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Abstract

Classification, typically, deals with unique and distinct training and testing phases. This paper pioneers the

concept when these phases are not so clearly well-defined. More specifically, we consider the case where the testing

patterns can subsequently be considered as training patterns. The paradigm is further complicated because we

assume that the class-conditional distributions of the features/classes are non-stationary, as in the case of most

real-world applications. Specifically, we consider the model where the training phase is non-stationary and that

it is, further, interleaved with the testing, and where it can be done online and in a real-time manner.

We propose a novel online classifier for complex data streams which are generated from non-stationary

stochastic properties. Instead of using a single training model with “counters” that maintain important data

statistics, our online classifier scheme provides a real-time self-adjusting learning model. The learning model

utilizes the multiplication-based update algorithm of the Stochastic Learning Weak Estimator (SLWE) at each

time instant as a new labeled instance arrives. In this way, the data statistics are updated every time a new

element is seen, without requiring that we have to rebuild the model when changes occur in the data distributions.

Finally, and most importantly, the model operates with the understanding that the correct classes of previously-

classified patterns become available at a later juncture subsequent to some time instances. This forces us to

update the training set, the training model and the class conditional distributions as the testing proceeds.

The results from rigorous empirical analysis on two-dimensional/multi-dimensional and binomial/multinomial

distributions are remarkable. We also report some results on two real-life datasets adapted to this model

of computation, demonstrating the advantages of the novel scheme for both binomial and multinomial non-

stationary distributions.
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1 Introduction

In the past few years, due to the advances in computer hardware technology, large amounts of data have been

generated and collected and are stored permanently from different sources. Some the applications that generate

data streams are financial tickers, log records or click-streams in web tracking and personalization, data feeds from

sensor applications, and call detail records in telecommunications. Analyzing these huge amounts of data has been

one of the most important challenges in the field of Machine Learning (ML)1 and Pattern Recognition (PR).

Traditionally, ML and PR methods (as explained in [11, 22]) are assumed to deal with static data stored in

memory, which can be read several times. On the contrary, streaming data grows at an unlimited rate and arrives

continuously in a single-pass manner that can be read only once. Further, there are space and time restrictions

in analyzing streaming data. Consequently, one needs methods that are “automatically adapted” to update the

training models based on the information gathered over the past observations whenever a change in the data is

detected.

Mining streaming data is constrained by limited resources of time and memory. Since the source of data generates

a potentially unlimited amount of information, loading all the generated items into the memory and achieving offline

mining is no longer possible. Besides, in Non-Stationary Environments (NSEs), the source of data may change over

time, which leads to variations in the underlying data distributions. Thus, with respect to this dynamic nature

of the data, the previous data model discovered from the past data items may become irrelevant or even have a

negative impact on the modeling of the new data streams that become available to the system.

A vast body of research has been performed on the mining of data streams to develop techniques for computing

fundamental functions with limited time and memory, and it has usually involved the sliding-window approaches or

incremental methods. In most cases, these approaches require some a priori assumption about the data distribution

or need to invoke hypothesis testing strategies to detect the changes in the properties of the data.

1.1 Salient Aspects of our Paradigm

In this article, we will study classification problems in NSEs, where sequential patterns are arriving and being

processed in the form of a data stream that was potentially generated from different sources with different statistical

distributions. The classification of the data streams is closely related to the estimation of the parameters of the

time varying distribution, and the associated algorithms must be able to detect the source changes and to estimate

the new parameters whenever a switch occurs in the incoming data stream.

Pioneering aspects of this Paradigm: Apart from the “traditional” classification problem involving unique

and distinct training and testing phases, this paper pioneers the concept when these phases are not so clearly

well-defined. Rather, we consider the fascinating phenomenon in which the testing patterns can subsequently

be considered as training patterns, once their true class identities are known. Thus, the model operates with

the understanding that the correct classes of previously-classified patterns become available at subsequent time

instances (after some time has lapsed), thus requiring us to update the training set and the training model. This

renders the whole PR problem intriguing.

1As requested by the AE and Referees, a table of abbreviations has been provided. However, to avoid distractions from the main
focus of the paper, this table is included in the Appendix. It can be easily moved into the body of the paper if suggested by the
publishing staff. We thank the Referees for requesting this.
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Real-life aspects of this Paradigm: Interestingly enough, the current model is not merely hypothetical.

Rather, it is, in actuality, the model that is encountered in most real-life applications. Consider, for example, a

cancer identification program. After the measurements are made and the features are available, the trained PR

program classifies the testing sample that is presented to the system. However, after the machine achieves the

classification, it is always the case that a physician comes into the loop and informs the system, and the patient,

whether the PR classification decision was correct or not. This new information, provided by the physician (possibly,

due to additional tests and measurements), can be then used to update the training process, and to enhance the

classification phase.

Hybrid nature of this Paradigm: The knowledgeable reader will see that this current model represents a

hybrid of traditional statistical PR, and the so-called “Sequential” PR. As far as we know, such a hybrid paradigm

is completely unexplored in the literature. While the data arrives in streams, the class identity of any given sample

is known after a few time instances after the original classification, and this true identity can be subsequently used

to update the class conditional distributions prior to any further classification is attempted.

Testing aspects of this Paradigm: Unfortunately for us, data for this model of PR is not currently available,

although it happens all the time. That is why we had to work with artificial data in our initial submission. But

this current paper also includes results from real-life data adapted for this model of computation.

Salient theoretical aspects of our solution: While all of the above issues make the paper novel in and of

itself, we have chosen to render the problem more complex by considering the case where the classes’ stochastic

properties potentially vary with time as more instances become available. From this perspective, with regard to the

training, we will argue that using “strong” estimators that converge with probability of 1 is inefficient for tracking

the statistics of the data distributions in NSEs. However, “weak” estimator approaches are able to rapidly unlearn

what they have learned and adapt the learning model to new observations.

1.2 Unique Applications of the SLWE in Non-stationary Environments

A huge body of research is available when it concerns the prior art of classification in non-stationary data streams.

This will be surveyed, in some detail, in Section 2. However, at this juncture2, we briefly refer to the preliminary

theoretical foundations for this present work found in [52], where a particular family of weak estimators, referred

to as Stochastic Learning Weak Estimation (SLWE) methods, was introduced. The fascinating feature of “weak”

estimators, that make them converge in a “weak” manner, render them most effective methods for estimation

in NSEs, and consequently, in the classification of such data. It is pertinent to mention that the SLWE has

been successfully used to solve simple two-class classification problems [52] by applying it on non-stationary one-

dimensional datasets. It has also been used in many real-life application domains, as mentioned below. However, the

application of the model in multi-dimensional datasets has been unreported. This is, precisely, what we highlight in

this article, namely, the performance of the SLWE for more complex classification schemes with multi-dimensional

data, and for the more intricate scenario where the identity of a testing sample is known after a small time interval,

forcing the training stream to be continuously updated, and the class-conditional distributions to, thus, be non-

stationary. The applications of the SLWE’s theoretical results to this model of computation is completely new, and

to the best of our knowledge, quite pioneering. We briefly elaborate on this here.

2We are grateful to the anonymous Referee who specifically requested this section.
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Although the state-of-the-art will be surveyed later, we briefly mention that online data streammining techniques

have been applied in several key areas for the monitoring of streaming data, such as in spam-filtering [7, 74], network

intrusion detection [17, 29, 36, 73], and time varying PR [53, 64]. De Oca et al. [17] proposed a nonparametric

algorithm for network surveillance applications in NSEs. They adapted the classic Cumulative Sum (CUSUM)

change detection algorithm that uses a defined time-slot structure in order to handle time varying distributions.

Hajji [29] developed a parametric algorithm for real time detection of network anomalies. He used stochastic

approximation of the MLE function in order to monitor the non-stationary nature of network traffic and to detect

unusual changes in it. Kim et al. [36] proposed a multi-chart CUSUM change detection procedure for the detection

of DOS attacks in network traffic. Robinson et al. [57] proposed a method for monitoring and detecting behavioral

changes from an event stream of patient actions.

On the other hand, the SLWE approach has been used successfully in a variety of real-life ML applications

specifically those involving estimating binomial/multinomial distribution in NSEs. Rueda and Oommen [59] utilized

the SLWE approach for data compression in NSEs, in which the SLWE was applied for an adaptive single-pass

encoding process to estimate and update the probabilities of the source symbols. It was also shown in [52] that using

the weak estimator for distributional change detection in NSEs surpassed the performance of the MLE method.

Oommen and Misra [51] applied the weak-estimation learning scheme to propose a new fault-tolerant routing

approach for mobile ad-hoc networks, named the Weak-Estimation Fault-Tolerant Routing (WEFTR) algorithm.

They utilized the SLWE approach to estimate the probability of the delivery of packets among the available paths

at any moment. The SLWE was also used by Stensby et al. [64] for language detection and tracking multilingual

online documents. Zhan et al. [74] applied the SLWE for anomaly detection, specifically for the detection of spam

emails, when the underlying distributions changed with time. They employed the SLWE approach for spam filtering

based on a näıve Bayes classification scheme. Oommen et al. [53] also proposed a strategy for learning and tracking

the users’ time varying interests to find out their preferences in social networks. Most recently, Khatua and Misra

[34] developed a controllable reactive jamming detection scheme, referred to as Controllable Reactive Jamming

Detection (CURD), which applies the CUSUM-test and the weak estimation approach in order to estimate the

probability of collisions in packet transmission.

Theoretical Extensions of the SPL: In [30], Hammer and Yazidi presented a method by which the SLWE could

detect abrupt changes in data streams. To achieve this goal, two parallel weak estimators were run in parallel. In this

sense, both estimators were updated simultaneously upon reception of the same observation. By an appropriate

choice of the updating parameters, one of the two parallel weak estimators was rendered adequate to dynamic

environments by imposing a choice of the update parameter around 0.9 which allowed adaptivity. The second weak

estimator was designed to cope with stationary environments by using a time-dependent learning parameter that

gradually approached unity as time proceeded. A sophisticated statistical test based on the distance between both

the estimators in terms of the respective variance and mean was developed to detect changes. Intuitively, an increase

in the distance between both estimators is a sign of a change in the underlying distribution. Furthermore, whenever

a change was detected, the estimate of the stationary SLWE was re-initialized since it was deemed to be off-track.

