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Abstract

Breakdowns in rotary machines are often related to bearing failure. In recent
years many prognostic and diagnostic models of bearings have been developed
to prevent unexpected shutdowns. Estimating the remaining useful lifetime
(RUL) of bearings have in many cases demonstrated to be problematic due
to complex degradation mechanisms.

This thesis explores alternative pre-processing and neural network based
models for RUL prediction of bearings. Predictive models are generated
from six training bearings, where vibration data is sampled from start to
end of life (EOL). The models are further tested on 11 test bearings for
RUL predictions. Both training and test bearings are degraded in a unique
manner as they are subjected to loads above the bearings’ specification. The
combination of limited training data and abnormal wear patterns suggest
that accurate predictions of RULs are quite difficult to obtain.
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1. Introduction

One of the most frequent causes of rotary machine breakdowns are due to
bearing failure. Bearings are important components in rotary machines
as they supports axial and radial loads on shafts, while reducing friction.
Even though bearings prevent friction and wear damage inflicted upon a
machine, they are themselves vulnerable to degradation. Keeping bearings
in a healthy state is in everyone interest as breakdowns do occur, which may
lead to costly shutdowns. The traditional way of monitoring the remaining
useful life (RUL) of a bearing is done by manually inspecting flakes, cracks,
grease, and signs of exaggerate heat, which are indications of incipient faults.
Forced shutdown of machinery is required to inspect bearings and is often not
desirable or feasible. One solution to face this obstacle is by implementing
condition based monitoring (CBM). The main objective of CBM is to
observe and to anticipate RUL of bearings based on sampled data. CBM
has the advantages of allowing continuous operation without unnecessary
shutdowns of machine. However, for CBM to be efficient and valuable,
accurate predictive models of degradation are required. Overprediction may
lead to unfortunate bearing breakdown and permanent damage on other
components, while underprediction leads to unnecessary change of bearing
and maintenance. Bearings are regarded as of one the critical components
in rotary machines that are frequently linked directly or indirectly to failure.
The figure below display the importance of healthy bearings.
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Figure 1.1: The importance of healthy bearings in machines[1]

In order to do accurate real-time prognosis and diagnosis of a bearing, data
acquisition of the most characteristic parameters are crucial. Acquisition of
vibration, temperature, acoustics, motors currents and lubrication debris are
standard parameters used for health evaluation of ball bearings[2]. Vibration
and temperature data are the most commonly used parameters for diagnosis
and prognosis of bearing health. Vibration and temperature analysis are
commonly used as occurring defects in bearings are often traceable in terms
of increased vibrations and temperature. Typical degradation behaviour
of bearings can in many cases be expressed by equations for possible
characteristic vibration frequencies and their harmonics. Accelerometers
and temperature sensors can normally be mounted without inconvenience
on bearings, and are in many scenarios able to capture relevant data.
It is also possible to capture temperature information by thermography
technique which detects infrared emissions[2]. Depending on the sampled
parameter, prognosis of bearings can be visualized in either time, frequency
or time-frequency domain. The idea behind choosing optimal parameters and
processing techniques is to effectively monitor prognosis with less uncertainty
and noise. In the end CBM can be accomplished either by the use of
analytical models, data-driven models or hybrid combinations of both[3]. In
recent years a large number of predictive models have been made to achieve
higher reliability in prognosis and diagnosis of bearings.
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1.1 Introduction to the prognostic challenge

In this thesis neural network based models are used for RUL predictions
of bearings in the IEEE PHM 2012 Prognostic challenge. Vibration data
is acquired from six training bearings for modelling purposes. The training
bearings were run from start to end of life (EOL), and were classified by one of
three operational conditions. The objective of IEEE PHM 2012 Prognostic
challenge is to predict the RULs of eleven test bearings ran at equivalent
operational conditions as the six training bearings provided. The bearings in
the prognostic challenge do not follow theoretical frameworks for degradation
and L10-life, most likely due to the fact that they are degraded with radial
force higher than the maximum dynamic load capacity of the bearings in
most operational conditions. Consequently, data-driven models based on
training data have been made to describe the degradation of bearings, and
to estimate RULs.

Deep neural networks have in recent years shown success and currently
being used for many applications. Convolutional neural network (CNN)
have revolutionized image classification, localization, segmentation tasks
while recurrent neural network (RNN has shown to be important in time
sequence modelling such as language translation. Even though the prognostic
challenge does not provide a large amount of training data, deep learning
based models are used in this thesis. There are multiple reasons for choosing
deep learning based models, including personal reasons as this is a work field
I find interesting.

Previous work in the prognostic challenge includes both machine-learning
models and statistical models. Both the industrial and the academical winner
models of the prognostic challenge used non-machine learning approaches to
predict RULs on the test bearings.

The industrial winner proposed a RUL method based on smoothed
accumulation of acceleration, where accumulated acceleration was weighted
based on time and magnitude. The model functions were derived by fitting a
few control parameters. Control parameters were optimized by cross-entropy
optimization in a 2-fold cross validation process. This method achieved
a total score of 0.248[4]. The academics winner used an algorithm based
on anomaly detection, degradation feature extrapolation and survival time
ratio estimation. The prognostic feature was determined by the average
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of the five highest absolute acceleration values for each time observation.
Sudden changes in the frequency spectrum were used to detect anomaly
regions, predict upcoming anomaly regions, and eventually RUL based on
anomaly duration ratio. Each training bearing made separate model weights,
where the test bearings predictions were based from training bearings in
same operation condition only. This method resulted in a total score of
0.31[5]. Neither of the winners had impressive scores, but this is likely
due to how the prognostic challenge was set up. Senanayaka et. al
proposed a neural network model based on stacked auto-encoders and use
of LSTM RNN. Stacked auto-encoders were utilized as a feature extractor of
continuous wavelet transformed vibration data. The encoded time features
were then sequentially fed into a LSTM network for RUL predicitons
predictions[6].

Participants in the prognostic challenge have tested different data-driven
models with both time series and frequency as inputs. As to my knowledge
none of the participants in the prognostic challenge has tried to improve the
frequency resolution of vibration data. The reasoning behind improving the
frequency resolution originates from how vibration time series are captured.
Vibration data is captured in files of 0.1 seconds, which yields a frequency
resolution of 10Hz. I believe higher frequency resolution is of importance to
detect small frequency changes in time, and also for separating characteristic
frequencies that occur in the same frequency band. This thesis focuses on
evaluating different signal processing techniques, where processed vibration
data is fed directly into a RNN network. Additionally, a convolutional neural
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network is tested as a feature extractor prior to the RNN network.

