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a b s t r a c t 

Mobile app development is hindered by device fragmentation and vendor-specific modifications. Bound- 

aries between devices blur with PC-tablet hybrids on the one side and wearables on the other. Future 

apps need to support a host of app-enabled devices with differing capabilities, along with their software 

ecosystems. Prior work on cross-platform app development concerned concepts and prototypes, and com- 

pared approaches that target smartphones. To aid choosing an appropriate framework and to support the 

scientific assessment of approaches, an up-to-date comparison framework is needed. Extending work on a 

holistic, weighted set of assessment criteria, we propose what could become the definitive framework for 

evaluating cross-platform approaches. We have based it on sound abstract concepts that allow extensions. 

The weighting capabilities offer customisation to avoid the proverbial comparison of apples and oranges 

lurking in the variety of available frameworks. Moreover, it advises on multiple development situations 

based on a single assessment. In this article, we motivate and describe our evaluation criteria. We then 

present a study that assesses several frameworks and compares them to Web Apps and native develop- 

ment. Our findings suggest that cross-platform development has seen much progress but the challenges 

are ever growing. Therefore, additional support for app developers is warranted. 

© 2019 The Authors. Published by Elsevier Inc. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

With iOS and Android, only two platforms with significant mar-

et share remain for the development of mobile apps ( Forni and

an der Meulen, 2017 ). Nevertheless, cross-platform technology

ontinues to be very important and many app development

rameworks exist ( Heitkötter et al., 2013a; El-Kassas et al., 2017 ).

hen creating apps, there is still no uniform recommendation

hether – or in which case – to employ web technology, a

ross-platform approach, or a native Software Development Kit

SDK) ( Rieger and Majchrzak, 2016 ). The emergence of Progressive

eb Apps (PWA) has on the one hand brought a contestant for

nification ( Majchrzak et al., 2018; Biørn-Hansen et al., 2017 );

n the other hand, it underlines that professional developers

till seek for easier ways of developing once but having their

pp run on multiple platforms. There seems to be profound

nterest in straightforward yet customisable solutions, for instance
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emonstrated in trivial patents (such as for “customizing a mobile

pplication using a web-based interface” ( Brisebois et al., 2017 )). 

The complexity of app development does not merely come

rom the need to cover two more or less incompatible platforms.

evice fragmentation and vendor-specific modifications incur that

articularly developing for Android is not uniform ( Dobie, 2012 ).

dditionally, the boundaries between devices are blurring with

C-tablet hybrids or wearables which extend computing into

omains of watches, formerly unconnected electronic helpers,

nd even clothing ( Nanjappan et al., 2017 ). There is a jungle of

pp-enabled devices ( Rieger and Majchrzak, 2018 ), each posing

pecific capabilities and idiosyncrasies. The different categories of

evices also bring their own ecosystems and contexts of usage.

t is easy to imagine that developing an app supposed to run on

 smartphone as well as within the system of a car ( Wolf, 2013 )

nd additionally on a screenless smart home/Internet-of-Things

IoT) device ( Alaa et al., 2017 ) poses a tremendous challenge. This

onvergence of smart, user-targeted gadgets and formerly hidden

mall-scale information technology will need to be reflected in the

evelopment approaches used in the future. 

Prior work on cross-platform app development has mainly con-

erned been with two topics. First, concepts and prototypes were
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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1 If multiple related criteria are used, similar subcriteria are grouped 

for brevity reasons, e.g., energy, CPU load, and duration measurements in 

Corbalan et al. (2018) are aggregated to “performance (3)”. 
proposed, such as by Heitkötter and Majchrzak (2013) and

like applause ( Friese, 2014 ). Second, frameworks that tar-

get smartphones and tablets were compared, for example

by Heitkötter et al. (2013a) , Ohrt and Turau (2012) , and

Le Goaer and Waltham (2013) . To aid developers in choosing

an appropriate framework and to support the scientific assessment

of approaches, an update to the comparison frameworks is needed.

It ought to consider the recent technological developments both

regarding the capabilities of cross-platform frameworks and novel

ideas such as PWAs. At the same time, it needs to reflect the de-

mands from developers while not compromising academic rigour.

Moreover, it needs to take into account that the consequences

from using cross-platform technology impact the user experi-

ence (UX). Therefore, wisely using such approaches is indicated

( Mercado et al., 2016 ), and this line of thinking should be reflected

in any attempt to evaluate approaches. 

