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Abstract

In order to meet new challenges in school, work, and life, students may have to adapt
and extend whatever mathematics they know. This will require students’ ability, to some
extent, to relate school mathematics to real-life context and vice versa. Mathematical
modelling is one of the appropriate media that support the link between school mathematics
and the real-life. Research has shown that there is a strong bias in the curriculum against
mathematical modelling and that high-level mathematics (theorems, proofs, formulas, and
among others) is rather considered important, mostly at the upper secondary level. Again,
research has shown that students find difficulties in abstract (factual and hypothetical)
algebraic word problems than concrete (factual and hypothetical) algebraic word problems.
This study aims to investigate how upper secondary students solve algebraic word problems
in the area of mathematical modelling, where we examine how upper secondary students
justify their strategies in solving algebraic word problems and how these students interpret
their findings after solving an algebraic word problem in a form of mathematical modelling.
Twenty-three first year students (14-16 years old) from an upper secondary school located
in the Southern Norway participated in this study. The main source of empirical data
was interviews (one student representing his/her group) and students’ worksheet (students
working in groups to solve four algebraic word problem tasks and one modelling tasks).

The findings of the study suggest that some students have difficulties in comprehending
abstract algebraic word problems although most of the students regard the very first task
they solve as the most difficult task. The results indicate that students resort to an
arithmetic method if they cannot solve the equation developed from the word problem. The
findings also show that most of the students formulated algebraic equations in solving the
modelling task but had at least one incorrect equation. However, these students compared
their modelling computations with reality, making their mathematical solution unique.
The results indicate that most students want the inclusion of more modelling activities
in school giving varying reasons. As a didactical implication, the inclusion of a variety of
abstract algebraic word problems in student’s mathematics experience may be worthwhile,
and teachers should encourage the use of an algebraic and graphic way of solving word
problems. Also, the inclusion of modelling activities in the curriculum might help students
to view all the mathematics subject as important since they can relate each subject to the
real-world through the teacher’s guidance. Further research on the use of technological
tools for modelling realistic problems is recommended.

Keywords : algebraic word problem; mathematical modelling; upper secondary students
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Sammendrag

For å imøtekomme nye utfordringer på skolen, i jobb og i livet, kan elever ha behov for å
tilpasse og utvide den matematikken de kan. Dette krever at elever evner, i noen grad, å
sette skolematematikken i forbindelse med hverdagslige kontekster og motsatt. Matema-
tisk modellering er en av de hensiktsmessige mediene for å støtte sammenhengen mellom
skolematematikken og virkeligheten. Forskning har vist at det er en sterk tilbøyelighet i
pensumet mot matematisk modellering og at i stedet høynivå matematikk er ansett som
viktig, mest på videregående nivå. Igjen, forskning viser at elever har større utfordringer
med abstrakte (fakta og hypotetiske) algebraiske tekstoppgaver enn konkrete (fakta og
hypotetiske) algebraiske tekstoppgaver. Denne studien har som mål å undersøke hvordan
elever i videregående løser algebraiske tekstoppgaver innen matematisk modellering, hvor
vi vil undersøke hvordan elever på videregående forklarer strategiene de bruker for å løse
algebraiske tekstoppgaver, og hvordan elevene tolker funnene etter å ha løst en algebraisk
tekstoppgave ved bruk av matematisk modellering. Tjuetre elever fra første året (14-16 år)
på en videregående skole i Sør-Norge deltok i denne studien. Hovedkilden til empiriske data
var intervjuer (en elev representerte hans/hennes gruppe) og elevenes oppgaveark (elevene
arbeidet i grupper for å løse fire algebraiske tekstoppgaver og en modelleringsoppgave).

Funnene i denne studien viser at noen elever har utfordringer med å forstå abstrakte al-
gebraiske tekstoppgaver, selv om de fleste elevene omtalte den første oppgaven de løste
som den vanskeligste oppgaven. Resultatene indikerer at elevene tyr til en aritmetisk
metode hvis de ikke klarer å løse likningen utviklet fra tekstoppgaven. Funnene viser
også at de fleste elevene formulerte algebraiske likninger da de løste den modelleringsopp-
gaven, men de hadde minst en likning som var feil. Samtidig sammenliknet elevene sine
modelleringsutregninger med virkeligheten, som gjorde deres matematiske løsninger unike.
Resultatet indikerer at de fleste elevene ønsker mer modellerings aktiviteter på skolen med
ulike begrunnelser. Som en didaktisk implikasjon, kan inkluderingen av varierte abstrakte
algebraiske tekstoppgaver i elevers matematiske erfaringer ha betydning. Lærere bør opp-
muntre til bruk av algebraiske og grafiske måter å løse tekstoppgaver. Samtidig å inkludere
modelleringsaktiviteter i pensumet, kan bidra til at elever ser på matematikk som et viktig
fag, ettersom elevene kan relatere et hvert fag til virkeligheten gjennom lærerens veiledning.
Videre forskning om bruk av teknologiske verktøy for modellering av realistiske problemer
anbefales.

Nøkkelord: algebraiske tekstoppgaver; matematisk modellering; elever i videregående
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1 INTRODUCTION

In order to meet new challenges in school, work, and life, students may have to adapt and
extend whatever mathematics they know. This will require students’ ability, to some ex-
tent, to relate school mathematics to a real-life context and vice versa. Erling et al. (2016)
argues that students and even some adults often find mathematics very difficult for the
reason that they are not able to relate mathematical facts to a real-life context and vice
versa. Relating mathematical facts to a real-life context and the other way round requires
realistic considerations and in particular, Verschaffel et al. (2000, 2009, 2010) argue that
application word problems (that is word problems in the form of mathematical modelling)
requires more of realistic considerations. In considering the mathematics curriculum at the
upper secondary level, Stillman (2007) argues that there is a strong bias against mathe-
matical modelling and that high level mathematics (theorems, proofs, formulas and among
others) is rather considered important. With this background, the current study aims to
investigate how upper secondary students’ solve algebraic word problem in the area of
mathematical modelling.

This chapter starts with the statement of the problem that drove the study. The next
section gives an account of the research question after which a discussion of the significance
of the study follows. Afterwards, the motivation of the researcher for conducting the
research is presented. The chapter then ends with the outline or structure of the thesis.

1.1 Statement of the Problem

In the last decades, there have been a lot of educational research literature in the area
of algebra and word problems unlike other areas like trigonometry which is sparse. Alge-
braic word problems runs through all levels of mathematics curriculum since it forms an
integral part of mathematics learning. Verschaffel et al. (2000) defines word problems as
mathematical exercises that present significant background information on the problem as
text, rather than in the form of mathematical notation. Erling et al. (2016) argues that
word problems are often seen as a way of bridging the divide between real life and the
mathematics classroom.

Morales et al. (1985) argues that one of the most problematic areas of the mathematics
curriculum involves the solution of word problems. They go on to claim that even though
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students have mastered the technical competencies of doing the mathematical operations
involved in the word problems, they experience considerable difficulty with simple word
problems that require application of those techniques. On the other hand Lewis and Mayer
(1987) also argues that effectively solving a mathematical word problem does not depend
only on the students’ ability to perform the required mathematical operations but the
extent to which students’ are able to accurately understand the text of the word problem
is relevant. Boonen et al. (2016a) also add that effectively solving a mathematical word
problem and the understanding of the text are related in such a way that developing a
deeper understanding of the text of the word problem serves as a crucial step before the
correct mathematical computations can be performed.

Word problems are usually an example of mathematical modelling1. Erling et al. (2016)
argues that it is relevant for students to be aware that word problems are a case of modelling
mathematical ideas. Word problems in the form of mathematical modelling support the
inquiry-based2 activities in the classroom environment. Erling et al. (2016) further points
out that it is important to remind the students that through mathematical modelling is
how a lot of mathematics is used in careers beyond school, to model what happens (or
may happen) in the world so that complex situations can be manipulated more simply
and solutions to problems found. Hernández et al. (2017) on the other hand argues that
students who have engaged in the modelling process appreciate the opportunity to use their
own ideas in creating a mathematical solution to a real-world problem and have experiences
that help them regardless of what college or career path they follow.

In solving algebraic word problems in the area of mathematical modelling, ’understanding’
is very relevant in the whole process of finding a suitable solution. The National Council of
Teachers of Mathematics (2000, p. 20) asserts that students must learn mathematics with
understanding and actively build new knowledge from experience and prior knowledge.
Hence, based on this assumption this current study represents an attempt to investigate
the underlying understanding of students as they solve algebraic word problems in the
area of mathematical modelling. In particular, the study looks at: how students explain
their working processes; the construction of a mathematical model; their computational
activities; and how they interpret their findings.

1Mathematical modelling is defined and explained in Section 3.3.2.
2Inquiry-based learning is defined and explained in Section 3.1.1.
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1.2 Research Question

The purpose of this research study is to address these questions:

1. How do upper secondary students’ justify their strategies for solving algebraic word
problems?

2. How do these students interpret their findings after solving an algebraic word problem
in a form of mathematical modelling?

The first question seeks how the students justify the known techniques they use in their
working processes and also to find the specific errors made by the students and the con-
ceptions they have in making such errors. These errors are generally seen in the process of
comprehending word problems, translating word problems into equations, and the transfer3

of solving word problems. The two main questions one could ask from the first research
question is:

• What is a strategy?

• How do students justify their strategies?

Strategy in the first research question is explained as a plan of action designed by the
students to achieve the desired solution of an algebraic word problem. In this regard, the
students particularly transform the algebraic word problem into a linear equation or a
simultaneous set of two linear equations and then use addition/elimination or substitution
method to solve it. The justification of students’ strategies is about how they mathema-
tize the algebraic word problems. For a student to justify his/her strategy for solving an
algebraic word problem, the student go through the process of mathematizing the word
problem as they use a known technique to solve the equation derived from the word prob-
lem. Mathematizing an algebraic word problem usually involves: Understanding the word
problem; Devising a plan (that is translate the problem using variables and setting up an
algebraic equation); Carrying out the plan (that is solving the equation using a known
technique); Looking back; and Presenting the final answer.

The second question on the other hand, seeks how the students interpret their findings. An
interpretation of their findings may depend on: the initial understanding of the problem;
the construction of a mathematical model; the actual computational activities; and the
evaluation of the outcome of these computations. The question also seeks how the students

3Transfer in solving algebraic word problems is defined and explained in Section 3.3.1
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use the various mathematical representations4 in constructing a mathematical model and
also interpreting their findings. On the whole, these research questions tries to find out
whether the students have conceptual5 understanding (based on reasoning, interpretation
and also using different representations for clarity) or procedural understanding (usually
following set of rules without knowing why).

1.3 Significance of the Study

This study is significant for the reason that it has the potential to contribute to the lit-
erature on the issues that characterizes students’ solutions of algebraic word problems in
the area of mathematical modelling. I also hope that the outcome of this study could
help in suggesting some ways teachers could adapt in helping students develop conceptual
understanding in their problem solving processes.

Research on algebraic word problems in the area of mathematical modelling, particularly
in the Norwegian context, is sparse and quiet limited. Stillman (2007) argues that in some
European countries, there is a strong bias against mathematical modelling in the upper
secondary level. Artaud (2007) also argues that if mathematical modelling is added to
the ordinary didactical system, then the teaching process must be accorded extra time.
He further points out that it will be difficult to obtain this (the inclusion of mathematical
modelling in the ordinary didactical system) in the general teaching system and also argues
that based on its limitations, it is usually provided for students who are supposed to need
it, for instance engineering students and among others. Nevertheless, Erling et al. (2016)
argues that mathematical modelling is the means by which much of mathematics is used in
careers beyond school. Hence the idea of mathematical modelling should not be limited to
some specific students. The pressure of time and the many demands in the daily work of
teachers usually does not help with the introduction of mathematical modelling and also
analyzing students specific errors during the process. Espeland (2017) points out that quiet
often as a teacher she experienced her students making errors, but to find the basis for the
problems students revealed was difficult under pressure of time and the many demands in
the daily work.

The present study tries to address such issues by investigating how upper secondary stu-
dents’ solve algebraic word problems in the area of mathematical modelling based on their

4Mathematical representations is defined and explained in Section 3.3.3
5Conceptual and procedural understanding is defined and explained in Section 3.2
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performance in two different tasks (algebraic word problems and a modelling task). The
students are first given some algebraic word problems (matching four problem categories
described by Caldwell and Goldin (1979, 1987)) to solve and an analysis of their working
processes is made based on how they justify their strategies used in solving the problems.
These problems are not very different from what they usually encounter at school. Sec-
ondly, the student solve a well designed mathematical modelling task that offers a low floor
allowing even low performing student to engage with minimal prerequisite knowledge and
skills, and a high ceiling providing opportunities to explore more complex concepts. I hope
the outcome of the performances of students’ in both tasks will help teachers either to
include more of the modelling task in class activities despite the pressure of time and the
many demands in the daily work or stick to the usual algebraic word problems. Garfunkel
and Montgomery (2016) argues that small modelling activities can be used to reinforce
new concepts and to illustrate their application whilst more extended modelling activities
help students pull together ideas from different parts of a course and from different courses.
Olsen (2006) argues that the Nordic countries have similar achievement profiles in math-
ematics at the level of lower secondary school and, as such, the results of this study may
be relevant for the other Nordic countries as well.

1.4 Motivation for the Study

My personal motivation for the study mainly stems from my past experiences. A course
(MA-424) I took in my first year master program at the University of Agder sparked my
interest in the field of mathematical modelling. In reflecting on a modelling project "Cell
Phone Revolution" I did with a colleague during the first year, it was interesting how we
were able to pull together ideas from the previous mathematics courses and other different
courses we engaged in. As an individual who believes learning is social (that is, it usually
occurs when there is an interaction between students in a particular field of study), I have
the opinion that inquiry-based activities supports learning in the social setting. And that
mathematical modelling activities at one point help students to engage with each other as
they pull together ideas from the previous mathematics courses and other different courses
in finding a suitable model.

While I was deciding what to study for my master thesis, it was not very surprising
that I chose the field of mathematical modelling. Most people with less mathematics
background I usually encounter complain about the difficulty of the mathematics subject
and its unusefulness in their daily activities. In my opinion, if such people have engaged
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in mathematical modelling at one point in time at school, maybe they wouldn’t see it as
uninteresting and also see the importance of it in the real world. The idea of studying
algebraic word problem in the area of mathematical modelling was a suggestion by my
supervisor upon realizing my interest in the field of mathematical modelling. My interest
in mathematical understanding was another motivating factor, that is, I wanted to do
something about students’ understanding as they justify their strategies used in their
solution processes.

A thorough background knowledge was acquired in the process of finding and studying
articles. I was, to some extent, motivated as a results of the literature I read. The reading
of this literature helped me attain a good understanding of the scope of my topic. Some of
the literature I read was not directly of use in the study, however this literature, to some
extent, helped me in developing my research design.

1.5 Structure of the Thesis

This thesis consists of seven chapters. The second chapter following this introduction
chapter presents the education and research setting of the study. This includes a brief
description of the Norwegian education system, mathematics education in Norway and
word problem in the Norwegian mathematics curriculum, as well as the school where the
research took place and the research participants.

The third chapter presents the theoretical underpinnings of the study. The chapter contains
a review of literature and related topics that provide a basis for the whole research study.
This includes a brief description of socio-cultural theory, and continues with mathematical
understanding. A presentation on problem solving which entails algebraic word problem,
mathematical modelling and mathematical representations then follows.

The fourth chapter presents the methodology used in this study. This includes a presen-
tation of the case study strategy, the research design which entails the research method, a
description of the research participants, the specific methods used in the data collection,
the management of the data and the strategy used for the analysis. This chapter also
provides details on the ethical considerations as well as the validity and trustworthiness of
the study.

The fifth chapter includes the data analysis and the main findings. This entails the analysis
of the students’ worksheet together with the interview transcripts. The sixth chapter
presents the discussion of the research findings. The discussion involves the link between
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the researcher’s interpretations and the literature review. The research questions are being
addressed in the discussion chapter. The discussion of this study entails students’ prior
knowledge, types of word problems, the mathematization of word problems, students’
modelling activities, and students’ conceptions on both modelling in school activities and
group work.

The seventh and final chapter presents the summary of results and discussion, followed by
the limitations of the study, an implication of the study for teaching and also suggestions
for further research.
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2 EDUCATION AND RESEARCH SETTING

This chapter presents the education and research setting of the study. The study was
carried through with upper secondary school students in Kristiansand, Norway. Hence,
there is a need to look briefly at the Norwegian educational system in the first section. A
presentation of the Norwegian mathematics education and the algebraic word problem in
the Norwegian mathematics curriculum follows afterwards since it relates the scope of the
research reported in this thesis. The chapter then ends with a description of the school
where the research took place together with the cooperating teacher as well as a description
of the research cohort. All information about the Norwegian education system is strictly
taken from the Norwegian Ministry of Education & Research (2007), Nuffic (2015), and
Onstad and Kaarstein (2015).

2.1 The Norwegian Education System

Norway is a unitary constitutional monarchy with a parliamentary system of government.
The country is divided into 19 provinces, with several hundred municipalities. The Norwe-
gian education system6 is governed by national legislation. The Ministry of Education and
Research (Kunnskapsdepartementet) is responsible for carrying out national educational
policy in all levels of education, including pre-school (for children up to age five). The
Norwegian Parliament (the Storting) and the government is responsible for formulating
education policy, and determines the broad contours of the educational frameworks. Mu-
nicipal and local authorities ensure that the guidelines and outcomes established by the
government are realized. The responsibility for setting up educational programs within
higher education is largely delegated to the higher education institutions themselves, and
responsibility for quality assurance in higher education lies with the Norwegian Agency for
Quality Assurance in Education (NOKUT).

The Norwegian educational system is organized under the levels: primary, lower secondary,
upper secondary and tertiary education (see Figure 1, a general structure of the Norwegian
educational system). Education is compulsory for children aged 6 to 16 and also free. Com-
pulsory education is divided into two main stages: Primary school (grades 1–7) and lower
secondary school (grades 8–10). The subjects of primary and lower secondary education
includes: Norwegian; Mathematics; Social Science; Christianity, Religion and Ethics Edu-

6More information can be found at Onstad and Kaarstein (2015); Norwegian Ministry of Education
& Research (2007); Nuffic (2015); Feagles and Dickey (1994)
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Figure 1: A general structure of the Norwegian educational system (adapted from Norwegian
Ministry of Education & Research 2007, p. 25).

cation (CREE); Arts and Crafts; Natural Science; English; Foreign Languages/Language
In-depth Studies; Food and Health; Music; Physical Education; Student Council Work; and
Optional Program Subject. The upper secondary education is divided into two categories:
vocationally and academically oriented.

2.1.1 Overview of the Norwegian upper secondary school system

Upper secondary education and training comprises all courses leading to qualifications
above the lower secondary level and below the level of higher education. Young people who
have completed primary and lower secondary education, or the equivalent, have a right to
three years’ upper secondary education and training leading either for admission to higher
education, for vocational qualifications or for basic skills. Pupils under the vocational
education and training can achieve the qualifications necessary for admission to universities
and university colleges (university admissions certification) by taking a supplementary
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programme for general university admissions certification.

The education and training normally takes three years, which is divided into three lev-
els: Vg17, Vg2 and Vg3 (in a few cases four years with a Vg4). Vocational education
and training which usually takes place after two years in school and one year in-service
training in an enterprise leads to a craft or journeyman’s certificate. In-service training
at a training establishment is usually combined with one year’s productive work, so that
the apprenticeship takes two years in all, however if it is not possible to provide enough
training places, and county authorities are obliged to offer Vg3 in school, in which case
there is no productive work. General studies on the other hand takes three years which
leads to general university admissions certification. The upper secondary education and
training is organized in twelve different education programs, that are

Programs for General Studies:

• Programme for specialization in general studies

• Programme for sports and physical education

• Programme for music, dance and drama

Vocational Education Programs:

• Programme for building and construction

• Programme for design, arts and crafts

• Programme for electricity and electronics

• Programme for health and social care

• Programme for media and communication

• Programme for agriculture, fishing and forestry

• Programme for restaurant and food processing

• Programme for service and transport

• Programme for technical and industrial production

The pupils are tested on their knowledge throughout the year, and final exams are taken
at the end of each year, however at the end of the third and final year, the pupils take
national examinations in addition to their final school exams.

7Vg1: first year, Vg2: second year, Vg3: third year
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2.2 Mathematics Education in Norway

Mathematics is one of the prominent subject in the Norwegian school curriculum. It is
also one of the core subjects covered on national examinations in the 10th grade. The
mathematics curriculum is organized under subject domains: the domains for Grades 1 to
4 are Numbers, Geometry, Measuring, and Statistics; the domains for Grades 5 to 7 are
Numbers and Algebra, Geometry, Measuring, and Statistics and Probability; the domains
for Grades 8 to 10 are Numbers and Algebra; Geometry; Measuring; Statistics, Probability,
and Combinatorics; and Functions (Onstad and Kaarstein, 2015; Norwegian Ministry of
Education & Research, 2013).

Longitudinal studies such as TIMSS8 and PISA show a setback in mathematical perfor-
mance among students in both lower and upper secondary school, and particularly in the
topics of number and algebra (Lie et al., 1997; Grønmo et al., 2004; Kjærnsli et al., 2004,
2007; Grønmo and Onstad, 2009; Grønmo et al., 2010, 2012). Espeland (2017) argues
that the Norwegian results from the various comparative studies are generally considered
unsatisfactory and have stimulated much debate in Norway.

2.2.1 Mathematics education at the upper secondary school

Mathematics is a common core subject for all the education programs in upper secondary
education, however it is not compulsory after the first year in upper secondary school. In
the first year (Vg1), there are two subject cirrula namely 1T, which is more theoretical,
and 1P, which is more practical. Both variants qualify candidates for higher education
together with either the common core programme subject Mathematics at level Vg2 (2P)
or the programme subject Mathematics (R1/S1). The pupils taking the vocational subjects
have their Vg1 curriculum in 1P or 1T, which is 1P-Y or 1T-Y (see Table 1 for an overview
of the main subject areas at the Vg1 level).

2.2.2 IT Mathematics

Theoretical mathematics (1T) is taken by students under the vocational education pro-
gramme and the education programme for general studies. According to the Norwegian

8TIMSS-Trends in International Mathematics and Science Study and PISA-Programme for Interna-
tional Students Assessment, are internationally standardized assessment which allows participating nations
to compare students’ educational achievement across borders.
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Year level
Main
subject
areas

1T
Numbers

and algebra
in practice

Geometry Probability Functions

1P
Numbers

and algebra
in practice

Geometry Probability Functions Economics

1T-Y
Numbers

and algebra
in practice

Geometry Functions

1P-Y
Numbers

and algebra
in practice

Geometry Economics

Table 1: Overview of the main subject areas (Norwegian Ministry of Education & Research,
2013, p. 3).

Ministry of Education & Research (2013), a solid competence in mathematics involves
using problem-solving techniques and modelling to analyze and transform a problem into
mathematics form and then solve the problem and evaluate the validity of the solution.
Some competence aims after both 1T-Vg1 and 1T-Y-Vg1 programs are listed below (a
detailed information can be found at the Norwegian Ministry of Education & Research
(2013, pp. 10-13)).

• Numbers and algebra in practice: interpret, process and assess the mathematical
content in various texts;convert a practical problem into an equation, an inequality
or an equation system, solve it with and without using digital tools, present and
provide rationale for the chosen solution and assess the validity of the solution.

• Geometry: elaborate on the definitions of sine, cosine and tangent and use trigonom-
etry to calculate length, angles and area of triangles; use plane geometry to analyse
and solve composite theoretical and practical problems connected to lengths, angles
and areas.

• Functions: explain the concept of functions and be able to convert between different
representations of functions; make, interpret and explain functions that describe prac-
tical questions, analyse empirical functions and find expressions for an approximate
linear function, with and without using digital tools.
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• Probability: make examples and simulations of random events and explain the con-
cept of probability; calculate probability by counting all favourable and all possible
results based on tables and by systematizing counts using cross tables, Venn diagrams
and the addition rule and the multiplication principle in practical contexts (only in
1T-Vg1).

Appendix C, on page 154, gives a summary of the course content used by the upper
secondary school in which this study was conducted.

2.3 Word Problem in the Norwegian Mathematics Curriculum

In the Norwegian curriculum for the common core subject of mathematics, reading is
among the basic skills. Reading as a basic skill is defined in the curriculum as:

Being able to read in Mathematics involves understanding and using symbolic lan-
guage and forms of expression to create meaning from texts in day-to-day life, working
life and from mathematics texts. The subject matter of Mathematics is characterised
by complex texts that may include mathematical expressions, graphs, tables, symbols,
formulas and logical reasoning. Reading in Mathematics involves sorting through in-
formation, analysing and evaluating form and content, and summarising information
from different elements in the texts. The development of reading in Mathematics
begins with finding and using information in the texts by means of simple symbolic
language and moves toward finding meaning and reflecting on complex professional
and technical literature with advanced symbolic language and concepts (Norwegian
Ministry of Education & Research, 2013, p. 5).

Word problems runs through the curriculum from grade 1 to the upper secondary level
and, of course, being able to read in mathematics is important in dealing with word prob-
lems. Opsal and Tonheim (2018) argues by citing Nortvedt9 that, there is a strong positive
correlation between numeracy and reading comprehension. Word problems usually falls
under the topic number and algebra, and the TIMSS report shows a setback in mathemat-
ical performance among Norwegian students, mostly in the topics of number and algebra.
Morales et al. (1985) argues that one of the most problematic areas of the mathematics
curriculum involves the solution of word problems.

Pedersen (2015) argues that analyses have revealed that the Norwegian curriculum for

9She studied on how 8th grade students in Norway responded on a multistep arithmetic word problem
in the national test in numeracy and compared the results with students respond in the national test in
reading comprehension (Nortvedt, 2010).
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upper secondary school mathematics places a greater emphasis on applying procedures
and methods. And that, to a far lesser extent, the curricular objectives describe activities
such as analyzing, investigating, assessing, discussing, proving, modeling, and generalizing.
This does not give students much opportunity to develop their own methods in problem
solving as they use their prior knowledge to investigate some problems. Pedersen (2015)
again argues that Norwegian upper secondary school students’ tend to perform weakly
on items that place high demands on symbol manipulation. The Norwegian Ministry of
Education and Research has currently decided on the core elements of each subject (see
the link10), where the core elements of mathematics are: exploration and problem solving;
modelling and applications; reasoning and argumentation; representation and communi-
cation; abstraction and generalization; Mathematical knowledge areas. The change in the
curricular permits students to work more with methods and ways of thinking so that they
gain a greater understanding of the mathematics subject. Also, numbers and numerical
understanding are the foundation in what students will master during elementary school.
Further, personal finance, measurement and statistics are important areas where figures
are used in realistic contexts, whilst programming and algorithmic thinking will be part of
the mathematics subject.

In this present study, students are given an open algebraic word problem task (modelling
task), which has two sets of linear equations where one of the equations has a third variable,
that demands the manipulation in finding the break-even point (the point at which the two
linear equations are equal) of the two equations. The students performance in this task is
compared to their performance in the algebraic word problem tasks they solve involving
the use of known techniques such as additions/elimination or substitution method.

2.3.1 Mathematical modelling at the upper secondary school

According to Antonius (2004) "the Norwegian curriculum does not use the term modelling
explicitly but it says that students should work with problems in a realistic context". He
further points out that modelling in the Swedish and the Norwegian curriculum for upper
secondary is explicitly connected to information technology, that is the appropriate use of
graphic calculators and computers by students in the modelling process.

Stillman (2007) argues that at the upper secondary level, particularly in some European
countries, there is a strong bias against mathematical modelling and greater attention is

10https://www.regjeringen.no/no/aktuelt/fornyer-innholdet-i-skolen/id2606028/?expand=factbox2606064
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given to high level mathematics (theorems, proofs, formulas, and among others). Artaud
(2007) also points out that the teaching process must be accorded extra time if mathe-
matical modelling is added to the ordinary didactical system. Antonius (2004), on the
other hand, argues that it is still hard to find time for modelling activities which are time
consuming to a very high degree in the Nordic context. He further points out that one
major challenge of mathematical modelling in this level is the unfamiliarity of students’
and teachers’ new roles, where students have to make their own choices and argue for
those choices whilst the teachers role is to be a guide and not the person with the correct
answer. The Norwegian Ministry of Education and Research has currently decided on new
core elements for mathematics, which give room for modelling and applications. However,
the final part of the new curriculum is yet to be formally approved (will take into effect in
the autumn 2020, see the link11).

2.4 School and Cooperating Teacher

This study was conducted at Kristiansand Katedralskole Gimle12 (KKG), which is an upper
secondary school located in Kristiansand. The school has over 1,400 students divided into
education programs for study specialization, sports subjects, service; transport; health;
and youth education, IB Diploma programs, work life training, everyday life training and
courses for adults. KKG is a modern school with contemporary classrooms and laborato-
ries, and also the teachers are academically updated and participate in collaboration with
the University and other upper secondary schools both in Norway and abroad.

The school was chosen by the researcher for two reasons. First, the researcher has little
knowledge in Norwegian and KKG is a public school that have some of it courses taught in
English (especially the 1T mathematics). A public school will give a good representation of
the general mathematics setting of Norway. Secondly, the researcher already had contacts
with the mathematics teacher of the 1T mathematics class through the Mathematical
Sciences Department of the University of Agder. Further, the teacher cooperated with the
researcher due to the teacher’s interest in educational research and was also interested in
this study.

11https://www.regjeringen.no/no/aktuelt/fornyer-innholdet-i-skolen/id2606028/?expand=factbox2606064
12Southern Norway’s oldest and largest high school. Detailed information can be found in the school’s

website http://kkg.vgs.no/

http://kkg.vgs.no/
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2.4.1 Research cohort

The students were in their first year and first semester at the upper secondary school.
The number of students was 23, including 17 females and 6 males aged between 14-16.
The students are categorized in three different levels based at their performance at the
lower secondary level: high-performing students; medium-performing students; and low-
performing students. Based on this categories the teacher formed 7 groups with an average
of 3-4 students per each group and that every group have a mixture of the three categories.
During every mathematics class the students work together in this groups created by the
teacher. The students had their 1T mathematics lessons in English as a results of their
interest in taking the IB Diploma program the following year. For this reason some of the
classroom activities are in relation to the settings in the IB Diploma program. The cohort
was chosen because of the acquaintance of the researcher with their mathematics teacher
as mentioned in the previous section.

2.4.1.1 IB Diploma program .

According to the International Baccalaureate Organization (2014), the IB Diploma Pro-
gramme is a rigorous, academically challenging and balanced programme of education
designed to prepare students aged 16 to 19 for success at university and life beyond. The
IB Diploma Programme higher level mathematics course focuses on developing important
mathematical concepts in a comprehensible, coherent and rigorous way, achieved by a care-
fully balanced approach. Students are expected to reason or give a justification and proof
of results in the development of each topic.

Students who follow the mathematics higher level course of the IB programme are expected
to demonstrate the following; knowledge and understanding, problem-solving, communi-
cation and interpretation, technology, reasoning and inquiry approaches. The assessment
model described by the International Baccalaureate Organization (2014), to some extent,
helps students to develop a good understanding of the subject if the model is effectively
put into practice. Saxton and Hill (2014) argues that IB students usually engage in critical
thinking, seeking out primary sources and continually questioning and challenging. They
further point out that students under the program perform at a high level at the university
and also go off into the world with skills and knowledge.

The next chapter presents the theoretical framework for this study.



18 2.4 School and Cooperating Teacher



19

3 THEORETICAL FRAMEWORK

This chapter provides a theoretical base for the present study, that is, a theoretical back-
ground is presented from the most general to the most specific issues. First, the socio-
cultural theory which constitutes a general perspective is discussed. Then, in view of
assessing students’ understanding in relation to the justification of their solution strate-
gies, the meaning of (mathematical) understanding is presented. A presentation of relevant
literature on problem solving within the study is presented at the end. This section also
entails a discussion on algebraic word problems, mathematical modelling and mathematical
representations.

3.1 Social Perspective

This study is underpinned by a perspective based on the socio-cultural theory. There
are many things that individuals can do on their own initiative or alone, however we can
not specifically point out that learning is a lonely act of an individual, even when it is
undertaken alone. Scott and Palincsar (2013) argues that

The work of socio-cultural theory is to explain how individual mental functioning is re-
lated to cultural, institutional, and historical context; hence, the focus of socio-cultural
perspective is on the roles that participation in social interactions and culturally or-
ganized activities play in influencing psychological development. (p. 1)

Learning occurs when there is an interaction between students in a particular field of study,
that is there is an exchange of ideas and the individual in this setting tends to make the
practices and ideas of others their own. Wells (1999) argues that the process of appropri-
ation (of making practices and ideas our own) does not involve transfer from outside, but
the gradual construction on the part of the learner of actions equivalent to those mani-
fested in the verbal and other behavior of others and an increasing ability to carry them
out independently. Säljö (2000) on the other hand also argues that, appropriation is the
knowledge from our fellow human beings in situations of interaction.

Cooperative learning13 is an essential asset in inquiry learning. Gillies (2016) describes
cooperative learning as a pedagogical practice that encourage socialization and learning
among students from pre-school through to tertiary level and also across different sub-
ject domains. Working in groups not only provides students the opportunity to share

13An educational approach which aims to organize classroom activities into academic and social learning
experiences.
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with one another their ideas and opinions but also helps in individual cognitive develop-
ment. Students feel more comfortable in a cooperative learning environment and by this
motivation they turn to ask questions and also express their ideas. Gillies (2016) again
points out that, in cooperative learning students work together to achieve common goals
or complete group tasks, that’s goals and tasks that they would be unable to complete
by themselves. Nuangchalerm and Thammasena (2009) on the other hand argues that,
the inquiry-based learning14 activities promotes cognitive and analytical thinking develop-
ments and also learning satisfaction of the participants in their research responded at high
level. They also suggested that teachers should play varied roles in supporting students’
development of inquiry skills. Despite the importance of cooperative learning, it also has
some limitations that could cause the process to be more complicated than first perceived.
Sharan (2010) describes the constant evolution of cooperative learning as a threat and
also shed light on some of the challenges that are often encountered in the process. Sharan
(2010) also argues that, teachers implementing cooperative learning may also be challenged
with resistance and hostility from students who believe that they are being held back by
their slower teammates or by students who are less confident and feel that they are being
ignored or demeaned by their team.