2. Background Theory

2.1 Degradation of bearings

The degradation of a bearing is dependent on multiple variables such as
running conditions, bearing quality, grease, and type of bearing. Because
of the variety of factors that play part in bearing degradation, there is
no generalized prognosis model that is sustainable for all types bearings
and their circumstances. Running conditions such as speed and load are
usually the most prominent variables that determine the RUL of a bearing[7].
Bearings are produced with specifications for both speed, axial and radial
loads. Exposing a bearing for conditions outside its specifications, will
normally diminish the RUL.

Lifetime of commercial bearings are usually rated according to the
international L10-life standard. L10-life is the estimated lifetime 90% of
similar bearings will last operating under a specific load and speed condition.
However, L10-life is a theoretical approximation as it assumes appropriate
lubrication, and not degradation caused by improper storage, installation,
maintenance, environmental or contamination, which cannot be controlled by
the bearing manufacturers [7]. The equation for L10-life in million revolution
is shown below.

L10 = (
C

F
)p (2.1)

L10 is the estimated number of million revolutions 90% of similar bearings
will last operating under a specific load and speed condition. F is the applied
load. C is the dynamic load capacity of bearing. p is the bearing life
exponent, which has a value of 3 for all ball bearings.
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The equation for L10-life in hours is shown below.

L10h = L10 ·
106

Fr · 3600
(2.2)

L10h is the estimated hours 90% of similar bearings will last operating under
a specific load and speed condition. Fr is the relative rotation frequency
between inner and outer race.

In many instances the load applied to a bearing will be dynamic. For L10-
life to be valid for dynamic loads, the loading must be converted to mean
equivalent dynamic load [8]. L10-life predicts bearing life due to classical
fatigue failure, and is accountable for the production deviations. Since
bearings are very sensitive to production tolerances and there is usually a
significant difference between average life and L10-life of a bearing. Minimal
production differences in ball sizes and races can cause wear and vibrations.
Uneven bearing surfaces caused by small production deviations will usually
shorten the lifespan. Most bearings show increasing discontinuities on balls
or races before breakdown[9]. Upcoming failure by insufficient lubrication is
difficult to monitor through vibration signals. There are little to no signs of
lubrication deficiency through vibration signals until metal to metal contact
occurs. At that point the bearing is rapidly degrading [10].

A standard ball bearing consists of an inner race, outer race, balls, and a
cage that keeps the balls in place. There exist equations for characteristic
frequencies related to the mechanical components. The characteristic
frequencies can be derived by bearing dimensions and the relative speed
between inner and outer race. Defects such as cracks will produce repetitive
impulse signals at the characteristic frequencies and harmonics. These
characteristic frequencies may be seen as a part the expected degradation,
hence they are commonly used for prognosis and diagnosis of bearings [2].
The figure below illustrates the basic mechanical components of a ball
bearing.
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Figure 2.1: Mechanical components of a radial ball bearing [11]

The equations for the characteristic frequencies are given as:

BPFO =
n

2
· Fr · (1− d

D
· cosθ) (2.3)

BPFI =
n

2
· Fr · (1 +

d

D
· cosθ) (2.4)

BSF =
D

d
· Fr · (1− (

d

D
· cosθ)2) (2.5)

FTF =
1

2
· Fr · (1− d

D
· cosθ) (2.6)

BPFO is the ball pass frequency of outer race. BPFI is the ball pass of
inner race. BSF is the the ball spin frequency. FTF is the fundamental train
frequency or cage frequency. n is the number of ball elements in the bearing.
d is the ball diameter. D is the mean bearing diameter or pitch diameter. θ
is the contact angle between the ball with inner and outer race.

One thing worth noticing is the correlation between the ball diameter and
the mean bearing diameter, which is relevant for all the equations[10]. The
equations assume that the mechanical components have pure rolling motion.
If sliding starts to occur, then the actual frequencies will start to deviate
from the calculated frequency.
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Healthy bearings produce relatively small vibrations, which can be difficult
to distinguish from other sources. The vibration spectrum measured on a
bearing may include deviations in the frequencies given by eq(2.3)-(2.6) and
other external sources such as rotor unbalance, gearboxes, etc. Consequently,
vibration defects generated by other components might be picked up by
sensors mounted on bearings. For this reason the monitored signal may
indirectly provide a health indication of the entire machine, and vibration
abnormalities in the signal spectrum does not necessarily indicate a bearing
defect. The possible complexity of the vibration signal may prevent equations
from being effective, as the calculated frequencies are not as prominent,
and can be interfered with other sources. In scenarios where the vibration
signal is too complex, data-driven models may be favored over analytical
models.

2.2 Data-driven models

A data-driven model will search for connections between sampled input and
the desired output, based on training data. In complex systems, data-
driven models have the advantages of not needing to describe the physical
behaviour of the system compared to analytical based models. Data-driven
models have the property of being customized to a specific set of data,
whereas analytical models are preferred in simpler and more generic systems.
One of the prerequisites for generating an adequate data-driven model is to
have sufficient amount of relevant training data, which is often a challenge.
Collecting a large amount of data can both be time consuming and costly.
However in order to achieve a generalized model, the training data should
extend all types of possible phenomenons. From a bearing perspective this
means extending all types of degradation patterns, such as fracture in inner,
outer race, etc. Inadequate training data has a probability of over-fitting,
and using false correlations to predict something that is not representative
of the reality.

Machine learning models learn solely based on data and are flexible in nature,
whereas statistical models usually are selected based on knowledge of the
problem. Statistical models are easier to interpret and often include fewer
parameters than machine learning models especially deep neural networks.
However, neural networks can generally have higher predictive power. The
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correctness of statistical models can be evaluated using significance tests
and/or confidence intervals. Evaluation of machine learning models are on
the contrary done using a separate test set.

3. Datasheet

3.1 IEEE PHM 2012 Prognostic Challenge

The bearings used in the prognostic challenge are degraded by a
platform called PRONOSTIA. The function of PRONOSTIA is to produce
experimental bearing data without artificial defects initially. In order to
degrade bearings in such manner PRONOSTIA consists of three physical
parts; a rotating part, a degradation part, and a measurement setup. The
rotation part is made up by an asynchronous motor, a gearbox, two shafts
connected by a rigid coupling. This setup allows for different load and
speed operation conditions, while the motor runs at rated conditions. The
bearing of interest is mounted with a second shaft through its inner race,
while the outer race remains fixed. The loading part of PRONOSTIA
applies an external load forced radially on the bearing. The pressure
loading is generated by a pneumatic jack and a digital electro-pneumatic
regulator.