In [46], Mofrad et al. proposed to enhance the Stochastic Point Location (SPL) by combining it with the SLWE. By

virtue of introducing the SLWE tracking as a part of the SPL mechanism, the authors showed that their enhanced

SPL solution not only outperformed the classical SPL solution in terms of speed and accuracy, but it was also able
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to estimate the probability according to which the Oracle provideed the truth. Furthermore, the article provided

some real-life applications that showed how the SLWE could improve the estimates of the discretized estimator

proposed in [71].

Mohan et al. [47] developed an SLWE that worked in a batch mode in order to estimate the matching proba-

bilities of different firewall rules. Those estimates were given as inputs to a re-ordering algorithm that optimized

the matching time of the firewall by taking into account the matching probability of each rule obtained using the

SLWE, and some precedence relationships between the rules.

In [31], the authors modeled the data center consolidation problem using a large-scale Markov Decision Process.

In order to track the time-varying computing resource usage in the data center, the authors extended the SLWE

by combining it with a sliding window approach. When the number of observation in the sliding window was less

than a given threshold computed using confidence intervals, the estimates were based on the SLWE. In the opposite

case, whenever enough number of samples were collected, the sliding window approach was used. On the other

hand, Bhaduri and his collaborators [6] presented a simple method in order to allow continuous time updates of

the SLWE.

Some recent applications of the SPL: In [3], the SLWE was used to estimate the First Order Markov

probabilities in a activity recognition system. Those probabilities were further employed to detect switching points.

Among some of the recent applications of the SLWE, we report the problem of link prediction [14]. The latter work

resorted to the estimates from the SLWE as a feature in a deep learning model to predict the likelihood creation

and destruction of links in an evolving network over time.

Recent Concept Drift Schemes: The work in [18] introduced ExStream, an incremental learning system for

data streams. ExStream detected concept drift by detecting changes in the data stream using three different levels.

ExStream is based on a similar idea to (ADaptive WINdows) ADWIN [9, 10]. In this sense, ExStream ran different

parallel explanatory models and observed the magnitude of their changes in each model in order to detect concept

drift.

Recently, an new concept drift method called Diversity and Transfer-based Ensemble Learning (DTEL) was

proposed [65]. DTEL employed an ensemble approach for classification and for adapting to concept drift. Instead

of training models from scratch whenever a new “chunk” of the data was received, DTEL used the concept of

transfer learning and therefore relied on historical models as initial models. The transferred models were further

trained with new data.

The outcome of research in this area can also be used in other real-life applications, and we mention one such

application that is particularly interesting because of its current ML implications. Indeed, such a PR scheme can be

applied for the detection of the source of news streams. For example, an observed stream could be either a live video

broadcasted from a TV channel or news released in a textual form, for example, on the internet. This problem has

been studied by several researchers by considering shots from the video and using them in the classification to fall

into one of a few predefined classes. Our method could, however, be used to simplify this problem by considering

the news streams that arrive in the form of text blocks extracted from the closed captioning text embedded in

the video streams. A similar problem was considered by Oommen and Rueda in [52], in which they analyzed bit

streams generated from two sources of news, namely “Sports” and “Business”.
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Finding suitable non-stationary data streams to be used for testing our paradigm (i.e., where testing samples

become training samples after a time interval) is challenging because almost all the real-world benchmark data sets

provided by, for example, the UCI machine learning repository are designed for stationary environments. Further,

as mentioned before, the data for sets where the training and testing are interleaved is non-existent. It should be

noted that the available non-stationary news streams utilized in [52] only included binomial data, as no multinomial

data sets were available for testing. Thus, due to the lack of multinomial non-stationary real-world datasets, we will

first use synthetic benchmarks, and then achieve the testing for datasets extracted from the more general, readily

available, data for NSEs. The results that we present are conclusive.

1.3 Contributions of the Paper

The novelty and contributions of the paper can be briefly stated as follows:

• This paper, first of all, presents a fairly comprehensive survey of the field of the online classification of data

streams.

• However, unlike the strategies reported in the literature, our novel online classification scheme is composed

of three phases:

1. In the first phase, the model learns from the available labeled samples;

2. In the second phase, the learned model predicts the class label of the unlabeled instances that are

currently being observed;

3. In the third phase, after knowing the true class labels of these recently-classified instances, the classifi-

cation model is adjusted in an online manner;

As far as we know, such a PR and ML paradigm is pioneering.

• Most of the data stream mining approaches build an initial model from a sliding window of recently-observed

instances. Subsequently, they refine the learning model periodically or whenever its performance degrades

based on the current window. We, however, deal with the phenomenon of concept drift in NSEs, with a

scheme that is more efficient and accurate than the state-of-the-art. We emphasize that it does not invoke a

sliding window. Further, this non-stationarity could even be abrupt.

• Our classifier scheme provides a real-time self-adjusting learning model, utilizing the multiplication-based

update algorithm of the SLWE, as new labeled instances arrive. Instead of maintaining counters to keep data

statistics, we have used a technique that invokes data estimators that do not converge w.p. 1. Thus, we do

not need to rebuild our model when a change in the distributions is detected.

• The paper also includes extensive experimental results for both the binomial and multinomial (two dimensional

and multi-dimensional) distributions. It demonstrates the efficiency of the proposed classification schemes in

achieving a good performance for data streams involving non-stationary distributions under different scenarios

of concept drift, where the training and testing samples are not completely dichotomized. The paper also

contains results from two real-life scenarios. The performance measure for these experiments are the superiority

of the estimates obtained for the MLEW and SLWE, and the corresponding recognition accuracies obtained

when using them in classification.
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1.4 Organization of the paper

In Section 2, we review the literature3 available on the families of approaches reported for classification and es-

timation in stationary and NSEs. We also survey the available estimation approaches for streams with unknown

dynamics in NSEs. We proceed with discussing the issues and challenges encountered when one learns from data

streams and provide a brief explanation about the theoretical properties of the SLWE. In Section 3, we present the

details of the design and implementation of the online classifier within this new paradigm. We then explain how

this solution can be used to perform online classification, and present the new experimental framework for concept

drift in Section 4. This section and the next also contain the experimental results we have obtained from rigorous

testing. Section 6 concludes the paper.

2 The State-of-the-Art

In this section, we briefly survey4 the state-of-the-art when it concerns classification in dynamic data streams and

for the estimation problem in such domains5. Thus, in Section 2.1, we survey the field of achieving classification in

NSEs, and in Section 2.2, we survey the techniques used for training in such domains.

2.1 Survey of Classification of Data Streams in NSEs

According to the data stream mining literature, algorithms have one or more of the following modules: a Memory

module, an Estimator module, and a Change Detector module [8]. The Memory module is a component that

stores summaries of all the sample data and attempts to characterize the current data distribution. Data in NSEs

can be handled by three different approaches, namely, by using partial memory, by window-based approaches and

by instance-based methods. The term “partial memory” refers to the case when only a part of the information

pertaining to the training samples are stored and used regularly in the training. In window-based approaches, the

data is presented as “chunks”, and finally, in instance-based methods, the data is processed upon its arrival. In

dynamic environments with non-stationary distributions, the Memory module indicates the forgetting mechanism

of the mining algorithm in order to adapt the learning model to newer observations and to forget old information.

The Estimator module uses the information contained in the Memory or only the observed information to

estimate the desired statistics of the time varying data stream. The Change Detector module involves the techniques

or mechanisms utilized for detecting explicit drifts and changes, and provides an “alarm” signal whenever a change

is detected based on the estimator’s outputs.

Apart from the above schemes, many other incremental approaches have been proposed that infer change points

during estimation, and use the new data to adapt the learning model trained from historical streaming data. The

learning model in incremental approaches is adapted to the most recently-received instances of the streaming data.

Let X = {x1, x2, . . . , xn} be the set of training examples available at time t = 1 . . . n. An incremental approach

produces a sequence of hypotheses {. . . , Hi−1, Hi, . . .} from the training sequence, where each hypothesis, Hi, is

derived from the previous hypothesis, Hi−1, and the example xi. In general, in order to detect concept changes in

these types of approaches, some characteristics of the data stream (e.g., performance measures, data distribution,

3The bibliography we include is very extensive, as requested by the anonymous Referees.
4We are extremely grateful to the anonymous Referee who requested such a detailed and dichotomized survey.
5It is not so easy to dichotomize the research done to differentiate between the training and testing (classification) phases. But, we

hope that the reader sees the intent of the survey in the two subsections.
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properties of data, or an appropriate statistical function) are monitored over time. When the parameters switch

during the monitoring process, the algorithm should be able to adapt the model to these changes.

We now briefly review some other schemes used for learning in NSEs. The review here will not be exhaustive

because the methods explained can be considered to be the basis for other modified approaches.

2.1.1 FLORA

Widmer and Kubat [69], presented the FLORA family of algorithms as one of the first supervised incremental

learning systems for a data stream. The initial FLORA algorithm used a fixed-size sliding window scheme. At each

time step, the elements in the training window were used to incrementally update the learning model. The updating

of the model involved two processes: an incremental learning process that updated the concept description based

on the new data, and an incremental forgetting process that discarded the out-of-date (or stale) data.

The initial FLORA system did not perform well on large and complex data domains. Thus, FLORA2 was

developed to solve the problem of working with a fixed window size, by using a heuristic approach to adjust the

window size dynamically. Further improvements of the FLORA were presented to deal with recurring concepts

(FLORA3) and noisy data (FLORA4).

2.1.2 Statistical Process Control (SPC)

The SPC was presented by Gama et al. [25] for change detection in the context of data streams. The principle

motivating the detection of concept drift using the SPC is to trace the probability of the error rate for the streamed

observations. While monitoring the errors, the SPC provides three possible states, namely, “in control”, “out of

control” and “warning” to define a state when a warning has to be given, and when levels of changes appear in

the stream. When the error rate is lower than the first (lower) defined threshold, the system is said to be in an

“in control” state, and the current model is updated considering the arriving data. When the error exceeds that

threshold, the system enters the “warning” state. In the “warning” state, the system stores the corresponding time

as the warning time, tw, and buffers the incoming data that appears subsequent to tw. In the “warning” mode,

if the error rate drops below the lower threshold, the “warning” mode is canceled and the warning time is reset.

However, in case of an increasing error rate that reaches the second threshold, a concept change is declared and the

learning model is retrained from the buffered data that appeared after tw.

