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ABSTRACT The number of older people in western countries is constantly increasing. Most of them prefer
to live independently and are susceptible to fall incidents. Falls often lead to serious or even fatal injuries
which are the leading cause of death for elderlies. To address this problem, it is essential to develop robust
fall detection systems. In this context, we develop a machine learning framework for fall detection and
daily living activity recognition. We use acceleration and angular velocity data from two public databases to
recognize seven different activities, including falls and activities of daily living. From the acceleration and
angular velocity data, we extract time- and frequency-domain features and provide them to a classification
algorithm. In this paper, we test the performance of four algorithms for classifying human activities. These
algorithms are the artificial neural network (ANN), K -nearest neighbors (KNN), quadratic support vector
machine (QSVM), and ensemble bagged tree (EBT). New features that improve the performance of the
classifier are extracted from the power spectral density of the acceleration. In the first step, only the
acceleration data are used for activity recognition. Our results reveal that the KNN, ANN, QSVM, and EBT
algorithms could achieve overall accuracy of 81.2%, 87.8%, 93.2%, and 94.1%, respectively. The accuracy
of fall detection reaches 97.2% and 99.1% without any false alarms for the QSVM and EBT algorithms,
respectively. In a second step, we extract features from the autocorrelation function and the power spectral
density of both the acceleration and the angular velocity data, which improves the classification accuracy.
By using the proposed features, we could achieve overall accuracy of 85.8%, 91.8%, 96.1%, and 97.7% for
the KNN, ANN, QSVM, and EBT algorithms, respectively. The accuracy of fall detection reaches 100% for
both the QSVM and EBT algorithms without any false alarm, which is the best achievable performance.

INDEX TERMS Fall detection, activity recognition, machine learning, acceleration data, angular velocity
data, feature extraction.

I. INTRODUCTION
Advances in the diagnosis and treatment of diseases have led
to an increase in life expectancy. In every country, the percent-
age of elderlies in the society is increasing. TheWorld Health
Organization (WHO) estimates that by 2050 the number of
people over 60 years will exceed two billion [1].With increas-
ing age, people become more susceptible to falls. In fact,
as the age increases from 65 to over 70 years, the rate of falls
and fall related injuries rises from 28% to 42% according to
the WHO [2]. For people over 65 years of age, fall related
injuries were the leading cause of death in 2013 [3]. More-
over, fall related injuries cause a significant costs for society,
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making falls a major public health problem worldwide. The
number of fatal falls per year is estimated by the WHO to
be equal to 420,000 per year [4]. After a fall, rapid medical
care can significantly reduce the potential damage from fall
injuries, resulting in a higher survival rate. For this reason,
fall detection systems that can detect and report falls as fast
as possible are of great importance.

During the last years, the development of fall detection sys-
tems has become a hot research topic. A plethora of fall detec-
tion systems are being developed using different approaches.
We can categorize the existing fall detection systems into
two main classes: (i) wearable device-based systems and
(ii) context-aware systems [5]. Wearable device-based sys-
tems utilize a device that is worn by the user to detect falls.
These devices integrate a gyroscope and an accelerometer
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that can measure the acceleration and the angular velocity.
The movement and activity of the user results in a temporal
variation of the measured acceleration and angular velocity
data, leaving different fingerprints for different activities.
By analyzing the measured acceleration and angular velocity
data, it is possible to determine the type of activity performed
by the user. Several studies have investigated the performance
of wearable device-based systems [6]–[10]. A big advantage
of wearable device-based fall detection systems is that they
can recognize human activity without compromising the user
privacy. Widely used smartphones with built-in accelerome-
ter and gyroscope can also be used to measure the acceler-
ation and angular velocity as the user moves and performs
various activities. The measured data can be analyzed in real
time to detect falls. This fall detection approach is very attrac-
tive because it requires no new equipment and is therefore
cost-effective. For wearable device-based systems, if the user
forget to wear the device, it becomes impossible to monitor
the person activity. This represents the major limitation of
wearable device-based systems.

Context-aware systems represent the second main cate-
gory of fall detection systems. These systems are based on
sensors placed in the area around the user to be monitored.
The sensors used for monitoring encompass floor sensors,
pressure sensors, microphones, and cameras. Context-aware
systems can include a single or many types of sensors which
are deployed in specific areas. This makes fall detection
impossible if the user leaves the monitoring area. The most
common type of context-aware systems is video surveillance.
To detect falls, a camera is used to capture a series of images
which is subsequently processed by a classification algorithm
to determine whether a fall has occurred or not [11]. The
use of video surveillance for activity recognition and fall
detection has been extensively investigated in the literature
[12]–[17]. The main shortcoming of video surveillance sys-
tems is that they can compromise user privacy. For this
reason, video surveillance is considered illegal in some
countries [18]. Moreover, context-aware systems are suscep-
tible to external events (e.g., changes in illuminance), and
have high installation costs.

To evaluate the performance of fall detection systems,
we need records of actual falls. However, it is very difficult
to collect real-world fall data, especially for older people.
Generally, we need to monitor people for several weeks to
obtain records of few actual falls. In the end, these few falls
are not enough to accurately evaluate the performance of
the developed fall detection system. Therefore, only a few
studies have adopted this approach [19]–[21]. In the absence
of data of actual falls, most researchers utilize simulated falls
performed by volunteers. In addition to falls, these volunteers
carry out activities of daily living (ADL) to check the accu-
racy of the developed fall detection system and its ability to
differentiate between falls and ADL.

In the literature, several activity datasets are pub-
licly available which allow evaluating fall detection meth-
ods and assessing their performance on real-world data.

An ADL database which comprises acceleration and angular
velocity data are provided in [6], where a script describing
the set of activities to be carried out was provided to the par-
ticipants. A total of 30 participants of different genders, ages,
and weights contributed to this experiment. The experiment
consisted in performing ADL activities including: standing,
sitting, walking, walking upstairs, walking downstairs, and
lying. To collect the acceleration and angular velocity data,
a smartphone was attached to the waist of each participant.
On average, the total time of recording for each participant
was 192 seconds. It is worth mentioning that the dataset
in [6] does not include fall data, but only ADL activities. Fall
related data can be found in some public databases [7]–[10].
Ojetola et al. [7] provide a fall dataset which was performed
by 42 participants. Both acceleration and angular velocity
data were collected during this experiment. The participants
in this experiment were young healthy adults who performed
planned falls. This fact makes the collected data different
from that of real falls of elderly people. Due to the difficulty
of gathering enough real fall data from older people, the use of
mimicked fall data for testing the performance of fall detec-
tion system is a well-accepted approach by the researchers on
this topic.

In this paper, we propose a machine learning framework
for fall detection and activity recognition. Our first main con-
tribution is related to the features used for fall detection.More
specifically, we use the mean value of the triaxial acceleration
and achieve a fall detection accuracy and precision of 96.8%
and 100%, respectively. Even though, the mean value of the
triaxial acceleration is not intrinsically a new feature since it
was used in previous work [6] to classify ADLs, the mean
value for triaxial acceleration was not utilized as a feature in
the classification of falls [22], [23]. Note that by extracting
only the mean value of the triaxial acceleration, we construct
a feature vector of size 3. In [22], a feature vector of length
4 is used for fall detection. This resulted in a fall detection
accuracy of 92% and a precision of 81%, while in [23] a
feature vector of length 23 is utilized leading to a fall detec-
tion accuracy of 93.5% and a precision of 94.2%. For our
solution, we use a feature vector of length 3 and achieve a
fall detection accuracy and precision of 96.8% and 100%,
respectively. Thus, we outperform the fall detection systems
in [22] and [23] in terms of accuracy and precision by using
less features.

Our second main contribution consists in proposing new
features that improve the classification accuracy of ADLs.
For instance, we have proposed new power spectral den-
sity (PSD) features that enhance the classification accu-
racy, especially, for the activities walking, walking upstairs,
and walking downstairs. In the literature, several features
were extracted from the PSD, such as the largest frequency
value [6] and the mean frequency value [24]. However, in this
paper, we extract the main peaks of the PSD and use them
as a feature for activity classification. To the best of our
knowledge, this feature has never been utilized before in
activity classification. Moreover, we extract additional novel
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features, such as the peaks of the autocorrelation function
(ACF), and the peaks of the cross-correlation function (CCF),
which are extracted from the triaxial acceleration and the
triaxial angular velocity signals. These proposed new fea-
tures allow a more accurate distinction between different
activities.

In this work, we combine the fall and ADL data from the
datasets provided in [6] and [7]. These real-world data are
then utilized to evaluate the performance of the proposed
machine learning framework in human activity recognition.
The acceleration and angular velocity signals are divided
into buffers of 2.56 s length. From each buffer, we extract
a feature vector of length 66, in a first step. To improve the
accuracy of the classification, more features are extracted
from each buffer, such that the length of the feature vector
increases to 328. Note that the lengths of the considered
feature vectors (66 and 328) are smaller than the number of
features used in existing baseline solutions. We utilize 70%
of the data to train the classifier, while 30% of the data are
used to test the trained classifier. For a feature vector of length
66, we achieve a similar performance compared to existing
solutions [24], while for a feature vector of length 328, our
approach outperforms existing solutions.