3.1.1 Inquiry-based learning

Saragih and Napitupulu (2015) argues that, the lack of teachers’ attention on the inde-
pendence of students’ thinking builds student’s logical thinking in a mode of remembering
mathematical concepts and procedures in order to answer questions. In this approach stu-
dents do not usually have other alternate thinking in responding to questions and when
difficulties emerge, the students do not have another grip as guidance. They further empha-
size that most teachers teach mathematics by explaining the concepts and mathematical
operation, give examples to answer questions, a little bit debriefing, and then the session
continues with students being asked to answer similar questions with what the teacher has
explained. The learning of mathematics in such a condition is highly procedural and not
well adapted to using and applying mathematics in science and engineering and the wider
world. In my experience (from the lower grades to the initial stages of my tertiary edu-
cation in Ghana), the mathematics classroom environment is usually ordered and orderly
to the extent that one can observe a quiet and calm mathematics classroom with students
sitting in rows or small groups, usually watching the chalkboard or working through ex-

14Inquiry-based learning is defined and explained in section 3.1.1.
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ercises. This kind of traditional setting in the mathematics classroom environment does
not usually help in bridging the divide between real life and the mathematics classroom.
The inquiry-based learning activities has the capabilities of bridging this divide although
it may have some challenges.

Inquiry-based learning (IBL) is a student centered pedagogy (learners being active). Bruner
(1961) defines it as a pedagogical method developed (during the discovery learning move-
ment of the 1960’s) as a counter response to traditional forms of instruction, where people
were required to memorize information from instructional materials. Linn et al. (2004,
p. 4) defines inquiry as "the intentional process of diagnosing problems, critiquing experi-
ments, distinguishing alternatives, planning investigations, researching conjectures, search-
ing for information, constructing models, debating with peers, and forming coherent argu-
ments". An aspect of their definition which is of interest is ’debating peers and forming
coherent arguments’. This is observed in the current study where students work on specific
tasks in groups and also justify their strategies at the end. Artigue and Blomhøj (2013,
p. 797) on the other hand defines inquiry-based pedagogy loosely "as a way of teaching in
which students are invited to work in ways similar to how mathematicians and scientists
work".

Nardi and Steward (2003) in their engagement with some students at the secondary level
found out that, several of the students under the study have the desire or wish to enjoy
mathematics but instead see it as boring due to the use of route learning (rule-and-cue
following) teaching method. Boaler (1998) on the other hand argues that, students who
learned mathematics in an open, project-based environment (inquiry-based learning) de-
veloped a conceptual understanding that provided them with advantages in a range of
assessments and situations whereas students who followed a traditional approach devel-
oped a procedural knowledge which is of limited use to them in unfamiliar situations. She
also emphasize that students under the project-based environment are being apprenticed
into a system of thinking and using mathematics that will help them in both school and
non-school settings. Inquiry-based learning have some challenges despite it’s importance
of bridging the divide between real life and the mathematics classroom. Bell et al. (2010)
argues that inquiry-based learning takes a lot of planning before its implementation and
also providing learners with exactly the support they need (that’s the balance between
open-ended exploration and the guidance for individual learners) is sometimes very chal-
lenging.
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3.2 Understanding

The National Council of Teachers of Mathematics (2000, p. 20) asserted that students
must learn mathematics with understanding and actively build new knowledge from expe-
rience and previous knowledge. They again argue that, the vision of school mathematics is
based on students’ learning mathematics with understanding but unfortunately, learning
mathematics without understanding has long been a common outcome of school mathe-
matics instruction. In this present study of how upper secondary school students solve
algebraic word problems in the area of mathematical modelling, the understanding of stu-
dents’ is measured based on their justification of strategies used in the problem solving,
the interpretation of their findings, and the use of different representations in explaining
their findings.

Skemp (1976) compared between two forms of understanding in the context of instrumental
understanding and relational understanding. He argues that the instrumental understand-
ing consists of the learning of an increasing number of fixed plans, by which students can
find their way from particular starting points to required finishing points. Thus follow-
ing set of rules without actual meaning or learning through rote memorization and drill.
On the other hand, he argues that the relational understanding consists of building up a
conceptual structure from which its possessor can produce an unlimited number of plans
for getting from any starting point within his/her schema to any finishing point. That
is the relational understanding requires conceptual connections and explaining why the
rules work. Skemp also talked about some advantages of these two kinds of understanding.
Pointing out that, within a limited context the instrumental understanding can be bene-
ficial for a short-term learning, whereas in a broader context the relational understanding
is beneficial for long-term learning. In effect, Skemp placed relational and instrumental
understanding as two extremes separate from each other.

Hiebert and Carpenter (1992) on the hand presented a different perspective from that of
Skemp. Hiebert and Carpenter (1992) describes understanding based on mental connec-
tions;

A mathematical idea or procedure or fact is understood if it is part of an internal
network. More specifically, the mathematics is understood if its mental representation
is part of a network of representations. The degree of understanding is determined
by the number and the strength of the connections. A mathematical idea, procedure,
or fact is understood thoroughly if it is linked to existing networks with stronger or
more numerous connections. (p. 67)
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In their view, understanding applies to both procedure and relational aspects. That is,
from Skemp’s point of view, instrumental understanding entails procedures without con-
nections however, in Hiebert and Carpenter’s view the understanding of procedures also
requires connections in the internal network as well. Van de Walle et al. (2007) also defines
mathematical understanding based on connections. They define understanding as "a mea-
sure of the quality and quantity of connections that an idea has with existing ideas" (p.
23). The terms quality and quantity here are used in a similar way to the terms strength
and number in Hiebert and Carpenter’s explanation. Nevertheless, this views points out
that understanding is not of two extreme kinds of either relational or instrumental but a
combined issue. Van de Walle et al. (2007) further describes understanding as a model
that "exists along a continuum from a relational understanding—knowing what to do and
why—to an instrumental understanding—doing without understanding" (p. 23). They
also placed understanding of mathematics into the categories of conceptual and procedural
understanding.

Conceptual understanding consists of relationships constructed internally and connected
to already existing ideas. In this category students are able to find or identify connections
among mathematical concepts, that is procedures, semantic features, vocabulary, ideas,
among others are all connected. In contrast, procedural understanding is task-oriented
knowledge which may or may not be connected to conceptual understanding. This category
too often devolves into rote memorization, rules without understanding, and often leads to
frustration when not connected with concepts. Van de Walle et al. again points out that,
a struggling learner might identify symbols and might manipulate algorithms (procedural
knowledge) without a deep enough understanding of how ideas (conceptual knowledge) are
connected to what the child already knows.

National Research Council (2001), presents a comprehensive work combining different as-
pects related to understanding. They define five components or strands of mathematical
proficiency:

1. conceptual understanding—comprehension of mathematical concepts, operations, and
relations

2. procedural fluency—skill in carrying out procedures flexibly, accurately, efficiently,
and appropriately

3. strategic competence—ability to formulate, represent, and solve mathematical prob-
lems
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4. adaptive reasoning—capacity for logical thought, reflection, explanation, and justifi-
cation

5. productive disposition—habitual inclination to see mathematics as sensible, useful,
and worthwhile, coupled with a belief in diligence and one’s own efficacy (p. 116).

They also argue that these five strands are interwoven and interdependent in the devel-
opment of proficiency in mathematics. (Skemp, 1976) argues that learning mathematics
with understanding is much relevant and that it makes it easier for students to remember
things more easily. Van de Walle et al. (2007) on the other hand argues that there is less to
remember if someone understands a mathematical idea. Hiebert and Wearne (2003) also
argues that understanding can provide students with the idea that mathematics is useful.

Understanding in this study will be based on the connections among mathematical ideas,
concepts and procedures. In particular, understanding based on connections during the
process of problem solving; the initial understanding of the problem, the construction of
a mathematical model, the actual computational activities, and the interpretation and
evaluation of the outcome of these computations.

3.3 Problem Solving

Mathematics education aims to equip children or students to solve problems (problems in
relation to school, work and life). In order to meet new challenges in work, school, and
life, students will have to adapt and extend whatever mathematics they know, and doing
so effectively lies at the heart of problem solving.

The National Council of Teachers of Mathematics (2000) explains that problem solving is
the process of engaging in a task for which the solution method is not known in advance
and in order to find a solution, students must draw on their knowledge, and through this
process, they will often develop new mathematical understanding. They further claim that
without the ability to solve problems, the usefulness and power of mathematical ideas,
knowledge, and skills are severely limited. For example students who can efficiently and
accurately solve a simple linear equation but who cannot identify situations that call for
the use of linear equation are not well prepared. On the other hand, they argue that
students who can both develop and carry out a plan to solve a mathematical problem
are exhibiting knowledge that is much deeper and more useful than simply carrying out
a computation. That is the facts, concepts, and procedures students know are of little
use unless they can solve problems by applying what they know. The National Council
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of Teachers of Mathematics again argues that since problem solving is an integral part of
all mathematics learning, it should not be an isolated part of the mathematics program.
However, the instructional programs in all the levels of mathematics education should
enable all students to:

• build new mathematical knowledge through problem solving;

• solve problems that arise in mathematics and in other contexts;

• apply and adapt a variety of appropriate strategies to solve problems;

• monitor and reflect on the process of mathematical problem solving (pp. 52-55).

Schroeder and Lester (1989) studied approaches to teaching problem solving found in school
mathematics curricula since the early 1980s. They argue that problem solving serves as
a way for learning new mathematical ideas and skills and the most important role for
problem solving is to develop students’ understanding of mathematics. They identify three
approaches to problem solving instruction: teaching about problem solving, teaching for
problem solving, and teaching via problem solving.

• Teaching about problem solving—In this approach, the component parts of the pro-
cess of problem solving can be taught and learned separately (that is, students are
taught a number of strategies from which they can choose or which they should use
in devising and carrying out their problem-solving plans). However, the component
parts can be combined for students to solve real problems after they learn the parts.
Some strategies that are typically taught includes looking for patterns, solving a sim-
pler problem, and working backward. Teaching about problem solving also involves
a great deal of explicit discussion of, and teaching about, how problems are solved.
Hembree and Marsh (1993) also found that problem solving practice without direct
instruction on strategies did not produce improvement.

• Teaching for problem solving—In this approach, the teacher concentrates on ways in
which the mathematics being taught can be applied in the solution of both routine
and non-routine problems (that is, teachers must be very concerned about students’
ability to transfer what they have learned from one problem context to others).
Students in this context are given real-world problems that can be solved using a
newly developed skill. A typical challenge in this process is about how students
are able to translate the real-world situation into a representation, for example, an
equation that can be solved to answer the question in the problem.
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• Teaching via problem solving—In this approach, the problems are valued not only as
a purpose of learning mathematics but also as a primary means of doing so. Grouws
and Cebulla (2000) found that students are able to learn new skills and concepts while
they are solving challenging problems, and it is not necessary for teachers to focus
first on skill development and then move on to problem solving (both can be done
together). Schroeder and Lester (1989) claims that the goal of learning mathematics
at this point is to transform certain non-routine problems into routine ones, that is,
the learning of mathematics can be viewed as a movement from the concrete15 to the
abstract16 (pp. 32-33).

Schroeder and Lester (1989) again propose two models of the process of solving mathemat-
ics problems, that is, models suitable for routine and non-routine problems respectively.

Figure 2: A simplistic model of the process of solving mathematics problems (Schroeder and
Lester, 1989, p. 35).

They argue that the process of the model in Figure 2 begins with a problem posed in
terms of the everyday physical reality, the problem solver first translates (arrow A) the
problem into abstract mathematical terms, then operates (arrow B) on the mathematical
representation to come to a mathematical solution of the problem, which is then translated
back (arrow C) into the terms of the original problem. They point out that by the model
in Figure 2, mathematics can be, and often is, learned separately from its applications.
However, the difficulty with this proposed model is that it applies to routine problems
better than to non-routine ones.

They again argue that for more challenging problems (process problems), the problem
solver has no single already learned mathematical operation that will solve the problem.
However, a non-routine problems demand usually more complex processes, such as planing,

15A real-world problem that serves as an instance of the mathematical concept or technique
16A symbolic representation of a class of problems and techniques for operating with these symbols
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selecting a strategy, identifying sub-goals, conjecturing, and verifying that a solution has
been found. In Figure 3, the Y arrows that points upwards indicates that the problem
solver is learning to make abstract written records of the actions that are understood
in a concrete setting, whereas the arrows pointing downward might also suggest that a
problem solver who had forgotten the details of a mathematical procedure would be able
to reconstruct that process by imaging the corresponding concrete steps in the world in
which the problem was posed. They also point out that the collection of Y arrows in Figure
3 illustrate the correspondence between the process of solving the problem in concrete terms
(labeled X) and the parallel, abstract mathematical process (labeled X’). In a nut shell, a
problem solver can typically move back and forth between the two worlds—the real and
the mathematical—as the need arises (pp. 35-36).

Figure 3: A model of the process of solving process problems (Schroeder and Lester, 1989, p.
36).

Schroeder and Lester (1989) asserted that the primary reason for school mathematics in-
struction is to help students understand mathematical concepts, processes, and techniques.
They also believe that understanding should be the focus and goal of mathematics instruc-
tion, teachers, textbooks authors, curriculum developers, and evaluators instead of making
problem solving the focus. On the other hand Hiebert et al. (1997) also believe that, if we
want students to understand mathematics, it is more helpful to think of understanding as
something that results from solving problems, rather than something we can teach directly.

Polya (2004) describes mathematical problem solving as finding a way around a difficulty
or obstacle, and finding a solution to a problem that is unknown. He studied more on
problem solving skills/strategies and articulated a problem solving process as one involving
this series of phases which is interdependent: Understanding the problem, Devising a plan,
Carrying out the plan, and Looking back.

• Understanding the problem—The student should understand the problem and also
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desire its solution. The problem however should be well chosen, that is, not too
difficult and not too easy but natural and interesting. The verbal statement of the
problem must be understood and in this context the student should be able to point
out the principal parts of the problem, the unknown, the data and the conditions
available.

• Devising a plan—One has a plan when he/she knows, or know at least in outline,
which calculations, computations, or constructions he/she has to perform in order to
obtain the unknown. Devising a plan is the process in which one finds the connection
between the data and the unknown. In conceiving the idea of a plan, the idea may
emerge gradually or after apparently unsuccessful trials and a period of hesitation,
it may occur suddenly, in a flash, as a ’bright idea’. It is hard to have a good idea if
a person has little knowledge of the subject, and impossible to have it if one has no
knowledge. However, good ideas are based on past experience and formerly acquired
knowledge.

• Carrying out the plan—Carrying out the plan is much easier than devising a plan
and conceiving the idea of the solution which usually involves formerly acquired
knowledge, good mental habits and concentration upon the purpose. The main point
here is that the student should be honestly convinced of the correctness of each step.

• Looking back—Most students miss an important and instructive phase of their work
due to the fact that, when they obtained the solution of the problem and written
down the argument neatly, they intend shut their books and look for something else.
Students could consolidate their knowledge and develop their ability to solve problems
by looking back at the completed solution, by reconsidering and reexamining the
results and the path that led to it. A student should however have good reasons
to believe that his/her solution is correct. Nevertheless, errors are always possible,
hence verification’s are desirable (pp. 6-19).

Polya also argue and illustrate some set of questions he believed are important and that
teachers need to ask students as they go through the four phases of problem solving. For
example: What is the unknown? What is the data? What is the condition? Have you seen
it before? Do you know a related problem? Can you see clearly that the step is correct?
Can you prove that it is correct? Can you check the results? Can you derive the result
differently? Can you use the result, or the method, for some other problem?
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Mason et al. (2011) also did comprehensive work about the process of tackling a mathe-
matical question. They came up with three phases that an individual goes through when
tackling a mathematical question: the Entry phase, the Attack phase, and the Review
phase. They explained that work in the Entry phase prepares the ground for an effective
attack and it is therefore relevant that adequate time is devoted to it. The Entry phase
is usually about formulating the question precisely and deciding exactly what the indi-
vidual wants to do. On the other hand, one needs to handle the question in two ways:
by absorbing the information given and by finding out what the question is really asking.
Another activity which often takes place during the Entry phase is to make some technical
preparations for the main attack, such as deciding on a notation or a means of recording
the results of specializing17. Mason et al. claims that it is helpful to structure work in
the Entry phase by responding to these three questions: What do I KNOW18? What do I
WANT19? and What can I INTRODUCE20?

They further explain that in the Attack phase several different approaches may be taken
and several plans may be formulated and tried out. The Attack phase involves conjectur-
ing21 and justifying your conjecture. Justifying ones conjecture also involves two different
activities: seeking why—involves getting a sense of some underlying reason for the truth of
your conjecture—and explaining why—involves convincing yourself and, more importantly,
convincing others that you can justify your arguments. One major thing that usually hap-
pens during the Attack phase is STUCK. Everyone gets stuck and this cannot be avoided,
however it is an honourable and positive state, from which much can be learned. Lastly,
the Review phase is the time for looking back at what has happened in order to improve
and extend ones thinking skills, and for trying to set ones resolution in a more general
context. This phase also involves both looking back, to CHECK22 what you have done and
to REFLECT23 on key events, and looking forward to EXTEND24 the processes and the

17Trying some specific cases. By doing examples an individual makes the question meaningful to him-
self/herself and may also begin to see an underlying pattern in all the special cases which will be the clue
to resolving the question completely.

18read the question carefully; specialize to discover what is involved; what ideas/skills/facts seem rele-
vant?; do I know any similar or analogous questions?

19classify and sort information; be alert to ambiguities; specialize to discover what the real question is
20images, diagrams, symbols; representation, notation, organization.
21A conjecture is a statement which appears reasonable, but whose truth has not been established, that

is, it has not been convincingly justified and yet it is not known to be contradicted by any examples nor
is it known to have any consequences which are false.

22calculations; arguments to ensure that computations are appropriate; consequences of conclusions to
see if they are reasonable; that the resolution fits the question.

23on key ideas and moments; on implications of conjectures and arguments; on your resolution: can it
be made clearer?

24the results to a wider context by generalizing; by seeking a new path to the resolution; by altering



30 3.3 Problem Solving

results to a wider context.

3.3.1 Algebraic word problem

Algebraic word problems runs through all levels of mathematics curriculum since it forms
an integral part of mathematics learning. Verschaffel et al. (1994) argues that the impor-
tance of introducing word problems in schools is to train students in applying the formal
mathematical knowledge and skills learned at school, in real-world situations. Verschaf-
fel et al. (2000) define word problems as mathematical exercises that present significant
background information on the problem as text, rather than in the form of mathematical
notation. According to Kieran (2007), word problems requires practice in translating ver-
bal language into algebraic language (mathematical notation). Although the introduction
of word problems can help to bridge the divide between real life and the mathematics
classroom, students’ still encounter some challenges when solving them. Morales et al.
(1985) argues that one of the most problematic areas of the mathematics curriculum in-
volves the solution of word problems. They went on to claim that even though students
have mastered the technical competencies of doing the mathematical operations involved
in the word problems, they experience considerable difficulty with simple word problems
that require application of these techniques.

Newman (1983) analyze errors found when students solve word problems and came up with
these six potential areas of difficulty:

1. Difficulty in reading the text.

2. Difficulty in comprehending the text.

3. Lack of suitable strategies to handle the problem.

4. One may not be able to transform the information in the text into mathematical
forms.

5. Lack of computational skills.

6. One may not be able to use computation results to solve the problems.

These errors can be put into three different context; comprehending word problems, trans-
lating word problems into equations, and the transfer of solving word problems.

some of the constraints.
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Problem Algebraic solution Arithmetic solution

To rent a car from Tiger
costs $100 per day and 20
cents per km. How far can
I drive, if the most I can
afford to pay is $240?

Let x be the number of
kilometres that can be

driven.

0.20x+ 100 = 240

0.20x = 140

x = 140÷ 0.20

= 700

I can drive up to 700km

$240-$100=$140 (money
to spend on kilometre
charge). Cost per km is

$0.20. Number of
kilometres that can be

driven = money available
÷ cost per km = $140 ÷

$0.20 = 700.
I can drive up to 700km

Table 2: A Problem with the Mathematical Structure of a Linear Equation (Stacey and Mac-
Gregor, 1999, p. 27).

Comprehending word problems in written form, an individual needs to be able to read and
understand the text that describes the task (Kyttälä and Björn, 2014). Lewis and Mayer
(1987) argues that effectively solving a mathematical word problem does not depend only
on the students’ ability to perform the required mathematical operations but the extent
to which students’ are able to accurately understand the text of the word problem is
relevant. Boonen et al. (2016a) also added that effectively solving a mathematical word
problem and the understanding of the text are related in such a way that developing
a deeper understanding of the word problem serves as a crucial step before the correct
mathematical computations can be performed.

Roth (1996) in his investigation about the problematic nature of context when students
were tasked to solve contextual word problems found that, students’ find it quite complex
when they move from a text (word problem) to an inscription, such as a data table, graph,
comparison of means, or equation. He then argue that, the required transformation (eg.
from text to equation) can be made when one sees the various inscriptions as mathematical
objects in themselves that can be transformed into one another. Stacey and MacGregor
(1999) on the other hand, argues that learning algebra requires making a sometimes difficult
transition from the way of solving problems in arithmetic to a conceptually new algebraic
way. They further point out that although translating word problems into an equation can
be challenging, but the use of algebraic equations to solve problems about real situations is
important. That is, problems relating to equations with the unknown on only one side (see
Table 2, an example of a problem with both an algebraic and arithmetic solutions)—are
easy to solve without algebra, but others—those relating to equations with the unknown
on both sides—require hard thinking if algebra is not used (p. 28).
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The transfer25 of solving word problem is one of the challenges that students face when
solving problems. Hung (2013, p. 27) defines learning transfer "as applying previously
learned knowledge with various degrees of adaptation or modification of that knowledge
in completing a task or solving problems". Cree and Macaulay (2000, pp. 1-2) on the
other hand defines transfer of learning, in a broad way, "as prior learning affecting new
learning or performance". Fuchs et al. (2004) argues that mathematical problem solving is
a transfer challenge requiring children to develop schemes for recognizing novel problems as
belonging to familiar problem types for which they know solutions. Reed et al. (1985) also
reports that most students are not able to apply the problem solving skills they learned
recently to solve similar algebraic word problems.

Despite the usefulness of transfer of learning, Cree and Macaulay (2000) argues that re-
search to date has not empirically proved or disproved that transfer of learning exists. Lave
and Wenger (1991) on the other hand also provides a critique of ideas of learning transfer
that suggest that the mathematics learned in school is then applied to new situations in
a different context. Monaghan (2014) argues that school mathematics in many instances
is unfitting to out-of-school practices and that in some cases the problems that students
encounter in out-of-school mathematics are only apparently similar to school mathemat-
ics problems and however in reality there is a range of explicit restrictions which makes
school methods unsuitable and thus other methods are used. Lecoutre et al. (2004) also
argues that students have difficulty in transferring knowledge and that transfer occurs
only for the fraction of students who performed correctly on the training problems of the
learning phase. The traditional teaching practice can also be a contributing factor in the
failure of transfer. Hung (2013) argues that the issue of teaching and learning knowledge
in abstract26 forms somehow leads to the cause of students’ failure to apply and transfer
knowledge. The application of knowledge, however, requires more than just acquisition
and comprehension of the knowledge.

Cree and Macaulay (2000) puts transfer into two categories, positive and negative. They
point out that positive transfer occurs if what is learned in one context enhances learning in
a different setting whilst negative transfer occurs if what is learned in one context hinders
or delays learning in a different setting. Schunk (2012) on the other hand lists some types

25Using previously acquired knowledge and problem solving skills or strategies to solve familiar problems
whose context are different from those problems solved before.

26In the classrooms or training settings, the focus of teaching is on the explanations of the concepts,
principles, or theories, followed by demonstrating a few examples of applying the concept or principle
to solve textbook types of problems and also the focus of learning is to memorize the definitions of the
concepts and theories, as well as comprehend them.
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of transfer (for example, near, far, and among others). He argues that in near transfer there
is much overlap between situations (that is, the original and transfer contexts are highly
similar) whilst in far transfer there is little overlap between situations (that is, the original
and transfer contexts are dissimilar). Hung (2013) argues that far transfer presents many
more challenges for students and also "far transfer requires a higher degree of modification
of the original knowledge than near transfer to adapt to the requirements or constraints of
the target learning transfer condition" (p. 29)

Although transfer of learning is a problematic construct, nevertheless this study focuses on
transfer between solved algebraic word problems and new algebraic word problems with
similar/different story context and similar/different equations. Reed (1998) gives four main
categories of transfer which constitute the transfer of what an individual has learned about
solving a word problem to other related word problems. In each category, one can observe
a possible relation between an example problem during school practice and a test problem,
and the idea underneath is whether the example problem and the test problem share a
common story context and whether they share a common solution procedure (a common
equation). The categories are:

• Equivalent problems—common story context and common solution procedure (sim-
ilar context and similar equation).

• Similar problems—common story but different solutions (similar context and different
equation).

• Isomorphic problems—different story context but a common solution (different con-
text and similar equation).

• Unrelated problems—which share neither story context nor a common solution (dif-
ferent context and different equation).

The following algebraic word problems illustrates the relation between an algebraic word
problem and its corresponding equivalent, similar, isomorphic, and unrelated problem.
Algebraic word problem:

The Kristiansand zoo and amusement park sells two kinds of tickets. Tickets
for children cost 15kr. Adult tickets cost 40kr. On a certain day, 278 people
entered the park. On that same day the admission fees collected totaled 7,920kr.
How many children were admitted on that day? (adapted from Kushman et al.,
2014, p. 271).
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Equations:

x+ y = 278

15x+ 40y = 7920

Equivalent problem:

The restaurant near the Kristiansand zoo and amusement park have two differ-
ent prices for their services. A meal for children cost 150kr and that of adults
cost 400kr. On a certain day, 278 people entered the restaurant. On that same
day the money received at the restaurant totaled 79,200kr. How many children
were in the restaurant on that day?

Equations:

x+ y = 278

150x+ 400y = 79200

Similar problem:

The restaurant near the Kristiansand zoo and amusement park have two differ-
ent prices for their services. A meal for children cost 150kr and that of adults
cost 400kr. On a certain day, 560 people entered the restaurant but 282 of them
went out because there was no table for them. On that same day the money
received at the restaurant totaled 79,200kr. How many children were in the
restaurant on that day?

Equations:

x+ y = 560− 282

150x+ 400y = 79200

Isomorphic problem:

Three rulers and two pens cost 375kr. One ruler and one pen cost 143kr. Find
the cost of one ruler?
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Equations:

x+ y = 143

3x+ 2y = 375

Unrelated problem:

Currently the subscription to a gym for a single member is 1000kr annually while
family membership is 1500kr. The gym is considering raising all membership
fees by same amount. If this is done then the single membership will cost 5

7
of

the family membership. Determine the proposed increase?

Equation:

1000 + x =
5

7
(1500 + x)

Perkins et al. (1992) argues that near transfer is a transfer between very similar contexts
(for instance when students in the process of taking an exam face a mix of problems of
the same kinds that they have practiced separately in their homework) whilst far transfer
refers to transfer between contexts that, on appearance, seem remote and alien to one
another. However, taking into account context only regardless of the equation involve,
then the equivalent and similar problems can be categorized as near transfer and also the
isomorphic and unrelated problem can be categorized as far transfer. The difference or
change of equation does not affect the classification of near (analogous) or far transfer
(Catrambone and Holyoak, 1989; Reed et al., 1985; Gick and Holyoak, 1983, 1987). Reed
(1998) argues that the transfer to isomorphic problems is a complex and difficult process
and that it takes place under certain experimental circumstances and also after students
have been involved in well designed forms of training. He also points out that in similar
problems, students sometimes find it difficult to adapt solutions and often rely too much
on the example solution failing to make the necessary adjustments.

The algebraic word problem tasks given to the students in this study are isomorphic to the
word problems they usually solve at school. It has a different story context but a common
solution (similar equation). The students have some specific techniques they use in solving
algebraic word problems that involves simultaneous sets of two linear equations or linear
systems with two variables, and that, the choice of the tasks used in the study will reveal



36 3.3 Problem Solving

the kind of technique(s) the students revert to if their usual technique fails. The transfer
of problem solving between the word problems the student solve at school and the tasks
they solve in this study will also reveal the specific errors made by the students, although
the students have learned some specific technique(s) of doing the mathematical operations
involved in the word problem.

3.3.1.1 Categories of word problems .

Word problems can be put into two main categories; routine and non-routine problems (eg.
see Table 3, an example of routine and non-routine problems). Routine problems usually
involves finding a solution to word problems through a straightforward translation of the
problem text into a mathematical model without the need for developing a conceptual
understanding of the word problem context. It also involves the use of at least one of the
four arithmetic operations and/or ratio when solving the problem. On the other hand, non-
routine problem solution usually requires students to develop an adequate understanding
of the situation described in the word problem text before deriving a mathematical model.
This to some extent makes the solution process more complex and however, it appears to
be more difficult than routine word problems (Elia et al., 2009; Boonen et al., 2016b).

Berry et al. (1999, p. 105) on the other hand views routine problems as problems "for
which students may be expected to execute a rehearsed procedure consisting of a limited
number of steps". They also argue that routineness is located in a question and by their
analysis, students score substantially more marks on what they designate as routine parts
of the questions given to students. Boaler (1997) also divides problems into the categories
procedural and conceptual, which Berry et al. (1999) views as a form of the routine/non-
routine division. Boaler (1997, p. 77) defines procedural problem as "those questions
that could be answered by a simplistic rehearsal of a rule, method or formula". That
is, these problems do not require a great deal of thought if the correct rule/method had
already been learned. An example of procedural problems would be: "Calculate the mean
of a set of numbers". If students had learned the method used in calculating the mean,
then they do not have to decide upon a method to use. They again view conceptual
problems, in contraposition, as problems for which "the use of some thought and rules
or methods committed to memory in lessons would not be of great help in this type of
question". An example of conceptual problems would be: "A shape is made up of four
rectangles, it has an area of 220cm2. Write, in terms of x, the area of one of the rectangles
(a diagram was given)". In a nutshell, if a problem could be answered from memory alone,
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Type Word Problem

Routine

Andreas has 8 pairs of socks and
Kristoffer has 7 pairs of socks more. How
many pairs of socks does Kristoffer have?

(correct answer: 15).

Non-routine

Two pens and three rulers cost 139kr.
One ruler and one pen cost 54kr. Find

the cost of one ruler and one pen.
(correct answer: One ruler cost 31kr and

one pen cost 23kr).

Table 3: An example of routine and non-routine problems.

it is procedural; if is also, or instead, requires thought then it’s conceptual. Boaler (1997)
argues that conceptual problems are more difficult (for students) than procedural problems,
and descriptive statistics support this view.

Riley et al. (1983) in their work on the ’development of children’s problem-solving abil-
ity in arithmetic’, put word problems into four categories. These categories are change,
combine, compare and equalizing (see Table 4 for an example of change, combine, compare
and equalizing word problems). The equalizing category described by Riley et al. results
from the work of Carpenter and Moser (1982). These four problem types are routine word
problems since they usually involve the use of at least one of the four arithmetic operations.
Riley et al. (1983) in their explanation noted that the change and equalizing problem cat-
egories describe addition and subtraction as actions that cause increases and decreases in
some quantity. That is, from Table 4 under the change category, the initial quantity of
Joe’s three marbles is increased by the action of Tom giving Joe five more marbles. They
also point out that the combine and compare problem categories involves a static relation
between quantities. That is, from Table 4 under the combine category, there are two dis-
tinct quantities that do not change (these are Joe’s three marbles and Tom’s five marbles)
and the problem solver is asked to consider them in combination. The difficulty level of
the problems varies among the four problem categories and also the level of the children,
for example, according to Riley et al. (1983), some compare problems are usually more
difficult than some change problems for first-graders whilst some combine problems are in
general more difficult than some change problems for kindergartners and also first-graders
as well. Riley et al. (1983) argues that successful problem-solving performance by children
depends on the conceptual knowledge or understanding for problem representation lead-
ing to the appropriate selection of a specific technique for solution. On the other hand,
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Action Static
CHANGE:

Joe had 3 marbles. Then Tom gave him
5 more marbles. How many marbles does

Joe have now?

COMBINE:
Joe has 3 marbles. Tom has 5 marbles.

How many marbles do they have
altogether?

EQUALIZING:
Joe has 3 marbles. Tom has 8 marbles.
What could Joe do to have as many
marbles as Tom? (How many marbles

does Joe need to have as many as Tom?)

COMPARE:
Joe has 8 marbles. Tom has 5 marbles.
How many marbles does Joe have more

than Tom?

Table 4: Types of word problems (Riley et al., 1983, p. 160).

Cummins et al. (1988) uses the same word problems described by Riley et al. and suggests
that much of the difficulty children experience with word problems can be linked to the
difficulty in comprehending abstract or ambiguous language. Cummins et al. also found
solution errors by the children to be correct solutions to miscomprehended problems, that
is, word problems that combined abstract or ambiguous language tends to be miscompre-
hended more often than ones with simpler language, whilst correct solutions in their work
was associated with accurate recall of the problem structure and with appropriate question
generation.

Although the work of Riley et al. (1983) is mainly on arithmetic word problems, they also
argue that their principles and findings are also relevant for word problems in algebra,
and that students uses little conceptual knowledge, focusing instead primarily on syntactic
information to translate the English problem statement directly into a corresponding set
of equations, when solving algebraic word problems.

