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A B S T R A C T

External load forces are challenging for sensing or estimating in the hydraulic actuators. Once it is due to
inconvenient instrumentation of the force sensors, especially on an open-end mechanical interface. The other
way, the complex nonlinear system behavior aggravates reconstructing the system states in a robust and real-
time suitable manner. This paper proposes a sensorless estimation of external load forces in standard hydraulic
actuators by using a well-established equivalent output injection of the second-order sliding mode and also
higher-order sliding mode differentiator. Only the basic inertial and frictional parameters are assumed to be
known from an initial identification without external load. Afterwards, the robust exact differentiators are
used in order to reconstruct the system states. Noisy signals of the cylinder chamber pressures and piston
stroke are the single quantities available from the measurement. An experimental case study, accomplished
on the setup of two hydraulic cylinders arranged and operated in antagonistic way, is provided. The force-
cell on the rigid interface between both cylinders is used for reference measurements and evaluation of the
estimation algorithms. Two estimation approaches, one of the 2nd and another of the 4th order, are assessed
in performance and compared to each other along with discussion.

1. Introduction

Hydraulic actuators are generally known to exhibit complex non-
linear behavior that is inherent due to forward and feedback couplings
of the corresponding electro-magnetic, hydraulic, and mechanic sub-
systems, see e.g. basic literature (Jelali & Kroll, 2012; Merritt, 1967).
While the time response, correspondingly transient dynamics, of hy-
draulic actuators can be seen as relatively slow, comparing for instance
with pneumatic cylinders, electric motors, and linear drives, a lineariza-
tion of hydraulic systems and order reduction of the whole dynamics
yield challenges for analysis and control design. Besides, the large-scale
machines actuated by hydraulic cylinders are also known to operate
frequently with the heavy payloads and within harsh, to say ‘non-clean’,
and predominantly outdoor environments. Throughout almost all of
them require at least semi-automatic control, the application examples
are numerous like excavators (Ha, Nguyen, Rye, & Durrant-Whyte,
2000; Haga, Hiroshi, & Fujishima, 2001), forestry machines (Mattila,
Koivumäki, Caldwell, & Semini, 2017; Ortiz Morales et al., 2014),
various-type hydraulic presses (Komsta, van Oijen, & Antoszkiewicz,
2013; Osakada, Mori, Altan, & Groche, 2011), maritime cranes (Küch-
ler, Mahl, Neupert, Schneider, & Sawodny, 2011; Rokseth, Skjong, &
Pedersen, 2016), and others. As consequences emanating from the envi-
ronment like temperature, dust, humidity, wear and varying payloads,
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equally as disturbance loads, the hydraulic actuators are generally
subject to large uncertainties and perturbations during operation.

In view of the said above, the control and especially robust control
of hydraulic actuators have been and yet remain an active research
area, see for instance several former works (Bonchis, Corke, Rye,
& Ha, 2001; Plummer & Vaughan, 1996; Yao, Bu, Reedy, & Chiu,
2000) and more recent studies (Koch & Reichhartinger, 2016; Ped-
ersen & Andersen, 2018; Won, Kim, & Tomizuka, 2017). Apart from
a suitable methodology for the robust control design and decision
about underlying control system architecture, it is the limited ac-
cess to internal system states and unknown load forces (or torques)
that poses several challenges on a controlled operation of hydraulic
actuators. For instance, a robust estimation (Ruderman & Fridman,
2018; Vázquez, Aranovskiy, Freidovich, & Fridman, 2016) of the pis-
ton velocity has to be performed, mostly based the low-resolution
and noise-corrupted stroke measurements. Over and above that, a
force-controlled operation of hydraulically actuated cylinders generally
suffers under unknown load forces, see e.g. in Alleyne and Liu (2000),
especially in the endpoint force applications (Lawrence et al., 1997).
Several related simulation and experimental studies can be found in
the last two decades, see for instance (Jerouane, Sepehri, & Lamnabhi-
Lagarrigue, 2004; Loukianov, Rivera, Orlov, & Teraoka, 2009; Taylor
& Robertson, 2013) and references therein.
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Among trials to deal with unknown load forces in hydraulic actu-
ators, the sliding mode (SM) (Shtessel, Edwards, Fridman, & Levant,
2014; Utkin, Guldner, & Shi, 2009) based observers belong to efficient
methods to estimate the forces as uncertainties (Koch & Reichhartinger,
2016; Komsta et al., 2013; Ruderman & Fridman, 2018; Vázquez et al.,
2016). For that aim the Higher-Order Sliding Mode (HOSM) observers,
based on HOSM differentiators, can be used. The simplest strategy to
estimate the forces suggested in Davila, Fridman, and Poznyak (2006)
(see also Komsta et al., 2013) consists of two basic steps: first to
apply a super-twisting-algorithm (STA) based observer for estimating
state derivative, and then to usage a low-pass filter to reconstruct
the forces. An alternative, and theoretically more exact, approach is
to use the HOSM differentiators of order two and higher. Note that
such higher-order approach is also considered in this work for the
sake of comparison. Furthermore, it should be noted that the targeted
hydraulic actuators have relatively slow dynamics, with main chal-
lenges being rather in disturbances and model uncertainties. Therefore,
a single hydraulic actuator is put into focus of this work, while multiple
DOF systems, like e.g. hydraulic cranes or excavators, are not explicitly
considered. Therefore, the coupling by-effects can be equally attributed
to the actuator perturbations.

