The Journal of Systems and Software 153 (2019) 175-199

journal homepage: www.elsevier.com/locate/jss

Contents lists available at ScienceDirect

The Journal of Systems and Software

SOFTWARE

-

Towards the definitive evaluation framework for cross-platform app A

development approaches

Christoph Rieger?, Tim A. Majchrzak"*

2 ERCIS, University of Miinster, Miinster, Germany
b ERCIS, University of Agder, Kristiansand, Norway

Check for
updates

ARTICLE INFO ABSTRACT

Article history:

Received 20 November 2018
Revised 25 February 2019
Accepted 1 April 2019
Available online 2 April 2019

Keywords:

Mobile app

Mobile computing
Cross-platform
Multi-platform
Development framework

Mobile app development is hindered by device fragmentation and vendor-specific modifications. Bound-
aries between devices blur with PC-tablet hybrids on the one side and wearables on the other. Future
apps need to support a host of app-enabled devices with differing capabilities, along with their software
ecosystems. Prior work on cross-platform app development concerned concepts and prototypes, and com-
pared approaches that target smartphones. To aid choosing an appropriate framework and to support the
scientific assessment of approaches, an up-to-date comparison framework is needed. Extending work on a
holistic, weighted set of assessment criteria, we propose what could become the definitive framework for
evaluating cross-platform approaches. We have based it on sound abstract concepts that allow extensions.
The weighting capabilities offer customisation to avoid the proverbial comparison of apples and oranges
lurking in the variety of available frameworks. Moreover, it advises on multiple development situations
based on a single assessment. In this article, we motivate and describe our evaluation criteria. We then
present a study that assesses several frameworks and compares them to Web Apps and native develop-
ment. Our findings suggest that cross-platform development has seen much progress but the challenges

are ever growing. Therefore, additional support for app developers is warranted.

© 2019 The Authors. Published by Elsevier Inc.

This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

With i0S and Android, only two platforms with significant mar-
ket share remain for the development of mobile apps (Forni and
van der Meulen, 2017). Nevertheless, cross-platform technology
continues to be very important and many app development
frameworks exist (Heitkotter et al., 2013a; El-Kassas et al., 2017).
When creating apps, there is still no uniform recommendation
whether - or in which case - to employ web technology, a
cross-platform approach, or a native Software Development Kit
(SDK) (Rieger and Majchrzak, 2016). The emergence of Progressive
Web Apps (PWA) has on the one hand brought a contestant for
unification (Majchrzak et al., 2018; Bigrn-Hansen et al., 2017);
on the other hand, it underlines that professional developers
still seek for easier ways of developing once but having their
app run on multiple platforms. There seems to be profound
interest in straightforward yet customisable solutions, for instance

* Corresponding author.
E-mail addresses: christoph.rieger@ercis.de (C. Rieger), tima@ercis.de
(T.A. Majchrzak).

https://doi.org/10.1016/j.js5.2019.04.001

demonstrated in trivial patents (such as for “customizing a mobile
application using a web-based interface” (Brisebois et al., 2017)).

The complexity of app development does not merely come
from the need to cover two more or less incompatible platforms.
Device fragmentation and vendor-specific modifications incur that
particularly developing for Android is not uniform (Dobie, 2012).
Additionally, the boundaries between devices are blurring with
PC-tablet hybrids or wearables which extend computing into
domains of watches, formerly unconnected electronic helpers,
and even clothing (Nanjappan et al., 2017). There is a jungle of
app-enabled devices (Rieger and Majchrzak, 2018), each posing
specific capabilities and idiosyncrasies. The different categories of
devices also bring their own ecosystems and contexts of usage.
It is easy to imagine that developing an app supposed to run on
a smartphone as well as within the system of a car (Wolf, 2013)
and additionally on a screenless smart home/Internet-of-Things
(IoT) device (Alaa et al., 2017) poses a tremendous challenge. This
convergence of smart, user-targeted gadgets and formerly hidden
small-scale information technology will need to be reflected in the
development approaches used in the future.

Prior work on cross-platform app development has mainly con-
cerned been with two topics. First, concepts and prototypes were

0164-1212/© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

https://doi.org/10.1016/j.jss.2019.04.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2019.04.001&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:christoph.rieger@ercis.de
mailto:tima@ercis.de
https://doi.org/10.1016/j.jss.2019.04.001
http://creativecommons.org/licenses/by/4.0/

176 C. Rieger and TA. Majchrzak/ The Journal of Systems and Software 153 (2019) 175-199

proposed, such as by Heitkdtter and Majchrzak (2013) and
like applause (Friese, 2014). Second, frameworks that tar-
get smartphones and tablets were compared, for example
by Heitkotter et al. (2013a), Ohrt and Turau (2012), and
Le Goaer and Waltham (2013). To aid developers in choosing
an appropriate framework and to support the scientific assessment
of approaches, an update to the comparison frameworks is needed.
It ought to consider the recent technological developments both
regarding the capabilities of cross-platform frameworks and novel
ideas such as PWAs. At the same time, it needs to reflect the de-
mands from developers while not compromising academic rigour.
Moreover, it needs to take into account that the consequences
from using cross-platform technology impact the user experi-
ence (UX). Therefore, wisely using such approaches is indicated
(Mercado et al., 2016), and this line of thinking should be reflected
in any attempt to evaluate approaches.

Extending the first attempt to provide a holistic, weighted
set of assessment criteria by Rieger and Majchrzak (2016), we
propose steps towards what we believe could become the definite
framework for evaluating cross-platform development approaches.
We have based it on sound abstract concepts that allow adaptabil-
ity to future technological developments. It seeks to be versatile
and handy for practitioners yet fulfil what is needed to satisfy
a critical scientific assessment. The weighting capabilities offer
individualisation and customisation. We, thus, ensure that the
proverbial comparison of apples to oranges that lurks in the vari-
ety of available frameworks and goals of development is avoided.
Moreover, our evaluation framework offers the opportunity to get
advice for multiple development endeavours based on a single
assessment.

Please note the usage of terms in the following. Framework is
overloaded as it refers to our evaluation framework as well as to
software frameworks for cross-platform app development. Unless
we refer to the evaluation, framework denotes the latter. If the
context poses the chance of confusion, we qualify framework with
“evaluation”. We speak of a cross-platform development approach
when we do not consider a concrete software implementation but
rather the general way of solving the challenge of developing one
but running apps on several platforms.

This article makes a number of contributions. First, it pro-
vides an evaluation framework for cross-platform development
approaches for app-enabled devices. It can not only be used as
provided but the extensive criteria catalogue serves as a reference
which may also be employed for purposes beyond our framework.
Second, we provide weight profiles to be used in conjunction
with the framework. These profiles enable a non-generic usage of
the framework, which allows users to adapt it to their company-
or project-specific needs. Third, we present the results from an
exemplary study with several development approaches, including
(Progressive) Web Apps, hybrid apps, runtime approaches, and
native development for comparison. The study not only seeks to
underline the feasibility of our framework but to provide concrete
advice.

The remainder of this article is structured as follows. In
Section 2 we give an overview of works that provide a precon-
dition to ours, are complementary, or are otherwise related in
content or approach. Section 3 comprehensively presents our
criteria catalogue and the rationale behind each of the criteria.
It thereby serves both as a core scientific contribution and as a
reference. The evaluation criteria are motivated and explained in
detail; where applicable, examples are given for better illustration.
Section 4 proposes weight profiles, which can be used to evaluate
development approaches in a customized fashion. To demonstrate
the feasibility of our work and to give practical recommendations,
we present an evaluation study in Section 5. Our findings are
then discussed in Section 6, which includes results from ex-

pert feedback, a proposal for a research agenda, limitations, and
indication of our future work. Finally, in Section 7 we draw a
conclusion.

2. Related work

The work presented in this article draws from the field of cross-
platform development frameworks, which has emerged since the
advent of smartphones. In addition, it takes account of the recent
developments in the domain of mobile devices and the implica-
tions on future mobile app development approaches. Therefore,
related work on both fields is presented in the following.

2.1. Cross-platform frameworks

Resulting from the increasing popularity of cross-platform
development frameworks, a multitude of scientific works has been
prepared for this topic. However, most papers are of experimental
nature and restricted to single frameworks, or limited by the
choice of considered development approaches. Only few provide
a thorough evaluation based on a diverse set of criteria. A com-
prehensive summary of related literature regarding covered tools,
criteria!, and focal areas of comparison is given in Table 1. It com-
bines a literature search within the scientific database Scopus on
evaluations of mobile cross-platform frameworks, using the query

TITLE-ABS-KEY((comparison OR evaluation OR
review OR survey) AND

(mobile OR app OR wearable OR application
OR vehicular OR ‘‘in-vehicle’’) AND

(’’cross-platform’’ OR ‘‘multi-platform’’
OR ‘‘cross platform’’) AND

(framework OR approach))

combined with a forward search on the papers by
Heitkotter et al. (2012) and Heitkotter et al. (2013a). The latter
represent early work on systematic assessment of app develop-
ment frameworks for smartphones and have been used by many
authors as basis for further research on apps. Examples include the
definition of quality criteria for HTML5 frameworks (Sohn et al.,
2015), quantitative performance evaluations (Willocx et al., 2015),
and the creation of cross-platform development frameworks such
as ICPMD (El-Kassas et al., 2014) and MD? (Heitkétter et al., 2015).
To put the identified literature into context, we highlight notable
details in the following.

Early papers have typically only considered few criteria - if
at all (Rahul Raj and Tolety, 2012; Sansour et al., 2014). It can
be noticed that few works perform a rather comprehensive eval-
uation, often neglecting a user's perspective on cross-platform
app development (cf., e.g., El-Kassas et al., 2017). For example,
Ohrt and Turau (2012) have analysed nine tools with regard
to developers’ needs and user expectations. Many papers focus
on particular aspects of apps such as animations (Ciman et al.,
2014), performance (Dalmasso et al., 2013), or energy consumption
(Ciman and Gaggi, 2015).

We can also observe that the set of considered criteria does
not appear to be coherent over time. Criteria are often grouped
into common categories (Ohrt and Turau, 2012; Xanthopoulos and
Xinogalos, 2013; Hudli et al., 2015; Sommer and Krusche, 2013)
but no clear categorisation scheme has emerged. One additional
problem typically found is a shortage of criteria explanations (e.g.,
Charkaoui et al., 2015; Hudli et al, 2015). Furthermore, these

TIf multiple related criteria are used, similar subcriteria are grouped
for brevity reasons, e.g., energy, CPU load, and duration measurements in
Corbalan et al. (2018) are aggregated to “performance (3)".

C. Rieger and TA. Majchrzak/The Journal of Systems and Software 153 (2019) 175-199 177

Table 1
Literature on cross-platform app development tool evaluations.

Paper

Evaluated tools

Evaluation criteria (number of subcriteria)

Focal areas

Bigrn-Hansen and
Ghinea (2018)
Corbalan et al. (2018)

Delia et al. (2018)

Ferreira et al. (2018)

Jia et al. (2018)
Bigrn-Hansen et al. (2017)
Ciman and Gaggi (2017)

Lachgar and Abdali (2017)

El-Kassas et al. (2017)
Que et al. (2017)

Vilcek and Jakopec (2017)
Ahti et al. (2016)

Botella et al. (2016)

Latif et al. (2016)
Rieger and

Majchrzak (2016)
Umuhoza and
Brambilla (2016)
Charkaoui et al. (2015)
Ciman and Gaggi (2015)
Dhillon and

Mahmoud (2015)

Hudli et al. (2015)
Ciman et al. (2014)
Dalmasso et al. (2013)
Humayoun et al. (2013)
Sommer and

Krusche (2013)

Vitols et al. (2013)
Xanthopoulos and
Xinogalos (2013)
Heitkotter et al. (2012)

Ohrt and Turau (2012)

Palmieri et al. (2012)

Ribeiro and da Silva (2012)

Ionic, React Native

Cordova, Corona, Native app,
NativeScript, Titanium, Xamarin
Cordova, Corona, Native app,
NativeScript, Titanium, Web Apps,
Xamarin

Native app, PhoneGap, Sensa Touch,
Titanium

Cordova, Native app, Titanium, Xamarin

Ionic, Progressive Web Apps,
ReactNative

MoSync, PhoneGap, Titanium, Web
Apps

none (native vs. web vs. cross-platform
in general)

ICPMD, J20bjC, MD2, MoSync,
PhoneGap, Titanium, xFace, XMLVM
Cordova, Native app

Tonic, PhoneGap, NativeScript, Native

app
PhoneGap

Ionic, Sencha

none (cross-platform approaches in
general)
PhoneGap, Web Apps

13 research frameworks, 4 commercial
solutions

none (cross-platform approaches in
general)

PhoneGap, Titanium

Adobe Air, MoSync, PhoneGap,
Titanium

Angular]S, HTML5/JS, jQuery Mobile,
PhoneGap, RhoMobile, Sencha Touch
jQuery Mobile, MoSync, PhoneGap,
Titanium

jQuery Mobile, PhoneGap, Sencha
Touch, Titanium

MoSync, Native app, Titanium
PhoneGap, Rhodes, Sencha Touch,
Titanium

Cordova, PhoneGap, RhoMobile,
Titanium

none (cross-platform approaches in
general)

PhoneGap, Titanium, Web Apps
9 commercial frameworks

DragonRad, MoSync, RhoMobile,
PhoneGap

Canappi mdsl, DragonRAD, mobl,
PhoneGap, Rhodes, Titanium

File system access performance
Performance (3)

Performance

Performance of device features (2)

Performance of build, rendering, and UI
response
Performance (3)

Battery usage, device sensors (7)
14 rather simple questions to be answered

before developing; six criteria for the tool
selection step

Tool architecture, platform support, app type,

license

Development support (6), device features (5),

performance (6)

Platform support (3), development support (3)

Starting duration, memory usage, app size, user
experience, appearance, development support

User (functionality, Ul, platform support),
developer (developing time, reuse, native
access)

Scalability and maintainability, device features,

resource consumption, security, IDE

Infrastructure (7), development (11), app (9),

usage (4)

Development process, app layer, development

technique, platform support

Targeted public, programming language, app

type

Battery usage, device resource usage
Platform support, license (2), development
environment (8), user experience (6),

functionality (29), monetization (4), security

(2)

Platform support (4), development support (7),

deployment factors (6)

License, community, API, tutorials, complexity,

IDE, devices, GUI, knowledge

Platform support, rich user interface, backend

communication, security, app extensions,

energy consumption, device features, license

Responsiveness

Functionality (8), usability (6), developer
support (4), reliability/performance (4),
deployment (8)

Platform support, framework development

activity/maturity (3), license, device features

(11)

Distribution, programming languages, hardware

& data access, user interface, perceived
performance
Infrastructure (7), development (6)

Developer support (8), user expectations (6)

Platform compatibility (2), development

features (4), general features (4), device APIs

(17)
Technology approach, platform support,

development environment, app type, device

features (5)

Quantitative comparison

Resource usage and execution time of
calculations and audio/video playback
Execution time of calculations

App scenarios with calculations as well
as camera and GPS access

Specific combinations of platforms and
cross-platform technologies
Quantitative study using app scenario

Evaluation of energy consumption in
combination with sensor usage
Two-step process: tools to be selected
after the main approach is chosen

Variety of development approaches
Quantitative tool comparison
Qualitative comparison

Quantitative and qualitative evaluation
criteria
Qualitative tool comparison

Criteria definition and variety of
development approaches
Criteria weighting

Model-driven approaches

Qualitative comparison of
cross-platform approaches
Evaluation of battery usage
Performance benchmarks and
development experience discussion

Criteria definition and qualitative tool
comparison

Qualitative tool comparison for apps
with animations

Performance evaluation (memory, CPU,
energy consumption)

Qualitative user evaluation
Criteria definition and qualitative tool
comparison

Quantitative comparison

Criteria definition

Foundational cross-platform criteria
catalogue for this work

Criteria definition and challenges of
cross-platform development
Qualitative tool comparison

Criteria definition

178 C. Rieger and TA. Majchrzak/ The Journal of Systems and Software 153 (2019) 175-199

inconsistencies are also reflected in the lack of measurable metrics
for the respective criteria.

It can be summed up that many authors set out to conquer
the field of cross-platform app development. Without doubt, the
papers shown in Table 1 provide substantial contributions. How-
ever, both the rapid evolution on the mobile device market and
the proliferation of individual frameworks in the field of cross-
platform development thwart the process of theory-building and
mandate further work. This is also illustrated by many recently
published papers that - more or less isolated - address distinct
issues also discussed in this article. To conclude the study of re-
lated work, we highlight such works that address novel mobile
devices.

2.2. Novel app-enabled devices

Only few years ago, mobile app development exclusively fo-
cused on frameworks and applications for smartphones and -
sporadically - tablets. Nowadays, many more devices have be-
come app-enabled and to some extent mobile, ranging from
Internet-of-Things (IoT) functionalities in tiny units to self-driving
vehicles.

In previous work, we have presented an initial taxonomy for
the variety of consumer devices whose functionality is extensible
by third-party apps already today or will be in foreseeable future
(Rieger and Majchrzak, 2018). While formerly it was possible
to categorise devices by operation system or hardware features,
this approach is not feasible anymore: for example, the Android
platform spans multiple device classes. Instead, the taxonomy
distinguishes device classes according to the dimensions of media
richness of inputs, media richness of outputs, and degree of mobility
(Rieger and Majchrzak, 2018). Within each of these device classes,
various devices and platforms have emerged. Whereas Android
and iOS have divided most of the smartphone market amongst
themselves (Forni and van der Meulen, 2017), competition among
novel mobile device platforms is high and no clear winners are
foreseeable. Therefore, these devices pose similar challenges for
app developers compared to the beginning of smartphones several
years ago (Heitkotter et al., 2013a). An overview of scientific
work on apps for several novel device classes according to this
classification is presented next, together with existing literature
on cross-platform development approaches.

Smart TVs are on the rise worldwide, with all major manufac-
turers offering such devices. As a consequence, more than 90% of
connected TVs sold in Germany support the HbbTV standard that
has evolved from previous approaches such as CE-HTML and Open
IPTV (Statista Inc., 2018; HbbTV, 2018). In the U.S., app-enabled
smart TVs are already present in 35% of households (Statista Inc.,
2018). Many platforms have emerged in practice, for example
the open-source media centre Kodi/XBMC with various forks, An-
droid TV, Tizen OS for TV, and webOS (XBMC Foundation, 2018;
Google LLC, 2018b; Linux Foundation, 2018; LG Electronics, 2018).
However, app development is often tied to a specific TV manu-
facturer and reflects the fragmentation in the market. Interestingly
from a cross-platform perspective, many smart TV frameworks na-
tively support app development using web technologies such as
HTML5 and JavaScript, thus being well-suited for cross-platform
approaches. So far, scientific research often concentrates on specific
sub-topics such as interactive ads (Perakakis and Ghinea, 2015a),
serious games (Ryu et al., 2014), and 3D content (Perakakis and
Ghinea, 2015b) across multiple smart TV platforms.

Regarding smartwatches, which now have found more than just
a niche in the market (Rawassizadeh et al., 2014), Google and
Apple again compete for dominance with their respective Android
Wear (now Wear 0S) and watchOS platforms. Further players in
this field are Tizen OS and webOS (Bouhnick, 2015). Some vendors

have open-sourced their operating system (e.g., Android, Tizen,
or webO0S); however, few truly vendor-independent platforms
such as AsteroidOS exist (Revest, 2018). To complicate matters,
smartwatches are usually paired with a smartphone (Doud, 2015),
e.g., for performance reasons (Liu and Lin, 2016) and to benefit
from Internet connectivity (the latter being a specific challenge,
cf. Ahola, 2015). Smartwatch apps often rely on the respective
smartphone companion app; thus, cross-platform development
approaches must support each combination of host and watch
platform. However, some smartwatch platforms recently added
stand-alone capabilities on supported devices, for instance since
the launch of Android Wear 2.0 in early 2017 (Google LLC, 2018;j).

In a wider sense, wearables such as fitness trackers are often
tied to proprietary platforms, e.g., Microsoft Band (Microsoft Corp.,
2018). Whereas those devices usually support pairing with dif-
ferent smartphone platforms, third-party app development is still
limited. Vendors such as Fitbit and Garmin do not even produce
devices with modifiable operating system (Bouhnick, 2015). Sci-
entific work on wearables is therefore scarce (Kim et al., 2016).
Some authors have proposed middleware approaches to span a
broad range of devices (Chmielewski, 2013), in one case even on
the hardware layer (Zhang et al., 2011).

Despite the vagueness of the terms, smart home and IoT devices
could be a future domain for cross-platform research (Jie et al.,
2015). Several open-source and closed-source platforms exist that
try to attract app developers and claim to integrate a plethora of
devices. Qualcomm’s AllJoyn, Intel’s IoTivity, Apple HomeKit, and
Google Brillo are the most important players that try to establish
their middleware as comprehensive solutions (Carter, 2015). For
home automation, a host of proprietary solutions exist with a
variety of application targets (Silva et al., 2012). Whether ex-
isting industry standards such as KNX can form the backbone
of loT-enabled smart homes remains to be seen. Transitions
towards hybrid systems (Lilis et al., 2017) and gateway usage
(Fantacci et al., 2014) will possibly solve the challenges regarding
hardware but may complicate app development further.

Concerning the upcoming generation of connected cars,
four main approaches for developing in-vehicle apps exist
(Schuermans and Vakulenko, 2014). First, Android Auto, Blackberry
QNX, and Windows Embedded are technologies that are rebranded
by car manufacturers and run native apps on the car’s head unit.
Second, some cars provide a remote application programming
interface (API) to allow access and control of features such as door
locks. For instance, General Motors, Airbiquity, and an unofficial
API for Tesla cars make use of this approach (Dorr, 2018). Third,
platforms including Apple CarPlay and the MirrorLink alliance use
screen mirroring, i.e., the app runs externally on the smartphone
and is displayed on the car’s screen (Durach et al., 2013). This ap-
proach was established due to security concerns in order to avoid
executing app code on the car’s main hardware. Fourth, Dash Labs,
Mojio, and Automatic connect to the on-board diagnostics port
to interact with the car (Dash Labs, Inc., 2018; Moj.io Inc., 2018;
Automatic Labs, 2018). Although this approach requires a Bluetooth
dongle as additional hardware, support is given for many cars that
were not designed to be app-enabled in the first place.