In this paper, we assess the performance of four different
classification algorithms, namely, the artificial neural net-
work (ANN), K-nearest neighbors (KNN), quadratic sup-
port vector machine (QSVM), and ensemble bagged tree
(EBT). In a first step, only the acceleration data are used
for feature extraction. A feature vector of length 66 is built
and provided as input to the classification algorithm. Our
results reveal that the KNN algorithm has the worst perfor-
mance with an overall accuracy of 81.2%. The EBT algo-
rithm has the best performance with an overall accuracy
of 94.1%. The ANN and the QSVM algorithms achieve
an overall accuracy of 87.8% and 93.2%, respectively. The
accuracy of fall detection reaches 97.2% and 99.1% for the
QSVM and EBT algorithms, respectively, without any false
alarm. In a second step, we extract features from both the
acceleration and the angular velocity data and construct a
feature vector of length 328. This increase in the number
of features improves the performance of the four classifi-
cation algorithms. The KNN, the ANN, the QSVM, and
the EBT algorithms achieve an overall accuracy of 85.8%,
91.8%, 96.1%, and 97.7%, respectively. Moreover, the accu-
racy of fall detection reaches 100% for both QSVM and
EBT without any false alarm, which is the best achievable
performance.

The remainder of the paper is organized as follows.
Section II describes the machine learning framework, the dif-
ferent blocks in this framework, and their roles. We discuss
the time domain and frequency domain features in Section III.
In Section IV, we assess the accuracy and the precision
of our proposed solution using first the features from the
acceleration data only and then using features from both the
acceleration and angular velocity data. Finally, Section V
offers concluding remarks.

FIGURE 1. Activity recognition framework.

II. FRAMEWORK DESCRIPTION
Our objective is to determine the user’s activity based on
the measured acceleration and angular velocity data. In this
section, we provide an overview of the framework used for
classifying ADLs as well as fall events and explain the activ-
ity recognition strategy. Fig. 1 illustrates the activity recogni-
tion framework which encompasses: (i) the input acceleration
and angular velocity data obtained from the smartphone,
(ii) the feature extraction block, and (iii) the classification
algorithm. In the following, we discuss each component of
this framework.

A. DATA DESCRIPTION AND PREPROCESSING
The triaxial angular velocity and acceleration data are
obtained from two public databases. The first database in [6]
comprises six types of activities: walking, walking upstairs,
walking downstairs, sitting, standing, and lying. A total
of 30 participants were involved in this experiment. A smart-
phone was attached to the waist of the participants to collect
acceleration and angular velocity data. The sampling fre-
quency of the collected data was 50 Hz. The data have then
been divided into buffers of 2.56 s length with 50% overlap.
Each data buffer is labeled with the corresponding actual
activity using the ground truth and contains both the triaxial
acceleration and the triaxial angular velocity of a specific
participant. In addition to the ADL data set, we acquired
acceleration and angular velocity data for fall events from the
public database in [7]. Our aim is to develop a framework
that uses the acceleration and angular velocity data to classify
seven types of activities: falling, walking, walking upstairs,
walking downstairs, sitting, standing, and lying. Since the
data obtained from the two databases in [6] and [7] is provided
as an input to the classification algorithm, this data must be
homogenous. The data from [7] are organized into buffers
of length 2.56 s to make it consistent with the data from
the first database [6]. Moreover, we select the fall data from
30 participants given in [7]. The collected triaxial acceleration
data can be written as

ax(t) = agx(t)+ a
b
x(t) (1)

ay(t) = agy(t)+ a
b
y(t) (2)

az(t) = agz (t)+ a
b
z (t) (3)

where ax(t), ay(t), and az(t) refer to the acceleration data
measured along the x-axis, y-axis, and z-axis, respectively.
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The acceleration ax(t) in (1) is expressed as a sum of two
terms: (i) agx(t) which stands for the gravity contribution to
the acceleration along the x-axis and (ii) abx(t) which denotes
the body movement contribution to the acceleration along the
x-axis. Similarly, the accelerations ay(t) and az(t) are written
as a sum of two terms as shown in (2) and (3). Henceforth,
the terms ai(t) (i = x, y, z) and abi (t) (i = x, y, z) are
referred to as the total acceleration and the body acceleration,
respectively. Since the body acceleration abi (t) (i = x, y, z)
reflects the impact of the body movement on the measured
acceleration, the use of the body acceleration for activity
recognition should intuitively yield a better classification
accuracy. Hence, we must filter out the gravity contribution
to the measured total acceleration to obtain the body accelera-
tion. Generally, the contribution of gravity to the acceleration
varies slowly which implies that the gravity component in the
frequency domain occurs at frequencies near to 0 Hz. This is
as opposed to the contribution of the body movement which
occurs at frequencies larger than 0 Hz. Therefore, we can
eliminate the gravity contribution by applying a high-pass
filter to the total acceleration ai(t) (i = x, y, z). To this end,
we use a Chebyshev filter of Type II [25] with a stopband
attenuation of 60 dB and stopband frequency of 0.4 Hz.
It is worth mentioning that Type II Chebyshev filters are
sharper than Butterworth filters which allows filtering out
the gravity contribution [25]. Moreover, Type II Chebyshev
filters can extract the body acceleration from the total accel-
eration with negligible distortions, since Type II Chebyshev
filters have no ripples for frequencies larger than the passband
frequency [25].

From the total acceleration signal provided by the smart-
phone, we can obtain other signals, such as the triaxial body
acceleration signal and the magnitude of the body accelera-
tion signal. By increasing the number of signals from which
features are extracted, we can improve the accuracy of human
activity recognition. The triaxial body acceleration signal
abi (t) (i = x, y, z) is extracted from the total acceleration
signal by applying a high-pass filter to the acceleration data
ai(t) (i = x, y, z). The magnitude of the body acceleration can
be expressed as

‖ab(t)‖ =
√
[abx(t)]2 + [aby(t)]2 + [abz (t)]2. (4)

Beside the triaxial total acceleration, the smartphone is
equipped with a gyroscope that can measure the angular
velocity. The angular velocities around the x-, y-, and z-axes
are denoted asωx(t),ωy(t), andωz(t), respectively. The unit of
the measured angular velocities is radians per second (rad/s).
By integrating the angular velocity with respect to time,
we can obtain the time-variant angular position. The angular
rotation around the x-, y-, and z-axes are referred to as the
pitch, the roll, and the yaw, respectively. Since the triaxial
angular velocities are not affected by the gravity, these data
reflect the impact of the bodymovement. Thus, the gyroscope
data can be used directly without any filtering. Moreover,
we compute the magnitude of the angular velocity and use

TABLE 1. The signals utilized for feature extraction.

it to extract additional features to improve the classification
accuracy of the proposed framework. The signals used for
features extraction are listed in Table 1.

B. FEATURE EXTRACTION
This section offers an overview of the concept of feature
extraction and highlights its importance in obtaining an accu-
rate classification. The acceleration and angular velocity sig-
nals are provided as input to the feature extraction block
as shown in Fig. 1. Afterwards, the output of the feature
extraction block is used by the classification algorithm to
recognize human activities.

It is worth noting that if we directly provide the classifi-
cation algorithm with raw acceleration and angular velocity
data, the classification algorithm will fail to distinguish dif-
ferent types of activities and the classification accuracywould
be very poor. In classification problems, the aim is to distin-
guish between different classes of activities. A good feature
must achieve this objective. For instance, a good feature can
have a specific range of values for each activity, and these
value ranges do not overlap. In this case, by knowing the
value of the considered feature, we can find out to which
range it belongs and consequently recognize the type of the
performed activity. Moreover, a good feature must be general
enough such that it allows identifying the activity associated
with new data. These are two criteria that must be fulfilled by
a good feature. Note that raw data does not fulfill any of these
criteria.

Additionally, the raw data is generally contaminated with
noise and artifacts which makes it very difficult for the clas-
sifier to find any pattern in the data. Moreover, if the raw
data is used, the dimensionality of the feature vector becomes
huge and makes the processing of that feature vector complex
and time consuming. Feature extraction helps to reduce the
dimensionality of the problem and decreases therefore its
complexity. By selecting the right features, we reduce the
complexity of activity recognition and improve the classifica-
tion accuracy. This renders feature extraction a corner stone
in achieving a high classification accuracy with reasonable
complexity.