The main contributions of the recent work, which also differ it from
the former results mentioned above, are:

– The STA-based robust exact differentiator (Levant, 1998) is used
in cascade with an equivalent output injection technique (Davila
et al., 2006). By doing this, a higher- than second-order estimator
is not required. Thus the Lipschitz constant of the second time
derivative of the measurable output signal yields the single design
parameter of the applied differentiator.

– A proposed cascade approach is shown in comparison with a
HOSM-based approach, while the third-order differentiator
proved to be sufficient for reconstructing both, the relative ve-
locity and acceleration required for an external load force esti-
mation.

– The nonlinear friction modeling, robust against the noisy velocity
signals, is incorporated into description of the nominal system
dynamics. The modeling approach takes into account most of the
transient and steady-state friction effects, it also avoids disconti-
nuities at zero crossing. Avoiding additional discontinuities in the
nominal system dynamics at frequent velocity zero crossings ap-
pears particularly relevant for the generated sliding-mode. Recall
that the sliding-mode self is driven by injecting discontinuities of
the estimation error.

– The proposed virtual force sensing is experimentally evaluated on
a standard industrial hydraulic cylinder setup with low-accuracy
stroke sensing, and that for a large variation of the external load
forces.

The rest of the paper is organized as follows. In Section 2, the hy-
draulic actuator system is introduced and the system modeling includ-
ing complex nonlinear friction is given. The second-order sliding mode
approach together with associated gain tuning and equivalent output
injection, including low-pass filtering, are described in Section 3. Fol-
lowing to that, a higher-order sliding mode approach considered for
comparison is addressed in Section 4. A comparative experimental
evaluation of predicting the reference-measured external load force of
different amplitudes and frequencies is given in Section 4. The paper is
concluded in Section 5.

2. Hydraulic actuator system

2.1. Experimental setup

The experimental system considered in this study consists of two
identical linear hydraulic cylinders arranged in antagonistic way, see
laboratory view depicted in Fig. 1. Both cylinders are rigidly coupled to

Fig. 1. Experimental setup of hydraulic cylinders.

each other via the force sensor. That allows for reference measurement
of the load force imposed on the right-hand side cylinder which is
controlled. The right-hand side cylinder is driven via the 4/3 servo-
valve and constitutes the object of investigation. The left-hand side
cylinder is powered via a directional control valve, connected in series
with a pressure reduction valve, thus allowing to generate a coun-
teracting load force. The latter is controlled in an open-loop manner.
In addition to linear potentiometer, for recording the cylinder stroke,
i.e. relative displacement, the pressure sensors are installed for both
chambers of cylinder. All input and output signals are provided via the
real-time control board with 2 kHz sampling rate. For more details on
the experimental setup an interested reader is referred to Pasolli and
Ruderman (2018, 2019).

2.2. System dynamics

The dynamics of hydraulic actuator, linear cylinder in the recent
case, is assumed to be of the second-order for the given hydraulic force
𝑢 = 𝐴𝑟𝑃𝑟 − 𝐴𝑙𝑃𝑙. Here the pressures and effective piston areas are
denoted by 𝑃𝑟∕𝑙 and 𝐴𝑟∕𝑙 for the right- and left-hand side chambers
correspondingly. Since the pressure measurement is available for both
chambers, and the piston cross sections are assumed to be accurately
known from technical data, the input force 𝑢(𝑡) appears as an exogenous
system excitation, i.e. system input to be known. For a relative motion
with 1-DOF, the system dynamics is given by

𝑚�̈� + 𝑓 (�̇�) + 𝐹 = 𝐴 (𝑃𝑟 − 𝑛𝑃𝑙). (1)