2.1.3 ADWIN

Bifet and Gavalda [9, 10] proposed an adaptive sliding window scheme named ADWIN for change detection and

for estimating statistics from the data stream. It was shown that the ADWIN algorithm outperforms the SPC

approach and that it has the ability to provide rigorous guarantees on false positive and false negative rates. The

initial version of ADWIN keeps a variable-length sliding window, W , of the most recent instances by considering

the hypothesis that there is no change in the average value inside the window. To achieve this, the distributions

of the sub-windows of the W window are compared using the Hoeffding bound, and whenever there is a significant

difference, the algorithm removes all instances of the older sub-windows and only keeps the new concepts for the

next step. Thus, a change is reliably detected whenever the window shrinks, and the average over the existing

window can be considered as an estimate of the current average in the data stream.
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To be more specific, consider a sequence of real values {x1, x2, . . . , xt, . . . } that is generated according to the

distribution Dt at time t. Let n denote the length of the W window, µ̂t be the observed average of the elements in

W , and µw be the true average value of µt for t ∈ W . Whenever two “large enough” sub-windows of W demonstrate

“distinct enough” averages, the system infers that the corresponding expected values are different, and the older

fragment of the window should be dropped. The observed average in both sub-windows are “distinct enough” when

they differ by more than the threshold ǫcut:

ǫcut =

√

1

2m
. ln

4

δ′
,where (1)

m =
1

1/n0 + 1/n1

, and δ
′

=
δ

n
, (2)

where n0 and n1 denote the lengths of the two sub-windows, and where δ is a confidence bound. The above, Eq.

(1) and (2), are a direct consequence of invoking the bounds imposed by the Hoeffding inequality [9, 10].

Using the Hoeffding bound greatly overestimates the probability of large deviations for distributions with a

small variance, which degrades the ADWIN’s performance. Besides, it is also computationally demanding [55].

The ADWIN approach is, in fact, a linear estimator enhanced with a change detector. In order to improve the

basic ADWIN method’s performance, Bifet [8] replaced the linear estimator by an adaptive Kalman filter, where

the covariances of w(n) and v(n) were set to n2/50 and 200/n respectively, where n is the length of the window

maintained by ADWIN.

2.1.4 Other Miscellaneous Approaches

To perform classification in dynamic systems, a common strategy is to transfer acclaimed classification schemes for

static data to a dynamic environment by training the classifier on a sliding window, or an exponential weighting of

historic data. A challenge is that for most classifiers, like the Support Vector Machine (SVM), it is challenging to

recursively update the parameters of the classifiers when new data arrive. Several attempts have been suggested

for different classifiers to overcome this challenge.

The Hoeffding tree is a decision tree classifier for data streams [19]. Traditional decision trees need to scan the

training data many times to select the splitting attribute. However, this requirement is infeasible in the data stream

environment. To overcome this limitation, the Hoeffding bound is used to choose an optimal splitting attribute

within receiving a sufficient amount of data objects.

Seidl et al. proposed a novel index-based classifier called the Bayes tree [62]. Adapted from the R∗-tree [5], the

Bayes tree generates a hierarchical Gaussian-mixture tree to represent the entire data set. Each tree node contains

statistics of the data objects including a minimum bounding rectangle, the number of data objects, the linear sum

and the quadratic sum of all the data objects.

The SVM has demonstrated its prominent performance in many ML problems with static data sets. However,

it is very expensive to use SMVs in large-scale applications due to its time and memory complexity. Tsang et al.

proposed the Core Vector Machine (CVM) algorithm that uses the Minimum Enclosing Ball (MEB) to reduce its

complexity [67].

For other classifiers based on linear regression (ordinary least squares), the parameters of the model can be

updated recursively, [32, 33]. Even the least squares approach that uses Tikhonov regularization (ridge regression)
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can be updated recursively like the traditional least squares approach.

In [45], the authors proposed and evaluated OLIN, an online classification system. OLIN dynamically adjusts

the size of the training window and the number of new samples needed between the time instances when the model

is reconstructed to characterize the current rate of concept drift. The advantage of OLIN is that by using a fixed

amount of computer resources, it is able to produce models, which have nearly the same accuracy as the ones that

would be produced by periodically re-constructing the model from all accumulated instances.

Another scheme, which deals with incremental ensemble classifiers for NSEs, was described in [54]. These

authors proposed a scheme for using ensembles for stream classification. Their method, M3, was based on a

weighted majority ensemble of heterogeneous model types, and these were blended using Reinforcement Learning

techniques. In its central mechanism, M3 was quite standard. However, it was designed in such a way so as to be

able to specifically adapt quickly to the dynamic and evolving nature of data from the NSE. It further required very

little overhead to achieve this. The authors showed that for the UCI benchmark and for synthetic streams, M3 was

able to display a strong gain over the baseline method when the knowledge of the ground truth was limited.

In [41], the authors proposed One-class classifiers which were able to achieve incremental learning for data

streams with concept drift. This scheme also provided a forgetting mechanism. This paper reported a novel

modification of the weighted one-class SVM adapted to the NSEs, and it was able to adapt its decision boundary to

new, incoming data, and to also employ a forgetting mechanism which boosted the ability of the classifier to follow

the model changes. To do this, they proposed several different strategies for incremental learning and forgetting,

and evaluated them on the basis of several real data streams, and demonstrated the power of their methods.

2.2 Survey on Training Schemes in NSEs

Estimation theory is a fundamental subject that is central to the fields of PR and data mining. The majority of

problems in PR require the estimation of the unknown parameters that characterize the underlying distributions.

In this section, we present a brief survey of how parameter and distribution estimation play a crucial role in

classification and learning. This section surveys, in some detail, the literature available on the families of approaches

for estimation, and proceeds to discuss the issues and challenges encountered when one learns from data streams.

In particular, we focus on the special issues to be considered when we work with change detection. Indeed, we shall

survey estimation approaches that have been developed to learn from streams with unknown dynamics in NSEs.

2.2.1 MLE-based Schemes

The majority of Machine Learning approaches have been developed to deal with data domains in which the under-

lying distributions are stationary. Learning in these environments is similar to batch learning. It is pertinent to

mention that all of the benchmark data sets that deal with Machine Learning and PR fall into this class.

One encounters an additional problem in learning when the data is based on the properties of data streams. The

issue at stake is that the data distribution, in these cases, can be non-stationary, implying that the distribution or

characterizing aspects of the features change over time. In NSEs, the data generation phenomenon itself may change

over time, which, in turn, leads to a variation in the data distribution. The goal of learning approaches in NSEs is

to estimate the parameters of the distributions, and to adapt to any abrupt and/or gradual changes occurring in

the environment. In other words, the learning and classification models must be updated when significant changes
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in the underlying data stream are detected.

The important issue here is that the estimation and training must be achieved without a knowledge of when

and how the environment has changed, rendering the problem to be far from trivial.

2.2.2 Stale and Recent Samples

It is very important to understand that in NSEs, old observations become irrelevant to the current state or might

even have a negative effect on the learning process. For data domains of these kinds, the estimation mechanisms

should be able to incorporate phenomena akin to concept drift. They should be able to forget outdated data and

adapt the estimation to the more recently-observed data elements. Within the context of the new model that we

investigate, the body of this paper deals with training and testing in such NSEs, except that in our cases, tested

samples become training samples at a subsequent juncture.

Change detection, in and of itself, is a very complex task, as its design is intended to be a trade-off between

detecting real changes and avoiding false alarms. A significant amount of work has been performed in the area

of concept change detection by both the statistical and Machine Learning communities. The subject of change

detection was first employed in the manufacturing and quality control applications in the 1920-1930’s [4, 56]. By

the introduction of sequential analysis, later in the 1950-1960’s, sequential detection procedures were developed,

which considered the sequence of observations to detect unusual trends and patterns in the data.

With parallel considerations, learning in NSEs is of great importance, and this problem is closely related to

that of detecting concept changes and also of estimating the dynamic distribution associated with a set of data.

Basseville and Nikiforov [4], Chen and Gupta [13], and Sebastian and Gama [61] have provided fairly good and

detailed surveys on the topic of change detection methods. The methods presented in the literature are different

with respect to the type of change they are expected to detect, and the underlying assumptions made about the

streaming data. As mentioned earlier, in general, most algorithms in the data stream mining literature have one or

more of the following modules: a Memory module, an Estimator module, and a Change Detector module [8].

2.2.3 Sliding Window Approaches

Traditionally available methods that cope with non-stationary distributions resort, in one way or the other, to

the so-called sliding window approach, which is a limited-time variant of the well-known Maximum Likelihood

Estimation (MLE) scheme. The latter model is useful for discounting stale data in data stream observations. Data

samples arrive continuously and only the most recent observations are used to compute the current estimates. Any

data occurring outside the current window is forgotten and replaced by the new data. The problem with using

sliding windows is the following: If the time window is too small the corresponding estimates tend to be poor. As

opposed to this, if time window is too large, the estimates prior to the change of the parameter have too much

influence on the new estimates. Moreover, the observations during the entire window width must be maintained

and updated during the process of estimation.

The algorithm, typically, considers a window of size W and divides the data stream into a sequence of data

chunks. At each time step, learning is carried out based only on last W samples that are included in the window.

Sliding window models are designed based on the assumption that the most recent information is more relevant

than the historical data, which is similar to first in-first out data structures. At time tj , when element j arrives,

11



element j −W is forgotten, where W indicates the size of the window [24]. In fact, at every time instant, the

learning model of the data stream is generated using only the W samples resident in the window.

Several sliding window models have been presented in the literature [43, 48]. Kuncheva [43] presented a semi-

parametric log-likelihood change detector based on Kullback-Leibler (KL) statistics. The author applied a log-

likelihood framework that accommodates the KL distance and the Hotelling’s t2 test for equal means in order to

detect changes in streaming multi-dimensional data. An implementation of the fixed cumulative windowing scheme

was proposed by Kifer et al. [35]. The authors here applied two sliding windows in their scheme, the first being

a reference window, which was used as a baseline to detect changes, and the second being a “current window” to

collect samples. They proposed an algorithm based on the Kolmogorov Smirnoff (KS) test statistic using a KS Tree.

The latter specified if the observed samples were generated from the same distribution. The high computational

cost of maintaining a balanced KS tree, is the main problem associated with this approach.