The task of feature extraction consists in finding a finite
set of measures that captures quantitative descriptions and
enables differentiating between various classes of activity.
Typical features include statistical quantities extracted from
the acceleration signal, such as the mean value, the standard
deviation, and higher order moments [26], [27].
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In the following, we consider a simple example to explain
how feature extraction can help to determine the type of
activity performed by the user. We assume for simplicity
that the collected acceleration data pertain to two activities:
lying1 and standing. Our objective is to determine the user
activity based on the observed acceleration data. By carefully
studying the acceleration data, we find certain properties
in the data that can be used to recognize the performed
activity. For instance, for lying, the acceleration data az(t)
has a mean value that is close to 0 m/s2. In contrast, for
standing the mean value of the acceleration az(t) is around
10 m/s2. We assume now that we receive a new acceleration
data buffer which could be measured either while the user
was lying or standing. Our task is to recognize the activity
that was performed by the user when this acceleration buffer
was recorded. There are two possible outcomes: (i) the user
activity is lying or (ii) the user activity is standing. A simple
way to recognize the user activity consists of evaluating the
mean value of the acceleration az(t). Then, this mean value
is provided to the classification algorithm. If the mean value
of the acceleration data az(t) is close to 0 m/s2, the classifier
would decide that the performed activity is lying. Otherwise,
if the mean value of the acceleration data az(t) is close to
10 m/s2, the classifier decides that the performed activity is
standing.

In this example, a distinction was made between two
activities using the collected acceleration data. To achieve
this goal, we have used a single feature. This feature is the
mean value of the acceleration az(t). In this paper, we raise
a much more complicated problem. Our aim is to achieve
a good classification accuracy for seven types of activities.
Therefore, we need to extract a large number of features.
In Section III, we discuss in detail all the features used in our
proposed solution to achieve a high classification accuracy.

C. CLASSIFICATION ALGORITHM
The objective of the classification algorithm is to recognize
the user activity based on the acceleration and gyroscope
data. We use a supervised learning approach to achieve this
objective. As a first step, the algorithm is exposed to a large
set of labeled data,2 the so-called training data. Based on the
training data, the classification algorithm can tune its internal
parameters to reduce the misclassification rate as much as
possible. After the training phase, the classification accuracy
of the algorithm is assessed using a new set of data, called the
test data.

First, we recall that the data are organized in buffers of
length 2.56 s. Each of these buffers is labeled with an activ-
ity identity (ID) indicating to which class the data buffer
belongs. The activity IDs are numbered from 1 to 7. The
activity IDs 1, 2, 3, 4, 5, 6, and 7 correspond to walking,
walking upstairs, walking downstairs, sitting, standing, lying,

1The acceleration data for the activity lying has been recorded while the
participant is laying down and in the phase right before laying down.

2The class of the data is given to the classification algorithm.

and falling, respectively. For example, if the data buffer has
an activity ID equal to 4, this implies that the data buffer
was recorded while the participant is sitting. The data buffer
provided to the feature extraction block contains raw acceler-
ation and angular velocity data. The feature extraction block
extracts the set of features described in Section III. After com-
puting the value of each feature for the considered data buffer,
these features are stacked in a vector, known as the feature
vector. This vector is provided to the classification algorithm
which must recognize the type of activity performed by the
user, while the data buffer was recorded. To achieve a good
classification accuracy, the classification algorithm must first
be trained to learn the underlying pattern of each activity.
During the training phase, the classification algorithm is
exposed to labeled data to optimize its internal parameters
such that the classification error is minimized. Subsequently,
we can assess the performance of the trained algorithm using
the test data. Once a new buffer is received, the corresponding
feature vector is determined and provided to the classifier.
This latter computes the likelihood that this buffer belongs
to one of the seven possible activity classes. The algorithm
then declares that the buffer belongs to the activity with the
highest likelihood score. For example, if Class 5 has the
highest score for a given buffer, then the algorithm would
declare that the user was standing. To find out whether the
decision of the algorithm is right or wrong, we compare
it with the ground truth (the labeled data). This process is
repeated for each buffer in the test data. By combining all
the results, we generate a confusion matrix that shows the
accuracy and the precision of the classifier for each activity.
In this paper, we evaluate the performance of four classifi-
cation algorithms to recognize human activity based on the
collected acceleration and angular velocity data. These four
classification algorithms are the ANN, KNN, QSVM, and
EBT algorithm. Principles and background information about
the ANN, KNN, QSVM, and EBT algorithms can be found
in [28]–[30].

III. FEATURE EXTRACTION
The raw acceleration and angular velocity signals could be
utilized as inputs to the classification algorithm. However,
in this case, the accuracy of the activity recognition would
be very poor. To solve this problem, it is important to extract
a set of features from the acceleration and the angular velocity
signals. These features should have different value ranges
for different activities. During the training phase, the clas-
sification algorithm is exposed to a large set of labeled data.
For each activity, the classification algorithm has to learn the
value range of each feature. When a new acceleration and
angular velocity signal is received, the features are extracted
and stored in a feature vector which is provided to the
classification algorithm. The trained classification algorithm
maps this feature vector to one of the seven activity classes.
The accuracy of this classification depends strongly on the
extracted features.
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In this section, we discuss the features which are extracted
from the signals presented in Table 1.We explain the methods
used to obtain these features and highlight their impact on
improving the classification accuracy. The set of features can
be divided into two main categories: time domain features
and frequency domain features of the acceleration and the
gyroscope data. The time domain features include the mean
value, the root mean square, the main maxima and minima,
and the peaks of the ACF and the peaks of the CCF of
the signals given in Table 1. The frequency domain features
include the value and location of the main peaks of the PSD
and the energy in different frequency bands of the signals
listed in Table 1.
The sample mean of the total acceleration is our first

statistical feature. By exploring the mean value of the total
acceleration of different activities, we find that for lying the
mean value of ax(t) is equal to 0 m/s2, while for activities
where the human body is in a vertical position, such as
standing andwalking, themean value of the acceleration ax(t)
is equal to 10 m/s2. Using this property, we can differentiate
lying from other activities. The histogram of the accelerations
ax(t) and az(t) pertaining to the activities standing and lying
is illustrated in Fig. 2. It can be seen from this figure that
the mean value of ax(t) equals 10 m/s2 for standing and
0 m/s2 for lying. On the other hand, the mean value of the
acceleration az(t) equals 0 m/s2 and 5 m/s2 for standing and
lying, respectively.

FIGURE 2. Histogram of the accelerations ax (t) and az (t) for the
activities standing and lying.

Note that the orientation of the accelerometer axes when
lying is different compared to activities with vertical body
posture, such as standing and walking. Thus, depending on
the body posture (vertical or horizontal), we observe different
mean values of ax(t). We recall that the contribution of the
body acceleration is negligible in comparison to the gravity
pertaining to the activities standing and lying. For standing,
the gravitational field contribution equals 10 m/s2 along the
x-axis of the accelerometer,3 while the contribution of the

3If the person is standing, the x-axis of the accelerometer corresponds to
the z-axis of the earth-centered coordinate system.

body acceleration is zero along all axes. As opposed to stand-
ing, the impact of the gravitational field for lying is equal
to 0 m/s2 along the x- and y-axes of the accelerometer and
10 m/s2 along the z-axis. Fig. 2 shows that the mean value
of az(t) is 5 m/s2 for lying. This is because the collected
acceleration data are recorded while the user is performing
lying and during lying which makes the mean value of az(t)
smaller than 10 m/s2. But even with this error, an accurate
classification of the lying activity is obtained by extracting
the mean value of the total acceleration. Note that this feature
has not been considered in previous studies.

In addition to the total acceleration, we evaluate the sample
mean of the other signals provided in Table 1 to obtain
additional features. More specifically, we compute the mean
values of the magnitude of the body acceleration ‖ab(t)‖,
the triaxial angular velocity ωi(t) (i = x, y, z), and the
magnitude of the angular velocity ‖ω(t)‖.

The second feature that we extract is the root mean
square (RMS) of the body acceleration. The RMS is also
known as the quadratic mean. The body acceleration abi (t)
(i = x, y, z) is obtained by applying a high-pass filter to the
total acceleration ai(t) (i = x, y, z). This filtering removes the
contribution of the gravitational field. The RMS of the body
acceleration can be expressed as

ab,RMS
i =

√
1
T

∫ T

0

[
abi (t)

]2
dt for i = x, y, z (5)

where T is the length of the buffer which is equal to 2.56 s.
Beside the RMS of the body acceleration, we incorporate
additional features obtained by computing the RMS of the
angular velocity ωi(t) (i = x, y, z), the RMS of the magni-
tude of the body acceleration ‖ab(t)‖, and the RMS of the
magnitude of the angular velocity ‖ω(t)‖.

FIGURE 3. Histogram of the RMS of the body accelerations ab
x (t) and

ab
y (t) for the activities sitting and walking downstairs.