Caldwell and Goldin (1979, 1987) also put word problems into four categories as they
investigate the variables affecting word problem difficulty in both elementary and secondary
school mathematics. These categories are abstract factual (AF), abstract hypothetical (AH),
concrete factual (CF), and concrete hypothetical (CH) (see Table 5, an example of AF, AH,
CF and CH word problems).

Caldwell and Goldin (1979) define and explain the four problem categories as follows;

An abstract word problem is defined as a word problem involving a situation that de-
scribes only abstract or symbolic objects, whereas a concrete word problem is defined
as one describing a real situation dealing with real objects. For example, a problem
about digits in a number is abstract, whereas a problem about baseballs is concrete.
A factual problem is defined to be one that merely describes a situation. A hypothet-
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Type Word Problem Comments

Abstract Factual

There is a certain given number. Three
more than twice this given number is
equal to 15. What is the value of the
given number? (correct answer: 6)

No change is
described.

Abstract
Hypothetical

There is a certain number. If this
number were 4 more than twice as large,
it would be equal to 18. What is the

number? (correct answer: 7)

The number is not
really 4 more than
twice as large.

Concrete Factual

Susan has some dolls. Jane has 5 more
than twice as many, so she has 17 dolls.

How many dolls does Susan have?
(correct answer: 6)

No change is
described.

Concrete
Hypothetical

Susan has some dolls. If she had 4 more
than twice as many , she would have 14
dolls. How many does Susan really have?

(correct answer: 5)

Susan does not
really have 4 more
than twice as many

dolls.

Table 5: Types of word problems (Caldwell and Goldin, 1979, p. 325).

ical problem is one that not only describes a situation but also describes a possible
change in the situation. This change does not really occur within the context of the
problem. In solving the hypothetical problem, the problem solver must consider not
only the situation that occurs within the context of the problem but also the described
alteration that does not occur. (p. 325)

Caldwell and Goldin (1979) in their research context define abstract, concrete, factual and
hypothetical, however based on these definitions we can also define or explain AF, AH, CF
and CH. That is: AF are word problems involving situations that describe only abstract or
symbolic objects and again has the property that it also merely describes a situation; AH
are word problems involving situations that describe only abstract or symbolic objects and
also has the property that it does not only describes a situation but describes a possible
change in the situation as well; CF are word problems that merely describe real situations
dealing with real objects; and CH are word problems that not only describe situations but
also describes possible changes in a real situation dealing with real objects.

Caldwell and Goldin (1979) argues that concrete problems (factual and hypothetical) are
the least difficult which is followed by abstract hypothetical and abstract factual problems
at the elementary school level. Caldwell and Goldin (1987) on the other hand again argues
that at all levels, concrete hypothetical problems are more difficult compared to concrete
factual problems in a large effect, however at the elementary school level and to a lesser
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extent at the junior high school level, abstract hypothetical problems are actually less
difficult than abstract factual problems. They further point out that the greater difficulty
of hypothetical problems occurs almost exclusively in concrete contexts with the reason that
the students’ internal representations are such that the distinction between the situation
described and the hypothetical change in the situation is more difficult to maintain.

The AF, AH, CF and CH types of word problems are used in this current study to examine
the students, looking for the underlying conceptual understanding or knowledge as the
students justify their strategies when solving these types of word problems.

3.3.1.2 Setting up equations .

In Newman’s (1983) error analysis, the two common errors among others made by students
when solving word problems are: the lack of computational skills; and the inability to
transform the information in the text into mathematical forms. Kieran (2007) on the
other hand, in general, points out that there are two phases involved in the solving of word
problems, that is the setting up of an equation to represent the relationships inherent in
the word problem and the actual solving of the equation. Setting up an equation from
word problems is much relevant since one can have an accurate computation if the right
equation is setup.

Polya (2004) in his book ’How to solve it’ gives a brief account on setting up equations
from word problems. He argue that "to set up equations means to express in mathematical
symbols a condition that is stated in words; it is translation from ordinary language into
the language of mathematical formulas" (p. 174). Setting up equations comes along
with some difficulties which is usually the difficulties of translation. To overcome such
difficulties Polya (2004) argues that one must thoroughly understand the condition and
also be familiar with the forms of mathematical expression. He further emphasized that
in easy cases the verbal statement splits almost automatically into successive parts (in
which each part can be immediately written down in mathematical symbols) whilst in a
more difficult cases, the condition in the problem has parts which cannot be immediately
translated into mathematical symbols. If the later is the case then one must pay less
attention to the verbal statement and concentrate more upon the meaning. Nevertheless
in both easy or difficult cases, one must firstly understand the condition.

Polya (2004) also illustrates some examples of setting up an equation for both the easy
and difficult cases. These examples are presented below;
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Example 1: Find two quantities whose sum is 78 and whose product is 1296 (p. 175).

Figure 4: Setting up an equation for an easy case (Polya, 2004, p. 175).

One can observe from Figure 4 (an example of setting up an equation of an easy case, where
the verbal statement is split into appropriate parts in one side with the corresponding
algebraic signs on the opposite side) that the verbal statement splits almost automatically
into successive parts for which each of the parts can be immediately written down in
mathematical symbols.

Example 2: Being given the equation of a straight line and the coordinates of a point, find
the point which is symmetrical to the given point with respect to the given straight line (pp.
176-177).

The word problem example given by Polya is a plane analytic geometry problem. Polya
outlines three questions that must be considered before tackling the problem: What is
the unknown? That is, a point with coordinates p and q; What is given? That is, the
equation of a straight line, y = mx + n, and a point with coordinates a and b; and What
is the condition? That is, the points (a, b) and (p, q) are symmetrical to each other with
respect to the line y = mx + n. Polya further argues that after going through the three
outlined questions, one reaches the essential difficulty which is to divide the condition into
parts, however one must ensure that these decomposition into parts of the condition must
be fit for analytic expression. The definition of symmetry must be understood in order
to find such a decomposition but also one must keep an eye on the resources of analytic
geometry. That is, in this situation: What is meant by symmetry with respect to a straight
line?; and What geometric relations can we express simply in analytic geometry? He also
points out that one must concentrate upon the first question but however should not
forget the second. Figure 5, gives a detailed outline of the decomposition of the condition,
where we have the verbal statement on one side and the corresponding algebraic signs on
the opposite side. According to Riley et al. (1983) must students uses little conceptual
knowledge , focusing instead primarily on how to translate the English problem statement
directly into a corresponding set of equations, when solving algebraic word problems. It is
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Figure 5: Setting up an equation for a difficult case (Polya, 2004, p. 177).

with this very approach that students usually encounter difficulties when dealing with this
difficult cases described by Polya.

3.3.2 Mathematical modelling

Application word problems are another kind of non-routine word problems that require
realistic considerations (Verschaffel et al., 2000, 2009, 2010). Verschaffel et al. (2000)
argue that the solution to application word problems requires students to develop a proper
situation model and not just directly translating the text into mathematical symbols. This
type of word problem is what Polya (2004) classifies as a difficult case in his presentation
about setting up equations from word problems. The open nature of the application word
problems require students to develop a model for the situation and the process of developing
such a model is termed mathematical modelling. Mathematical modelling is the modelling
of mathematical ideas and its inclusion in the school curricular helps to bridge the gap
between real life and the mathematics classroom. According to Erling et al. (2016), it
is important to remind students that it is through mathematical modelling that a lot of
mathematics is used in careers beyond school, to model what happens (or may happen)
in the world so that complex situations can be manipulated more simply and solutions to
problems found.

One of the pioneers in the field of applications and modelling in mathematics education,
Pollak (2007), describes mathematical modelling as a process of formulating a problem from
outside of mathematics, understanding the problem, visualizing, and solving it. Garfunkel
and Montgomery (2016, p. 8) on the other hand defines mathematical modelling as "a
process that uses mathematics to represent, analyze, make predictions or otherwise provide
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insight into real-world phenomena". Confrey and Maloney (2007) also proposed a more
comprehensive description of mathematical modelling, stating that;

Mathematical modelling is the process of encountering an indeterminate situation,
problematizing it, and bringing inquiry, reasoning, and mathematical structures to
bear to transform the situation. The modelling produces an outcome - a model - which
is a description or a representation of the situation, drawn from the mathematical
disciplines, in relation to the person’s experience, which itself has changed through
the modelling process. (p. 60)

The mathematical experiences of students are improved through the modelling processes
since through these processes that they practically applied the mathematics they’ve stud-
ied. Hernández et al. (2017) argues that

students who have engaged in the modelling process appreciate the opportunity to
use their own ideas in creating a mathematical solution to a real-world problem and
have experiences that help them regardless of what college or career path they follow.
(p. 342)

Teachers are also to help their students by transforming more of the mathematics problems
to modelling problem, as it helps in bridging the divide between real life and the mathe-
matics classroom. Garfunkel and Montgomery (2016) argues that, when labels are added
to mathematics problem they become a word problem and when meaning is added to a
word problem they then become an application problem and lastly when interpretation is
added to an application problem, we end up having a modelling problem (see Figure 6, an
illustration of a way of transforming a mathematics problem into a modelling problem).
Erling et al. (2016) also argues that one of the difficult ideas encountered in word problems
is about translating the words into algebra and algebra into words. They further point out
that students should be encourage to make their own word problems from some algebraic
equations, that is by modifying some expressions or equations (mathematics problem) to
make them relevant. Kajamies et al. (2010) on the other hand conducts an intervention
study aim at developing the mathematical word problem solving of low performing stu-
dents. They carefully design word problems (application problems) combine with intensive,
systematic, and explicit teacher scaffolding, which help in the improvement of students’
word problem solving performance. The shift from word problems to application problem
can contribute, to some extent, in the problem solving performance of students. Verschaffel
and De Corte (1997) also use application word problems that help in promoting students’
realistic mathematical modelling in an intervention study. They suggest that it is possi-
ble to improve realistic modelling and reasoning skills when we include more application
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problems and less word problem (word problems usually offered in traditional mathematics
classroom) into mathematics lessons.

Mathematical modelling tasks or problems should be interesting and meaningful that ma-
jority of the students will want to participate or solve them. Educators and teachers must
also ensure that the modelling task given to students offers a low floor allowing even a low
performing student to engage with minimal prerequisite knowledge and skills, and a high
ceiling providing opportunities to explore more complex concepts. In this regard, the task
does not limit high performing students to fully explore their potentials and also not very
difficult for low performing students that they can not comprehend.

Figure 6: One way of transforming a mathematics problem into a modelling problem (Garfunkel
and Montgomery, 2016, p. 12).

3.3.2.1 The mathematical modelling process .

In mathematical modelling, students usually go through some processes in deriving a suit-
able model, they at first try to understand the situation and then find some mathematical
representation which they solve afterwards and lastly followed by verifying whether that
is the suitable solution or not. Garfunkel and Montgomery (2016) describes some compo-
nents of the modelling processes (see Figure 7, an illustration of the components forming
the modelling process). They also argue that the modelling process is often pictured as a
cycle, since one frequently needs to come back to the beginning and make new assump-
tions in order to get closer to a usable result. Giordano et al. (2013) on the other hand
comprehensively presents a procedure that is helpful in constructing models. The various
steps (components) in the procedure is as follows;

• Identify the problem: What is it you would like to do or find out?

• Make assumptions: Capture the important factors influencing the problem that has
been identified. One should assume relatively simple relationships.

– classify the variables: What things influence the behavior you identified in the
first step (dependent and independent variables).
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– determine interrelationships among the variables selected for study: Additional
simplifications (sub-models) before one can hypothesize a relationship between
the variables.

• Solve or interpret the model: Put together all the sub-models to see what the model
is telling you.

• Verify the model: Before you use the model, you must text it out.

– Does it address the problem?

– Does it make common sense?

– Test it with real-world data?

• Implement the model: Unless the model is placed in a ’user-friendly’ mode, it will
quickly fall into disuse. Explain the model for users to understand.

• Maintain the model: One needs to know if the original problem has changed in any
way or have some previously neglected factors become important?

Figure 7: A mathematical modelling process (Garfunkel and Montgomery, 2016, p. 13).

Giordano et al. (2013) also argues that one should consider the feasibility of his/her model
by considering these properties;

• Fidelity: The preciseness of a model’s representation of reality.
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• Cost: The total cost of the modelling process.

• Flexibility: The ability to change and control conditions affecting the model as re-
quired data is gathered.

Figure 8: A simple view of the mathematical modelling process (adapted from Ang, 2001, p.
64).

A simpler version of the mathematical modelling process adapted from Ang (2001) is
shown in Figure 8. In this process, there is a conversion of the real world problem into a
mathematical problem through the establishment of some assumptions (important factors
influencing the problem) and the formulation of equations. The mathematical problem
can then be solved using whatever known techniques (depending on one’s mathematical
skills) to obtain a mathematical solution, that is, solving the equations and verifying one’s
model. This solution is then interpreted and translated into real terms (that is a real world
solution), however it is also important to employ the use of the various mathematical repre-
sentations27 (tables, graphs, equations and among others) to explain the model (solution)
for the users to have a better understanding of the model.

3.3.2.2 Modelling at high school and college levels .

Mathematical modelling can be exercised at any school level, yet majority of the research
concentrates on high school, college and undergraduate levels. Niss et al. (2007, p. 5)
argues that in one category mathematical modelling at these higher levels of education,
the learners "focuses on learning mathematics so as to develop competency in applying

27Mathematical representation is defined and explained in section 3.3.3
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mathematics and building mathematical models for areas and purposes that are basically
extra-mathematical". In another category, they argue that applications and modelling may
also be a vehicle that facilitates and supports the students’ learning of mathematics as a
subject. The development of such competencies in both categories requires the inclusion
of mathematical modelling activities explicitly in the school curriculum, for the purpose
of teaching and learning of mathematics. According to Artaud (2007), modelling is an
excellent method in making obvious the mathematics that is implicit in the real world and
that it is very important for all students. Garfunkel and Montgomery (2016) also argues
that models in the high school setting

can be used as motivation for learning new techniques and new content; small mod-
elling activities can be used to reinforce new concepts and to illustrate their appli-
cations; more extended modelling activities help students pull together ideas from
different parts of a course and from different courses. (p. 45)

The mathematics tasks at school are usually close-ended task that requires a specific tech-
nique. Such tasks are sometimes uninteresting, I remember asking myself the question
"when am I ever going to use this in the real world" as I continuously engaged in close-
ended tasks that requires the use of a specific technique at the high school level. Kolis
(2011) argues that the study of mathematics is not about memorizing math facts, theo-
rems and solving proofs, and that when mathematics is taught with the focus only on the
isolated facts, it lacks context and any connection to students’ lives outside of school. When
the mathematics taught at school has some connection with the students’ lives, they might
come to realize the importance of mathematics to their daily lives. A study by Matthews
(2018), shows that mathematics teachers infrequently connect their instruction to the real
world. They further suggests that teacher’s messages about the real world relevance of
mathematics matters in shaping how students value mathematics.

Despite the importance of modelling in the school curriculum, Stillman (2007, p. 464)
argues by citing Artaud that, "at the upper secondary level, especially in some European
countries, there is a strong bias against mathematical modelling as the prevalent attitude
is that high level mathematics (theorems, proofs, formulas, and among others) is what is
important". Artaud (2007) on the other hand argues that, the teaching process must be
accorded extra time if mathematical modelling is added to the ordinary didactical system.
However, this would be difficult to obtain in the general teaching system, nevertheless
modelling could perhaps be provided for students who are supposed to need it, for instance,
engineering students and among others.
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Representations Advantages Disadvantages

Verbal

• Usually used in posing a
problem and is also needed
in the final interpretation
of the results obtained in
the solution process.

• Creates a natural environ-
ment for understanding its
context and for communi-
cating its solution.

• The use of verbal language
can also be ambiguous and
elicit irrelevant or mislead-
ing associations.

Numerical

• Familiar to students at the
beginning algebra stage.

• Numerical approaches of-
fer a convenient and ef-
fective bridge to algebra
and frequently precede any
other representation.

• The use of numbers is im-
portant in acquiring a first
understanding of a prob-
lem and in investigating
particular cases.

• Its lack of generality can
be a disadvantage.

• A numerical approach may
not be very effective in
providing a general pic-
ture.

Graphical

• Effective in providing a
clear picture of a real val-
ued function of a real vari-
able.

• They are intuitive and par-
ticularly appealing to stu-
dents who like a visual ap-
proach.

• Lack the required accu-
racy.

• Frequently presents only a
section of the problem’s
domain or range.

Algebraic

• It is concise, general, and
effective in the presenta-
tion of patterns and math-
ematical models.

• The manipulation of alge-
braic object is sometimes
the only method of jus-
tifying or proving general
statements.

• An exclusive use of alge-
braic symbols may blur
or obstruct the mathe-
matical meaning or nature
of the represented objects
and may cause difficulties
in some students interpre-
tation of their results.

Table 6: Advantages and disadvantages of the various mathematical representations (Friedlander
and Tabach, 2001, p. 173–174).
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3.3.3 Mathematical representation

The two phases involved in the solving of algebraic word problems described by Kieran
(2007), is the setting-up of an equation to represent the relationships inherent in the word
problem and the actual solving of the equation. Most students encounter a lot of challenges
to arrive at a desired answer or solution as they go through these two phases. Kieran (1992)
argues that the presentation of algebra (as the study of expressions and equations) by a
vast number of teachers and researches can pose serious obstacles in the process of effective
and meaningful learning. As a pressing concern, mathematics educators, National Council
of Teachers of Mathematics (2000), recommends that from the initial stages of learning
algebra, students must be encourage to use the various (mathematical) representations.

Friedlander and Tabach (2001, p. 173) argues that, "the use of verbal, numerical, graph-
ical, and algebraic representations has the potential of making the process of learning
algebra meaningful and effective". They also point out that each representation has it own
advantages and disadvantages, however their combined use can cancel out the disadvan-
tages and prove to be an effective tool (see Table 6 for an example of the advantages and
disadvantages of the various mathematical representations).

National Council of Teachers of Mathematics (2000, p. 281) on the other hand argues that,
"students will be better able to solve a range of algebra problems if they can move easily
from one type of representation to another". Since the use of representations improves
the understanding of students, it is important for teachers and researches to design a task
that will encourage the simultaneous use of several representations. For example designing
an algebraic word problem in the area of mathematical modelling (open-problems) where
students will have the opportunity to use which ever representation they want and also
moving from one type of representation to another. Friedlander and Tabach (2001, p. 184)
again in their analysis point out that, "the choice of a representation can be the result of
the task’s nature, personal preference, the problem solver’s thinking style, or attempts to
overcome difficulties encountered during the use of another representation".
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According to Duval (1999, 2006), the transformation between different representations can
be divided into two categories;

• Transformation within the same register28 (Treatments)

– Example 1:
From y = 2x+ 5 to y − 2x− 5 = 0

– Example 2:

• Transformations between different registers (conversions)

– Example:

Duval (1999) argues that, being able to shift between representations is important in learn-
ing, so that students avoid confusing the mathematical object with it’s representation. Du-
val (2006, p. 112) also argues that "conversion is a representation transformation, which is

28A certain type or category of semiotic representations, Example: graphs, tables (numerical), verbal
description, algebraic expressions (formulae)
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more complex than treatment because any change of register first requires recognition of
the same represented object between two representations whose contents have very often
nothing in common". Duval (1999, p. 10) puts conversion into two categories, congruent
or non-congruent (that is any conversion can be congruent or non-congruent). "When
a conversion is congruent the representation of the starting register is transparent to the
representation of the target register" and non-congruent is the opposite. One can view con-
gruent conversion as an easy translation unit to unit and non-congruent conversion could
also be very challenging. He further argues that the congruence or the non-congruence of
any conversion depends on its direction and that a conversion can be congruent in one di-
rection and non-congruent in the opposite direction. An example is moving from fractions
to decimals and from decimals back to fractions: 1

6
→ 0.1666666666666666 ≈ 0.167 and

0.167→ 167
1000
6= 1

6
.

Janvier (1987) on the other hand came out with a table (see Figure 9, a table with the
transformation from one representation to the other with the required translation skills)
with different representations of functions. The table pinpoints the different translation
skills (translation processes29) required in order to be able to move from one representation
to another. Janvier (1987) also argues about the direct and indirect translation from one

Figure 9: Janvier Table: Translation Processes (Janvier, 1987, p. 28).

representation to the other. The direct translation is what we actually see in Figure 9,
whilst the indirect translation adds a few arrows to account for alternative ways to achieve
translations. For example, the translation ’table → formula’ is often carried out as ’table

29The psychological processes involved in going from one mode of representation to another, for example,
from equation to a graph
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→ graph → formula’ and ’formula → graph’ as ’formula → table → graph’.

The mathematical modelling task used in this study gives the students the opportunity to
use the various mathematical representations. In particular, the task requires the trans-
lation from a verbal description or situation to an algebraic expression (formulae) by the
process of modelling. It also requires the use of verbal description in the interpretation of
the final results obtained in the solution process, and some students may further want to
make their solution more clearer by the use of graphical representation. This will require
the translation from an algebraic expression (formula) to the graphical representation by
computing some real numbers they insert in the formulae and plotting this numbers (nu-
merical/table) to obtain the desired graph. In a nutshell, the task offers students’ the
opportunity to move easily from one type of representation to another.

The methodology of this research study is discussed in the next chapter.
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4 METHODOLOGY

This chapter presents the methodology of the study. Firstly, the case study strategy
is discussed. A presentation of the research design which entails the research method,
participant selection, data collection, data management and the strategy for analysis then
follows. Finally the ethical considerations, validity and trustworthiness of the study is
presented.

4.1 The Case Study Strategy

Bogden and Biklen (1982, p. 58) defines a case study as "a detailed examination of one
setting, or one single subject, or one single depository of documents, or one particular
event". Bryman (2016) on the other hand argues that the basic case study entails the
detailed and intensive analysis of a single case. These case include research on: a single
community; a single school; a single family; a single organization; a person; a single event.
Case studies may be single or multiple. The unit in this study is a one group of first
year upper secondary school students, in the Southern part of Norway, taking the 1T
mathematics course. The selection of these group of 1T students is a case study on the
issues on modelling activities in both the Nordic and European context. In this case study,
there is an investigation of both students’ conception and performance in two different
tasks (algebraic word problems and a mathematical modelling task).

Paré and Elam (1997) argues that case study research strategy makes the capture and
understanding of context possible. Zainal (2007) on the other hand argues that, detailed
qualitative accounts often produced in case studies help to explain the complexities of
real life situations which may not be captured through experimental or survey research.
Despite the advantages, case study research has been subject to criticism on the grounds
of non-representativeness and lack of statistical generalisability. Yin et al. (1984) points
out that, case studies are often tagged as difficult to conduct and also produces a massive
amount of documentation (in particular, case studies of an ethnographic or longitudinal
nature). Zainal (2007) also argues that case studies provide very little basis for scientific
generalization since they use a small number of subjects.

As the research questions requires students justification and interpretations, it is believed
that a case study approach is the appropriate research strategy for this study. The research
questions could be answered using a survey designed for the purpose of generalization. In
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this regard, one will consider a good number of upper secondary school students in different
schools and find out statistically their performance in both the algebraic word problem
and mathematical modelling task. However, this might not reveal in detail the unique
experiences of individuals and the kind of conceptions they have.

4.2 Research Design

The research design gives the framework which is created to find answers to the research
questions. The design of this study includes the research method, description of the partic-
ipants, the data collection and methods, data management and strategy for the analysis.

The researcher takes the position of interpretive research paradigm in this study. Walsham
(2006, p. 320) defines that "interpretive methods of research start from the position that
our knowledge of reality, including the domain of human action, is a social construction
by human actors". Thanh and Thanh (2015, p. 24) argues that "interpretive paradigm
allows researchers to view the world through the perceptions and experiences of the partic-
ipants". Bryman (2016), on the other hand, argues that interpretivism is characterized by
explanations and interpretations through appropriate frameworks. Bryman also notes that
there is double interpretation, that is the researcher providing an interpretation of others’
interpretations and also a third level of interpretation whereby the researcher’s interpreta-
tions have to be further interpreted in terms of the concepts, theories, and literature of a
discipline. The interpretive paradigm again recognizes that the researcher has an impact
on the findings.

4.2.1 Research method

A qualitative research method was used in this study. Bryman (2016) defines qualitative
research method as a research method that usually spotlight words rather than quantifica-
tion in the collection and analysis of data. Qualitative research has characteristics that are
appropriate for small samples but it’s outcomes are not quantifiable. Miles et al. (1994)
list some features of qualitative research:

• It offers a rich description and analysis of a research subject.

• The researcher may only know roughly in advance what he/she is looking for.
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• The researcher is the data gathering instrument (The researcher becomes an instru-
ment through the relationships he/she builds with research participants).

• The data is more ’rich’, time consuming, and less able to be generalized.

Bryman (2016) also outlines the main steps involve in qualitative research:

1. General research question(s)

2. Selection of relevant site(s) and subjects.

3. Collection of relevant data.

4. Interpretation of data.

5. Conceptual and theoretical work.

Bryman (2016) provides some critique of qualitative research. That is, qualitative research
is: subjective; difficult to replicate; has problems of generalization; and lacks transparency.

The first step in qualitative research described by Bryman is general research question(s).
In this study the following research questions are addressed:

1. How do upper secondary students’ justify their strategies for solving algebraic word
problems.

2. How do these students interpret their findings after solving an algebraic word problem
in a form of mathematical modelling.

These research questions influenced the selection of the site and subjects, and also the
collection of data.

4.2.2 The participants

Twenty three out of 26 students participated in this study. These students were first
year students aged between 14-16 in an upper secondary school located in the Southern
Norway. The students were put into seven different groups of about 3-4 persons in a
group by their teacher. These groupings was as a results of their performance from the
lower secondary level. Each group consist of the three categories: high-performing students;
medium performing students; and low-performing students. The students follow an inquiry-
based model (during class activities) since fifty percent of them are preparing to take the
International Baccalaureate programme the following year whilst the others follow the
normal Norwegian programme.
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Students have already studied geometry and trigonometry, algebra and some sections of
function analysis before the data collection of this study (that is from 1.1 - 3.6, see Appendix
C on page 154 for the summary of the 1T course content). In a normal class section, the
teacher gives the students some introductory tasks (see Appendix F on page 181, for an
example of introductory task on simultaneous sets of two linear equations). The students
work in their respective groups to complete the introductory task without the teacher’s
help. At the end of this process, the teacher summarizes all their findings on the board for
the purpose of generating a general rule for solving the tasks. The teacher again gives the
students some set of questions to solve after the introductory questions, and at this stage
they work individually whilst still seated in their respective groups. The teacher walks
around the class whilst the students solve these new questions and also give some hints to
individuals within the group that calls for help or get stuck.

The students willingly volunteered to participate in this study. These group of 1T stu-
dents were chosen because of the acquaintance of the researcher with their mathematics
teacher. Seven participants from the various group willingly volunteered to participate in
the interviews. Pseudonyms are provided for each of the seven participants, particularly
5-letter names were given to these students (Bjørg, Julie, Hilde, Eirik, Tonje, Helge and
Arvid).

4.2.3 The data collection

In answering the research questions:

• How do upper secondary students’ justify their strategies for solving algebraic word
problems?

• How do these students interpret their findings after solving an algebraic word problem
in a form of mathematical modelling?

both interviews and students’ worksheets were the main source of empirical data. Two
different tasks were given to the students who were instructed to solve the tasks in as
much detail as possible so that the researcher can understand how they understood the
question, why they think their solution is correct and how they interpret their final results.
The students worked in groups to solve the various task (7 groups of about 3-4 persons per
group). The interview method was also used to find out students’ conception about both
task. One person from each group was interviewed. Table 7 presents the time-line of the
research process.
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Table 7: Time-line of the research process (∗ NSD = The Norwegian Centre for Research Data).

4.2.3.1 The algebraic word problems and the modelling task .

The algebraic word problem tasks which were given to the students were adapted from
Caldwell and Goldin (1987) (see Figure 10, the algebraic word problem task used in the
study). The four categories of word problem (Abstract factual, Abstract hypothetical,
Concrete factual and Concrete hypothetical) were considered and for that reason four
word problems in theses categories were given to these students. Task 1, 2, 3, and 4 are
concrete factual, concrete hypothetical, abstract factual and abstract hypothetical respec-
tively. These questions are no different from the algebraic word problems that the students
solve at school. The algebraic word problem tasks used in the study are similar and also
isomorphic (as described by Reed (1998)) to the problems that are usually solved by the
students at school.

To answer the first research question, we first answer the questions: What is a strategy?;
and How do students justify their strategies? Strategy in this study is explained as a
plan of action designed by the students to achieve the desired solution of an algebraic
word problem. In this regards, the students particularly transform the algebraic word
problem into a linear equation or simultaneous set of two linear equations and then use
addition/elimination or substitution method to solve it. The justification of students’
strategies in this study is about how they mathematize the algebraic word problems. For a
student to justify his/her strategy for solving an algebraic word problem, the student goes
through the process of mathematizing the word problem as they use known techniques to
solve the equation(s) derived from the word problem. In this study Polya’s (2004) four
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Figure 10: Algebraic word problem task (adapted from Caldwell and Goldin 1987, p. 189).

interdependent phases of problem solving is considered as a measure of mathematizing
the algebraic word problem. That is, mathematizing the algebraic word problem involves:
Understanding the word problem; Devising a plan (that is, translate the problem using
variables and setting up an algebraic equation); Carrying out the plan (that is, solving the
equation using a known technique); Looking back (verifying the answer and also presenting
the final answer).

A Polyaian way of mathematizing Task 1 in Figure 10 is illustrated below:

Linear equation:

Step 1 : Summarize the information in a table. That is, translate the problem
using variables.

legs number of animals Total number of legs (146)
hens 2 13 + x 2(13 + x)
goats 4 x 4x
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Step 2 : Set up an equation

Total number of legs = 2(13 + x) + 4x = 146

Total number of animals = (13 + x) + x = 13 + 2x

Step 3 : Solve the equation

2(13 + x) + 4x = 146

26 + 2x+ 4x = 146

6x = 120

x = 20

13 + 2x = 13 + 2(20) = 53

Step 4 : Present the final answer

Marius have 20 goats and 33 hens. Altogether Marius have 53 animals.

Simultaneous set of two linear equations:

Step 1 : Translate the problem using variables

Let the number of goats be x and the number of hens be y.

Step 2 : Rewrite the information in terms of the variables.

Number of hens, y = 13 + x ............ (1)

Total number of legs of the animals, 2y + 4x = 146 ............ (2)

Step 3a: Solve the equation simultaneously using the substitution method

Substitute equation (1) into equation (2)

2(13 + x) + 4x = 146

26 + 2x+ 4x = 146

6x = 120

x = 20

Therefore, y = 13 + 20 = 33

Step 3b: Solve the equation simultaneously using the addition/elimination
method
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Multiply equation (1) by -2 and rearrange

−2y + 2x = −26 ............. (3)

Add equation (3) and (2)

6x = 120

x = 20

Therefore, y = 13 + 20 = 33

Step 4 : Present the final answer

Marius have 20 goats and 33 hens. Altogether Marius have 53 animals.

The Polyaian way of mathematizing Task 2, 3 and 4 in Figure 10 are presented in Appendix
E on page 178.

The modelling task used in this study was chosen to help answer the second research
question. The mathematical modelling task which was given to the students was adapted
from Garfunkel and Montgomery (2016) (see Figure 11, the mathematical modelling task
used in the study). The modelling task used in the study is an open-ended and meaningful

Figure 11: Mathematical modelling task (adapted from Garfunkel and Montgomery 2016, p. 9).

problem that offers a low floor allowing low-performing students to engage with minimal
prerequisite knowledge and skills, and high-performing students to explore more complex
concepts. The equations generated from the modelling task is no different from the linear
equations the student have being working with at school. However, the modelling task
does not require a specific technique or strategy for solving it, unlike the use of linear
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equations or simultaneous set of two linear equations to solve algebraic word problems by
the students.

Looking at the task in Figure 11, students may find it difficult to answer the question. They
will have to compare two equations and find the ’break-even’ point, that is the number
of items their friend will have to sell every hour in order to earn minimum wage. They
will also have to think about whether it is likely their friend would sell that many items,
which probably depends on the items and her personality. According to Garfunkel and
Montgomery (2016), the research into a context and assumptions about the context are
both components of mathematical modelling. Finding the break-even point is just one
aspect of the problem that students will have to think about making decisions in the face
of uncertainty. Garfunkel and Montgomery (2016) points out that a risk-averse30 student
might advise the friend to take the first job because the pay is decent and guaranteed whilst
a risk-seeking student might advise the friend to take the second job for the possibility of
making much more money. In this sense, the opinions of the students matter and may
influence their answer to the question. In summary, the student would have to do the
same mathematics to answer the question but they are forced to reconcile their answer
with reality, which makes the mathematics more relevant. According to Garfunkel and
Montgomery (2016), making judgments about what matters and also assessing the quality
of the solution are components of mathematical modelling.

To answer the second research question, we look at how the students interpret their find-
ings after solving an algebraic word problem in a form of mathematical modelling. An
interpretation of their findings may depend on: the initial understanding of the problem;
the construction of a mathematical model; the actual computational activities; and the
evaluation of the outcome of these computations. In their modelling process, the use of the
various mathematical representations for clarity and better interpretation of the findings is
also considered in this study. The modelling process in Figure 8 is used as a measurement
for the students’ solutions in this study. The researcher also adds some dimensions to the
modelling process based on the outcome of the students solutions.

The solution of the modelling task in Figure 11 used as a measure of the students’ solutions
is illustrated below:

Real world problem → Mathematizing

30Kahneman and Tversky (2013) argues that risk-aversion is a preference for a certain outcome over a
gamble with higher or equal expected value whilst risk-seeking is the rejection of a certain thing in favor
of a gamble of lower or equal expected value.
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Make assumptions

Let the minimum wage be a or Let the minimum wage be 100, 150, ...

Let the working hours/day be x or Let the working hours/day be 7.5, 8, ...

Let the number of items sold per hour be z.

Arithmetical calculation

y1 = (100 + 20)× 7.5 = 900.

y2 = (50 + 20× z)× 7.5 = 375 + 150z.