2.2.4 Change Point Detection Schemes

Apart from the sliding window approach, many other methods have been proposed, which deal with the problem

of detecting change points during estimation. In general, there are two major competitive sequential change-point

detection algorithms: Page’s Cumulative Sum (CUSUM) [4] detection procedure, and the Shiryaev-Roberts-Pollak

detection procedure. In [63], Shiryayev used a Bayesian approach to detect changes in the parameter’s distribution,

where the change points were assumed to obey a geometric distribution. CUSUM is motivated by a maximum

likelihood ratio test for the hypothesis that a change has occurred. Both approaches utilize the log-likelihood ratio

for the hypotheses that the change occurred at the point, and that there is no change. Inherent limitations of

CUSUM and the Shiryaev-Roberts-Pollak approaches for on-line implementation are the demanding computational

and memory requirements. In contrast to the CUSUM and the Shiryaev−Roberts−Pollak approaches, our SLWE

avoids the intensive computations of ratios, and does not invoke hypothesis testing.

In earlier works [38, 39, 40], Koychev et al. introduced the concept of Gradual Forgetting (GF). The GF process

relies on assigning weights that decrease over time to the observations. In this sense, the GF approach assigns most

weight to the more recent observations, and a lower weight to the more-distant observations. Hence, the influence

of old observations (on the running estimates) decreases with time. The GF can be an enhancement to the sliding

window paradigm since observations within each sliding window are weighted using a GF function[40] .

2.2.5 Other Miscellaneous Estimation Schemes

As opposed to the above-mentioned papers, in the last decades, a wide range of techniques for estimation in

dynamically changing environments have appeared. We provide here a brief overview of representative on-line

approaches particularly relevant to the family of techniques pioneered in the present paper. For a more detailed

and comprehensive treatment, we refer the reader to recent surveys [26, 42], which include approaches based on

adaptive windowing, aging factors, instance selection and instance weighting. Additionally, there is a distinction

between passive approaches, which intrinsically adapt to changes, and active approaches that search for changes.

With regard to categorizing these approaches, they differ in terms of their memory management and forgetting

mechanisms [26]. A memory management module aims to control the data points that are to be kept in memory

for learning. As opposed to this, forgetting refers to the task of erasing previously-learned information. One data

management strategy, referred to as “instance selection”, is based on storing instances relevant to the current
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situation. Here, the simplest approach is to only keep a single data point in memory, with the task of forgetting

being modeled by the gradual dilution of its relevance through adaptation of the model’s parameters [20]. Such

a strategy can be expanded to store multiple data points, using a window of fixed size. The data points in the

window are used to establish the current estimate, and at each time step, the oldest data point is replaced with the

newest one, using a First-In First-Out (FIFO) policy. Slow changes are best captured by a larger window, while

rapid changes require a correspondingly smaller window. To address this conflict, an alternative scheme involves

variable-sized sliding windows, referred to as adaptive windowing [69]. In brief, the overall strategy is to allow the

window size to grow over time, and to use a dedicated change detector to reset the window size when a change

is detected, resulting in windows with an adaptive size. More advanced approaches carefully pick out prototypes,

representing the concept being tracked [12], thus handling concept drift by replacing the prototypes themselves to

reflect changes.

Another strategy, which avoids windowing, involves using aging factors. In this approach, while training data

spans all of the data points, each data point is assigned a weight that reflects its importance. Recent data points

are prioritized, for instance using a fading factor that gradually reduces the influence of older data points [15].

The decay can be linear [38] or exponential [37]. By using weights combined with instance selection, referred to as

instance weighting, one can take advantage of the ability of SVMs to process weighted instances [37].

As mentioned above, most of the above approaches are passive in the sense that they gradually adjust to changes,

without explicitly pinpointing them. In contrast, another class of approaches actively searches for changes using

change detectors. One solution is to maintain an ensemble of estimators, combined using voting, such as the dynamic

integration of classifiers found in [68]. The impact of each estimator is based on assessing them on recent data,

prioritizing the one that produces the least error, where the change of priority indicates an underlying change in the

distribution of data points. One can also monitor estimation error using various mechanisms, or the raw data itself.

Changes in estimation error signal a change in the distribution of data points, triggering re-estimation [58]. In all

brevity, changes are detected based on comparing sections of data, using statistical analysis to detect distributional

changes, i.e., abrupt or gradual changes in the mean of the data points when compared with a baseline mean with

a random noise component. One option is also to keep a reference window and to compare recent windows with

the reference window to detect changes [21]. This can, for example, be done based on comparing the probability

distributions of the reference window and the recent window using the KL divergence [16, 60].

For a more comprehensive survey on classification of data streams under concept drift we refer the reader to the

following two recent surveys [2, 23]. We will not go into any more details here in the interest of brevity. However,

using a completely different tool-set, Oommen and Rueda [52] presented a strategy by which the parameters of a

binomial/multinomial distribution can be estimated when the underlying distribution is non-stationary, which is

the core of this research endeavor. This scheme is explained in the next subsection.

2.3 Stochastic Learning Weak Estimator (SLWE)

The method proposed by Oommen and Rueda [52] has been referred to as the Stochastic Learning Weak Estimator

(SLWE), and is based on the principles of continuous stochastic Learning Automata (LA)6.

Since the SLWE has been earlier used for two-class uni-dimensional pattern classification problems, the aim of

this section is:

6This will be the focus of this paper, and we elaborate on this in greater detail later.
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1. To demonstrate that the SLWE is a powerful tool for multi-dimensional classification problems operating in

NSEs;

2. To demonstrate that the SLWE is very effective for uni-dimensional and multi-dimensional domains when the

number of classes is greater than two;

3. To, most importantly, show the power of the SLWE within the context of the paradigm that we are currently

investigating, namely, the one in which the testing patterns can subsequently be considered as training pat-

terns, once their true class identities are known. More precisely, the model operates with the understanding

that the correct classes of previously-classified patterns become available at subsequent time instances (after

some time has lapsed), requiring us to update the training set and the training model.

Most of the data stream mining approaches have an estimator module in order to keep the statistics of the data

distribution in NSEs updated. However, it can be argued that using “strong” estimators such as the MLE and the

Bayesian estimators that converge with probability of 1 are inefficient for dynamic NSEs. In NSEs, it is essential to

use estimator schemes which can adapt to the model promptly according to the new observations. In other words,

effective methods for estimation in NSEs are those which are able to quickly unlearn what they have learned.

Using the principles of stochastic learning, Oommen and Reuda [52] proposed a strategy to solve the problem

of estimating the parameters of a binomial or multinomial distribution efficiently in NSEs. This method is referred

to as the SLWE, where the convergence of the estimate is “weak”, i.e., with respect to the first and second

moments. Unlike the traditional MLE and the Bayesian estimators, which demonstrate strong convergence, the

SLWE converges fairly quickly to the true value, and it is able to just as quickly “unlearn” the learning model

trained from the historical data in order to adapt to the new data.

The SLWE is an estimator method that estimates the parameters of a binomial/multinomial distribution when

the underlying distribution is non-stationary. In NSEs, the SLWE updates the estimate of the distribution’s proba-

bilities at each time-instant based on the new observations. The updating, however, is achieved by a multiplicative

rule. To formally introduce the SLWE, let X be a random variable of a multinomial7 distribution, which can take

the values from the set {‘1’, . . . , ‘r’} with the probability of S, where S = [s1, . . . , sr]
T and

∑r

i=1
si = 1. In the

other words: X = ‘i’ with probability si.

Consider x(n) as a concrete realization of X at time ‘n’. In order to estimate the vector S, the SLWE maintains

a running estimate P (n) = [p1(n), p2(n), . . . , pr(n)]
T of vector S, where pi(n) is the estimation of si at time ‘n’, for

i = 1, . . . , r. The value of pi(n) is updated with respect to the coming data at each time instance, where Eqs. (3)

and (4) show the updating rules:

pi(n+ 1) ← pi + (1− λ)
∑

j 6=i

pj when x(n) = i (3)

← λpi when x(n) 6= i. (4)

Similar to the binomial case, the authors of [52] explicitly derived the dependence of E [P (n+ 1)] on E [P (n)],

demonstrating the ergodic nature of the Markov matrix. The paper8 also derived two explicit results concerning

7The case of estimating binomial distributions is a particular case of multinomial distributions where r = 2.
8In the interest of brevity, the proofs of the theorems were omitted in the initial submission. However, they have now been included

to satisfy the request of one anonymous Referee. We believe that their inclusion improves the quality of this version, and we are grateful
for the Referee’s suggestion.
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the convergence of the expected vector P (.) to S, and the rate of convergence based on the learning parameter, λ.

Theorem 1. Consider P (n), the estimate of the multinomial distribution S at time ‘n’, which is obtained by Eqs.

(3) and (4). Then, E [P (∞)] = S.

Proof. Equations (3) and (4) can be rewritten as follow:

pi(n+ 1) ← pi + (1− λ)(1 − pi) w.p. si (5)

← λpi w.p.
∑

j 6=i

sj . (6)

Therefore, the expected value of P at time ‘n+ 1’ given the estimated probabilities at time ‘n’, P , is:

E [pi(n+ 1)|P ] = pisi + (1− λ− pi + λpi)si + λpi(1− si) (7)

= pisi + si − λsi − pisi + λpisi + λpi − λpisi (8)

= (1 − λ)si + λpi . (9)

Taking expectations a second time leads to:

E[pi(n+ 1)] = (1− λ)si + λE[pi(n)] . (10)

Both E [pi(n+ 1)] and E [pi(n)] converge to E [pi(∞)] as n→∞, and hence it can be concluded that:

E[pi(∞)](1− λ) = (1− λ)si (11)

⇒ E[pi(∞)] = si . (12)

This procedure can be repeated for every component pi of P , which proves the first claim.

Theorem 2. Consider P (n), the estimate of the multinomial distribution S at time ‘n’, which is obtained by

Eqs. (3) and (4). The expected value of P at time ‘n+ 1’ is related to the expectation of P (n) as E [P (n+ 1)] =

MTE [P (n)], where M is a Markov matrix. Further, every off-diagonal term of the stochastic matrix, M, has the

same multiplicative factor, (1− λ), and the final solution of this vector difference equation is independent of λ.

Proof. According to Equation (9), the conditional expected probability, E [p1(n+ 1)|P ] can be written as:

E [p1(n+ 1)|P ] = (1− λ)s1

r
∑

j=1

pj + λp1 . (13)

Generally, for i = 1, . . . , r the conditional expectations of pi(n+ 1), is as follows:

E [pi(n+ 1)|P ] = (1 − λ)si

r
∑

j=1

pj + λpi . (14)

By organizing the terms of Equation (14) in a vectorial manner for all i = 1, . . . , r, it can be concluded that
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E [P (n+ 1)] = MTE [P (n)], where the stochastic matrix, M, is:

M =















(1− λ)s1 + λ (1− λ)s2 · · · (1 − λ)sr

(1− λ)s1 (1− λ)s2 + λ · · · (1 − λ)sr
...