Extending the first attempt to provide a holistic, weighted

set of assessment criteria by Rieger and Majchrzak (2016) , we

propose steps towards what we believe could become the definite

framework for evaluating cross-platform development approaches.

We have based it on sound abstract concepts that allow adaptabil-

ity to future technological developments. It seeks to be versatile

and handy for practitioners yet fulfil what is needed to satisfy

a critical scientific assessment. The weighting capabilities offer

individualisation and customisation. We, thus, ensure that the

proverbial comparison of apples to oranges that lurks in the vari-

ety of available frameworks and goals of development is avoided.

Moreover, our evaluation framework offers the opportunity to get

advice for multiple development endeavours based on a single

assessment. 

Please note the usage of terms in the following. Framework is

overloaded as it refers to our evaluation framework as well as to

software frameworks for cross-platform app development. Unless

we refer to the evaluation, framework denotes the latter. If the

context poses the chance of confusion, we qualify framework with

“evaluation”. We speak of a cross-platform development approach

when we do not consider a concrete software implementation but

rather the general way of solving the challenge of developing one

but running apps on several platforms. 

This article makes a number of contributions. First, it pro-

vides an evaluation framework for cross-platform development

approaches for app-enabled devices. It can not only be used as

provided but the extensive criteria catalogue serves as a reference

which may also be employed for purposes beyond our framework.

Second, we provide weight profiles to be used in conjunction

with the framework. These profiles enable a non-generic usage of

the framework, which allows users to adapt it to their company-

or project-specific needs. Third, we present the results from an

exemplary study with several development approaches, including

(Progressive) Web Apps, hybrid apps, runtime approaches, and

native development for comparison. The study not only seeks to

underline the feasibility of our framework but to provide concrete

advice. 

The remainder of this article is structured as follows. In

Section 2 we give an overview of works that provide a precon-

dition to ours, are complementary, or are otherwise related in

content or approach. Section 3 comprehensively presents our

criteria catalogue and the rationale behind each of the criteria.

It thereby serves both as a core scientific contribution and as a

reference. The evaluation criteria are motivated and explained in

detail; where applicable, examples are given for better illustration.

Section 4 proposes weight profiles, which can be used to evaluate

development approaches in a customized fashion. To demonstrate

the feasibility of our work and to give practical recommendations,

we present an evaluation study in Section 5 . Our findings are

then discussed in Section 6 , which includes results from ex-
ert feedback, a proposal for a research agenda, limitations, and

ndication of our future work. Finally, in Section 7 we draw a

onclusion. 

. Related work 

The work presented in this article draws from the field of cross-

latform development frameworks, which has emerged since the

dvent of smartphones. In addition, it takes account of the recent

evelopments in the domain of mobile devices and the implica-

ions on future mobile app development approaches. Therefore,

elated work on both fields is presented in the following. 

.1. Cross-platform frameworks 

Resulting from the increasing popularity of cross-platform

evelopment frameworks, a multitude of scientific works has been

repared for this topic. However, most papers are of experimental

ature and restricted to single frameworks, or limited by the

hoice of considered development approaches. Only few provide

 thorough evaluation based on a diverse set of criteria. A com-

rehensive summary of related literature regarding covered tools,

riteria 1 , and focal areas of comparison is given in Table 1 . It com-

ines a literature search within the scientific database Scopus on

valuations of mobile cross-platform frameworks, using the query 

TITLE-ABS-KEY((comparison OR evaluation OR 
review OR survey) AND 

(mobile OR app OR wearable OR application 
OR vehicular OR ‘‘in-vehicle’’) AND 

(’’cross-platform’’ OR ‘‘multi-platform’’ 
OR ‘‘cross platform’’) AND 

(framework OR approach)) 

ombined with a forward search on the papers by

eitkötter et al. (2012) and Heitkötter et al. (2013a) . The latter

epresent early work on systematic assessment of app develop-

ent frameworks for smartphones and have been used by many

uthors as basis for further research on apps. Examples include the

efinition of quality criteria for HTML5 frameworks ( Sohn et al.,

015 ), quantitative performance evaluations ( Willocx et al., 2015 ),

nd the creation of cross-platform development frameworks such

s ICPMD ( El-Kassas et al., 2014 ) and MD 

2 ( Heitkötter et al., 2015 ).

o put the identified literature into context, we highlight notable

etails in the following. 