The bearing data provided by PRONOSTIA is measured by two
accelerometers and one temperature sensor. The accelerometers and
temperature sensors are mounted on the outer race, where the acceleration
sensors are placed 90◦ degrees apart to capture horizontal, and vertical
accelerations[12]. Accelerations are defined as vibrations, and the term
vibrations will be used throughout the thesis.

The following figures display the PRONOSTIA setup.
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Figure 3.1: Overview of the PRONOSTIA setup [12]

Figure 3.2: Sensors mounted on outer race [12]

The data provided by the IEEE PHM 2012 Prognostic challenge includes six
training bearings, and eleven test bearings for test purposes. Training and
test bearings are degraded according to one of three operating conditions.
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Bearings in the prognostic challenge have a rated dynamic load of 4000N,
and in operating condition two and three, the maximum dynamic load
specification is violated. The following table display the different operation
conditions.

Operating condition Frequency of bearing shaft(Hz) Applied radial load(N)
1 30 4000N
2 27.5 4200N
3 25 5000N

Table 3.1: Different operating conditions in the prognostic challenge

Of the six training bearings, there are two bearings representing each of the
operating conditions. However, for operating conditions the test bearings
were distributed unevenly. The participants in the IEE PHM 2012 data
challenge were supposed to predict the RUL of test bearings from truncated
test sets. Training bearing data was provided from start to EOL for
modelling purposes. The following tables below show training and test
bearing details.

Training bearing id Condition Total life(s) #files
1 1 1 28030 2803
1 2 1 8710 871
2 1 2 9110 911
2 2 2 7970 797
3 1 3 5150 515
3 2 3 16370 1637

Table 3.2: Training bearing details

11



Test bearing id Condition Current runtime(s) RUL to estimate(s)
1 3 1 12290 5730
1 4 1 11051 339
1 5 1 21410 1610
1 6 1 21560 1460
1 7 1 7450 7570
2 3 2 4490 7530
2 4 2 4730 1390
2 5 2 16930 3090
2 6 2 4430 1290
2 7 2 1140 580
3 3 3 2700 820

Table 3.3: Test bearing details

It is stated by PRONOSTIA, that the given bearings do not follow theoretical
L10 estimation of bearing life, and that theoretical frequency frameworks for
bearing degradation such as eq(2.3)-(2.6) do not work. Bearing EOL was
defined when either of the accelerometers exceeded an acceleration signal
above 20g.

The vibration data for both training and test bearings were sampled at
25.6kHz as CSV files. Each bearing is represented by 0.1 seconds long files
until EOL, where the time between the sampled files is ten seconds. Each
file recording consists of 2560 data points. Temperature measurements were
not provided for all of the bearings, and is not utilized in this thesis.
In operation condition 1 (see table 3.1) the loading is equal to the dynamic
load rating of bearings. From the equations regarding L10-life eq(2.1-2.2),
the L10-life for bearings in operating condition 1 is 9.259 hours. Even though
operation condition 1 is within the load specifications none of the train
bearings in operation condition 1 meets the calculated L10-life.

Indications of degradation can be observed by calculating the RMS vibrations
for each sampled file. The figures below display how horizontal RMS
vibrations and bearing life are correlated.
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(a) Bearing1 1 (b) Bearing1 2

(c) Bearing2 1 (d) Bearing2 2

(e) Bearing3 1 (f) Bearing3 2

Figure 3.3: Horizontal RMS vibrations until end-of-life (EOL) (EOL)

By inspecting all the training bearings, it is clear that bearing1 1 endure
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substantial longer compared to the other bearings. Bearing1 1 has an
exponential degradation pattern which is similar to typical degraded bearings
from the PRONOSTIA platform[13]. The normal degradation pattern
of bearing1 1 is possibly explained by the more sustainable operation
condition.

Most of the ball bearings in the training data set only show clear RMS
vibration deviations in the later stages of failure, and do not follow a
monotonic trend. Therefore, prognosis and diagnosis in earlier stages based
on RMS vibrations are difficult. The RMS figures indicate higher vibrations
in earlier stages likely due to a run-in period, where bearings are eventually
worn smoother. As seen in figure 3.3 the RMS vibrations during the lifetime
do not necessarily follow a linear or an exponential relationship, except for
bearing1 1. Since the RMS figures 3.3 seemingly do not provide any general
knowledge about the bearing degradation behaviour, frequency information
will be used to try and characterize degradation. The sampled time domain
signal is converted into frequency domain, as vibration signals are often easier
to interpret in the frequency spectrum, and as different characteristic defects
may correspond to certain frequencies.

The bearings used in the prognostic challenge have the following
geometry:

Figure 3.4: Bearing geometry

From eq(2.3)-(2.6) the characteristic frequencies for the mechanical
components are determined and listed in table 3.4.
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Operating condition BPFO(Hz) BPFI(Hz) BSF(Hz) FTF(Hz)
1 168.3 221.7 215.3 12.9
2 154.3 203.2 197.4 11.9
3 140.3 184.8 179.4 10.8

Table 3.4: Characteristic frequencies

4. Method

4.1 Signal pre-processing

Pre-processing data is an important tool for guiding data-driven models to do
accurate predictions. Processing techniques are in this thesis applied to the
vibration data to increase frequency resolution, time resolution, magnitude
accuracy, and to help the neural network train. Avoiding noise is especially
important when modelling with small amount of data, where generalization
is a problem.

The proposed processing techniques in this thesis include single file STFT
(1F STFT), ten file STFT (10F STFT), ten file phase corrected STFT
(10FPC STFT), single file continuous wavelet transform (1F CWT) and
normalization of data (figure 4.1).
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Figure 4.1: Overview of the signal pre-processing part

To compare the different processing techniques, each technique is measured
in terms of mean average error (MAE) between actual RUL and predicted
RUL of test bearings.

4.1.1 Single file STFT (1F STFT)

The most commonly used technique for spectral analysis is the Fast Fourier
transform (FFT). One of the downsides with the FFT for prognosis is that
FFT does not provide temporal information. STFT solves this issue by
performing FFTs over smaller time segments. The most convenient time
segment is calculating FFT for each single file of 0.1 seconds (2560 samples).
By computing the FFT for each file along the y-axis in a spectrogram, it
is possible to see changes in frequency related to time. As single files are
sampled for a total of 0.1 seconds, the corresponding frequency resolution is
10Hz/bin along the frequency axis.