...
. . .

...

(1− λ)s1 (1− λ)s2 · · · (1 − λ)sr + λ















. (15)

By solving the following vectorial difference equation and considering the limit as n tends to infinity, the limiting

solution for E [P (n)] is obtained.

E [P (∞)] = MTE [P (∞)] . (16)

The Equation (15) can be rewritten as follows:

M = (1− λ) [S|S| · · · |S]
T
+ λI , (17)

which shows that every element of (M − λI) has a common multiplicative factor of (1 − λ) (as does every

off-diagonal element of M itself). M Matrix in Equation (16) is replaced by the result of Equation (17) as follows:

E [P (∞)] = (1− λ) [S|S| · · · |S]
T
E [P (∞)] + λIE [P (∞)] . (18)

Simplifying the above equation leads to the result that:

E [P (∞)] = S , (19)

which can be verified for all i = 1, . . . , r as follows:

E [pi(∞)] = (1− λ)si

r
∑

j=1

E [pj(∞)] + λE [pi(∞)] (20)

= (1− λ)si + λE [pi(∞)] (21)

⇒ E [pi(∞)] (1 − λ) = (1− λ)si , (22)

indicating that E [pi(∞)] = si, and proving the theorem.

Theorem 3. Consider P (n), the estimate of the multinomial distribution S at time ‘n’, which is obtained by Eqs.

(3) and (4). Then, all the non-unity eigenvalues of M are exactly λ, and therefore the convergence rate of P is fully

determined by λ.

Proof. The rate of convergence of the vector difference equation was analyzed by finding the eigenvalues of M,

namely ξ1, ξ2, . . . , ξr. M can be decomposed as follows:

M = ΦΛΦ−1 , (23)
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contains the eigenvectors of M and Λ = diag(1, λ, λ, . . . , λ), which includes the eigenvalues of M. Thus, ξ1 = 1,

and ξi = λ for i = 2, . . . , r. Considering the fact that the second largest eigenvalue determines the rate of convergence

of the matrix defining the vector difference equation, it can be concluded the second claim is true since λ is an

eigenvalue of multiplicity r − 1. Therefore, a small value of λ leads to fast convergence and a large variance and a

large value of λ leads to slow convergence and a small variance.

Theoretically, since the derived results are asymptotic, they are valid only as n → ∞. However9, in practice,

by choosing λ from the interval [0.9, 0.99], the convergence happens after a relatively small value of ‘n’. Indeed, if

λ is as “small” as 0.9, the variation from the asymptotic value will be in the order of 10−50 after 50 iterations. In

other words, the SLWE will provide good results even if the distribution parameters change after 50 steps. The

experimental results in [52] demonstrated a good performance achieved by using the SLWE in dynamic environments.

We conclude this section by briefly citing some more recent extensions to the SLWE. Yazidi et al. [70] resorted

to discretizing the probability space [1, 44, 50, 66], and performing a controlled random walk on this discretized

space. It is well known in the field of LA that discretized schemes10 achieve faster convergence speed than their

continuous counterparts [1, 49]. By virtue of discretization, the estimator proposed in [70] realizes fast adjustments

of the running estimates by performing “jumps”, and it is thus able to robustly and quickly track changes in the

parameters of the environment’s distribution. Adapting the discretized estimator proposed in [70] for the current

research problem, is still open.

We shall now explain how we can apply the SLWE for the online classification of data streams based on our

new model of computation.

3 Online Classification Using the SLWE

In traditional ML learning and particularly supervised learning, the training phase is performed in an offline

manner, i.e., the training set is used to learn the stochastic properties of each class. Subsequently, the learned

model is deployed and used to classify unlabeled data instances that appeared in the form of data streams.

In many real life applications, it is not possible to analyze the stochastic model of the classes in an offline

manner because of their dynamic natures. In fact, offline classifiers assume that the entire set of training samples

can be accessed. However, in many real life applications, the entire training set is not available either because it

arrives gradually or because it is not feasible to store it so as to infer the model of each class. Consequently, one is

forced to constantly make the classifier update the learning model using the newly-arriving training samples.

9In the field of LA, the rate of convergence and accuracy of the schemes are determined by the learning parameter, which in this
case is λ. For the family of Absolutely Expedient schemes like the LRI , the accuracy increases as the parameter, λ, increases. The
speed of convergence simultaneously decreases with λ. In most real-life applications, the value of λ is set to be between 0.9 and 0.99.

10Historically, the concept of discretizing the probability space was pioneered by Thathachar and Oommen in their study on Reward-
Inaction LA [66]. Since then, it has catalyzed significant research in the design of discretized LA [1, 27, 28, 44, 50].
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We present a novel online classifier scheme, that is able to update the learned model using a single instance

at a time. Our goal is to predict the source of the arriving instances as accurately as possible, with the added

complexity that the testing patterns can subsequently be considered as training patterns. To achieve this, we

first define the general structure of the Online classifier, and then provide some experimental results on synthetic

two-class binomial and multinomial datasets in the next section.

Online classifiers deal with data streams, in which the labeled and unlabeled samples are mixed. Therefore, the

training, testing and deploying phases of the online classifiers are interleaved as they are applied to these types of

data streams. This fascinating avenue is our domain, and we have investigated the performance of SLWE-based

classifiers to this new scheme.

Devising a classifier that deals with the data streams generated from non-stationary sources poses new chal-

lenges, since the probability distribution of each class might change even as new instances arrive. An important

characteristic of our model for online learning is that the actual source of the data is discovered shortly after the

prediction is made, which can then be used to update the learned model. In other words, our online algorithm

includes three steps, which are described in Algorithm 1. First, the algorithm receives a data element. Using it and

the currently-learned model, the classifier predicts the source of that element. Finally, the algorithm receives the

true class of the data, which is then used to update and refine the classification model.

In order to perform the online classification of the instances, we need to obtain the a posteriori probability of

each class. Analogous to the previous classification models, we assign a label to the new unlabeled data element

by comparing the obtained a posteriori probabilities and the estimated probability from the unlabeled test stream.

Finally, after receiving the true label of the instance, the a posteriori probabilities are updated using the algorithm

explained in Eqs. (3) and (4).

In this classification model the training phase and the testing phase are performed simultaneously, and so the

problem can be described as follows. We are given the stream of unlabeled samples generated from different sources

arriving in the form of a (Periodically Switching Environment) PSE, in which, after every T time instances, the data

distribution and the source of the data might change. In this case, in addition to the switching of the source of the

data elements, the probability distribution of each source also possibly changes at random time instances. The aim

of the classification is to predict the source of the elements arriving at each time step by using the information in

the detected data distribution, and also the information of current model of each class. In the online classification

model, shortly after the prediction is made, the actual class label of the instance is discovered, which can be utilized

to update the classification model to be used by the SLWE updating algorithm.

The process is formalized in Algorithm 1. The notation that we use requires some explanation. Consider Eqs.

(3) and (4), in which pi(n) represents the probability of x = i at time ‘n’. Since we are now dealing with the vector

of features representing the multinomial variable, the same quantity, pi(n), represents the probability of dimension

’i’ in Algorithm 1. When we now consider the stream of observations, we should introduce a third “degree of

freedom”, i.e., the time instant when the observation arrives. However, by introducing this degree of freedom for

an unending, possibly infinite, sequence, we will unnecessarily confuse matters. This is because the time instant at

which the observation arrives is not crucial. Rather, what is crucial, is the testing sample whose identity is known

after a certain time delay, as per this model of computation. Thus, we have referred to the next incoming sample

by the generic symbol, x, as it leads to no additional confusion.

The metric that we have used for comparing dissimilarity is the Kullback-Leibler (KL) divergence, where if
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U = [u1, . . . , ud]
T , and V = [v1, . . . , vd]

T , the KL divergence is:

KL(U ||V ) =
∑

i

ui log2
ui

vi
. (25)

Algorithm 1 Online Classification Algorithm

1: X ← data stream for classification
2: Ŝ ← initialize a priori probabilities for each class
3: while there exists an instance x ∈ X do

Step 1. Receiving data:
4: The model receives the unlabeled sample
5: for all dimensions d of x do
6: pi(n)← Estimate the probability pi using the SLWE’s equations, Eqs. (3) and (4)
7: end for

Step 2. Prediction:
8: P (n)← {p1(n), p2(n), . . . , pd(n)}
9: ω̂ ← argi minKL(Ŝi||P (n))

Step 3. Updating the model:
10: After some delay, td, the true category of the instance x is received
11: ω ← true class of x
12: Update posterior probabilities Ŝ using ω and the SLWE’s equations, Eqs. (3) and (4)
13: end while

4 Experimental Results

In this section, we present the results of this classifier on synthetic data. To assess the efficiency of the SLWE-

based online classifier, we applied it for two-dimensional and multi-dimensional binomial and multinomial randomly

generated data streams. The rigorous empirical analysis was done for two classes and multiple classes. Our results

demonstrate the applicability of our method on synthetic datasets, and proves the advantages of the introduced

scheme for both binomial and multinomial non-stationary distributions. We also classified and compared the data

streams’ elements by following the traditional MLE with a sliding window, whose size is also selected randomly.

4.1 Binomial Data Stream

In the case of synthetic d-dimensional binomial data with two different non-stationary categories, the classification

problem was defined as follows. We are given a stream of bit vectors that were drawn from two different periodically

switching sources (classes), say, S1 and S2.

In order to perform the online classification, we assumed that we were provided with a small amount of labeled

instances before the arrival of the data stream, which was used to obtain the a posteriori probability vector of ‘0’

for each class, say, Ŝ11 and Ŝ12. To perform the class labeling of the newly-arriving unlabeled element, the SLWE

estimated the probability of ‘0’, which we refer to as P1(n). This probability allowed us to predict the source that

the new instance belonged to. The probability vector that had the minimum distance to the estimated probability

vector of ‘0’, was chosen as the label of the observed element. The probability distances between the learned SLWE

probabilities, P1(n), and the SLWE estimation during training, Ŝ11 and Ŝ12, were computed using the KL measure.
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Thus, based on the SLWE classifier, the nth element read from the test set was assigned to class Sj , where

j = argiminKL(Ŝ1i||P1(n)), (26)

where the KL divergence is given in Eq. (25).