Early papers have typically only considered few criteria – if

t all ( Rahul Raj and Tolety, 2012; Sansour et al., 2014 ). It can

e noticed that few works perform a rather comprehensive eval-

ation, often neglecting a user’s perspective on cross-platform

pp development (cf., e.g., El-Kassas et al., 2017 ). For example,

hrt and Turau (2012) have analysed nine tools with regard

o developers’ needs and user expectations. Many papers focus

n particular aspects of apps such as animations ( Ciman et al.,

014 ), performance ( Dalmasso et al., 2013 ), or energy consumption

 Ciman and Gaggi, 2015 ). 

We can also observe that the set of considered criteria does

ot appear to be coherent over time. Criteria are often grouped

nto common categories ( Ohrt and Turau, 2012; Xanthopoulos and

inogalos, 2013; Hudli et al., 2015; Sommer and Krusche, 2013 )

ut no clear categorisation scheme has emerged. One additional

roblem typically found is a shortage of criteria explanations (e.g.,

harkaoui et al., 2015; Hudli et al., 2015 ). Furthermore, these
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Table 1 

Literature on cross-platform app development tool evaluations. 

Paper Evaluated tools Evaluation criteria (number of subcriteria) Focal areas 

Biørn-Hansen and 

Ghinea (2018) 

Ionic, React Native File system access performance Quantitative comparison 

Corbalan et al. (2018) Cordova, Corona, Native app, 

NativeScript, Titanium, Xamarin 

Performance (3) Resource usage and execution time of 

calculations and audio/video playback 

Delia et al. (2018) Cordova, Corona, Native app, 

NativeScript, Titanium, Web Apps, 

Xamarin 

Performance Execution time of calculations 

Ferreira et al. (2018) Native app, PhoneGap, Sensa Touch, 

Titanium 

Performance of device features (2) App scenarios with calculations as well 

as camera and GPS access 

Jia et al. (2018) Cordova, Native app, Titanium, Xamarin Performance of build, rendering, and UI 

response 

Specific combinations of platforms and 

cross-platform technologies 

Biørn-Hansen et al. (2017) Ionic, Progressive Web Apps, 

ReactNative 

Performance (3) Quantitative study using app scenario 

Ciman and Gaggi (2017) MoSync, PhoneGap, Titanium, Web 

Apps 

Battery usage, device sensors (7) Evaluation of energy consumption in 

combination with sensor usage 

Lachgar and Abdali (2017) none (native vs. web vs. cross-platform 

in general) 

14 rather simple questions to be answered 

before developing; six criteria for the tool 

selection step 

Two-step process: tools to be selected 

after the main approach is chosen 

El-Kassas et al. (2017) ICPMD, J2ObjC, MD 2 , MoSync, 

PhoneGap, Titanium, xFace, XMLVM 

Tool architecture, platform support, app type, 

license 

Variety of development approaches 

Que et al. (2017) Cordova, Native app Development support (6), device features (5), 

performance (6) 

Quantitative tool comparison 

Vil ̌cek and Jakopec (2017) Ionic, PhoneGap, NativeScript, Native 

app 

Platform support (3), development support (3) Qualitative comparison 

Ahti et al. (2016) PhoneGap Starting duration, memory usage, app size, user 

experience, appearance, development support 

Quantitative and qualitative evaluation 

criteria 

Botella et al. (2016) Ionic, Sencha User (functionality, UI, platform support), 

developer (developing time, reuse, native 

access) 

Qualitative tool comparison 

Latif et al. (2016) none (cross-platform approaches in 

general) 

Scalability and maintainability, device features, 

resource consumption, security, IDE 

Criteria definition and variety of 

development approaches 

Rieger and 

Majchrzak (2016) 

PhoneGap, Web Apps Infrastructure (7), development (11), app (9), 

usage (4) 

Criteria weighting 

Umuhoza and 

Brambilla (2016) 

13 research frameworks, 4 commercial 

solutions 

Development process, app layer, development 

technique, platform support 

Model-driven approaches 

Charkaoui et al. (2015) none (cross-platform approaches in 

general) 

Targeted public, programming language, app 

type 

Qualitative comparison of 

cross-platform approaches 

Ciman and Gaggi (2015) PhoneGap, Titanium Battery usage, device resource usage Evaluation of battery usage 

Dhillon and 

Mahmoud (2015) 