Figure 4.2 below shows STFT or time-frequency spectrograms for each
training bearing. With 1F STFT one file represent a timestep in the
spectrogram.
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(a) Bearing1 1 (b) Bearing1 2

(c) Bearing2 1 (d) Bearing2 2

(e) Bearing3 1 (f) Bearing3 2

Figure 4.2: 1F STFT of training bearings until EOL

By observing the spectograms of the bearings it is reasonable to conclude that
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the bearings do not share one general degradation trend. However, there are
some similarities within the different operation conditions. Bearing2 1 and
bearing2 2 definitely share similarities, meanwhile bearing3 1 and bearing3 2
share to some extent.

Figure 4.3 shows how the low frequency resolution obtained using 1F STFT
does not result in an accurate representation of the shaft frequency with
harmonics.

Figure 4.3: 1F FFT for bearing2 1 after 3000 seconds

4.1.2 Ten file STFT (10F STFT)

In order to detect smaller changes in the frequency spectrum higher frequency
resolution is required. An example of this is if the balls start to slide and
their corresponding frequency starts to deviate from the original rotation
frequency. Higher frequency resolution may be obtained by merging sampled
files together for longer sampling time. In this thesis ten and ten files were
merged to yield a sampling length of 1 second, which gives a frequency
resolution of 1Hz. The difference in frequency resolution between single file
and ten file merged is shown in the FFT spectrum at one timestep in figure
4.4. When merging files temporal resolution is traded for spectral resolution.
The frequency resolution is increased by 10x, while the temporal resolution
is decreased by the same amount. Figure 4.4 compares 1F FFT and 10F
FFT unfiltered for bearing2 1.
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Figure 4.4: 1F FFT and 10F FFT unfiltered for bearing2 1 after 3000 seconds

As shown in the figure above the ten file FFT spectrum is noisy. This is
a result of variable phase cancellation since the single files are not recorded
continuously and therefore appended in random phase. For this reason a
Gaussian filter is applied for noise reduction. Figure 4.5 compares 10F FFT
unfiltered and 10F FFT filtered.

Figure 4.5: 10F FFT unfiltered and 10F FFT for bearing2 1 after 3000
seconds

In figure 4.5 the filtered signal has larger magnitudes in frequency band
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0-150Hz. This is simply because the spectrum is plotted relative to the
filtered max value which is slightly smaller than the unfiltered FFT maximum
value.

The bearing in figure 4.5 demonstrates increased vibrations at the shaft
frequency with harmonics. These frequencies are indications of imbalance
or misalignment of bearings [10] [14]. The radial force is only applied on one
side of the bearing, which may amplify bearing imbalances.

When comparing single file with ten file spectrums, one should be aware that
these signals may be different since the time span for ten files is much longer.
However, the FFT spectrums in figure 4.6 are taken from a timepoint in
the middle of the bearings’ life (3000 seconds), where no sudden changes in
the spectrum are expected. Figure 4.6(a) indicates that the shaft vibration
frequency with harmonics are better represented with 10F STFT.

(a) 0-150Hz (b) 0-12800Hz/Nyquist frequency

Figure 4.6: FFT of bearing 2 1, shaft frequency at 27.5Hz after 3000 seconds

Figure 4.7 show 10F STFT until EOL for bearing2 1.
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Figure 4.7: 10F STFT of training bearing2 1 until EOL. Ten files represents
one timestep

The Gaussian filter introduced to reduce the noise from random phase with
10F STFT will also, to some extent, remove valid frequency information
present at the accelerometers. A pre-processing technique where appended
files are phase corrected are used to avoid introducing random phase
noise.

4.1.3 Ten file phase corrected (10FPC STFT)

Phase correction is implemented by appending the files phase aligned for each
frequency bin individually and computing the phase corrected magnitude of
each bin on the phase aligned files. The phase corrected STFTs are low
frequency limited to 20Hz, which is below the lowest shaft frequency of
25Hz. The phase alignment is implemented by introducing zeroes between
the single files to bring them in phase for each bin. The maximum required
zero insertion occurs if the file to be appended is initially nearly 360 degrees
out of phase. For the 20Hz low frequency bin the phase alignment may
therefore require up to 50ms of zeroes to be appended in phase. The 10FPC
time series are therefore initially zero padded with 10240 samples so the
frequency bins are the same for all ball bearings independent on the number
of zeroes required to adjust the phase for all bins and bearings in the data
set.
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The phase alignment is implemented with the resolution given by the raw
sampling rate. For this reason the phase alignment is less accurate for the
higher frequency bins and starts to become inadequate at frequencies above
about Fs/8 (3200Hz). This limitation could be avoided by up-sampling the
signal. Up-sampling was not implemented since the algorithm is already very
computational intense.

Figure 4.8 below show 10F STFT unfiltered/filtered and 10FPC STFT for
comparison.

Figure 4.8: 10FPC FFT and 10F FFT/unfiltered of bearing 2 1 after 3000
seconds

Figure 4.9 illustrate 10FPC STFT of bearing 2 1.
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Figure 4.9: 10FPC STFT of training bearing2 1 until EOL. Ten files
represents one timestep

4.1.4 Single file continuous wavelet transform (1F
CWT)

One of the limitations with STFT for time-frequency analysis is the
compromise between time and frequency resolution. However, wavelets filters
can be customized to fulfill this issue. Wavelet filters are essentially band-pass
filters that are located in time, which is unlike FFT where cross-correlation
between the signal and the sinusoidal frequency is performed all at once. The
wavelet transform extract information from the signal by convolving scaled
wavelet filters with the signal. For time-frequency analysis the continuous
wavelet transform (CWT) is usually preferred over the discrete wavelet
transform (DWT).

Wavelet filters are normally designed with a logarithmic increasing center-
frequency, where high frequency resolution in lower frequency bands and
high time resolution in higher frequency bands are obtained. However,
by evaluating the STFT figures from previous sections it can be observed
that high frequency resolution may be important in higher frequency bands
as well. For that reason wavelets were linearly scaled 1Hz apart, similar
resolution to the 10F STFT. Wavelets can be configured in terms of mother
wavelet, scaling, and full-width half-maximum value (FWHM). The width of
the wavelet frequency spectrum is described by the FWHM value and the
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type of mother wavelet. If a narrower frequency band is desired the FWHM
is set at higher value. FWHM can be changed dynamically according to the
center frequency of the wavelet such that the wavelet filters have the same
frequency spectrum width[15]. In this thesis Morlet wavelets with dynamic
scaling of the FWHM value are used to create narrow band-pass filters. The
idea behind this is to prevent the band-pass filters from overlapping too much
in the frequency spectrum.