Thus, based on the SLWE classifier, the nth element read from the test set was assigned to the class, which had

the minimum distance to the estimated probability, P1(n). After some delay, td, at time n + td, we assume that

have received the true category of the nth instance, which was then used to update the corresponding probability

learned in the training phase. The true class label for the nth instance was read and added to the previously-trained

model by updating the probabilities of the corresponding class, based on the updating algorithm in Eqs. (3) and

(4). For example, Fig. 1 demonstrates a sample of an individual one-dimensional non-stationary class with four

concept drift points. As can be seen, the probability of ‘0’, Ŝ11, was estimated using training samples arriving with

delay of td = 10, by both the SLWE and the MLEW methods. For the SLWE, the value of λ was set to be 0.9, and

the size of the window for MLEW was 80. It is evident that the SLWE was superior in tracking the probability to

the MLEW method, and that it adjusted the corresponding probability at the concept drift points more quickly,

which led to a better classification performance.

Figure 1: Plot of the averages for the estimates of s11, obtained from the SLWE and MLEW at time n, using the
available training samples that arrived with the delay of td = 10. The stochastic properties of each class switched
four times at randomly selected times.

Since our aim here is to confirm the efficiency of the SLWE-based classifier for binomial datasets, which were

generated from two non-stationary sources, the classification problem was tested extensively for numerous distri-

butions, but only a subset of the final results are cited here. To carry out the experiments, various datasets were

generated. However, in order to generate non-stationary classes, the probabilities were changed several times ran-

domly. It should be noted that in each period of length T , the probability of each class was consistent, and the

concept drift could only occur at the end of the specified periods. For the experiments we report, we investigated

datasets that were generated for 40 periods with different periodicities from only two different binomial sources, in
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which the probabilities of the distributions of each source changed at several randomly-selected switching points.

Fig. 2 displays an example of the probability of ‘0’ generated from the above mentioned sources, where, T = 100,

and the concept drift occurred at time instances of 600 and 2,200.

Figure 2: An example of the true underlying probability of ‘0’, S1, for a one-dimensional binary data stream.
The data was generated using two different sources in which the period of switching was 100, and the stochastic
properties of the classes switched two times.

In the first set of experiments we considered a scenario, in which a one-dimensional dataset was generated from

two different binomial sources and the probabilities of the underlying distributions of the classes changed four times.

We tested and trained the classifiers in the periodic environment in which the period of switching, T , was either

fixed or chosen randomly. We performed the experiment on different test sets with various known periods (although

this was unknown to the classifiers), T = 50, 100, . . . , 500, and for each value of T , 100 experiments were done and

the average value of the accuracies was reported as the result. For the MLEW, the window size W was computed

as the nearest integer of a randomly generated value obtained from a uniform distribution U [T
2
, 3T

2
], and the last

observed W labeled elements were used to train the MLE model at each time instance.

For the particular results which we report here, the specific values of S11 and S12 for the one-dimensional

dataset were randomly set to be 0.4735 and 0.1221 respectively, which switched five times to the random values of

{0.8664, 0.4981, 0.6635, 0.3153} and {0.3374, 0.1397, 0.8494 , 0.4523}, respectively. The concept drift times were

set randomly, and were assumed to be unknown to the classifiers. The results obtained are provided in Table 1, from

which we see that the SLWE-based classifier was able to detect the concept drift and adapt the learning model to

new elements uniformly better than the MLEW. For example, when T = 200, the MLE-based classification resulted

in the accuracy of 0.7667, while the SLWE-based classification performed significantly better with the accuracy of

0.8695. From the last row in the table, we observe that the results of the classification in periodic environments with

a varying T chosen randomly from [50, 150] were also similar to the fixed T = 100 case, as the classifier achieved the

accuracy of 0.8551 and 0.8532 in the first and second environments, respectively, while the corresponding accuracies

of the MLEW were only 0.7633 and 0.7648 respectively. One observes the absolute superiority of the SLWE-based

classifier.

We repeated the above procedure on different 2-class binomial datasets with different dimensionalities. These

sets were generated randomly based on random vectors with different random distribution probabilities involving 2,

3 and 4 dimensions. The results obtained are shown in Tables 2-4, and as can be seen, the advantage of the SLWE
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T MLEW SLWE

50 0.7231 0.8125

100 0.7648 0.8532

150 0.7624 0.8556

200 0.7667 0.8695

250 0.7616 0.8834

300 0.7646 0.8731

350 0.7589 0.8667

400 0.7532 0.8810

450 0.7689 0.8765

500 0.7691 0.8673

Random T ∈ (50, 150) 0.7633 0.8551

Table 1: The ensemble results for 100 simulations obtained from testing binomial classifiers which used the SLWE
(with λ = 0.9) and the MLEW for classifying one-dimensional data streams generated by two non-stationary
different sources. The reader should observe the absolute superiority of the SLWE-based classifier.

Figure 3: Plot of the accuracies of the MLEW and the SLWE binomial classifiers on a one-dimensional dataset
generated from two non-stationary sources with different switching periods, as described in Table 1.

over the MLEW is consistent. For example, when T = 250, the MLEW achieved the accuracy of 0.7616, while the

SLWE resulted in the accuracy of 0.8834. Similarly for the 2-dimensional data, the MLE-based classifier resulted

in the accuracy of 0.7544 and the SLWE achieved significantly better results with the accuracy of 0.9705.

In the final set of experiments, we performed a detailed analysis of the SLWE-based online classifier relative to

the dimension of the datasets, and analyzed the performance of the SLWE-based classifier on datasets with different

dimensions. The classification procedure explained above was repeated 10 times over different datasets with fixed

dimensions, and the ensemble average of the accuracies was obtained over these datasets. In each experiment, the

classifiers were tested on a periodic environment and stochastic property of each class was changed four times. For

each value of T , an ensemble of 100 experiments was performed. The obtained results are shown in Figures 7 and

8. It is evident that for the same switching period, when the dimensionality of the dataset is higher, the classifiers

can process the data more efficiently. For example, in the case of T = 150 the SLWE-based classifier resulted in

the average accuracy of 0.8094 over several different one-dimensional datasets, while with more useful information

in 4-dimensional datasets, it yielded better results with the accuracy of 0.9519.
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T MLEW SLWE

50 0.7314 0.9083

100 0.7657 0.9473

150 0.7475 0.9606

200 0.7676 0.9666

250 0.7544 0.9705

300 0.7526 0.9729

350 0.7620 0.9744

400 0.7595 0.9753

450 0.7547 0.9780

500 0.7551 0.9788

Random T ∈ (50, 150) 0.7534 0.9523

Table 2: The ensemble results for 100 simulations obtained from testing binomial classifiers which used the SLWE
(with λ = 0.9) and the MLEW for classifying 2-dimensional data streams generated by two non-stationary different
sources.

T MLEW SLWE

50 0.7182 0.8798

100 0.7469 0.9237

150 0.7416 0.9400

200 0.7652 0.9495

250 0.7512 0.9494

300 0.7450 0.9537

350 0.7476 0.9580

400 0.7597 0.9581

450 0.7555 0.9611

500 0.7551 0.9612

Random T ∈ (50, 150) 0.7504 0.9267

Table 3: The ensemble results for 100 simulations obtained from testing binomial classifiers which used the SLWE
(with λ = 0.9) and the MLEW for classifying 3-dimensional data streams generated by two non-stationary different
sources.

T MLEW SLWE

50 0.7145 0.8667

100 0.7496 0.9236

150 0.7491 0.9426

200 0.7671 0.9522

250 0.7544 0.9589

300 0.7574 0.9597

350 0.7515 0.9629

400 0.7506 0.9651

450 0.7557 0.9670

500 0.7498 0.9705

Random T ∈ (50, 150) 0.7512 0.9357

Table 4: The ensemble results for 100 simulations obtained from testing binomial classifiers which used the SLWE
(with λ = 0.9) and the MLEW for classifying 4-dimensional data streams generated by two non-stationary different
sources.
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Figure 4: Plot of the accuracies of the MLEW and the SLWE binomial classifiers on a 2-dimensional dataset
generated from two non-stationary sources with different switching periods, as described in Table 2.

Figure 5: Plot of the accuracies of the MLEW and the SLWE binomial classifiers on a 3-dimensional dataset
generated from two non-stationary sources with different switching periods, as described in Table 3.

d 50 100 150 200 250 300 350 400 450 500

1 0.7673 0.7972 0.8094 0.8152 0.8190 0.8235 0.8217 0.8265 0.8246 0.8233

2 0.8290 0.8723 0.8851 0.8951 0.9009 0.9031 0.9055 0.9055 0.9051 0.9058

3 0.8433 0.8883 0.9006 0.9087 0.9121 0.9176 0.9197 0.9216 0.9198 0.9205

4 0.8871 0.9343 0.9519 0.9596 0.9643 0.9671 0.9700 0.9716 0.9733 0.9742

Table 5: The results obtained from testing classifiers which used the SLWE for different binomial datasets with
different dimensions, d, which were generated with a fixed switching period of T = 50, 100, . . . , 500, and the
stochastic properties of each class switched to different values at four random time instances.

4.2 Multinomial Data Stream

In this section, we report the results for simulations performed for multinomial data streams with two different

non-stationary categories. The multinomial classification problem is a generalization of the binomial case introduced

earlier. Here, the classification problem was defined as follows. We are given a stream of unlabeled multinomially

distributed random d-dimensional vectors, which take on the values from the set {1, . . . , r}, and which are generated
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Figure 6: Plot of the accuracies of the MLEW and the SLWE binomial classifiers on a 4-dimensional dataset
generated from two non-stationary sources with different switching periods, as described in Table 4.

Figure 7: Plot of the accuracies of the SLWE classifier for different binomial datasets with different dimensions, d,
over different values of the switching periodicity, T . The numerical results of the experiments are shown in Table 5.

from two different periodically switching sources (classes), say, S1 and S2. Each class was characterized with

probability values, Si1, Si2, which demonstrate the probability of the value ‘i’, where i ∈ {1, . . . , r}. In this case,

similar to the binomial case, the probabilities of the distributions of each class could possibly change with time as

the data stream continued to appear.