The overall moving mass is aggregated to the lumped inertial parameter
𝑚. The relative ratio 0 < 𝑛 < 1 captures the difference between the full
(effective) cross-section of the piston, on the right-hand side, and its
reduced area on the left-hand side. The latter is obviously due to a one-
side piston rod. An unbounded relative displacement in 𝑥-coordinates
is assumed. That means the mechanical bad-stops at the cylinder limits
are not explicitly taken into account. The relative motion of the piston
rod is counteracted by an external load force 𝐹 (𝑡) which is generally
unknown and, therefore, represents the target of virtual sensing. The
total friction force of hydraulic cylinder is denoted by 𝑓 (⋅). It is stressed
that 𝑥 is the single measurable output state, in addition affected by the
sensor noise, and neither �̇�(𝑡) nor �̈�(𝑡) are available from measurements.

2.3. Nonlinear friction

For capturing the frictional behavior, three most relevant effects of
the dynamic friction force are taken into account. Note that the dy-
namic friction force is understood here with one DOF, and that acting in
opposite direction to the relative displacement. Apparently, three cou-
pled by-effects of the nonlinear friction are the viscous frictional damp-
ing, the so-called Stribeck effect of the velocity weakening curve, see
e.g. Armstrong, Dupont, and De Wit (1994), and the continuous preslid-
ing transients of the Coulomb friction at motion reversals. Despite the
nonlinear friction modeling has attracted considerable attention in the
last decades, see e.g. Al-Bender and Swevers (2008), Armstrong et al.
(1994) and Marques, Flores, Claro, and Lankarani (2016), the existing
empirical and, often, ad-hoc approaches show up various advantages
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and disadvantages at the same time. To the large part, they can also be
seen as case-varying, correspondingly, case-specific. Especially in terms
of a stable and noise-insensitive numerical implementation, also with
real-time capability, there are less approaches that found a commonly
acknowledged consent. Moreover, a parametric and, correspondingly,
identification-related complexity play frequently the most crucial role
in a practical friction modeling. The approach formulated below relies
on several findings that have been observed experimentally, analyzed,
and reported in the previous works (Ruderman, 2017b; Ruderman &
Iwasaki, 2015, 2016).

The Stribeck (1902) velocity-weakening curve, cf. Armstrong et al.
(1994),

𝑆(�̇�) = 𝐹𝑐 + (𝐹𝑠 − 𝐹𝑐 ) exp
(

−|�̇�|𝛿𝑉 −𝛿), (2)

maps the steady-state velocity onto the sign-symmetrical friction force,
the magnitude of which decreases exponentially towards the Coulomb
friction level 𝐹𝑐 > 0 during the velocity progresses. The maximal
amplitude of the stiction force, that in vicinity to zero velocity, is given
by 𝐹𝑠 ≥ 𝐹𝑐 . The velocity normalization factor 𝑉 > 0 determines the
rate of exponential convergence, while 𝛿 is the shaping factor of the
velocity-weakening curve. Note that the viscous friction term in not
explicitly included in (2) as, otherwise, often done when talking about
the static Stribeck-type friction models. Further we notice that (2) does
not account for the velocity sign, since the latter will be captured, later
on, through the sign-dependent presliding transients, cf. further with
(6).

The viscous friction damping, acting on a lubricated contact inter-
face during gross-sliding (roughly speaking continuous motion), can be
captured in a standard way by the linear friction coefficient 𝜎. This
yields the velocity-proportional term 𝜎�̇�(𝑡) superimposed to (2).

The discontinuity-free transients of the Coulomb friction force, upon
the relative motion reversals, can be captured in different manner,
while all having to fulfill the rate-independency and to map the so-
called presliding hysteresis loops, see e.g. Al-Bender and Swevers
(2008) for detail. One should emphasize that the first well-established
approach for presliding transitions may be credited to Dahl (1968). Fur-
thermore, a Maxwell-slip structure, equivalent to the Prandtl–Ishlinskii
stop-type hysteresis operators (Ruderman & Rachinskii, 2017), can be
used equally as an exponential regression of the presliding stiffness
upon the motion reversals (Ruderman & Bertram, 2011). According
to the tribological study (Koizumi & Shibazaki, 1984), the area of
presliding hysteresis loops increases proportionally to the 2nd power
of the so-called presliding distance 𝑝. Using the scaling factor 𝑠, which
relates the after-reversal displacement to the presliding distance