Besides the underlying development approach, several papers
focus on usability issues (Quaresma and Gongalves, 2014) and
“remote” human machine interfaces (HMI) (Durach et al., 2013) for
the specific challenges of in-vehicle apps. For example, experimen-
tal implementations of novel concepts such as a route planning
app for head-up displays (HUD) (Noreikis et al., 2014) and other
potential in-vehicle apps (Wolf, 2013) are explored. To the best
of our knowledge, no cross-platform framework currently exists
due to the novelty of the field as well as a lack of platform acces-
sibility from the fight for dominance between car manufacturers
“owning” the platform (Schuermans and Vakulenko, 2014). Current

C. Rieger and TA. Majchrzak/The Journal of Systems and Software 153 (2019) 175-199 179

works deal with an Open Service Cloud for cars (Deindl et al.,
2015) and the integration of non-automotive applications into the
automotive environment (Rodriguez Garzon and Poguntke, 2012).
Potentially, also a middleware approach (Deindl et al., 2015) might
be an option to bridge different approaches and at the same time
mitigate security risks.

This overview of novel mobile device platforms shows sim-
ilar characteristics of fragmentation as the smartphone market
experienced several years ago. Moreover, interactions between
different device classes result in an exponentially growing amount
of combinations, causing additional complexities to consider for
app development. Some platforms such as Android and Tizen have
branches that run on multiple devices from smart TVs to wear-
ables, potentially simplifying the future development across device
class borders. Samsung TOAST is an early initiative to simultane-
ously develop for Samsung Smart TV, the new Tizen platform and
browsers, based on the established Apache Cordova framework
(Samsung, 2018). However, barely any approach covering multiple
device classes currently exists in literature or practice, with the
notable exception of the gaming domain. Unity3D (Unity Tech-
nologies, 2018), one of the best-known game engines for 2D/3D
games (and one even targeted by scientific research, as exemplarily
illustrated by the works of Xie (2012) and Messaoudi et al. (2015)),
supports 29 platforms including smartphones, smart TVs, consoles,
and augmented reality devices.

3. Criteria catalogue

In the following, we describe our catalogue of criteria, which
marks the foundation of our evaluation framework. We start by il-
lustrating fundamental considerations. Then, the four perspectives
of the framework - infrastructure, development, app, and user - are
explained in detail.

3.1. Fundamental considerations and structure

Our aim for this paper is to propose a future-proof, long-lived,
adaptive evaluation framework for cross-platform app technology.
It would be a presumptuous attempt to create such a framework
from scratch. Thus, the structure and the selection of criteria
is based on extensive prior work, as illustrated in Section 2.
Moreover, we give a rationale for criteria that we added or that
we use in an extended way in comparison to existing evaluation
frameworks. This follows specific literature, as far as such works
are available. Alternatively, we argue for such criteria based on our
experience in working on cross-platform app development frame-
works. We will revisit literature gaps as part of the discussion
later in this article.

Consequently, the proposed criteria are the result of a process.
First, we created a synopsis of existing approaches. Then, this
synopsis was extended and revised. Thereby, our criteria catalogue
not only caters for the latest developments in the field but also
benefits from increased flexibility and versatility. Combined with
the weight profiles as explained in Section 4, we are confident in
being able to set the standard for future evaluation activities.

Most notably, we categorize our criteria. Instead of presenting
one large catalogue, we summarize criteria by the perspective on
development they take. Perspectives mark a specific view on the
aspects being evaluated. They thereby provide coherence: although
all criteria are important when evaluating a framework, those that
have been grouped into the same perspective are stronger related
to each other than those that we put into different perspectives.
Not only does this foster the comprehensibility of the criteria, but
also the weighting is much easier (as will be seen in Section 4).

The consideration of different perspectives is already found
in the often-cited paper by Heitkotter et al. (2013a). We have

extended the original two perspectives (infrastructure and devel-
opment) to four:

o Infrastructure: Using a cross-platform app development
framework is inherently bound to preconditions. Typically,
ramifications arise regarding the life cycle of developed
apps. This can be summarized as the infrastructure a frame-
work provides. Most fundamentally, this concerns the sup-
ported target platforms. Moreover, aspects of licensing, us-
age, and long-term prospects are considered.

e Development: A cross-platform framework is only as good
as you can use it for developing apps. Frameworks may of-
fer further built-in development support that can make de-
velopment more rapid, support inexperienced developers, or
both. Being proper for development is bound to a host of
criteria that all have a technical appeal. Development crite-
ria are those that programmers and software engineers will
ask for, other aspects notwithstanding.

o App: Naturally, the actual app denotes whether development
was successful. If an app is developed using a platform’s na-
tive framework, it has access to all device features regard-
ing sensors as well as user input and device output. A de-
velopment framework should ideally provide a near-native
range of support for device features such that access is ver-
satile and easy to employ. Also, the integration of business
concerns with regard to an app as a product can be sub-
sumed by this perspective. A good example for this is secu-
rity, which is considered to be very important while becom-
ing increasingly harder to overview for developers due to its
multi-faceted nature (Watanabe et al., 2017).

e Usage: An app is more than the sum of its functionality.
Therefore, the usage perspective comprises many aspects
that in systems’ design would fall under the non-functional
(or: quality) requirements. Besides management aspects, this
perspective embodies performance characteristics and how
user-friendly an app is, including considerations of aesthet-
ics, ergonomics, and efficiency.

We deem this distinction into categories not only helpful for
assessing a framework with different aspects and stakeholders
(such as developers, managers, and users) in mind but also to
support different devices. As already argued, the devices found
in modern mobile computing are no more limited to smart-
phones and - technologically rather similar - tablets (Rieger and
Majchrzak, 2018). The distinct app perspective (compared to
Heitkotter et al., 2013a) leads to more clarity with regard to the
development outcome which might differ significantly across
different device classes, whereas the development itself might
be similar. Thus, perspectives offer an easier way to tailor an
assessment to the desired device category: In some cases, assess-
ments might be very broad, in some very narrow. And, as we
will argue later, also cases such as “good smartphone support is
mandatory, but compatibility with smartwatches would be nice”
can be designed. Also, the additional usage perspective focuses on
cross-cutting concerns such as usability and performance which
largely affect user acceptance and joy of use.

Which devices are to be targeted - or, in other words, which
role multi-device support plays - is merely one aspect when
thinking about case-based assessment of development frame-
works. The underlying development paradigms might be to some
degree tailored to more or less specific use cases. For example,
cross-platform development for business apps has been discussed
(Majchrzak et al., 2015b). Likewise, a focus on consumers or
mobile gaming is imaginable. These cases would even combine
aspects of intended usage with those deriving from multi-device
support. We will further elaborate on cases when explaining the
weight profiles and in the discussion.

180 C. Rieger and TA. Majchrzak/ The Journal of Systems and Software 153 (2019) 175-199

The following four subsections explain the criteria of the
perspectives in detail. Besides explaining what should actually be
measured respectively expressed by a category, we also give its
rationale. Whenever possible, this is done based on the literature.
We refer both to evaluation papers mentioned in Section 2 and
to additional work specific to the very criterion. The only work
not explicitly cited is that by Heitkotter et al. (2013a). As the
trailblazer for cross-platform evaluation frameworks, it contained
14 criteria of our framework already, even though in a premature
form from today’s perspective. Extending the already thorough
work of a previous conference paper (Rieger and Majchrzak, 2016),
the criteria catalogue has been refined by consulting experts in
this field (cf. Section 6). Resulting from an iterative process, we
have reworked the criteria descriptions to sharpen their scope (e.g.,
covering multiple aspects of robustness (A9) instead of a limited
focus on degrading functionality), apply precise terminology (e.g.,
“user authentication” (U4) instead of the too general term “user
management”), and eliminate potential overlaps (e.g., discerning
the fields of internationalisation (I6) from the subsequent app
distribution (I14)). Also, two new criteria have been added in order
to better suit the needs for large-scale app development through
configuration management (D8) and incorporate app development
for the multitude of new mobile devices (A10). For addressability,
all criteria are numbered in the form Xy where X is a character
denoting the perspective (I, D, A, U) and y a continuous number
for the specific criterion.

The last subsection is followed by Table 2 (p. 11-12 onwards).
While we reference related literature — particularly the related
evaluation articles compiled in Table 1 - directly for each intro-
duced criterion, this table provides a compilation of similarities
of terminology. For each criterion, we state the related work that
proposed a criterion by the same term. Moreover, we name terms
used with a similar meaning to our criterion. The table not only
means to better relate our contribution to the existing literature
but also to identify ambiguities - not all criteria must always be
referred to with the same term. In addition, some authors pro-
posed criteria that are subsumed by ours, with the term thus only
appearing in the detailed description of the criterion. The table can
also help to identify weakly delimited terms that are used for mul-
tiple criteria (typically overloaded terms such as operating system)
as well as super terms (e.g., features, which can mean hardware
feature, system feature, or both).

3.2. Infrastructure perspective

(I1) License: Particularly for commercial development, a frame-
work’s license is important. This question is often raised but not
only relevant for open-source software (Dalmasso et al., 2013;
Ciman et al., 2014; Palmieri et al,, 2012). Moreover, a framework
might be restrictive with regard to the usage of developed apps.
While it typically is most important to consider the terms for apps
developed by using the framework, license particularities regarding
the framework itself can also play a role. Consider, e.g., that the
long-term feasibility (17) of a framework is limited. If the license is
liberal concerning modifications of the framework and an adopt-
ing company has the resources and willingness to put effort into
maintenance of it, the impact of a questionable long-term feasibil-
ity might be reduced. As part of the licensing, the pricing model
needs to be considered (Hudli et al., 2015; Sommer and Krusche,
2013). Open-source frameworks are typically distributed freely un-
der varyingly permissive regulations; a premium might be charged
for maintenance and consultancy (Fitzgerald, 2006). For-payment
frameworks might have a flat fee or either one-time or regular
payments bound to certain conditions such as the number of de-
velopers, developed apps, and so on.

(12) Supported target platforms: The reason for using a cross-
platform framework is to provide apps for several platforms while
developing only once. Consequently, the supported platforms are
a major concern (Ciman et al, 2014; Palmieri et al., 2012). This
remains true with Android and iOS essentially dividing the market
for smartphones and tablets among themselves (Forni and van
der Meulen, 2017). Widening cross-platform app development
to further device categories might in fact increase the number
of attractive platforms again (Rieger and Majchrzak, 2018). In
addition, two versions of a platform might be different enough
to consider developing for them to be similar to developing for
two distinct platforms (major versions often introduce breaking
changes to internal APIs as well as interface and design guide-
lines, e.g., Google LLC, 2018c). This, again, is particularly relevant
when considering different device categories. Typically, recent
versions of platforms provide novel features exploited (only) by
flagship devices. These might be heavily marketed - consider, e.g.,
Samsung’s Edge displays (Samsung, 2014) -, wherefore support
is important to reach early adopters (Beal and Bohlen, 1957). At
the same time, many users will not adopt new devices, thereby
not frequently getting platform upgrades - or none but for a few
security upgrades. This problem is worsened by the update be-
haviour of device vendors who, particularly for Android, maintain
forks widely compatible to the official release but augmented with
custom user interfaces and apps (Dobie, 2012). The situation is
likely to become direr in the near future, with markets in devel-
oping countries being entered. Inexpensive low-end devices might
quickly scale up in those markets but note that current devices
in several markets cannot run the same version of a platform for
reason of capabilities (see for example work by Donner (2008),
Pénard et al. (2012), and Mir and Dangerfield (2013)). A final con-
sideration are combined apps that bridge more than one device
class. Such an app could, e.g., be designed for a second screen and
support both smart TV and tablet (Neate et al., 2017), or serve
as companion app such as for smartphones and smartwatches in
order to offload computation, use alternative input and output
capabilities, or simply cater for different user preferences.

(I3) Supported development platforms: Even though apps
are not normally developed on the platform they are designed
for, multiple possibilities can be encountered. Custom business
logic and advanced configuration of the apps can be expressed
to different extents, possibly differing from the actual app
specification (e.g., domain-specific notations) using one or mul-
tiple interoperable programming languages. In addition, some
degrees of flexibility play a particular role if teams are het-
erogeneous, i.e., developers use specific hardware and software
(Palmieri et al., 2012). Software in this sense does not only
comprise the operation system (with Microsoft Windows and
Apple MacOS being the typical choices) but also development
tools including the development environment. [3 thereby is
related to D1 (development environment), although the latter
concerns the integrated development environment (IDE) typically
used (and often enhanced) for a framework. A good develop-
ment platform support is furthermore beneficial for integration
with additional app development tasks. For example, user inter-
face (UI) and UX design might benefit from multi-platform support
(Bishop, 2006).

(14) Distribution channels: For the majority of users, there are
only few ways to acquire news apps for their devices. Typically,
platform- or vendor-specific app stores provide large repositories
of apps, such as the Apple App Store and Google Play (Jansen and
Bloemendal, 2013). As users are accustomed to searching for
apps on these platforms, it is essential to support the proprietary
stores to reach a high number of users. While cross-loading of
apps technically is easy, vendors might hide this functionality for
strategical reasons, and to make sure users do not compromise

C. Rieger and TA. Majchrzak/The Journal of Systems and Software 153 (2019) 175-199 181

their own safety. Therefore, broad support for the relevant stores is
desirable. While this might seem as naturally given, not all kinds
of apps can necessarily be uploaded to all stores. One example
are PWAs, progressively-enhanced responsive web sites that are
discoverable via search engines and provide app-like interactions
using modern web technologies for offline capabilities, content
updates, and notifications (Russell, 2015; Majchrzak et al., 2018;
Bigrn-Hansen et al., 2018)). While explicitly designed for mobile
devices, PWAs cannot be installed via traditional app stores. Also,
cross-platform frameworks differ in the degree of compatibility
with app store restrictions and submission regulations (Sommer
and Krusche, 2013; Dhillon and Mahmoud, 2015). Particularly well
integrated frameworks may support features such as the rating of
apps to improve app store ranking as well as roll-out support for
updates (Hudli et al., 2015).

(I5) Monetisation: Most apps have neither been created with
purely philanthropic purposes nor merely for the joy of program-
ming - although such apps surely exist (Jakuben, 2013). Therefore,
the monetisation possibilities of apps created with a certain frame-
work need to be assessed. There are several possibilities, which
might also be used in combination (Dhillon and Mahmoud, 2015).
Tang (2016) distinguishes four major monetization models, and we
add free apps as a fifth category of apps with specific business pur-
pose:

e Paid: Apps can be sold for a one-time fee before download-
ing or after a limited test period. This is typically done using
the proprietary stores (see 14) by using their integrated pay-
ment options.
Freemium: If apps follow a freemium model, they can be
downloaded and used for free, but users need to pay if
they want to have access to advanced features or full con-
tent and services after reaching a predefined usage thresh-
old. This model is often employed in games (deprecatorily
coined pay-to-win (Alha et al., 2014) if used excessively),
where players for example will progress quicker when buy-
ing items for actual money (Hsiao and Chen, 2016). The pay-
ment is usually performed via in-app-purchases, in case of
games often consisting of very small payments (micropay-
ment) per feature or upgrade.

e Paidmium: This model combines paid downloads and in-
app purchases, usually found in complex apps such as nav-
igation. Although not always paid for the initial download,
subscription-based models are a form of paidmium as they
are not usable without login to a paid account and necessi-
tate a regular payment in order to retain access to the app’s
full functionality.

e In-app advertising: Advertisements can be shown as part of
the usage of the app. There are ample possibilities how this
can be done (including banner ads, sponsored content, and
white-labelling of the app itself) and to which degree the
advertisements interfere with the usage of the app (Li et al,,
2018).

o Free: Especially business apps (Heitkotter et al., 2015) may
be offered for free to potential users while simultaneously
serving a specific business purpose. This includes informa-
tion portals to increase customer satisfaction as well as ad-
ditional services (e.g., apps for mobile banking or service
booking). They provide value to mobile users and improve
customer loyalty, besides fostering process automation (as
even studied before the emergence of the widened possibil-
ities through mobile computing (Meuter et al., 2000)).

Strictly speaking, apps might also provide features that are un-
desirable for users. For example, recent studies have revealed that
some apps contain software components that are able to track ul-
trasonic sounds used for perfidiously tracking users (Arp et al.,

2016). While such means might offer a source of data monetisa-
tion, we exclude it from further considerations since we deem it
ethically indefensible.

Development frameworks may or may not support means of
monetisation and they might offer particular good support for
some of them. Such features need to be judged in the light of di-
rect costs and omissions to the app store operator (see I4 (Dis-
tribution Channels)). Good support includes interfaces to payment
providers, pre-designed functionality for in-app payments, support
for various types of advertisements, and access to advertising net-
works (Dewan and Chen, 2014; Google LLC, 2018e).

(I6) Internationalisation: Apps are typically distributed glob-
ally. Even if only one language version is available, there are nor-
mally no restrictions regarding who can install an app. There might
be specific reasons to restrict users to local versions or to even pre-
vent the distribution in certain geographic regions. For example, le-
gal conflicts and national legislation may prohibit the distribution
in parts of the world (as reported by Ng et al. (2014) for China).
From a positive point of view, internationalisation and localisation
can offer added value by broadening the base of potential users
and by providing better targeted functionality. Localisation can be
supported by the development framework. It can even go as far
as built-in translation capabilities as well as an easy support of
a multi-language operation mode. This is further aided if features
such as conversion tools (e.g., for dates, currencies, and units) are
provided (Sommer and Krusche, 2013). Additionally, frameworks
might bring in support for national idiosyncrasies, e.g., API support
for state-specific services, for example regarding authentication or
personal data records.

(I17) Long-term feasibility: The choice of an app development
approach can be a strategic decision for a commitment over mul-
tiple years. Depending on the framework, the kind of apps devel-
oped as well as their intended lifetime, and the situation in the
developing company, significant initial investment might be nec-
essary. Moreover, there can be the risk of a technological lock-in
(as particularly discussed in the context of proprietary software
by Zhu and Zhou (2012)). Initial investment includes market stud-
ies, assessments (which, as we hope, are much easier using our
framework), fees, training materials and training courses, and re-
cruiting. The risk of lock-in can only be partly mitigated by look-
ing for good compatibility, adherence to standards, and the usage
of well-known technologies. It is particularly high for small compa-
nies, which might lack the resources to quickly correct an ill choice
and which typically will invest in just one cross-platform develop-
ment framework at a time. Whether a framework is suitable for an
extended period cannot be assessed in a completely objective way
(you may forecast but you cannot prophesy), but maturity, stability,
and activity are indicators that help with an educated judgement:

e The maturity of a framework can be judged according to a
long-lasting existence, a large community of developers and
resulting apps, as well as historic events. The latter may for
example mean that it can be analysed how emergent secu-
rity flaws have been handled.

The stability can be particularly seen when looking at the
history and future schedule of releases. At which rate have
new features been introduced? Have major releases been
backward compatible, and if so, how far? Are update cycles
(for minor releases) sufficiently short? Are bug-fixes and se-
curity updates provided regularly and timely in case of ma-
jor flaws?

Besides release cycles, the activity of a framework relates to
the general contributions of developers and users: Does an
active community exist that reports bugs and discusses so-
lutions to these issues? Is this community likely to provide
support where official documentation falls short? Does this

182 C. Rieger and TA. Majchrzak/ The Journal of Systems and Software 153 (2019) 175-199

community probably even support the future development
of the framework when a major backer withdraws? Particu-
larly in case of open-source products not backed by a large
corporation, a healthy community might even blend with
the development team.

Moreover, if a framework is supported, led, or even owned by
a company or a consortium, the reputation of the key stakehold-
ers should be scrutinized. Typically, financial or even technolog-
ical support (such as code contributions) by commercial entities
is particularly valuable for open-source frameworks (cf. the work
of Andersen-Gott et al., 2012). Additionally, news, plans, and ru-
mours can be checked. For example, the announcement of a new
framework by a company might eventually mean the demise of its
predecessor. Likewise, changes to fundamental technology (e.g., a
JavaScript engine) could mean that a framework is strengthened or
becomes obsolete. Technology breakthroughs may have the same
effect - as could happen with WebAssembly (Wagner, 2017). Fi-
nally, it should be considered whether support inquiries require a
premium. Such costs might not necessarily be considered negative;
in fact, they may hint to a good outlook particularly in the case
of open-source software for which commercial “premium support”
exists to help with development issues (Hudli et al., 2015; Sommer
and Krusche, 2013).

3.3. Development perspective

(D1) Development environment: Rapid development is typi-
cally supported by the use of an IDE. The maturity and feature-
richness of IDEs can greatly influence development productivity
- sometimes also negatively when usability challenges of man-
aging too much functionality overburdens users (Kline and Sef-
fah, 2005). Features such as auto-completion and the integration
of library documentation help with the actual coding. Built-in de-
buggers and emulators support a rapid app development cycle
(Hudli et al., 2015; Sommer and Krusche, 2013; Ciman et al., 2014;
Palmieri et al., 2012; Dhillon and Mahmoud, 2015). If a certain IDE
is not enforced by the cross-platform framework, and in particular
if there is freedom with regard to accustomed workflows, the ini-
tial effort of starting to work with a framework can be significantly
lowered. This can lower the set-up effort of dependencies such as
runtime environments or SDK (Sommer and Krusche, 2013).

(D2) Preparation time: Apps are typically developed rapidly.
Thus, the realized learning curve should be favourable, reflecting
rapid subjective progress of a developer in getting acquainted with
the capabilities of a framework. The entry barrier is also influ-
enced by the required technology stack and the number and kind
of supported programming languages (Xanthopoulos and Xinoga-
los, 2013; Ciman et al., 2014; Sommer and Krusche, 2013; Palmieri
et al., 2012). Being able to rely on well-known programming
paradigms can further reduce the learning efforts needed before
being able to work productively (Ciman et al., 2014). Moreover, the
documentation of the API is important — particularly, if a frame-
work poses unique characteristics or novel ways of providing com-
mon functionality. Additionally, “Getting started” guides, tutorials,
screencasts, and code examples make a framework more acces-
sible and help to clarify features and idiosyncrasies; a corpus of
best practices, user-comments, and technical specifications helps
with staying productive once an approach is initially conquered
(Sommer and Krusche, 2013; Dhillon and Mahmoud, 2015).

(D3) Scalability: Particularly in large-scale or distributed de-
velopment projects, apps need to scale. For this purpose, proper
modularisation is needed. The app structure is heavily influenced
by the general possibilities for partitioning into subcomponents
and by architectural conditions. For example, using the widely ap-
plied Model-View-Controller pattern has profound ramifications for

other design decisions. Ideally, more developers can be added to
a project while the app’s functionality grows (Hudli et al., 2015;
Palmieri et al., 2012). A framework that supports modular or even
component-based development can support this division of labour
- or even guide it. Moreover, when layering is supported and com-
ponents can be given specified interfaces and interaction, a higher
level of specialisation is possible for developers. Besides adding to
the scalability, this might have a positive impact on software qual-
ity.