The wavelets filters used are designed from a center frequency of 20Hz to
12800Hz (Nyquist frequency). In order to create a narrow wavelet filter
with a center frequency of 20Hz, the wavelet filter length has to be longer
then 0.1 seconds for a good representation. Meaning that the wavelet filters
are actually longer then the data file length. Convolving a file/timestep
of 2560 samples with 12780 wavelets filters yields a unsustainable amount
of wavelet coefficients. Especially, considering that each bearing contains
many files/timesteps. In order to reduce the number of coefficients, the max
value for each wavelet filter within in each file is selected. The max value
is the location where the wavelet filter and signal correlate most. Each file
will in the end be represented by 12780 wavelet coefficients. This way 1F
CWT provide the same time resolution as 1F STFT, and nearly the same
frequency resolution as 10F STFT. However, the amount of data is close to
tenfold. Figure 4.10 show 1F STFT and 1F CWT for comparison.

Figure 4.10: 1F FFT and 1F CWT of bearing1 2, with shaft frequency of
27.5Hz

24



Figure 4.11 illustrates the 1F CWT spectrogram of bearing1 2.

Figure 4.11: 1F CWT of bearing1 2 until EOL. One file represents one
timestep.

4.1.5 Normalization

The bearing spectrograms were normalized by scaling and mean subtraction
before entering the neural networks. The mean value was acquired from
the spectrograms of the training bearings. Scaling was performed such
that the vibration values remain in approximately the same ranges of
magnitude regardless of signal pre-processing technique. Normalization of
data helps neural networks train easier and to converge. Proper utilization
of activation functions require the data input to be within certain ranges,
otherwise training issues may arise in early stages of training. Generally,
normalization is considerably more critical when the input data consist
of multiple parameters. Even though vibration is the only parameter,
normalization was used.

4.2 Neural network models

For predicting the RUL from the spectrograms neural network models have
been used. Of the two main approaches, one is based on a recurrent neural
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network (RNN) and the other is based on a combination of a convolutional
neural network (CNN) and a RNN.

4.2.1 Recurrent neural network model

The idea behind utilizing a recurrent neural network for prognosis of bearings
originates from the data structure. A RNN is able to transfer temporal
information in sequence data, which is a property not present in other types
of neural networks such as convolution neural network and feed forward
neural network. Temporal convolutions have been introduced in sequence
modeling, but their maximum temporal memory length is limited by the
CNN structure [16]. Transfer of temporal information may be useful, e.g.
being able to track and store information about the run-in period as features
for later use.

The simplest form of a recurrent neural network is given by the following
equation:

ht = tanh(W xxt +W hht−1 + b) (4.1)

xt and ht is the input vector and hidden unit vector at timestep t, ht−1 is
the previous hidden unit vector and W h, W x and b are trainable weights
as matrices and a vector. Challenges related to RNNs are to preserve long
range dependencies and to prevent vanishing and exploding gradients during
the training phase. From eq 4.1, it can be noticed that the hidden units are
forced to be updated for every timestep.

Advanced recurrent cell structures have been developed to improve long range
dependencies in recurrent neural networks. Two commonly used methods
are gated recurrent unit (GRU) and the Long short-term memory (LSTM)
[17] [18]. In this thesis LSTM was chosen without consideration of GRU.
LSTM cells are more capable of learning long-term dependencies and better
at dealing with vanishing and exploding gradients as LSTM cells utilize gates
for regulating the flow of information [19]. The LSTM cell is described by
the following equations:
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Forget gate Γf = σ(W fxt + U fht−1 + bf ) (4.2)

Input gate Γi = σ(W ixt + U iht−1 + bi) (4.3)

Output gate Γo = σ(W oxt + U oht−1 + bo) (4.4)

Potential cell memory c̃t = tanh(W cxt + U cht−1 + bc) (4.5)

Cell memory ct = Γf ◦ ct−1 + Γi ◦ c̃t (4.6)

Cell state ht = Γo ◦ tanh(ct) (4.7)

Without going to deep into how the different gates operate, it is observed
that the potential cell memory is governed by a similar equation as for the
simple RNN cell. The update of the cell memory is however regulated by
the input gate and forget gate. The input gate adjust how much the new
information should be weighted and the forget gate adjust how much old
information should be kept. The cell state is also controlled by the output
gate, giving the LSTM cell the ability to select features particularly impor-
tant for the prediction at the current timestep. It is also worth noticing that
the number of hidden units (features) of the cell memory and cell state de-
termine the capacity of the LSTM.

An overview of the RNN model is given in figure 4.12.
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Figure 4.12: Overview of the RNN model showing how the spectrogram, the
RNN model and the FC module are connected. Dimensions are not shown
in the figure since they are dependent on spectrograms input dimensions and
the number of hidden units which will later be tuned.

Image data is seldom passed to RNNs as features directly since the RNN
structure has no spatial invariance. However, a spectrogram can be thought
of as a special image where the pixel position has a particular meaning. The
pixel position on the vertical axis is linked to the frequency content and for
this reason discarding a feature extraction layer is reasonable.

For each timestep in the spectrograms the frequency vector is passed into the
LSTM. The LSTM cell updates the cell memory and the cell state based on
the frequency vector and the previous LSTM cell configuration. The features
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in the cell state are further passed to a fully connected (FC) module which
produces the predicted RUL for the current timestep. The structure of the
FC module is shown in table 4.1.

Input-features Output-features

Input:

FC layer # LSTM HUs (# LSTM HUs)/2

ReLU - -

FC layer (# LSTM HUs)/2 1

Table 4.1: FC module

The FC module consists of two fully connected layers with a ReLU activation
function in between. The number of features is a function of the number of
hidden units (HUs) in the LSTM cells. The weights and biases are initialized
using He initialization [20]

It is common to link the output features from the LSTM cell state using
fully connected layers and activation functions for non-linear relations. In a
fully connected layer all input features are connected to all output features
with trainable weights. Stacking multiple fully connected layers directly
is meaningless, as two linear operations could be expressed as one linear
operation. Adding an activation function makes the neural network capable
of introducing non-linear relations between the features. Typical activation
functions are the sigmoid function, the tanh function and the rectified linear
unit (ReLU) function. The sigmoid and the tanh functions are prone to
the vanishing gradient problem in deep neural networks, for this reason the
ReLU function is generally able to converge the training faster [21]. Although
the RNN model is shallow, the ReLU function has been chosen. The ReLU
function is also less computational heavy and have simple derivatives of 0
and 1 for values below and above zero respectively. The ReLU function is
illustrated in figure 4.13.
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Figure 4.13: The ReLU activation function

4.2.2 Loss function

The type of loss function selected is problem dependent. For regression type
problems a distance metric should be used, and for classification problems
softmax cross entropy is common. Predicting the RUL is a typical regression
task and the chosen loss function is the mean absolute error (MAE). MAE
was selected over mean squared error (MSE) as MSE is more sensitive to
outliers. MAE loss for bearing predicitons are described in eq 4.8.