𝑝 = 𝑠∫

𝑡

𝑡𝑟
�̇� 𝑑𝑡, (3)

which is defined on the interval 𝑝 ∈ [−1, 1], one can describe the
frictional curvature in presliding by

𝑧0(𝑝) = 𝑝
(

1 − ln(𝑝)
)

. (4)

For the motion reversal instant 𝑡𝑟 and the corresponding motion rever-
sal state 𝑧𝑟 ∶= 𝑧(𝑡𝑟), the total (normalized) map of presliding friction
transitions is given by

𝑧(𝑡) = |

|

|

sign(�̇�) − 𝑧𝑟
|

|

|

𝑝
(

1 − ln(𝑝)
)

+ 𝑧𝑟. (5)

It should be stressed that 𝑧(𝑡), according to (5), is defined for 𝑝 ∈ [−1, 1]
only so that 𝑧(𝑡) keeps the constant ±1 value for |𝑝| > 1, and that until
the next motion reversal. For more details on the presliding friction
map (5) it is referred to Ruderman (2017b).

Following the above developments, the entire friction dynamics can
be written as, cf. with Ruderman and Iwasaki (2015),

𝜏 ̇𝑓 (𝑡) + 𝑓 (𝑡) = 𝜎�̇�(𝑡) + 𝑆
(

�̇�(𝑡)
)

𝑧(𝑡) + 𝛼�̇�(𝑡), (6)

where 𝜏 is the time constant capturing the so-called frictional lag (Al-
Bender & Swevers, 2008). The 𝛼-coefficient is introduced as a necessary

damping factor of presliding transients. Note that this allows for ad-
justable damping, in addition to the rate-independent damping owing
to the presliding hysteresis. One can show that at steady-state, i.e. after
vanishing of all transients, the entire friction force reduces to

𝑓 (�̇�) = 𝜎�̇� + 𝑆
(

�̇�(𝑡)
)

sign(𝑧). (7)

Here both the relative velocity and saturated presliding states keep
their constant values.

3. Second-oder sliding-mode based force estimation

3.1. Robust exact differentiator

For estimating the relative velocity, which is unavailable from direct
sensing in hydraulic actuator systems, one can apply the standard
robust exact differentiator (Levant, 1998) which is based on the super-
twisting algorithm (STA) (Levant, 1993). Provided 𝑥1 ∶= 𝑥 is the
single measurable output, the exact differentiator aims for real-time
reconstructing the dynamic state 𝑥2 = �̇�1, while |�̈�2| ≤ 𝐿 is subject
to unknown, yet bounded, perturbation for some positive constant 𝐿.
The robust exact differentiator is given by

̇̂𝑥1 = 𝑘1𝛹 (𝑒)sign(𝑒) + �̂�2, (8)
̇̂𝑥2 = 𝑘2 sign(𝑒), (9)

where 𝑒 = 𝑥1 − �̂�1 is the output error. It is worth to recall that the error
incorporates both the sensing noise and uncertainties, correspondingly
non-modeled perturbations, of the second-order system dynamics. The
operator 𝛹 (⋅) =

√

| ⋅ | provides a state-varying observation gain, which
is inverse-quadratically dependent of the error magnitude. For the
appropriately chosen parameters 𝑘1, 𝑘2, which are positive STA gains cf.
with Levant (1998), the robust exact differentiator ensures convergence
of the states estimate, i.e. (𝑥1 − �̂�1) = (𝑥2 − �̂�2) = 0, after the finite-time
transients. This is valid for an upper bounded second-order dynamics
where 𝐿 = const < ∞ denotes the finite Lipschitz constant — an either
known system property or unknown process parameter to be found.

From above it is obvious that an appropriate gains selection requires
the second time derivative of system output to be known. For the
system dynamics (1), that means an acceleration quantity which is,
however, inherently unavailable from the measurements. Recall that
the problem statement requires simultaneously both, estimating the
relative velocity and reconstructing the unknown load forces acting on
hydraulic cylinder. For an optimal gain setting, calculated as proposed
in Ventura and Fridman (2019), one assumes

𝑘1 = 2.028
√

𝑘2, 𝑘2 = 1.1𝐿, (10)

that aims for minimizing the fast oscillations amplitude, i.e. amplitude
of chattering, in the closed-loop of STA. This optimal gain setting has
been recently evaluated with experiments by using another hydraulic
system as reported in Ruderman and Fridman (2018). Recall that the
𝑘2-assignment is standard setting for the highest-order derivative, as
proposed in Levant (1998) and later confirmed in Levant (2003), Reich-
hartinger, Spurgeon, Forstinger, and Wipfler (2017) and Ventura and
Fridman (2019), see also Shtessel et al. (2014) for more detail.