Adobe Air, MoSync, PhoneGap, 

Titanium 

Platform support, license (2), development 

environment (8), user experience (6), 

functionality (29), monetization (4), security 

(2) 

Performance benchmarks and 

development experience discussion 

Hudli et al. (2015) AngularJS, HTML5/JS, jQuery Mobile, 

PhoneGap, RhoMobile, Sencha Touch 

Platform support (4), development support (7), 

deployment factors (6) 

Criteria definition and qualitative tool 

comparison 

Ciman et al. (2014) jQuery Mobile, MoSync, PhoneGap, 

Titanium 

License, community, API, tutorials, complexity, 

IDE, devices, GUI, knowledge 

Qualitative tool comparison for apps 

with animations 

Dalmasso et al. (2013) jQuery Mobile, PhoneGap, Sencha 

Touch, Titanium 

Platform support, rich user interface, backend 

communication, security, app extensions, 

energy consumption, device features, license 

Performance evaluation (memory, CPU, 

energy consumption) 

Humayoun et al. (2013) MoSync, Native app, Titanium Responsiveness Qualitative user evaluation 

Sommer and 

Krusche (2013) 

PhoneGap, Rhodes, Sencha Touch, 

Titanium 

Functionality (8), usability (6), developer 

support (4), reliability/performance (4), 

deployment (8) 

Criteria definition and qualitative tool 

comparison 

Vitols et al. (2013) Cordova, PhoneGap, RhoMobile, 

Titanium 

Platform support, framework development 

activity/maturity (3), license, device features 

(11) 

Quantitative comparison 

Xanthopoulos and 

Xinogalos (2013) 

none (cross-platform approaches in 

general) 

Distribution, programming languages, hardware 

& data access, user interface, perceived 

performance 

Criteria definition 

Heitkötter et al. (2012) PhoneGap, Titanium, Web Apps Infrastructure (7), development (6) Foundational cross-platform criteria 

catalogue for this work 

Ohrt and Turau (2012) 9 commercial frameworks Developer support (8), user expectations (6) Criteria definition and challenges of 

cross-platform development 

Palmieri et al. (2012) DragonRad, MoSync, RhoMobile, 

PhoneGap 

Platform compatibility (2), development 

features (4), general features (4), device APIs 

(17) 

Qualitative tool comparison 

Ribeiro and da Silva (2012) Canappi mdsl, DragonRAD, mobl, 

PhoneGap, Rhodes, Titanium 

Technology approach, platform support, 

development environment, app type, device 

features (5) 

Criteria definition 
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inconsistencies are also reflected in the lack of measurable metrics

for the respective criteria. 

It can be summed up that many authors set out to conquer

the field of cross-platform app development. Without doubt, the

papers shown in Table 1 provide substantial contributions. How-

ever, both the rapid evolution on the mobile device market and

the proliferation of individual frameworks in the field of cross-

platform development thwart the process of theory-building and

mandate further work. This is also illustrated by many recently

published papers that – more or less isolated – address distinct

issues also discussed in this article. To conclude the study of re-

lated work, we highlight such works that address novel mobile

devices. 

2.2. Novel app-enabled devices 

Only few years ago, mobile app development exclusively fo-

cused on frameworks and applications for smartphones and –

sporadically – tablets. Nowadays, many more devices have be-

come app-enabled and to some extent mobile, ranging from

Internet-of-Things (IoT) functionalities in tiny units to self-driving

vehicles. 

In previous work, we have presented an initial taxonomy for

the variety of consumer devices whose functionality is extensible

by third-party apps already today or will be in foreseeable future

( Rieger and Majchrzak, 2018 ). While formerly it was possible

to categorise devices by operation system or hardware features,

this approach is not feasible anymore: for example, the Android

platform spans multiple device classes. Instead, the taxonomy

distinguishes device classes according to the dimensions of media

richness of inputs, media richness of outputs , and degree of mobility

( Rieger and Majchrzak, 2018 ). Within each of these device classes,

various devices and platforms have emerged. Whereas Android

and iOS have divided most of the smartphone market amongst

themselves ( Forni and van der Meulen, 2017 ), competition among

novel mobile device platforms is high and no clear winners are

foreseeable. Therefore, these devices pose similar challenges for

app developers compared to the beginning of smartphones several

years ago ( Heitkötter et al., 2013a ). An overview of scientific

work on apps for several novel device classes according to this

classification is presented next, together with existing literature

on cross-platform development approaches. 