For y2 to be the same as y1, then z must be 3.5 items in every hour.

Formulate equations

y1 = (a+ 20)x or y1 = (100 + 20)x = 120x.

y2 = (1
2
a+ 20z)x or y1 = (50 + 20z)x = 50x+ 20zx.

Mathematizing → Mathematical solution

Solve the equation

At the break even point

(a+ 20)x =
(1
2
a+ 20z

)
x

a+ 20 =
1

2
a+ 20z

a+ 20− 1

2
a = 20z

1

40
a+ 1 = z

If the minimum wage is 100kr then in job 2; Kristin has to sell an average of
z = 1

40
× 100 + 1 = 3.5 items to receive same salary as job 1. Another student

can find out the pattern if the minimum wage is below 100 or above it.

Verify the model

If z = 3.5, minimum wage a = 100 and working hours per day x = 7.5, then

Job 1: 120× 7.5 = 900

Job 2: (50× 7.5) + (20× 3.5× 7.5) = 900
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Mathematical solution → Real world solution

Interpretation of model

Looking at the equations for Job 1 and 2, if a person sells 3.5 items then Job 2
will be same as Job 2. However, if the person sells less than 3.5 or more than
3.5 items per hour then Job 2 will either have less or more salary than Job
1 respectively (see both Table 8 and Figure 12, the numerical and graphical
interpretation of the model).

Table 8: Numerical (table) representation of the mathematical modelling task.

Figure 12: Graphical representation of the mathematical modelling task.

Compare solution
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The possibility for Kristin to sell that many items may probably depend on
the kind of item and her personality. Kristin can take the first job because the
pay is decent and guaranteed. however, Kristin can also take the risk for the
possibility of making much more money.

The students writing their solution on a sheet of paper will not be enough to answer both
research questions. Some group may choose to only write the mathematical aspect of the
solution and leave the interpretation and/or the presentation of the final answer. Hence,
an interview will be necessary to seek more information about the students’ conceptions
on both tasks used in the research study.

4.2.3.2 Semi-structured interview .

For the purpose of this study, interviews was used as a method of data collection. It is
through the interviews that the students gave account of how they justified their strategies
and also how they interpret their findings after the modelling task.

A semi-structured interview was used in this study. Ayres (2008) defines semi-structured
interview as a qualitative data collection strategy for which the researcher ask informants
a series of predetermined but open-ended questions. She further points out that, in semi-
structured interview the researcher has more control over the topics of the interview than
in unstructured interviews, but in contrast to structured interviews (usually used in quan-
titative research) that use closed questions, there is no fixed range of responses to each
question. Denscombe (2014) also asserts that the answers to semi-structured interviews
are open-ended and that there is more emphasis on the interviewee elaborating points of
interest. Bryman (2016) notes that in semi-structured interviewing: there is much greater
interest in the interviewee’s point of view; the researcher wants rich, detailed answers; the
interviewers can depart significantly from any schedule or guide that is being used (that
is, new questions that follow up interviewee’s replies can be asked). Despite the impor-
tance, Denscombe (2014) again argues that analysis of data collected with semi-structured
interviews can be difficult and time-consuming. He also points out that the impact of
the interviewer and of the context means that objectivity and consistency maybe hard to
achieve, and also the data from interviews are based on what people say rather than what
they do.

Ayres (2008) points out that an interview guide is prepared in advance by the researcher
who uses semi-structured interviewing. Bryman (2016) asserts that the formulation of
questions for an interview guide involves: General research area; Specific research questions;
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Interview topics; Formulate interview questions; Review/revise interview questions; Pilot
guide; Identify novel issues; Revise interview questions; Finalize guide. In the formulation
of the questions for the interview guide used in this study, the general topic, the research
questions, and the task given to the students were considered. The interview guide was not
piloted and revised in this study. The interview guide was prepared in a way which gives
the researcher all the necessary information that the students worksheet could not provide
(see Appendix A on page 149, for the interview guide used in this study) . The form of
semi-structured interview used in this study was one-to-one, involving the researcher and an
informant representing his/her group. Group interviews could be useful in this study since
in one-to-one interview, there is a limit of the number of views and opinions available to the
researcher. However, according to Denscombe (2014), one-to-one interviews are relatively
easy to arrange, is relatively easy to control, and it is far easier to transcribe a recorded
interview when the talk involves just one interviewee. These reasons and also the time
frame of the master thesis influence the choice of one-to-one semi-structured interviewing
in this study.

The author/researcher took the role of interviewer for the students interviews and asked
some scripted questions. Follow-up questions were also asked when needed as the re-
searcher seeks to gain better insight into students’ thinking. Hints and clarifications were
given to students where necessary. The students responded to the questions both verbally
and sometimes also use paper-and-pencil during the interviews. A small and quiet study
room within the upper-secondary school was booked and used for the interviews. The stu-
dents were cooperative and not nervous during the interviews since the researcher had met
them on several occasions before the interviews and also anonymity was guaranteed. The
students who took part in the interviews willingly volunteered to represent their respective
groups. All the interviews were audio recorded.

The kind of questions used in the study and the justification of using such questions are
presented below:

1. Have you solved or encountered similar problems like these algebraic word problems at
class before? Were there any difference? Can you tell me what the difference was?

The rationale behind the use of this question is to find out how the previous
experiences of the students influence their working processes. The question also
seeks to address the transfer of problem solving ability of the students. The word
problem task given to the student was different in context but similar in terms
of equations (that is, the translated equations from the word problem) when
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compared to the usual task solved by the students at school. According to Fuchs
et al. (2004), mathematical problem solving is a transfer challenge requiring
children to develop schemes for recognizing novel problems as belonging to
familiar problem types for which they know solutions. Reed et al. (1985) on the
other hand also argue that most students are not able to apply problem solving
skills they learned recently to solve similar algebraic word problems.

2. Which of the questions among the algebraic word problem task, was the most difficult?
Can you tell me why? How about the easiest? Why?

In this question type, the difficulty level is measured within the four categories;
Abstract Factual, Abstract Hypothetical, Concrete Factual and Concrete Hy-
pothetical described by Caldwell and Goldin (1979, 1987). Caldwell and Goldin
(1987) argue that at all levels (both elementary and secondary school), concrete
hypothetical problems are more difficult compared to concrete factual problems
in a large effect, however at the elementary school level and to a lesser extent
at the junior high school level, abstract hypothetical problems are actually less
difficult than abstract factual problems.

3. Can you tell me the processes you went through in solving these algebraic word problems?
(a) How did you know your answer was right? (b). Do you know of any other method used
in solving these algebraic word problems? Can you tell me? (c). Was it helpful when you
solved these questions in a group? How? How about solving them individually?

4. Questions about specific errors found in their solutions to the algebraic word problem
tasks.

These questions mainly help to answer the first research question “How do upper
secondary students justify their strategies for solving algebraic word problems?”
The standard process that will be used as a measurement of students’ justifi-
cation is Polya’s (2004) description of the four stages one goes through when
solving a problem. That is Understanding the problem, Devising a plan, Car-
rying out the plan and Looking back. The third sub question under Question
3, seeks to find out how working in a group influence their working processes.
Question 4 however seeks the explanation and conceptions of students about
specific errors found in their solution to the algebraic word problem tasks.

5. Can you see any connection between the mathematics you learn at school and the outside
world? Why?
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6. How often do you solve mathematical modelling task at school? Any reason?

The questions seek to find out if the students are able to relate or see the con-
nection between the mathematics they learned at school and the real world.
According to the National Council of Teachers of Mathematics (2000), in order
to meet new challenges in school, work and life, students will have to adapt
and extend whatever mathematics they know. The questions also seek to find
out the students’ previous experiences in the solving of mathematical modelling
task. The experiences of the students can be related to their current perfor-
mance in the modelling task.

7. What is your opinion about the modelling task you solved recently? Does this modelling
task has any connection between the mathematics at school and the outside world? Why?

The question seeks to find out the opinion of the students about the modelling
task and if there is any connection between the mathematics and the real world.
They can also talk about the difficulty level of the task, which gives an idea if
the task offers low floor allowing even below-average performing students to en-
gage with minimal prerequisite knowledge and skills and high ceiling providing
opportunities to explore more complex concepts and representations.

8. Can you tell me the processes you went through in solving this modelling task? How did
you know your answer was right?

9. Please, interpret your modelling results to me?

10. Questions about specific errors found in their solution to the modelling task.

The questions seek to find out the modelling processes of the students. Accord-
ing to Garfunkel and Montgomery (2016) and Giordano et al. (2013) the pro-
cesses; Identify the problem, Make assumptions, Solve or interpret the model,
Verify the model and among others are helpful steps or stages when one is solv-
ing a mathematical modelling task. So, to what extend did the students use this
processes, directly or indirectly? At another point, these questions help to an-
swer the second research question “How do upper secondary students interpret
their findings when solving an algebraic word problem in a form of mathemat-
ical modelling?” That is, their use of the different representations to explain or
justify their solution or model. Question 10 however seeks the explanation and
conceptions of the students about specific errors found in their solution to the
modelling task.
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11. Will you want more of the modelling task at school? Why?

The rationale behind this question is to find out whether the student found
the modelling task interesting and are likely to engage themselves with more
of the modelling task. According to Stillman (2007), at the upper secondary
level (especially in some European countries) there is a strong bias against
mathematical modelling as the prevalent attitude is that high level mathematics
is what is important. Garfunkel and Montgomery (2016) on the other hand
argue that modelling in the high school setting can be used as motivation for
learning new techniques and new content; small modelling activities can be used
to reinforce new concepts and to illustrate their applications; more extended
modelling activities help students pull together ideas from different parts of a
course and from different courses.

4.2.4 Data management

Bryman (2016) argues that in qualitative research, the interview is usually audio-recorded
and transcribed whenever possible on several occasions. The interviews in this study were
audio-recorded and the interview recordings of each participant took approximately an
average of 14 minutes. Bryman (2016) points out that the problem concerning transcribing
interviews is that, it is very time-consuming and that it is best to allow around five-six
hours for transcription for every hour of speech. Listening to the audio-recordings after
the interviews was the first step and then a thorough transcription of an average of one
hour thirty minutes were made.

Van den Eynden et al. (2011) argues that data storage strategy is important for the fact that
digital storage media are inherently unreliable. In order to prevent unauthorized persons
from accessing the raw data, the interview recordings were stored on the University of
Agder server (for which the researcher was the only person that had access). Pseudonyms
were used during the transcriptions for the purpose of anonymity. In the final process, the
audio-recordings will be completely deleted within a period of six months after the research
is done.

4.2.5 Strategy for analysis

Denscombe (2014) defines qualitative data analysis as the process of bringing order, struc-
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ture, and interpretation to the mass of collected data. He further points out that the
analysis of qualitative data can take a number of forms that reflects the particular kind
of data being used and the particular purposes for which they are being studied. In this
sense, there is no single approach to the analysis of qualitative data that covers all situ-
ations. In this study a qualitative data analysis approach was used. Denscombe (2014)
lists some advantages of qualitative analysis: there is a richness and detail to the data;
there is tolerance of ambiguity and contradictions; and there is the prospect of alternative
explanations. In contrast to the advantages he argues that: the data might be less rep-
resentative; there is a possibility of decontextualizing the meaning; and there is also the
danger of oversimplifying the explanation.

If the process by which people went about analyzing their data or the kind of assumptions
that informed their analysis is not known, then according to Braun and Clarke (2006, p.
7) "it is difficult to evaluate their research, and to compare and/or synthesise it with other
studies on that topic, and it can impede other researchers carrying out related projects
in the future". The analysis of this study was driven by the research questions and that
thematic analysis method was the main tool used in analyzing the data. Braun and Clarke
(2006) defines thematic analysis as a method for identifying, analysing, and also reporting
patterns (themes) within data. They also point out that a theme (as in the definition)
captures something which is important about the data in relation to the research question,
and also represents some level of patterned response or meaning within the data set.

In this study, the six-phases of analysis by Braun and Clarke (2006) was used as a frame-
work for conducting the thematic analysis. This phases are: familiarizing yourself with
your data; generating initial codes; searching for themes; reviewing themes; defining and
naming themes; and producing the report.

Reading and re-reading the transcripts and the students’ worksheets was the first step
taken in this study. Notes were made and early impressions were jotted down during the
readings. In the second stage, the data was organized in a meaningful and systematic
way. Each segment of data that was relevant to or captured something interesting about
the research question was coded. The transcripts and worksheets were coded manually
by writing notes on the texts, using highlighters and coloured pens in indicating potential
patterns. Interesting aspects in the data items that formed the basis of repeated patterns
(themes) across the data set were identified during the third stage (see Table 9, a table
with the preliminary themes). In this third stage, the codes had been organized into
themes that seemed to say something about the research questions. In the fourth stage,
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the preliminary themes were reviewed, modified and developed. That is, main themes,
sub-themes and sub-subthemes were developed from the preliminary themes (see Table 10,
a table with the main themes and sub-themes).

Table 9: Preliminary themes.

In the fifth stage, the essence of what each theme is about was identified (that’s the final
refinement of the themes). During the process of the fifth stage, the following questions
questions were considered: What is the theme saying?; How do the subthemes interact
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Table 10: Themes at the end of the fourth phase.

and relate to the main theme?; and How do the themes relate to each other? Under each
individual theme a detailed analysis was conducted. In the final stage, the final analysis and
write-up is presented. A detailed account of the final analysis is given in the next chapter
(See Tables 12, 13 and 14 for the summary of results with codes created for both the
algebraic word problem tasks, mathematical modelling task and the interview transcripts).
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4.3 Ethical Considerations

This study was subject to certain ethical issues. In the start of the research, permission to
have contact with the students was sought from the head of the natural science department
at the upper secondary school located at the Southern Norway. The mathematics teacher
of these students also granted approval for the research activities after several communi-
cations. The students voluntarily opted to participate in the research study without any
influence from their teacher, after explaining to them what the study was about. The
head of department, teacher and students were informed about the approval of the data
collection by the Norwegian Centre for Research Data-NSD (see Appendix B on page 150,
for all the information given to the students prior to the research activities).

All participants reported their acceptance regarding their participation in the research,
through a signed consent and information letter. The aim of the letter was to reassure
participants that their participation in the research is voluntary and that they were free
to withdraw from it at any point and for any reason. The superiors of participants under
age 16 also signed the consent and information letter. The participants had the chance
of asking any question regarding the research activities and that they were reassured that
their answers were treated as confidential and used only for academic purposes and only
for the purposes of this particular research. For the purpose of anonymity, pseudonyms
(Bjørg, Julie, Hilde, Eirik, Tonje, Helge and Arvid) were used when writing the research
report. Participants were not harmed or abused, neither physically nor psychologically,
during the conduction of the research. In contrast, the researcher attempted to create and
maintain a climate of comfort. The voice recordings were deleted five months after the end
of the research study. References from all the literature used in this study are provided
throughout the text, to avoid any form of plagiarism.

4.4 Validity and Trustworthiness

The findings of this research study have not been solely influenced by the researcher’s
point of view and values. The interpretations of the analysis are emphatically not the
ultimate and that others could interpret the empirical data differently to some extent but
not completely. In view of this the researcher used the inter-coder reliability31 to find out
the extent where an independent person agrees on the coding used in this study with an
application of the same coding scheme. The approach used in this study can be applied

31Inter-coder reliability is defined and explained in the next section
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to some areas of mathematics other than algebra. The findings could be more interesting
if there were observations of both the teacher and students during mathematics lessons
and also video recordings during the research activities. This could give more information
about the students’ discussions and details of their working process. Since there was no
opportunity for lessons observation, any discussion on the mathematics lessons at school
was based on the information given by the teacher. In view of this, we can not strongly
argue about the techniques the students used in this study in relation to what they normally
do at class. We can not also generalized the findings or results since only seven students
were interviewed and a total of 23 students participated in this study. In conclusion, the
results of this study is only meant to be suggestive and any conclusions drawn are tentative.

4.4.1 Inter-coder reliability

Inter-coder reliability refers to the extent to which two or more independent coders agree
on the coding of a data of interest as they apply the same coding scheme (Lavrakas, 2008;
Lombard et al., 2002). Kristoffer32 and I had a meeting that lasted approximately three
hours, for the reason of checking the reliability of the coding schema that I had developed
and applied during the analysis of the data. During the meeting, I first explained to
Kristoffer what the research study was about and the kind of data I collected. I also
explained to him the codes I developed from the students’ worksheet and the interviews
(see Table 9 for the preliminary codes) during the early stages of the analysis. Kristoffer
studied the definitions and the table and when he confirmed that he had understood the
codes, he was given the students’ worksheet and the interview transcripts (that presented
the coding I had already made) to code. Kristoffer agreed with the codes developed from
the students’ worksheet because they were standard codes following the four phases of
problem solving by Polya (2004) and the modelling cycle by Garfunkel and Montgomery
(2016).

Kristoffer did not agreed to some of the codes developed from the first five interview
transcripts because he saw them as contradictory. Table 11 below shows a comparative
table of my coding and Kristoffer’s coding of the first five interview transcripts. From
Table 11, Kristoffer introduce three new codes (Shown in a red colour: DI33, VAO34 and
WNB35). At the end of the process I used 44 codes in my coding of the first five interview

32A master student at the Department of Mathematical Sciences, University of Agder
33Different interpretation
34Students verified answer with other group members
35group work helpful but it might not be the best
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Table 11: A comparative table of the researcher’s and Kristoffer’s coding on the first five interview
transcript.

transcripts whereas Kristoffer used 40. In the end, the percentage of our coding agreement
for the first five interview transcripts was 90.91% (≈ 40

44
× 100%).

It can be seen in Table 11 that the only difference in our coding was the four codes that
Kristoffer missed: 1 ND, 2 GWH and 1 GNH codes. I had a discussion with Kristoffer
afterwards, where I explained why I coded those four codes at those moments but he agreed
to some point and suggested that I should use the codes I developed together with what
he found for clarity. In the end I only included the code VAO and left DI and WNB out.
The reason for leaving these codes out was because the DI is embedded in both D36 and

36word problem difficult
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ND37 whereas WNB is embedded in both GWH38 and IWH39.

The data analysis and findings of this study is presented in the next chapter.

37word problem not difficult
38Group work helpful
39Individual work helpful
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5 DATA ANALYSIS AND FINDINGS

In this chapter, the analysis of data regarding the two research questions is presented.
The purpose of the study was to investigate, how upper secondary students’ justify their
strategies when solving algebraic word problems and also how these students’ interpret
their findings after solving a mathematical modelling task. The analysis involves students’
responses to both the worksheets and the interviews for the purpose of answering the
research questions.

This chapter consists of three sections where the first section presents the summary of
results from the students’ worksheets and the interviews in a table form. The next section
presents the analysis on algebraic word problem, including the students’ prior knowledge,
the type of word problem and how the students mathematize the various algebraic word
problem tasks. Finally, the last section presents the analysis of mathematical modelling
which also entails the modelling process/cycle of the students, the various mathematical
representations used, students’ interpretations of their model, students’ conceptions of
modelling in school activities and the usefulness of group work.

Pseudonyms are given to the students representing each respective group (Bjørg, Julie,
Hilde, Eirik, Tonje, Helge and Arvid). I repeat that, the results from this study can not be
generalized but are only meant to be suggestive and any conclusions drawn are tentative.

5.1 Summary of Results

The summary of results from both the students’ worksheets and the interviews are all
presented in a table form. The codes used in the various summary of results tables are
defined in Table 10 (see page 71).

Table 12 below presents the summary of results from the students’ algebraic word problem
worksheets. Recall that the students worked together in groups (7 groups) to complete the
algebraic word problem tasks. In each algebraic word problem task, a summary of results
of how the students mathematize the word problem task is presented. From Table 12, each
task has it own results for the 7 groups. The empty spaces (or dash) in the table represents
no response. I will further explain this table in Section 5.2.3 with some excerpts from the
students’ worksheets and interview transcripts as evidence.
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Table 12: Summary of results from the students’ algebraic word problem worksheets (Codes
defined in Table 10 on page 71).
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Table 13: Summary of results from the students’ modelling worksheets (Codes defined in Table
10 on page 71).

Table 13 also presents the summary of results from the students’ modelling worksheets.
We again recall that the students worked together in groups (7 groups) to complete the
mathematical modelling task. The empty spaces in the table represents no response. If
you look at Table 13, Group 7 did not formulate an equation (FE) however their equation
was seen through their graphical representation (GR). All the groups that formulated an
equation for the second job described in the modelling task (on page 60) had an incorrect
equation (IE). The equation for the second job by Group 5, 6 and 7 were similar whereas
that of Group 1 and 3 were also similar. Only Group 2 had both equations to be incorrect.
Group 5 did not clearly state any assumption (MA) but they indirectly considered some
assumptions that was only seen in the equation they used. I will further explain this table
in Sections 5.3.1 and 5.3.2 with some excerpts from the students’ worksheets and interview
transcripts as evidence.
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Table 14: Summary of results for the interviews (Codes defined in Table 10 on page 71).

Table 14 presents the summary of results for the student interviews. Results of each inter-
view question (see page 65 for the interview questions) are presented in the table. Questions
3, 4, 8, 9 and 10 are not included in the table. These questions where specifically asked for
clarity on what the students presented in their worksheets. Questions 4 and 10 respectively
asked about the specific errors the students made in both solutions to the algebraic word
problem and the mathematical modelling task. Questions 3 and 8 respectively asked about
the processes the students went through in solving both the algebraic word problem and
the modelling task whereas Question 9 asked about the students’ interpretations of their
modelling results. Recall that one student from each group was interviewed. The title
’Group’ used in Table 14 represents the individual students representing their respective
group. The results from the interviews are the conception of an individual representing
his/her group. The empty spaces (or dash) in the table represents no response. I will
further explain this table in Sections 5.2.1, 5.2.2, 5.3.4 and 5.3.5 with some excerpts from
the interview transcripts as evidence.
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The next two sections present a detailed account of the results on both the algebraic
word problem task and the mathematical modelling task. Nevertheless, evidence (that is,
’excerpts’ from the transcriptions and students’ worksheets) is provided in the form of an
analysis or interpretation from the responses of the participants.

5.2 Algebraic Word Problem

This section first starts with an analysis of the prior knowledge or the transfer of problem
solving of the students. Next to this, is an analysis on the type of word problem and finally
an analysis of how the students mathematize the algebraic word problem is presented.

5.2.1 Prior knowledge/Transfer of problem solving

The algebraic word problem tasks given to the students were isomorphic40 to the word
problems they usually solve at school, that is the word problem is different in terms of the
story context but similar in terms of the equations involve (see Figure 10 on page 58 and
Appendix F on page 181, for the comparison between the word problems). If you look at
Figure 10 on page 58, the four word problem tasks given to the students have the same
equations but are different to each other in terms of the story context. For instance: Task
1 is isomorphic to Task 2, 3 and 4; Task 2 is isomorphic to Task 1, 3 and 4; and Task 3 is
equivalent to Task 4.

The students interviewed gave their thoughts about the similarities or differences of the
tasks they solved, compared to what they normally solve at school. Results of the first
interview question (Q1) in Table 14, which asked students whether they have solved or
encountered similar algebraic word problems before, generally revealed that the students
have some prior knowledge about the tasks they solved. This conclusion is derived from
the fact that most of the students see similarities (SSS) but not differences (SSD) in all the
tasks. Arvid from Group 7 did not only answer whether he sees similarities or differences
but also provided the reason why he sees similarities and not differences. Arvid offered the
following response:

661. Teacher: Have you solved or encountered similar problems like these [Points at the
algebraic word problem task] algebraic word problems at class before?

663. Arvid: Yes, we have looked at similar task.

40The different types of problem solving transfers are defined and explained in Section 3.3.1 (see page
33).
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664. Teacher: Was it very similar?
665. Arvid: Umm, quiet but it wasn’t like in text form, it was like only umm.. equation.

Excerpt 5.2.1.0

In Arvid’s response, he was able to identify that the word problems they solve at school
were similar in terms of the equations involve but different in terms of the story context,
compared to the task they solved. One student found differences in the first task whilst
another student also found some differences in Task 3 and 4. Tonje and Helge from Group
5 and 6 respectively offered the following response:

452. Teacher: Have you solved or encountered similar problems like these [Points at the
algebraic word problem task] algebraic word problems at class before?

454. Tonje: Yes, the three last ones, I would say but not the first one. But they are all
the same though, like kind of.. we have been through this in pre-school or high school
[Laughs]. No, middle school.

568. Helge: Umm.. Yes, in algebra. So, we have encounter several of these.. umm, number
one um number two, I was not as familiar with the third one um and I was not as familiar
with the fourth one, but the first and second one...

Excerpt 5.2.1.1

Tonje specifically indicated that she was not familiar with the first task but rather the
three others. She also told me of her experiences in solving such task at the middle school
level. Helge on the other hand was not familiar with the third and fourth tasks. On the
whole, this results shows that all the students have some prior knowledge about the tasks
they solved. It is not surprising that the students performed well, although few of the
students were unfamiliar with some of the algebraic word problem tasks given.

In the next section, the analysis of the type of word problems and students’ conceptions
about the difficulty of the various tasks is presented.

5.2.2 Types of word problems

The algebraic word problem tasks in Figure 10 on page 58 given to the students were
concrete factual41, concrete hypothetical, abstract factual and abstract hypothetical re-
spectively. In the first and third tasks no change is described (all the information given in
these questions are factual). In the second task, the girls are not really 13 times as many
and the boys are also not really twice as many (all the information given in the question
are hypothetical), the same applies to the forth task.

41The types of word problems are defined and explained in Section 3.3.1.1 (see page 36).
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The students interviewed gave their thoughts about the difficulty of the tasked they solved.
Results of the second interview question (Q2) in Table 14, which asked students to comment
on the most difficult task among the algebraic word problem tasks (see page 66 for the
second interview question), revealed that most students (4 out of 7) see the first task as
a difficult (D) task. On the other hand, only two students from Group 1 and 4 among
the others saw all the tasks as not difficult (ND). Among these two students Bjørg from
Group 1 provided the reason she failed at the first try although she sees all the tasks as
not difficult. Bjørg offered the following response:

12. Teacher: Ohk!.. So, when you went through the questions, which of the questions among
the algebraic word problem task was the most difficult?

14. Bjørg: Umm.. None of them actually. It was like same form.. It was kind of same
questions. It had similar, I don’t know, equations, but um I kind of forgot to read
through whole text, like whole problems, so I forgot to sum up in the end, so I got
failed at the first time, but when I went through it like, I read the problem, then I got
the right answer as the others in my group.

Excerpt 5.2.2.0

In Bjørg’s response, the task given were of the same form, that is the task had similar
equations. However, she forgot to read through the whole text and as a results she failed
in her first attempt. And then, when she reread the problem fully, she had the same answer
as the others in her group. In her account, the tasks itself is not difficult but the problem
was about not reading the whole text before solving it.

From Table 14, four of the students (from Group 2, 3, 5 and 7) interviewed pointed out that
the first task was the most difficult among the other tasks. Tonje from Group 5 provided
the reason why she sees the first task as difficult and the impact the first task had on the
other tasks. Tonje offered the following response:

464. Teacher: Ohk! So, which of the questions was the most difficult?
465. Tonje: The first one, because we had to like get into the way of calculating the other

task as well. So, when we first solve the first one, we were kind of in the game, so we
knew how to solve the others [Laughs]. The first one is like a very difficult warm up
whilst the three last ones were kind of like, ohk we’ve done this, it’s ohk now.

Excerpt 5.2.2.1

In Tonje’s response, the first task was the most difficult since they have to get used to the
way of solving it, and the solution of the others followed easily after solving the first task.
One student, on the other hand, pointed out that the third and the fourth task were the
most difficult tasks. Helge from Group 6 offered the following response:
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571. Teacher: So, when you went through the questions, which of the questions among the
algebraic word problem task was the most difficult?

573. Helge: Umm, definitely these two [Points at Task 3 and 4], number three and four,
because I didn’t really know how to solve them as um, I had solved some tasks that
were kind of some link, but I didn’t really solve the exact same ones, umm and so those
were the most difficult ones, definitely.

Excerpt 5.2.2.2

Helge sees the third and fourth tasks as the most difficult, since he had not really solved
tasks that are similar to these tasks. On the whole, most of the students view the concrete
factual word problem task (Task 1) as the most difficult. And their reason was that, since
it was the first task they have to get used to the way of solving it (For example, see
Excerpt 5.2.2.1) . By assumption, if the tasks were rearranged in terms of numbering, the
students may then have chosen the first task as the most difficult task per the reason they
gave earlier.

The next section presents the analysis of how the students mathematize the algebraic word
problem tasks. Excerpts from the students’ worksheets will reveal how they justify their
strategies in solving the algebraic word problem tasks.

5.2.3 Mathematizing the word problem

If you look at Table 12, one can observe that under each task most of the students justify
their strategies for solving an algebraic word problem by mainly using known technique,
the substitution method (SM), to solve the algebraic equation(s) derived from the word
problem. The process of mathematizing begins with understanding the word problem,
translating the word problem using variables, setting up an algebraic equation, solving the
equation using a known technique, verifying and presenting the final answer. The students
usually use the substitution or additions/elimination techniques to solve linear equations
or simultaneous sets of two linear equations derived from algebraic word problem tasks at
school. The analysis presented in this section is based on the group work and not individual
work of the students.

The solution to the first task on students’ worksheet in Table 12, revealed that 5 groups
used the usual known technique (SM and AEM) to mathematized the first task successfully.
However, there was a computational error in the solution of one of these 5 groups’ worksheet
(See Figure 14). Among these 5 groups only Group 7 used the addition/elimination tech-
nique. Group 7 provided this solution on their worksheet (see Figure 13, for the solution
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to Task 1 by Group 7).

Figure 13: Group 7’s solution to Task 1.

From Figure 13, we observe that the students translated the word problem into variables
(g = goats and h = hens) and setup an algebraic equation (that is, simultaneous set of two
linear equations). They used the additions/elimination technique to compute the algebraic
equations. When the student representing Group 7 was asked about the processes they
went through in solving Task 1, Arvid offered the following response:

671. Teacher: Can you tell me the processes you went through in solving these algebraic word
problems?

673. Arvid: We tried a lot of different equations, we knew that we needed a set of linear
equations because it was too many variables, so we started to sort of find the right
equation, but we use a little time, because we had forgotten how to do it.

676. Teacher: So, what processes did you use in finding the right equations?
677. Arvid: We just tried different, and then we just look if some of them may give us the

right answer, so yeah, we just tried a lot of different ones.

Excerpt 5.2.3.0

In Arvid’s response, he stated that his group tried a lot of different equations since they
knew they needed a set of linear equations to solve the problem. They tried to organized
their data (that’s the variables and information from the problem) and find the right
equation per the information they had. Interestingly, Arvid noted that they spent some
time in finding the right equations since they had forgotten how to go about it. Group 1
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used the direct substitution technique to solve Task 1 (see Figure 14, for the solution to
Task 1 by Group 1). They made an error when summing up the total number of goats and

Figure 14: Group 1’s solution to Task 1.

hens, although the they setup the right equation for the word problem. Bjørg, representing
Group 1, offered the following response when prompted about the error:

41. Teacher: How many animals in all does the farmer have?
42. Bjørg: Then I got that, 20 goats in the garden. No! In the farm. Then I plus this

together [Points at 20 goats and 33 hens] and I got 55 as an answer.
59. Teacher: Looking at 20 goats and 33 hens, you mean the sum is 55?
60. Bjørg: Oh!! Wait, what, 55, it supposed to be 53.

Excerpt 5.2.3.1

Bjørg just stated the sum of goats and hens that they calculated in their worksheet but
when she was challenged about the total sum, she quickly had a second thought about the
calculation of the total sum where she identified the error.

Interestingly among the seven groups, only two groups used an arithmetic technique to
solve Task 1. Group 2 first tried the algebraic method but when they could not arrive at
a desired solution they then used the arithmetic method. When Julie from Group 2 was
asked why the first attempt failed (see Figure 15, for the first attempt solution of Group
2), she offered the following response:

197. Teacher: Ohk! How come the first attempt in question one failed?
198. Julie: Umm.. I don’t know. . . Yeah, because when we.. These are the same [Points

at (2x+13∗2)+4y = 146 and 4y = 146−(2x+13∗2)] and this [Points at (2x+13∗2)] is
negative, like this [Points at (2x+13∗2)] was subtracted by this [Points at (2x+13∗2)]
one, because we will sort the x’s in one side and then this [Points at 146] one will go
over to this [Points at 146] side, and then they will just subtracted each other and then
the equation would be zero, equals zero [Laughs]. I don’t know if that is right [Laughs].

Excerpt 5.2.3.2

In Julie’s reasoning, after setting up the equation (2x + 13 ∗ 2) + 4y = 146 in Figure 15,
they made 4y the subject (that is, 4y = 146 − (2x + 13 ∗ 2)) and then substituted it into
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Figure 15: Group 2’s first attempt of Task 1.

the first equation to eliminate y and rather find x. However, in the end they found that
the variables cancel each other and that they have 146 in both side of the equation. The
error in the first attempt was because they wrote 4y instead of 4x in the first equation,
since if the goats are x then the hens should be 13+ x or if the goats were y then the hens
should also have been 13 + y. When the algebraic method failed, Group 2 resorted to an
arithmetic method (see Figure 16, for arithmetic solution to Task 1 by Group 2). Julie
offered the following response when asked to explain her working process:

154. Teacher: Ohk! So, can you tell me the processes you went through in solving these
algebraic word problems?

156. Julie: Umm. Well, I think we first thought about it which it which way we could
solve this, if we could use umm two equations like x and y for the hens and goats um.
But then I think we figured out that, that did not worked umm and then we tried to
look at how many um animals they were or legs they were in um altogether. Umm, then
we found out that since they were 13 more hens than goats we could just um subtract
the hens legs from all of the legs. And then we could just part the legs in two um. . .
Or divide them [Laughs] in two, and find out how many they were, I think.

Excerpt 5.2.3.3
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Figure 16: Group 2’s arithmetic solution to Task 1.