While 𝐿 remains the single design parameter, unavailable in the
system description, the proposed approach is in determining it via
a numerical optimization based on the recorded experimental data.
Solving numerically the minimization problem

min
𝐿

𝑁
∑

𝑖=1

(

�̇�𝑖 − �̂�2,𝑖(𝐿)
)2, (11)

of the estimation error results in a locally optimal 𝐿. The size of the
measured data set is denoted by 𝑁 , while �̂�2,𝑖 is the estimated velocity
state as function of the variable 𝐿. The cumulative squared error is
shown in Fig. 2 against the varying 𝐿, from which the optimal gain 𝐿 =
3.1 is obtained. The relative velocity (cf. further experimental results in
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Fig. 2. Cumulative squared error ∑

(�̇� − �̂�2)2 against 𝐿, computed for determining the
optimal STA-gain setting according to (10).

Fig. 3. STA estimated relative velocity versus low-pass (LP) filtered one taken as a
reference measurement.

Section 4) obtained with the tuned STA-based exact robust differentia-
tor (9) is exemplary shown in Fig. 3 over the low-pass (LP) filtered
experimental relative velocity. Note that the experimental relative
velocity is obtained via discrete-time differentiation of the measured
relative displacement, and then assumed as the reference measurement
upon LP-filtering. The details on designing the LP filter, with respect to
the actuator time constants, are given below in Section 3.2.

3.2. Equivalent output injection

Next, consider the second-order system dynamics

�̇�2 = 𝑔(𝑢, 𝑥2) + 𝜉(𝑡) (12)

perturbed by the unknown yet upper bounded 𝜉(𝑡) = 𝑚−1𝐹 , while an
undisturbed system dynamics 𝑔 = 𝑚−1(𝑢 − 𝑓 (𝑥2)

)

is assumed to be
known, cf. with (1). For the perturbed case of the exact differentiator
(8), (9), one introduces the state estimation error �̃�2 = 𝑥2 − �̂�2 which
dynamics is governed by

̇̃𝑥2 = 𝑔(𝑢, 𝑥2) + 𝜉(𝑡) − 𝑘2 sign(𝑒). (13)

The finite time convergence to the second-order sliding-mode set en-
sures that there exists a time constant 𝑡0 > 0 such that for all 𝑡 ≥ 𝑡0 the
following identity holds (Davila et al., 2006)

0 ≡ ̇̃𝑥2 ≡ 𝑔(𝑢, 𝑥2) + 𝜉(𝑡) − 𝑘2 sign(𝑒). (14)

Thereupon, an equivalent output injection, cf. Davila et al. (2006),

𝜒 ≡ 𝑘2 sign(𝑒) ≡ 𝑔(𝑢, 𝑥2) + 𝜉(𝑡) (15)

includes both, the known part of the system dynamics and the perturba-
tion which estimation if of primary interest here. Since the equivalent
output injection contains high-frequent discontinuous oscillations, due
to the gained sign of the output error, a linear filtering process 𝐺(𝜆) is
inevitable. The unity gain low-pass transfer function 𝐺, with Laplace
variable 𝜆, can be arbitrary designed, while taking into account chat-
tering of the sliding-mode, as addressed below, and the bandwidth of

𝜉. The latter is assumed to be approximately known in applications.
Following to that, an equivalent output injection takes the form

�̄� = 𝐺(𝜆)[𝑘2 sign(𝑒)], (16)

while the low-pass filtered estimate of the second-order-dynamics per-
turbation results in

𝜉(𝑡) = �̄�(𝑡) − 𝑔
(

𝑢(𝑡), �̂�2(𝑡)
)

. (17)

Note that since the measured relative velocity is unavailable, the STA-
based value is used in (17) for computing the unperturbed motion
dynamics.

In order to rate the basic frequency 𝜔𝑐 of harmonic oscillations,
i.e. chattering, one can use the harmonic balance analysis, which ana-
lytic solution is an estimate of the chattering parameters, i.e. amplitude
and frequency (Ventura & Fridman, 2016, 2019). Assuming a nominal
second-order actuator dynamics, with the time constant 𝜇 resulting in
�̄� = (𝜇𝜆+1)−2𝑢, the harmonic oscillation frequency can be obtained as

𝜔𝑐 =
𝐾𝜔
𝜇

with 𝐾𝜔 =
( (1.748𝑘1)2

(1.748𝑘1)2 + 4𝜋𝑘2

)1∕2
, (18)

cf. Pérez-Ventura and Fridman (2019). The actuator time constant 𝜇 is
assumed to be known or computable, as shown below for the recent
case.