Smart TVs are on the rise worldwide, with all major manufac-

turers offering such devices. As a consequence, more than 90% of

connected TVs sold in Germany support the HbbTV standard that

has evolved from previous approaches such as CE-HTML and Open

IPTV ( Statista Inc., 2018; HbbTV, 2018 ). In the U.S., app-enabled

smart TVs are already present in 35% of households ( Statista Inc.,

2018 ). Many platforms have emerged in practice, for example

the open-source media centre Kodi/XBMC with various forks, An-

droid TV, Tizen OS for TV, and webOS ( XBMC Foundation, 2018;

Google LLC, 2018b; Linux Foundation, 2018; LG Electronics, 2018 ).

However, app development is often tied to a specific TV manu-

facturer and reflects the fragmentation in the market. Interestingly

from a cross-platform perspective, many smart TV frameworks na-

tively support app development using web technologies such as

HTML5 and JavaScript, thus being well-suited for cross-platform

approaches. So far, scientific research often concentrates on specific

sub-topics such as interactive ads ( Perakakis and Ghinea, 2015a ),

serious games ( Ryu et al., 2014 ), and 3D content ( Perakakis and

Ghinea, 2015b ) across multiple smart TV platforms. 

Regarding smartwatches , which now have found more than just

a niche in the market ( Rawassizadeh et al., 2014 ), Google and

Apple again compete for dominance with their respective Android

Wear (now Wear OS) and watchOS platforms. Further players in

this field are Tizen OS and webOS ( Bouhnick, 2015 ). Some vendors
ave open-sourced their operating system (e.g., Android, Tizen,

r webOS); however, few truly vendor-independent platforms

uch as AsteroidOS exist ( Revest, 2018 ). To complicate matters,

martwatches are usually paired with a smartphone ( Doud, 2015 ),

.g., for performance reasons ( Liu and Lin, 2016 ) and to benefit

rom Internet connectivity (the latter being a specific challenge,

f. Ahola, 2015 ). Smartwatch apps often rely on the respective

martphone companion app; thus, cross-platform development

pproaches must support each combination of host and watch

latform. However, some smartwatch platforms recently added

tand-alone capabilities on supported devices, for instance since

he launch of Android Wear 2.0 in early 2017 ( Google LLC, 2018j ). 

In a wider sense, wearables such as fitness trackers are often

ied to proprietary platforms, e.g., Microsoft Band ( Microsoft Corp.,

018 ). Whereas those devices usually support pairing with dif-

erent smartphone platforms, third-party app development is still

imited. Vendors such as Fitbit and Garmin do not even produce

evices with modifiable operating system ( Bouhnick, 2015 ). Sci-

ntific work on wearables is therefore scarce ( Kim et al., 2016 ).

ome authors have proposed middleware approaches to span a

road range of devices ( Chmielewski, 2013 ), in one case even on

he hardware layer ( Zhang et al., 2011 ). 

Despite the vagueness of the terms, smart home and IoT devices

ould be a future domain for cross-platform research ( Jie et al.,

015 ). Several open-source and closed-source platforms exist that

ry to attract app developers and claim to integrate a plethora of

evices. Qualcomm’s AllJoyn, Intel’s IoTivity, Apple HomeKit, and

oogle Brillo are the most important players that try to establish

heir middleware as comprehensive solutions ( Carter, 2015 ). For

ome automation , a host of proprietary solutions exist with a

ariety of application targets ( Silva et al., 2012 ). Whether ex-

sting industry standards such as KNX can form the backbone

f IoT-enabled smart homes remains to be seen. Transitions

owards hybrid systems ( Lilis et al., 2017 ) and gateway usage

 Fantacci et al., 2014 ) will possibly solve the challenges regarding

ardware but may complicate app development further. 

Concerning the upcoming generation of connected cars,

our main approaches for developing in-vehicle apps exist

 Schuermans and Vakulenko, 2014 ). First, Android Auto, Blackberry

NX, and Windows Embedded are technologies that are rebranded

y car manufacturers and run native apps on the car’s head unit.

econd, some cars provide a remote application programming

nterface (API) to allow access and control of features such as door

ocks. For instance, General Motors, Airbiquity, and an unofficial

PI for Tesla cars make use of this approach ( Dorr, 2018 ). Third,

latforms including Apple CarPlay and the MirrorLink alliance use

creen mirroring, i.e., the app runs externally on the smartphone

nd is displayed on the car’s screen ( Durach et al., 2013 ). This ap-

roach was established due to security concerns in order to avoid

xecuting app code on the car’s main hardware. Fourth, Dash Labs,

ojio, and Automatic connect to the on-board diagnostics port

o interact with the car ( Dash Labs, Inc., 2018; Moj.io Inc., 2018;

utomatic Labs, 2018 ). Although this approach requires a Bluetooth

ongle as additional hardware, support is given for many cars that

ere not designed to be app-enabled in the first place. 