Julie explains that since there are 13 more hens than goats, they subtracted (13× 2) hen
legs from the total legs and then equally divided the remaining legs among the goats and
hens. From Figure 16, after dividing equally the remaining legs, they further divided by
the number of legs of a goat and a hen respectively. And that they added the 13 to 30
making a total of 43 hens. In the end they had a total of 58 animals, which is a correct
sum (that is [15× 4] + [43× 2] = 146).

Group 5 also used the arithmetic method but in a different way (see Figure 17, for the
arithmetic solution to Task 1 by Group 5). Group 5 used the same method as Group 2
but the difference is when they noted that the goats have twice as many legs as the hens
and therefore they divided the remaining 120 legs into 3.
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Figure 17: Group 5’s arithmetic solution to Task 1.

Below is the written text by Group 5 in Figure 17:

We tried and failed repeatedly, but finally found the solution. 146 = the
amount of legs combined. Since there is 13 more chickens than there
goats, we decided to first remove 13 chickens from the combined legs all
together. Chickens normally have 2 legs each, so we subtracted 26 from
146. We were left with 120 legs. Since a goat has twice as many legs
as a chicken (4) we decided to divide 120 by 3. We were left with 40,
meaning that the chickens legs combined were 40, and the goats legs
combined were 40.2. We then divided 40 by 2 and 80 by 4 and found
out that there were 20 chickens (+13) and 20 goats all together.

From Table 12 on page 78, if you look at the results of Task 2 from the students’ worksheet,
all the groups used the usual known techniques (SM or AEM) to mathematize the second
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task successfully. It is also seen from the results of Task 2 that all the groups but one used
the direct substitution method (SM) setting-up a linear equation whilst only one group
setup a simultaneous set of two linear equations and used the additions/elimination (AEM)
technique to solve it. The same situation applies to Task 3 but in this time around one par-
ticular group misinterpreted (MT) the task which led to an incorrect expression/equation.
Figure 18 shows how Group 7 misinterpreted (MT) the third task during the solution pro-
cess. If you look at the solution in Figure 18, you see that there is a missing link between

Figure 18: Group 7’s solution to Task 3.

the first and second sentence in Task 3 (see Figure 10 on page 58). That is, in the first
sentence they have the second number to be x and the given number to be y = x + 15.
When it comes to the second sentence which says ’the sum of two times the first number
and four times the second number’, they mistakenly took the first number to be x and the
second number to be y. The response of Arvid from Group 7 reveals that the students
were not able to identify that the given number is the same as the first number. Arvid
offered the following response when asked to explain how he solved the third task:

693. Teacher: Going back to the third and fourth questions. Can you resolve it again for me?

...............

698. Arvid: The value of a given number is fifteen more than the value of a second number.
The sum of two times the first number and four times the second number is 162. So,
we put variables x and y, and we knew that x is going, umm y is going to be fifteen
more than x.

702. Teacher: So, y is the first number?
703. Arvid: y is the first number.
704. Teacher: And x is the second number?
705. Arvid: Umm, yes!
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706. Teacher: Ohk! Then the next line=
707. Arvid: =No! No! Wait, no x is the first. The second number is y.

...............

710. Teacher: And then we go to the next line.
711. Arvid: Umm, the sum of two times the first number, so 2x and four times the second

number 4y, which equals urr 162.

...............

715. Teacher: The first is x?
716. Arvid: Yes, and the second is y.
717. Teacher: So, it says the value of a given number is fifteen more than the value of the

second number.
719. Arvid: Yes, so it wasn’t. . . The first number was x, so the x is fifteen more than the

second number.
721. Teacher: So, the second number is y?
722. Arvid: Oh!! Ohk! Oh, so it was wrong [Laughs]. Ohk, so I don’t know what to do

then. . . It should be switch around?
724. Teacher: Yeah.
725. Arvid: Ohk!
726. Teacher: That’s why I asked about that.
727. Arvid: Ohk! So, it should be y + 15 equals x.
728. Teacher: So, it like the first line and the second line of the question.
729. Arvid: Ohk! So, we just misunderstood the task then.

Excerpt 5.2.3.4

Arvid misunderstood the task, he could not comprehend the task well which therefore led
to an incorrect expression. In Arvid’s reasoning, he considered the first number as x and
the second as y. However, when the task asked that the given number is fifteen more than
the second number, he used the expression x+ 15 = y instead of x = y + 15. This reveals
that Arvid and his group members were not able to identify that the given number is the
same as the first number.

From Table 12 on page 78, the solutions to the fourth task on students’ worksheet revealed
that 2 out 7 groups misinterpreted (MT) the fourth task. If you look at Table 12 under Task
4, you can see that Groups 5 and 7 misinterpreted (MT) the word problem and therefore
used an incorrect expressions for the task. For Group 7, since Task 3 is equivalent to
Task 4, it is not surprising that they applied the same way of solving Task 3 to solve
Task 4. However, it is not the same as Group 5 since they successfully solve Task 3 but
misinterpreted Task 4 although Task 3 is equivalent to Task 4. Tonje from Group 5 offered
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the following response when asked to resolve Task 4 (see Figure 19, for the solution to Task
4 by Group 5):

492. Teacher: Ohk! Can you please explain question four in the algebraic word problem task
for me?

494. Tonje: So, um ‘A given number is six more than a second number’.
495. Teacher: Yeah.
496. Tonje: Umm, we put the second number as x, because you don’t add something to it,

and then the first number is then x + 6 because you add something. So, then we just
put in the umm the multiplications or the number.

499. Teacher: So, can you explain the multiplication for me?
500. Tonje: Yeah, so the first number you multiply with 4.
501. Teacher: So, the first number was x?
502. Tonje: The first number was umm, wait [Laughs]. Oh! I wrote something wrong

[Laughs]. Ohk! So, I might have done something wrong here, umm. I meant to put 4
there [Points at x + 6 in the equation] and 2 here [Points at x in the equation]. Ohk!
Yeah [Laughs].

Excerpt 5.2.3.5

Figure 19: Group 5’s solution to Task 4.

Tonje identifies the error in the process of resolving the task, the error here was that she
wasn’t able to identify that the given number is the same as the first number.

The results of the third interview question (Q3a) from Table 14 on page 80, which asked
students how did they know their answers were right, revealed that the students looked
back (LB) or substituted their answer in the equation to double check. Six students (out
of 7) verified their answers by looking back (LB), that’s substituting the final answer in
the equation to double check whether they are right. Among these six groups, Hilde from
Group 3 explains how her group members discuss the answer among themselves and also
think about the answer whether it sounds right or make sense. Hilde offered the following
response:
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311. Teacher: So, in the end how did you know your answer was right?
312. Hilde: . . . Umm. We just talked about it and we kind of try to see if we could do it

other ways or umm just use logic. So, we know that if there were 20 goats, and 20 goats
have 4 legs, that’s 80 legs. And if there were 33 hens and they have 2 legs, we just..
Yeah, we went round and put x equals 20 into the equation and see if it equals 146.

Excerpt 5.2.3.6

In Hilde’s reasoning, they thought about the answer, whether it sounds right or make any
sense; that is, working backwards using the answer she already got. For instance, in Task
1 she had the number of goats to be 20 and the number of hens to be 33. And that if goats
have 4 legs and hens have 2 legs, there will be 80 goats legs and (33× 2) hens legs and the
sum will be 80 + 66 = 146 as found in the equation.

In summary, the results revealed that the students use the known techniques mostly to
solve algebraic word problems. However, if they are not able to comprehend the word
problem or translate the problem text into a suitable algebraic expression, they reread the
problem and then use the arithmetic method to solve the algebraic word problem. It is
also seen in Table 12 on page 78, that very few of the students have difficulties (MT) in
comprehending abstract factual and abstract hypothetical word problems (Task 3 and 4).
The results also shows that all the students have some prior knowledge about the tasks
they solved (very few of the students were unfamiliar with some of the algebraic word
problem tasks). For this reason, it was not surprising that most of the students performed
well. The results again reveal that most of the students view the concrete factual word
problem (Task 1) as the most difficult, for the reason that it was the first task and they
have to get used to the way of solving it. By assumption, if the tasks were to be rearranged
in terms of numbering, then the students might have chosen the task that comes first as
the most difficult task.

The next section presents the analysis of the mathematical modelling activities of the
students.

5.3 Mathematical Modelling

This section has five sub-sections; the first subsection starts with an analysis of the mod-
elling process of the students. An analysis of the various mathematical representations
the student used is presented followed by an analysis of how the students interpreted their
model. Next to this, is the analysis of the students conception on modelling activities at
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school and the importance of group work. Tables 13 and 14 on pages 79 and 80 respectively
presents the table of summary of results from the students’ modelling worksheets and the
students interviews respectively.

5.3.1 Modelling process/cycle

In the modelling process, there is the need to transform the real world problem to a
mathematical problem by making some assumptions and also formulating an expression or
equation.

The results in Table 13 revealed that, six (out of seven) groups clearly stated their as-
sumptions (MA) whilst one group indirectly considered some assumptions (that was only
seen in the equation they used, see Figure 25 on page 101 for the algebraic and graphical
representation of Group 5’s solution). The modelling task requires two different equations
representing the two jobs described in Figure 11 on page 60. From Table 13, only one
group (that is Group 4) used the arithmetic method (AC) to find an expression and also
the break-even point of the two jobs, whilst the other groups formulated equations (FE)
and solved them the algebraic way. Figure 20 shows how Group 4 solved the modelling
task the arithmetic way. Although this particular group used the arithmetic method, they
were able to find the correct break-even point. They used direct translation of the problem
text alongside with numerical values in finding the desired solution.

Figure 20: Group 4’s solution to the modelling task.
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Five other groups formulated expressions/equations (FE) for the two jobs but the equation
for the second job was incorrect (IE) as seen in Table 13. Group 7 did not clearly formulate
an expression/equation (FE) but their equations were seen through the graphical repre-
sentation (GR) they used, however they also had the equation that describes the second
job in the modelling task to be incorrect (IE) (see Figure 28 on page 104 for the graphical
representation of Group 7’s solution). Two of these five groups (that is Group 1 and 3)
thought that the commission in the amount of 20kr per item she sells is what Kristin earns
the whole working period but not on the hourly basis.

Group 3 tried to find the break-even point (the point at which job 1 equals job 2, or the
number of items that Kristin must sell for Job 2 to be equal as Job 1) but got it wrong
since they formulated an incorrect expression for job 2. Figure 21 shows how Group 3
solved the modelling task by formulating two sets of equations for the respective jobs. If
you look at the second equation in Figure 21, we see that although the second equation is
incorrect (the correct expression should be [y = a

2
x + 20bx]), the student went further to

manipulate the two equations to find the break-even point.

Figure 21: Group 3’s solution to the modelling task.
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On the other hand, Group 1 had similar equations as Group 3 (see Figure 22, for the solu-
tion to the modelling task by the first group) but the students were not able to manipulate
the two equations to find the break-even point. This was as a results of the third variable
introduced in the second equation since the students are more used to two sets of equations
involving the variables x and y. Bjørg from Group 1 offered the following response when
asked for some clarifications on the second job equation:

109. Teacher: Ohk! What does the r means in the equation for the second job?
110. Bjørg: Umm. I think is for the amount of the items.
111. Teacher: So, is it the amount of items for only one hour or?
112. Bjørg: We thought that per item cost 20kr. So, x is the hour and r is the amount of

the items.
114. Teacher: Ohk! It means that you have x here [Points at 5x in the second equation] but

you don’t have it here [Points at 20r in the second equation].
116. Bjørg: No.
117. Teacher: Why?
118. Bjørg: Umm. . . .
119. Teacher: Maybe you can have x at both sides [Writes y = 5x+ 20xr]
120. Bjørg: It could be.
121. Teacher: Because every hour you have 20kr on each of the items you sell.
122. Bjørg: Yeah.
123. Teacher: Because, this [Points at the equation y = 5x+ 20r] sounds like only one hour.
124. Bjørg: Yeah, it makes sense. So, x could be on both sides or we could just write the

equation y equals (5 + 20r)x.
126. Teacher: Yeah. Did you checked the point at which equation 1 and 2 will be the same?
127. Bjørg: We didn’t, we thought that this had two different, whole different answer. So,

we did not.
129. Teacher: Maybe you didn’t consider this equation [Points at the equation y = 5x+20xr].
130. Bjørg: Yes, we didn’t quiet understood the second one, the second job.

Excerpt 5.3.1.0

Bjørg realized that the equation should have being y = 5x+ 20xr instead of y = 5x+ 20r

but when asked about the point at which both jobs will be the same, she noted that the two
equations are different with different answers. This was as a results of the third variable ,r,
introduced in the second equation. Bjørg’s conclusion reveals that Group 1 did not really
understood the statement for the second job which led to an incorrect expression/equation
(IE).



5.3 Mathematical Modelling 97

Figure 22: Group 1’s solution to the modelling task.

Below is the text written in Figure 22 by Group 1:

It all depends on your time spent working or your great selling skills.
Also of course if your minimal wage is extremely low, maybe sticking
with 20 per item would be better. But for Kristin’s own better perspec-
tive we would recommend using graphs, because it would be easier to
see the changes and variations based on time and salary. After exam-
ining and calculating upon a number of occasion, we came up with this
conclusion.

Group 5, 6 and 7 had a similar equation for the second job described in the modelling task
(their equation were different from Group 1, 2 and 3). These groups could not manipulate
the third variable in the second job equation, and that they used the idea that in every
hour Kristin earns a commission of 20kr on items she sells plus a constant half minimum
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wage (that is y = 50 + 20x, if the minimum wage is 100). This was done in order to have
two equations with only x and y variables that they can handle since they are more used to
such equations at school. The solution by Group 6 which presents the equation, numerical
values and graph gives a true representation of the solution of the other two groups (Group
5 and 7). See Figure 23, for the illustration of how Group 6 solved the modelling task.
In Figure 23, if you look at the two equations above and below the graph, the students
substituted some real values into the equations and used the values obtained to plot the
graph.

Figure 23: Group 6’s solution to the modelling task.

One group (Group 2) out of the other six groups (the groups with incorrect (IE) second job
equation) had both equations for the respective jobs incorrect. In Group 2’s solution (see
Figure 24, an illustration of the solution to the modelling task by Group 2), they considered
that in both jobs the minimum wage and half the minimum wage will be constant whilst
the number of hours only affects the additional 20kr above the minimum wage. If you look
at the two equations in Figure 24, they used the variable x where x in the first equation
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Figure 24: Group 2’s solution to the modelling task.

represents the number of hours but also represents the number of items in the second
equation. This was done to avoid the introduction of a third variable and only have the
x and y variables that they can handle or manipulate. Julie from Group 2 offered the
following response when asked to explain Group 2’s solution process in Figure 24:

230. Teacher: Can you please tell me the processes you went through in solving this modelling
task?

232. Julie: Umm. Well, first we read it and then we figured out that there was no specific
minimum wage, so we just set one just to.. a kind of put a picture on how it looks
umm. And then we put together the two equations because we wanted to use two and
then put them into a diagram in Geogebra and then find the similarities or where the
lines cross each other. But then we find out that the gradients were the same which
means they kind of parallel to each other umm, which made the task very confusing
because we thought much about it and then it just became more and more confusing.
But then we tried to, like think how it would be in real life if she sells much, she would
umm earn more with the um first or second job, yeah the second job which she sells
items and so if she sells like minimum two or three items she would earn even more
than the first one, even though the first one has like a better um salary in general when
you see it at first. So, we tried to put it in a diagram but I don’t know if it went right
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because the axis are different since the first equation has hours and the second one has
items so, yeah. And then we just concluded with that the second job would be more
umm, would better because she would mostly or umm, she is going to sell more than
two items an hour or three, because yeah, if it’s a summer job people go shopping all
the time [Laughs].

Excerpt 5.3.1.1

In Julie’s response, reading the problem and also making some assumptions was the first
step taken in solving the modelling task. They formulated two equations for both jobs and
tried to use Geogebra to find the similarities between the two equations (that is, where the
two equations crosses each other). In the process of finding the similarities they realized
that both equations have the same gradient (that is, the line graph of the two equations
were parallel to each other) which made the task more confusing for them. To resolve this
confusion, they try to think about how it would be in real life if Kristin sells more items.
They then found that if Kristin sells two or three items she would earn more.

From the mathematical problem to a mathematical solution, the students would have to
solve the equations and also verify their model by looking backwards to check their answer.
Results from the students’ worksheet in Table 13 on page 79 revealed that apart from Group
4 who successfully used the arithmetic method, two groups (Group 2 and 3) out of the
six groups that had their equation to the incorrect (IE), solved (STE) their equations by
finding the gradient and break-end point of the two equations respectively (see Figures
24 and 21). The remaining 4 groups did not solve the equations because they couldn’t
manipulate the third variable in the second equation. If you again look at Table 13, only
two groups (out of the 7 groups) verified (VM) their model whereas the other five groups
did not verify their model.

In summary, the results revealed that few of the students used the arithmetic method (AC)
to successfully solve the modelling task whilst most of the students formulated equations
(FE) to solve the model. However, not all the students who used the algebraic equations
could set up the right equation (mostly they had the second job equation incorrect). These
students were not able to find the correct break-even point since it was difficult to manip-
ulate the third variable in the second equation, and that they tried to get rid of the third
variable to have only x and y variables (since they are more used to simultaneous equations
with two variables). The results also revealed that few of the students were able to solved
and verified the equations they formulated but then their equations were incorrect.

The next section presents the analysis of the various mathematical representations the
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students used for clarity when interpreting their model.

5.3.2 Mathematical representations

The students used graphical (GR), numerical (NR), algebraic (AR) and verbal (VR) rep-
resentations in finding a suitable model for the modelling task. The results in Table 13 on
page 79 revealed that the students (in each group) used at least two of the representations
above when solving the modelling task.

The students used a graphical representation (GR) to provide a clearer picture of the real
valued function they modeled from the task. The results of the solution to the modelling
task on students’ worksheet in Table 13, revealed that five groups (out of seven) used
graphical representation to explain their model. Group 5, 6 and 7 had similar graphs
since their formulated equations where the same (see Figures 23 and 25, for the graphical
representations of Group 6 and 5 respectively).

Figure 25: Group 5’s solution to the modelling task.

In Figure 25, the students used the same x variable to represent the number of hours in first
equation and number of items in second equation. Although the expression/equation for
the second job is incorrect, their graph gives a clear picture of the two equations (y = 120x

and y = 20x+ 50).
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Group 1 had the same graph as Groups 5 and 6, but the difference was that they considered
the situation where no item was sold (see Figure 26, for Group 1’s graphical solution to
the modelling task). From Figure 26, Group 1 used the graph to find out the difference
between the two jobs if no item was sold. That is, a person will earn more in job 1 in
situations where there is no sales. The two equations in Figure 26 were y = (10+20)x and
y = (5 + 20z)x, where they considered z = 0 (that is the point where no item was sold).

Figure 26: Group 1’s graphical solution to the modelling task.

Group 2’s graphical representation of the modelling task was quiet interesting. In Figure
27 (Group 2’s graphical solution to the modelling task), the x variable in both equations
represents the number of hours but there is a hidden variable multiplying 20x in the second
equation (y = 40+ 20x). It is seen beneath the graph in Figure 27 that, if a person sells 3
or 2 items then he/she will earn 40+60x or 40+40x respectively (the hidden variable here
is z, that is y = 40 + 20xz). This was done by the students to discard the third variable
in the second equation to have only x and y variables for easy manipulation.
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Figure 27: Group 2’s graphical solution to the modelling task.

Below is the written text by Group 2 beneath the graph in Figure 27:

Kristin sells 3 items per hour in the second job: 40 + 60x

2 items an hour: 40 + 40x

The students again used the numerical representation (NR) in acquiring a first understand-
ing of the problem and also in investigating a particular case. The results of the solution
to the modelling task on students’ worksheet in Table 13 on page 79, revealed that two
groups (Group 4 and 6) used numerical representation in their working process. It is seen
in Figure 20 on page 94, that Group 4 solved the modelling task the arithmetic way. Group
4 directly translated the problem text using some numerical values, however their solution
lacks generality since it does not provide a general picture of the solution (the introduction
of some algebraic equations could have made the solution more general). Group 6 on the
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other hand also used the numerical representation in their solution. It is seen in Figure
23 on page 98, that Group 6 substituted some numerical values in the algebraic equations
they formulated and also drew a graph based on the results they had. Although the second
job equation they formulated was incorrect however the use of algebraic, numerical and
graphical representations gives a more clearer and general picture of their solution.

The students used the algebraic representation (AR) for a concise and general picture of
their solution and also the formulation of a mathematical model for their solution. The
results in Table 13, revealed that five out of seven groups used the algebraic representation
in their working process. These five groups formulated algebraic equations for both the first
and second jobs. Although Group 7 did not write down their equations, the formulated
equations was seen through the graphs they drew.

Figure 28: Group 7’s graphical solution to the modelling task.

It is seen in Figure 28 (the graphical solution to the modelling task by Group 7), that
Group 7 used the equation y = 120x in drawing the first graph but the second graph was
a little complicated. Arvid from Group 7 offered the following response when asked to
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explain the second graph in Figure 28:

776. Teacher: But the second I don’t really understand.
777. Arvid: No we were.. We want as a. . . We didn’t care [Laughs] if you can say like

that, we made a few short cuts, we just come to an answer and just look like it’s going
to give us the right answer.

780. Teacher: But can you tell me more about the second graph?
781. Arvid: We should probably switch around the x and y axis, because then we get the

kroners up here [Points at the y-axis] and the stuff she needs to sell up there [Points at
the x-axis]. And it should start at 50, because the minimum wage is 50 in the second,
so it should start at 50 and then go up by 20 per items she sells, so we work a bit not
so perfectly in line with that one.

786. Teacher: Ohk! So, you made the equation 50kr plus the items that she sells=
787. Arvid: =Yeah, y equals 20x+ 50 I think
788. Teacher: So, it means if she sells one item then it’s going to be 70.
789. Arvid: Yeah, 70.
790. Teacher: Ohk, so when it’s one then we have 70, but it’s 50 on the graph.
791. Arvid: Yeah, it was not as perfect as we wanted it to be, but wasn’t it also going up

by 50 at the time in the hour as well. Wasn’t it?
793. Teacher: Ohk! You had an idea.
794. Arvid: The idea was around that, but we didn’t know how to write it down actually

[Laughs].

Excerpt 5.3.2.0

In Arvid’s response, the second job graph starts with 50 since the minimum wage is 50 and
then go up by 20 per the item Kristin sells (that is, y = 50 + 20x). The equation Arvid
gave did not match with the second graph and when he was further asked to explain, he
made known that the graph was not as perfect as they wanted it to be and although they
had an idea but they didn’t know how to write it down. This was as a results of their
inability to manipulate the third variable in the second equation since they were used to
equations with two variables.

The students used verbal representation (VR) for their final interpretation of the results
obtained in the solution process. The results in Table 13, revealed that six groups used
verbal representation in the solution process.

The next section presents an analysis of how the students representing their respective
groups interpreted their model during the interview section.
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5.3.3 Interpretation of the model

Solving the mathematical modelling task mathematically alone was not enough for the
students to answer the question. The opinions of the students’ matters and it also influences
the kind of answer they gave to this modelling task. If a student is a risk-averse, he/she
might conclude that Kristin should take the first job since the pay is guaranteed. On the
other hand, a risk-seeking student might conclude that Kristin should go for the second
job for the possibility of making much more money. The students’ might also argue about
the kind of items sold and the personality of Kristin.

Apart from Group 4 that used arithmetic method (that is solving the modelling task
numerically) to successfully solve the modelling task, all the other six groups formulated an
incorrect algebraic equation for the second job. Although they had the second job equation
to be incorrect yet still the kind of interpretation they gave shows how they reconcile
their mathematical answer with reality, which made the mathematics more relevant and
interesting. The students offered the following responses when asked to interpret their
model:

102. Teacher: Let say I’m your friend. Can you interpret your modelling results to me, so
that I can make a choice?

104. Bjørg: [Laughs] Ohk!. . . Umm.. It all depends on your time spent working or your
great selling skills. Also, of course if your minimal wage is extremely low, maybe sticking
with 20kr per item would be better. But umm.. Kristin’s own better perspective we
would recommend using graphs, because it would be easier to see the changes and
variations based on time and salary.

251. Julie: Umm. I would say that if you would like to. . . If you are a person who works
a lot and works for the money and earns.. and is a good person who manages to talk
to your costumers and umm yeah, who knows stuff about what you are selling umm,
then the second job would more.. would be better.

370. Hilde: Oh! That’s hard umm. So, I would kind of [Laughs] ask, are you good at
selling, because if you have to sell 27 items for it to be better than the first job offer. If
you are good at selling then ohk, you will after a while earn more with equation number
2 or, yeah. But if you feel sort of insecure then this [Points at the equation of the first
job] choice is safer.

443. Eirik: It depends on how much the minimum is and it depends on how much you are
able to sell in one hour, yeah.

542. Tonje: Yes, and if you choose the other job then you have to be more, I don’t know,
you have to be like go further into how the people are or into what the people are going
to buy, because you earn more when they buy more, which means you have to be more
active, you have to um advertise the product, you have to go like, ‘Hey, you wanna buy
chocolate’. So, you have to work, you have to actually work to [Laughs] get money.
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Yeah, the other one is like you do your job, but you still earn your money without
nothing more.

643. Helge: We saw that the first offer was way better umm, because it depends on how
many umm... So, you should pick the first offer um, but only if you good at the job
um, so if you are a good seller umm and you at least sell 11 things per hour on average
then you should pick the second job.

764. Arvid: Umm, I think it depends on the.. What was the store she was going to work
in? [He reads the mathematical modelling task] I will take the second option because
you have the potential to earn a lot more than you have to do with the first, but if you
don’t sell as much as you need to do in one of the hours you can probably sell a double
amount in the second, so I will probably go with the second one even though it’s a risk.

Excerpt 5.3.3.0

From the responses above, most of the students are risk-seeking students who believe there
is a possibility of making much more money depending mostly on the kind of items sold,
the personality of Kristin, and the minimum wage. Hilde, Eirik and Helge talked about
the number of items sold per hour. Hilde and Helge were specific that if a person sells
more than 27 and 11 items respectively then the second job would be better, although the
values 27 and 11 were not correct as a results of miscalculation or formulation of incorrect
equations. Few of the students went in for the first job since they thought the pay is decent
and guaranteed.

In summary, it is seen from the students response that the choices they made depended on
the minimum wage, the ’break-even’ point (that is the number of items their friend needs
to sell hourly in order for job 1 to be the same as job 2), the personality of their friend and
the kind of items sold. These opinions of the students made their mathematical solution
more relevant and interesting since their interpretation shows the link between reality and
the mathematics they did.

The next section presents an analysis of the opinions of the students on their interest in
modelling in school activities during the interview section.

5.3.4 Modelling in school activities

The students interviewed gave their thoughts about the connection between the mathe-
matics they learn at school and the real world. Results of the fifth interview question (see
page 66 for the fifth interview question, Q5) in Table 14 on page 80, which asked students
if they see any connection between the mathematics they learn at school and the outside
world, generally revealed that most of the students see some connection (SCO). Four of
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the students see some connection, however two out of these four students see rather a sort
of imaginary connection (SIC), that is they believe there exist a connection but can not
pinpoint any aspect of the mathematics they learn, where these connections can be seen.
Julie from Group 2 gave a specific example when asked about the connection between the
mathematics at school and the real world. Julie offered the following response:

207. Teacher: Umm. Do you see any connection between the mathematics you learn at school
and the outside world?

209. Julie: Yeah, well not any of this connection.
210. Teacher: Can you tell me more about that?
211. Julie: Umm. If you want to be a person who builds houses and stuff, you can use

trigonometry to like find the angles and sides and um yeah, with the goats on the farm
if they [Laughs] don’t want to go around and count every single one, they can [Laughs]..

Excerpt 5.3.4.0

In Julie’s response, one can apply the trigonometry they learn at school to find the angles
and sides when building a house and other architectural stuff. Two of the students do
not really see any connection (NCO) between the mathematics they learn at school and
the outside world. Eirik and Helge from Group 4 and 6 offered the following responses
respectively:

416. Eirik: Umm, No. Most of the mathematics we go through now is more of theoretical,
so you can’t really use it in real life, unless something special.

607. Helge: Umm.. No, I don’t think there is much of a connection.. Umm, but that’s
only because I don’t really use um, or depends on what you do on your spare time, but
I don’t really use equations, I don’t make like any real graphs on the spare time, but
if you like to do this and you want to study mathematics when you grow older umm,
when you get older you might want to be a teacher then it’s kind of be helpful, but
Uhh [Laughs].

Excerpt 5.3.4.1

From Eirik’s response, most of the mathematics they study at class are more theoretical
and that one can not really use it or apply it in real life unless something special. Helge on
the other hand does not see any connection since he does not use the mathematics he learn
on his spare time. Helge is also of the view that if a person wants to study mathematics
when he/she is older or wants to become a teacher then it will be necessary if the person
could work a bit more on the applications of mathematics on his/her spare time, like
applying equations and sketching graphs. One of the students interviewed thought the
connection depends much more on the particular mathematics subject (CDS). Arvid from
Group 7 offered this response when asked about the connection between the mathematics
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at school and the real world:

732. Arvid: In sort of.. In some of the subject, like trigonometry, we have no idea what to
use in the real world but some. . . But things like equations and some things like that,
they are easy to use in the real world.

Excerpt 5.3.4.2

In Arvid response, it is easier to apply mathematical equations in the real world but for
some subjects like trigonometry they have no idea how it can be applied in the real world.

The students in the next interview question (Q6) were asked about the number of times
they solve mathematical modelling task or realistic task at school. The results of the sixth
interview question (see page 67 for the sixth interview question) in Table 14 on page 80,
revealed that most of the students are of the view that they only solve less mathematical
modelling task (LMT) at school. Six of the students answered that they usually solve less
mathematical modelling task at school. The kind of task the students solve at school are
more close, where they use specific techniques to find the solution (see Appendix F on
page 181 for examples of the task the students solve at school). One of these six students,
Arvid from Group 7, tries to differentiate between the task they have at school and the
modelling task in this research study, and also the reason why they solve less mathematical
modelling task at school. Arvid offered the following response:

735. Teacher: Ohk! How often do you solve mathematical modelling task at school?
736. Arvid: Umm, not often like that. We found that task really hard actually, so we don’t

usually solve that.
738. Teacher: And what do you think might be the reason?
739. Arvid: I don’t know, maybe is not in the things we need to learn, maybe comes further

on in the year, semester, I don’t know.. but we might actually get it, I don’t know.

Excerpt 5.3.4.3

In Arvid’s response, they found the modelling task really hard to solve compared to what
they solve at class since the task was more open where you have to make some assumptions,
find equations, and maybe draw a graph whilst the one they have at school is more close
and direct, that is they follow a required procedure to arrive at a specific and unique
answer. Arvid also thought that maybe they don’t solve open tasks like the task in this
research study because it might not be in the things they need to learn or maybe it comes
further in the next semester.

The results of the seventh interview question (see page 67 for the seventh interview question,
Q7) in Table 14, which asked students their opinion about the modelling task in research
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study, revealed that most students see the task as difficult (DT) and a realistic problem
(RT). Six out of seven students interviewed have the opinion that the modelling task in
this research study is a difficult task and that the task had no specific answer. Hilde from
Group 3 gave some reasons why she sees the task as difficult. Hilde offered the following
response:

344. Teacher: Ohk! What’s your opinion about the modelling task you solved?
345. Hilde: . . . Umm, my thought about it. It’s abstract, so it’s very hard to actually come

up with an answer when you don’t have all the information and it was kind of [laughs]
irritating, because I always wanted to just find an answer, but I guess it’s good to solve,
to also just think about it.

Excerpt 5.3.4.4

In Hilde’s response, the task is abstract and that it was difficult to come up with an answer
due to less information outlined in the problem. She found this as irritating because she is
used to the ways of finding a specific answer with a specific technique. In spite of Hilde’s
challenges with regards to the modelling task, she also acknowledge that the task is good
to solve and also when thinking about it.

The eleventh question (see page 68 for the eleventh interview question) sought the con-
ception of the students about the inclusion of mathematical modelling in school activities.
Results of the eleventh interview question (Q11) in Table 14, which asked students if they
want more of the modelling task at school, revealed that most students would want to have
more of the modelling task (MMT) at school. Each of the students, those that want more
of the modelling task, gave a unique reason as to why they want more of the modelling
task at school.

Bjørg from Group 1 offered the following response:

131. Teacher: Ohk! So will you want more of this modelling task at school?
132. Bjørg: Yeah.
133. Teacher: Why?
134. Bjørg: Because I struggled with this problem, so I want to be good at this.
135. Teacher: And does it help in the learning process of mathematics?
136. Bjørg: Yeah.
137. Teacher: How?
138. Bjørg: Like in different, umm. Like you can think. To solve this problem, you have

to think in many different ways and you have to like [Laughs]. You can have many
different thinking ways.

Excerpt 5.3.4.5
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In Bjørg’s response, she struggled when solving the task and for that reason she wants
more of the modelling task in other to be good at it. She also have the conception that the
process of solving the modelling task helps the learning process since one have to think in
many different ways when solving the task.

Julie from Group 2 offered the following response:

279. Teacher: So, will you want more of this modelling task at school?
280. Julie: Yeah. Well, I think it’s a good task to like put several um situations together

and have to use more um of the things you learn in class to solve the equation or the
problem, you don’t have to only use the one formula you learned in the class umm, you
have to use like the formula you had last week or the one you learned a year ago, and
then you have to put it all together to solve the problem, yeah.

Excerpt 5.3.4.6

In Julie’s response, the task was a good task and that it requires the use of more of the
things studied at class to solve it. That is, one does not need to use only one formula or
technique learned at class but it involves putting together a formula studied a week or a
year ago to solve it.