Analogues to the binomial case, the multinomial data stream classification started with the estimation of the

a priori probability of each possible value of ‘i’, in all the ‘d’ dimensions, for each class ‘j’ from the available

labeled instances, which we refer to as Ŝij . To assign a label to the newly arriving unlabeled element, the SLWE

estimated the probabilities of each possible value ‘i’, in all the ‘d’ dimensions, from the unlabeled instances, which

we refer to as Pi(n). Thereafter, these probabilities were used to predict the class label that a new instance

belonged to class ‘j’, with the probability vector of the Ŝj = {Ŝ1j, Ŝ2j , . . . , Ŝr}, that had the minimum distance to

the estimated probability of P = {P1(n), P2(n), . . . , Pr(n)}, was chosen as the label of the observed element. The

distances between the learned SLWE probabilities, Pi(n), and the SLWE estimation during training, Ŝij were again

computed using the KL divergence measure, using Eq. (25).
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Figure 8: Plot of the accuracies of the SLWE classifier for different binomial datasets involved data from two non-
stationary classes. Each dataset was generated with a different switching period, T , and a different dimensionality,
d. The numerical results of the experiments are shown in Table 5.

Thereafter, after some delay, td, at time n + td the algorithm received the true class of the nth instance and

used it to refine and update the true class probabilities. The true value of the category for the nth instance was

read and added to the previously trained model by updating the probability of the corresponding class based on

the updating algorithm in Eqs. (3) and (4).

The classification procedure explained above was performed on multinomial data streams generated from two

different classes where the probability of the distributions of each class switched four times. For the results which

we report, each element of the data stream could take any of the four different values11, namely 1, 2, 3 or 4. The

specific values of Si1 and Si2, were changed and set to random values four times at random time instances, which

were assumed to be unknown to the classifiers. The results are shown in Table 6, and again, the uniform superiority

of the SLWE over the MLEW is noticeable. For example, when T=100, the MLEW-based classifier yielded an

accuracy of only 0.7443, but the corresponding accuracy of the SLWE-based classifier was 0.8012. We also notice

that the results of the classification in periodic environments with a varying T chosen randomly from [50, 150] were

also similar to the fixed T = 100 case, as the classifier achieved the accuracy of 0.8092 and 0.8012 in the first and

second environments, respectively. The results also show that the SLWE-based algorithm handles the concept drift

and provides a comparatively remarkable performance considering the problem at hand.

The experiment explained above was repeated on different 2-class multinomial datasets with different dimension-

alities. These sets were generated randomly based on random vectors with different random distribution probabilities

involving 2, 3 and 4 dimensions and each element could take on four different values. The results obtained are shown

in Tables 7-9, from which we see that classification using the SLWE was uniformly superior to classification using the

MLEW. For example, for the 2-dimensional data, when T = 250, the MLE-based classifier resulted in the accuracy

of 0.7544 and the SLWE achieved significantly better results with the accuracy of 0.9706 – which by al metrics is

remarkable. Here the accuracy of the classifier, similar to the binomial case, increased with the dimensionality of

the datasets as the classifiers could process the data more efficiently. Thus, in the case of T = 150 the SLWE-based

online classifier resulted in the average accuracy of 0.9181 over several different two-dimensional datasets, while

with more useful information in 4-dimensional datasets, it yielded better results with the accuracy of 0.9569.

11The experiments were done for numerous other settings. We present here a subset of the results in the interest of space and brevity.

26



T MLEW SLWE

50 0.6786 0.7582

100 0.7443 0.8012

150 0.7476 0.8153

200 0.7595 0.8197

250 0.7514 0.8282

300 0.7509 0.8367

350 0.7587 0.8322

400 0.7598 0.8354

450 0.7635 0.8344

500 0.7574 0.8387

Random T ∈ (50, 150) 0.7523 0.8092

Table 6: The ensemble results for 100 simulations obtained from testing multinomial classifiers which used the
SLWE (with λ = 0.9) and the MLEW for classifying one-dimensional data streams generated by two non-stationary
different sources.

T MLEW SLWE

50 0.6913 0.8560

100 0.7402 0.9082

150 0.7463 0.9333

200 0.7480 0.9393

250 0.7478 0.9430

300 0.7397 0.9474

350 0.7486 0.9463

400 0.7525 0.9535

450 0.7554 0.9505

500 0.7518 0.9559

Random T ∈ (50, 150) 0.7436 0.9241

Table 7: The ensemble results for 100 simulations obtained from testing multinomial classifiers which used the
SLWE (with λ = 0.9) and the MLEW for classifying 2-dimensional data streams generated by two non-stationary
different sources.

T MLEW SLWE

50 0.6912 0.8798

100 0.7422 0.9384

150 0.7596 0.9576

200 0.7490 0.9657

250 0.7630 0.9709

300 0.7609 0.9743

350 0.7515 0.9772

400 0.7485 0.9797

450 0.7663 0.9814

500 0.7570 0.9821

Random T ∈ (50, 150) 0.7504 0.9328

Table 8: The ensemble results for 100 simulations obtained from testing multinomial classifiers which used the
SLWE (with λ = 0.9) and the MLEW for classifying 3-dimensional data streams generated by two non-stationary
different sources.
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Figure 9: Plot of the accuracies of the MLEW and the SLWE multinomial classifiers on a one-dimensional dataset
generated from two non-stationary sources with different switching periods, as described in Table 6.

Figure 10: Plot of the accuracies of the MLEW and the SLWE multinomial classifiers on a 2-dimensional dataset
generated from two non-stationary sources with different switching periods, as described in Table 7.

5 Real Life Applications

5.1 A Language-based Application

The solution that we have proposed is not only theoretical in nature, as was explained in the introduction. Rather,

as mentioned in the introduction, it is, in actuality, the model that is encountered in most real-life applications,

for example, in medical diagnosis. Besides, this current model presents a hybrid of traditional statistical PR, and

the so-called “Sequential” PR. Our goal, in this section, is to substantiate the general model and the solution

proposed, for real-life applications12. Indeed, we have also utilized it in a real-life language detection domain

involving the languages German and Chinese, where the respective texts were randomly generated by the following

12The Referees of the original version of the paper had requested a section that deals with the real-life applications of our scheme.
Since data for the model of computation introduced in this paper was not readily available, we entered into a sequence of mails with
the two experts in the field, who suggested a method for obtaining data for this model of computation by extracting it from the more
general, readily available, data for NSEs. Their advice made this section possible and so we record our gratitude. Indeed, we are
extremely grateful to the these experts for their advice.
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Figure 11: Plot of the accuracies of the MLEW and the SLWE multinomial classifiers on a 3-dimensional dataset
generated from two non-stationary sources with different switching periods, as described in Table 8.

T MLEW SLWE

50 0.6906 0.8847

100 0.7535 0.9402

150 0.7557 0.9592

200 0.7532 0.9669

250 0.7550 0.9730

300 0.7531 0.9760

350 0.7522 0.9785

400 0.7460 0.9818

450 0.7572 0.9817

500 0.7562 0.9839

Random T ∈ (50, 150) 0.7526 0.9512

Table 9: The ensemble results for 100 simulations obtained from testing multinomial classifiers which used the
SLWE (with λ = 0.9) and the MLEW for classifying 4-dimensional data streams generated by two non-stationary
different sources.

Figure 12: Plot of the accuracies of the MLEW and the SLWE multinomial classifiers on a 4-dimensional dataset
generated from two non-stationary sources with different switching periods, as described in Table 9.
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Figure 13: Plot of the accuracies of the SLWE classifier for different multinomial(r=4) datasets with different
dimensions, d, over different values of the switching periodicity, T . The numerical results of the experiments are
shown in Table 10.

Figure 14: Plot of the accuracies of the SLWE classifier for different multinomial datasets involved data from
two non-stationary classes. Each dataset was generated with a different switching period, T , and a different
dimensionality, d. The numerical results of the experiments are shown in Table 10.

d 50 100 150 200 250 300 350 400 450 500

1 0.8016 0.8432 0.8604 0.8653 0.8699 0.8730 0.8748 0.8778 0.8790 0.8798

2 0.8479 0.8999 0.9181 0.9273 0.9318 0.9357 0.9359 0.9387 0.9397 0.9430

3 0.8770 0.9316 0.9496 0.9574 0.9629 0.9660 0.9692 0.9718 0.9726 0.9737

4 0.8844 0.9387 0.9569 0.9656 0.9707 0.9741 0.9772 0.9788 0.9801 0.9817

Table 10: The results obtained from testing classifiers which used the SLWE for different multinomial datasets
with different dimensions, d, which were generated with a fixed switching period of T = 50, 100, . . . , 500, and the
stochastic properties of each class switched to different values at four random time instances.

tool: http://generator.lorem-ipsum.info/_chinese. A similar real-life experiment was reported in [72].

To render the problem non-trivial, the text from both languages was scrambled in a random manner. The

scrambled text was then transformed into a series of bits where each character in the text corresponded to 8 bits

according to the ASCII code. This series of bits was presented to our algorithm where the aim of the exercise was

to track the occurrence of the bit ‘1’ which served as the recognizing feature to subsequently achieve the language
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classification. We attempted to execute the classication of the corresponding piece of text with a delay of td of 8 bits.

It is worth mentioning that the classification problem is hard in itself because the probability for the occurrence ‘1’

approached 0.5 for both languages, and the difference was almost unobservable.

We ran the experiment for 3T characters, where in the first T block we fed the algorithm with German text.

Then in the next T block we used Chinese, and in the last block we again used German. T thus denotes the period

of change and is a variable that took three values in the experiments reported, namely, 50, 100 and 200.

We compared the accuracy of the MLEW for different values of the window size, W , as depicted in Figure 15,

while the SLWE was executed for different values of the update parameter λ, as illustrated in Figure 16.
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Figure 15: Plot of the classification accuracy of of the MLEW classifier for different values of T and size of the
window, W , for the real-life application.
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Figure 16: Plot of the classification accuracy of the SLWE classifier for different values of T and the update
parameter, λ, for the real-life application.

The most important observation that we can make from this experiment is that the SLWE provided a high

accuracy for λ = 0.99 , which was independent of T . On the other hand, the performance of the MLEW was

dependent on the value of T . Clearly, the SLWE does not suffer from the “parameter tuning” problem associated
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with the MLEW. In fact, the quality of the estimate of the MLEW in a dynamic environment depended entirely

on the window size when it was compared to the value of the switching period, T . This result clearly demonstrates

the superiority of the SLWE for this real-life application domain.