MAE =
1

N
·

N∑
t=1

|actRULt − predRULt| (4.8)

MAE describes the average absolute error over a bearing’s life. N is the
total number of timesteps in a bearing’s life and t is the running index
corresponding to the various timesteps. actRULt and predRULt are the
actual and the predicted RUL at timestep t.

4.2.3 Optimization

The model is trained using a gradient descent based optimization method.
Although gradient descent based optimization algorithms do not guarantee
a global minimum, good local minima are normally found. The model
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weights are updated based on the gradients calculated from MAE loss using
backpropagation. In this thesis ADAM has been used for optimization [22].
ADAM has the benefit over stochastic gradient descent that it incorporates
a momentum term with an adaptive learning rate. Even though ADAM uses
adaptive learning rate, it is still important to set appropriate learning rate
initially. Too high learning rate will result in unstable training, whereas too
low learning rate results in slow convergence.

The deep learning framework used is Pytorch, which is an open-source
machine learning library in Python [23]. In order to enable batch training, the
spectrograms for each of the bearings must have the same shape. Initially, the
length of the spectrograms’ time axis corresponded to the bearings’ lifetime.
The issue was solved by zero padding after EOL according to the bearing
with the longest lifetime. Bearing1 1 is the longest living bearing with 2803
sampled files. It is worth noticing that the total number of timesteps is
dependent on the pre-processing technique. The pre-processing techniques
merging ten and ten files have one tenth of the total number of timesteps. In
ten file configurations the remaining files that do not go up in a whole number
of ten were discarded. In such cases random files in the middle of bearing
life were selected instead of the last files as they contain unique information.
As an example bearing 1 1, 3 single files had to be discarded.

4.2.4 Hyperparameter tuning

The objective of hyperparameter tuning is to optimize the network
configuration to yield better predictions on the validation data and ultimately
the test data. Typical hyperparameters are activation functions, selection of
optimizer, learning rate, network weight initialization, number of epochs,
batch size, regularization and number of features in trainable layers.

In deep learning models it is common to divide the available training samples
into separate training and validation sets. However, in this case the normal
approach is not as preferable because the amount of training data is limited.
For this reason, cross-validation with leave-one-out has been used in the
hyperparameter tuning process. How cross-validation was performed is
illustrated in figure 4.14.
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Figure 4.14: In cross-validation with leave-one-out, the model is trained using
five training bearings while the sixth training bearing is used for validation.

Horizontal and vertical vibration have similar frequency spectograms.
Through the cross-validation process it became clear that horizontal
vibrations had better predictions overall compared to vertical, and magnitude
vibrations. Hence, horizontal vibrations were selected as the utilized data
axis for this thesis.

Data augmentation is normally used while training neural networks to reduce
the risk of over-fitting. Typical data augmentation techniques such as random
cropping, rotation and flipping do not make sense since the spectrograms
are space-variant images. However, augmentations such as adding random
noise and random starting points were tested. Unfortunately, neither of the
augmentations had positive effects on the cross-validation predictions and
were not used in the end.

Optimization of neural networks can be a time consuming process. In
order to limit the numbers of hyperparameters, learning rate, training
epochs and number of hidden units were selected for optimization, leaving
the other hyperparameters fixed. A grid search was performed with
learning rates of 0.01, 0.001 and 0.0001, and for hidden unit sizes of 256,
128 and 64. The optimal hyperparamters should ideally be determined
for every pre-processing configuration individually, but because of time
limitations the search was only completed for 10F STFT. Consequently,
hyperparameters found from 10F STFT were utilized for all other pre-
processing configurations.
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The tables below show the results of the cross-validation process for the
various learning rates and the number of hidden units. The MAEs displayed
are taken from the epochs with lowest average MAE across all bearings.

lr # epochs B1 1 B1 2 B2 1 B2 2 B3 1 B3 2 avg MAE
0.01 10 11100 1890 2110 1530 6000 4240 4470
0.001 10 9700 2770 1800 1510 4740 4330 4140
0.0001 55 11300 2350 2380 1580 2960 4740 4210

Table 4.2: MAE loss on cross-validated bearings with 256 hidden units, where
lr is learning rate

lr # epochs B1 1 B1 2 B2 1 B2 2 B3 1 B3 2 avg MAE
0.01 30 11400 1180 1770 1200 5710 4740 4340
0.001 15 10700 2290 2110 1350 3210 4520 4040
0.0001 95 12000 2180 2500 1780 2460 4880 4310

Table 4.3: MAE loss on cross-validated bearings with 128 hidden units, where
lr is learning rate

lr # epochs B1 1 B1 2 B2 1 B2 2 B3 1 B3 2 avg MAE
0.01 5 10500 2140 2060 1490 2390 4610 3860
0.001 40 11500 2070 2050 1580 2430 4730 4060
0.0001 345 12300 2010 2590 1270 2670 4790 4280

Table 4.4: MAE loss on cross-validated bearings with 64 hidden units, where
lr is learning rate

The set of hyperparameters resulting in the lowest average MAE were a
learning rate of 0.01 and 64 hidden units. The lowest average MAE was
obtain after five epochs only. After five epochs the model is untrained since
five epochs corresponds to a total of five gradient updates. It is observed
that the individual cross-validation MAEs are unstable early in the training
process. For this reason it was decided to train longer even though minimum
MAE was acquired earlier in the training process. Learning rates of 0.01,
0.001, and 0.0001 with 64 hidden units were considered individually since 64
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hidden units had lowest MAE initially. Based on inspecting further training
progress it was concluded that a learning rate of 0.0001 and 64 hidden units
was the best option.

The figures below show cross-validation MAE loss for the chosen
hyperparameters as a function of epochs.

(a) MAE loss bearing1 1 (b) MAE loss bearing1 2

(c) MAE loss bearing2 1 (d) MAE loss bearing2 2
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(e) MAE loss bearing3 1 (f) MAE loss bearing3 2

Figure 4.15: MAE loss of cross-validated bearings with learning rate of 0.0001
and 64 hidden units.