Besides the underlying development approach, several papers

ocus on usability issues ( Quaresma and Gonçalves, 2014 ) and

remote” human machine interfaces (HMI) ( Durach et al., 2013 ) for

he specific challenges of in-vehicle apps. For example, experimen-

al implementations of novel concepts such as a route planning

pp for head-up displays (HUD) ( Noreikis et al., 2014 ) and other

otential in-vehicle apps ( Wolf, 2013 ) are explored. To the best

f our knowledge, no cross-platform framework currently exists

ue to the novelty of the field as well as a lack of platform acces-

ibility from the fight for dominance between car manufacturers

owning” the platform ( Schuermans and Vakulenko, 2014 ). Current
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orks deal with an Open Service Cloud for cars ( Deindl et al.,

015 ) and the integration of non-automotive applications into the

utomotive environment ( Rodriguez Garzon and Poguntke, 2012 ).

otentially, also a middleware approach ( Deindl et al., 2015 ) might

e an option to bridge different approaches and at the same time

itigate security risks. 

This overview of novel mobile device platforms shows sim-

lar characteristics of fragmentation as the smartphone market

xperienced several years ago. Moreover, interactions between

ifferent device classes result in an exponentially growing amount

f combinations, causing additional complexities to consider for

pp development. Some platforms such as Android and Tizen have

ranches that run on multiple devices from smart TVs to wear-

bles, potentially simplifying the future development across device

lass borders. Samsung TOAST is an early initiative to simultane-

usly develop for Samsung Smart TV, the new Tizen platform and

rowsers, based on the established Apache Cordova framework

 Samsung, 2018 ). However, barely any approach covering multiple

evice classes currently exists in literature or practice, with the

otable exception of the gaming domain. Unity3D ( Unity Tech-

ologies, 2018 ), one of the best-known game engines for 2D/3D

ames (and one even targeted by scientific research, as exemplarily

llustrated by the works of Xie (2012) and Messaoudi et al. (2015) ),

upports 29 platforms including smartphones, smart TVs, consoles,

nd augmented reality devices. 

. Criteria catalogue 

In the following, we describe our catalogue of criteria, which

arks the foundation of our evaluation framework. We start by il-

ustrating fundamental considerations. Then, the four perspectives

f the framework – infrastructure, development, app , and user – are

xplained in detail. 

.1. Fundamental considerations and structure 

Our aim for this paper is to propose a future-proof, long-lived,

daptive evaluation framework for cross-platform app technology.

t would be a presumptuous attempt to create such a framework

rom scratch. Thus, the structure and the selection of criteria

s based on extensive prior work, as illustrated in Section 2 .

oreover, we give a rationale for criteria that we added or that

e use in an extended way in comparison to existing evaluation

rameworks. This follows specific literature, as far as such works

re available. Alternatively, we argue for such criteria based on our

xperience in working on cross-platform app development frame-

orks. We will revisit literature gaps as part of the discussion

ater in this article. 

Consequently, the proposed criteria are the result of a process.

irst, we created a synopsis of existing approaches. Then, this

ynopsis was extended and revised. Thereby, our criteria catalogue

ot only caters for the latest developments in the field but also

enefits from increased flexibility and versatility. Combined with

he weight profiles as explained in Section 4 , we are confident in

eing able to set the standard for future evaluation activities. 

Most notably, we categorize our criteria. Instead of presenting

ne large catalogue, we summarize criteria by the perspective on

evelopment they take. Perspectives mark a specific view on the

spects being evaluated. They thereby provide coherence: although

ll criteria are important when evaluating a framework, those that

ave been grouped into the same perspective are stronger related

o each other than those that we put into different perspectives.

ot only does this foster the comprehensibility of the criteria, but

lso the weighting is much easier (as will be seen in Section 4 ). 