In Fig. 3, we illustrate the histogram of the RMS of the
body acceleration for the activities sitting and walking down-
stairs. From this figure, it can be deduced that the RMS of
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the body acceleration abx(t) for sitting is less than 0.2, while
for walking downstairs the RMS of abx(t) is larger than 0.2.
In contrast, the RMS of the body acceleration aby(t) is smaller
than 0.1 for the activity sitting and mostly larger than 0.1 for
the activity walking downstairs.

By examining the RMS for the activity standing, which is
a static activity similar to sitting, we notice that the RMS
of abx(t) and aby(t) is less than 0.1 and 0.2, respectively.
On the other hand, for the dynamic activities, such as walking,
walking upstairs, walking downstairs, and falling the RMS of
abx(t) and a

b
y(t) is larger than 0.1 and 0.2, respectively. Thus,

this feature allows differentiating between static and dynamic
activities.

The third feature is the main maxima and minima of
the triaxial body acceleration abi (t) (i = x, y, z). We apply
a Savitzky-Golay filter [31] to the body acceleration to
smooth it and reduce the impact of noise. The Savitzky-Golay
smoothing method reduces the noise while preserving the
underlying pattern and the peaks in the data. By exploring
the histograms of different activities, we find that the ranges
of the acceleration values vary. For instance, the acceleration
mean value for the activities walking and standing is the
same, but the dynamic range of the accelerations is different.
Consequently, by extracting the main maxima and minima
of the acceleration, we can reduce the misclassification rate
for walking and standing. Note that this feature improves the
classification accuracy of all activities.

It is worth mentioning that the above features allow distin-
guishing between activities that exhibit very different accel-
eration patterns, i.e., activities with different acceleration
mean values and variances. Nevertheless, for activities with
similar statistical properties, the classification based on the
above features would result in poor accuracy. For example,
we notice that the activities walking, walking downstairs,
and walking upstairs have similar mean and variance. If we
would use only the above features to classify the activities
walking, walking upstairs, and walking downstairs, we would
find a misclassification error of more than 15%. We must
investigate how these acceleration signals vary over time
to discriminate acceleration signals associated with these
activities. More specifically, we must measure the rate of
oscillations of the acceleration. Actually, people tend to
move slower when walking upstairs compared to walking
downstairs which results in a higher rate of oscillations if
the person is walking downstairs. By extracting the peaks
of the PSD, we can obtain a quantitative description of
the rate and shape of the oscillations of the acceleration
signal.

Our forth feature quantifies the rate of change and shape
of the oscillation of the body acceleration signal abi (t) (i =
x, y, z). This feature is extracted from the PSD of the accel-
eration, which can be obtained as follows. First, we compute
the ACF Rabi (τ ) of the body acceleration a

b
i (t) (i = x, y, z) as

Rabi (τ ) =
1
2T

∫ T

−T
abi (t + τ )

[
abi (t)

]∗
dτ. (6)

The PSD Sabi (f ) of the body acceleration abi (t) (i = x, y, z)
can be obtained by applying the Fourier transform to the ACF
Rabi (τ ) as

Sabi (f ) = F
{
Rabi (τ )

}
=

∫
∞

−∞

Rabi (τ )e
−j2π f τdτ for i = x, y, z. (7)

From the PSD Sabi (f ), we extract the location and the value
of the main PSD peaks. Our hypothesis is that these PSD
peaks capturewell the time variation in the acceleration signal
and allow identifying the fundamental frequency and main
harmonic frequencies embedded in the acceleration signal.
Thus, with the help of the PSD feature, we can distinguish
between different activities, since each activity leads to dif-
ferent time variations in the acceleration signal as well as to
different shapes and rates of oscillations. In the following,
we provide arguments supporting our hypothesis that the
proposed PSD feature describes well the observed time varia-
tions in the acceleration signal. Thus, the PSD feature allows
improving the classification accuracy for different activities.

Our analysis of the PSD Sabi (f ) of the triaxial body accel-
eration reveals that this PSD is narrowband and can generally
be considered equal to zero outside the frequency interval
[fmin, fmax].4 Using this property, we can write the inverse
Fourier transform of the PSD as

F−1
{
Sabi (f )

}
=

∫
∞

−∞

Sabi (f )e
j2π f τdf for i = x, y, z.

=

∫ fmax

fmin

Sabi (f )e
j2π f τdf

≈

N∑
n=1

Sabi (fn)e
j2π fnτ1f (8)

where the approximation in (8) is obtained using [32, eq. (7)]
and 1f = (fmax − fmin)/N . Note that as N → ∞ the
approximation in (8) becomes an equality. In (8), the number
of terms in the sum can be reduced from N to P (P � N )
by selecting the terms with the P largest weights Sabi (fp) (p =
1, 2, . . . ,P). Thus, we can write

N∑
n=1

Sabi (fn)e
j2π fnτ1f ≈

P∑
p=1

Sabi (fp)e
j2π fpτ1f . (9)

Note that the P components on the right-hand side of (9)
coincide with the P peaks of the PSD, which we extract as a
feature to distinguish the activities walking, walking upstairs,
and walking downstairs.
On the other hand, the ACF Rabi (τ ) can be expressed as the
inverse Fourier transform of the PSD Sabi (f ). Using (8) and
(9), we can write

Rabi (τ ) = F−1
{
Sabi (f )

}
≈

P∑
p=1

Sabi (fp)e
j2π fpτ1f . (10)

4Typically fmin = 0 Hz and fmax = 10 Hz.
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FIGURE 4. PSDs S
ab

x
(f ) and S

ab
y

(f ) of the body accelerations ab
x (t) and ab

y (t) pertaining to the activities walking and walking upstairs.

Therefore, the ACF Rabi (τ ) of the triaxial acceleration can

be approximated by P harmonics with weights Sabi (fp) and
frequency fp. The ACF Rabi (τ ) of the triaxial acceleration
contains information pertaining to the time variation of
the acceleration signal. Moreover, the ACF enables finding
repeating patterns in the acceleration signal as well as identi-
fying the fundamental frequency andmain harmonic frequen-
cies embedded in the acceleration signal. Thus, by extracting
the location (fp) and the value (Sabi (fp)) of P peaks of the
PSD Sabi (f ), we capture quantitative information on the time
variation of the acceleration signal as shown in (10).

In Fig. 4, we illustrate the PSDs Sabx (f ) and Saby (f ) of the
body accelerations abx(t) and a

b
y(t) for the activities walking

and walking upstairs. From this figure, we see that most of the
information is confined to the range from 0 to 10Hz. The peak
locations and values hold useful information on the shape
and rate of the signal oscillations in the time domain. From
the PSD curves Sabx (f ) and Saby (f ), we observe a fundamental

frequency f0 around 1 Hz and a number of harmonics at posi-
tions that are multiples of f0. The relative amplitudes of the
spectral peaks are closely related to the shape of oscillation
of the signal, whereas the spacing between the spectral peaks
indicates the rate of oscillation of the signal.

For the activity walking upstairs, it can be seen from the
PSDs Sabx (f ) and Saby (f ) that the spectral peaks are closer
together and pushed to the left compared to the spectral peaks
for the activity walking. This means that the rate of oscillation
for walking is higher than that of the activity walking upstairs.
Besides, for the activity walking upstairs, the amplitude of the
peaks to the right of the fundamental frequency f0 decreases
quickly. This implies that the shape of the oscillation for
walking upstairs is smoother compared to walking. This can
be explained by Newton’s second law of motion which states
that the sum of forces is equal to the mass times the accel-
eration [33]. When people are walking upstairs, the gravity
impact makes the body acceleration smaller and the shape
of its oscillations smoother compared to walking on a flat
surface, where the gravity has almost no impact on the body
acceleration.

The classification accuracy for walking, walking
downstairs, and walking upstairs is improved by using the
spectral peaks features. We recall that the use of other fea-
tures, such as the mean, the RMS, and the maxima does
not yield an accurate classification for these activities. The
proposed frequency domain feature enhances the accuracy
of the classification algorithm, especially for the activities
walking, walking downstairs, and walking upstairs. Beside
the spectral peaks of the body acceleration abi (t) (i = x, y, z),
we extract as well the spectral peaks of the angular velocity
ωi(t) (i = x, y, z), the spectral peaks of the magnitude of
the body acceleration ‖ab(t)‖, and the spectral peaks of the
magnitude of the angular velocity ‖ω(t)‖.

The fifth feature is extracted from the ACF of the body
acceleration abi (t) (i = x, y, z). More specifically, we esti-
mate the values and the location of the first maximum and
the second peak of the body acceleration ACF. These fea-
tures contain information pertaining to the shape and rate
of change of the oscillations of the acceleration signal. Such
features can improve the classification of activities that have
similar statistical properties (i.e., similar mean values and
variances) but have a different rate and shape of oscillations.
Additionally, we extract similar features from the ACF of the
angular velocity ωi(t) (i = x, y, z), the ACF of the body
acceleration ‖ab(t)‖, and the ACF of the magnitude of the
angular velocity ‖ω(t)‖.