(D4) Development process fit: From the traditional waterfall
approach (Royce, 1970) over integrated methodologies such as the
Rational Unified Process (Jacobson, 1999) till the variety of ag-
ile methods, many ways of developing software are employed. Al-
though all methodologies have common characteristics (Dyck and
Majchrzak, 2012), actual development differs widely. Compare, for
example, the design-heavy waterfall approach to Extreme Program-
ming (Beck, 1999). Consequently, a framework should be compat-
ible with custom ways of developing software. As the first step, it
can be scrutinized how much effort is required to create the min-
imum viable product. Frameworks differ with regard to the initial
configuration that has to be made, so-called boilerplate code, and
the following effort for incrementing the scope. Thereby, D4 is also
related to D3 (Scalability), as the organisational aspect of speciali-
sation, which might be fostered by methodology-fit, influences the
scalability in terms of functionality. Tailored views and specialised
tool can support modularising development with a profound role
concept, contrasting the work of full-stack developers typically en-
countered in small projects (Wasserman, 2010).

(D5) User interface design: The Ul design is essential when
developing user-centred application, which most apps are. At the
same time, the input and output heterogeneity of mobile device
hardware (A4, A5) poses challenges to the development approach
of mobile Uls using either flexible descriptions such as respon-
sive designs or multiple layouts for specific ranges of screen sizes
(Eisenstein et al., 2001; Rieger and Kuchen, 2018b). Commonly, not
all cross-platform frameworks put weight on platform-agnostic Ul
aspects, partially leaving it at individual implementations per tar-
get platform (Google LLC, 2018f). Graphical user interfaces are usu-
ally specific to a platform and in many cases only covered by a
default appearance defined by the framework (Heitkotter et al.,
2013b). Depending on development requirements, a separate What
You See Is What You Get (WYSIWYG) editor can be very help-
ful. Such editors can be used to design appealing, ergonomic in-
terfaces for multiple devices. They can also increase the pace of
development compared to repeatedly deploying the full app to a
device or an emulator. At the same time, reasonable support for
platform-adequate designs without too much effort from develop-
ers is preferable, for instance considering round and rectangular
layout types for smartwatches.

(D6) Testing: User interface, business logic, and possible ad-
ditional components of apps need to be thoroughly tested (Hudli
et al., 2015; Sommer and Krusche, 2013). In addition to the well-
known techniques and approved strategies of testing desktop and
server applications such as unit tests, the context-sensitivity of
mobile devices should be honoured. For this purpose, mobile sce-
narios (such as moving around, or getting a phone call while
using an app) need to be considered and external influences
(such as varying connectivity) could be simulated (Majchrzak and
Schulte, 2015). In addition to this, monitoring the app at runtime
can further improve its testability. This includes, e.g., providing a
developer console, meaningful error reporting, and logging func-
tionalities for app-specific and system events. Also, remote debug-
ging on a connected device rather than using emulator environ-
ments allows for more realistic test results. Additional tool support
can aid testing further and provide test coverage visualisation and
metrics to support test controlling (Hudli et al., 2015).

C. Rieger and TA. Majchrzak/The Journal of Systems and Software 153 (2019) 175-199 183

(D7) Continuous delivery: Life cycle support does not end with
testing but should also include deployment. Being able to rely
on a solid toolchain greatly simplifies the deployment. For ex-
ample, a framework may leave you with source code generated
for the target platforms, may support the generation of native
apps, or may go all the way by providing signed packages, pos-
sibly even supporting developers in deploying these to devices or
app stores. Frameworks vary greatly, from requiring each target
platform’s native SDKs to using external build services and cloud-
based approaches (Hudli et al., 2015; Sommer and Krusche, 2013).
Particularly if following an agile method, continuous delivery plat-
forms to automate building, testing, and deploying an app may be
used. Frameworks can be explicitly designed to integrate with such
toolchains, for example by generating project-specific scripts. Ad-
ditionally, a framework might offer advanced build options (such
as code minification) and continuous app store integration (e.g., for
automatically publishing updated versions) (Hudli et al., 2015).

(D8) Configuration management: Often, apps do not exist in
isolation but have multiple versions when considering multiple
roles (such as user and administrator with different capabilities),
theming (or branding for white-label apps), and significant re-
gional peculiarities (e.g., right-to-left script). Depending on avail-
able app store features, developers in addition might need to sup-
ply different app packages for free and paid versions with varying
functionality. Cross-platform frameworks can also support the de-
velopment of such feature variations similar to product lines, ei-
ther by providing different app packages or by allowing a dynamic
transition between versions without re-installing the app.

(D9) Maintainability: The application life cycle does not typ-
ically end with one-time deployment (D7). Rather, software is
maintained for a shorter or longer period, over which the code
base evolves (Sommer and Krusche, 2013). Maintainability gener-
ally is hard to quantify. Although simple metrics such as lines of
code (LOC) can give a basic idea (the more source code the harder
to maintain), more complex metrics might reveal a different pic-
ture, for instance when considering code complexity (cf. with the
work of Gill and Kemerer, 1991, but also with the critical assess-
ment of Shepperd (1988)). While such metrics can be used to
compare an app against reference apps, qualitative aspects need
to be taken into account. This concerns readability of code, use
of design patterns, the kind of in-code documentation and sim-
ilar aspects; possibly in conjunction with the amount of train-
ing, familiarisation, and other preparatory efforts (see also D2).
These considerations are similar to the discussion about program-
ming languages, where so-called gearing factors are used to com-
pare the amount of code per unit of functionality (QSM, 2009).
It is problematic to apply advanced maintainability metrics due
to the heterogeneity and varying complexity of frameworks. This
counts even stronger for generative approaches and the resulting
diversity of platform-specific programming languages. As an ad-
ditional aspect, the reusability of source code across development
projects can be evaluated as well as the portability to other soft-
ware projects (Sommer and Krusche, 2013).

(D10) Extensibility: Although a framework should cover a cer-
tain scope and enable the development of typical apps within that
scope, project-specific requirements may go beyond the provided
functionality. However, if they are unlikely to be added as features
due to a low general priority, a framework’s extensibility becomes
important. It can be more flexibly used if custom components can
be added and third-party libraries can be included. Typically cov-
ered areas include extensions for the Ul (such as alternative or ad-
ditional widgets), access to device features, and libraries for com-
mon tasks such as networking and data transfer (Hudli et al., 2015;
Palmieri et al., 2012).

(D11) Integrating custom code: Some applications require na-
tive code or third-party libraries to be run. While this seemingly

contradicts the principle of cross-platform development, it can be
necessary in some cases. This applies in particular when the de-
sired functionality cannot be realized using extensions (D10). Us-
ing native platform APIs might enable access to platform function-
alities and device features that are not currently supported by a
framework or unique to a platform (Sommer and Krusche, 2013;
Palmieri et al., 2012). Moreover, companies might want to integrate
native code to reuse functionalities, for example when successively
migrating apps that were developed natively to a cross-platform
approach.

(D12) Pace of development: While many of the above crite-
ria have an influence on how rapid development will be, there
are some particularly influencing factors. Especially the amount
of boilerplate code necessary for functional app skeletons (cf.
Heitkotter et al., 2014) and the availability of pre-defined function-
ality for typical requirements (such as user authentication) facil-
itate swiftness. Ignoring possible salary differences based on pro-
gramming language proficiency, the overall development speed has
direct influence on the variable costs and, ultimately, the return-
on-investment.

3.4. App perspective

(A1) Access to device-specific hardware: While today’s devices
possess high processing power, their hardware features - espe-
cially sensors — account for the versatility and ubiquitous use. In
consequence, access to platform- and device-specific hardware is
vital for cross-platform frameworks (Hudli et al., 2015; Dalmasso
et al., 2013; Ciman et al., 2014; Sommer and Krusche, 2013; Dhillon
and Mahmoud, 2015). Frameworks with poor coverage incur the
risk of feature-poor apps to be developed. A plethora of device
hardware is present today, including sensors such as camera, mi-
crophone, GPS, accelerometer, gyroscope, magnetometer, and tem-
perature scale as well as novel additions such as a heart rate
monitor. Moreover, devices (more precisely: cyberphysical systems)
may also offer bidirectional interaction through actuators, enabling
them to modify their environment (e.g., in smart home apps).

(A2) Access to platform-specific functionality: Similar to Al,
apps can only make use of the versatility of modern mobile de-
vices if frameworks provide access to the possibilities they offer.
Such platform-specific functionalities include a persistence layer,
providing file system access and storage to a database, contact
lists, information on the network connection, and battery status
(Hudli et al., 2015; Dhillon and Mahmoud, 2015). Furthermore,
support for extending the app with complex business logic us-
ing general-purpose programming languages might be required
in specific app projects but may be inherently restricted by the
framework’s paradigm of development. In-app browser support
can make development much easier when web-based content is
accessed (Hudli et al., 2015). Background services can serve for the
realisation of continuous feature execution such as push notifica-
tions and monitoring (Sommer and Krusche, 2013).

(A3) Support for connected devices: In addition to accessing
hardware and platform functionality (A1, A2), the support for con-
nected devices can be scrutinized. Wearables and other small mo-
bile devices as well as sensor/actuator networks of cyberphysical
systems often rely on coupling with a master device, typically a
smartphone. This enhances their capabilities or might be used for
occasional synchronisation. The interaction of devices respectively
the extension of capabilities through other gadgets has become
more important; thus, the support of viable device combinations
by frameworks should be assessed (Seyed et al., 2015). Specifically,
this concerns the kind and richness of access to coupled devices,
their data, and their sensors. Moreover, the provision of additional
Ul components should be evaluated, if applicable. The latter for ex-
ample applies to smartwatches, which on a smaller screen provide

184 C. Rieger and TA. Majchrzak/ The Journal of Systems and Software 153 (2019) 175-199

a selection of a host device’s functionality. Realising the support
can be trivial if a platform provides a layer of abstraction expos-
ing the coupled device as if it was a regular device component.
However, particularly due to the multitude of possible combina-
tions and the specificity of these, cross-platform frameworks will
need to provide explicit support in many cases, which brings addi-
tional complexity.

(A4) Input device heterogeneity: Mobile devices allow for a
multitude of inputs. This includes traditional means such as key-
board and mouse, (multi-) touch screens, remote controls, and
hardware buttons, as well as modern means such as voice recogni-
tion and futuristic input technologies using gestures or neural in-
terfaces (Rieger and Majchrzak, 2018). However, not all devices al-
low all possible means of input; this is even true within one device
class (consider, e.g., smartphones that understand ultrasound ges-
tures (Horsley, 2016)). In addition, devices typically support com-
plex inputs via several alternatives. Think, e.g., of a smartphone
screen, which can be manipulated via multi-touch gestures such as
taps, swipes, pinches, and pressure, but also reacts to orientation
changes and hardware buttons. Cross-platform frameworks need
to make these possibilities available to developers, consider the
lack of input actions on individual devices, and respect platform-
or device-specific patterns (e.g., scrolling on smartwatches may be
achieved by rotating bezels, digital crowns, or screen swiping). Ide-
ally, they should also provide support for simple usage - for ex-
ample by providing means to register multi-touch events or more
abstract user actions instead of the need to observe single touches
and make sense of their combination.

(A5) Output device heterogeneity: Heterogeneity is also given
for the output possibilities a device offers. Most have screens for
visual output, which differ in size, resolution, format (quadratic vs.
rectangular vs. round), colour palette, frame rate (e.g., very slowly
updated E-ink screens), and opacity (e.g., augmented reality pro-
jections). Moreover, many other possibilities for output exist, such
as projection and sounds (Rieger and Majchrzak, 2018). Adapt-
ability is challenging for traditional devices already (Amatya and
Kurti, 2014) and becomes very complicated with novel gadgets.
Moreover, apps need to cope with device class specific context
changes to realize well-understood design ideals (Schilit et al.,
1994) such as a day/night screen mode for in-vehicle apps.

(A6) Application life cycle: The life cycle inherent to an app
should be supported by a framework. This must not be confused
with the development life cycle addressed in D4 (Development
process fit), D7 (Continuous delivery), and D9 (Maintainability).
The app life cycle comprises of starting, pausing, continuing, and
exiting an app (Sommer and Krusche, 2013), as well as possible
others states in dependence on the platform. Multithreading, con-
tinuously running background services, and notifications further
extend the states in which an app is executed without necessar-
ily providing a graphical UL In addition, individual views and view
elements might have divergent states or even life cycles, e.g., en-
forced teardown of inactive widgets on Android to reduce memory
usage (Google LLC, 2018i).

(A7) System integration: Many apps rely on (business) back-
end systems, which is typically in the interest of the app ven-
dors (Majchrzak and Heitkotter, 2013). Frameworks preferably of-
fer several options for integration in existing ecosystems and work-
flows, including support for data exchange protocols and serialisa-
tion as well as multiple data formats (Dalmasso et al., 2013). Apps
need to be able to consume web services for data storage and
processing. Ideally, inter-app communication should be possible
(consider a banking app requesting transaction authorisation from
an identity verification app). Additionally, workflow-oriented use
cases typically rely on collaboration from several user roles, which
may be supported by an app framework. Finally, system integra-
tion also means that apps need to be customisable, e.g., to follow

the overall design endorsed by a corporate identity (Sommer and
Krusche, 2013).

(A8) Security: App security is an increasingly discussed topic
with many facets (Watanabe et al., 2017). Frameworks can support
the development of secure apps with regard to several security at-
tributes (Parker, 1998):

o As regards confidentiality, mobile platforms provide means
for managing access permissions regarding platform and de-
vice features. In general, such permissions should be han-
dled restrictively. Apps should only request permissions on
demand (e.g., access to contacts only if contacts are to be
imported) (Google LLC, 2018h). Concerning the generally low
understanding of app permissions (Kelley et al., 2012), this
might raise the user awareness and acceptance of apps re-
specting security best practices.

e From an integrity point of view, sensitive data should be
secured using encryption on the device file system or
database. Moreover, secure data transfer protocols impede
eavesdropping when communicating with backend systems
and web services (Dalmasso et al., 2013; Hudli et al., 2015).

o Regarding control, support for user-input validation and pre-
vention of code injections, cross-site request forgery, and
similar attack patterns are preferable (Hudli et al., 2015).

A framework might provide basic or advanced support for se-
curity, ideally freeing inexperienced developers from explicitly im-
plementing security-relevant functionality.

(A9) Robustness: Criteria A1-A5 leave much freedom to the
app developer. Apps should include intelligent fallback mecha-
nisms in case specific features are unsupported or restricted. The
naive option is to redirect a user to a web page. More sophisticated
handling includes graceful degradation techniques such as simpler
representations (Ernsting et al., 2016) and the employment of al-
ternative functions that make up for the unavailable ones. In ad-
dition, robustness also refers to fault-tolerant and resilient mech-
anisms, for example by acting gracefully if permissions are denied
by the user or sensors are deactivated. Fault-tolerance particularly
applies to common situations with poor or unavailable Internet ac-
cess. A framework should enable offline capabilities to keep apps
operational in low connectivity situations, for example by storing
assets and content locally on the device and caching data that
needs to be sent to the backend server as soon as connectivity is
re-established (e.g., Chun et al. (2012)).

(A10) Degree of mobility: Mobility considerations for the de-
sired apps also influence the framework choice. In contrast to the
related criteria on available target platforms (I2) and hardware ac-
cess (A1), different degrees of mobility strongly affect app mechan-
ics and emphasize features beyond infrastructure considerations.
On a high level, four categories can be distinguished (Rieger and
Majchrzak, 2018):

e Stationary: App-enabled devices do not need to be mobile
(e.g., smart home devices). They differ from traditional desk-
top applications regarding input/output characteristics but
barely need to consider contextual information.

* Mobile: Typical mobile applications must process various
types of context information such as location, time, and fur-
ther sensor values (e.g., ambient light for in-vehicle Uls).

o Wearable: In addition to the usage context, wearables need
to adapt to personal preferences and unobtrusively blend
with the user’s life (e.g., when to propose recommendations
or avoid distraction through notifications). Also, other types
of sensors might require continuous event processing for ap-
plications such as health monitoring.

o Autonomous: The highest degree of mobility requires ad-
vanced self-adaptation capabilities for the cyber-physical

system to react to expected and unexpected situations. The
app might therefore exhibit agent characteristics or apply
business rules for automated decision making.

3.5. Usage perspective

(U1) Look and feel: The Ul elements provided by a frame-
work should have a native look and feel rather than resembling
a web site (Sommer and Krusche, 2013). If generated apps use

Table 2

C. Rieger and TA. Majchrzak/The Journal of Systems and Software 153 (2019) 175-199 185
a truly native interface, it should be created in the way typical
for a platform. Elements, views, and interaction possibilities can
be evaluated according to the respective human interface guide-
lines provided by platform vendors (Google LLC, 2018a; Apple Inc.,
2018a). Apps should also support the platform-specific usage phi-
losophy, e.g., regarding the position of navigation bars, scrolling,
and gestures (Sommer and Krusche, 2013). While form-based in-
terfaces suffice in many cases (Heitkotter et al., 2013b) and are
relatively simple to realize, richer user interfaces with 2D anima-

Literature references to criteria and related terms.

Criterion Literature referencing the criterion or related/subordinate terms

11 License (Palmieri et al., 2012; Heitkotter et al., 2013a; Dhillon and Mahmoud, 2015), (direct) costs (Dhillon and Mahmoud, 2015; Hudli et al.,
2015; Heitkotter et al., 2013a; Sommer and Krusche, 2013), open-source (Hudli et al., 2015; Vitols et al., 2013; Palmieri et al., 2012),
availability (El-Kassas et al., 2017)

12 Target platforms Supported platforms (El-Kassas et al., 2017; Dhillon and Mahmoud, 2015; Dalmasso et al., 2013; Sommer and Krusche, 2013; Vitols

D1

D2

D3

D4

D5

D6

D7

D8

D9
D10

D11

D12

Al

Development
platforms

Distribution
channels

Monetisation

Internationalisation
Long-term
feasibility
Development
environment
Preparation time

Scalability

Development
process fit
Ul design

Testing

Continuous delivery

Configuration
management
Maintainability
Extensibility

Custom code
integration
Pace of
development

Hardware access

et al,, 2013; Heitkotter et al., 2013a), mobile platforms (Vilcek and Jakopec, 2017), versions (Botella et al., 2016), portability
(Sommer and Krusche, 2013), mobile operating systems (Palmieri et al., 2012)

(Programming/development) languages (Que et al., 2017; Botella et al., 2016; Charkaoui et al.,, 2015; Ohrt and Turau, 2012; Palmieri
et al,, 2012; Vilcek and Jakopec, 2017; Ribeiro and da Silva, 2012; Dhillon and Mahmoud, 2015), computer operating systems
(Dhillon and Mahmoud, 2015), technologies (Xanthopoulos and Xinogalos, 2013), OS support (Palmieri et al., 2012)

App store (Charkaoui et al., 2015; Dhillon and Mahmoud, 2015; Sommer and Krusche, 2013) publishing (Lachgar and Abdali, 2017),
distribution (Que et al., 2017; Xanthopoulos and Xinogalos, 2013; Heitkotter et al., 2013a), market (Charkaoui et al., 2015) market
place deployment (Xanthopoulos and Xinogalos, 2013), analytics platform (Dhillon and Mahmoud, 2015)

Sales (Lachgar and Abdali, 2017), in-app purchases (Dhillon and Mahmoud, 2015), mobile ad platform support (Dhillon and
Mahmoud, 2015)

(Sommer and Krusche, 2013)

(Heitkotter et al., 2013a), popularity (Lachgar and Abdali, 2017), count of updates (Vitols et al., 2013), community (Vitols et al., 2013)

(Latif et al., 2016; Heitkotter et al., 2013a; Ribeiro and da Silva, 2012), IDE (Que et al., 2017; Dhillon and Mahmoud, 2015; Hudli et al.,
2015; Palmieri et al., 2012), tool restrictions (Sommer and Krusche, 2013), dependencies (Sommer and Krusche, 2013)
Documentation/documents (Lachgar and Abdali, 2017; Que et al., 2017; Vilcek and Jakopec, 2017; Botella et al., 2016), documentation
completeness and quality (Sommer and Krusche, 2013), learning curve (Lachgar and Abdali, 2017), learning effort (Sommer and
Krusche, 2013), community (Vilcek and Jakopec, 2017), speed and complexity of installation (Vilcek and Jakopec, 2017), developer and
user support groups (Hudli et al.,, 2015), ease of development (Heitkotter et al., 2013a)

(Latif et al., 2016; Heitkotter et al., 2013a), complexity (Lachgar and Abdali, 2017), architecture (El-Kassas et al., 2017), architectural
implication (Hudli et al., 2015), MVC support (Dhillon and Mahmoud, 2015; Palmieri et al., 2012)

Development process (Umuhoza and Brambilla, 2016), architecture (Palmieri et al., 2012)

GUI design(er) (Heitkotter et al., 2013a; Ohrt and Turau, 2012), graphical tool for GUI (Lachgar and Abdali, 2017), UI design assistant
(Botella et al., 2016), no-code/low-code support (Hudli et al., 2015), customizability (Sommer and Krusche, 2013)

(Umuhoza and Brambilla, 2016; Sommer and Krusche, 2013), debugging (Que et al., 2017; Botella et al., 2016; Dhillon and Mahmoud,
2015; Sommer and Krusche, 2013; Ohrt and Turau, 2012), simulator (Latif et al., 2016), emulator (Hudli et al., 2015; Ohrt and Turau,
2012), test framework (Hudli et al., 2015)

Building time (Jia et al., 2018), build service availability (Dhillon and Mahmoud, 2015), build support (Hudli et al., 2015),
simplified/automatic builds (Sommer and Krusche, 2013), compile without SDK (Ohrt and Turau, 2012), instant update

(Charkaoui et al., 2015), upgrade (Que et al., 2017), updates (Hudli et al., 2015)

Production support (Hudli et al., 2015)

(Latif et al., 2016; Heitkotter et al., 2013a), supportability (Sommer and Krusche, 2013)

(Sommer and Krusche, 2013), libraries (Hudli et al., 2015), app extensions (Dalmasso et al., 2013), plug-in repository (Vitols et al.,
2013), plug-in extendibility (Palmieri et al., 2012)

Native access (Botella et al., 2016), extensibility with native code (Ohrt and Turau, 2012), native APIs (Palmieri et al., 2012), reuse
(Botella et al., 2016), app layer (Umuhoza and Brambilla, 2016), access to native UI (Dhillon and Mahmoud, 2015)

Development rate (Lachgar and Abdali, 2017), speed of development (Heitkotter et al., 2013a), developing time (Botella et al., 2016),
time to market (Lachgar and Abdali, 2017), budget (Lachgar and Abdali, 2017), complexity of development (Vilcek and Jakopec, 2017),
easiness of development (Ahti et al., 2016)