From Figure 15 we see that the highest accuracy was when the window was around half of the switching period,

i.e, w ≈ T/2. Such a window size seemed to yield a good balance between the accuracy and the variance. Further,

the delay was negligible when compared to the switching period.

To detail another case, consider the scenario when the window size W was approximately twice the switching

period, i.e., T ≈ 2w. In this case, the MLEW accuracy seemed to stagnate for all values of T to a quantity around

0.59. The possible qualitative explanation that we infer is that when the classifying samples are arriving from a

certain class, the sliding window gets saturated with approximately equal numbers of samples from both classes,

i.e, around W samples from each class. The presence of this mixture of samples from both classes in the sliding

window deteriorates the computed estimate, and consequently reduces the classification accuracy.

From Figure 15, we observe that the worst performance for the MLEW is when the size of the sliding window

approaches the length of the switching period, T . In fact, in such a scenario, the classification model is being

maintained and updated based on samples from a certain class, while the currently-arriving samples, based on

which the estimate is being computed, are from the opposite class! Such a scenario again clearly depicts the

superiority of the SLWE over the MLEW.

5.2 A Temperature-history Application

To render this section concerning the testing for real-life data more comprehensive, we have attempted to achieve

the testing on another real-life application13.

The data set involved the recorded temperature observations from two cities, and the goal of the exercise was to

use the non-stationary history to achieve the classification, while attempting, at the same time, to stay within this

new model of computation. To obtain the data set, we considered 12, 418 observations of the daily temperature from

January 1, 1982 to January 31, 2016 from two different countries, namely the United Kingdom14, and Singapore

(Changi)15. We again utilized the SLWE and the MLEW as in the previous experiments, and the settings of the

experiments, and the respective results, are explained below.

For the SLWE, the value of λ was set to be 0.9, and the size of the window for the MLEW was 80. In order

to obtain a multinomial stream, we resorted to invoking a uniform-bin histogram. The bins were uniform in the

interval between the minimum and the maximum values in the stream. In our first experiment, we used 30 bins for

the MLEW and the SLWE, and thus, we had features with a dimension of 30, as catalogued in Table 11.

To obtain non-stationary data, we randomly switched the underlying distribution using a switching probability

of ps. Thus, at each time instant, the underlying distribution switched to an alternate distribution a probability

ps. By virtue of the above, we see that the switching instances followed a geometric distribution with a parameter

ps, whence the probability of a switch after k instants was ps(1− ps)
k−1. Since we wanted to test the classification

using this current model, we assumed a delay in knowing the true class identities, and to achieve this, we used the

same delay that was used previously, i.e., td = 10. Since the switches occur at random, and in order to smooth the

13We are grateful to the Anonymous Referees for requesting testing on a second data set. Doing this set of experiments has been a
major undertaking, but it has really improved the quality of the paper. Thank you very much.

14https://www.metoffice.gov.uk/climatechange/science/monitoring/ukcp09/
15http://www.weather.gov.sg/climate-historical-daily
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ps MLEW SLWE

1/500 0.822 0.839

1/1000 0.831 0.857

1/1500 0.838 0.863

1/2000 0.847 0.870

1/2500 0.856 0.879

1/3000 0.861 0.885

1/3500 0.872 0.894

Table 11: The ensemble results obtained for 50 simulations when testing multinomial classifiers for the “Temper-
ature” data set for classifying multi-dimensional data streams generated by two non-stationary different sources.
The classifiers used the SLWE (with λ = 0.9) and the MLEW. The dimension of the data was 30.

ps MLEW SLWE

1/500 0.667 0.683

1/1000 0.672 0.705

1/1500 0.684 0.720

1/2000 0.693 0.737

1/2500 0.701 0.749

1/3000 0.728 0.766

1/3500 0.735 0.777

Table 12: The ensemble results obtained for 50 simulations when testing multinomial classifiers for the “Temper-
ature” data set for classifying multi-dimensional data streams generated by two non-stationary different sources.
The classifiers used the SLWE (with λ = 0.9) and the MLEW. The dimension of the data was 10.

estimates and obtain consistent results, we report the ensemble of 1,000 experiments.

Without belaboring the point (and to avoid repetition) we observe from the results that the SLWE is markedly

superior to the MLEW. For example, when ps = 1

2,500
, the MLEW-based classifier yielded an accuracy of only

85.6%, but the corresponding accuracy of the SLWE-based classifier was as high as 87.9%.

The story would not be complete if we were not able to test the data for different dimensionalities. In typical

real-life data, such a testing would not have been possible, but since we created this data from the real-life data,

we achieved this by changing the number of bins to 10. The results are shown in Table 12, when the dimension

of the data is 10. It is very interesting to note that as we reduced the number of bins, it became increasingly

more difficult to differentiate between the data streams. This actually demonstrates the difference between the

present results and those given in the original paper that proposed the SLWE [52], in which the authors only

worked with uni-dimensional data. Indeed, we observed that there was a drop in the classification accuracy as the

dimensionality was decreased – which can be seen if we compare the results obtained here with those found in Table

11. For example, when ps = 1

500
, we achieved an accuracy for the SLWE when the dimension is 30 of 82.2% while

the accuracy dropped drastically to only 66.7% when the dimension was reduced to 10.

Figure 17 and Figure 18 depict the results of the experiments corresponding to Table 11 and Table 12.

6 Conclusion

In this paper we have considered the problem of classification when the traditional phases of training and testing are

not so clearly well-defined, i.e., where the testing patterns can subsequently be considered as training patterns. This
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Figure 17: The ensemble results obtained for 50 simulations with the dimension of the data 30 corresponding to
Table 11.
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Figure 18: The ensemble results obtained for 50 simulations with the dimension of the data 10 corresponding to
Table 12.
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paradigm of classification is further complicated because we have assumed that the class-conditional distributions of

the classes are time-varying or non-stationary. Here, we consider the scenario when the patterns arrive sequentially

in the form of a data stream with potentially time-varying probabilities that change over time for each class. Our

proposed online classification algorithm was used to perform the training and the testing simultaneously in three

phases. In the first phase, the algorithm received a new unlabeled instance. After this, the scheme assigned a

label to it based on the distributions’ estimated probabilities using the SLWE. Finally, after a few time instances,

the algorithm received the actual class of the instance and used it to update the training model by invoking the

SLWE updating algorithm. In this way the training and testing phases are almost intertwined. Thereafter, the

classification model was adjusted to the new available instances in an online manner.

To test our solution, we performed our proposed online classification on synthetic two-dimensional and multi-

dimensional, binomial and multinomial data streams, which were generated from two non-stationary sources of

data. In our experiments we used weak estimators characterized by the SLWE method to learn the probability

distribution from binomial and multinomial data streams in the NSEs, where the statistical distribution of each class

could possibly change with time as more instances became available. Experimental results for both binomial and

multinomial random variables demonstrated the efficiency of the SLWE-based online classifier as it demonstrated

a far superior classification performance on data streams, and it also handled the concept drifts in NSEs. These

results indicated the uniform superiority of the SLWE-based classifier over the the classification scheme using

a MLE-based sliding window method. Also, from the experiment results we see that when the dimensionality of

datasets was higher the SLWE-based classifier could process the data more efficiently and achieved better a accuracy.

Experiments conducted on two real-life data sets confirmed these assertions.

The effectiveness of the algorithm and the superiority of the SLWE in both of these cases were demonstrated

through extensive experimentation on a variety of datasets. In summary, we list here the conclusions drawn from

the experimental results that we obtained in this paper:

• A main advantage of the incremental SLWE-based classifier is that it does not require any assumption about

how fast or how often the stream changes. As opposed to this, the sliding window MLWE approach needs

some a priori knowledge of the systems behavior, in order to consider the window size.

• For the case of online classification, where the probability of each class could switch “unexpectedly”, exper-

imental results demonstrated the efficiency of the SLWE-based online classifier. These results also indicated

that the SLWE-based incremental classifier was still superior to the classification scheme that used a sliding

window and the MLE method.

• The results also suggested that the classifier’s performance improved with the switching period. Further,

it was evident that the accuracy of classification in a periodic environment with random switching period

was very close to the case involving the data stream with a fixed switching period, which indicates that the

algorithm is efficient no matter how fast or how often the stream would change.

• By examining the results obtained, we can see that when the dimensionality of datasets was higher the SLWE-

based classifier achieved a superior accuracy. On the other hand, datasets generated from larger number of

classes led to a more complex classification problem, and this degraded the performance of the classifier. Both

of these are intuitively appealing conclusions.
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In this paper, for all the experiments conducted for synthetic data, we used the constant value of λ = 0.9 for

the updating parameter of the SLWE. One direction for the future work would be that of adjusting this parameter

depending on the performance of the classifier at each time instance. In fact, when the performance of classification

drops significantly, it can be inferred that a change in the data distribution has occurred. Thereafter, in order to

“unlearn” the model, the updating parameter of the SLWE could possibly be increased.

Finally, another avenue for future work could be the development of similar online classifiers for other distribu-

tions, such as the Gaussian, exponential, gamma, and Poisson. It would thus be interesting to utilize the SLWE

estimator to estimate the characteristics of other distributions such as their mean and variance, and to use the

analogous classifiers for outlier detection and one-class-classification problems.

It is also pertinent to mention that the SLWE has applications in almost all walks of life where one estimates non-

stationary statistics. Indeed, in all such applications, the prior literature also shows that the SLWE is superior to

the MLE. We believe that it has huge potential in many other real-life application domains including the well-known

pH neutralization process.
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Appendix: Table of Abbreviations

Abbreviation Expanded Form

ADWIN Adaptive Sliding Window

CURD Controllable Reactive Jamming Detection

CUSUM Cumulative Sum

CVM Core Vector Machine

DTEL Diversity and Transfer-based Ensemble Learning

FIFO First-In First-Out

FLORA Floating Rough Approximation

GF Gradual Forgetting

KL Kullback-Leibler

KS Kolmogorov Smirnoff

LA Learning Automata

MEB Minimum Enclosing Ball

ML Machine Learning

MLEW Maximum Likelikehood Estimator with Windows

NSE Non-Stationary Environment

OLIN An Online Classification System

PR Pattern Recognition

SLWE Stochastic Learning Weak Estimator

SPC Statistical Process Control

SVM Support Vector Machine

WEFTR Weak-Estimation Fault-Tolerant Routing

Table 13: This table contains the list of abbreviations used in the paper.
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