Our sixth feature quantifies the energy in different fre-
quency bands of the triaxial body acceleration abi (t) (i =
x, y, z). To extract this feature, we first obtain the PSD of
the body acceleration. Then, we divide the frequency spec-
trum into 10 bands and evaluate the energy confined in
each frequency band. To improve the classification accuracy,
we extract as well the energy in different bands of the triaxial
angular velocity ωi(t) (i = x, y, z), the magnitude of the
body acceleration ‖ab(t)‖, and the magnitude of the angular
velocity ‖ω(t)‖.

The seventh feature is extracted from the cross-correlation
function (CCF) between the body acceleration on different
axes. More specifically, we estimate the values and the loca-
tions of the first three peaks of the CCF. These peaks provide
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information about the level of resemblance between the body
acceleration measured on different axes. We determine the
CCF between the body acceleration signal pairs (abx(t), a

b
y(t)),

(abx(t), a
b
z (t)), and (a

b
y(t), a

b
z (t)). Then, we extract the locations

and values of the first three peaks of these CCFs.

IV. EXPERIMENTAL RESULTS
In this section, we assess the performance of the proposed
activity recognition framework. The dataset is divided into
two random independent sets: the training set and the test
set. We use 70% of the data for training and 30% for test-
ing. In our investigation, we evaluate the performance of
the ANN, the KNN, the QSVM, and the EBT classification
algorithms.

A. CLASSIFICATION BASED ON THE
ACCELERATION SIGNAL
In a first step, we extract features only from the triaxial
total acceleration ai(t) (i = x, y, z) and the triaxial body
acceleration abi (t) (i = x, y, z). To emphasize the importance
of the proposed features for improving the accuracy of the
classification, we arrange the features into three subsets: Sub-
set A, Subset B, and Subset C. Subset A comprises the mean
value of the triaxial total acceleration which is referred to as
the first feature in Section III. Subset B includes the features
from Subset A augmented with the peaks extracted from the
PSD and the ACF of the body acceleration which represent
the fourth and the fifth features as described in Section III.
Finally, Subset C encompasses the features from Subset B in
addition to the RMS and the main maxima and minima of
the body acceleration. The feature vector of Subset C has a
length of 66 and contains features extracted only from the
acceleration data.

We consider anANN classification algorithmwith one hid-
den layer, which comprises 25 nodes. The performance of this
ANN algorithm is assessed using the features of Subset A.
The obtained results are provided in the confusion matrix
in Fig. 5. In this figure, the diagonal cells show the number
and the percentage of correct classifications by the trained
ANN algorithm. For instance, in 131 cases the classifier cor-
rectly predicts the walking activity. These 131 cases represent
4.1% of the 3200 buffers that are being classified during the
test phase by the trained ANN classifier. Similarly, the ANN
algorithm successfully predicted the class of 305, 132, 478,
226, 603, and 121 data buffers as pertaining to the activities
walking upstairs, walking downstairs, sitting, standing, and
falling, respectively.

By observing a given column of the confusion matrix
in Fig. 5, it is possible to know the accuracy of the algorithm
for a given class.5 For example, the first column shows the
results associated with the activity walking. The first row
of Column 1 contains the number 131, which implies that

5Throughout the paper the words class and activity are used interchange-
ably. Class i corresponds to the activity with ID i(i = 1, 2, . . . , 7). The
number i(i = 1, 2, . . . , 7) located to the left of the confusion matrix in Fig. 5
indicates that the predicted class is Class i.

FIGURE 5. Confusion matrix of the ANN algorithm obtained using the
features from Subset A.

in 131 cases the activity walking was successfully recognized
by the ANN algorithm. The value in the second row of Col-
umn 1 indicates that in 105 cases the algorithm misclassified
the activity walking as walking upstairs. Similarly, the value
in row j (j = 2, . . . , 7) of Column 1 indicates the number
of cases for which the activity walking was misclassified as
the activity with the ID j.6 The accuracy for activity one
indicates the percentage of successful classification for the
activity walking. This accuracy is obtained by dividing two
numbers: (i) the first quantity is the number of buffers pertain-
ing to the activity walking and that are correctly classified7

and (ii) the second quantity is the total number of buffers
pertaining to the activity walking.8 For the activity walking,
the classification accuracy equals 25.2% as shown in the first
column of Row 8. For example, considering the falling events
which are represented over the seventh column. In total there
are 125 falls in the considered test data. In 121 cases, the fall
events are correctly recognized by the classifier which yields
an accuracy of 96.8%. The classifier fails to recognize fall
events in 4 cases which means that 3.2% of the classifications
for fall events are incorrect. The classification accuracy of
activity j is provided in Column j (j = 1, . . . , 7) of Row 8.
The classification accuracy for the activities walking upstairs,
walking downstairs, sitting, standing, lying, and falling are
equal to 67%, 33.4%, 85.2%, 41.7%, 100%, and 96.8%,
respectively. Overall the ANN classifier was able to success-
fully predict the user activity in 62.4% of the cases.

By looking at a given row of the confusion matrix in Fig. 5,
we can evaluate the prediction precision for a given class. For
instance, let us consider the fourth row which corresponds

6The activity IDs 1, 2, 3, 4, 5, 6, and 7 correspond to walking,
walking upstairs, walking downstairs, sitting, standing, lying, and falling,
respectively.

7This number, which is shown in the first row of the first column, is equal
to 131 [see the confusion matrix in Fig. 5].

8 By summing the numbers in Column 1 located in Rows 1-7, we get the
total number of buffers that actually belong to the activity walking.
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to sitting. The activity sitting is correctly predicted
in 478 cases and wrongly predicted in 155 cases, which
implies a precision of 75.5% for the predictions of the activity
sitting. The activities walking, walking upstairs, walking
downstairs, standing and falling are misclassified as sitting,
in 36, 9, 33, 76, and 1 case, respectively. Out of 633 sitting
predictions, 155 predictions are wrong which represents
24.5%. The classification precision of activity j is provided
in row j(j = 1, . . . , 7) of Column 8. The classification
precision for the activities walking, walking upstairs, walking
downstairs, sitting, standing, lying, and falling are equal to
29.4%, 56.1%, 57.9%, 75.5%, 36.3%, 99.5%, and 100%.

It is worth mentioning that the accuracy and the precision
of the classification have different meaning. The accuracy
focuses on the actual activity and indicates the percentage of
successful classifications out of the actual buffers belonging
to a given class. In contrast, the precision of a classification
focuses on the predicted activity and quantifies the percentage
of successful classification out of the buffers predicted to
belong to a certain activity.

Fig. 5 shows that the classifier recognizes with high accu-
racy the activities lying and falling. These two activities are
almost never confused with the remaining five activities.
As shown by the acceleration histograms in Fig. 2, one can
visually differentiate between the activity lying and other
activities based on the range of values of the acceleration
along the x- and z-axis. This explains the high accuracy in rec-
ognizing the activity lying, which reaches 100%. Similarly,
Fig. 10 compares the histograms of the mean value of the
acceleration for falling and standing. Using Fig. 10, one can
distinguish falls from non-falls based on the range of themean
value of the acceleration. This clarifies the high fall detection
accuracy, which reaches 96.8%.
On the other hand, Fig. 5 demonstrates that the classifier
confuses the activities walking, walking upstairs, walking
downstairs, sitting, and standing, since all of them have sim-
ilar patterns for the histogram of the mean value of the accel-
eration.9 For instance, the algorithm misclassifies walking as
sitting in 182 cases and as walking upstairs in 105 cases.

In Table 2, we provide the confusion matrix of the binary
classification problem, where we classify the data into fall
and non-fall classes. The non-fall class includes the activ-
ities walking, walking upstairs, walking downstairs, sitting,
standing, and lying. Table 2 is obtained when using the ANN
classifier with the features from Subset A. From the binary
confusionmatrix, we can compute the false negative (FN) and
false positive (FP) as well as the FN rate and FP rate for fall
detection. From Table 2, we see that the number of FP equals
0 and the number of FN is 4. The FP rate can be computed as

FP Rate =
FP

Number of actual non−falls
=

FP
FP+ TN

=
0

3075
= 0%. (11)

9We recall that the only feature used by the classifier in Fig. 5 is the mean
value of the triaxial acceleration.

TABLE 2. Confusion matrix of the binary classification problem of the
ANN algorithm obtained using the features from Subset A.

TABLE 3. Accuracy of the ANN classifier for various activities and
different feature subsets.