Eirik from Group 4 offered the following response:

447. Teacher: Ohk! Will you want more of this modelling task at school?
448. Eirik: Umm, yeah, it works fine.
449. Teacher: Can you tell me more about that?
450. Eirik: I’m just, you just fine with tasks that are a little bit harder and you gonna fine

the tools and just use the tools to find what’s there. It’s nothing more than that.

Excerpt 5.3.4.7

Eirik has the conception that the task is a good task and fine to solve since its a little
bit harder and one needs to find the tools used in solving the task and nothing more than
that.

Tonje from Group 5 offered the following response:

552. Teacher: Ohk! So, will you want more of the modelling task at school?
553. Tonje: Yeah, I would say.
554. Teacher: Why?
555. Tonje: I think I learn more umm, what we do now is kind of just she gives us a paper

or some explanation of what we are doing and then she just kind of let us read one
sentence about what we are learning, and we are just on our own. But I feel like here
we got to work together more and we got more task that um still match what we are
learning, but what we are doing now is just go way out just.. very complicated um
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yeah. But they kind of mention that since this is T-math or theoretical math, then we
have to like make up our own theories kind of, so her giving us like one sentence is kind
of what we are suppose to do but it doesn’t help us. You kind of have to be good at
math to be able to do stuff, so if we do this more then we can kind of interact more and
we won’t like slide out and change the theme while working together as often, because
then we will have to focus on the certain thing.

Excerpt 5.3.4.8

In Tonje’s response, she made it known that she had learned more during the modelling
process. She also compared the current situation (the activities during the research study)
to what is normally done at school where the teacher gives an explanation of what they
are doing and then they are on their own. She also felt that in this modelling activity they
have to work together and work on a task that match what they learn at school. Tonje
made it known that one has to be good at maths to be able to solve the usual problems
at school, however the modelling activity helps them to interact more whilst they don’t
deviate and change the theme while working together since they are more focus on the
things they need to do.

Helge offered the following response:

655. Teacher: So, will you want more of the modelling task at school?
656. Helge: Umm, yeah!
657. Teacher: Why?
658. Helge: Because I think this task are fun to solve umm, but it’s a little bit easier to do

on a computer umm and it’s takes a lot of time to like drawing the lines and the axes,
so I like this kind of task, but I would like to do it on the PC.

Excerpt 5.3.4.9

In Helge’s response, the modelling task was fun to solve but he suggested that it would have
been easier using the computer since it takes longer time sketching the graph manually.

Arvid offered the following response:

796. Teacher: So, will you want more of the modelling task at school?
797. Arvid: Maybe more of the equations and yes, things we need to do or things we can

use in the future as well. Like we don’t need to know function analysis and things like
that or a trigonometry but things like we can use umm, is good to learn things like
that.

801. Teacher: Yeah, because every math that you study at school probably can be used
outside there=

803. Arvid: =Yeah.
804. Teacher: Like trigonometry, they can ask you maybe you want to build or paint a house,
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where do I place the ladder? So, you need to find the angles involve. Math can be used
everywhere.

807. Arvid: Yes, it can, but some of the things we go through, I don’t know how to use.
808. Teacher: So, the problem is how.. As teachers how, we are supposed to give task that

you can relate=
810. Arvid: =Yes, or maybe if we have uhm. . . I think we are going to maybe say what

we can use this for in the future, because some just say you will find out, you will figure
it out, and then we don’t know what to.

Excerpt 5.3.4.10

In Arvid’s response, they would need more of the things they can use in the future. He
gave an example that there is no need to study function analysis and trigonometry but
rather things they can use outside school. When an example of how trigonometry can
be used in the real world, Arvid made it known that some of the things they go through
at school he does not know how to use them in the real world. He further suggests that
teachers should tell them how the things they learned at school can be used in the future,
since they just tell them they will find out which leaves them in a situation where they
don’t know what to do.

5.3.5 Group Work

The students worked in groups to complete both the algebraic word problem and modelling
task. During the interviews the students where asked about their conception on whether
working in groups was helpful (GWH) or not (GNH). The results of the third interview
question (see page 66 for the third interview question, Q3c) in Table 14 (on page 80) ,
which asked students whether working in groups was helpful or not, revealed that most of
the students have the conception that the group activities helped (GWH) them to achieve
what they could not achieve on their own. Helge from Group 6 gave reasons why working in
groups was helpful and also the disadvantage involve. Helge offered the following response:

591. Teacher: Ohk! Was it helpful when you solve these questions in a group?
592. Helge: Yeah, because if you didn’t know how to solve it umm then when another

person manages to solve it, you can (inaudible) ask them, or how did you solve this
task? Umm, but if no one can really solve it then it would have been a problem but
then you just have to ask the teacher um, but it is also like a downside within the group
because umm the group might not be helpful, you might understand what they are
doing but it is not really beneficial because um if you are in a group where everyone
is working on their own um and you aren’t really sharing ideas and you don’t know
what to do, then you will just be sitting there wasting time.. umm, but it can be really
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helpful.

Excerpt 5.3.5.0

In Helge’s response, group work helps since if you doesn’t know how to solve the problem
you can get help from a friend and if no one in the group knows how to solve then the
group can get some hints from the teacher as they work together. However, there could
be a challenge within the group if everyone works on his/her own and aren’t sharing ideas
and if you don’t know what to do then you will just be sitting there wasting time.

In summary of this chapter, the results revealed that the students have some prior knowl-
edge about the algebraic word problem tasks they solved. However very few of the students
had difficulties in comprehending abstract factual and abstract hypothetical word prob-
lems. The students mainly used a known technique to solve the algebraic word problems,
and that if they are not able to comprehend the word problem or translate the problem text
into a suitable algebraic expression, they reread the problem and then use an arithmetic
method to solve the problem. Few of the students again used an arithmetic method to
successfully solve the mathematical modelling task whilst most of the students formulated
equations to solve their model. Although their formulated equations were not correct but
their equations, graphs and interpretation showed how they reconcile their mathematical
answer with reality making the mathematics more relevant and interesting. The results
also revealed that most students would want to have more modelling activities at school.

The next chapter presents the discussion of the study where the results are discussed in
light of the literature review.
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6 DISCUSSION

This chapter presents a discussion of the research findings. The discussion involves the link
between the researcher’s interpretations and the literature review. The research questions
are first addressed. This is followed by a discussion of the study which entails students’
prior knowledge, the types of word problems, the mathematization of the word problem,
students’ modelling processes, students’ conceptions on both modelling in school activities
and group work.

6.1 Addressing the Research Questions

I repeat, for the reader, the two research questions:

1. How do upper secondary students’ justify their strategies for solving algebraic word
problems?

2. How do these students interpret their findings after solving an algebraic word problem
in a form of mathematical modelling?

The aim of the study was to investigate how upper secondary students solve algebraic word
problems in the area of mathematical modelling. Data were collected through worksheets
(group work) and students’ interviews (individual students representing their respective
groups) to answer the research questions. Specifically, data from the students’ solutions to
the algebraic word problem tasks aided in answering the first research question, whilst data
from the students’ solution to the mathematical modelling task also aided in answering
the second research question.

In the first tasks (the algebraic word problem tasks) the students use a specific technique
to solve the tasks in the process of mathematization (that is, justifying their strategy)
whereas the second task (the mathematical modelling task) is open and does not require a
unique technique in solving it. The justification of students strategies is also applicable in
the second research question since justification is all about how the students mathematize
the task but then the interpretation of their findings also captures their mathematization
process since an interpretation of their findings may depend on the initial understanding
of the problem, the construction of a mathematical model, the actual computation ac-
tivities, and an evaluation of the outcome of the computation (which forms part of the
mathematization process).
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6.1.1 Addressing the first research question

The students usually use the strategy of transforming algebraic word problem tasks into a
linear equation or simultaneous set of two linear equations and then use addition/elimination
or substitution method to solve them at school. The justification of students’ strategies is
how they mathematize the problem. That is: understanding the problem (step 1); trans-
lating the problem using variables and setting up an algebraic equation (step 2); solving
the equation using a known technique (step 3); verifying and presenting the final answer
(step 4).

Students’ worksheet responses were analyzed together with the interviews in order to find
out how the students justify their strategies in solving the algebraic word problem tasks.
The analysis of students’ worksheet revealed that most students were successful on most
of the tasks, but few were unsuccessful (had incorrect equation/expression ’EI’, see Table
12 on page 78) on Task 3 and 4 whilst few of the students also used a different technique
(an arithmetic method ’SPA’, see Table 12) other than what they normally used at school
to solve Task 1. Below is Task 1, 3 and 4:

1. Marius, a young farmer, has 13 more hens than goats. Since hens have two
legs each, but goats have four legs each, all together the animals have 146 legs.
How many animals in all does Marius have?
3. The value of a given number is fifteen more than the value of a second
number. The sum of two times the first number and four times the second
number is 162. What is the sum of the two numbers?
4. A given number is six more than a second number. If the first were four
times and the second two times as large, their sum would be 126. What is the
first number?

Two out of the seven groups of students used a different technique (arithmetic method)
other than what they would normally use at school to solve Task 1, but they were successful
in arriving at the desired answer. These students resorted to an arithmetic method when
an attempt to set up an algebraic equation failed. The difficulty with Task 3 and 4 was
about the students not able to comprehend the word problem which led to the setting up
of a wrong equation.

Task 1: Why did the students use an arithmetic method instead of setting up an algebraic
equation and solving it with a known technique? The students were familiar with the word
problem they solved as revealed by the students’ interviews. Most of the students view



6.1 Addressing the Research Questions 117

Task 1 as the most difficult task for the reason that it was the first question and therefore
they have to get used to the way of solving it. Now, if the students are familiar with the
problem, why then did they use an arithmetic method instead of setting up an algebraic
equation and solving it with a known technique. In the process of justifying their strategies
or mathematizing Task 1, the students understood the problem but the issue was about
setting up the right equation (step 2). That is, using the substitution method to formulate
a linear equation with only one variable but they rather had an equation with two variables
instead. These students found it difficult to solve one equation with two variables. When
the algebraic method failed, they reread the problem and then used an arithmetic method
to solve it.

Task 3: The task was familiar to the students but only one group could not comprehend
the word problem. The difficulty in justifying or mathematizing Task 3 was in step 1
(understanding the problem). That is, the students misunderstood the problem and they
could not find the appropriate link between the first and second sentence in Task 3 (precisely
"a given number" in the first sentence and "the first number" in the second sentence),
leading to an incorrect algebraic equation. Although the algebraic equation set-up by the
students was incorrect, the equation can still be solved and verified by putting the final
answer back into the incorrect equation. The students went on to step 3 and 4 since the
incorrect equation they set-up could be solved and verified (see for example Group 7’s
solution to Task 3 in Figure 18 on page 90).

Task 4: The task was familiar to the students but two groups could not comprehend
the word problem. The difficulty in justifying or mathematizing Task 4 was in step 1
(understanding the problem). That is, the students misunderstood the problem and they
could not find the appropriate link between the first and second sentence in Task 4, leading
to an incorrect algebraic equation. Although the algebraic equation set-up by the students
was incorrect, the equation can still be solved and verified by putting the final answer
back into the incorrect equation. The students went on to step 3 and 4 since the incorrect
equation they set-up could be solved and verified (see for example Group 5’s solution to
Task 4 in Figure 19 on page 92).

Note that one group of students were not able to comprehend both Task 3 and 4. Task
3 is equivalent to Task 4, meaning they have a common story context and common solu-
tion procedure (similar equation). Apparently, the students might have applied the same
solution procedure of Task 3 to Task 4 without making any adjustment.

In summary, the students were familiar with the algebraic word problem tasks they solved.
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Most of the students regarded the first task (Task 1) as the most difficult task for the
reason that it was the first task and that they have to get used to the way of solving
it. In the process of justifying or mathematizing Task 1 to Task 4 (the algebraic word
problem tasks), the students translate the problem using variables and set-up an algebraic
equation. In a situation where the algebraic equation (whether correct or incorrect) can be
solved and verified, they go on by solving the equation with a known technique whereas in
situations where they can not solve the equation, they reread the problem and then resort
to an arithmetic method.

6.1.2 Addressing the second research question

An interpretation of a modelling results may usually depend on: the initial understanding of
the problem, the construction of a mathematical model, the actual computational activities,
and the evaluation of the outcome of the computations. Students’ worksheet responses were
analyzed together with the interviews in order to find how the students interpret their
findings after solving an algebraic word problem in a form of mathematical modelling. The
analysis of students’ worksheet revealed that very few students, who used an arithmetic
method, were successful on the modelling task (Group 4 used an arithmetic method ’AC’
and they did not get an incorrect expression ’IE’, see Table 13 on page 79). Although most
of the students formulated an incorrect equation, the use of a graphical representation of
their model gave a general and clearer picture of the real value function they modeled.

One group of students used an arithmetic method to solve the modelling task. The students
had an initial understanding of the problem text. They made some assumptions and went
on to solve the problem numerically instead of formulating an algebraic equation. Although
they successfully solved the modelling task, but the generality of their model could not
be seen (see Group 4’s solution to the modelling task in Figure 20 on page 94). That is,
the numerical approach only investigate a specific or particular case and that the solution
lacks generality.

The other group of students formulated an algebraic equation in the process of solving the
modelling task. The students misunderstood the problem text (specifically the text that
described the second job option in the modelling task). Although their second equation was
wrong, the students went further to use a graphical representation in providing a clearer
picture of the real valued function (algebraic equation) they modeled from the task. The
formulated equation gave a concise and general picture of their solution. Why was the
second equation not correct? The first equation (example: y = 120x) had two variables
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whilst the second (example: y = 50x+20zx) had three variables. The students were more
familiar with two set of equations with only two variables respectively. Solving two set of
equations where one of the equation has three variables was difficult for the students. The
students formulated an equation which had only two variables for easy manipulation.

The students that used an arithmetic method and the students that formulated an algebraic
equation (model) both evaluated the outcome of their computations. Apparently, the
opinions of the students influenced the kind of answer they gave to the modelling task, and
their conclusions were not solely based on the computations. That is, their conclusions
depended on these factors: the minimum wage; the ’break-even point’ (that is the number
of items their friend needs to sell hourly in order for job 1 to be the same as job 2); the
personality of their friend; and the kind of items sold. The responses of the students reveal
that most of the students are risk-seeking students who believe there is a possibility of
making much more money depending on the factors listed above (for example, see Excerpt
5.3.3.0: line 764 on page 107). The opinions of the students made their mathematical
solution more relevant and interesting since their interpretation shows the link between
reality and the mathematics they did.

On the whole, in the process of interpreting the findings of the modelling results by the
students, one out of seven groups used an arithmetic method to successfully solve the
modelling task whilst the rest formulated an algebraic equation but their equation was
incorrect. Although their equation was incorrect, it gave a concise and general picture of
their solution. Most of the students compared their computations with reality, that made
their mathematical solution more relevant and interesting since their interpretation gives
a link between reality and the mathematics they did (that is, their conclusion depended
on other factors and not solely on their computations).

6.2 Discussion of the Study

A general discussion of the results in connection with the literature review is presented in
this section. The discussion entails the prior knowledge or transfer of problem solving, the
types of word problems, the mathematization of the word problem, the students’ modelling
processes, students’ conceptions on the modelling activities in school and group work.
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6.2.1 Prior knowledge/Transfer of problem solving

The algebraic word problem tasks given to the students were isomorphic to the word
problems they usually solve at school, that is the word problem is different in terms of
the story context but similar in terms of the equations involve. The interview results
revealed that the students were more familiar with the algebraic word problem tasks they
solved in this study (For example see Excerpt 5.2.1.0, page 82). Despite the familiarity
of the word problem, two groups of students were not able to comprehend some of the
word problem tasks. This is consistent with Reed (1998) which reports that the transfer
of isomorphic problems is a complex and difficult process that usually takes place under
certain experimental circumstances. That is after students have been involved in well-
designed forms of training, it is then that they can successfully deal with isomorphic
problems. The students were taught to translate the word problem using variables, set-up
an algebraic equation and then compute the equation using a known technique when solving
algebraic word problem tasks. Morales et al. (1985) argues that even though students have
mastered the technical competencies of doing the mathematical operations involved in the
word problems, they still experience considerable difficulty with simple word problems that
require application of these techniques.

6.2.2 Types of word problems

The algebraic word problem tasks in this study are conceptual problems (non-routine
problems) as described by Boaler (1997). A conceptual problem here is a problem that
cannot be answered from memory alone but requires thought, that is a great deal of thought
is required even if the correct rule/method had already been learned. Students mastering
a technique for solving an algebraic word problem task is not enough, but they would need
to understand the problem text and the links between the sentences in the problem text.
Elia et al. (2009) and Boonen et al. (2016b) argue that in solving a non-routine problem,
students are required to develop an adequate understanding of the situation described in
the word problem text before deriving a mathematical model.

The four algebraic word problem tasks given to the students were concrete factual, concrete
hypothetical, abstract factual and abstract hypothetical respectively. Most of the students
have the conception that the concrete factual word problem task (Task 1) was the most
difficult task. The main reason was that, since it was the first task they have to get used
to the way of solving it (for example see Excerpt 5.2.2.1 on page 83). By assumption,
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if the tasks were rearranged in terms of numbering, the students may then have chosen
the first task as the most difficult task according to the reason they gave. Although most
of the students viewed Task 1 as the most difficult task, all the students still successfully
solved the problem. It was only two groups that used an arithmetic method instead of the
algebraic method to solve Task 1, since they did not set-up the right equation.

One group of students were unsuccessful with the abstract factual (Task 3) word problem
task whilst two groups of students were also unsuccessful with the abstract hypothetical
(Task 4) word problem task. This is consistent with Caldwell and Goldin (1979) which
reports that concrete problems (factual and hypothetical; Task 1 and Task 2) are the least
difficult, followed by abstract hypothetical and abstract factual problems. According to the
results from the students’ worksheets (Task 3 and 4 had some incorrect equations ’EI’, see
Table 12 on page 78) the abstract factual and the abstract hypothetical problems were more
difficult to some of the students than the concrete problems (factual and hypothetical),
however most of the students have the conception that the concrete factual problem was
the most difficult task (see Q2 in Table 14 on page 80, four out of seven students regard
Task 1 as the most difficult ’D’ task). The students regarding the first task as the most
difficult for the reason of it been the first question is not found in the literature discussed
in chapter three. The literature only reports on the students’ difficulty found in the type
of word problems based on their performance. Apparently, the students might have the
habit of completing the first task given before they move on to the next task that follows.
In this case whichever task, among the four algebraic word problem tasks, that comes first
would be considered difficult as the students try to find their rhythm (especially when the
word problems have the same format).

6.2.3 Mathematizing word problems

Mathematizing an algebraic word problem is an act of finding a solution to a problem that
is unknown. The four phases of problem solving described by Polya (2004) was used in this
study as a process of justifying ones strategies when solving algebraic word problems. That
is: Understanding the problem; Devising a plan (translating the problem using variables
and setting up an algebraic equation); Carrying out the plan (solving the equation using
a known technique); Looking back (verifying and presenting the final answer).

Most of the students were able to comprehend the algebraic word problem tasks in this
study. Kyttälä and Björn (2014) argues that for an individual to comprehend word prob-
lems in written form, he/she needs to be able to read and understand the text that describes
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the tasks. Few of the students were not able to comprehend Task 3 and Task 4 due to the
fact that they misunderstood the problem text (for example see Excerpt 5.2.3.4: line 729,
on page 91).

Kieran (2007) points out that the solving of word problems has two phases, that is the
setting up of an equation to represent the relationships inherent in the word problem and
the actual solving of the equation. It appears that most students in this study set-up an
algebraic equation from the problem text in all the tasks. Few of the students used an
arithmetic method to solve Task 1. Also these students who were not able to comprehend
Task 3 and 4, set-up incorrect equations for the two tasks respectively. Polya (2004) argues
that setting up equations comes along with some difficulties which is usually the difficulties
of translation. The students had some difficulties in comprehending Task 3 and 4, which
led to an incorrect translation resulting to an incorrect equation set-up. To overcome
the difficulties of translation, Polya (2004) argues that one must thoroughly understand
the conditions in the problem text and also be familiar with the forms of mathematical
expression. Riley et al. (1983) also points out that most students use little conceptual
knowledge, focusing instead primarily on how to translate the English problem statement
directly into a corresponding set of equations when solving algebraic word problems.

Most of the students solve the algebraic word problem tasks with a known technique.
However, a few of the students did not set-up the right equation for Task 1 hence they
were not able to solve the equation. They used the substitution method to formulate a
linear equation that involves only one variable but they rather had an equation with two
variables instead (see Figure 15 on page 87). Mason et al. (2011) argues that one major
thing that usually happens during the attack phase of problem solving is ’stuck’, the point
at which much can be learned when the student reflects on his/her work and tries to work
all over again. The students found it difficult to solve one equation with two variables,
therefore they resorted to an arithmetic method (see Figure 16 on page 88) when they got
stuck. The use of an arithmetic method helped the students in this situation but it may
not always be the case. Stacey and MacGregor (1999) argues that although translating
word problems into an equation can be challenging but using algebraic equations to solve
problems is important, that is problems relating to equations with the unknown on only
one side are easy to solve without algebra but the ones with equations with the unknown
on both sides require hard thinking if algebra is not used.

Most of the students verified and presented their answers to the algebraic word problem
tasks, even the ones with an incorrect equation. It is easy to verify an answer whether the
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translated equation is correct or not. Hence the main problem is not about the computation
but the translation of the word problem. Boonen et al. (2016a) argues that to effectively
solve a mathematical word problem and the understanding of the text are related in such
a way that developing a deeper understanding of the word problem serves as a crucial step
before the correct mathematical computations can be performed.

On the whole, in the process of mathematizing an algebraic word problem, the students
translate the problem using variables and set-up an algebraic equation. In a situation
where the algebraic equation (whether correct or incorrect) can be solved and verified,
they go on by solving the equation with a known technique whereas in situations where
they can not solve the equation or get stuck along the line, they reread the problem and
then resort to an arithmetic method.

6.2.4 Students’ modelling processes

An interpretation of a mathematical model may usually depend on; the initial understand-
ing of the problem, the construction of a mathematical model, the actual computational
activities, and the evaluation of the outcome of the computations. In Figure 8 on page 46
(a simple view of the mathematical modelling process), one needs an initial understanding
in order to translate the real world problem into a mathematical problem by making some
assumptions and also formulating equations. The actual computational activities takes
place when one moves from a mathematical problem to a mathematical solution by solving
the formulated equations and also verifying one’s model. The evaluation of the outcome
of the computations also takes place when one moves from a mathematical solution to a
real world solution by interpreting the model.

The modelling task used in this study was an open-ended task that can not be answered
from memory alone but requires thought. The mastering of a particular technique in
solving the modelling task is not enough but rather one needs to develop an adequate
understanding of the situation described in the problem. Most of the students considered
some assumptions before the formulation of a mathematical model. They spent some time
researching about the minimum wage and the number of items one has to sell every hour
in order to earn minimum wage. Most of the students formulated an algebraic expression
or an equation after making some assumptions. One group of students used an arithmetic
method to successfully solve the modelling task (only Group 4 used an arithmetic method
’AC’, see Table 13 on page 79). Although they successfully solved the modelling task nu-
merically, their solutions lacked generality since the numerical approach only investigates
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a specific or particular case. This is one of the disadvantages listed by Friedlander and
Tabach (2001), nevertheless they also point out that the combine use of the various repre-
sentations (algebraic, graphical, numerical and verbal) can cancel out the disadvantages.
The choice of the numerical approach by these group of students might have been the
students’ thinking style or an attempt to overcome difficulties encountered during the use
of another representation as suggested by Friedlander and Tabach (2001).

All the students that formulated an algebraic equation in the process of solving the mod-
elling task had at least one incorrect equation. The students specifically misunderstood the
problem text that described the second job option in the modelling task. Although they
had an incorrect equation but their equation gave a concise and general picture of their
solution. One reason for the incorrect formulated equation is that, the students are more
familiar with two set of equations with only two variables respectively and so dealing with
two equations—where one equation has two variables (example: y = 120x) and the other
equation has three variables (example: y = 50 + 20zx)—was a problem. The students
formulated two equations with only two variables respectively to avoid the third variable
in one of the equations, for easy manipulation. This is consistent with Pedersen (2015)
which reports that Norwegian upper secondary students’ tend to perform weakly on items
that place high demands on symbol manipulation.

All students used at least two of the mathematical representations (graphical, numerical,
algebraic and verbal) in their modelling process. Most of the students that formulated
equations also use the graphical representation. Although their equation was incorrect, the
graphical representation provided a clearer picture of the real valued function they modeled.
Duval (1999) argues that the shift between representations is important in learning, and
that it helps students to avoid confusing the mathematical object with it’s representation.
The movement from algebraic to graphical representation was a direct translation (see the
text beneath Figure 9 on page 51) as described by Janvier (1987), however one group of
students used the indirect translation by moving from algebraic to table (numerical) and
to a graphical representation (see Figure 23 on page 98, for Group 6’s indirect movement
from algebraic to graphical representation).

One interesting aspect of the students’ modelling process was the movement from the math-
ematical solution to the real world solution, that is the evaluation of their computations.
Both the students that formulated an algebraic equation (model) and the students that
used an arithmetic method gave an interpretation of their modelling results. The opinions
of the students influenced the kind of answer they gave, that is their interpretation shows
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the link between reality and the mathematics they did. According to Garfunkel and Mont-
gomery (2016), the computations of a modelling task is just one aspect and that students
will have to think about making decisions in the face of uncertainty, that is doing the
mathematics and reconciling the answer with reality which makes the mathematics more
relevant and interesting.

6.2.5 Students’ conceptions on modelling in school activities

The students usually solve world problems that requires the use of a specific technique but
the modelling task in this study was an open ended task. Although the students viewed the
modelling task as a realistic task, they also had the conception that the task was difficult
since it has no specific or direct answer. Some of the students found the task as irritating
(for example see Excerpt 5.3.4.4 on page 110) as they are used to problems that have a
direct answer and requires a specific technique, like the algebraic word problem tasks in this
study. Boaler (1998) argues that students that follow a traditional approach (like solving
problems with direct answers) develop a procedural knowledge which is of limited use to
them in unfamiliar situations. Van de Walle et al. (2007) also points out that procedural
understanding is task-oriented knowledge (which often devolves into rote memorization
or rules without understanding) that may lead to frustration when not connected with
concepts. Solving an open-ended task may be irritating for students if they only practice
or solve tasks with the traditional approach.

In going through the teaching materials and the tasks the students solve at school, I found
the tasks to be more close-ended tasks (tasks that requires a direct answer and with a spe-
cific technique). The students have the conception that they solve fewer modelling tasks at
school and one of the reason is that open-ended tasks like the modelling task in this study
might not be in the things they need to learn or maybe it comes further in the follow-
ing semesters (for example see Excerpt 5.3.4.3: line 739, on page 109). Pedersen (2015)
points out that the Norwegian curriculum for upper secondary school mathematics places
a greater emphasis on applying procedures and methods, and to a far lesser extent the cur-
ricular objectives describe activities such as analyzing, investigating, assessing, discussing,
proving, modelling, and generalizing. Although the students solve much fewer open-ended
tasks at school, some of them also have the conception that there is a connection between
the mathematics they study at school and the real world (for example see Excerpt 5.3.4.0
on page 108). Others also have the conception that the connection is based on the par-
ticular mathematics subject taught at school (for example see Excerpt 5.3.4.2 on page
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109), for instance one of the students interviewed did not know how trigonometry can be
applied in the real world. Erling et al. (2016) points out that it is important to remind
students that it is through modelling activities (solving of open-ended tasks) that a lot of
mathematics is used in careers beyond school. Garfunkel and Montgomery (2016) also ar-
gues that modelling activities can be used to reinforce new concepts and to illustrate their
applications. So designing a modelling task that requires the use of trigonometry might
change the student’s thinking that trigonometry can not be applied in the real world.

Despite students viewing the modelling task as difficult and irritating, most of them state
that they would want to solve more of the modelling task at school. The modelling task
may be challenging to the students since they struggled during the solution process but
they stated that they wanted to work more on such tasks to be good at them (see for
example Excerpt 5.3.4.5 on page 110). The students are of the view that one has to think
in many different ways and also use more of the things studied at class to come up with a
solution to the modelling task. Garfunkel and Montgomery (2016) argues that an extended
modelling activities helps students to pull together ideas from different parts of a course
and from different courses. One does not need to use one formula or technique learned
at class to solve an open-ended tasks, but solving such tasks requires putting together a
formula studied a week or a year ago (for example see Excerpt 5.3.4.6 on page 111). One of
the students interviewed is of the view that, in the modelling activities, the students have
to work together on a task that match what they learn at school and that the activities
helped them to interact with each other more, whilst they don’t deviate and change the
theme of the subject while working together since they are more focused on the things
they need to do. On the other hand, this student also has the conception that the current
classroom culture, where the teacher gives them a paper or some explanation of what they
are doing and then they are on their own making up their own theories, is not helpful;
that is, one needs to be good at mathematics to be able to develop his/her theories (see
for example Excerpt 5.3.4.8 on page 112). A well designed modelling tasks may offer the
opportunity for low performing students to engage with minimal prerequisite knowledge
and skills, and a high performing students can also explore more complex concepts. Another
student interviewed is also of the view that he would want more of the modelling tasks that
involves equations and also things that will be needed in future, but not the likes of function
analysis, trigonometry, and among others that are of no use to them. And that, they don’t
need to know such subjects if they can not use them in the future or the real world. This
student stated that, he does not know how to use some of the things they went through
at school in the real world and also suggested that the teacher must be able to tell the
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students how they can use the things they study at school in future or the real world, since
some teachers just say you will find out or figure it out but then they don’t know exactly
what to do (see for example Excerpt 5.3.4.10 on page 113). Kolis (2011) argues that when
the mathematics taught at school has some connection with the students’ lives, they might
come to realize the importance of mathematics to their daily lives. Matthews (2018) also
reports that mathematics teachers infrequently connect their instruction to the real world,
and that the teacher’s messages about the real world relevance of mathematics matters
in shaping how students value mathematics. As reported by Garfunkel and Montgomery
(2016), modelling activities can be used as motivation for learning new techniques and new
content. The inclusion of modelling activities in the curriculum might help the students to
view all the mathematics subjects as important since they can relate each subject to the
real world through the teacher’s guidance.

6.2.6 Students’ conceptions on group work

The students worked together in groups in solving both the algebraic word problem tasks
and the mathematical modelling task. At the end of the computations, one student rep-
resenting his/her group gave his/her conception about the effectiveness of group work.
All the students interviewed have the conception that the group activities helped them to
achieve what they could not achieve on their own. One student interviewed is of the view
that if one belongs to a group and doesn’t know how to solve the problem, he/she could
get help from another group member, and if no one in the group knows how to solve it
then the whole group can get some hints from the teacher as they work together. Gillies
(2016) argues that in cooperative learning students work together to achieve common goals
or complete group tasks, that’s goals and tasks that they would be unable to complete by
themselves. As I went round the class whilst the students solved the tasks in groups, I
noticed that when a student found a solution he/she explained it to the other group mem-
bers, and when the group members found out that the solution is not accurate, they then
teamed up and upgraded the solution to the point that they all agreed that it is the correct
solution. Gillies (2016) reports that students feel more comfortable in a cooperative learn-
ing environment and by this motivation they turn to ask questions and also express their
ideas. On the other hand, this same student interviewed is also of another view that group
work is not really beneficial if one does not know what to do and also belongs to a group
where everyone is working on their own and aren’t really sharing ideas, then he/she will
just be sitting among the other members wasting time (for example see Excerpt 5.3.5.0
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on page 114). Sharan (2010) reports that the implementation of cooperative learning may
be challenged with resistance and hostility from students who believe that they are being
held back by their slower teammates or by students who are less confident and feel that
they are being ignored or demeaned by their team.

The next chapter presents the conclusion of the study which entails the summary of results
and discussion, the limitations of the study, an implication of the study for teaching and
also suggestions for further research.
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7 CONCLUSION

In this final chapter, the summary of results and discussion are presented. Afterwards the
limitations of the study follows and the chapter finally ends with an implication of the
study for teaching and also suggestions for further research.

7.1 Summary

This research study is a case study of one group of 1T Norwegian upper secondary students
on the topic “how upper secondary students solve algebraic word problems in the area of
mathematical modelling. The data used in this study was collected through worksheets
(group work) and students’ interviews (individual students representing their respective
groups) in addressing the research questions.

The students in this study were familiar with the algebraic work problem tasks they solved.
The majority of the students interviewed regarded the first task as the most difficult task
since it was the first task and that they must get used to the way of solving it. However, few
of the students where not able to comprehend the abstract factual and abstract hypothetical
(Task 3 and 4 respectively) word problems, although they regarded the concrete factual
(Task 1) word problem as the most difficult task. In the process whereby the students
mathematize the four algebraic word problem tasks, they first translated the problem
using variables and then set-up an algebraic equation. In a situation where the algebraic
equation (whether correct or incorrect) can be solved and verified, the students went on
by solving the equation with a known technique whereas in situations where they can not
solve the equation, they reread the problem and then resorted to an arithmetic method.

The students’ interpretation of their modelling findings mostly depends on their initial
understanding of the problem, the construction of a mathematical model, the actual com-
putational activities, and the evaluation of the outcome of their computations. Few of the
students used an arithmetic method to successfully solve the mathematical modelling task,
whilst most of the students formulated equations to solve the task. One of the equations
formulated by the students was incorrect. Although their formulated equation was not
correct, but it gave a concise and general picture of their solution. The conclusions made
by the students depended on other factors and not solely on their computations. Almost
all the students compared their computations with reality, which made their mathematical
solution interesting since their interpretations gave a link between reality and the mathe-
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matics they did. In the end, most of the students are of the view that they would want
to have more modelling activities at school, giving some reasons why. They also have the
conception that group work is helpful, and they tend to achieve more when working in
groups.

I repeat that, these results can not be generalized but are only meant to be suggestive
and any conclusions drawn are tentative. The next section presents the limitations of this
study.