Since the cross-validation losses for all bearings do not follow a monotonic
downward trend until a certain point, it was decided that 2500 epochs was
the best and safest option. At 2500 epochs training loss and cross-validation
loss have converged and are stable.

Figures 4.16-4.21 display the corresponding predictions and the 10F STFT
spectrograms of the cross-validation bearings after 2500 epochs.
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Figure 4.16: 10F STFT cross-validation and spectrogram of bearing 1 1

Figure 4.17: 10F STFT cross-validation and spectrogram of bearing 1 2

Figure 4.18: 10F STFT cross-validation and spectrogram of bearing 2 1
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Figure 4.19: 10F STFT cross-validation and spectrogram of bearing 2 2

Figure 4.20: 10F STFT cross-validation and spectrogram of bearing 3 1

Figure 4.21: 10F STFT cross-validation and spectrogram of bearing 3 2

Based on the figures above it is difficult to identify what type of decisive
attributes the network has learned. From the validation predictions it is
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possible to observe the connections between input and prediction at given
timesteps. This is best visualized by observing predictions in the last stages
of bearing life where most validation predictions react to the change of sudden
vibration intensity. The predictions for bearing1 1 are way off, and might be
explained by a different degradation pattern compared to the other bearings.
Even though bearing1 1 has a normal expected degradation, the other
bearing have not. Consequently, bearing1 1 has degradation characteristics
that is not present in the other bearings, and these characteristics are
unknown to the network when validating bearing1 1.

The final models used for testing were in the end trained by all of the six
training bearings together with the optimal hyperparameters found from the
cross-validation.

4.2.5 RNN model with CNN as feature extractor

The LSTM cell is a fully connected layer the way it connects to it’s input
features. For that reason, the LSTM cell has no scale or translational in-
variance. The three different operational conditions have different shaft
frequencies resulting in different resonance peaks in the frequency spectrum.
If the main useful degradation information is located within the shaft
frequency and corresponding resonance, then the LSTM lacks the ability
to generalize across the operational conditions. To further improve on the
limitation seen from the LSTM, a CNN module has been tested as a feature
extraction layer. The CNN structure is not scale invariant, but at least have
the property of being translational in-variant.

The RNN model including the CNN extraction layer is illustrated in
Figure 4.22.
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Figure 4.22: Overview of the CNN+RNN neural network

The design of the CNN module is found in table 4.5 below. The weights and
biases are initialized using He initialization.
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Kernel Stride Padding Channels

Input:

Conv2d (11,1) (4,1) (1,0) 32

ReLU - - - -

Conv2d (5,1) (1,1) (2,0) 32

ReLU - - - -

Max pool (3,1) 3,1) - -

Conv2d (3,1) (2,1) (1,0) 32

ReLU - - - -

Max pool (3,1) 3,1) - -

Conv2d (3,1) (2,1) (1,0) 32

ReLU - - - -

Table 4.5: CNN module

4.3 Score function of the Prognostic challenge

The accuracy of the prognostic challenge was calculated by the difference in
time error between predicted RUL and actual RUL of bearings at a specific
points in time for each test bearing. Underpredictions and overpredictions
were not treated equally as overpredicitions were considered to be more
severe. Score of each configuration was determined based on the average
accuracy across all test bearings. The score function differs between
underpredictions and overpredicition, even though the network weights are
trained according to MAE loss. MAE loss is symmetric by default, and does
not evaluate late or early predictions like the score function does. From the
figure 4.23 the scoring function does not distinguish between late (-40%) and
very late predictions as they yield 0 score either way. This is also in contrast
to MAE where the feedback is linear. The following equations describe how
scoring was performed.

%Ert = 100 · actRULt − predRULt

actRULt

(4.9)
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%Ert is the error between actual RUL and predicted RUL at the given time-
point

If overpredicting, %Ert becomes negative and accuracy will given as:

At = exp−ln(0.5)·(Eri/5) (4.10)

if underpredicting, %Ert becomes positive and accuracy will given as:

At = exp+ln(0.5)·(Ert/20) (4.11)

At is the bearing accuracy

Figure 4.23: Scoring function used in prognostic challenge [12]
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5. Results

5.1 Overview of configurations

The proposed configurations in this thesis have a basis in a LSTM RNN, but
differ in terms of signal processing methods, and neural network design. The
table below gives an overview of configuration used for testing purposes.

Configuration # merged files pre-processing CNN RNN
1F STFT 1 STFT - LSTM
10F STFT 10 STFT - LSTM
10FPC STFT 10 PC STFT - LSTM
1F CWT 1 CWT - LSTM
10F STFT CNN 10 STFT True LSTM

Table 5.1: Overview of configurations

5.2 Test predictions

Table 5.2 shows the RUL results for the test bearing with the 10F STFT
configuration.
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Test bearing id Condition Actual RUL point(s) Predicted RUL point(s)
1 3 1 5730 17748
1 4 1 339 55
1 5 1 1610 1664
1 6 1 1460 508
1 7 1 7570 8706
2 3 2 7530 4477
2 4 2 1390 7032
2 5 2 3090 1863
2 6 2 1290 820
2 7 2 580 4920
3 3 3 820 796

Table 5.2: Test bearings and RUL points to estimate (the RUL points used
in the score function)

The following figures show actual RULs (red line), predicted RULs (blue
line), actual RUL to estimate (black point), predicted RUL to estimate (green
point), and spectrogram for the different test bearings.
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Figure 5.1: Prediction and spectrogram of test bearing1 3

Figure 5.2: Prediction and spectrogram of test bearing1 4

Figure 5.3: Prediction and spectrogram of test bearing1 5
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Figure 5.4: Prediction and spectrogram of test bearing1 6

Figure 5.5: Prediction and spectrogram of test bearing1 7

Figure 5.6: Prediction and spectrogram of test bearing2 3
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Figure 5.7: Prediction and spectrogram of test bearing2 4

Figure 5.8: Prediction and spectrogram of test bearing2 5

Figure 5.9: Prediction and spectrogram of test bearing2 6
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Figure 5.10: Prediction and spectrogram of test bearing2 7

Figure 5.11: Prediction and spectrogram of test bearing3 3

The following table shows MAE, and score for different bearings.
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Test bearing MAE(s) Score
1 3 11319 2.353e-13
1 4 15482 0.055
1 5 7920 0.627
1 6 10133 0.105
1 7 3316 0.125
2 3 2911 0.245
2 4 5309 3.640e-25
2 5 4094 0.253
2 6 826 0.283
2 7 3910 8.817e-46
3 3 678 0.903
avg 5990 0.236

Table 5.3: Performance of 10F STFT on test bearings after 2500 epochs

Table 5.4 shows average MAE, and average score for different configurations
on all test bearings.