Since the FP rate is equal to 0%, this implies that if the
classifier is given a non-fall event, it never recognizes it as
a fall. Thus, the fall detection system has zero false alarm.
The FN rate can be computed by dividing the number of FN
by the number of actual falls, i.e.,

FN Rate =
FN

Number of actual falls
=

FN
TP+ FN

=
4
125
= 3.2%. (12)

The FN rate indicates the percentage of undetected falls by
the system. It is desirable that the fall detection system has a
very low FN rate.

Using Table 2, we can compute the accuracy and precision
for fall detection as follows

Accuracy =
TP

TP+ FN
=

121
121+ 4

= 96.8% (13)

Precision =
TP

TP+ FP
=

121
121
= 100%. (14)

To demonstrate the importance of the proposed features in
improving the classification accuracy, we assess the perfor-
mance of the ANN classifier using the features of the Subsets
A, B, and C. Table 3 shows the classification accuracy results
of the ANN algorithm. It can be noticed from this table that
as the set of features becomes larger, the overall accuracy
of the classifier is improved. For example, if we consider
the activity walking, we see that if we use the features from
Subset A, we achieve a poor classification accuracy of 25.2%.
If we use the features of Subset B instead of Subset A as an
input to the ANN algorithm, the classification accuracy for
walking is enhanced by more than 60%. Note that Subset B
encompasses the features from Subset A augmented with the
peaks of the PSD and the ACF. These additional features hold
information pertaining to the shape and rate of the oscillations
of the acceleration signals which improves the classification
accuracy for most activities. Moreover, if we use the fea-
tures of Subset B instead of Subset A, we observe that the
classification accuracy is improved by 11.8%, 39.2%, and
43.7% for the activities walking upstairs, walking downstairs,
and standing, respectively. From Table 3, we observe that by
using the features of Subset C, the classification accuracy
is enhanced furthermore. The ANN algorithm achieves an
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accuracy of 96.8% and 100% for the activities falling and
lying when using the features of Subset C.

TABLE 4. Precision of the ANN classifier for various activities and
different feature subsets.

The precision of the ANN algorithm achieved with the
features of the Subsets A, B, and C is provided in Table 4.
This table shows that the precision of the predicted falls
reaches 100% regardless of whether we use the features of
Subset A, B, or C. This implies that there are no false alarms
and that all fall events detected by the algorithm are real falls.
On the contrary, as the number of features increases, the false
alarm rate for walking decreases. For example, if we use the
features of Subset B instead of Subset A, the classification
precision for walking is enhanced by 48.2%. Additionally,
if we use the features of Subset C instead of Subset A,
the classification precision is improved by 28.6%, 28.1%,
8.3%, and 47.2%, respectively, for the activities walking
upstairs, walking downstairs, sitting, and standing.

The confusion matrix of the ANN classifier obtained by
using the features of Subset C is illustrated in Fig. 6. The
diagonal cells of the confusion matrix provide the number
and the percentage of correct classifications. For example,
the classifier correctly predicts fall events in 121 cases. These
121 cases represent 3.8% of the total number of buffers which
are classified by the ANN algorithm during the test phase.
From the remaining diagonal cells of the confusion matrix
in Fig. 6, we can conclude that the trained ANN algorithm
successfully predicts the class of the activities walking, walk-
ing upstairs, walking downstairs, sitting, and standing in 459,
370, 332, 476, 450, and 603 cases, respectively.

To assess the accuracy of the algorithm for a given activity,
we must observe the corresponding column for that activity
in the confusion matrix in Fig. 6. For instance, let us consider
the first column of the confusion matrix which pertain to
the activity walking. In the test data, there are 519 walk-
ing buffers. In 459 cases, the walking activity is success-
fully recognized by the algorithm which implies an accuracy
of 88.4%. The activity walking is misclassified in 60 cases
which represent 11.6% of the actual walking buffers. Overall
the ANN algorithm successfully predicts the user activity
in 87.8% of the cases.

To determine the algorithm precision for a given activity,
we must look at the row corresponding to that activity in the
confusion matrix in Fig. 6. For example, let us consider the
fifth row which pertain to the activity standing. In 450 cases,
the activity standing is predicted correctly. This implies that
the prediction precision for standing is 83.5%. The activ-
ities sitting, walking upstairs, and walking are misclassi-
fied as standing in 85, 1, and 3 cases, respectively. Out of

FIGURE 6. Confusion matrix of the ANN algorithm obtained using the
features from Subset C.

539 standing predictions, 89 predictions are wrong which
represents 16.5%.

From Fig. 6, we observe that the classifier clearly distin-
guishes lying and falling from the other activities. For the
remaining five activities, the classifier confuses standing and
sitting together, since these two activities are static. Besides,
the classifier does not differentiate well the dynamic activities
walking, walking upstairs, and walking downstairs. However,
the misclassification rate among dynamic activities drops
significantly by using the features from Subset B instead of
those from Subset A, as shown in Table III. This demonstrates
that the PSD features allow achieving a higher accuracy in
recognizing dynamic activities, since each of these activi-
ties has its own rate and shape of oscillations as discussed
in Section III. Note that the classifier rarely misclassifies
dynamic activities as static and vice versa. For example,
the number of misclassifications for the activity walking as
standing drops from 182 to 3 by using the feature Subset C
instead of Subset A. This reveals that the features in Subset C
allow distinguishing static and dynamic activities.

In Table 5, we provide the confusion matrix of the binary
classification problem, where we classify the data into fall
and non-fall classes. Table 5 is obtained when using the ANN
classifier with the features from Subset C. From Table 5,
we see that the number of FP equals 0 and the number of
FN is 4. The FP rate and FN rate can be computed using
(11) and (12), which results in 0% and 3.2%, respectively.
Utilizing (13) and (14), we can compute the accuracy and
precision of fall detection which are equal to 96.8% and
100%, respectively.

The confusion matrix for the QSVM classifier is provided
in Fig. 7. Comparing the confusion matrices of the ANNwith
that of theQSVMalgorithm,we observe that theQSVMalgo-
rithm outperforms the ANN algorithm in terms of the overall
accuracy by 5.4%. Moreover, the QSVM algorithm has better
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TABLE 5. Confusion matrix of the binary classification problem of the
ANN algorithm obtained using the features from Subset C.

FIGURE 7. Confusion matrix of the QSVM algorithm obtained using the
features from Subset C.

accuracy and precision for most activities compared to the
ANN algorithm. If the QSVM algorithm is utilized instead
of the ANN algorithm, the prediction precision is improved
by 9.2%, 8.6%, 9.2%, 2.3%, and 6.5%, respectively, for
the activities walking, walking upstairs, walking downstairs,
sitting, and standing. Additionally, for the activities walk-
ing, walking upstairs, walking downstairs, sitting, standing,
and falling, the classification accuracy is improved by 7.5%,
14.6%, 5.7%, 4.7%, 3.5%, and 0.4%, respectively, if we use
the QSVM algorithm instead of the ANN algorithm.

TABLE 6. Confusion matrix of the binary classification problem of the
QSVM algorithm obtained using the features from Subset C.

In Table 6, we provide the confusion matrix of the binary
classification problem, where we classify the data into fall
and non-fall classes. Table 6 is obtained when using the
QSVM algorithm with the features from Subset C. From
Table 6, we see that the number of FP equals 0 and the number
of FN is 3. The FP rate is equal to 0%, while the FN rate is
2.75%. The accuracy and precision for fall detection are equal
to 97.25% and 100%, respectively.

In Figs. 8 and 9, we provide the confusion matrices for
the KNN and the EBT algorithms, respectively. These results
are obtained using the features from Subset C. From Fig. 8,
it can be noticed that the KNN algorithm has the worst overall

FIGURE 8. Confusion matrix of the KNN algorithm obtained using the
features from Subset C.

FIGURE 9. Confusion matrix of the EBT algorithm obtained using the
features from Subset C.

accuracy compared to the ANN, QSVM, and EBT algo-
rithms, while the EBT algorithm has the best performance
in terms of the overall accuracy. By using the EBT algo-
rithm instead of the KNN algorithm, we can improve the
overall accuracy by 12.9%. The EBT algorithm significantly
improves the classification accuracy of most activities com-
pared to the KNN algorithm. In particular, the EBT algo-
rithm enhances the classification accuracy for the activities
walking, walking upstairs, walking downstairs, sitting, stand-
ing, and falling by 14.1%, 25.7%, 22.9%, 11.7%, 9.3%, and
6.4%, respectively. Moreover, the use of the EBT algorithm
improves the precision of the predictions and significantly
reduces false alarms compared to the KNN algorithm. More
specifically, if the EBT algorithm is utilized instead of the
KNN algorithm, the precision of the prediction for the activ-
ities walking, walking upstairs, walking downstairs, sitting,
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standing, and falling is improved by 22.7%, 23.5%, 13.7%,
10%, 11.2%, and 3.8%, respectively.

TABLE 7. Confusion matrix of the binary classification problem of the
KNN algorithm obtained using the features from Subset C.

