDA receptor agonists and
oxidative radicals (71) while kynurenic acid is neuroprotective
by being an NMDA receptor antagonist [for references see
(14)]. In mammals, the neuroprotective kynurenic acid is
mainly produced in astrocytes, while neurotoxic compounds
are produced in macrophages and microglia (34). It has been
suggested that an imbalance between these neurodegenerative
and neuroprotective factors are involved in brain dysfunctions,
including poor stress coping ability, in depression (72). In
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addition, studies in rats show that dietary Trp can affect brain
levels of kynurenic acid (73), which in turn effects other
neurotransmitters, such as dopamine and glutamine through
activation of NMDA and/or a7 nicotinic acetylcholine receptor
(74, 75). Central effects of Trp metabolites produced by the
kynurenic pathway in teleost fishes are, to our knowledge,
largely unknown. Still, effects of dietary Trp supplementation
on dopaminergic neurochemistry in Atlanitic salmon (53) and
Atlanitic cod (Gadus morhua) (4) have been suggested to be
related to elevated levels of kynurenic acid (53).

BEHAVIORAL EFFECTS OF ELEVATED
DIETARY TRP

There is a general consensus that low levels of central 5-HT are
associated with high levels of aggression within the vertebrate
subphylum (3, 69). In line with this, human studies show
that alterations of the dietary Trp content changes irritability
and aggressive behavior [for references see review by Young
and Leyton (76)]. For example, human lab studies show that
dietary Trp induces a dose dependent effect on aggressive
responses, where Trp supplementation and depletion induced
the lowest highest aggression, respectively (77, 78). This negative
relationship between dietary Trp content and aggression is
further supported by studies on rats and birds, showing that Trp
loading can attenuate aggressiveness (79, 80). Similarly, there are
studies in teleost fishes showing a general suppressive effect on
aggressive behavior by dietary Trp supplementation (20, 63, 64).
Furthermore, in the study performed by Winberg et al. (20)
the attenuating effects of dietary Trp on aggressive responses
during territorial defense followed the same time-coarse as the
effects on the neuroendocrine stress response in rainbow trout
(52), with a peak after 7 days of treatment. This together with
a study performed by Höglund et al. (19), showing that the
same treatment time attenuated the anorexic response to a novel
environment, strongly suggest that Trp affects 5-HT signaling
and the integrating role of this neurotransmitter in behavioral
and neuroendocrine stress responses.

Dietary Trp supplementation have also been shown to reduce
cannibalism in juvenile grouper (Epinephelus coioides) (81) and
pike perch (Sander lucioperca) (82). However, the behavioral
components of this response were not studied. Differences
in body size is a main factor underlying cannibalism in
piscivorous fish (83), and one possible explanation to the reduced
cannibalism could be a more homogeneous growth due to
reduced competition for food in fish given Trp supplemented
food. The behavioral effect of dietary Trpmanipulations in teleost
fishes are summarized in Table 1.

CONCLUSIONS AND SUGGESTION FOR
DIRECTION OF FURTHER STUDIES

A positive relationship between dietary Trp and brain 5-
HT activity seems to be present across the vertebrate linage.
However, there appear to be differences between teleost fishes
and mammals when it comes to plasma Trp transport since

teleost albumin lacks the indole binding site (29, 30). This makes
Trp influx to the brain less sensitive to carbohydrates in fish
compared to mammals. On the other hand, behavioral and
neuroendocrine effects of elevated dietary Trp are similar in all
vertebrates. Studies inmammals and teleost fishes show that these
effects, including suppression of aggressive behavior, attenuation
of stress induced anorexia and lower post stress plasma cortisol,
appear after 3–7 days of elevated dietary Trp intake. It has been
suggested this slow time-course reflects 5-HT induced structural
changes in the brain (7). However, further studies are needed to
verify this assumption.

In mammals the majority of Trp enters the kynurenic
pathway. The first stage of this pathway is catalyzed by the
enzymes TDO and IDO that are induced by glucocorticoids and
pro-inflammatory cytokines, respectively. Thus, chronic stress
and infections can shunt available Trp toward the kynurenic
pathway and thereby lowering the rate of brain 5-HT synthesis
while simultaneously increasing the production of other Trp
metabolites [for references see (14)], which potentially can
affect behavioral and endocrine responses to stress. So far,
the kynurenic pathway have been neglected when investigating
effects of dietary Trp supplementation in teleost fishes. It has
previously been pointed out that effects of dietary Trp is
context dependent, where especially the stress status of the
animals can affect the outcome of dietary Trp manipulation
(19). A recent study demonstrates that the expression of
IDO mRNA is upregulated by LPS in rainbow trout (40),
suggesting that bacterial infection can affect the catabolic faith
of Trp also in fish. Previously dietary Trp supplementation
have been suggested as a strategy for reducing unavoidable
stress, such as stress related to transport, size grading and
vaccination, in aquaculture (84). However, considering that
inflammatory processes might affect the catabolic faith of
Trp in teleost fish, anti-inflammatory treatments should also
be considered.

In humans, low circulating levels of the ω3 fatty acids,
eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA),
and a decreased ratio of EPA to the ω6 fatty acid arachidonic
acid (ARA) have been associated with psychiatric ailments and
poor stress coping ability (15). Moreover, a diet with high DHA
and EPA have been shown to affect serotonergic transmission
and to prevent such psychiatric ailments [for references see (15)].
The mechanisms for this anti-depressive action of ω3 fatty acids
are currently not fully understood. However, it is possible that
a diet with high ω3 content results in a suppression of pro-
inflammatory eicosanoids, which in turn may reduce the activity
of the kynurenic pathway, increasing Trp influx to the brain, and
subsequently stimulate brain 5-HT synthesis.

The relative amount of marine ω3 fatty acids has decreased in
commercial fish feed. Potentially, this may result in poorer stress
coping ability trough dietary effects on central 5-HT signaling.
Thus, we hypothesize that it is not only the relative amount of
Trp to other LNAAs in the diet that is important for producing
stress resilient robust fish. Rather, there is an interplay between
dietary amino and fatty acids that decides the effects of Trp
supplementation, where ratio ω3 to ω6 fatty acids in the diet
influences the catabolic faith of Trp. Studies demonstrating a
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negative relationship between HPI-axis reactivity and the ration
of ω3 to ω6 fatty acids in the diet (85, 86) lends support to
this hypothesis. However, if such effects of dietary fatty acid
composition are related to changes in the activity of the kynurenic
pathway is currently not known.
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