Taking into account the system dynamics (1), the actuator time con-
stants relate to the phase lag of the closed-loop-controlled servo valve
equally as to the dynamics of hydraulic circuits — prior to building
up the actuating pressure in the cylinder chambers. The actuator time
constant is assumed as the maximum

𝜇 = max(𝜇𝑣, 𝜇ℎ) (19)

of both time constants, which are correspondingly associated: 𝜇𝑣 with
the closed-loop-controlled servo valve and 𝜇ℎ with hydraulic circuits of
the actuated cylinder. While both can be directly computed

𝜇𝑣∕ℎ = (𝜍𝑣∕ℎ ⋅ 𝜔0,𝑣∕ℎ)−1, (20)

from the associated damping factor 𝜍 and eigenfrequency 𝜔0, the latter
should be determined or, at least, approximated separately. The eigen-
frequency and damping parameters 𝜔0,𝑣 = 125.7 rad/s and 𝜍𝑣 = 0.8 of
the controlled servo-valve are determined from the measured frequency
response function, see Pasolli and Ruderman (2018). For the hydraulic
circuit, the parameters are obtained via a linearized hydraulic circuit
modeling (Ruderman, 2017a), for which

𝜔0,ℎ = 2𝐴
√

𝛽
𝛺𝑚

= 5873 rad/s, (21)

𝜍ℎ = 𝜎
4𝐴

√

𝛺
𝛽𝑚

= 0.5. (22)

Here 𝛺 is the total volume in the hydraulic circuit and 𝛽 is the bulk
modulus. For more detail an interested reader is referred to Pasolli and
Ruderman (2018) and Ruderman (2017a).

For approximately estimated chattering frequency 𝜔𝑐 = 71.1 rad/s,
the filtering process should be designed with cut-off frequency in a
neighborhood to 𝜔𝑐 . A final tuning of the filter parameters is performed
so that to minimize the equivalent output injection error with respect to
the reference measurement of 𝐹 . The low-pass filter transfer function,
determined by the Butterworth filter design and transformed back into
Laplace domain, results in

𝐺(𝜆) = 0.002𝜆2 + 4.28𝜆 + 8775
𝜆2 + 132.4𝜆 + 8775

. (23)

4. Higher-oder sliding-mode based force estimation

The higher-order sliding-mode (HOSM) differentiator, proposed by
Levant (2003), and since there further analyzed in multiple works,
e.g. Cruz-Zavala and Moreno (2018) and Reichhartinger and Spurgeon
(2018) to mention some of them here, allows for robust estimation of
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the (𝑛 − 1)th time derivative of the given signal 𝑥1(𝑡). For designing
a HOSM differentiator, the Lipschitz constant 𝐿 > 0 of the highest
(i.e. 𝑛th) time derivative of the (measured) input signal is assumed to
be known, i.e. |d𝑛 𝑥1∕d 𝑡𝑛| ≤ 𝐿. The HOSM differentiator of the (𝑛−1)th
order can be written in a generalized form

�̇�𝑖 = −𝑘𝑖𝐿
𝑖
𝑛
|�̂�1 − 𝑥1|

𝑛−𝑖
𝑛 sign(�̂�1 − 𝑥1) + 𝑥𝑖+1 (24)

�̇�𝑛 = −𝑘𝑛𝐿 sign(�̂�1 − 𝑥1), (25)

cf. with Cruz-Zavala and Moreno (2018), for 𝑖 = 1,… , 𝑛 − 1. While the
correspondingly powered 𝐿 appears in the HOSM differentiator as a
scaling factor, an optimal 𝑘𝑖-gains assignment remains continuously in
focus of the ongoing research. In the following, an optimal parametric
sets 𝑘𝑖 is used, that is described in Reichhartinger et al. (2017) and
based on a pseudo-linear representation of HOSM (Reichhartinger &
Spurgeon, 2018). For that, the eigenvalues of characteristic polynomial
with the differentiator gains are purposefully assignable.