In Table 7, we provide the confusion matrix of the binary
classification problem. Table 7 is obtained when using the
KNN algorithm with the features from Subset C. From
Table 7, we see that the number of FP equals 4 and the number
of FN is 8. The FP rate is equal to 3.77%, while the FN rate is
7.27%. The accuracy and precision of fall detection are equal
to 96.23% and 100%, respectively.

TABLE 8. Confusion matrix of the binary classification problem of the
EBT algorithm obtained using the features from Subset C.

Table 8 illustrates the confusion matrix of the binary clas-
sification problem resulting from using the EBT algorithm
with the features from Subset C. Table 8 shows that the
number of FP and FN are equal to 0 and 1, respectively.
The FN rate equals 0.91%, whereas the FP rate is 0%. For
fall detection, the accuracy and precision reach 99.09% and
100%, respectively.

B. COMPARISON
In this work, we obtained the acceleration data for ADL activ-
ities and falls from two different databases. This fact makes
it difficult to compare our results to existing work in the
literature. Anguita et al. [24] use the support vector machine
(SVM) algorithm to classify six ADL activities using the
same acceleration data that we use in this paper. Therefore,
we can roughly compare our results to those obtained in [24].
The classification accuracy in [24] for the activities walk-
ing, walking upstairs, walking downstairs, standing, sitting,
and lying are equal to 95.6%, 69.8%, 83.2%, 93%, 96.4%,
and 100%, respectively, while the overall accuracy reaches
89.3%. In our case, we achieve a better overall accuracy
of 93.2%, if we use the QSVM algorithm and the features
extracted only from the acceleration signal. Note that in our
case we classify seven different activities compared to six
activities in [24]. Our solution improves the classification
accuracy for the activities walking, walking upstairs, and
walking downstairs by 0.3%, 26.1%, and 6.6% compared to
the method proposed in [24]. On the other hand, the solution
in [24] outperforms our method for the classification of the
activities standing and sitting by 3.5% and 9.9%, respectively.

Wearable-based fall detection systems use either threshold-
ing or machine learning algorithms to detect falls. Threshold-
based algorithms have low complexity and can be easily

implemented on wearable devices. Their major drawback
is that they produce a high number of false alarms [23].
In fact, threshold-based algorithms conclude that a fall has
occurred if the magnitude of the acceleration vector exceeds
a certain value. Such a simple algorithm confuses falls with
activities that yield a large acceleration value, such as walking
downstairs [34]. The use of machine learning algorithms
to detect falls is quite popular due to their high accuracy,
which is achieved at a larger computational cost compared
to thresholding algorithms.

Many studies have investigated the performance of dif-
ferent fall detection algorithms using acceleration data
[22], [23]. We compare the performance of our proposed
machine learning framework to [22] and [23]. The choice
of these two papers as a benchmark is motivated by two
reasons. First, the fall data used to assess the performance
of our fall detection solution is the same as the fall data
used in [22] and [23], which makes this comparison fair.
Second, the solutions proposed in [22] and [23] have a high
fall detection accuracy and precision.

In [22], the acceleration and angular velocity data are
collected by two sensors attached to the participants’ chests
and thighs. The vector magnitude of the acceleration and
angular velocity obtained from the two sensors are computed
and stacked in a feature vector of length 4. A decision tree
algorithm is used to classify fall and non-fall activities. The
performance in terms of fall detection reaches an accuracy
of 92% and a precision of 81%.

Putra et al. [23] built a binary classifier which can dis-
tinguish between fall and non-fall events. A feature vector
of length 23 was provided to the classifier to decide if a
fall has occurred or not. The performance of three classifica-
tion algorithms was evaluated, namely, decision tree, logistic
regression, and multilayer perceptron. The best performance
in [23] was achieved with the multilayer perceptron classifier
which has a fall detection accuracy of 93.5% and a precision
of 94.2%.

In our proposed solution, by just using the acceleration
fall data obtained from the sensor attached to the chest,
we achieve a fall detection accuracy and precision of 96.8%
and 100%, respectively,10 by utilizing only a feature vector
of length 3 (features from Subset A). This feature vector
contains the mean value of the acceleration along the x-axis,
y-axis, and z-axis. Thus, by using less data and a smaller size
feature vector, we are able to outperform the fall detection
systems proposed in [22] and [23]. In our framework, the pre-
cision and accuracy of fall detection are further improved by
increasing the size of the feature vector. For instance, using
a feature vector of length 66, the EBT algorithm has a fall
detection accuracy of 99.1% and a precision of 100%.

In the following, we explain why we achieve a better
fall detection accuracy than [22] and [23], even though we
use less features. Ojetola et al. [22] utilize as features the
vector magnitude of the acceleration and the angular velocity.

10See the confusion matrix in Fig. 5.
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Putra et al. [23] extract features from the magnitude of
the acceleration signal, such as the minimum, maximum,
mean, variance, and signal magnitude area. However, in both
[22] and [23] there are no features extracted from the triaxial
acceleration signal, but the features are extracted from the
magnitude of the acceleration data. By computing the magni-
tude of the acceleration signal, we combine the acceleration
data from the x-axis, y-axis, and z-axis into a single value,
but we lose important information on the orientation of the
acceleration vector a(t) that helps to recognize falls. Next,
we explain this idea in more detail.

FIGURE 10. Histogram of the mean value of the accelerations ax (t) and
az (t) for the activities standing and falling.

In Fig. 10, we illustrate the histogram of the mean value
of the accelerations ax(t) and az(t) for the activities standing
and falling. For standing, the mean value of the acceleration
ax(t) is mainly confined in the interval [9 m/s2, 10 m/s2],
while for falling, the mean value of ax(t) is mostly between
0 and 7 m/s2. This mismatch between the histograms of the
mean value of the acceleration ax(t) for standing and falling
allows distinguishing between these two activities using a
threshold. Note that for the activities where the body posture
is vertical (i.e., walking, walking upstairs, walking down-
stairs, sitting, and standing), the mean value of the acceler-
ation ax(t) is approximately equal to the gravity contribution,
which is measured along the x-axis of the accelerometer,11

and equal to 10 m/s2. Thus, using the mean value of the
acceleration ax(t), we can easily distinguish between falling
and all the activities where the body posture is vertical.

A fall comprises three main stages: (i) the pre-fall, (ii) the
fall, and (iii) the post-fall. In the pre-fall stage, the person
is generally walking and has a vertical body posture, while
for the post-fall stage the person is usually lying on the
ground. During the fall stage, the body posture changes from
vertical to horizontal. Since the smartphone is attached to the
person’s body, the orientation of the axes of the smartphone’s

11For the activities with vertical body posture, the x-axis of the accelerom-
eter corresponds to the z-axis of the earth-centered coordinate system.

accelerometer changes during the fall. For activities with a
vertical body posture, such as standing, the x-axis of the
accelerometer coincides with the z-axis of the earth. There-
fore, for a vertical body posture, the gravity contribution
equals to 10 m/s2 along the x-axis and 0 m/s2 along the
y- and z-axes.12 In contrast, for activities with horizontal
body posture, such as lying, the z-axis of the accelerometer
coincides with the z-axis of the earth-centered coordinate
system. As a result, the gravity contribution equals to 10 m/s2

along the z-axis and 0 m/s2 along the x- and y-axes. However,
for falling, since the accelerometer axes orientation keeps
changing during the fall, the contribution of the gravity is
non-zero along both the x- and z-axes of the accelerometer
as shown in Fig. 10.

By comparing the histograms of the mean value of the
acceleration az(t) for the activities standing and falling
in Fig. 10, we observe that for standing the mean value of
the acceleration az(t) is mainly concentrated around 0 m/s2,
whereas for falling the mean value of the acceleration az(t)
is generally located in the interval [−8 m/s2, 8 m/s2]. This
difference in the histograms of the mean value of az(t) for
standing and falling allows the classifier to distinguish these
two activities. Hence, using the mean value of the triaxial
acceleration, we can improve the fall detection accuracy as it
is shown in Fig. 5, where a fall detection accuracy of 96.8%
is achieved using just a feature vector of size 3.

C. CLASSIFICATION BASED ON ACCELERATION
AND ANGULAR VELOCITY SIGNALS
In this section, we utilize all the features extracted from the
acceleration and the angular velocity signals. We extract the
mean value of the total triaxial acceleration ai(t) (i = x, y, z),
the triaxial angular velocity ωi(t) (i = x, y, z), the magnitude
of the body acceleration ‖ab(t)‖, and the magnitude of the
angular velocity ‖ω(t)‖. Additionally, we extract the RMS,
the ACF peaks, the PSD peaks, and the energy in different
frequency bands from the triaxial body acceleration abi (t) (i =
x, y, z), the triaxial angular velocity ωi(t) (i = x, y, z),
the magnitude of the body acceleration ‖ab(t)‖, and the
magnitude of the angular velocity ‖ω(t)‖. Finally, we extract
supplementary features from the triaxial body acceleration
abi (t) (i = x, y, z), such as the cross-correlation peaks and the
main maxima and minima. Using all these features, we con-
struct a feature vector of length 328.