(Xanthopoulos and Xinogalos, 2013), device features (Latif et al., 2016), device API (Charkaoui et al., 2015), device resource support
(Hudli et al., 2015), sensor data capture (Dhillon and Mahmoud, 2015), built-in features (Dalmasso et al., 2013), hardware sensors
(Sommer and Krusche, 2013), mobile device functions (Vitols et al., 2013), platform-specific features (Heitkotter et al., 2013a), APIs
(Palmieri et al., 2012), accelerometer (Ciman and Gaggi, 2017; 2015; Ciman et al., 2014; Dhillon and Mahmoud, 2015; Vitols et al.,
2013; Palmieri et al., 2012; Ribeiro and da Silva, 2012), compass (Ciman and Gaggi, 2017; 2015; Ciman et al., 2014; Dhillon and
Mahmoud, 2015; Palmieri et al., 2012), proximity (Ciman and Gaggi, 2017; Dhillon and Mahmoud, 2015), GPS (Ciman and Gaggi, 2017;
Que et al,, 2017; Ciman and Gaggi, 2015; Ciman et al., 2014; Dhillon and Mahmoud, 2015; Ribeiro and da Silva, 2012), geolocation
(Sommer and Krusche, 2013; Vitols et al., 2013; Palmieri et al., 2012) camera (Ciman and Gaggi, 2017; Que et al., 2017; Ciman and
Gaggi, 2015; Ciman et al., 2014; Dhillon and Mahmoud, 2015; Vitols et al., 2013; Palmieri et al., 2012; Ribeiro and da Silva, 2012),
audio record (Ciman and Gaggi, 2017), microphone (Ciman and Gaggi, 2015; Ciman et al., 2014; Dhillon and Mahmoud, 2015),
Bluetooth (Dhillon and Mahmoud, 2015; Ohrt and Turau, 2012; Palmieri et al., 2012), accelerator (Que et al., 2017), GPU acceleration
(Dhillon and Mahmoud, 2015), light (Ciman and Gaggi, 2017), notification light activation (Dhillon and Mahmoud, 2015), noise
cancelation microphone (Dhillon and Mahmoud, 2015), NFC (Dhillon and Mahmoud, 2015; Palmieri et al., 2012), gyroscope

(Dhillon and Mahmoud, 2015), barometer (Dhillon and Mahmoud, 2015), Wi-Fi positioning (Dhillon and Mahmoud, 2015), cellular
positioning (Dhillon and Mahmoud, 2015), network (Sommer and Krusche, 2013; Vitols et al., 2013), low-level networking (Dhillon and
Mahmoud, 2015), connection (Palmieri et al., 2012), (hardware) buttons (Sommer and Krusche, 2013), device (information)

(Palmieri et al., 2012)

(continued on next page)

186

Table 2 (continued)

C. Rieger and TA. Majchrzak/ The Journal of Systems and Software 153 (2019) 175-199

Criterion

Literature referencing the criterion or related/subordinate terms

A2

Platform
Functionality

Native features (Lachgar and Abdali, 2017), device resource support (Hudli et al., 2015), functionality (Botella et al., 2016),
platform-specific features (Heitkotter et al., 2013a), contacts (Que et al., 2017; Dhillon and Mahmoud, 2015; Vitols et al., 2013;
Palmieri et al., 2012; Ribeiro and da Silva, 2012), media (Que et al., 2017; Vitols et al., 2013; Ribeiro and da Silva, 2012), files/file
system access (Dhillon and Mahmoud, 2015; Vitols et al., 2013; Palmieri et al., 2012), (user/system/push/alert/sound) notifications
(Dhillon and Mahmoud, 2015; Vitols et al., 2013; Palmieri et al., 2012), calendar (Dhillon and Mahmoud, 2015; Palmieri et al., 2012),
SMS (Dhillon and Mahmoud, 2015), call log (Dhillon and Mahmoud, 2015), voice activation (Dhillon and Mahmoud, 2015), native map
support (Dhillon and Mahmoud, 2015), background processes (Dhillon and Mahmoud, 2015), in-app browser (Hudli et al., 2015),
storage (Vitols et al., 2013; Palmieri et al., 2012), data access (Xanthopoulos and Xinogalos, 2013), local database (Hudli et al., 2015),
database access (Sommer and Krusche, 2013), barcode (scanner) (Vitols et al., 2013; Palmieri et al., 2012), menu (Palmieri et al., 2012)

A4 Input Heterogeneity
A6 App Life Cycle
A7 System Integration

(Sommer and Krusche, 2013)

(Sommer and Krusche, 2013)
A8 Security

touch support (Hudli et al., 2015), gestures (Sommer and Krusche, 2013), swipe, pinch (Dhillon and Mahmoud, 2015)
Social APIs, Cloud APIs (Dhillon and Mahmoud, 2015), backend communication (Dalmasso et al., 2013), corporate identity

(Lachgar and Abdali, 2017; Latif et al., 2016; Dalmasso et al., 2013), secure storage access, code obfuscation (Dhillon and

Mahmoud, 2015), security vulnerabilities, encrypted local storage (Hudli et al., 2015)

A9 Robustness
U1 Look and Feel

stability, reliability (Sommer and Krusche, 2013)
(Xanthopoulos and Xinogalos, 2013; Heitkotter et al., 2013a; Lachgar and Abdali, 2017), user experience (Lachgar and Abdali, 2017;

Ahti et al., 2016; Heitkotter et al., 2013a), appearance (Ahti et al., 2016), (rich) Ul (Botella et al., 2016; Dalmasso et al., 2013), Ul
response time (Jia et al., 2018), interaction-response (Humayoun et al., 2013), user-perceived performance (Xanthopoulos and
Xinogalos, 2013), intuitiveness (Ohrt and Turau, 2012), Ul functionality, native Ul components (Sommer and Krusche, 2013), fluidity,

animations (Lachgar and Abdali, 2017)
U2 Performance

(Sommer and Krusche, 2013), execution time (Bigrn-Hansen and Ghinea, 2018), duration (Corbalan et al., 2018; Delia et al., 2018),

energy/power consumption (Corbalan et al., 2018; Ciman and Gaggi, 2017; 2015; Ciman et al., 2014; Latif et al,, 2016; Dalmasso et al.,
2013), app size (Jia et al.,, 2018; Ahti et al., 2016; Ohrt and Turau, 2012), size of installation (Biern-Hansen et al., 2017; Sommer and
Krusche, 2013), CPU (load) (Corbalan et al., 2018; Latif et al., 2016), CPU occupancy ratio (Que et al., 2017), RAM/memory usage (Jia

et al.,, 2018; Ohrt and Turau, 2012; Ahti et al., 2016), memory occupancy (Que et al., 2017), application/activity launch time
(Bigrn-Hansen et al., 2017; Ohrt and Turau, 2012), rendering time (Jia et al., 2018; Bigrn-Hansen et al.,, 2017), start-up consuming time
(Que et al., 2017), app starting time (Ahti et al., 2016), installation consuming time (Que et al., 2017), battery temperature (Que et al.,
2017), network flow (Que et al., 2017), resources consumption (Latif et al., 2016), application speed (Heitkotter et al., 2013a)

u3 Usage patterns

User experience conventions (Ohrt and Turau, 2012), screen rotation (Dhillon and Mahmoud, 2015; Palmieri et al., 2012), device

orientation (Ciman and Gaggi, 2017), accessibility features (Ohrt and Turau, 2012), frequency of use (Lachgar and Abdali, 2017), offline
mode (Lachgar and Abdali, 2017; Charkaoui et al., 2015)

tions are harder to realize. 3D environments and multimedia fea-
tures are particularly challenging for cross-platform frameworks
(Dalmasso et al., 2013).

(U2) Performance: Poorly performing apps likely face low user
acceptance. Performance comprises of aspects such as app load
time, app speed for changing views and computations resulting
from user interaction (responsiveness), perceived speed of network
access, and stability. While the subjective impression is important
and might differ according to individual projects’ requirements,
some performance aspects can be measured. This includes the
start-up time, the time to awake after interruptions, and the time
to shut down (Dhillon and Mahmoud, 2015). Additionally, resource
utilisation can be scrutinized. This includes CPU load, memory us-
age, battery drain during runtime (and possibly while background
services remain active), and download size (Sommer and Krusche,
2013; Ciman et al., 2014; Dalmasso et al., 2013; Ciman and Gaggi,
2015). Performance aspects need to be carefully balanced, as a pure
focus on performance can negatively impact many other criteria
and optimisation for other criteria might negatively affect perfor-
mance (for instance by bloating an app).2

(U3) Usage patterns: Apps are used in typical patterns. This in-
cludes many apps that are used infrequently and some apps that
are often used, although normally only for a short amount of time
and often with interruptions. Users desire an “instant on” expe-
rience and continue where they left the app. Unsaved data ide-
ally should be available even after closing the app or even af-
ter rebooting a device. Data retrieved from the Internet should
stay available when temporarily loosing connectivity. Apps should
align with personal workflows for information processing such as
sharing with other apps or saving to persistent storage. Moreover,
they should integrate with common apps for interaction with other

2 The interrelation of criteria is illustrated in Fig. 1 and discussed in
Section 6.1 (p. 19 onwards).

users, such as messaging, email and social media services. Data-
intensive apps, especially if they have desktop counterparts, should
support synchronisation of app data across multiple devices. In
particular, background synchronisation for seamless, transparent
context switching is desirable. Additionally, apps should make use
of platform-wide services such as a notification centre or means to
store certain types of documents (such as Apple Wallet for boarding
passes and similar documents Apple Inc., 2018b).

(U4) User authentication: User management becomes increas-
ingly important: apps may have a purely local, single user, cloud-
based accounts (e.g., enabling services such as synchronisation),
or employ centralised user management with multi-device ac-
count management or role-based access rights (Kunz et al., 2014).
Similarly, authentication is possible on an app-level or server-
based. Apps might include session management, and they might
cache login information (e.g., for a limited-functionality offline
mode). Ideally, frameworks should offer several ways for user au-
thentication, including traditional pins and passwords, gestures,
based on biometric information, and voice recognition (Luca and
Lindqvist, 2015). While this criterion has many implications for the
app perspective (and clever features of a framework can consider-
ably simplify the developers’ job), we have put it under the user
perspective to underline the importance of it for working with an
app.

4. Weight profiles

In the following, we first give the rationale of weight profiles
before explaining the application. We then provide notable exam-
ples.

4.1. Rationale

There are two sides to the evaluation of technological and tech-
nical criteria. First, there is the actual assessment of a phenomenon

C. Rieger and TA. Majchrzak/The Journal of Systems and Software 153 (2019) 175-199 187

(in this case of a cross-platform development framework) under
that criterion. It should be based on facts and made as little sub-
jective as possible. Thereby, it should also be replicable. In general,
this assessment is not individual, i.e., it should be the same in-
dependent of situation, context, and assessor. Second, there is the
importance of the criterion for the individual situation. This is spe-
cific to a setting and dependent on context, personal preferences,
and applicability of the criterion.

To cater for this observation, criteria ought to be weighted in-
stead of simply using their average assessment score to denote the
overall assessment of a framework. This also serves the purpose of
balancing different levels of technical depths of criteria, which is
unavoidable given the heterogeneity of the considerations reflected
in our criteria catalogue.

Despite the individuality of the weighting, developers and com-
panies in need of a decision typically face one of a number of com-
parable settings. Therefore, along with our evaluation framework
we propose weight profiles. These correspond to typical develop-
ment settings; they are a kind of patterns or templates. Profiles can
be used as-is for a quick assessment and to gain an overview. Al-
ternatively (or successively), they can be used as the foundation for
an individual assessment. Instead of needing to start from scratch,
a profile provides a reasonable weighting for a typical situation,
which commonly will need only some tweaking. Weight profiles
are not meant to be static but to evolve with the general evolu-
tion of the mobile computing ecosystems. Thus, they also serve an
important part of keeping our framework timely.

One of the experts we asked to assess our criteria catalogue
(see Section 5) noted that such an “approach could help also to
document thoroughly the rationale behind specific tool selections”.
This might be particularly important in corporate decision mak-
ing, where ultimately “supervisors with or without technical ex-
perience” will decide. Additionally, weight profiles also honour a
divide-and-conquer proceeding in which individual criteria are as-
sessed by narrow-area experts, criteria categories are evaluated
by experts with more general focus (compare, e.g., a backend
programmer to a senior software engineer), IT managers set the
weights, and finally general management makes the decisions.

4.2. Application

Each of the 33 criteria receive a weight between 1 and 7°. The
total is 100 points, i.e., each point denotes a 1% weight. In case a
criterion should be omitted in the assessment, assigning a weight
of 0 is also possible.

Each evaluated criterion is assigned a score from 0 (criterion
unsatisfied) to 5 (criterion fully satisfied). The overall score S of an
assessment is then calculated as the weighted arithmetic mean of
the criteria, i.e., as

7 . 12 10 4
2o Wi EiH Y5 W j djt 300 Wa j * A+ D g Wy j * Uj
- 100 ’

S
> Wi = 100

with i, dj, a;, and u; being the criteria score from the infras-
tructure, development, app, and user perspective, respectively, and
Wj j, Wq j, W j, and w, ; the corresponding weights for each cri-
terion. We suggest rounding to two decimal digits; finer-grained
scores hardly have a practical relevance. The nearer the score is
to 5, the more wholesome is a framework; a score of 0 would be

3 Higher weights are not only impractical but also questionable given the granu-
larity of our criteria. With high weights for single criteria, the weight for the major-
ity of criteria would be very low, possibly leading to a point where assessing them
would make little sense since they would have no significant effect on the over-
all score. Our criteria are meant to offer a balanced assessment where no single
criterion inherently is more important than the other.

given to one that is entirely dysfunctional. Which ranges of scores
are to be expected, sufficient, and realistic will be revisited in the
discussion (Section 6) of this article.

This weighted summation is deliberately chosen to ensure sim-
plicity and understandability for all stakeholders in the assess-
ment process. Essential requirements such as weights being pro-
portional to the relative value of criterion score changes are ful-
filled by using equal intervals for all scores across heterogeneous
criteria (Hobbs, 1980). In contrast to more advanced techniques
for multi-criteria analysis such as rank-based criteria assessment
or pair-wise comparisons (Barron and Barrett, 1996), the chosen
approach is modular in nature such that weights and scores can
be defined by different experts in the respective domain. In addi-
tion, new frameworks can easily be added to the decision process
without re-evaluating all combinations. This capability is particu-
larly suited for today’s fast-changing world in which mobile devel-
opment frameworks constantly appear and disappear.

4.3. Example profiles

Table 3 (following in the next section, p. 14) provides a weight-
ing with the weights of the smartphone weight profile, along with
the weights of five additional profiles. The smartphone profile is
the most standardized profile; its weights are well backed by em-
pirical and theoretical work as well as experience from practice.

Prior work has shown that cross-platform approaches often fo-
cus developers’ need (Research2guidance, 2014). Typically, open-
source approaches will be appreciated (I1 (License)). Undoubtedly,
good support of the desired target platforms has a high value (12),
and a long-term feasibility will be sought (I7). In alignment with
these infrastructure considerations, developers find a proper devel-
opment environment (D1), an adequate preparation time (D2) and
swift development progress (D12 (Pace of development)) impor-
tant. For smartphone usage, a good user interface (D5 (UI Design))
is essential. Regarding the actual app, particularly proper access to
device hardware (A1) and platform functionality is needed (A2). Fi-
nally, from the user perspective smartphone apps needs to provide
a near-native appearance (U1 (Look and feel)) and a good runtime
performance (U2). Consequently, in the smartphone weight profile
% of the criteria (i.e., 11) have 56% of the total weight.

This generic smartphone profile can be amended to fit with par-
ticular needs. For example, if the choice of a framework has spe-
cific strategical significance, full weight (7) could be given to I1 (Li-
cense) and 17 (Long-term feasibility), and possibly a higher weight
to D9 (Maintainability) and A7 (System integration). At the same
time, D2 (Preparation time) and D3 (Scalability) could be assigned
very low weights.

Similarly to the smartphone profile, it makes sense to provide
a tablet profile. It could be used for apps specifically targeting
tablets. Depending on the target of development, it might be used
in conjunction with the smartphone profile, e.g., when apps are
supposed to provide specific support to different screen sizes and
orientations. The tablet profile is very similar with smaller devia-
tion of typically only 1. However, such small deviations might tip
the scales if several matured frameworks are almost equipollent
with the smartphone weights.

The entertainment profile applicable for example to augmented/
virtual reality devices has many similarities to the aforementioned
ones; however, less emphasis is given to the app perspective
(with exception of an app’s robustness (A9) - low robustness of,
e.g., games is very frustrating). Much attention is given to the
user perspective to satisfy users’ needs when using an app to be
entertained. The notable exception is the look and feel (U1). While
we routinely stress the importance of a native look and feel of an
app, entertainment apps often come with a highly individual user
interface. Particularly games often do not adhere to a platform’s

188 C. Rieger and TA. Majchrzak/ The Journal of Systems and Software 153 (2019) 175-199
Table 3
Comparison of frameworks and device class weight profiles for the exemplary scenario.
Smartphone Comparison Category Weights (%)
_ s g o
S g 3 & E 2 g
z > &} 4 « 2 s = o T
2= 2 §E 3 2|2 3 £ 2 %
. 2 c =z £ 5 3F| % = £ 35 =
Criterion = = [-9 & z = = = > 2
11 License 5 5 5 5 5 5 6 5 3 5
12 Target Platforms 6 | s 4|5 |41 5]6]|s5]|4]7
I3 Development Platforms 2 4 5 4 2 2 2 1 1 1
14 Distribution Channels 2 5 3 3 4 2 3 4 3 3
I5 Monetisation 1 0 3 3 5 2 1 1 2 2
16 Internationalisation 1 1 3 3 5 2 2 2 0 1
17 Long-term Feasibility 5 5 5 3 4 5 3 3 5 5
D1 Development Environment 7 4 5 4 5 7 7 5 5 6
D2 Preparation Time 7 5 4 4 3 7 7 5 1 5
D3 Scalability 2 3 3 4 3 2 3 2 3 2
D4 Development Process Fit 2 3 3 3 2 2 3 1 3 2
D5 Ul Design 4 3 3 2 4 4 5 5 6 2
D6 Testing 3 3 4 3 5 3 3 3 6 3
D7 Continuous Delivery 3 5 5 3 3 3 3 4 3 2
D8 Configuration Management | 1 0 0 0 3 1 1 2 2 2
D9 Maintainability 2 2 4 4 2 2 2 1 3 2
D10 Extensibility 2 5 5 2 5 2 2 2 1 2
D11 Custom Code Integration 2 0 3 3 5 2 2 1 0 0
D12 Pace of Development 4 3 4 3 0 4 3 3 2 4
Al Hardware Access 4 2 4 3 5 3 1 6 4 6
A2 Platform Functionality 5 2 4 3 5 5 3 2 2 3
A3 Connected Devices 3 0 2 2 5 2 1 5 3 7
A4 Input Heterogeneity 1 3 4 4 5 3 3 2 2 2
A5 Output Heterogeneity 1 3 4 4 5 1 1 6 3 4
A6 App Life Cycle 2 0 2 4 4 5 3 3 3 3 2
A7 System Integration 3 3 3 3 5 3 3 1 2 1
A8 Security 3 0 0 0 3 4 1 3 7 5
A9 Robustness 2 2 4 2 3 1 4 3 2 1
A10 Degree of Mobility 1 1 1 3 5 1 0 4 5 0
Ul Look and Feel 5 1 2 3 4 5 4 2 4 5 3
U2 Performance 4 2 3 2 3 5 3 6 3 3 2
U3 Usage Patterns 2 0 2 2 2 2 3 4 3 3 4
U4 User Authentication 3 0 0 0 1 2 4 0 1 4
Weighted Score 2.87 | 298 | 3.59 | 3.11 | 3.73

interface standards at all but provide custom elements to create
an immersive atmosphere.

Although the app-enablement of cars is just at its beginning
and uncertainty exists regarding the best approach for secure and
reliable platforms (Mandal et al., 2018), we propose a vehicle pro-
file to illustrate a weighting that is less similar to the former three
than those are to each other. Save for the long-term-feasibility
(17), less weight could be given to the infrastructure perspective.
Regarding development, we consider the Ul design (D5) to be
particularly important, so that apps for cars can be aligned with
existing infotainment systems. Moreover, testing of such apps (D6)
is vital, as even in non-security critical areas app crashes and mal-
functions are highly undesirable for their distraction alone. In the
app perspective, we would put weight on access to hardware (A1),
which would be unlike the hardware apps typically have access
to. Highest importance must be given to security (A8). Particularly
an app that has been given wide hardware access must not be

exploitable to gain access to a car’s internal functions. Additionally,
the degree of mobility (A10) should ideally be very high.

Finally, due to the rise of IoT applications with interfaces to
consumer usage, we deem a smart home profile to be utile. Even
though this field is also still emerging and the weights might
need adjustments in the near future, an initial assessment can
be made. Due to the very high heterogeneity, adequate support
of possible target platforms (12) is essential. For the same reason,
special emphasis should be put on long-term feasibility (I7) at this
stage. Development aspects can get somewhat less focus but for
a powerful IDE and a low preparation time, enabling a rapid start
with trying out functionality - and a low penalty for changing
to another framework if necessary. An app requires profound
hardware access (A1), good connectivity with a wealth of other
devices (A3), and a high level of security (A8).

Weight profiles are not limited to typical settings in corporate
app development. One of our experts suggested that weighting

C. Rieger and TA. Majchrzak/The Journal of Systems and Software 153 (2019) 175-199 189

would also be useful if students work on development projects.
Weighting would then be aligned with the curriculum. Thus, there
could for example be a CS-123 “Mobile App Development Labo-
ratory” profile. It would be a specialisation from the smartphone
profile that discards - in this setting - superfluous criteria such
as I4 (Distribution channels), I5 (Monetisation), 16 (Internationali-
sation), and D8 (Configuration management).

5. Evaluation study

According to the taxonomy by Majchrzak et al. (2015a), three
main approaches to develop apps can be distinguished (although
recently introduced frameworks such as React Native and Native-
Script are blurring the lines between them):

1. app employing a runtime-environment, subdivided into
(Progressive) Web Apps, hybrid apps (similar to Web Apps
but wrapped in installable containers), and self-contained
runtimes,

2. generative approaches, subdivided into model-driven soft-
ware development and transpiling of existing apps, and

3. native development.