Since the system exhibits the second-order dynamics, cf. (1), (12),
a differentiator of the minimum second-order is required for estimat-
ing acceleration of the relative motion and thereupon predicting an
external load force. Since the estimation accuracy of the 𝑖th derivative
increases with increasing of the HOSM-order and, correspondingly,
reduces with an increasing sampling time, see e.g. Livne and Levant
(2014), the third-order HOSM differentiator is assumed in the follow-
ing. While artificially increasing the order of HOSM differentiator, one
solely requires an additional numerical integrator to be implemented
and the higher-order Lipschitz constant to be determined. Here it is
noted that a similar increase of the HOSM order has been equally
justified for another system of hydraulic cylinders in Koch and Re-
ichhartinger (2016). For the introduced output measurement error, cf.
Section 3.1, the third-order HOSM differentiator (24), (25) results in

̇̂𝑥1 = 𝑘1𝐿
1
4
|𝑒|

3
4 sign(𝑒) + �̂�2,

̇̂𝑥2 = 𝑘2𝐿
1
4
|𝑒|

1
2 sign(𝑒) + �̂�3,

̇̂𝑥3 = 𝑘3𝐿
3
4
|𝑒|

1
4 sign(𝑒) + �̂�4,

̇̂𝑥4 = 𝑘4𝐿 sign(𝑒). (26)

Recall that the same output error 𝑒, as for the STA-based estimation,
is used while the Lipschitz constant 𝐿 is inherently different here due to
the fourth derivative of the HOSM differentiator, cf. with Section 3.1.
An optimal gain setting

𝑘1,… , 𝑘4 = {4.1, 6.3, 4.3, 1.1}, (27)

proposed in Reichhartinger et al. (2017) is used, which is based on an
approach described in detail in Reichhartinger and Spurgeon (2018).

The Lipschitz constant 𝐿, which is the single design parameter
unknown in the system modeling, has been determined via a numerical
optimization, based on the recorded experimental data, similar as in the
case of STA. Solving numerically a minimization problem

min
𝐿

𝑁
∑

𝑖=1

(

�̈�𝑖 − �̂�3,𝑖(𝐿)
)2 (28)

of the estimation error results in a locally optimal 𝐿 = 1040. The
size of the used experimental data set is denoted by 𝑁 , while �̂�3,𝑖
is the estimated acceleration state in dependency of the varying 𝐿.
The cumulative squared error is shown in Fig. 4 against the varying
𝐿, out of which an optimal gain setting is determined. Note that the
differential order of the estimated state used for 𝐿-optimization is
increased, comparing to the tuning of STA. Further recall that the goal
here, differing from the case of STA-based cascade, is to obtain the
acceleration quantity which is required for predicting the external load
force with help of HOSM-based approach. Since the acceleration signal,
obtained via double differentiation following by the LP-filtering, cf.
with Section 3.1, is larger corrupted by the measurement and process
noise, the determined optimization front is less smooth comparing to

Fig. 4. Cumulative squared error ∑

(�̈� − �̂�3)2 against 𝐿, computed for determining the
optimal HOSM-gains according to (26), (27).

Fig. 5. HOSM estimated relative velocity versus low-pass (LP) filtered one taken as a
reference measurement.

the STA tuning, cf. Figs. 2 and 4. Nevertheless, a local 𝐿-minimum is
directly determinable from the obtained optimization front.

Since the HOSM-based algorithm provides equally an estimate of
the relative velocity, used for computing 𝑓 (⋅), the latter is compared
with the reference value obtained via the discrete-time differentiation
and LP-filtering of the encoder signal. The HOSM-estimated relative
velocity is shown in Fig. 5 versus the reference measurement, cf.
with STA-based estimation from Fig. 3. Both velocity estimates reveal
sufficient similarity, while an absolute accuracy cannot be assessed due
to unavailable exact measurement of the reference velocity.

Upon the HOSM-estimated relative velocity and acceleration of
actuator motion, an external load force, correspondingly dynamics per-
turbation 𝜉, can be directly obtained for the second-order system (12).
Note that in order to cope with the residual high-frequency components
of signals in use, and to provide the same phase characteristics as before
in the second-order SM approach, the computed dynamics perturbation
is subject to the same low-pass filtering, cf. Section 3.2, thus resulting
in

𝜉 = 𝐺(𝜆)
[

�̂�3 − 𝑔(𝑢, �̂�2)
]

. (29)

5. Experimental evaluation

The experimental evaluation is made for the open-loop controlled
drive of the right-hand side cylinder. A periodic counteracting force,
produced by the left-hand side cylinder and recorded with the load-cell,
has been applied, cf. Section 2.1. Two different load shapes have been
generated, resulting in two motion profiles, shown in Fig. 6, and that
of different frequencies and with varying amplitudes of the force. The
corresponding input values of the measured pressure in both chambers
are shown in Fig. 7. From both recorded position profiles one can notice
a relatively high level of the sensor and (eventually) process noise when
measuring 𝑥(𝑡).