Configuration Avg MAE(s) Avg score
1F STFT 4965 0.214
10F STFT 5990 0.236

10FPC STFT 4850 0.080
1F CWT 5551 0.128

10F STFT CNN 5425 0.089

Table 5.4: Overall performance on test bearings after 2500 epochs

5.3 Expanded training data

The results for the different configurations are not impressive with respect
to the obtained MAE for the various test bearings. The explanation for the
limited performance may relate to the complexity of the various different
bearing wear mechanisms and the limited amount of training bearings
available. To investigate if increasing the set of training bearings will improve
the performance a test using some of the test bearings for training purpose
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was performed. In this test the 11 test bearings were split two groups of
5 and 6 bearings while the remaining test bearings were used for training
together with the original 6 training bearings. The model used for the
experiment was 10F STFT using the hyper parameters established with the
standard 6 training bearings. The table 5.5 shows the resulting MAE for
the test bearings when increasing the amount of train bearings. As can be
observed MAE for the individual bearings are affected but the average MAE
for all bearings remains almost constant. Table 5.5 show MAE loss with and
without expanded training data.

Test bearing MAE (6 train) MAE (11 train) MAE (12 train)
Bearing1 3 11319 x 6174
Bearing1 4 15482 x 5176
Bearing2 6 826 x 1032
Bearing2 7 3910 x 10755
Bearing3 3 678 x 1928
Bearing1 5 7920 9999 x
Bearing1 6 10133 8577 x
Bearing1 7 3316 3573 x
Bearing2 3 2911 4855 x
Bearing2 4 5309 3945 x
Bearing2 5 4094 7847 x
Avg MAE MAE (6 train)5990 MAE (11+12 train)5805

Table 5.5: MAE of expanded training data
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6. Discussion and conclusion

Different pre-processing techniques and neural network models are in this
thesis rated by both MAE and the score function from the prognostic
challenge. In general the correlation between MAE and score is poor.
Consequently, high score does not prove an accurate overall performance.
Figure 5.3 of Bearing1 5 is an example. Generally the predicted and actual
RUL points specified in the prognostic challenge matches significantly better
than at an average point of time. This may partly relate to that the RUL
points specified in the prognostic challenge are usually located in later stages
of the bearings’ life. The average MAE is also to some extent dominated by
bearings with long life.

The individual bearing predictions are similar for the different configurations
(pre-processing techniques and network models). Predictions across all
configurations are shown in Appendix 6.1. The similarity in predictions
between the various configurations indicates that the different networks find
similar solutions trying to match the vibration spectrum with RUL.

Most predictions follows a monotonic downward RUL trend, even in areas
where the frequency information does not seem to evolve, example figure 5.8.
This is possibly due to a feature learned by the RNN network, that RUL
decreases with time steps and not really derived from the specific vibration
frequency spectrums.

All training bearings show a sudden rise of broad-band vibrations close to
EOL. The same phenomena is not present with the test bearings except for
bearing1 4. It is interesting to observe that the prediction of test bearing1 4
reacts to the sudden broad band vibrations close to EOL, while the prediction
on the the other test bearings at EOL do not have a similar sudden change.

50



The difference in EOL behaviour between the training bearings and the test
bearings is surprising. It may indicate that the running conditions have not
been equivalent, or a different bearing batch has been introduced, or that the
bearings have not been grouped randomly between train and test bearings
in the challenge.

For neural networks to predict RUL effectively based on vibration data only
there needs to be a connection between the vibration data magnitude or
frequency content and RUL in some form. Assuming the required connection
exists, a network will also need training data that represent the various wear
and defect mechanisms in order to generalize.

The RUL predictions obtained using the various pre-processing techniques
and neural networks may indicate limited connection between the vibration
data and RUL. The results indicate that the improved frequency resolution
obtained using 10F STFT, 10FPC STFT and 1F CWT does not improve
the predictions over 1F STFT. This can be interpreted as if there is limited
correlation between the detailed bearing vibrations frequencies (eq 2.3-2.6)
and RUL.

From the validation process it became clear that the unique characteristics of
bearing 1 1 not present in the remaining training data were problematic for
the network. Assuming significant vibration spectrum and RUL correlation
exists in the data set, it is reasonable to expect improved test bearing MAE
performance when increasing the training set. Expanding the training set
from 6 to 11/12 did however not yield any clear improvements in MAE in
this data set.

As stated by the pronostic challenge the bearings do not follow the theoretical
frameworks and L10-life. It is therefore possible that the bearings in the
prognosis depict different random frequency behaviours without specific
recognizable patterns. Similar RUL studies on bearings subject to normal
wear patterns may hopefully indicate a stronger correlation between vibration
spectrum and RUL.

Further improvements of the network could be achieved by better use
of vertical vibrations as the network is potentially missing data. There
are also indications that training separate networks for each operational
condition could yield better results. A reason for this hypothesis is that the
spectrograms for the individually operational conditions are more similar.
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The indication is further supported by the fact that both winners of the
prognostic challenge made separate models for the individual operational
conditions. Alternatively, the frequency spectrums could be normalized by
the shaft frequency for the operational conditions or the condition could be
encoded into the model directly. An example is adding a particular value as
a feature into the LSTM cell for each case.

6.1 Conclusion

This thesis demonstrates alternative pre-processing techniques to achieve
spectrograms with improved frequency resolution to be used for bearings
RUL prognosis. The techniques utilized include FFT of merged files, FFT
of merged files in phase and wavelet transforms. Finally the effect of the
different pre-processing techniques were tested on different neural network
models trained to estimate RUL. The findings indicate that the improved
frequency resolution did not improve the RUL prognosis for the bearings
used in the thesis. The bearings utilized in the thesis had not been degraded
in a manner that represent normal wear of bearings and did not follow
the theoretical frameworks and L10-life. The pre-processing techniques and
neural networks tested may possibly be more effective assuming normal wear
conditions. Accurate RUL predictions were found to be challenging with
this dataset. The obtained score was comparable to other participants in the
prognostic challenge.
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Figure 6.1: Average MAE on test bearings for all configurations
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Figure 6.2: Test MAE loss for different configurations as a function of training
epochs
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