Obviously, only the first two qualify for cross-platform develop-
ment. The following evaluation compares a heterogeneous selec-
tion of frameworks in order to demonstrate the applicability of the
proposed evaluation scheme to different development approaches.
In particular, native app development is contrasted to the hybrid
app framework PhoneGap as well as to React Native and to (Pro-
gressive) Web Apps. PhoneGap was chosen due to its perennial
prominence and popularity as leading cross-platform development
tool using hybrid apps (Stack Overflow, 2018). As a relatively new
approach, React Native aims to combine the advantages of native
Ul elements with the familiarity of JavaScript among web develop-
ers (Facebook Inc., 2018). Web Apps on the other end of the spec-
trum bridge the gap to traditional web development - especially
with regard to the recently introduced concept of progressive Web
Apps, which intensify the integration of web and smartphone ap-
plications.

This evaluation does not aim for a comprehensive survey of
the investigated frameworks but rather serves as a benchmark
for our evaluation criteria. Nevertheless, it can be used by re-
searchers to scrutinize our criteria; for practitioners is can serve as
a starting point. More detailed comparisons of specific frameworks
are for example provided by Dhillon and Mahmoud (2015) or
Hudli et al. (2015).

5.1. Method

The criteria presented in Section 3 have been assessed by sev-
eral experts, both academic researchers involved in mobile app re-
search and practitioners with experience in cross-platform devel-
opment tools. Their feedback has been incorporated in the im-
proved criteria description.

To demonstrate the applicability of our criteria catalogue and
weighting scheme, we perform an evaluation study. Resulting from
the recent emergence of devices, barely any (commercial or aca-
demic) framework exists that allows for cross-platform develop-
ment within one or across multiple device classes regarding novel
mobile devices (cf. Section 2). Our evaluation study therefore fo-
cuses on cross-platform smartphone frameworks to demonstrate
the applicability of our weighted criteria approach, which can be
backed with empirical and theoretical work. For better assessment,
the corresponding criteria (or rather their short identifiers) are
given in brackets when discussing aspects of a frameworks through
Sections 5.2-5.5.

As a hands-on scenario of a cross-platform app, we consider the
example of a typical business app that performs data manipulation
tasks for field service workers. Salespersons need ubiquitous access
to the company’s information systems to support their daily work.
For example, they are often away on business and frequently expe-
rience context switches in sales talks with customers or while trav-
elling. Retrieving up-to-date information such as current inventory
levels is essential for decision making. Also, performing tasks such
as order placement or master data management can be accom-
plished efficiently. Using a mobile cross-platform app, field service
workers can use a device of their choice and benefit from digitized
business processes.

As elaborated in Section 4, the chosen weights presented in
Table 3 (p. 14) are therefore not inalterable but adapted to this
specific use case. Arguably, they represent a suitable weight profile
regarding business apps for company-internal usage based on
the following considerations. Previous studies have shown that
cross-platform approaches are often driven by IT departments
to enable efficient development for multiple target platforms
(Research2guidance, 2014). From an infrastructure perspective, this
means that open and extensible approaches are considered to be
particularly important. Concerning long-term feasibility, the domi-
nance of Android and iOS as main players on the mobile operating
system market (Forni and van der Meulen, 2017) has created
a stabilized smartphone ecosystem. Consequently, distribution
channels are mostly limited to the respective platform-specific
app stores, which offer a broad set of features such as limiting the
deployment to a geographic region or offering multiple language
versions.

App developers want to use existing standards and pre-
vious knowledge to progress quickly with the task at hand
(Research2guidance, 2014). Until now, apps are commonly de-
veloped in small development teams. Hence, the organisational
aspects of software engineering practices such as scalability,
maintainability, and the integration in team-oriented development
processes have low priority (Research2guidance, 2014). With
increasing variety of devices and complexity of the apps itself,
effective testing of app artefacts becomes more important when
dealing with essential business activities. A targeted delivery
of related apps (e.g., language-specific variants or functional
variability) is, however, negligible for the given scenario. Most
important, Ul design using characteristic platform widgets and
interaction patterns seems to be an ongoing challenge for cross-
platform framework. Beyond company-internal apps, it may even
become more important for “standing out from the mass of apps”
(Amatya and Kurti, 2014).

On the application side, access to a broad rage of device
functionalities is frequently requested by practitioners. This trend
is facilitated by the convergence of input and output capabilities
in the matured smartphone market. In general, apps are mostly
used for entertainment and communication purposes (Lella and
Lipsman, 2017); thus, business integration and security issues are
specific requirements for digitisation projects allowing for the
transmission of sensitive data to mobile devices.

In 2016, worldwide mobile usage has already surpassed desktop
usage (StatCounter, 2016), a trend which is potentially acceler-
ated by the plethora of upcoming wearable devices. Therefore,
smartphones cannot be treated as merely displaying web content
from anywhere - a platform-specific look and feel as well as
performance considerations remain important topics for mobile
app development. Finally, user authentication is often required for
apps because a central backend or cloud environment often serves
as content provider for the application or is used for additional
services such as synchronisation across devices.

According to this scenario and the derived weight profile,
the following subsections discuss the suitability of PWAs, Phone-

190 C. Rieger and TA. Majchrzak/ The Journal of Systems and Software 153 (2019) 175-199

Gap, and React Native in contrast to traditional native app
development. We do not justify each score separately (which
would require at least 32 x5 =160 sentences clumsily filled
with numbers). Rather, we address particularly noteworthy parts
of the evaluation, especially if scores do not intuitively make
sense in the light of the frameworks and based on above
considerations.

5.2. (Progressive) Web Apps

Web Apps are web sites created with web technologies -
HTMLS5, Cascading Style Sheets (CSS), and JavaScript (JS) - that are
optimized for mobile usage. They are run inside a browser, which
makes them compatible with any device providing a browser
that supports the features of employed versions of HTML, CSS,
and JS. Consequently, Web Apps integrate well with traditional
web development tooling (I1 (License), 12 (Target platforms), I3
(Development platforms)), yet app distribution cannot be con-
trolled as no centralised app store exists (14 (Distribution chan-
nels)). Furthermore, the web development foundation constraints
its “app-like” behaviour, resulting in recurring features of apps
for cloud-based services to be re-implemented manually, e.g.,
regarding internationalisation, payments, or user authentication
(I6 (Internationalisation), D12 (Pace of development), U4 (Devel-
opment process fit)). As smartphones become computationally
more powerful and web development standards evolve to incor-
porate new (hardware) features in public APIs of browser envi-
ronments, the long-term feasibility (17) of this approach can be
assured.

The recent development has led to so-called Progressive Web
Apps (PWA), which need to be distinguished from “classic” Web
Apps. While PWAs are also created using web technologies, their
possibilities go beyond what was possible so far (Majchrzak et al.,
2018). According to Google, the key characteristics to provide a
better user experience are to create reliable, fast, and engaging ap-
plications (Google LLC, 2018h). Using Service Workers, PWAs can be
added to a smartphone’s home screen without the need to install
them like native apps. In addition, recent standards for in-browser
storage are used to load app logic and previous content from the
device and provide functional applications even in situations with
unavailable or unstable network connection. They might thereby
close the gap between web site and native apps, providing a con-
tender for the unifier of mobile development (Bigrn-Hansen et al.,
2017).

With regard to developing apps, an immense community of
developers exists as standard web development skills are required;
many tutorials and profound tool support are available to learn (D1
(Development environment), D2 (Preparation time)). However, this
flexibility also limits the goal-oriented creation of apps. The struc-
ture of source code and Ul development completely depend on the
developers, for instance requiring boilerplate code. Frameworks can
provide guidance by structuring the components of the app and
consistently applying the concepts of PWAs (D3 (Scalability), D4
(Development process fit), D5 (Ul design)). For example, the Ionic
framework (lonic, 2018) is based on the common JS library Angu-
lar and focuses on the fast creation of Web Apps though a large
variety of pre-defined components for Ul design and interactions.
Whereas several techniques for testing JavaScript exist, desktop
browsers can only inadequately emulate the characteristics of
mobile devices and mobile in-browser debugging of the complete
app life cycle is complicated (D6 (Testing)). On the other hand,
established tool chains (for instance build tools such as Grunt
or Gradle) can be used to assemble Web Apps in a continuous
delivery process, especially regarding the increasing complexity
of app product lines (D7 (Continuous delivery), D8 (Configuration
management)).

The Ionic framework and similar libraries simplify the devel-
opment of Web Apps through modular components that can be
reused in multiple projects; in addition, they are extensible using
third-party plug-ins (D10). The execution of native code is, how-
ever, generally unsupported within a browser environment* (D11
(Custom code integration)). Instead, device components can be ac-
cessed via HTML5 APIs such as Media Capture Stream and Bat-
tery Status, which are varyingly supported by mobile browsers
(A1 (Hardware access), A2 (Platform functionality)) and depend
on the platform vendors’ willingness to support these standards
(MobileHTMLS5, 2015). Considering input and output mechanisms,
keyboard and gesture support are well established through]S
events. These are based on traditional web page behaviour, thus
providing only limited support for novel mechanisms such as
voice-based interfaces (A4 (Input heterogeneity), A5 (Output het-
erogeneity), Ul (Look and feel)). Web Apps and PWAs are inher-
ently bound to JavaScript engines, which are unavailable on most
wearable devices; also, browser environments are not designed to
interoperate with connected devices (A3 (Connected devices), A10
(Degree of mobility)).

As stated before, all aspects regarding system integration, se-
curity, and robustness have to be built manually based on web
technology without platform-specific abstraction (A7 (System inte-
gration), A8 (Security), A9 (Robustness)). The largest advantages of
PWAs are related to the usage perspective. By storing application
code and previous content on the device instead of fully reload-
ing a web site, the perceived performance is drastically improved
(Google LLC, 2018g). Through service workers running in the back-
ground even after “leaving” the Web App, the application life cycle
is better supported (A6). Also, the application can save user-related
characteristics to the local device and instantly adapt to the users’
preferences when reopening the PWA (U2 (Performance), U3 (Us-
age patterns)).

5.3. PhoneGap

The first stable release of PhoneGap was developed in 2009,
just two years after the introduction of the first smartphones
such as Apple’s iPhone. Since then, it has evolved to one of the
top-used cross-platform development tools (Davis, 2009; Stack
Overflow, 2018). PhoneGap and its open-source foundation Apache
Cordova are representatives of the hybrid app development ap-
proach. Essentially, a regular Web App is developed with HTML5
and JavaScript and subsequently wrapped in a container that uses
a Web view component for rendering the content without browser
controls. In addition, the framework provides a bridge to access
native device functionality through a common JavaScript API (A1l
(Hardware access), A2 (Platform functionality)). The platform-
specific wrappers allow for packaging installable apps for all major
smartphone platforms. These can be distributed via regular app
stores and utilize their general monetisation and internationalisa-
tion features except for deeply integrated features such as in-app
purchases (I1-16).

Because of the underlying app content, most of the freedoms
and restrictions of Web Apps apply likewise. The framework’s
structure is well documented and many tutorials are provided by
the community to quickly gain momentum and start custom de-
velopment from a minimal running app skeleton. Consequently,
the developer can create the app using any methodology, modular
structure, and web development environment (D1-D5, D12 (Pace of
Development)).

4 Current ambitions of introducing further high-level languages to browsers using
binary instructions such as WebAssembly (http://webassembly.org/) open up inter-
esting perspectives to native in-browser development, but cannot be considered a
feasible alternative, yet.

http://webassembly.org/

C. Rieger and TA. Majchrzak/The Journal of Systems and Software 153 (2019) 175-199 191

Due to subtle differences between browser engines on desktop
computers and smartphones, hybrid apps with embedded Web-
View components are more complex to test than Web Apps. Also,
running a WebView interlinked with custom app code introduces
new security risks Luo et al. (2011). To support the testing of
intermediate app prototypes, PhoneGap offers a remote debugging
interface that connects to actual devices (D6 (Testing), A8 (Secu-
rity)). Furthermore, the delivery of the resulting apps is simplified
through a cloud-based deployment service to build app packages
without locally installed SDKs (D7 (Continuous delivery)). Through
the extensive API as level of abstraction, differences across plat-
forms are counterbalanced, which increases the overall speed
of development and ensures the maintainability when platform
implementations evolve (D9 (Maintainability), D12 (Pace of devel-
opment). A large set of plug-ins exist to augment the PhoneGap
core functionality with additional features (D10 (Extensibility)). In
contrast to Web Apps, this also includes native code components
that can be added to the bridge component in order to extend the
JS-accessible API to further device hardware (D11 (Custom code
integration)). Consequently, various input and output capabilities
are supported. The Event API and Device API additionally allow
for managing the overall app life cycle (A4-A6) (Apache Software
Foundation, 2015; Adobe Systems Inc., 2015).

Similar to Web Apps, the approach is limited to smartphones
and tablets due to the required JavaScript engine (A10 (Degree
of mobility)). However, third-party plug-ins exist to connect
PhoneGap apps to external devices such as Wear OS smartwatches
(Gardner, 2018) (A3 (Connected devices)). With regard to the
native look and feel, PhoneGap apps not automatically comply
with individual platform guidelines but provide a generic mobile
appearance (U1 (Look and feel)). All app functionality needs to
be implemented manually (A7 (System integration), A8 (Security),
A9 (Robustness), U3 (Usage patterns), U4 (User authentication)).
Finally, the additional functionality through the wrapper com-
ponent incurs a performance overhead (U2) as, e.g., analysed by
Dhillon and Mahmoud (2015).

5.4. React Native

Traditionally, the decision of implementing apps using either a
hybrid approach or native development splits the community of
developers into two camps. Besides many subordinate differences,
a long-lasting controversy revolves around sacrificing a convincing
platform-aligned appearance for the benefit of using web tech-
nologies well-known by a large community of developers. Several
papers have investigated this topic and works such as the present
article aim to guide developers in choosing an approach adequate
to the project-specific requirements (Mercado et al.,, 2016; Que
et al.,, 2017; Angulo and Ferre, 2014). However, a variety of frame-
works such as NativeScript and Flutter have recently emerged that
try to bridge this chasm by creating native Ul components while
specifying the app with JavaScript (Progress Software Corp., 2018;
Google LLC, 2018d). A popular framework, React Native, is backed
by Facebook and was presented in 2015 (Occhino, 2015). Using
the API of the JavaScript framework React (also called React]S), the
whole app, including view elements, is specified using JavaScript
and a template syntax called]JSX. Instead of rendering the content
in a browser component, the frameworks is based on a runtime
approach that uses a JavaScript engine to execute business logic
but transforms Ul-related code into commands to the native Ul
elements.

React Native is distributed under the permissive MIT license
(A1) and currently targets the two major platforms Android and
iOS (A2). Developers can freely choose their development plat-
form and environment that supports JavaScript (I3 (Development
platform), D1 (Development environment)). As the resulting arte-

facts are installable app packages, capabilities and restrictions
regarding distribution channels and app store features such as
monetisation and internationalisation are similar to hybrid apps
(14-16). However, due to the relative youth of the framework,
long-term reliability (I7) has not yet established and the developer
community is still comparably small. The current trend towards
JavaScript frameworks with native Ul components might change
this assessment in the future. Also, being backed by Facebook
reduces the risk of discontinuation before the framework has
matured.

Developers experimenting with React Native benefit from an
extensive documentation and profit from previous knowledge of
React]S (D2 (Preparation time)). Due to the highly component-
centred architecture of React Native, apps can be easily subdivided,
which improves development and long-term maintainability (D3
(Scalability), D4 (Development process fit), D9 (Maintainability)).
Generally, this structure is favourable for including third-party
extensions; yet, comparatively few of them exist (D10 (Extensibil-
ity)). On the other hand, the composition of components within
the reactive programming paradigm complicates Ul development
and testing because app interactions are hard to simulate within
and no visual editor supports the custom JSX notation (D5 (Ui
Design), D6 (Testing), D7 (Continuous delivery). Consequently, the
advantages of using JavaScript cannot yet be fully utilized in terms
of development speed, mainly because of the relatively recent
introduction of the framework and supporting tools (D12 (Pace of
development)).

With regard to app capabilities, 34 APIs exist to access plat-
form functionality and hardware features (A1, A2), although some
cover only individual platforms. Supporting established JavaScript
input/output events allows for a decent coverage of user interac-
tion possibilities (A4 (Input heterogeneity),A5 (Output heterogene-
ity)). Due to its underlying native foundation, integrating custom
native code is also possible (D11 (Custom code integration)) and
third-party components provide Message APIs to interact with con-
nected devices on a case-by-case basis, e.g., Wear OS smartwatches
(A3 (Connected devices)). The overall app life cycle as well as in-
tegration and security characteristics are comparable to PhoneGap
apps with native components but for an additional layer of ab-
straction (A6 (App life cycle), A7 (System integration), A8 (Secu-
rity)). Similar to other JavaScript approaches, functionality and us-
age patterns need to be re-implemented manually and the novelty
of the approach restricts the range of predefined components (U3
(Usage patterns), U4 (User authentication), A9 (Robustness)). How-
ever, the runtime approach provides additional flexibility for future
development, especially creating connectors to map the React Na-
tive APIs to non-smartphone platforms and thus support a much
larger range of devices compared to web views (A10 (Degree of
Mobility)).

In the resulting apps, the native Ul components achieve an ap-
pearance well-adapted to the target platform. Also, a comparably
low performance overhead is induced by the runtime because it
can delegate performance-heavy Ul computations to the native en-
vironment (U1 (Look and feel), U2 (Performance)).

5.5. Native apps

Although technically not a cross-platform approach, it makes
sense to compare frameworks with the baseline of native apps
to highlights the potential of cross-platform app development. In
particular, the native approach does not achieve a perfect score:
Despite individual platform capabilities being fully exploitable,
drawbacks result from the separate development of multiple apps.
Moreover, development in the native languages and using the
typical environment for native development is not necessarily
more efficient; in fact, even the performance of a native app

192 C. Rieger and TA. Majchrzak/ The Journal of Systems and Software 153 (2019) 175-199

might be challenged by one that undergoes runtime optimiza-
tion, as has been discussed” for desktop applications written in
Java (Goetz, 2005). Besides, using native development might feel
clumsy compared to the convention-over-configuration approach
typical for modern frameworks (Vuksanovic and Sudarevic, 2011).

Obviously, the target platforms are limited to only one, whereas
the app itself may be developed using various development plat-
forms or technologies (12 (Target platforms), I3 (Development plat-
forms)). Using the freely distributed platform SDKs, a full inte-
gration of apps with the respective app store infrastructure can
be achieved, including runtime interactions such as in-app pay-
ments and updates (I1 (License), 14 (Distribution channels), 15
(Monetisation), 16 (Internationalisation)). Because iOS and Android
have emerged as stable duopoly of smartphone operating sys-
tem vendors, long-time reliability is ensured (Forni and van der
Meulen, 2017). Yet, even within such ecosystems, technological
changes occur over time, e.g., introducing new programming lan-
guages such as Swift for i0S or Kotlin for Android (17 (Long-term
feasibility)).

With regard to the development perspective, knowledge of
these programming languages is mandated but in general, platform
vendors provide detailed documentation of the APIs and best prac-
tices to the large community of developers (D1 (Development en-
vironment), D2 (Preparation time)). In addition, platform-adapted
IDEs often support the development process through visual editors
for Ul design (D5) or suitable tools for testing, bundling, and de-
ploying apps (D6 (Testing), D7 (Continuous delivery)). On the other
hand, this flexibility requires the developer to decide on appropri-
ate processes to develop, scale, and maintain the app (D3 (Scala-
bility), D4 (Development process fit), D9 (Maintainability)). For ex-
ample, developers can use platform and app store features to de-
velop multiple app versions such as regional language translations
or theming, but the actual integration of provided low-level func-
tionality needs to be performed by hand. As different programming
languages and platform characteristics prohibit the reuse of code
across multiple platforms, the redundant implementation of apps
leads to a very inefficient pace of development (D11 (Custom code
integration)).

Native apps can access all possible features of a given plat-
form (A1-A7). Again, this flexibility is provided on a low level of
platform interfaces and developers have the responsibility to ade-
quately use the provided features. For example, platforms allow for
a fine-grained control over app permissions or network connectiv-
ity, yet it is up to the developers to exploit these capabilities and
react to app-external changes of context. Similarly, the app state
can be monitored to integrate typical usage patterns and provide a
pleasant user experience (A8 (Security), A9 (Robustness), U3 (Us-
age patterns), U4 (User authentication)).

Finally, native app development ensures that visual appearance
and user interactions can be fully aligned with the respective plat-
form guidelines (U1 (Look and feel)). At the same time, develop-
ers can achieve the best performance on computationally restricted
mobile devices as overhead of cross-platform abstractions through
frameworks or runtimes is avoided (U2 (Performance)).

5.6. Intermediate conclusions

In this section, we have demonstrated how the proposed crite-
ria catalogue can be put into practice by performing an evaluation
study. While focussing on business apps for smartphones, we com-
pared different development paradigms for mobile apps with the

5 Benchmarking just-in-time compiled programs is an extremely hard endeavour
(Georges et al., 2007). For native apps, research on runtime optimization is an open
task.

help of representative and widespread frameworks. More specific,
native development for multiple platforms is contrasted to purely
browser-based Web Apps and enhanced Progressive Web Apps us-
ing the Ionic Framework, hybrid apps with PhoneGap/Apache Cor-
dova, and the runtime-based approach React Native.

For the given scenario, it can be concluded that native app de-
velopment supports the widest set of features but comes at the
cost of multiple redundant implementations. Though simple to de-
velop, Web Apps do not provide an adequate solution for cross-
platform apps - yet Progressive Web Apps enable more app-like
behaviour and significantly reduce the drawbacks of in-browser
apps on supported platforms. Hybrid app frameworks such as
PhoneGap on the one hand outperform the previous approaches by
combining the ease of web development using technologies such
as JavaScript while at the same time creating installable apps with
access to hardware sensors and platform features. On the other
hand, native app appearance and performance are unobtainable
and critically noticed by users (Ahti et al., 2016). Finally, trend-
ing runtime-based frameworks such as React Native aim to solve
the usage drawbacks of hybrid apps through native Ul components
while still being programmed using JavaScript. However, due to
their novelty these frameworks have not yet established a large
community to provide third-party libraries and equivalent cover-
age of functionality.

We want to stress that this evaluation is largely influenced
by the scenario-specific weight profile and based on the specific
frameworks’ capabilities. Changing the weights would arguably
lead to different recommendations. In fact, having no eminent win-
ner of the evaluation underlines the benefits that situation-specific
weights provide. This also has implications for research and prac-
tice: Scientific assessment of cross-platform app development is far
from being complete. At the same time, practitioners are undoubt-
edly provided with a choice of good option; finding the optimal is
strongly dependent on context. We recommend to do at least indi-
vidual weighting, if feasible also additional assessment.