7.2 Limitations

The findings of this study must be seen in the light of the study’s limitations. The first
limitation of this study concerns the sample size. The findings of this study can not be
generalized because of the sample size involved (twenty-three students participated in this
study). The second limitation concerns the number of tasks given to the students. The
findings are not generalized to every algebraic word problem and mathematical modelling
tasks. The third limitation concerns the data collection instruments used. The individual
interviews did not capture the views of all the students within the group but only one
person (a representative of the group).

The twenty-three participants compared to the entire Norwegian upper secondary students
does not provide grounds for the findings to be generalized. The students used in this
study is just a case study of one group of Norwegian upper secondary students. A large
number of students will need a longer time in coding and analyzing the data that will
be collected. The research questions could be answered using a survey designed for the
purpose of generalization, where we find out statistically students’ performance in both the
algebraic word problem and the mathematical modelling tasks. However, this might not
reveal in detail the unique experiences of the individuals and the kind of conceptions they
have. The choice of the participants in this study was partially determined by the time
frame of the master thesis. On the other hand, the time frame for the master thesis also
influenced the number of algebraic word problem tasks given to the students. The time
allocated by the mathematics teacher of the students for the research activities did not give
much room for a lot of tasks. Using a lot of algebraic word problems in this study would
have produced much more data and would require a longer time in coding and analyzing.
Nonetheless, considering a lot of algebraic word problem and modelling tasks could have
impact on the findings. The findings could be generalized to type of every algebraic word
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problem and mathematical modelling tasks if a lot of tasks were considered. The individual
interviews (interview of an individual representing his/her group) used in this study did
not capture the views of all the students within the group. Interviewing every member
within the group could have an impact on the findings since the opinions of the students
differ. Again, interviewing every member of the group would have produced a large volume
of data that would have required a great deal of time in coding and analyzing.

To over these limitations in future studies I will suggest the use of multiple case studies,
where one selects his/her participants from different upper secondary schools across Nor-
way. It must not be all upper secondary schools in Norway, but some randomly selected
schools will be enough to generalize the findings. If the tasks are designed to suit most of
the things the teacher teaches at class, then these tasks can be used by the teacher on a
regular basis. This is one way of finding more time to give more tasks. Lastly, the use of
group interviews could help in getting almost all the views of the students within the group
since their opinions differ. Also, the use of a video tape in collecting the data could give
details about students’ communications, actions and their thoughts when solving the task.
The video tape will be best for just one group (between 3 to 4 students) due to the large
amount of data it would produce, if the research is at the master level within a limited
time.

The next section presents the implication of the study for teaching.

7.3 Implications for Teaching

Previous research (Caldwell and Goldin, 1979, 1987) as well as this current study reveal that
students finds abstract factual and abstract hypothetical word problems more difficult than
concrete factual and concrete hypothetical word problems. In going through samples of the
algebraic word problem tasks (see Appendix F on page 181) given to the students at class, I
found that the tasks do not include more of the abstract factual and abstract hypothetical
word problems. In this regard I suggest that teachers should include more of the abstract
(factual and hypothetical) word problems when designing tasks for the students, since
some of the students have difficulty with such tasks. I also suggests that teachers should
encourage the use of algebraic and graphic way of solving word problems. Although the
arithmetic way is helpful, according to Stacey and MacGregor (1999) translating word
problem into an equation can be challenging but using algebraic equations to solve problems
is important, since problems relating to equations with the unknown on only one side are
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easy to solve without algebra but the ones with equations with the unknown on both sides
require hard thinking if algebra is not used.

In comparing the algebraic word problem tasks and the modelling task used in this study,
the modelling task is more open and does not require a unique technique to solve it.
The findings in this study revealed that most students formulated equations which were
incorrect, however their equations gave a concise and general picture of their solution.
Also, the students used a graphical representation in providing a clearer picture of the real
valued function (algebraic equation) they modeled from the task and the link between their
computations and reality made the mathematics more interesting. The students have the
opinion that they solve fewer modelling task at class. Previous research (Stillman, 2007)
reveals that, at the upper secondary level and particularly in some European countries,
there is a strong bias against mathematical modelling and greater attention is given to high
level mathematics (theorems, proofs, formulas, and among others). Antonius (2004) argues
that it is still hard to find time for modelling activities which are time consuming to a very
high degree in the Nordic context. However, recently the Norwegian Ministry of Education
and Research has decided on a new curricular where ’modelling and applications’ is one of
the core elements of mathematics (but the curricular will take into effect in the autumn
2020). For mathematical modelling to be added to the ordinary didactical system, Artaud
(2007) suggests that the teaching process must be accorded extra time. The findings
revealed that some students are of the view that they don’t know how to use some of the
things they went through at school in the real world. Some students also suggested that
the teacher must be able to tell them how they can use the things they study at school
in future or the real world, since teachers usually just say, you will find out or figure it
out and that they don’t know exactly what to do. Kolis (2011) argues that when the
mathematics taught at school has some connection with the students’ lives, they might
come to realize the importance of mathematics to their daily lives. Matthews (2018) also
reports that mathematics teachers infrequently connect their instruction to the real world,
and that the teacher’s messages about the real-world relevance of mathematics matters
in shaping how students value mathematics. As reported by Garfunkel and Montgomery
(2016), modelling activities can be used as motivation for learning new techniques and new
content. The inclusion of modelling activities in the curriculum might help the students
to view all the mathematics subjects as important since they may be able to relate each
subject to the real world through the teacher’s guidance.
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7.4 Future Research

This study was conducted at the upper secondary school level. It would be interesting to
conduct the same research with students at the lower secondary school level or students
from the teacher education class at the university level in finding out if students at these
levels have challenges with abstract algebraic word problems and also if they can manip-
ulate the expressions in the modelling task. Again, since the new Norwegian curricular
(which will take into effect in the autumn 2020) has modelling and applications as one of
the core elements, a similar research at these levels might be necessary.

In the course of the research study an interesting issue came up. That is, one student
talked about how easier it would be when sketching the graphs with a computer (see
Excerpt 5.3.4.9: line 658, on page 112), whilst another student also talked about the use
of GeoGebra in making diagrams during the modelling process (see Excerpt 5.3.1.1: line
232, on page 100). This is an interesting issue which could be studied in a more extensive
and comprehensive way. I suggest research on the use of technological tools for modelling
realistic problems, where there is an investigation of how students mathematize a realistic
problem using a technological tool and also how these students interact with the tool as
they develop a technology-based solution to a realistic problem.

Advancements in the field of digital technology are currently making immense changes
in our world. This gives birth to various digital technologies which are observed to be
developing gradually. The integration of digital technology offers opportunities to the
education systems, although it might have some challenges. Majumdar (2015) reports
that the use of digital technology in the education system promotes learner centered and
collaborative learning principles. The National Council of Teachers of Mathematics (2000),
also argues that technology is essential in teaching and learning mathematics and that it
influences the mathematics that is taught and enhances students’ learning. They also
emphasized the need to develop students’ abilities to successfully use technological tools
in dealing with complex problem solving. Despite the integration of technological tools in
the education system, teachers, educators and researchers are still confronted with many
questions. Twenty-six year ago, Watson et al. (1993) in the Impact project identified
some negative factors that comes along with the integration of technological tools in the
education system: teachers having insufficient knowledge of the software and understanding
of the principles behind its use; students being unable to cooperate effectively; and students
having difficulties in learning to use the software. Although some measures have been taken
over the years, yet still the challenges still exist in this field. Drijvers (2015) reports that
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the design of the digital technology and the corresponding tasks and activities, the role of
the teacher, and the educational context are factors that emerge as decisive and crucial
when it comes to the integration of technological tools in the education system.

Mathematical modelling, as reviewed in this study on page 42, is one of the appropriate
media that supports the use of technological tools in dealing with complex problem solving.
Modelling offers students the opportunity to draw out their own mathematical and scientific
ideas in the process of finding real world solutions to real world problems. Mousoulides
et al. (2007), argues that the presence of technological tools are an important factors that
can interfere in students’ work in modelling activities and that the availability of these
tools, such as computer software or graphic calculators, might change the way student
solve a problem. They further points out that the use of appropriate technological tools by
students during modelling activities may improve the quality of students’ work which may
result in better models and solutions. Stillman (2007) reports that technology allows more
authentic modelling situations. However, Strässer (2007) warns that technology should not
only be considered as a means to enhance the students’ modelling abilities and to enrich the
students’ experience of applications and modelling, since the use of technology as everyday
and professional instruments deeply changes the scope and way mathematics is used in
society. Siller and Greefrath (2010) describes an extended modelling cycle that involves
the use of technology, in which they design a model that links the three worlds: Real
world (situation, real results); Mathematical world (mathematical model, mathematical
results); and Technology world (computer model, computer results). The technology world
describes the world where problems are solved through the help of technology. Siller
and Greefrath (2010) reports that using technology broadens the possibilities to solve
certain mathematical models that would not be solved if technology would not be available.
However, the development of a mathematical model at this point does not depend only on
the skills in certain software tools but also demands mathematical knowledge.

In the study by Christou et al. (2004), students used dynamic geometry software to model
and mathematize a realistic problem, and some features of the software enabled the stu-
dents to explore the problem and make mathematical conjectures. The students also
utilized the dragging features of the software to check some specific geometrical figures in
verifying whether their conjecture hold. Mousoulides et al. (2007) reported that students’
interactions with Potters Wheel, spatial geometry software for generating solids by revolu-
tion, assisted students in developing the necessary mathematical constructs and processes
as they actively engaged and solved a realistic problem through meaningful mathemati-
cal modelling. In this study, students were able to reach models and solutions that they
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could not probably do without using the software. Mousoulides (2011) also reported that
students’ use of the GeoGebra software assisted them in broadening their explorations
and visualization skills in the process of modelling real world problems and also making
connections between the real world and the mathematical world. These recent research
studies reveal that the incorporation of an appropriate technological tool in modelling ac-
tivities could help in understanding how students approach realistic problems. Siller and
Greefrath (2010) points out that the use of technology broadens the possibilities to solve
certain mathematical models, but unfortunately a lot of teachers and educators prefer not
to work with realistic problems with an example that teachers do not want to use technol-
ogy in class since it is very costly in terms of time. Monaghan (2016) on the other hand
provides a critique of ideas of the integration of technology in mathematical modelling,
pointing out the complex nature of technology in this area (in reality).

I also suggests that tasks used in further research should be designed in connection with the
mathematics teacher of the students based on the scheme reported by Leung and Bolite-
Frant (2015). Leung and Bolite-Frant (2015) reports on four considerations in designing
tasks that make use of tools, these considerations are: epistemological and mathemat-
ical considerations; tool-representational considerations; pedagogical considerations; and
discursive considerations. Leung and Bolite-Frant (2015, p. 194) argues that "different
epistemological approaches42 to mathematical knowledge have different implications on
task design". Nonetheless, the same tool can be used in task designs with different epis-
temological stances. A challenge to tool-based task design under this consideration is the
determination of a possible range of epistemological orientation and the type of mathe-
matical knowledge that a tool can afford and to choose them appropriately for pedagogical
situations. For example, a tool like dynamic geometry software can be used in task design
in covering a large epistemic spectrum from drawing precise robust geometrical figures to
exploration of new geometric theorems and development of argumentation discourse.

Another consideration taken into account when designing tool-based task is tool represen-
tational considerations. The way a chosen tool represent mathematical knowledge is at the
heart of tool-based task design. These considerations are considered: How far away from
the expected symbolic representation is in the tool’s potential to represent the mathemat-
ical concept?; and Is the tool capable enough of representing the targeted mathematical

42Sfard’s (2008) participationist epistemological orientation and acquisitionist epistemological orienta-
tion. The participationist epistemological orientation would favor a tool-based design with the potential for
students to participate in the construction of shared mathematical experiences or discourses, whereas the
acquisitionist epistemological orientation would use tools to explore and consequently construct personal
mathematical knowledge
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knowledge parallel to the corresponding symbolic representation? The next consideration
is the pedagogical considerations. Tool-based task design must be supported by a suitable
pedagogical environment. Also, familiarity with a tool and how to use it effectively to
teach and learn are important pedagogical considerations for tool-based task design. The
final consideration is the discursive considerations. Practicing to use a tool to accomplish
a task involves formation of appropriate tool-based vocabularies in the development of uti-
lization routines. The designed tool-based tasks should be able to bring about discourses
for mathematical knowledge mediated by tools in the mathematics classroom. Another
point to note, is how does these discourses relate to mathematics knowledge (pp. 194-198).
Now, to implement these considerations (when designing a tool-based task for modelling
activities) more research in this field needs to be done.
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Appendices

A Interview Guide

I’m working on a project, and it’s about how upper secondary students solve algebraic word
problems in the area of mathematical modelling. In this regard, I would like to ask you some
questions and hear your thoughts and opinions. You can say exactly what you want, there are no
correct or wrong answers. Say all that comes to your mind.

I will be using a voice recorder. However, I will never use your name or anything else that can
trace your identity. If you have questions or something you do not understand now or during the
interview, just ask. We can start now, we have some time!

Questions:

1. Have you solved or encountered similar problems like these algebraic word problems at class
before?

(a) Were there any difference?

(b) Can you tell me what the difference was?

2. Which of the questions among the algebraic word problem task, was the most difficult?

(a) Can you tell me why?

(b) How about the easiest? Why?

3. Can you tell me the processes you went through in solving these algebraic word problems?

(a) How did you know your answer was right?

(b) Do you know of any other method used in solving these algebraic word problems? Can
you tell me?

(c) Was it helpful when you solved these questions in a group? How? How about solving
them individually?

4. Questions about specific errors found in their solutions to the algebraic word problem tasks.

5. Can you see any connection between the mathematics you learn at school and the outside
world? Why?

6. How often do you solve mathematical modelling task at school?

(a) Any reason?
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7. What is your opinion about the modelling task you solved recently?

(a) Does this modelling task has any connection between the mathematics at school and
the outside world? Why?

8. Can you tell me the processes you went through in solving this modelling task?

(a) How did you know your answer was right?

9. Please, interpret your modelling results to me?

10. Questions about specific errors found in their solution to the modelling task.

11. Will you want more of the modelling task at school? Why?

We will end the interview now. Is there anything more you want to say/tell?

Remember that I will process everything anonymously, and you cannot track the answers back to

you. Thank you very much for your time.

B Consent Form

Are you interested in taking part in the research project
”(How upper secondary students solve algebraic word problems

in the area of mathematical modelling)”?

This is an inquiry about participation in a research project where the main purpose is to investigate
the underlying understanding of students when solving algebraic word problems in the area of
mathematical modelling. In this letter we will give you information about the purpose of the
project and what your participation will involve.

Purpose of the project

The purpose of the research project is to investigate students’ understanding as they justify their
strategies and also the interpretation of their findings when solving algebraic word problems in
the area of mathematical modelling. The research study tends to address these main questions:

• How do upper secondary students justify their strategies for solving algebraic word prob-
lems?

• How do these students interpret their findings after solving algebraic word problems in a
form of mathematical modelling?
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The research project forms part of the master’s thesis undertaken at the University of Agder.

Who is responsible for the research project?

The University of Agder (Mathematical Sciences Department) is the institution responsible for
the project. The researcher responsible is Obed Opoku Afram (Master student) and the project
is however supervised by Professor John David Monaghan.

Why are you being asked to participate?

You have been selected due to the fact that you are in the upper secondary school and currently
working with algebraic word problems. On the other hand, the teacher responsible for the math-
ematics class and the head of department at the upper secondary school have been contacted for
their consent.

What does participation involve for you?

The methods which will be employed for data collection are handwritten materials, interviews and
classroom observation. The handwritten materials are mainly about the answer sheets provided by
the students whilst the interviews will be tape recorded (All data will be completely anonymous,
there will be no link between the registered signatures on the consent forms and the data collected).

• If you chose to take part in the project, this will involve that you provide a justification
or explain the strategies you used in solving some algebraic word problems. You will be
working in groups. It will take approximately 45 minutes.

• You will also participate in a 10-20 minutes interview, where you talk about your solutions
to the modelling task. A voice recorder will be used during the interview.

• I will observe, participant and take notes during some mathematics lessons (no personal
data will be registered on the individual students during the observation).

• I will also ask your teacher to provide information about the mathematics courses you have
taken and the teaching activities organized by the teacher. The teacher will also be ask for
reasons why he/she uses a particular method when presenting the mathematics lessons and
also why he/she allow students to work in groups instead of individual or vice versa. I will
record the interview with a voice recorder.

Participation is voluntary

Participation in the project is voluntary. If you chose to participate, you can withdraw your
consent at any time without giving a reason. All information about you will then be made
anonymous. There will be no negative consequences for you if you chose not to participate
or later decide to withdraw. It will not affect your relationship with your school or teacher. No
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information or data will be recorded on students who do not participate in the research, especially
during the mathematics lessons observation.

Your personal privacy – how we will store and use your personal data.

We will only use your personal data for the purpose(s) specified in this information letter. We
will process your personal data confidentially and in accordance with data protection legislation
(the General Data Protection Regulation and Personal Data Act).

• The only persons that can have access to the personal data are the researcher, supervisor
and the censor at the University of Agder.

• All necessary precautions will be taken to ensure that no unauthorized persons are able to
access the personal data. I will use pseudonym to ensure your identity is not revealed in
any part of the research project. The personal data will be stored on an external hard drive
and the University of Agder server.

The participants will not be recognizable in any form of publications.

What will happen to your personal data at the end of the research project?

The project is scheduled to end on the 30th of May 2019. The personal data including the voice
recordings will be completely deleted within a period of six months after the research project is
done.

Your rights

So long as you can be identified in the collected data, you have the right to:

• access the personal data that is being processed about you

• request that your personal data is deleted

• request that incorrect personal data about you is corrected/rectified

• receive a copy of your personal data (data portability), and

• send a complaint to the Data Protection Officer or The Norwegian Data Protection Au-
thority regarding the processing of your personal data.

What gives us the right to process your personal data?

We will process your personal data based on your consent.
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Based on an agreement with the University of Agder (Mathematical Sciences Department), NSD
– The Norwegian Centre for Research Data AS has assessed that the processing of personal data
in this project is in accordance with data protection legislation.

Where can I find out more?

If you have questions about the project, or want to exercise your rights, contact:

• The University of Agder (Department of Mathematical Sciences) via

– Professor John David Monaghan (Supervisor), by email: john.monaghan@uia.no

– Obed Opoku Afram (student), by email: obedoa17@student.uia.no or by telephone:
+47 40384669.

• NSD - The Norwegian Centre for Research Data AS, by email: (personverntjenester@nsd.no)
or by telephone: +47 55 58 21 17.

Yours sincerely,

. . . . . . . . . . . . . . . . . . . . . .
Obed Opoku Afram
(Researcher/Student)

. . . . . . . . . . . . . . . . . . . . . .
Prof. John David Monaghan
(Supervisor)

Consent form

I have received and understood information about the project ‘How upper secondary students
solve algebraic word problems in the area on mathematical modelling’ and have been given the
opportunity to ask questions. I give consent:

� to participate in the group activities.

� to participate in an interview.

� for notes to be taken about my involvement during mathematics class lessons.

� for my teacher to give information about me concerning the mathematics courses I have
taken and the teaching activities at class to this project.

I give consent for my personal data to be processed until the end date of the project, approximately
October 2019.

. . . . . . . . . . . . . . . . . . . . . .
Signed by participant, date.
(NB! If you are under 16 years old, your superior also needs to sign)
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D Transcripts of Students’ Interviews

D.1 Interview Transcript, Student A

Teacher: Have you solved or encountered similar problems like these [Points at the algebraic1

word problem task] algebraic word problems at class before?=43
2

Bjørg: =Yeah.3

Teacher: Were there any difference?4

Bjørg: Umm..44 I don’t think so.5

Teacher: So there wasn’t any difference?=6

Bjørg: =No.7

Teacher: So how similar was it?8

Bjørg: .. Very close.9

Teacher: Very close?10

Bjørg: Yeah, I guess.11

Teacher: Ohk!.. So, when you went through the questions, which of the questions among12

the algebraic word problem task was the most difficult?13

Bjørg: Umm.. None of them actually. It was like same form.. It was kind of same14

questions. It had similar, I don’t know, equations, but um I kind of forgot to read15

through whole text, like whole problems, so I forgot to sum up in the end, so I got16

failed at the first time, but when I went through it like, I read the problem, then I17

got the right answer as the others in my group.18

Teacher: Ohk! So, can you tell me the processes you went through in solving these algebraic19

word problems? . . . What did you do?20

Bjørg: What did I do.. Umm.. Can I take this [Pointing at the first question in the21

algebraic word problem task] as an example?=22

Teacher: =Yeah, sure.23

Bjørg: Umm.. I start like, in this [question]=24

Teacher: [Yeah]25

Bjørg: =(inaudible)45 Umm, you know the amount of hens, there are 13 more hens than26

goats. I set goats as x and. . . I don’t know how to explain it like.. Can I write?27

Teacher: Yes, you can.28

Bjørg: So, this is the value of goats [writes x], because 13 hens more than goats, maybe29

43When one speaker immediately follows the speaker before, without any pause between them.
44A brief pause in speech, .. means one second pause, . . . three second pause, . . . .. more than five

second pause.
45Inaudible or missing words.
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not, let me think. . . .30

Teacher: You can use the solution you already have.31

Bjørg: Yeah, so 13 + x means goats and hens has two legs, so this [Points at 2(13 + x)32

in the equation] is the amount of the legs of hens and the goats, which is x, has four33

legs, so if I.. Umm plus these two amounts [Points at 2(13 + x) and 4x] then I get34

146 legs and yeah. How many animals in all does Marius have? Then I have just to35

like sort x’s to the one side and then the numbers to the other side, then I get 6x is36

120 and I divide into 6 because I want x to be alone and I get 20. And this is not37

the answer or maybe. . .38

Teacher: Yeah.39

Bjørg: Yeah, this is not the answer because the problem is..40

Teacher: How many animals in all does the farmer have?41

Bjørg: Then I got that, 20 goats in the garden. No! In the farm. Then I plus this42

together [Points at 20 goats and 33 hens] and I got 55 as an answer.43

Teacher: Ohk! So that is the process you went through?44

Bjørg: Yeah.45

Teacher: So, you first of all understood the question=46

Bjørg: =Yeah.47

Teacher: And then you tried to make an equation=48

Bjørg: =Yeah.49

Teacher: And then you solve the equation. So how did you know your answer was right?50

Bjørg: [Laughs] Umm I talked with my friends in my group and they had same answer51

as me, so we thought it was right.52

Teacher: So, do you know of any other method used in solving these problems, apart from53

the one you know already?54

Bjørg: Umm.. Not really. . . Umm, I don’t know.55

Teacher: Ohk! Was it helpful when you solve these questions in a group?56

Bjørg: Not really, because I solve it alone, like every.. All of them by myself and then I57

talked with my friends in my group.58

Teacher: Looking at 20 goats and 33 hens, you mean the sum is 55?59

Bjørg: Oh!! Wait, what, 55, it supposed to be 53.60

Teacher: Ohk.61

Bjørg: Yeah [Laughs]62

Teacher: Can you see any connection between the mathematics you learn at school and63

the outside world?64
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Bjørg: Yeah, it might be=65

Teacher: =Can you tell me more about that.66

Bjørg: [Laughs] Umm, like I don’t know, um... maybe in super market when you have67

to like see the price in some. I don’t actually know.68

Teacher: Just say what you are thinking.69

Bjørg: Like math is in daily life, actually like you can find them every day [Laughs]. But70

I don’t have exact example.71

Teacher: So.. How often do you solve mathematical modelling task at school?72

Bjørg: In math classes?73

Teacher: Yeah.74

Bjørg: Umm.. 10 percent maybe.75

Teacher: Any reason?76

Bjørg: Umm.. We get problems, they are like um, they are most like these questions77

[Points at the algebraic word problem task], not this one [Points at the modelling78

task].79

Teacher: Ohk! So, what is your opinion about the modelling task you solved?80

Bjørg: It was difficult for me.81

Teacher: Ohk!82

Bjørg: So, I have to talk with my group.83

Teacher: And does this modelling task has any connection between the mathematics at84

school and the outside world.85

Bjørg: Umm, yeah it might be.86

Teacher: So, what is the connection here?87

Bjørg: Umm, like in this problem they ask about job and you can, like if you in real life88

and you want to find a job and you can like choose one of the two jobs, and if you89

want to know which is more, which is better than the other job, then you can like90

compare.91

Teacher: Can you please tell me the processes you went through in solving the modelling92

task?93

Bjørg: Umm. We made equations I guess. . . Yeah first we made two equations, one for94

one job and second for the other job, and we drew, and we made a graph looking95

like this [Points at their solution graph] umm. And we found out that our first graph96

which crosses the line here [Points at the line y = 30x on the graph] is better than97

the other in this line [Points at the line y = 5 + 20x where x is taken as zero on the98

graph].99
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Teacher: So, you set up the equation and then you try to make a graph.100

Bjørg: Yeah.101

Teacher: Let say I’m your friend. Can you interpret your modelling results to me, that I102

can make a choice?103

Bjørg: [Laughs] Ohk!. . . Umm.. It all depends on your time spent working or your great104

selling skills. Also, of course if your minimal wage is extremely low, maybe sticking105

with 20kr per item would be better. But umm.. Kristin’s own better perspective we106

would recommend using graphs, because it would be easier to see the changes and107

variations based on time and salary.108

Teacher: Ohk! What does the r means in the equation for the second job?109

Bjørg: Umm. I think is for the amount of the items.110

Teacher: So, is it the amount of items for only one hour or?111

Bjørg: We thought that per item cost 20kr. So, x is the hour and r is the amount of the112

items.113

Teacher: Ohk! It means that you have x here [Points at 5x in the second equation] but114

you don’t have it here [Points at 20r in the second equation].115

Bjørg: No.116

Teacher: Why?117

Bjørg: Umm. . . .118

Teacher: Maybe you can have x at both sides [Writes y = 5x+ 20xr]119

Bjørg: It could be.120

Teacher: Because every hour you have 20kr on each of the items you sell.121

Bjørg: Yeah.122

Teacher: Because, this [Points at the equation y = 5x+ 20r] sounds like only one hour.123

Bjørg: Yeah, it makes sense. So, x could be on both sides or we could just write the124

equation y equals (5 + 20r)x.125

Teacher: Yeah. Did you checked the point at which equation 1 and 2 will be the same?126

Bjørg: We didn’t, we thought that this had two different, whole different answer. So,127

we did not.128

Teacher: Maybe you didn’t consider this equation [Points at the equation y = 5x+ 20xr].129

Bjørg: Yes, we didn’t quiet understood the second one, the second job.130

Teacher: Ohk! So will you want more of this modelling task at school?131

Bjørg: Yeah.132

Teacher: Why?133

Bjørg: Because I struggled with this problem, so I want to be good at this.134
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Teacher: And does it help in the learning process of mathematics?135

Bjørg: Yeah.136

Teacher: How?137

Bjørg: Like in different, umm. Like you can think. To solve this problem, you have138

to think in many different ways and you have to like [Laughs]. You can have many139

different thinking ways.140

D.2 Interview Transcript, Student B

Teacher: Have you solved or encountered similar problems like these [Points at the algebraic141

word problem task] algebraic word problems at class before?=142

Julie: =Yeah. We did some in high school. Oh, not high school but the previous school143

I went to, in 10th grade and 9th grade and just also some other years in math.144

Teacher: Ohk! And recently, have you been working with these problems?145

Julie: Well, not that much. Not that much.146

Teacher: Were there any difference or they were similar?147

Julie: Yes, they were quiet similar.148

Teacher: Ohk! So, when you went through the questions, which of them was the most149

difficult?150

Julie: Umm.. I think we straggled the most with the first one [Laughs]. Umm but then151

when we got the first one we figured out. I think we got the other ones too. But152

Umm.. also the one with the um.. Oh no, that one [Laughs].153

Teacher: Ohk! So, can you tell me the processes you went through in solving these algebraic154

word problems?155

Julie: Umm. Well, I think we first thought about it which it which way we could solve156

this, if we could use umm two equations like x and y for the hens and goats um. But157

then I think we figured out that, that did not worked umm and then we tried to look158

at how many um animals they were or legs they were in um altogether. Umm, then159

we found out that since they were 13 more hens than goats we could just um subtract160

the hens legs from all of the legs. And then we could just part the legs in two um. . .161

Or divide them [Laughs] in two, and find out how many they were, I think.162

Teacher: Ohk! So, the same applies to the second one?163

Julie: Umm. . . Yeah.164

Teacher: The same process?165

Julie: Umm.. Maybe. Here only we um. . . I think we used two equations to find firstly166

how many students they were, like this [Points at 13g + 2b = 346] and we said g for167
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the girls and b for the boys. Ummm.. And then um yeah, since there were 7 more168

girls than boys, we put that. . . .169

Teacher: So, it was more like a simultaneous equation.170

Julie: Yeah, I think so [laughs], I don’t really know.171

Teacher: So, the issue here is that you try to understand the word problem, and then you172

tried to put them into variables=173

Julie: =Yeah.174

Teacher: Then you form equations and then you solve the equations.175

Julie: Yeah, yeah.176

Teacher: Ohk! So, how did you know your answer was right?177

Julie: . . .Well, I think we did. I don’t know, we thought it was right or not but. . .178

Teacher: When you arrived at the answer, you did nothing else?179

Julie: Yeah, maybe, but I think we were a little confuse but, in the end, we got an180

answer that we were satisfied with. But.. and then also, make sense um because181

there were 13 more girls than boys. And I think we tried to put altogether in the182

end and that made 346.183

Teacher: Ohk! So, do you know of any other method used in solving these problems, apart184

from what you just did?185

Julie: Ummm.. I [Laughs]. Not that I know of now.186

Teacher: And was it helpful when you solve the problems in a group?187

Julie: Yeah, it was.188

Teacher: How helpful was it?189

Julie: Umm. I think discussing with others and like getting more ideas will just.. make190

the process [Laughs] more smooth. Yeah, it makes it quicker.191

Teacher: Ohk! How about solving them individually?192

Julie: Well, I think it will work the same way, but it will maybe take some more time,193

some more thinking. But if it would be a task on a test it would maybe be the same194

because you work it as you know that this is a test and you have to solve it, and you195

only have this much time so you like under pressure and then, it also works [Laughs].196

Teacher: Ohk! How come the first attempt in question one failed?197

Julie: Umm.. I don’t know. . . Yeah, because when we.. These are the same [Points198

at (2x + 13 ∗ 2) + 4y = 146 and 4y = 146 − (2x + 13 ∗ 2)] and this [Points at199

(2x + 13 ∗ 2)] is negative, like this [Points at (2x + 13 ∗ 2)] was subtracted by this200

[Points at (2x + 13 ∗ 2)] one, because we will sort the x’s in one side and then this201

[Points at 146] one will go over to this [Points at 146] side, and then they will just202
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subtracted each other and then the equation would be zero, equals zero [Laughs]. I203

don’t know if that is right [Laughs].204

Teacher: Is it because, maybe you didn’t set up the equation right?205

Julie: Yeah, maybe.206

Teacher: Umm. Can you see any connection between the mathematics you learn at school207

and the outside world?208

Julie: Yeah, well not any of this connection.209

Teacher: Can you tell me more about that?210

Julie: Umm. If you want to be a person who builds houses and stuff, you can use211

trigonometry to like find the angles and sides and um yeah, with the goats on the212

farm if they [Laughs] don’t want to go around and count every single one, they can213

[Laughs]..214

Teacher: How often do you solve mathematical modelling task at school?215

Julie: Well, I think it’s often when we have about this [Points at the modelling task] in216

algebra, functions and stuff umm and it also a common question on (inaudible) the217

logic test, we have a five hour test um, so we have sometimes.218

Teacher: Ohk! What is your opinion about the modelling task you solved?219

Julie: Umm. Well.. it is a good question kind of, because it relates to real life and it220

could have happen in real life. Only maybe we would not solve it this way [Laughs]221

in real life, umm.222

Teacher: You will not solve it this way in real life?=223

Julie: =No! [Laughs]. I think we will just like think about it and it would be like ohk224

, like this one will be more, but maybe it will be fun just to solve it since it in real225

life, but.. Yeah, I think it a good question.226

Teacher: So how about the mathematics you have at school?227

Julie: Yeah, I think so, maybe um I don’t see it as well but I think that there is one.228

There has to be a reason why we learn all of it [Laughs].229

Teacher: Can you please tell me the processes you went through in solving this modelling230

task?231

Julie: Umm. Well, first we read it and then we figured out that there was no specific232

minimum wage, so we just set one just to.. a kind of put a picture on how it looks233

umm. And then we put together the two equations because we wanted to use two and234

then put them into a diagram in Geogebra and then find the similarities or where the235

lines cross each other. But then we find out that the gradients were the same which236

means they kind of parallel to each other umm, which made the task very confusing237
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because we thought much about it and then it just became more and more confusing.238

But then we tried to, like think how it would be in real life if she sells much, she239

would umm earn more with the um first or second job, yeah the second job which240

she sells items and so if she sells like minimum two or three items she would earn241

even more than the first one, even though the first one has like a better um salary242

in general when you see it at first. So, we tried to put it in a diagram but I don’t243

know if it went right because the axis are different since the first equation has hours244

and the second one has items so, yeah. And then we just concluded with that the245

second job would be more umm, would better because she would mostly or umm, she246

is going to sell more than two items an hour or three, because yeah, if it’s a summer247

job people go shopping all the time [Laughs] .248

Teacher: Ohk! So, let’s say I’m your friend, how do you interpret your results to me for249

me to understand and make a choice?250

Julie: Umm. I would say that if you would like to. . . If you are a person who works a251

lot and works for the money and earns.. and is a good person who manages to talk252

to your costumers and umm yeah, who knows stuff about what you are selling umm,253

then the second job would more.. would be better.254

Teacher: Looking at your equations, does the x affect this one [Points at 80 in the first255

equation] or only that one [Points at 20 in the first equation]?256

Julie: Only that one [Points at 20 in the first equation].257

Teacher: So, which means in 2 hours, she will still get 80?258

Julie: I don’t know actually [Laughs].259

Teacher: Because it reads, every hour you have the minimum wage plus 20kr.260

Julie: Ahh! Ohk! It wrong to put it that way.261

Teacher: Can you give me the new equation?262

Julie: How we would put it?263

Teacher: Yeah.264

Julie: So, it is [Writes (80 + 20)x = y].265

Teacher: Same with the second equation.266

Julie: Ohk!! Yeah.267

Teacher: But you said if somebody sells 2 or 3 items, then it is better than the first job.268