It is important to mention that machine learning algorithms
have a nested and non-linear structure, which makes it diffi-
cult to understand how classifiers can achieve a high recog-
nition accuracy. Most researchers in this field use machine
learning methods as a black box [35], [36]. The interpretabil-
ity of the decision made by machine learning algorithms
is still an open research question [35], [36]. When we are
faced with a problem where the size of the feature vector

12The contribution of the gravity is equal to 10 m/s2 along the z-axis of
earth-centered coordinate system. In our case, the gravity contribution is
measured along the different axes of the accelerometer, which differ from
the axes of the earth-centered coordinate system.
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is small, we can to a certain extent interpret the obtained
results. However, as the dimensionality of the feature vector
increases, the interpretability of the obtained results becomes
highly difficult. Since the size of the feature vector in this
section is large, we cannot explain the reasons behind the
obtained classification results.

In the following, we assess the accuracy of four classifica-
tion algorithms using all the extracted features (i.e., the used
feature vector has a length of 328). These four classification
algorithms are the KNN, the ANN, the QSVM, and the EBT
algorithm. The data are randomly divided into a training set
and test set. The training data and the test data represent 70%
and 30%, respectively, of the total data.

FIGURE 11. Confusion matrix of the KNN algorithm obtained using
328 features.

In Fig. 11, we provide the confusion matrix of the KNN
algorithm obtained using all the features extracted from the
acceleration and the angular velocity. The KNN algorithm
achieves an overall accuracy of 85.8%. We recall that using
the features from Subset C, we achieve an overall accuracy
of 81.2%. This implies that by increasing the size of the fea-
ture vector from 66 to 328, while using the KNN algorithm,
we can improve the classification accuracy by 4.6%. From
Fig. 11, we see that for the KNN algorithm the classification
accuracy for the activities walking, walking upstairs, walk-
ing downstairs, sitting, standing, lying, and falling are equal
to 95%, 87.5%, 81.9%, 72.8%, 74.7%, 99.8%, and 98.2%,
respectively. On the other hand, the KNN algorithm achieves
a precision of 87.5%, 88%, 90.3%, 72.7%, 75.4%, 99%, and
100% for the activities walking, walking upstairs, walking
downstairs, sitting, standing, lying, and falling, respectively.

Table 9 shows the confusion matrix of the binary classifi-
cation problem resulting from using the KNN algorithm with
328 features. From Table 9, we see that the number of FP
equals 0 and the number of FN is 2. The FP rate is equal to
0%, while the FN rate is 1.83%. The accuracy and precision
of fall detection are equal to 98.17% and 100%, respectively.

TABLE 9. Confusion matrix of the binary classification problem of the
KNN algorithm obtained using 328 features.

FIGURE 12. Confusion matrix of the ANN algorithm obtained using
328 features.

The confusion matrix of the ANN algorithm in Fig. 12
shows that the ANN algorithm outperforms the KNN algo-
rithm by 6% in terms of overall accuracy. Additionally,
the use of 328 features instead of 66 features in conjunction
with the ANN algorithm allows improving the classification
accuracy by 4%. On the other hand, the increase of the num-
ber of features from 66 to 328 results in enhancing the pre-
diction precision for the activities walking, walking upstairs,
walking downstairs, and sitting by 9.6%, 7.4%, 6.6%, and
4.1%, respectively. In terms of accuracy, we observe that the
use of 328 features instead of 66 features yields an improve-
ment in classification accuracy by 6.5%, 13.8%, 6.6%, and
5.3% for the activities walking, walking upstairs, walking
downstairs, and standing, respectively.

TABLE 10. Confusion matrix of the binary classification problem of the
ANN algorithm obtained using 328 features.

Table 10 provides the confusion matrix of the binary clas-
sification problem resulting from using the ANN algorithm
with 328 features. From Table 10, we see that the number of
FP equals 0 and the number of FN is 1. The FP rate is equal to
0%, while the FN rate is 0.88%. The accuracy and precision
for fall detection are equal to 99.12% and 100%, respectively.

In Figs. 13 and 14, we provide the confusion matrices for
the QSVM and the EBT algorithms, respectively. These two
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FIGURE 13. Confusion matrix of the QSVM algorithm obtained using
328 features.

FIGURE 14. Confusion matrix of the EBT algorithm obtained using
328 features.

algorithms have a better performance compared to the KNN
and the ANN algorithms. The QSVM and the EBT algo-
rithms achieve an overall accuracy of 96.1% and 97.7%,
respectively. For the EBT algorithm, the accuracy is 100%
for the activities lying and falling, and there is no false
alarm for these activities. Moreover, the accuracy and the
precision of the EBT algorithm for the activities walking,
walking upstairs, and walking downstairs are above 98%.
The activities with the lowest accuracy and precision are
sitting and standing. The EBT algorithm can classify the
activities sitting and standing with an accuracy of 94.6% and
95.4%, respectively. The prediction precisions of the EBT
algorithm for sitting and standing are equal to 95.1% and
94.8%, respectively. Note that differentiating between sitting
and standing is not very critical.

TABLE 11. Confusion matrix of the binary classification problem of the
QSVM algorithm obtained using 328 features.

Table 11 illustrates the confusion matrix of the binary clas-
sification problem obtained when using the QSVM algorithm
with 328 features. From Table 11, we observe that the number
of FP equals 0 and the number of FN is 0. The FP rate and FN
rate are both equal to 0%, this implies that the fall detection
system has zero false alarm and has zero undetected falls.

TABLE 12. Confusion matrix of the binary classification problem of the
EBT algorithm obtained using 328 features.

Table 12 shows the confusion matrix of the binary classifi-
cation problem obtained when using the EBT algorithm with
328 features. From Table 12, we see that the number of FP
equals 0 and the number of FN is 0. The FP rate and FN rate
are both equal to 0%, thus the fall detection system has an
accuracy of 100% and generates zero false alarm.

By comparing the accuracy of the QSVM and the EBT
algorithms for different activities, we notice that the EBT
algorithm outperforms the QSVM algorithm in classifying
the activities sitting and standing, while the QSVM algorithm
outperforms the EBT algorithm in terms of accuracy for the
activities walking, walking upstairs, and walking downstairs.
Both the EBT and the QSVM algorithms reach an accuracy
and a precision of 100% in classifying the activities lying
and falling. Note that a 100% precision and accuracy for
the activity falling is a highly desirable performance. In fact,
by achieving a 100% fall detection accuracy, we can build
reliable fall detection systems that support the independent
living of the elderly, reduce the impact of fall related injuries,
and improve the survival rate for persons that experience falls.
On the other hand, achieving 100% precision in fall detection
means that no false alarm is generated by the algorithm and
all detected falls are real falls. Note that if the algorithm
generates a false alarm, an ambulance will be sent to the
person’s house. As the number of false alarms increases,
the amount of wasted money increases. Therefore, it is very
important to develop a fall detection system without false
alarms, which is achieved using the EBT and the QSVM
algorithms as shown in Figs. 13 and 14.

V. CONCLUSION
A robust fall detection system is essential to support the inde-
pendent living of elderlies. In this paper, we have proposed a
machine learning approach for fall detection and ADL recog-
nition. We have tested the performance of four algorithms in
recognizing the activities falling, walking, walking upstairs,
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walking downstairs, sitting, standing, and lying based on the
acceleration and the angular velocity data. We have pro-
posed new time and frequency domain features and have
demonstrated the importance of these features and their pos-
itive impact on enhancing the accuracy and precision of the
classifier.

Moreover, we have tested the performance of the KNN,
ANN, QSVM, and EBT classification algorithms on real-
world acceleration data obtained from public databases. The
internal parameters of these algorithms have been optimized
using the training data. Afterwards, the performance of the
trained algorithms has been assessed using the test data. In a
first step, only the acceleration data have been used for activ-
ity recognition. A feature vector of size 66 has been obtained
and has been provided as an input to the classification algo-
rithm. Our results reveal that the KNN, ANN, QSVM, and
EBT algorithm achieve an overall accuracy of 81.2%, 87.8%,
93.2%, and 94.1%, respectively.

In a second step, we have extracted new features from both
the acceleration and the angular velocity data which has sig-
nificantly improved the performance of the four classification
algorithms. The constructed feature vector has a size of 328.
By using the proposed feature vector, we have shown that the
KNN, ANN, QSVM, and EBT algorithms achieve an overall
accuracy of 85.8%, 91.8%, 96.1%, and 97.7%, respectively.
It is worth to mention that the accuracy of fall detection for
QSVM and EBT reaches 100% with no false alarm which is
the best achievable performance.
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