Moreover, the evaluation must be seen in the light of ongo-
ing developments. For example, novel frameworks such as React
Native might soon be on a par with long-standing frameworks
when the community of developers grows and openly shares com-
ponents for reuse in other projects. Also, target platforms evolve
such that PWAs might be better supported in the future; thus fur-
ther blurring the lines between apps and the Web. Our evaluation
study should therefore rather be seen as a present-day snapshot
of the mobile app development landscape instead of a final as-
sessment. We by no means claim to provide a definite ranking of
frameworks. On the contrary, such universal evidence does not ex-
ist but strongly relies on assumptions derived from the applica-
tion domain, company guidelines, team members’ experience, and
project-specific requirements.

In order to provide the necessary flexibility for customised eval-
uations, the weight profiles can be used to tailor the compre-
hensive list of criteria to the respective use case as described in
Section 4. Moreover, our catalogue of criteria can be applied to
different classes of mobile devices and considers the varying im-
portance of specific criteria. Consequently, this work can be used
by practitioners as well as researchers for systematically selecting
a suitable cross-platform development framework.

6. Discussion

Although most feedback by the experts consulted to examine (a
prior iteration of) our catalogue is already incorporated in the pre-
sented set of criteria, some overarching topics are discussed in the
following. In addition, we revisit literature gaps, limitations, and
implications on further research.

C. Rieger and TA. Majchrzak/The Journal of Systems and Software 153 (2019) 175-199 193

6.1. Assessment

To validate our evaluation framework and the criteria of the
catalogue, we contacted several experts from academia and prac-
tice with experience in the field of mobile app development to
scrutinize the approach. More specific, open-ended questions were
asked to assess the following requirements for each criterion®:

« Comprehensibility: Are descriptions clear even for people
without cross-platform proficiency?

« Unambiguousness: [s it impossible to wrongly interpret cri-

teria or the way how frameworks should be assessed accord-

ing to them?

Adequacy: Do the criteria really cover important aspects for

selecting a framework?

o Completeness: Are the criteria collectively exhaustive and

cover all relevant aspects of cross-platform framework se-

lection?

Consistency: Are descriptions free from contradictions? Are

criteria mutually exclusive?

Verifiability: Can the criteria realistically be used to assess

cross-platform development frameworks? Are the descrip-

tions specific enough to be operationalisable?

L]

Additional questions dealt with the following overarching as-
pects:

o Are all criteria operationalisable? This includes whether we
realistically describe them and whether they are not too
generic.

e Do our criteria align with the “business routine” in soft-
ware development? In particular, do they fit with different
development methodologies (e.g., agile vs. traditional) and
paradigms? And does the catalogue reflect app development
practices in teams (e.g., team size, roles etc.)?

e Besides smartphones and tablets, does our catalogue suf-
ficiently cover requirements towards app development
for novel and future app-enabled devices such as smart
watches, cars, smart glasses, VR devices etc.? If not, which
changes or even which new criteria are needed?

e Does the catalogue constitute a good balance between prac-
tical relevance and rigorous work on the criteria?

Overall, we received very positive feedback on the criteria we
deem important for evaluating cross-platform frameworks. The
feedback has resulted in several clarifications to the criteria de-
scriptions and are incorporated in the criteria catalogue presented
in Section 3. The experts noted that particularly for rather generic
criteria such as D12 (Pace of development) disjunction with other
criteria needs to be scrutinized. Undoubtedly, full independence of
criteria is unobtainable even if direct overlaps are avoided to the
degree achieved by us; in the example of D12, its relationship to
D2 (Preparation time) is evident. Further influences between crite-
ria in the presented catalogue are visualized in Fig. 1.

The directed edges in Fig. 1 can be read as “having an inherent
influence”, not as “having a constituting influence”. This means that
no criterion is a superordinate or marks a kind of prerequisite for
another one. Rather, some criteria share characteristics that despite
all strive for cohesion are not independent in typical settings in
practice.

Consider, e.g., (12) supported target platforms. The supported
platforms, and the way they are supported for example regarding
different versions, cannot fully be untied from the (I7) long-term

6 We roughly follow typical assessment criteria used in requirements engineering
(Sommerville, 2011, p. 94). These are handy for cases in which a comprehensive
specification is desired.

D8
222511 o] (2]

Fig. 1. Visualisation of main dependencies among evaluation criteria.

feasibility. Undoubtedly, unsatisfying platform support will hardly
go along with a good long-term feasibility. However, the other way
around, very good platform support does not mandate long-term
feasibility, which is dependent on many other factors. Addition-
ally, (A1) Access to Device-specific Hardware and (A2) Access to
Platform-specific Functionality are influenced by I12. The worse the
platform support is, the less likely it is to meet satisfying levels of
hardware and platform access. Again, this is a unidirectional rela-
tionship.

Explicating such interdependencies should make it easier to as-
sess and advance our framework. For practical usage, there should
hardly be any consequences. However, with any future changes to
the framework keeping the high cohesion of criteria needs to be
an explicit aim.

Cross-platform app development for mobile devices extends be-
yond “traditional” smartphones and tablets. With novel classes of
mobile devices such as smartwatches and smart TVs reaching a
more widespread adoption and further ones such as connected
cars, smart glasses, and augmented/virtual reality devices foresee-
able (Rieger and Majchrzak, 2018), new apps might be developed
for multiple platforms within such a device class or even bridging
different heterogeneous devices. Therefore, our experts were fur-
ther asked whether the existing set of criteria satisfies the addi-
tional requirements or what changes need to be made. Although
none of the interviewed experts had previous practical experience
with novel app-enabled devices from a developer perspective, to
their perception the presented catalogue is apt to these new chal-
lenges.

The applicability of our criteria catalogue for real projects is an
important consideration to assess whether we have managed to
achieve a good balance between practical relevance and rigorous
work on the criteria. In addition, the criteria catalogue needs to
align with typical business routines. For example, development
methodologies such as agile approaches or typical team structures
such as team size and role distribution influence the ability to
follow the approach presented in this work. Responses indicate
that our catalogue is well applicable and can easily be tailored
to a project-specific configuration. Not all criteria are equally
important; therefore, the weighting approach presents a suitable

194 C. Rieger and TA. Majchrzak/ The Journal of Systems and Software 153 (2019) 175-199

solution to filter and prioritize the comprehensive set of possible
criteria and adapt it to company- or project-specific requirements.
One expert stated it would be helpful to have an additional check-
list in order to simplify the assessment of the score for individual
criteria. This was also backed by another expert who expressed
concerns that some criteria require much effort for assessment
(such as the robustness, A9) or are hard to verify (such as the
performance, U2). We are aware of the practical benefits of a
checklist; however, the fast-moving mobile domain would require
a constantly updated list of current and upcoming features for
a broad set of frameworks. Instead, the list of criteria relevant
for cross-platform frameworks has stabilized over time and is a
long-term contribution to the field of research. Moreover, we have
noted when project-specific requirements should be considered.

6.2. Ongoing demand for research

The comprehensive literature search that serves as foundation
for our criteria catalogue revealed five gaps that call for further re-
search in the field of assessing mobile cross-platform frameworks.

First, the selection of criteria often appears to be chosen in
an ad-hoc manner and rarely covers all four perspectives nor an
exhaustive list of criteria within one specific perspective. For in-
stance, Ribeiro and da Silva (2012) focus on the development and
app perspectives but do not mention essential criteria such as the
effort to set up (D2) and continuously maintain (D9) developed
apps. Our weighting approach aims to guide the selection pro-
cess by focusing on important criteria from the large catalogue.
However, how to create adequate weight profiles or setting cus-
tom weights are still open questions. We have provided the tools
but how to use them most effectively needs to be identified. On
the one hand, the domain of (novel) mobile devices still evolves
quickly and many new devices are proposed. The identified device
classes might therefore change in the future and evolutionary ef-
fects of convergence (e.g., fitness devices and smartwatches share
commonalities such as health tracking capabilities) or divergence
(e.g., augmented and virtual reality devices might develop charac-
teristic features when more devices appear) might be observed. On
the other hand, the chosen weights in this work are convincingly
argued but need to be validated through real-world projects and
are open for revisions. Because of the limited availability of case
studies on novel mobile devices, the overall prioritisation of crite-
ria for different device classes needs further research (nevertheless,
project-specific adaptations are always possible).

Second, a need for common benchmarks arises from the multi-
tude of individual and incomparable evaluation studies. Researches
put significant effort in the assessment of cross-platform frame-
works, yet various parameters limit the comparability of their re-
sults:

 Features: Various software and hardware features can be
considered for framework comparisons. No uniform set of
features that are expected has been described.

e Metrics: Measuring the performance of feature usage is
complex. Sensor modes (e.g., network- or hardware-based
location detection), data retrieval methods (getting the last
known value vs. waiting for the next update), and the
amount of system- or app-specific setup instructions (event
listeners, etc.) have a great impact on the outcome when
measuring execution times and resource utilization. How-
ever, benchmarks with detailed specification of constituent
metrics are usually omitted and thus limit reproducibility.

« Platforms: Commonly, the distinction is made between the
two major operating systems Android and iOS but not all
studies cover both (e.g., Que et al., 2017) such that results
cannot be transferred. Moreover, different versions of each

may qualify as distinct platforms if the internal (e.g., per-
formance improvements by using different browser engines)
or visible characteristics (e.g., the introduction of material
design affecting usability) have significantly changed (EI-
Kassas et al., 2017).

« Devices: Emulated and physical devices exhibit a large va-
riety of hardware characteristics which affect the outcome.
In addition, current settings such as energy modes as well
as contextual influences (e.g., network connectivity) or back-
ground tasks influence the application behaviour.

o Framework architecture: The underlying architecture of a
framework can further complicate the comparison. For ex-
ample, the performance of traditional and reactive handling
of Ul components is hard to assess objectively and frame-
works may provide custom events for accessing sensors such
as the camera which influences available metrics.

As a result, studies produce vastly different - sometimes sur-
prising or contradicting - results, even for quantitative and seem-
ingly objective performance measures. For instance, surprisingly
slow execution times for NativeScript’s video playback feature ob-
served by Corbalan et al. (2018) cannot clearly be attributed to the
device, the platform version, or the framework itself for lack of
repetition. Also, studies tend to either specialize on a large set of
criteria and a limited set of evaluated frameworks (e.g., Que et al.,
2017) or vice versa (e.g., Umuhoza and Brambilla, 2016). Given
the rapid emergence of new frameworks and the degeneration
into insignificance of others, a stable set of common, repeatable
benchmarks would be beneficial to enable more comparable re-
sults among different evaluation studies. For example, energy con-
sumption is well researched for established frameworks such as
PhoneGap, Sencha Touch, and Titanium (Ciman and Gaggi, 2017;
Dalmasso et al., 2013) but there is no simple solution to compare
these results with a measurement using a recent framework such
as React Native. Automating the testing procedure to compare a
large variety of devices with different platform versions as, e.g.,
performed by Que et al. (2017) is a worthwhile step towards this
aim. However, the set of features and procedures to build such a
benchmark suite need to be further researched. Also, it is not obvi-
ous whether an isolated examination of hardware or software fea-
tures is sufficient or whether (and which) app scenarios (e.g., Bigrn-
Hansen et al., 2017) are better suited to assess a framework under
realistic conditions.

Third, frameworks are nowadays designed to provide simi-
lar applications for different platforms and thus different users.
With the advent of wearables and other app-enabled devices,
app ecosystems are likely to change. For example, the same user
might own multiple devices and use them in combination or
subsequently depending on personal preferences (Rieger and Ma-
jchrzak, 2016). Frameworks can possibly adapt to this by reusing
source code of one existing app (El-Kassas et al., 2017), applying
multi-level code generation (Umuhoza and Brambilla, 2016; Rieger
and Kuchen, 2019), or using other techniques related to the evolu-
tion of cross-platform software. Evaluating a framework for such
a usage scenario is, however, barely considered and subject to
further research. In addition, research on usability and Ul design
needs to scrutinize whether it is desirable that the interaction with
several design classes should converge. Dependent apps for differ-
ent types of devices that are unified as much as possible while
keeping traits specific to (and desired for) a class would make a
class-spanning cross-platform development framework even more
complex than it already is. At the same time, a framework that
provides such functionality would dramatically simplify develop-
ers’ life.

Besides the user-centred aspects, one expert also suggested that
system integration (A7) might become (even) more important in

C. Rieger and TA. Majchrzak/The Journal of Systems and Software 153 (2019) 175-199 195

the future, possibly even suggesting to split up the criterion. While
using cloud services is essential for many apps already, the em-
bedding of them in whole ecosystems of services and applications
will likely require more attention with the expected convergence
of mobile computing and IoT. When a multitude of devices pro-
vide functionality from the same app ecosystem, aspects of re-use,
partitioning and distribution could also require more attention.

Finally, whereas security and data privacy issues are important
especially in a business context, studies on mobile security suggest
that current apps created using cross-platform tools are commonly
not designed with security in mind. For example, an analysis on
Apache Cordova apps by Willocx et al. (2017) revealed that best
practices for the framework are mostly ignored. Integrating and
evaluating the security of cross-platform apps is another challenge
that has not been studied systematically and mandates further re-
search.

6.3. Limitations

Although we deem our evaluation framework theoretically
sound and usable in practice, opportunities for further research
exist. Being based on existing literature and validated by experts
with cross-platform experience, the criteria catalogue has a solid
foundation and is expected to provide a comprehensive and rather
stable set of criteria. However, the technological evolution of app-
enabled devices and platforms is hard to foresee.

For example, Tesla initially announced an own SDK but recon-
sidered this approach due to security concerns (Lambert, 2016).
New kinds of devices are designed with a focus on app-
enablement - or not. Regarding platform evolution, Wear OS
(Google LLC, 2018j) might unify development for wearables or at
least consolidate different streams. Alternatively, ecosystems such
as the Universal Windows Platform (Microsoft Inc., 2017) might es-
tablish themselves as integrated platforms that simplify the devel-
opment for multiple devices. Also, it remains to be seen whether
the success of Web technology and plethora of JavaScript frame-
works for bridging the heterogeneity of devices will extend to-
wards new device classes. So-called instant apps can be run with-
out installation on smartphones (Ganapathy, 2016) and might also
contribute to future changes. Yet for now, most novel mobile de-
vices do not support JavaScript engines such as WebKit (e.g., due to
hardware constraints) and require different approaches to achieve
cross-platform compatibility.

Therefore, while the criteria catalogue can be expected to be
relatively stable, keeping up with the technological progress will
remain an inherent limitation of any work on assessing mobile
computing technology.

Regarding the established weight profiles, limitations have al-
ready been mentioned in Section 6.2. More research is needed to
gain empirical insights in suitable weights. Moreover, it would be
utile to provide better support in criteria-specific evaluations. For
examples, what would be the expected interval in which mea-
surements are to be found for quantitative criteria? What would
be sufficient expectations for qualitative ones? How would this be
transferred to the score, and how could it be ensured that progress
is reflected in these scores? Moreover, which ranges of scores could
be expected in general, and which scores for assessment are suf-
ficient and realistic? We have put these questions as boundaries
rather than as tasks for future research for now, as answering them
in a generalizable manner, aiming at the same soundness as our
criteria catalogue as such, will be next to impossible.

On a more general level, it needs to be questioned whether full
ecosystems similar to the current situation for smartphones will
emerge for all device classes. The multitude of upcoming devices
makes cross-platform development much more difficult, especially
when considering the interrelations of multiple devices used in

combination by the same user. A cloud-based middleware, mirror-
ing techniques, or other “remote” approaches could solve issues
such as low performance, hardware heterogeneity, and security
without even relying on device-installed apps directly (Gallidabino
et al., 2016; Koren and Klamma, 2016). Nonetheless, the criteria
catalogue established in this work is flexible enough to deal with
a wide range of technological bases which enable cross-platform
capabilities.

6.4. Future work

Although we are confident that we have reached the goal of
providing not another but the definitive framework for evaluation
of cross-platform app development approaches, we will continue
with our work on related topics.

One of the experts suggested that for better operationalisation
of own assessments, it would be helpful to have a per-criteria
checklist. Remember for instance criterion 12 (Target Platforms).
The checklist could comprise Android, iOS, and Windows Mobile
for smartphones. However, whether it should not contain more op-
erating systems would be a matter of discussion, as would be how
the checklist should be kept up to date. Moreover, if you think of
other criteria, it can be extremely hard to propose a relatively sim-
ple list. For example, D4 (Development Process Fit) can hardly be
broken down into single items that can be checked (or not). Thus,
we deem research on such checklists, and in general on assessment
advice (How to do it? Single choice, multiple choice, multiple se-
lect?) a target of our future work.

Ongoing research concentrates on engineering cross-platform
frameworks for novel mobile devices and approaches for devel-
oping apps across multiple device classes. Besides numerous tech-
nical considerations, the prevalent conceptual challenges relate to
suitable abstractions for developing apps for devices with hetero-
geneous input and output capabilities as well as different capabili-
ties. Also, multi-device interactions become important when using
different devices sequentially or concurrently depending on per-
sonal preferences or usage context. In the domain of data-driven
business apps, model-driven approaches such as MAML (Rieger and
Kuchen, 2018a; Rieger, 2018) and MD? (Heitkétter et al., 2013b)
with high levels of abstraction are promising for extending them
towards new device classes such as smartwatches. However, it is
still very hard to image proper abstractions for different domains
such as home automation apps for devices that fall under the um-
brella of smart home technology.

In addition to the two concrete topics, we will continue with
our work on building the theory of modern mobile computing. This
quest will be built upon a close scrutinisation of work in practice
and strive to provide rigour where fast-pace developments pre-
dominate.

7. Conclusion

In this article, we have proposed an evaluation framework for
cross-platform app development approaches. Building on previous
frameworks and being broken down into sound abstract criteria,
it sets out to be the way of assessing cross-platform development
frameworks for all situations in which app-enabled devices play a
role.

We have shown that much literature exists yet few works have
gone the lengths of providing comprehensive, holistic frameworks.
Moreover, the complexity introduced by novel mobile devices is re-
flected in many works yet needed to be grasped and built into as-
sessment criteria. We have provided and, in much detail, explained
our criteria catalogue, which provides a synthesis of the literature.
Criteria are grouped into four perspectives: infrastructure, develop-
ment, app, and usage. To provide means for a tailored, customised

196 C. Rieger and TA. Majchrzak/The Journal of Systems and Software 153 (2019) 175-199

assessment, we have proposed the usage of weight profiles. With
the help of these, a criteria-based assessment can be adapted to
whatever situation is concretely met. In fact, one assessment can
even be used to cater for multiple decisions.

We have demonstrated the feasibility of our framework with an
evaluation study. This study has been done by applying the crite-
ria catalogue to several app development approaches, namely (Pro-
gressive) Web Apps, PhoneGap, React Native, and native apps for
comparison. The framework has been proven handy. Moreover, we
have provided exemplary weight profiles. Our results have been as-
sessed by several experts from the field of mobile computing.

We have identified much need for future research, most notably
regarding the weighting, the understanding of the technological
progress, and the emergence of device ecosystems. We will con-
tinue to work on solving these challenges. Eventually, we hope to
be able to provide further synthesis articles such as this. The the-
ory on modern mobile computing ought to be extended!

Acknowledgements

We would like to thank the experts who contributed to the as-
sessment of our criteria catalogue. Detailed feedback was received
from

« Henning Heitkotter, SAP SE

o Gregor Kurpiel, itemis AG

« Spyridon Xanthopoulos, University of Macedonia

Moreover, we would like to thank the three anonymous]SS re-
viewer who pointed out several options for improving our work.

Supplementary material

Supplementary material associated with this article can be
found, in the online version, at doi:10.1016/j.jss.2019.04.001.

References

Adobe Systems Inc., 2015. PhoneGap documentation. http://docs.phonegap.com.

Ahola, J., 2015. Challenges in Android Wear application development. In: Cimiano, P,
Frasincar, F, Houben, G.-]., Schwabe, D. (Eds.), Engineering the Web in the Big
Data Era. Springer International Publishing, Cham, pp. 601-604.

Ahti, V., Hyrynsalmi, S., Nevalainen, O., 2016. An evaluation framework for cross-
platform mobile app development tools: a case analysis of adobe phonegap
framework. In: ACM International Conference Proceeding Series, 1164 doi:10.
1145/2983468.2983484.

Alaa, M., Zaidan, A.A., Zaidan, B.B., Talal, M., Kiah, M.L.M., 2017. A review of smart
home applications based on internet of things. . Netw. Comput. Appl. 97, 48—
65. doi:10.1016/j.jnca.2017.08.017.

Alha, K., Koskinen, E., Paavilainen,], Hamari, J., Kinnunen, J., 2014. Free-to-play
games: professionals’ perspectives. In: Proceedings of nordic DiGRA, 2014.

Amatya, S., Kurti, A., 2014. Cross-platform mobile development: challenges and op-
portunities. In: ICT Innovations 2013, 231. Springer, pp. 219-229.

Andersen-Gott, M., Ghinea, G., Bygstad, B., 2012. Why do commercial companies
contribute to open source software? Int. J. Inf. Manag. 32 (2), 106-117. doi:10.
1016/j.ijinfomgt.2011.10.003.

Angulo, E., Ferre, X,, 2014. A case study on cross-platform development frameworks
for mobile applications and UX. In: Proceedings of the XV International Confer-
ence on Human Computer Interaction. ACM, New York, NY, USA, pp. 27:1-27:8.
doi:10.1145/2662253.2662280.

Apache Software Foundation, 2015. Apache Cordova documentation. https://cordova.
apache.org/docs/en/.

Apple Inc., 2018a. iOS Human Interface Guidelines. https://developer.apple.com/
design/human-interface-guidelines/ios/.

Apple Inc., 2018b. Wallet - apple developer. https://developer.apple.com/wallet/.

Arp, D., Quiring, E., Wressnegger, C., Rieck, K., 2016. Bat in the Mobile: A Study
on Ultrasonic Device Tracking. Computer Science Report 2016-02. Institute of
System Security, Technische Universitdt Braunschweig.

Automatic Labs, 2018. Automatic: connect your car to your digital life. https://
automatic.com/.

Barron, FH., Barrett, B.E., 1996. Decision quality using ranked attribute weights.
Manag. Sci. 42 (11), 1515-1523.

Beal, G.M., Bohlen, J.M., 1957. The diffusion process. Agricultural Experiment Station.
Towa State College.

Beck, K., 1999. Extreme Programming Explained: Embrace Change. Addison-Wesley.

Bigrn-Hansen, A., Ghinea, G., 2018. Bridging the gap: investigating device-feature
exposure in cross-platform development. In: Proceedings of the 51st Hawaii In-
ternational Conference on System Sciences. ScholarSpace, pp. 5717-5724.

Bishop, J., 2006. Multi-platform user interface construction: achallenge for software
engineering-in-the-small. In: Proceedings of the 28th International Conference
on Software Engineering. ACM, pp. 751-760. doi:10.1145/1134285.1134404.