The first motion profile is with sinusoidal counteraction at 0.4 Hz,
that results in a trapezoidal-shaped load force the transient oscillations,
cf. Fig. 8(a). The second one is with saw-shaped counteraction at 2 Hz,
cf. Fig. 8 (b). During such (more steady) motion, the load force shows
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Fig. 6. Measured position from experiments with 0.4 Hz sinusoidal counteraction in
(a) and 2 Hz saw-shaped counteraction in (b).

Fig. 7. Measured chambers pressure with 0.4 Hz sinusoidal counteraction in (a) and
2 Hz saw-shaped counteraction in (b).

a series of steeply peaks, followed by a flattening decrease of the
magnitude. Note that both motion profiles have return to zero and zero
crossing velocities, cf. Figs. 3 and 5, that strongly affects the dynamic
friction and its model-based prediction.

Both, the second- and fourth-order sliding mode approaches, cf.
Sections 3 and 4, have been real-time implemented and executed on the
SpeedGoat platform, with the sampling rate set to 2 kHz, cf. Section 2.1.
The used discrete-time integrators are the first-order forward Euler. The
fixed-step discrete state solver of the Simulink Real-TimeTM is used. The
available and identified system parameters, with units, are provided in
Table 1.

Experimental evaluation of the SM-based estimation of the coun-
teracting load force are shown in Figs. 8, 9, and that for both motion
profiles in (a) and (b) correspondingly. One can recognize that the oscil-
latory phases, equally as constant levels, of the load force are accurately
reconstructed by the virtual sensing with the second- and fourth-order
sliding modes techniques. Recall that the second-order sliding mode
corresponds to the first-order differentiator and the fourth-order sliding
mode corresponds to the third-order differentiator, cf. Section 4. The
force estimation error depicted in Fig. 9 discloses that the performance

Table 1
System parameters.

Parameter 𝑚 𝐴 𝑛 𝐹𝑐 𝐹𝑠 𝑉

Units kg m2 – N N s/m
Value 1.7 0.0013 0.585 135 360 0.006

Parameter 𝛿 𝑠 𝜎 𝛼 𝜏 –

Units – – N s/m – – –
Value 1.5 150 350 3 0.005 –

Fig. 8. Experimental evaluation of SM estimated load force. Measurement versus force
prediction for 0.4 Hz sinusoidal counteraction in (a) and 2 Hz saw-shaped counteraction
in (b).

of both approaches is well comparable, while the HOSM-based esti-
mation exhibits a slightly higher peaking at zero crossing velocity.
This can be explained by differing velocity estimates with the STA-
and HOSM-based differentiators, which reflects in computing of 𝑓 (⋅),
correspondingly 𝑔(⋅) and directly affects the accuracy of 𝜉-estimate.
Further it can be noted that both the STA- and HOSM-based estimation
of the load force suffer under similar negative bias of about 200 N. The
latter lies, however, in the range of some 3% of the maximal applied
external force, and can be associated either with a bias of the load-cell
sensor or with modeling bias in the 𝑔(⋅) mapping. One can stress that
for the generally known challenges and inaccuracies associated with
force measurements, the force estimation errors (Fig. 9) including bias
are tolerable for the given range of load variations.

6. Conclusions

For the external load forces, generally unknown in the controlled
hydraulic actuators, a virtual sensing approach based on the second-
and higher-order sliding modes has been proposed. Measuring the noisy
relative displacement, i.e. cylinder stroke, and the pressure-difference-
based driving hydraulic force, the relative velocity of cylinder piston
is estimated by means of the exact differentiator with an optimal
gains setting. Based thereupon, an equivalent output injection of the
second-order sliding-mode has been used for perturbation force esti-
mation, correspondingly ‘virtual sensing’. For the sake of comparison,
the fourth-order differentiator has been used based on the HOSM
techniques, out of which the velocity and acceleration estimates are
obtained. For both SM-based strategies the same second-order sys-
tem behavior, including nonlinear dynamic friction, has been assumed
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Fig. 9. Force estimation error for 0.4 Hz sinusoidal counteraction in (a) and 2 Hz
saw-shaped counteraction in (b).

while the lumped moving mass and friction parameters are identified
as nominal before applying the external load forces. A robust recon-
struction of the varying load forces and that for different – step-like
transient, oscillatory, and constant – conditions has been demonstrated.
The evaluation results are shown on the experimental data which has
considerable level of the process and measurement noise.
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