How do you explain that?269

Julie: I guess it was because we did write the equations like this [Points at y = 80+20x]270

and not like this [Points at (80 + 20)x = y].271

Teacher: Ohk!272
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Julie: Because we thought that this was only the thing you got one time, and if that273

will be the situation umm, you will get more there [Points at the equation for the274

second job]. Because 20 times 3 would be 60 and then you sell items for 60kr per hour275

um, you would get more than here [Points at the equation for the first job] because276

you would just get 20 per hour. So, that makes sense. But with this equation [Points277

at (80 + 20)x = y], that will not be the situation I guess.278

Teacher: So, will you want more of this modelling task at school?279

Julie: Yeah. Well, I think it’s a good task to like put several um situations together280

and have to use more um of the things you learn in class to solve the equation or the281

problem, you don’t have to only use the one formula you learned in the class umm,282

you have to use like the formula you had last week or the one you learned a year ago,283

and then you have to put it all together to solve the problem, yeah.284

D.3 Interview Transcript, Student C

Teacher: Have you solved or encountered similar problems like these [Points at the algebraic285

word problem task] algebraic word problems at class before?286

Hilde: Arr, yeah.287

Teacher: Were there any difference?288

Hilde: Umm.. It was a bit similar [Laughs], yeah I think.289

Teacher: Ohk! So, when you went through the questions, which of them was the most290

difficult?291

Hilde: Umm. I think it was maybe the first because, we just had to get used to the292

way of thinking to solve it but after we knew how to do it, we just applied the same293

method to do the rest of them. But umm I noticed some of my fellow students in my294

group, they got confuse with example, ‘A given number is six more than a second295

number’, so this is the same as the first number, and they got confuse, so the first296

number is 4 times as large and they took the second number instead of the first297

number. So, it was kind of the most difficult to actually understand what they were298

saying and the information we got. And to apply them correctly in the equation.299

Teacher: Ohk! So, can you tell me the processes you went through in solving these algebraic300

word problems?301

Hilde: Umm. We started by um collecting information, so writing down what we knew302

and we had x of course for unknowns, so we decided what is x? In the first task we303

decided x is number of goats, total number of goats because then we can put x+ 13304

which equals total number of hens, and then we had total number of legs which is305
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146. And then because we know goats have legs, we put 4 multiplied by x plus 2306

multiplied by, and then blankets x + 13, which equals 146. So, the two and four or,307

yeah it’s the number of legs.. Yeah, and then we just solve the equation, and we saw308

that x equals 20, which is number of goats, and we put 20 plus 13, which is number309

of hens. Yeah!310

Teacher: So, in the end how did you know your answer was right?311

Hilde: . . . Umm. We just talked about it and we kind of try to see if we could do it other312

ways or umm just use logic. So, we know that if there were 20 goats, and 20 goats313

have 4 legs, that’s 80 legs. And if there were 33 hens and they have 2 legs, we just..314

Yeah, we went round and put x equals 20 into the equation and see if it equals 146.315

Teacher: Ohk! So, do you know other methods used in solving these questions?316

Hilde: From school?317

Teacher: Yeah, other methods apart from what you did here.318

Hilde: Umm. Not sure of, never learned a specific method to use about. Always just319

the kind of thought about it myself and figured a way around it.320

Teacher: So, was it helpful when you solve the problems in a group?321

Hilde: Umm. Our group actually started by interpreting or kind of understanding the322

question and working by ourselves first, and then just join forces last to see if we got323

the same answer and if we didn’t, why? Go over what we did then, yeah.324

Teacher: So, how about solving them individually?325

Hilde: I think it’s good, I work better when I work alone because at least, in first or326

at first, because then I can just think for myself and I can do it of my own tempo327

and I don’t want to rush if the others are faster than me or stay behind and explain328

to them if I’m the one that’s faster. So, it’s just good to do that, but it’s also good329

to compare answers afterwards to see if I did some yeah, if there is kind of plus or330

minus wrong.331

Teacher: Can you see any connection between the mathematics you learn at school and332

the outside worlds?333

Hilde: Yeah, if I think about it.. But I mean it’s not like I go round and then look for334

it all the time, sometimes I do it because of, you know, it a bit fun [Laughs].335

Teacher: How often do you solve mathematical modelling task at school?336

Hilde: Umm. We do it when we are working on subject, but this was a bit different337

because there were so many variables, there wasn’t a concrete answer I think at least,338

because we got, the first one we had two variables x and a, we didn’t know minimum339

wage and the second one we add three because items were added, and we named it b,340
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so it would have being hard to drew it in, yeah, this graph [Points at their solution341

graph] because we didn’t have all the information that is required to use those from342

us.343

Teacher: Ohk! What’s your opinion about the modelling task you solved?344

Hilde: . . . Umm, my thought about it. It’s abstract, so it’s very hard to actually come345

up with an answer when you don’t have all the information and it was kind of [laughs]346

irritating, because I always wanted to just find an answer, but I guess it’s good to347

solve, to also just think about it.348

Teacher: Yeah, do you see any connection between this modelling task and the real world?349

Hilde: Yeah, I mean um like which jobs, we can see that. I mean you can always compare350

two jobs to see ohk which one will be the best for me, or like this and this situation,351

there are several of those situations.352

Teacher: Ohk! Umm.. Can you tell me the processes you went through in solving the353

modelling task?354

Hilde: Yeah, it a bit similar, we decided what was x and in this case, we took x as hours,355

number of hours, and y of course is the total money she earns and then we had 20356

because it says 20kr per hour, so 20x and then we didn’t know minimum wage so357

we put a as minimum wage, so plus ax. And the same here [Points at the equation358

for the second job]. So, because it’s in the same graph we again had x as hours so a
2

359

multiplied by hours plus 20b because she earns 20kr per item.360

Teacher: Ohk! So, did you check whether your answer was right?361

Hilde: That was very hard, because of course we did it by um just giving a number for362

each job, we said minimum wage is 100 and then we tried this out and said ohk,363

because of so and so, and here we kind of stuck at the.. So, we saw. We found how364

many items she has to sell for this [Points at the equation for the second job] to365

better than that one [Points at the equation for the first job], and we got the answer,366

approximately 27 items.367

Teacher: Ohk! So, let’s say I’m your friend, interpret your results for me to understand368

and make a choice?369

Hilde: Oh! That’s hard umm. So, I would kind of [Laughs] ask, are you good at selling,370

because if you have to sell 27 items for it to be better than the first job offer. If you371

are good at selling then ohk, you will after a while earn more with equation number372

2 or, yeah. But if you feel sort of insecure then this [Points at the equation of the373

first job] choice is safer.374

Teacher: Why don’t we have x, the number of hours here [Points at 20b in the second375
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equation] in the equation?376

Hilde: Because it’s kind of constant, it’s not if you sell so many items per hour you get377

this for one day of work. You have number of items multiplied by 20.378

Teacher: If you have x here [Points at 20b in the second equation] then the number of379

items she sells will decrease, it won’t be 27 items but far less. Let’s say 3 items. Do380

you get it?381

Hilde: [Laughs]. I think I got it.382

Teacher: Ohk! So, will you want more of the modelling task at school?383

Hilde: Umm. I don’t know [Laughs]. Maybe, but we are yet to cover a lot of other384

stuffs, so it kind of depends.385

Teacher: So, if you want this type of questions, why will you want them?386

Hilde: Umm.. Just to get more used to the way of working and thinking about it and387

which method we have to use to solve it, because we don’t use it, all of it to solve.388

D.4 Interview Transcript, Student D

Teacher: Have you solved or encountered similar problems like these [Points at the algebraic389

word problem task] algebraic word problems at class before?390

Eirik: Umm, yes.391

Teacher: Was it very similar?392

Eirik: Yes, it was very similar.393

Teacher: Ohk! So, which of the questions among the algebraic word problem task was the394

most difficult?395

Eirik: Umm. . . None of them was very complicated.396

Teacher: Like it was kind of the same?397

Eirik: Yeah.398

Teacher: So, can you please tell me the processes you went through in solving these alge-399

braic word problems?400

Eirik: Umm. As I said, I did many of those tasks before, and I know you got to solve401

them with an equation, so I just try to put all the information I get in equation to402

solve them the mathematical way.403

Teacher: Ohk! So, when you solved them, how did you know your answer was right?404

Eirik: Ummm, you can check in equation.405

Teacher: So, you put it back into the equation and checked?406

Eirik: Mmm!407

Teacher: Do you know of any other method used in solving those questions, apart from408
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the method you used?409

Eirik: Umm, no I don’t, or you can try to think about it in your head but it’s almost410

the same as having an equation.411

Teacher: Ohk! Was it helpful when you solve these questions in a group?412

Eirik: No, I really solve it myself.413

Teacher: Can you see any connection between the mathematics you learn at school and414

the outside world?415

Eirik: Umm, No. Most of the mathematics we go through now is more of theoretical,416

so you can’t really use it in real life, unless something special.417

Teacher: Ohk! So, how often do you solve mathematical modelling task at school?418

Eirik: Umm, often we solve those ones in. . . No, just one um, some questions in every419

topic, just to try if you understood the theme.420

Teacher: Yeah! Was it as open as this one [Pointing to the modelling task]?421

Eirik: No, they are more related to the theme that we have in class, but you can’t be422

sure (inaudible) either solve them.423

Teacher: What is your opinion about this modelling task?424

Eirik: Ummm, it’s irritating, there is no actual answer because there are too many um425

variables, yeah.426

Teacher: Does the modelling task has any connection between the mathematics at school427

and the real word?428

Eirik: Umm. We don’t do things like that in our class anymore. They do the thing B429

Math, if you know what I’m talking about, we don’t, because it looks, it’s too easy430

as in mathematics task, so we did a lot of that in urr lower secondary school.431

Teacher: So, can you tell me the processes you went through in solving this modelling432

task?433

Eirik: Umm, one of the mates of the group tried to set x as, if you think about different434

variables as a. . . how much you work, how much you sell, and the umm.. that was435

third variable um and minimum wage umm, if the minimum wage is 100kr, then he436

tried to find out what it is, but it’s not an answer because minimum wage affects437

how much she earns, and it doesn’t make an answer and the best job. Yeah, you can438

really find an answer and too many variables you can take umm, you can shorten it439

to two variables as you get minimum wage and the umm. . . how much she sells but..440

I don’t have enough information to solve this task.441

Teacher: So, how will you interpret your modelling results to me?442

Eirik: It depends on how much the minimum is and it depends on how much you are443
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able to sell in one hour, yeah.444

Teacher: Where from the 3.6 in your calculations?445

Eirik: 3.6 is how much you need to sell to earn more than a. . .446

Teacher: Ohk! Will you want more of this modelling task at school?447

Eirik: Umm, yeah, it works fine.448

Teacher: Can you tell me more about that?449

Eirik: I’m just, you just fine with tasks that are a little bit harder and you gonna fine450

the tools and just use the tools to fine what’s there. It’s nothing more than that.451

D.5 Interview Transcript, Student E

Teacher: Have you solved or encountered similar problems like these [Points at the algebraic452

word problem task] algebraic word problems at class before?453

Tonje: Yes, the three last ones, I would say but not the first one. But they are all the454

same though, like kind of.. we have been through this in pre-school or high school455

[Laughs]. No, middle school.456

Teacher: Middle school?457

Tonje: Yes, we’ve been through this, but it’s kind of hard to like recall what we were458

taught or in mine opinion, that was my case.459

Teacher: So, you’ve been through the last three=460

Tonje: =Yes, I will say that.461

Teacher: Ohk! Was it very similar?462

Tonje: Yeah.463

Teacher: Ohk! So, which of the questions was the most difficult?464

Tonje: The first one, because we had to like get into the way of calculating the other465

task as well. So, when we first solve the first one, we were kind of in the game, so we466

knew how to solve the others [Laughs]. The first one is like a very difficult warm up467

whilst the three last ones were kind of like, ohk we’ve done this, it’s ohk now.468

Teacher: Can you please tell me the processes you went through in solving these algebraic469

word problems?470

Tonje: We tried and we failed [Laughs] several times on the first one.. Yeah, so we just471

kind of.. We decided to try and solve them using algebraic methods, however we472

kind of failed couple of times before we first or finally figured how to solve the task.473

Teacher: Ohk!474

Tonje: And then, after that the three last ones just went like a breeze [Laughs].475

Teacher: Ohk! So, how did you know your answer was right?476
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Tonje: We tested it out. Yeah, we checked it on the calculator, we put in um what we477

thought was x into the equation and calculate on the calculator.478

Teacher: So, do you know of any other method used in solving these algebraic word prob-479

lems?480

Tonje: Umm, you could kind of just put a variable in there um by yourself and instead481

of the x, instead of doing what the um question kind of ask you to do, but that’s482

kind of [Laughs] takes a longer time.483

Teacher: Ohk! Was it helpful when you solve these questions in a group?484

Tonje: Yes, indeed [Laughs].485

Teacher: How helpful was it?486

Tonje: Well, because when you are by yourself and you are like trying your best, you487

only have your own mind like you don’t get help from anyone, but when you are488

two people you both share your thoughts and if one has one opinion then the other489

person might have another, so you can compare and combine maybe, it works things490

out.491

Teacher: Ohk! Can you please explain question four in the algebraic word problem task492

for me?493

Tonje: So, um ‘A given number is six more than a second number’.494

Teacher: Yeah.495

Tonje: Umm, we put the second number as x, because you don’t add something to it,496

and then the first number is then x+6 because you add something. So, then we just497

put in the umm the multiplications or the number.498

Teacher: So, can you explain the multiplication for me?499

Tonje: Yeah, so the first number you multiply with 4.500

Teacher: So, the first number was x?501

Tonje: The first number was umm, wait [Laughs]. Oh! I wrote something wrong502

[Laughs]. Ohk! So, I might have done something wrong here, umm. I meant to503

put 4 there [Points at x+6 in the equation] and 2 here [Points at x in the equation].504

Ohk! Yeah [Laughs].505

Teacher: So, can you see any connection between the mathematics you learn at school and506

the outside world?507

Tonje: Yes.508

Teacher: What is the connection here?509

Tonje: Ohk! I just answered that on impulse, because we’ve had that question several510

times and we’ve always being proven wrong because it is in the real world, like kind of511
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the examples put much easier. I guess like, if you are working and you earn a certain512

amount of money for one hour then you can use for example algebraic methods of513

calculating how much you will earn. Yeah, for several hours [Laughs].514

Teacher: Ohk! So, how often do you solve mathematical modelling task at school?515

Tonje: Like realistic problems?516

Teacher: Yeah.517

Tonje: Ummm, only this year I think I have done it um, in the 10th grade it wasn’t518

really that realistic. Yeah, like twenty thousand million against one apple [Laughs].519

Is not gonna happen but.. Ohk! Well, it now that actually using real life problems520

or real-life situations to teach us math which I really appreciate.521

Teacher: So, can you tell me the processes you went through in solving this modelling522

task?523

Tonje: We kind of struggled because we thought we had to know what the minimum524

wage was, so we kind of like wasted a lot of time just trying to find out the minimum525

wage. However, we decided to continue without it and just made our own minimum526

wage, like put in our own number and then after that we just made a graph which527

is a little incorrect but [Laughs] I realize that as soon as I started, but yeah, then528

we just compared this two [Points at the two equations for first and second job], saw529

where they meet each other and which one will benefit Kristin in the long run and,530

yeah!531

Teacher: So, this line [Points at the red line on the graph] is what?532

Tonje: This is the first job and the second job is the blue one.533

Teacher: So, how do you interpret your results to me?534

Tonje: Well, if our calculations are correct, then we advise you to [Laughs] choose the535

first job, because you will earn the most in the fasters time period.536

Teacher: Ohk!537

Tonje: Because as you can see um, it pays 20kr an hour above the minimum wage and538

we put the minimum wage as 100 um, and then we start there and it rises by 20kr539

an hour, I think.540

Teacher: Ohk!541

Tonje: Yes, and if you choose the other job then you have to be more, I don’t know, you542

have to be like go further into how the people are or into what the people are going543

to buy, because you earn more when they buy more, which means you have to be544

more active, you have to um advertise the product, you have to go like, ‘Hey, you545

wanna buy chocolate’. So, you have to work, you have to actually work to [Laughs]546
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get money. Yeah, the other one is like you do your job, but you still earn your money547

without nothing more.548

Teacher: You should have had x in both sides and a new variable representing the number549

of items like y equals 50x+ 20bx.550

Tonje: Yes, but we kind of struggled, I mean we.. Our opinions didn’t match each other.551

Teacher: Ohk! So, will you want more of the modelling task at school?552

Tonje: Yeah, I would say.553

Teacher: Why?554

Tonje: I think I learn more umm, what we do new is kind of just she gives us a paper555

or some explanation of what we are doing and then she just kind of let us read one556

sentence about what we are learning, and we are just on our own. But I feel like here557

we got to work together more and we got more task that um still match what we are558

learning, but what we are doing now is just go way out just.. very complicated um559

yeah. But they kind of mention that since this is T-math or theoretical math, then560

we have to like make up our own theories kind of, so her giving us like one sentence561

is kind of what we are suppose to do but it doesn’t help us. You kind of have to be562

good at math to be able to do stuff, so if we do this more then we can kind of interact563

more and we won’t like slide out and change the theme while working together as564

often, because then we will have the focus on the certain thing.565

D.6 Interview Transcript, Student F

Teacher: Have you solved or encountered similar problems like these [Points at the algebraic566

word problem task] algebraic word problems at class before?567

Helge: Umm.. Yes, in algebra. So, we have encounter several of these.. umm, number568

one um number two, I was not as familiar with the third one um and I was not as569

familiar with the fourth one, but the first and second one...570

Teacher: So, when you went through the questions, which of the questions among the571

algebraic word problem task was the most difficult?572

Helge: Umm, definitely these two, number three and four, because I didn’t really know573

how to solve them as um, I had solved some tasks that were kind of some link, but574

I didn’t really solve the exact some ones, umm and so those were the most difficult575

ones, definitely.576

Teacher: Ohk! Can you tell me the processes you went through in solving these algebraic577

word problems?578

Helge: Ohk! So, first we read through the question umm like together aloud and then we579
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umm, we just explain what we thought about the task, and then we started working580

on our own. So, having shared our ideas, we started working on our own and when581

someone thought that they had come to an answer, they started explaining to the582

other group members um and then we say like, AHHH Ohk so you finish it, or we583

also saw that maybe it wasn’t correct, so then we started working on our own again,584

but then we used that person’s method um to get to the right answer, yeah.585

Teacher: Umm. Apart from the method you used, do you know of any other method used586

in solving these algebraic word problems?587

Helge: Umm, not really, um especially for one and two we used simultaneous equation. I588

don’t really know how to solve them any other way. You can probably make a graph589

umm but I didn’t know.590

Teacher: Ohk! Was it helpful when you solve these questions in a group?591

Helge: Yeah, because if you didn’t know how to solve it umm then when another person592

manages to solve it, you can (inaudible) ask them, or how did you solve this task?593

Umm, but if no one can really solve it then it would have been a problem but then594

you just have to ask the teacher um, but it is also like a downside within the group595

because umm the group might not be helpful, you might understand what they are596

doing but it is not really beneficial because um if you are in a group where everyone597

is working on their own um and you aren’t really sharing ideas and you don’t know598

what to do, then you will just be sitting there wasting time.. umm, but it can be599

really helpful.600

Teacher: Ohk! So, how did you know your answer was right?601

Helge: Umm, we like back checked them, so we for example in the equation we got, like602

if x is 20, then we put 20 into the first equation, into like x and then we will solve it603

and see like, Oh this is actually correct.604

Teacher: Ohk! Can you see any connection between the mathematics you learn at school605

and the outside world?606

Helge: Umm.. No, I don’t think there is much of a connection.. Umm, but that’s only607

because I don’t really use um, or depends on what you do on your spare time, but I608

don’t really use equations, I don’t make like any real graphs on the spare time, but609

if you like to do this and you want to study mathematics when you grow older umm,610

when you get older you might want to be a teacher then it’s kind of be helpful, but611

Uhh [Laughs].612

Teacher: So, you don’t see any connection between the math at school and the real world?=613

Helge: =Not really, also it depends on what we are learning about, if it is like only, is614
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like right in the math like plus minus, yeah then it can be helpful I guess.615

Teacher: How often do you solve mathematical modelling task at school?616

Helge: Umm.. that, like I’m more use to like doing this, but I also think it depends on617

what school you go to.618

Teacher: I mean like what you now..619

Helge: Oh!620

Teacher: Do you do more of this [Points at the modelling task].621

Helge: Yeah, I think we just finish a chapter on like, like linear graph and stuffs, umm622

we have worked quiet a lot actually with this kind of task.623

Teacher: Ohk! What is your opinion about the modelling task you solved recently?624

Helge: I mean like, like overall situation around um the task and how it’s related to like625

holidays and gifts umm, stuff like that I think I can more like relate to the task and626

it might make it easier to solve it, so I think it’s a nice task.627

Teacher: So, it means there is a connection between this modelling task and the real world?628

Helge: Yeah, there is a connection like between this and the real life, and so I can629

understand the task better.630

Teacher: Can you tell me the processes you went through in solving this modelling task?631

Helge: Umm, yeah.. First, because what we always do is that, when we get like a text,632

we have to like sort out the most important part, so we did that first and then we633

made um like different kind of x and y variables umm, and then we solve them, and634

then we put them into the graph um, it was a little bit more difficult to make the635

graph on like paper, because we are used to using the computer, umm but I think636

we made it like pretty good um, yeah, in my opinion, yeah637

Teacher: Ohk! So, did you verify your answer?638

Helge: Umm, not sure, I don’t think we double checked, because I don’t think we knew639

how to double checked. I guess we could have done it on like the PC afterwards to640

see it was right, but I don’t think we double checked.641

Teacher: Ohk! Please interpret your modelling results to me?642

Helge: We saw that the first offer was way better umm, because it depends on how many643

umm... So, you should pick the first offer um, but only if you good at the job um,644

so if you are a good seller umm and you at least sell 11 things per hour on average645

then you should pick the second job.646

Teacher: Why 11?647

Helge: Umm.. I’m not sure, we just wrote it [Laughs], it don’t make sense though, that’s648

true umm, but.. you should pick the first offer though, because you will make the649
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most amount of money, yeah.650

Teacher: The first equation is ohk. Now the second equation is half the minimum wage plus651

20kr on every item you sell. So, there should be an x on both sides like y = 50x+20ax652

and a new variable a which stands for the number of items.653

Helge: Ohk! [Laughs].654

Teacher: So, will you want more of the modelling task at school?655

Helge: Umm, yeah!656

Teacher: Why?657

Helge: Because I think this task are fun to solve umm, but it’s a little bit easier to do on658

a computer umm and it’s takes a lot of time to like drawing the lines and the axes,659

so I like this kind of task, but I would like to do it on the PC.660

D.7 Interview Transcript, Student G

Teacher: Have you solved or encountered similar problems like these [Points at the algebraic661

word problem task] algebraic word problems at class before?662

Arvid: Yes, we have looked at similar task.663

Teacher: Was it very similar?664

Arvid: Umm, quiet but it wasn’t like in text form, it was like only umm.. equation.665

Teacher: So, which of the questions among the algebraic word problem task was the most666

difficult?667

Arvid: Umm, the first one was the hardest because we didn’t know exactly how to solve668

it. So, we use a little time on getting the right equation, after that it was kind of669

easy when we knew how to do it.670

Teacher: Can you tell me the processes you went through in solving these algebraic word671

problems?672

Arvid: We tried a lot of different equations, we knew that we needed a set of linear673

equations because it was too many variables, so we started to sort of find the right674

equation, but we use a little time, because we had forgotten how to do it.675

Teacher: So, what processes did you use in finding the right equations?676

Arvid: We just tried different, and then we just look if some of them may give us the677

right answer, so yeah, we just tried a lot of different ones.678

Teacher: So, how did you know your answer was right?679

Arvid: Umm, we tested them afterwards if we got the answer, let say g equals 20 and680

we put them in the formulae afterwards and look if it will give us the right things as681

the task said.682
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Teacher: Ohk! Do you know of any method used in solving these algebraic word problems?683

Arvid: It was another different method inside the theme linear equations, but my group684

thought that this one was the most easiest to solve,685

Teacher: Ohk! Was it helpful when you solved these questions in a group?686

Arvid: Yea! We were sort of dividing the task, so if two of us solved it, we discuss how687

to solve them and then the two others sort of fill it in and wrote what we did so we688

sort of find a way to cooperate.689

Teacher: Ohk! How about solving them individually?690

Arvid: I work best individually because I know usually what I need to do, but when we691

are a group, like it’s nice to hear others opinion as well and we got different opinions.692

Teacher: Going back to the third and fourth question. Can you resolve it again for me?693

Arvid: Yeah.694

Teacher: Step by step.695

Arvid: Ohk! So, what we did, we knew that.. I gonna read the task=696

Teacher: =Ohk! Go ahead.697

Arvid: The value of a given number is fifteen more than the value of a second number.698

The sum of two times the first number and four times the second number is 162. So,699

we put variables x and y, and we knew that x is going, umm y is going to be fifteen700

more than x.701

Teacher: So, y is the first number?702

Arvid: y is the first number.703

Teacher: And x is the second number?704

Arvid: Umm, yes!705

Teacher: Ohk! Then the next line=706

Arvid: =No! No! Wait, no x is the first. The second number is y.707

Teacher: The second number is y and the first number is x?708

Arvid: Yes.709

Teacher: And then we go to the next line.710

Arvid: Umm, the sum of two times the first number, so 2x and four times the second711

number 4y, which equals urr 162.712

Teacher: Oh! The first number is y and the second number=713

Arvid: =No, no, the first is x.714

Teacher: The first is x?715

Arvid: Yes, and the second is y.716

Teacher: So, it says the value of a given number is fifteen more than the value of the second717
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number.718

Arvid: Yes, so it wasn’t. . . The first number was x, so the x is fifteen more than the719

second number.720

Teacher: So, the second number is y?721

Arvid: Oh!! Ohk! Oh, so it was wrong [Laughs]. Ohk, so I don’t know what to do722

then. . . It should be switch around?723

Teacher: Yeah.724

Arvid: Ohk!725

Teacher: That’s why I asked about that.726

Arvid: Ohk! So, it should be y + 15 equals x.727

Teacher: So, it like the first line and the second line of the question.728

Arvid: Ohk! So, we just misunderstood the task then.729

Teacher: It was same with the fourth question.. So, can you see any connection between730

the mathematics you learn at school and the outside world?731

Arvid: In sort of.. In some of the subject, like trigonometry, we have no idea what to use732

in the real world but some. . . But things like equations and some things like that,733

they are easy to use in the real world.734

Teacher: Ohk! How often do you solve mathematical modelling task at school?735

Arvid: Umm, not often like that. We found that task really hard actually, so we don’t736

usually solve that.737

Teacher: And what do you think might be the reason?738

Arvid: I don’t know, maybe is not in the things we need to learn, maybe comes further739

on in the year, semester, I don’t know.. but we might actually get it, I don’t know.740

Teacher: Ohk! What is your opinion about the modelling task you solved recently?741

Arvid: It was easier to solve in the head than it was to write in paper, because we742

struggled a bit with the (inaudible), it was a bit hard to write in paper, and what743

we did, make lines go as we wanted to go, so it was much easier to just think about744

the answer in the head than it was to put it down on paper.745

Teacher: But in all, do you see any connection between this modelling task and the outside746

world?=747

Arvid: =Yes, that one is really easy to combine with the real world, because it’s some748

problem we might actually stumble upon in future.749

Teacher: Can you tell me the processes you went through in solving this modelling task?750

Arvid: Umm, we sort of knew what we have to do. We need to write a graph and look751

at the. . . What sort of wage was the most exclusive, for saying like that, but we752
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struggled with finding right numbers and just putting it together, but uh we found753

a solution but we don’t know if it’s the smartest one.754

Teacher: Ohk! But did you double check as you did with the algebraic word problem?755

Arvid: Umm no, we didn’t. We hadn’t got enough time, we were a bit late with that756

one.757

Teacher: So, please interpret your modelling results to me?758

Arvid: Umm, that’s a hard question. I will probably give you what you would earn the759

most. But.. I will probably do some same things as I did here, but maybe I will760

taken in head, and maybe just solve it in head or I just give you my thought on that,761

I think.762

Teacher: So, the first job or the second job? What do you think?763

Arvid: Umm, I think it depends on the.. What was the store she was going to work in?764

[He reads the mathematical modelling task] I will take the second option because765

you have the potential to earn a lot more than you have to do with the first, but if766

you don’t sell as much as you need to do in one of the hours you can probably sell a767

double amount in the second, so I will probably go with the second one even though768

it’s a risk.769

Teacher: So, do you have an equation for the graphs?770

Arvid: No [Laughs]. We didn’t come that far either but..771

Teacher: You just made=772

Arvid: =We just made a line [Laughs] and hope for the best, to be honest.773

Teacher: Because, the first graph looks like y equals 120x.774

Arvid: Yes, actually it’s does.775

Teacher: But the second I don’t really understand.776

Arvid: No we were.. We want as a. . . We didn’t care [Laughs] if you can say like that,777

we made a few short cuts, we just come to an answer and just look like it’s going to778

give us the right answer.779

Teacher: But can you tell me more about the second graph?780

Arvid: We should probably switch around the x and y axis, because then we get the781

kroners up here [Points at the y-axis] and the stuff she needs to sell up there [Points782

at the x-axis]. And it should start at 50, because the minimum wage is 50 in the783

second, so it should start at 50 and then go up by 20 per items she sells, so we work784

a bit not so perfectly in line with that one.785

Teacher: Ohk! So, you made the equation 50kr plus the items that she sells=786

Arvid: =Yeah, y equals 20x+ 50 I think787
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Teacher: So, it means if she sells one item then it’s going to be 70.788

Arvid: Yeah, 70.789

Teacher: Ohk, so when it’s one then we have 70, but it’s 50 on the graph.790

Arvid: Yeah, it was not as perfect as we wanted it to be, but wasn’t it also going up by791

50 at the time in the hour as well. Wasn’t it?792

Teacher: Ohk! You had an idea.793

Arvid: The idea was around that, but we didn’t know how to write it down actually794

[Laughs].795

Teacher: So, will you want more of the modelling task at school?796

Arvid: Maybe more of the equations and yes, things we need to do or things we can use797

in the future as well. Like we don’t need to know function analysis and things like798

that or a trigonometry but things like we can use umm, is good to learn things like799

that.800

Teacher: Yeah, because every math that you study at school probably can be used outside801

there=802

Arvid: =Yeah.803

Teacher: Like trigonometry, they can ask you maybe you want to build or paint a house,804

where do I place the ladder? So, you need to find the angles involve. Math can be805

used everywhere.806

Arvid: Yes, it can, but some of the things we go through, I don’t know how to use.807

Teacher: So, the problem is how.. As teachers how, we are supposed to give task that you808

can relate=809

Arvid: =Yes, or maybe if we have uhm. . . I think we are going to maybe say what we810

can use this for in the future, because some just say you will find out, you will figure811

it out, and then we don’t know what to.812

E Mathematizing Task 2, 3 and 4

E.1 Task 2

A Polyaian way of mathematizing Task 2 in Figure 10 (page 55) is illustrated below:

Linear equation:

Step 1 : Summarize the information in a table. That is, translate the problem
using variables.
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number Total number of pupils making 346
boys x 2x
girls 7 + x 13(7 + x)

Step 2 : Set up an equation

Total number of pupils making 346 = 13(7 + x) + 2x = 346

Total number of pupils in the mathematics class = (7 + x) + x = 7 + 2x

Step 3 : Solve the equation

13(7 + x) + 2x = 346

91 + 13x+ 2x = 346

15x = 255

x = 17

7 + 2x = 7 + 2(17) = 41

Step 4 : Present the final answer

There are 17 boys and 24 girls. Altogether there are 41 pupils in the mathe-
matics class.

E.2 Task 3

The Polyaian way of mathematizing Task 3 in Figure 10 (page 55) is illustrated below:

Linear equation:

Step 1 : Summarize the information in a table. That is, translate the problem
using variables.

value The sum when both numbers are increased is
162

1st number 15 + x 2(15 + x)
2nd number x 4x
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Step 2 : Set up an equation

The sum of the two numbers after the increment = 2(15 + x) + 4x = 162

The sum of the two numbers = (15 + x) + x = 15 + 2x

Step 3 : Solve the equation

2(15 + x) + 4x = 162

30 + 2x+ 4x = 162

6x = 132

x = 22

15 + 2x = 15 + 2(22) = 59

Step 4 : Present the final answer

The 1st number is 37 and the 2nd number is 22. Their sum is 59.

E.3 Task 4

The Polyaian way of mathematizing Task 4 in Figure 10 (page 55) is illustrated below:

Linear equation:

Step 1 : Summarize the information in a table. That is, translate the problem
using variables.

value The sum when both numbers are
hypothetically increased is 126

1st number 6 + x 4(6 + x)
2nd number x 2x
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Step 2 : Set up an equation

The sum of the two numbers after the hypothetical increment = 4(6+x)+2x =

126

The value of the 1st number = 6 + x

Step 3 : Solve the equation

4(6 + x) + 2x = 126

24 + 4x+ 2x = 126

6x = 102

x = 17

6 + x = 6 + 17 = 23

Step 4 : Present the final answer

The value of the 1st number is 23 whilst the 2nd number is 17.

F 1T Mathematics Class Exercises
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