Bigrn-Hansen, A., Majchrzak, T.A., Grenli, T.-M., 2017. Progressive Web Apps: The
Possible Web-Native Unifier for Mobile Development. In: Proceedings of the
13th International Conference on Web Information Systems and Technologies
(WEBIST). INSTICC, SciTePress, pp. 344-351. doi:10.5220/0006353703440351.

Bigrn-Hansen, A., Majchrzak, T.A., Grenli, T.-M., 2018. Progressive Web Apps for the
unified development of mobile applications. In: Majchrzak, T.A., Traverso, P,
Krempels, K., Monfort, V. (Eds.), Revised Selected Papers WEBIST 2017. Springer,
pp. 64-86.

Botella, F, Escribano, P., Pefialver, A., 2016. Selecting the best mobile framework for
developing web and hybrid mobile apps. In: Proceedings of the XVII Interna-
tional Conference on Human Computer Interaction. ACM, New York, NY, USA,
pp. 40:1-40:4. doi:10.1145/2998626.2998648.

Bouhnick, G., 2015. A List of All Operating Systems Running on Smartwatches. http:
//[www.mobilespoon.net/2015/03/a-list-of-all-operating- systems-running.html.

Brisebois, M.A., Drummond, B., Mehta, A., Chene, M., Flannigan, M., 2017. Method
and system for customizing a mobile application using a web-based interface.
US Patent 9,836,446.

Carter, J., 2015. Which is the best Internet of Things platform?. http://www.
techradar.com/news/-1302416.

Charkaoui, S., Adraoui, Z., Benlahmar, E.H., 2015. Cross-platform mobile develop-
ment approaches. Colloquium in Information Science and Technology, CIST,
2015-January doi:10.1109/CIST.2014.7016616.

Chmielewski, J., 2013. Towards an Architecture for Future Internet Applications.
In: Lecture Notes in Computer Science, 7858, pp. 214-219. doi:10.1007/
978-3-642-38082-2_18.

Chun, B.-G., Curino, C., Sears, R., Shraer, A., Madden, S., Ramakrishnan, R., 2012. Mo-
bius: unified messaging and data serving for mobile apps. In: Davies, N., Se-
shan, S., Zhong, L. (Eds.), Proceedings of the 10th International Conference on
Mobile Systems, Applications, and Services - MobiSys '12. ACM Press, New York,
New York, USA, pp. 141-154. doi:10.1145/2307636.2307650.

Ciman, M. Gaggi, O., 2015. Measuring Energy Consumption of Cross-Platform
Frameworks for Mobile Applications. In: LNBIP, 226, pp. 331-346. doi:10.1007/
978-3-319-27030-2_21.

Ciman, M., Gaggi, 0., 2017. An empirical analysis of energy consumption of cross-
platform frameworks for mobile development. Pervasive Mob. Comput. doi:10.
1016/j.pmc;j.2016.10.004.

Ciman, M., Gaggi, 0., Gonzo, N., 2014. Cross-platform mobile development: a study
on apps with animations. In: Proc. ACM Symposium on Applied Computing
doi:10.1145/2554850.2555104.

Corbalan, L., Fernandez, J., Cuitifio, A., Delia, L., Caseres, G., Thomas, P, Pesado, P,
2018. Development frameworks for mobile devices: acomparative study about
energy consumption. In: Proceedings of the 5th International Conference on
Mobile Software Engineering and Systems. ACM, New York, NY, USA, pp. 191-
201. doi:10.1145/3197231.3197242.

Dalmasso, I., Datta, S.K., Bonnet, C., Nikaein, N., 2013. Survey, comparison and eval-
uation of cross platform mobile application development tools. In: Proc. 9th
IWCMC doi:10.1109/IWCMC.2013.6583580.

Dash Labs, Inc., 2018. Dash - smarter driving, every day. https://dash.by/.

Davis, L., 2009. PhoneGap: People’s Choice Winner at Web 2.0 Expo Launch Pad.
http://readwrite.com/2009/04/02/phone_gap.

Deindl, M., Roscher, M., Birkmeier, M., 2015. An architecture vision for an open ser-
vice cloud for the smart car. Green Energy Technol. 203, 281-295. doi:10.1007/
978-3-319-13194-8_15.

Delia, L., Galdamez, N., Corbalan, L., Pesado, P., Thomas, P., 2018. Approaches to mo-
bile application development: comparative performance analysis. In: Proc. Com-
puting Conference 2017. Institute of Electrical and Electronics Engineers Inc.,
pp. 652-659. doi:10.1109/SAI.2017.8252165.

Dewan, S.G., Chen, L.-d., 2014. Mobile payment adoption in the us: a cross-industry,
crossplatform solution. J. Inf. Privacy Secur. 1 (2), 4-28. doi:10.1080/15536548.
2005.10855765.

Dhillon, S., Mahmoud, Q.H., 2015. An evaluation framework for cross-platform mo-
bile application development tools. Softw. Pract. Exp. 45 (10), 1331-1357. doi:10.
1002/spe.2286.

Dobie, A., 2012. Why You'll Never Have the Latest Version of Android. http://www.
androidcentral.com/why-you-1l-never-have-latest-version-android.

Donner, J., 2008. Research approaches to mobile use in the developing world: a re-
view of the literature. Inf.Soc. 24 (3), 140-159.

Dorr, T., 2018. Tesla Model S JSON API. http://docs.timdorr.apiary.io.

Doud, A., 2015. How important is cross-platform wearable support?. http://
pocketnow.com/2015/05/10/cross- platform-wearable-support

Durach, S., Higgen, U., Huebler, M., 2013. Smart Automotive Apps: An Approach
to Context-Driven Applications. In: LNEE, 200, pp. 187-195. doi:10.1007/
978-3-642-33838-0-17.

Dyck, S., Majchrzak, T.A., 2012. Identifying common characteristics in fundamen-
tal, integrated, and agile software development methodologies. In: Proc. 45th
Hawaii International Conference on Systems Science (HICSS-45). IEEE Computer
Society, pp. 5299-5308.

Eisenstein, J., Vanderdonckt, J., Puerta, A., 2001. Applying model-based techniques
to the development of Uls for mobile computers. In: International Conference
on Intelligent User Interfaces, Proceedings.

El-Kassas, W.S., Abdullah, B.A., Yousef, A.H., Wahba, A.M., 2014. ICPMD: integrated
cross-platform mobile development solution. In: Proc. 9th ICCES doi:10.1109/
ICCES.2014.7030977.

https://doi.org/10.1016/j.jss.2019.04.001
http://docs.phonegap.com
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0001
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0001
https://doi.org/10.1145/2983468.2983484
https://doi.org/10.1016/j.jnca.2017.08.017
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0004
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0004
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0004
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0004
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0004
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0004
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0005
https://doi.org/10.1016/j.ijinfomgt.2011.10.003
https://doi.org/10.1145/2662253.2662280
https://cordova.apache.org/docs/en/
https://developer.apple.com/design/human-interface-guidelines/ios/
https://developer.apple.com/wallet/
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0009
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0009
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0009
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0009
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0009
https://automatic.com/
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0010
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0010
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0010
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0011
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0011
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0011
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0013
https://doi.org/10.1145/1134285.1134404
https://doi.org/10.5220/0006353703440351
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0016
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0016
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0016
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0016
https://doi.org/10.1145/2998626.2998648
http://www.mobilespoon.net/2015/03/a-list-of-all-operating-systems-running.html
http://refhub.elsevier.com/S0164-1212(19)30074-3/othref0005
http://refhub.elsevier.com/S0164-1212(19)30074-3/othref0005
http://refhub.elsevier.com/S0164-1212(19)30074-3/othref0005
http://refhub.elsevier.com/S0164-1212(19)30074-3/othref0005
http://refhub.elsevier.com/S0164-1212(19)30074-3/othref0005
http://refhub.elsevier.com/S0164-1212(19)30074-3/othref0005
http://refhub.elsevier.com/S0164-1212(19)30074-3/othref0005
http://www.techradar.com/news/-1302416
https://doi.org/10.1109/CIST.2014.7016616
https://doi.org/10.1007/978-3-642-38082-2_18
https://doi.org/10.1145/2307636.2307650
https://doi.org/10.1007/978-3-319-27030-2_21
https://doi.org/10.1016/j.pmcj.2016.10.004
https://doi.org/10.1145/2554850.2555104
https://doi.org/10.1145/3197231.3197242
https://doi.org/10.1109/IWCMC.2013.6583580
https://dash.by/
http://readwrite.com/2009/04/02/phone_gap
https://doi.org/10.1007/978-3-319-13194-8_15
https://doi.org/10.1109/SAI.2017.8252165
https://doi.org/10.1080/15536548.2005.10855765
https://doi.org/10.1002/spe.2286
http://www.androidcentral.com/why-you-ll-never-have-latest-version-android
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0033
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0033
http://docs.timdorr.apiary.io
http://pocketnow.com/2015/05/10/cross-platform-wearable-support
https://doi.org/10.1007/978-3-642-33838-0-17
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0035
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0035
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0035
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0036
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0036
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0036
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0036
https://doi.org/10.1109/ICCES.2014.7030977

C. Rieger and TA. Majchrzak/The Journal of Systems and Software 153 (2019) 175-199 197

El-Kassas, W.S., Abdullah, B.A., Yousef, A.H., Wahba, A.M., 2017. Taxonomy of cross-
platform mobile applications development approaches. Ain Shams Eng.]. 8 (2),
163-190. doi:10.1016/j.asej.2015.08.004.

Ernsting, J., Rieger, C., Wrede, F., Majchrzak, T.A., 2016. Refining a reference architec-
ture for model-driven business apps. In: Proc. of the 12th WEBIST. SciTePress,
pp. 307-316.

Facebook Inc., 2018. React native - a framework for building native apps using react.
https://facebook.github.io/react-native/.

Fantacci, R, Pecorella, T., Viti, R, Carlini, C., 2014. Short paper: overcoming loT
fragmentation through standard gateway architecture. In: 2014 IEEE World Fo-
rum on Internet of Things (WF-IoT), 00, pp. 181-182. doi:10.1109/WF-10T.2014.
6803149.

Ferreira, C., Peixoto, M., Duarte, P, Torres, A., JA°nior, M., Rocha, L., Viana, W., 2018.
An evaluation of cross-platform frameworks for multimedia mobile applica-
tions development. IEEE Lat. Am. Trans. 16 (4), 1206-1212. doi:10.1109/TLA.
2018.8362158.

Fitzgerald, B., 2006. The transformation of open source software. MIS Q. 30 (3),
587-598.

Forni, A.A., van der Meulen, R., 2017. Gartner Says Worldwide Sales of Smartphones
Grew 9 Percent in First Quarter of 2017. https://www.gartner.com/newsroom/
id/3725117.

Friese, P.,, 2014. Applause. https://github.com/applause/.

Gallidabino, A., Pautasso, C., llvonen, V., Mikkonen, T., Systd, K., Voutilainen, J.P.,
Taivalsaari, A., 2016. On the architecture of liquid software: Technology alter-
natives and design space. In: WICSA, pp. 122-127. doi:10.1109/WICSA.2016.14.

Ganapathy, S., 2016. Introducing Android Instant Apps. http://android-developers.
blogspot.no/2016/05/android-instant-apps-evolving-apps.html.

Gardner, T, 2018. Android Wear Cordova Plugin. https://github.com/tgardner/
cordova-androidwear.

Georges, A., Buytaert, D., Eeckhout, L., 2007. Statistically rigorous java performance
evaluation. SIGPLAN Not. 42 (10), 57-76. doi:10.1145/1297105.1297033.

Gill, G.K., Kemerer, C.F, 1991. Cyclomatic complexity density and software mainte-
nance productivity. IEEE Trans. Softw. Eng. 17 (12), 1284-1288. doi:10.1109/32.
106988.

Goetz, B., 2005. Urban performance legends, revisited. https://www.ibm.com/
developerworks/library/j-jtp09275/.

Google LLC, 2018a. Android developers - design for Android. https://developer.
android.com/design/.

Google LLC, 2018b. Android TV. https://www.android.com/tv/.

Google LLC, 2018c. Behavior changes: all apps. https://developer.android.com/about/
versions/pie/android-9.0-changes-all.

Google LLC, 2018d. Flutter - beautiful native apps in record time. https://flutter.io/.

Google LLC, 2018e. Google AdMob. https://www.google.com/admob/.

Google LLC, 2018f. J20bjC. http://j2objc.org/.

Google LLC, 2018g. Progressive Web Apps. https://developers.google.com/web/
progressive-web-apps/.

Google LLC, 2018h. Requesting Permissions at Runtime. https://developer.android.
com/training/permissions/requesting.html/.

Google LLC, 2018i. Understand the Activity Lifecycle. https://developer.android.com/
guide/components/activities/activity-lifecycle.

Google LLC, 2018j. Wear OS - Android developers. https://developer.android.com/
wear/index.html.

HbbTV, 2018. HbbTV overview. https://www.hbbtv.org/overview/.

Heitkotter, H., Hanschke, S., Majchrzak, T.A., 2012. Comparing cross-platform de-
velopment approaches for mobile applications. In: Proceedings 8th WEBIST.
SciTePress, pp. 299-311.

Heitkotter, H., Hanschke, S., Majchrzak, T.A., 2013a. Evaluating Cross-platform
Development Approaches for Mobile Applications. In: LNBIP, 140. Springer,
pp. 120-138.

Heitkotter, H., Majchrzak, T.A., 2013. Cross-platform development of business apps
with MD2. In: vom Brocke, J., Hekkala, R., Ram, S., Rossi, M. (Eds.), DESRIST.
Springer, pp. 405-411. doi:10.1007/978-3-642-38827-9_29.

Heitkotter, H., Majchrzak, T.A. Kuchen, H., 2013b. Cross-platform model-driven
development of mobile applications with MD2. In: Proc. SAC '13. ACM,
pp. 526-533.

Heitkotter, H., Majchrzak, T.A., Ruland, B., Weber, T., 2014. Comparison of Mobile
Web Frameworks. In: LNBIP. Springer, pp. 119-137.

Heitkétter, H., Kuchen, H., Majchrzak, T.A., 2015. Extending a model-driven cross-
platform development approach for business apps. Sci. Comput. Program. 97,
Part 1 (0), 31-36. doi:10.1016/j.scico.2013.11.013.

Hobbs, B.E., 1980. A comparison of weighting methods in power plant siting. Decis.
Sci. 11 (4), 725-737.

Horsley, D., 2016. Beyond Touch: Tomorrow’s Devices Will Use MEMS Ultrasound
to Hear Your Gestures. https://spectrum.ieee.org/semiconductors/devices/
beyond- touch-tomorrows-devices-will-use-mems-ultrasound- to- hear-your-
gestures.

Hsiao, K.-L., Chen, C.-C,, 2016. What drives in-app purchase intention for mobile
games? An examination of perceived values and loyalty. Electron. Commer. Res.
Appl. 16, 18-29.

Hudli, A., Hudli, S., Hudli, R, 2015. An evaluation framework for selection of mo-
bile app development platform. In: Proc. 3rd MobileDeLi doi:10.1145/2846661.
2846678.

Humayoun, S., Ehrhart, S., Ebert, A., 2013. Developing Mobile Apps Using Cross-
Platform Frameworks: A Case Study. In: Lecture Notes in Computer Sci-
ence,8004 LNCS PART 1, pp. 371-380. doi:10.1007/978-3-642-39232-0_41.

Ionic, 2018. Build amazing native apps and progressive web apps with lonic Frame-
work and Angular. https://ionicframework.com/.

Jacobson, 1., 1999. The Unified Software Development Process. Pearson Education
India.

Jakuben, B., 2013. Why developing apps for Android is fun. http://blog.
teamtreehouse.com/why-developing-apps-for-android-is-fun.

Jansen, S., Bloemendal, E., 2013. Defining app stores: the role of curated mar-
ketplaces in software ecosystems. In: Herzwurm, G., Margaria, T. (Eds.), Soft-
ware Business. From Physical Products to Software Services and Solutions. IC-
SOB 2013. In: Lecture Notes in Business Information Processing, 150. Springer,
pp. 195-206. doi:10.1007/978-3-642-39336-5_19.

Jia, X,, Ebone, A, Tan, Y., 2018. A performance evaluation of cross-platform mobile
application development approaches. In: Proceedings of the 5th International
Conference on Mobile Software Engineering and Systems. ACM, New York, NY,
USA, pp. 92-93. doi:10.1145/3197231.3197252.

Jie, G., Bo, C,, Shuai, Z., Junliang, C., 2015. Cross-platform Android/iOS-based smart
switch control middleware in a digital home. Mob. Inf. Syst. 2015. doi:10.1155/
2015/627859.

Kelley, P.G., Consolvo, S., Cranor, LE, Jung, ., Sadeh, N., Wetherall, D., 2012. A co-
nundrum of permissions: Installing applications on an Android smartphone. In:
Blyth, J., Dietrich, S., Camp, LJ. (Eds.), Financial Cryptography and Data Secu-
rity: FC 2012 Workshops, USEC and WECSR. Springer Berlin Heidelberg, Berlin,
Heidelberg, pp. 68-79. doi:10.1007/978-3-642-34638-5_6.

Kim, H., Ahn, M., Hong, S., Lee, S., 2016. Wearable device control platform tech-
nology for network application development. Mob. Inf. Syst. 2016. doi:10.1155/
2016/3038515.

Kline, R.B., Seffah, A., 2005. Evaluation of integrated software development environ-
ments: challenges and results from three empirical studies. Int. . Hum. Comput.
Stud. 63 (6), 607-627. doi:10.1016/j.ijhcs.2005.05.002.

Koren, 1., Klamma, R., 2016. The direwolf inside you: End user development for het-
erogeneous web of things appliances. In: Bozzon, A. Cudre-Maroux, P., Pau-
tasso, C. (Eds.), Proceedings 16th International Conference on Web Engineer-
ing (ICWE). Springer International Publishing, Cham, pp. 484-491. doi:10.1007/
978-3-319-38791-8_35.

Kunz, M., Hummer, M., Fuchs, L., Netter, M., Pernul, G., 2014. Analyzing recent
trends in enterprise identity management. In: 25th International Workshop on
Database and Expert Systems Applications, pp. 273-277. doi:10.1109/DEXA.2014.
62.

Lachgar, M., Abdali, A., 2017. Decision framework for mobile development methods.
Int. J. Adv. Comput. Sci. Appl. 8 (2). doi:10.14569/IJACSA.2017.080215.

Lambert, F.,, 2016. Tesla is moving away from an SDK. http://9to5mac.com/2016/01/
28/tesla-sdk-iphone-apps-mirror/.

Latif, M., Lakhrissi, Y., Nfaoui, EH., Es-Sbai, N., 2016. Cross platform approach for
mobile application development: a survey. In: International Conference on In-
formation Technology for Organizations Development, IT40D'16 doi:10.1109/
IT40D.2016.7479278.

Le Goaer, O., Waltham, S., 2013. Yet another DSL for cross-platforms mobile devel-
opment. In: Proc. of the First Workshop on the Globalization of Domain Specific
Languages. ACM, pp. 28-33.

Lella, A. Lipsman, A. 2017. The 2017 US. Mobile App Report. https:
//www.comscore.com/Insights/Presentations-and-Whitepapers/2017/
The-2017-US-Mobile-App-Report.

LG Electronics, 2018. WebOS TV Developers. http://webostv.developer.lge.com/.

Li, X., Zhao, X,, lyer, L., 2018. Investigating of in-app advertising features’ impact on
effective clicks for different advertising formats. In: 24th Americas Conference
on Information Systems, AMCIS 2018.

Lilis, G., Conus, G., Asadi, N., Kayal, M., 2017. Towards the next generation of intelli-
gent building: an assessment study of current automation and future iot based
systems with a proposal for transitional design. Sustain. Cities Soc. 28, 473-481.
doi:10.1016/j.5¢s.2016.08.019.

Linux Foundation, 2018. Tizen. https://www.tizen.org.

Liu, R, Lin, EX,, 2016. Understanding the characteristics of android wear os. In:
Proceedings of the 14th Annual International Conference on Mobile Systems,
Applications, and Services. ACM, New York, NY, USA, pp. 151-164. doi:10.1145/
2906388.2906398.

Luca, A.D,, Lindqvist, J., 2015. Is secure and usable smartphone authentication asking
too much? Computer 48 (5), 64-68. doi:10.1109/MC.2015.134.

Luo, T, Hao, H., Du, W.,, Wang, Y., Yin, H., 2011. Attacks on webview in the an-
droid system. In: Proceedings of the 27th Annual Computer Security Applica-
tions Conference, pp. 343-352.

Majchrzak, T.A., Bigrn-Hansen, A., Grenli, T.-M., 2018. Progressive web apps: the
definite approach to cross-platform development? In: Proceedings 51th Hawaii
International Conference on Systems Science (HICSS-51). AIS Electronic Library
(AISeL).

Majchrzak, T.A., Ernsting, J., Kuchen, H., 2015. Achieving business practicability of
model-driven cross-platform apps. Open J. Inf. Syst. 2 (2), 3-14.

Majchrzak, T.A., Heitkotter, H., 2013. Status Quo and Best Practices of App Develop-
ment in Regional Companies. In: Lecture Notes in Computer Science. Springer,
pp. 189-206.

Majchrzak, T.A., Schulte, M., 2015. Context-dependent testing of applications for mo-
bile devices. Open]. Web Technol. 2 (1), 27-39.

Majchrzak, T.A., Wolf, S., Abbassi, P, 2015. Comparing the Capabilities of Mo-
bile Platforms for Business App Development. In: LNBIP. Springer, pp. 70-88.
doi:10.1007/978-3-319-24366-5_6.

https://doi.org/10.1016/j.asej.2015.08.004
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0039
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0039
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0039
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0039
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0039
https://facebook.github.io/react-native/
https://doi.org/10.1109/WF-IoT.2014.6803149
https://doi.org/10.1109/TLA.2018.8362158
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0042
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0042
https://www.gartner.com/newsroom/id/3725117
http://refhub.elsevier.com/S0164-1212(19)30074-3/othref0011
http://refhub.elsevier.com/S0164-1212(19)30074-3/othref0011
https://github.com/applause/
https://doi.org/10.1109/WICSA.2016.14
http://android-developers.blogspot.no/2016/05/android-instant-apps-evolving-apps.html
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0046
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0046
https://github.com/tgardner/cordova-androidwear
https://doi.org/10.1145/1297105.1297033
https://doi.org/10.1109/32.106988
https://www.ibm.com/developerworks/library/j-jtp09275/
https://developer.android.com/design/
https://www.android.com/tv/
https://developer.android.com/about/versions/pie/android-9.0-changes-all
https://flutter.io/
https://www.google.com/admob/
http://j2objc.org/
https://developers.google.com/web/progressive-web-apps/
https://developer.android.com/training/permissions/requesting.html
https://developer.android.com/guide/components/activities/activity-lifecycle
https://developer.android.com/wear/index.html
https://www.hbbtv.org/overview/
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0053
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0053
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0053
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0053
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0054
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0054
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0054
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0054
https://doi.org/10.1007/978-3-642-38827-9_29
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0056
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0056
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0056
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0056
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0057
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0057
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0057
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0057
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0057
https://doi.org/10.1016/j.scico.2013.11.013
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0059
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0059
https://spectrum.ieee.org/semiconductors/devices/beyond-touch-tomorrows-devices-will-use-mems-ultrasound-to-hear-your-gestures
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0061
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0061
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0061
https://doi.org/10.1145/2846661.2846678
https://doi.org/10.1007/978-3-642-39232-0_41
https://ionicframework.com/
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0064
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0064
http://blog.teamtreehouse.com/why-developing-apps-for-android-is-fun
https://doi.org/10.1007/978-3-642-39336-5_19
https://doi.org/10.1145/3197231.3197252
https://doi.org/10.1155/2015/627859
https://doi.org/10.1007/978-3-642-34638-5_6
https://doi.org/10.1155/2016/3038515
https://doi.org/10.1016/j.ijhcs.2005.05.002
https://doi.org/10.1007/978-3-319-38791-8_35
https://doi.org/10.1109/DEXA.2014.62
https://doi.org/10.14569/IJACSA.2017.080215
http://9to5mac.com/2016/01/28/tesla-sdk-iphone-apps-mirror/
https://doi.org/10.1109/IT4OD.2016.7479278
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0075
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0075
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0075
https://www.comscore.com/Insights/Presentations-and-Whitepapers/2017/The-2017-US-Mobile-App-Report
http://webostv.developer.lge.com/
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0078
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0078
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0078
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0078
https://doi.org/10.1016/j.scs.2016.08.019
https://www.tizen.org
https://doi.org/10.1145/2906388.2906398
https://doi.org/10.1109/MC.2015.134
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0083
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0083
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0083
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0083
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0083
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0083
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0084
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0084
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0084
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0084
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0085
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0085
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0085
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0085
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0086
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0086
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0086
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0087
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0087
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0087
https://doi.org/10.1007/978-3-319-24366-5_6

198 C. Rieger and TA. Majchrzak/The Journal of Systems and Software 153 (2019) 175-199

Mandal, A.K., Cortesi, A., Ferrara, P., Panarotto, F., Spoto, F, 2018. Vulnerability anal-
ysis of android auto infotainment apps. In: 15th ACM International Conference
on Computing Frontiers. ACM, pp. 183-190. doi:10.1145/3203217.3203278.

Mercado, L.T., Munaiah, N., Meneely, A., 2016. The impact of cross-platform develop-
ment approaches for mobile applications from the user’s perspective. In: WAMA
2016 - Proceedings of the International Workshop on App Market Analytics, co-
located with FSE 2016 doi:10.1145/2993259.2993268.

Messaoudi, F., Simon, G., Ksentini, A., 2015. Dissecting games engines: the case of
unity3d. In: Proceedings of the 2015 International Workshop on Network and
Systems Support for Games. IEEE Press, Piscataway, NJ, USA, pp. 4:1-4:6.

Meuter, M.L., Ostrom, A.L., Roundtree, R.I, Bitner, M.J., 2000. Self-service technolo-
gies: understanding customer satisfaction with technology-based service en-
counters.]. Mark. 64 (3), 50-64.

Microsoft Corp., 2018. Microsoft band. https://www.microsoft.com/en-us/band/.

Microsoft Inc., 2017. Develop apps for the universal windows platform
(UWP). https://docs.microsoft.com/en-us/visualstudio/cross- platform/
develop-apps-for-the-universal-windows- platform-uwp.

Mir, M., Dangerfield, B., 2013. Propagating a digital divide: diffusion of mobile
telecommunication services in Pakistan. Technol. Forecast. Soc. Change 80 (5),
992-1001. doi:10.1016/j.techfore.2012.08.006.

MobileHTML5, 2015. Mobile HTML5 compatibility. http://mobilehtml5.org/.

Moj.io Inc., 2018. Mojio - connected car platform. https://www.moj.io/.

Nanjappan, V., Liang, H.-N., Lau, K., Choi, J., Kim, K.K., 2017. Clothing-based wear-
able sensors for unobtrusive interactions with mobile devices. In: 2017 Inter-
national SoC Design Conference (ISOCC). IEEE, pp. 139-140. doi:10.1109/ISOCC.
2017.8368837.

Neate, T., Jones, M., Evans, M., 2017. Cross-device media: a review of second screen-
ing and multi-device television. Pers. Ubiquitous Comput. 21 (2), 391-405.
doi:10.1007/s00779-017-1016-2.

Ng, Y.Y., Zhou, H,, Ji, Z., Luo, H., Dong, Y., 2014. Which Android app store can be
trusted in china? In: Computer Software and Applications Conference (COMP-
SAC), 2014 [EEE 38th Annual. [EEE, pp. 509-518.

Noreikis, M., Butkus, P, Nurminen, J.K., 2014. In-vehicle application for multimodal
route planning and analysis. In: Proc. IEEE 3rd CloudNet doi:10.1109/CloudNet.
2014.6969020.

Occhino, T, 2015. React Native: Bringing Modern Web Techniques to Mo-
bile. https://code.facebook.com/posts/1014532261909640/react-native-bringing-
modern-web-techniques-to-mobile/.

Ohrt,], Turau, V., 2012. Cross-platform development tools for smartphone applica-
tions. IEEE Comput. 45 (9), 72-79. doi:10.1109/MC.2012.121.

Palmieri, M., Singh, L., Cicchetti, A., 2012. Comparison of cross-platform mobile de-
velopment tools. In: Proc. 16th ICIN. IEEE, pp. 179-186. doi:10.1109/ICIN.2012.
6376023.

Parker, D.B., 1998. Fighting Computer Crime: A New Framework for Protecting In-
formation. John Wiley & Sons, Inc, New York, NY, USA.

Pénard, T., Poussing, N., Zomo Yebe, G., Ella, N., 2012. Comparing the determi-
nants of internet and cell phone use in africa: evidence from gabon. Communic.
Strateg. (86) 65-83.

Perakakis, E., Ghinea, G., 2015. HTML5 technologies for effective cross-platform in-
teractive/smart TV advertising. IEEE Trans. HMS 45 (4), 534-539. doi:10.1109/
THMS.2015.2401975.

Perakakis, E., Ghinea, G., 2015. A proposed model for cross-platform web 3D ap-
plications on Smart TV systems. In: Proc. 20th Web3D doi:10.1145/2775292.
2778303.

Progress Software Corp., 2018. How NativeScript works. https://docs.nativescript.
org/core-concepts/technical-overview.

QSM, 2009. Function Point Languages Table: Version 5.0. http://www.qsm.com/
resources/function-point-languages-table.

Quaresma, M., Gongalves, R., 2014. Usability Analysis of Smartphone Applications
for Drivers. In: Lecture Notes in Computer Science, 8517, pp. 352-362. doi:10.
1007/978-3-319-07668-3_34.

Que, P, Guo, X., Zhu, M., 2017. A comprehensive comparison between hybrid and
native app paradigms. In: G.S., T. (Ed.), Proceedings - 2016 8th International
Conference on Computational Intelligence and Communication Networks, CICN
2016. IEEE, pp. 611-614. doi:10.1109/CICN.2016.125.

Rahul Raj, C.P, Tolety, S.B., 2012. A study on approaches to build cross-platform
mobile applications and criteria to select appropriate approach. In: 2012 An-
nual IEEE India Conference (INDICON), pp. 625-629. doi:10.1109/INDCON.2012.
6420693.

Rawassizadeh, R., Price, B.A., Petre, M., 2014. Wearables: has the age of smart-
watches finally arrived? Commun. ACM 58 (1), 45-47. doi:10.1145/2629633.
Research2guidance, 2014. Cross-platform tool benchmarking 2014. http:
|[research2guidance.com/product/cross- platform- tool-benchmarking-2014/.

Revest, F, 2018. AsteroidOS. http://asteroidos.org/.

Ribeiro, A., da Silva, AR., 2012. Survey on cross-platforms and languages for mo-
bile apps. In: Eighth International Conference on the Quality of Information and
Communications Technology, pp. 255-260. doi:10.1109/QUATIC.2012.56.

Rieger, C., 2018. Evaluating a graphical model-driven approach to codeless business
app development. In: Hawaii International Conference on System Sciences (HIC-
SS-51), pp. 5725-5734.

Rieger, C., Kuchen, H., 2018. A process-oriented modeling approach for graphical
development of mobile business apps. Comput. Lang. Syst. Struct. 53, 43-58.
doi:10.1016/j.c1.2018.01.001.

Rieger, C., Kuchen, H., 2018. Towards model-driven business apps for wearables. In:
Younas, M., Awan, I, Ghinea, G., Catalan Cid, M. (Eds.), Mobile Web and Intel-

ligent Information Systems. Springer International Publishing, Cham, pp. 3-17.
doi:10.1007/978-3-319-97163-6_1.

Rieger, C., Kuchen, H., 2019. A model-driven cross-platform app development pro-
cess for heterogeneous device classes. In: Hawaii International Conference on
System Sciences (HICSS-52). Maui, Hawaii, USA, pp. 7431-7440.

Rieger, C., Majchrzak, T.A., 2016. Weighted evaluation framework for cross-platform
app development approaches. In: Wrycza, S. (Ed.), Information Systems: Devel-
opment, Research, Applications, Education: 9th SIGSAND/PLAIS EuroSymposium.
Springer, pp. 18-39. doi:10.1007/978-3-319-46642-2_2.

Rieger, C., Majchrzak, T.A., 2018. A taxonomy for app-enabled devices: Mastering
the mobile device jungle. In: Majchrzak, T.A., Traverso, P., Krempels, K.-H., Mon-
fort, V. (Eds.), Web Information Systems and Technologies. Springer Interna-
tional Publishing, Cham, pp. 202-220.

Rodriguez Garzon, S., Poguntke, M., 2012. The Personal Adaptive in-car HMI: Inte-
gration of External Applications for Personalized Use. In: LNCS, 7138, pp. 35-46.
doi:10.1007/978-3-642-28509-7_5.

Royce, WW., 1970. The development of large software systems. In: Proc. IEEE
WESCON 1970. IEEE CS, pp. 328-338.

Russell, A., 2015. Progressive Web Apps: Escaping tabs without losing our
soul. https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-
losing-our-soul/.

Ryu, D., Krompiec, PK., Lee, E., Park, K., 2014. A serious game design for english
education on Smart TV platform. Pro. ISCE doi:10.1109/ISCE.2014.6884479.
Samsung, 2014. Samsung: Let’s talk about the design of the Galaxy Note Edge.
https://news.samsung.com/global/lets-talk-about-the-design- of-the- galaxy-

note-edge.

Samsung, 2018. TOAST - Samsung developers. https://developer.samsung.com/tv/
develop/extension-libraries/toast/.

Sansour, RN, Kafri, N., Sabha, M.N,, 2014. A survey on mobile multimedia applica-
tion development frameworks. In: Proc. ICMCS doi:10.1109/ICM(CS.2014.6911207.

Schilit, B., Adams, N., Want, R., 1994. Context-aware computing applications. In:
Proc. of the 1994 1st WMCSA. IEEE CS, pp. 85-90.

Schuermans, S., Vakulenko, M., 2014. Apps for connected cars? Your mileage
may vary. http://trendscan.info/blog/2014/04/28/apps-for-connected- cars-your-
mileage-may-vary/.

Seyed, T, Azazi, A., Chan, E., Wang, Y., Maurer, E, 2015. SoD-toolkit: a toolkit for
interactively prototyping and developing multi-sensor, multi-device environ-
ments. In: Proceedings of the 2015 ACM International Conference on Interactive
Tabletops and Surfaces, ITS 2015 doi:10.1145/2817721.2817750.

Shepperd, M., 1988. A critique of cyclomatic complexity as a software metric. Softw.
Eng. J. 3, 30-36. doi:10.1049/sej.1988.0003. (6).

Silva, L.C.D., Morikawa, C., Petra, LM., 2012. State of the art of smart homes. Eng.
Appl. Artif. Intell. 25 (7), 1313-1321. doi:10.1016/j.engappai.2012.05.002.

Sohn, H.-J., Lee, M.-G., Seong, B.-M., Kim, J.-B., 2015. Quality evaluation criteria
based on open source mobile HTML5 Ul framework for development of cross-
platform. IJSEIA 9 (6), 1-12. doi:10.14257/ijseia.2015.9.6.01.

Sommer, A., Krusche, S., 2013. Evaluation of cross-platform frameworks for mobile
applications. LNI P-215.

Sommerville, 1., 2011. Software Engineering, ninth ed. Pearson.

Stack Overflow, 2018. Developer survey results. https://insights.stackoverflow.com/
survey/2018.

StatCounter, 2016. Mobile and tablet internet usage exceeds desktop for first
time worldwide. http://gs.statcounter.com/press/mobile-and-tablet-internet-
usage-exceeds-desktop-for-first-time-worldwide.

Statista Inc., 2018. Statista. http://www.statista.com/.

Tang, A.K.Y., 2016. Mobile app monetization: app business models in the digital era.
Int. J. Innov. Manag.Technol. 7 (5), 224.

Umuhoza, E., Brambilla, M., 2016. Model driven development approaches for mo-
bile applications: a survey. In: Younas, M., Awan, I, Kryvinska, N., Strauss, C.,
van Thanh, D. (Eds.), Mobile Web and Intelligent Information Systems:
13th International Conference. Springer International, pp. 93-107. doi:10.1007/
978-3-319-44215-0_8.

Unity Technologies, 2018. Unity game engine. https://unity3d.com/de.

Vilcek, T., Jakopec, T., 2017. Comparative analysis of tools for development of na-
tive and hybrid mobile applications. In: International Convention on Informa-
tion and Communication Technology, Electronics and Microelectronics (MIPRO),
pp. 1516-1521. doi:10.23919/MIPRO.2017.7973662.

Vitols, G., Smits, ., Bogdanov, O., 2013. Cross-platform solution for development of
mobile applications. In: ICEIS 2013 - Proceedings of the 15th International Con-
ference on Enterprise Information Systems, 2, pp. 273-277.

Vuksanovic, L.P, Sudarevic, B., 2011. Use of web application frameworks in the de-
velopment of small applications. In: 2011 Proceedings of the 34th International
Convention MIPRO, pp. 458-462.

Wagner, L., 2017. Turbocharging the web. IEEE Spectr. 54 (12), 48-53. doi:10.1109/
MSPEC.2017.8118483.

Wasserman, A.lL, 2010. Software engineering issues for mobile application develop-
ment. In: Roman, G.-C,, Sullivan, K. (Eds.), Proc. FOSER 10, p. 397. doi:10.1145/
1882362.1882443.

Watanabe, T., Akiyama, M., Kanei, F, Shioji, E., Takata, Y., Sun, B., Ishi, Y., Shiba-
hara, T., Yagi, T., Mori, T., 2017. Understanding the origins of mobile app vulner-
abilities: a large-scale measurement study of free and paid apps. In: Proceed-
ings of the 14th International Conference on Mining Software Repositories. IEEE
Press, Piscataway, NJ, USA, pp. 14-24. doi:10.1109/MSR.2017.23.

Willocx, M., Vossaert, ., Naessens, V., 2015. A quantitative assessment of perfor-
mance in mobile app development tools. In: Proc. 3rd Int. Conf. on Mobile Ser-
vices doi:10.1109/MobServ.2015.68.

https://doi.org/10.1145/3203217.3203278
https://doi.org/10.1145/2993259.2993268
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0091
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0091
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0091
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0091
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0092
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0092
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0092
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0092
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0092
https://www.microsoft.com/en-us/band/
https://docs.microsoft.com/en-us/visualstudio/cross-platform/develop-apps-for-the-universal-windows-platform-uwp
https://doi.org/10.1016/j.techfore.2012.08.006
http://mobilehtml5.org/
https://www.moj.io/
https://doi.org/10.1109/ISOCC.2017.8368837
https://doi.org/10.1007/s00779-017-1016-2
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0096
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0096
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0096
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0096
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0096
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0096
https://doi.org/10.1109/CloudNet.2014.6969020
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://doi.org/10.1109/MC.2012.121
https://doi.org/10.1109/ICIN.2012.6376023
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0101
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0101
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0102
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0102
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0102
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0102
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0102
https://doi.org/10.1109/THMS.2015.2401975
https://doi.org/10.1145/2775292.2778303
https://docs.nativescript.org/core-concepts/technical-overview
http://www.qsm.com/resources/function-point-languages-table
https://doi.org/10.1007/978-3-319-07668-3_34
https://doi.org/10.1109/CICN.2016.125
https://doi.org/10.1109/INDCON.2012.6420693
https://doi.org/10.1145/2629633
http://research2guidance.com/product/cross-platform-tool-benchmarking-2014/
http://asteroidos.org/
https://doi.org/10.1109/QUATIC.2012.56
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0111
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0111
https://doi.org/10.1016/j.cl.2018.01.001
https://doi.org/10.1007/978-3-319-97163-6_1
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0114
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0114
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0114
https://doi.org/10.1007/978-3-319-46642-2_2
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0116
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0116
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0116
https://doi.org/10.1007/978-3-642-28509-7_5
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0118
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0118
https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/
https://doi.org/10.1109/ISCE.2014.6884479
https://news.samsung.com/global/lets-talk-about-the-design-of-the-galaxy-note-edge
https://developer.samsung.com/tv/develop/extension-libraries/toast/
https://doi.org/10.1109/ICMCS.2014.6911207
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0122
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0122
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0122
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0122
http://trendscan.info/blog/2014/04/28/apps-for-connected-cars-your-mileage-may-vary/
https://doi.org/10.1145/2817721.2817750
https://doi.org/10.1049/sej.1988.0003
https://doi.org/10.1016/j.engappai.2012.05.002
https://doi.org/10.14257/ijseia.2015.9.6.01
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0128
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0128
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0128
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0129
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0129
https://insights.stackoverflow.com/survey/2018
http://gs.statcounter.com/press/mobile-and-tablet-internet-usage-exceeds-desktop-for-first-time-worldwide
http://www.statista.com/
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0131
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0131
https://doi.org/10.1007/978-3-319-44215-0_8
https://unity3d.com/de
https://doi.org/10.23919/MIPRO.2017.7973662
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0134
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0134
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0134
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0134
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0135
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0135
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0135
https://doi.org/10.1109/MSPEC.2017.8118483
https://doi.org/10.1145/1882362.1882443
https://doi.org/10.1109/MSR.2017.23
https://doi.org/10.1109/MobServ.2015.68

C. Rieger and TA. Majchrzak/The Journal of Systems and Software 153 (2019) 175-199 199

Willocx, M., Vossaert,]., Naessens, V., 2017. Security analysis of cordova applications
in google play. In: 12th International Conference on Availability, Reliability and
Security. ACM, pp. 46:1-46:7. doi:10.1145/3098954.3103162.

Wolf, E, 2013. Will vehicles go the mobile way? Merits and challenges arising by
car-apps. In: Proc. 10th ICINCO, 2.

Xanthopoulos, S., Xinogalos, S., 2013. A comparative analysis of cross-platform de-
velopment approaches for mobile applications. In: Proc. 6th BCI. ACM, pp. 213-
220. doi:10.1145/2490257.2490292.

XBMC Foundation, 2018. Third-party forks and derivatives. http://kodi.wiki/view/
Third-party_forks_and_derivatives.

Xie, J., 2012. Research on key technologies base Unity3D game engine. In: 2012 7th
International Conference on Computer Science Education (ICCSE), pp. 695-699.
doi:10.1109/ICCSE.2012.6295169.

Zhang, J., Chen, C, Ma,], He, N,, Ren, Y., 2011. Usink: smartphone-based moible
sink for wireless sensor networks. In: Proc. CCNC'2011 doi:10.1109/CCNC.2011.
5766639.

Zhu, KX, Zhou, Z.Z., 2012. Research note-lock-in strategy in software competition:
open-source software vs. proprietary software. Inf. Syst. Res. 23 (2), 536-545.

Christoph Rieger is a postgraduate researcher and Ph.D. candidate at the Depart-
ment of Information Systems, University of Miinster, where he also received his

B.Sc. and M.Sc. degrees in Information Systems. His research focuses on Software
Engineering topics, in particular model-driven software development and domain-
specific languages to ease the transformation from abstract domain-oriented mod-
els into software artefacts. Application areas include technical notations such as for
distributed high-performance computing as well as the domain of mobile apps for
including business experts in the development process. Christoph is a member of
the ACM and the Gesellschaft fiir Informatik e.V.

Tim A. Majchrzak is an associate professor at the Department of Information Sys-
tems at the University of Agder (UiA) in Kristiansand, Norway. He also is a member
of the Centre for Integrated Emergency Management (CIEM) at UiA. Tim received
B.Sc. and M.Sc. degrees in Information Systems and a Ph.D. in economics (Dr. rer.
pol.) from the University of Miinster, Germany. His research comprises both techni-
cal and organizational aspects of Software Engineering, typically in the context of
Mobile Computing. He has also published work on diverse interdisciplinary Infor-
mation Systems topics, most notably targeting Crisis Prevention and Management.
Tim’s research projects typically have an interface to industry and society. He is a
senior member of the IEEE and the IEEE Computer Society, and a member of the
Gesellschaft fiir Informatik e.V.

https://doi.org/10.1145/3098954.3103162
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0141
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0141
https://doi.org/10.1145/2490257.2490292
http://kodi.wiki/view/Third-party_forks_and_derivatives
https://doi.org/10.1109/ICCSE.2012.6295169
https://doi.org/10.1109/CCNC.2011.5766639
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0145
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0145
http://refhub.elsevier.com/S0164-1212(19)30074-3/sbref0145

	Towards the definitive evaluation framework for cross-platform app development approaches
	1 Introduction
	2 Related work
	2.1 Cross-platform frameworks
	2.2 Novel app-enabled devices

	3 Criteria catalogue
	3.1 Fundamental considerations and structure
	3.2 Infrastructure perspective
	3.3 Development perspective
	3.4 App perspective
	3.5 Usage perspective

	4 Weight profiles
	4.1 Rationale
	4.2 Application
	4.3 Example profiles

	5 Evaluation study
	5.1 Method
	5.2 (Progressive) Web Apps
	5.3 PhoneGap
	5.4 React Native
	5.5 Native apps
	5.6 Intermediate conclusions

	6 Discussion
	6.1 Assessment
	6.2 Ongoing demand for research
	6.3 Limitations
	6.4 Future work

	7 Conclusion
	Acknowledgements
	Supplementary material
	References