The consideration of different perspectives is already found

n the often-cited paper by Heitkötter et al. (2013a) . We have
xtended the original two perspectives (infrastructure and devel-

pment) to four: 

• Infrastructure : Using a cross-platform app development

framework is inherently bound to preconditions. Typically,

ramifications arise regarding the life cycle of developed

apps. This can be summarized as the infrastructure a frame-

work provides. Most fundamentally, this concerns the sup-

ported target platforms. Moreover, aspects of licensing, us-

age, and long-term prospects are considered. 
• Development : A cross-platform framework is only as good

as you can use it for developing apps. Frameworks may of-

fer further built-in development support that can make de-

velopment more rapid, support inexperienced developers, or

both. Being proper for development is bound to a host of

criteria that all have a technical appeal. Development crite-

ria are those that programmers and software engineers will

ask for, other aspects notwithstanding. 
• App : Naturally, the actual app denotes whether development

was successful. If an app is developed using a platform’s na-

tive framework, it has access to all device features regard-

ing sensors as well as user input and device output. A de-

velopment framework should ideally provide a near-native

range of support for device features such that access is ver-

satile and easy to employ. Also, the integration of business

concerns with regard to an app as a product can be sub-

sumed by this perspective. A good example for this is secu-

rity, which is considered to be very important while becom-

ing increasingly harder to overview for developers due to its

multi-faceted nature ( Watanabe et al., 2017 ). 
• Usage : An app is more than the sum of its functionality.

Therefore, the usage perspective comprises many aspects

that in systems’ design would fall under the non-functional

(or: quality) requirements. Besides management aspects, this

perspective embodies performance characteristics and how 

user-friendly an app is, including considerations of aesthet-

ics, ergonomics, and efficiency. 

We deem this distinction into categories not only helpful for

ssessing a framework with different aspects and stakeholders

such as developers, managers, and users) in mind but also to

upport different devices. As already argued, the devices found

n modern mobile computing are no more limited to smart-

hones and – technologically rather similar – tablets ( Rieger and

ajchrzak, 2018 ). The distinct app perspective (compared to

eitkötter et al., 2013a ) leads to more clarity with regard to the

evelopment outcome which might differ significantly across

ifferent device classes, whereas the development itself might

e similar. Thus, perspectives offer an easier way to tailor an

ssessment to the desired device category: In some cases, assess-

ents might be very broad, in some very narrow. And, as we

ill argue later, also cases such as “good smartphone support is

andatory, but compatibility with smartwatches would be nice”

an be designed. Also, the additional usage perspective focuses on

ross-cutting concerns such as usability and performance which

argely affect user acceptance and joy of use. 

Which devices are to be targeted – or, in other words, which

ole multi-device support plays – is merely one aspect when

hinking about case-based assessment of development frame-

orks. The underlying development paradigms might be to some

egree tailored to more or less specific use cases. For example,

ross-platform development for business apps has been discussed

 Majchrzak et al., 2015b ). Likewise, a focus on consumers or

obile gaming is imaginable. These cases would even combine

spects of intended usage with those deriving from multi-device

upport. We will further elaborate on cases when explaining the

eight profiles and in the discussion. 
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The following four subsections explain the criteria of the

perspectives in detail. Besides explaining what should actually be

measured respectively expressed by a category, we also give its

rationale. Whenever possible, this is done based on the literature.

We refer both to evaluation papers mentioned in Section 2 and

to additional work specific to the very criterion. The only work

not explicitly cited is that by Heitkötter et al. (2013a) . As the

trailblazer for cross-platform evaluation frameworks, it contained

14 criteria of our framework already, even though in a premature

form from today’s perspective. Extending the already thorough

work of a previous conference paper ( Rieger and Majchrzak, 2016 ),

the criteria catalogue has been refined by consulting experts in

this field (cf. Section 6 ). Resulting from an iterative process, we

have reworked the criteria descriptions to sharpen their scope (e.g.,

covering multiple aspects of robustness (A9) instead of a limited

focus on degrading functionality), apply precise terminology (e.g.,

“user authentication” (U4) instead of the too general term “user

management”), and eliminate potential overlaps (e.g., discerning

the fields of internationalisation (I6) from the subsequent app

distribution (I4)). Also, two new criteria have been added in order

to better suit the needs for large-scale app development through

configuration management (D8) and incorporate app development

for the multitude of new mobile devices (A10). For addressability,

all criteria are numbered in the form Xy where X is a character

denoting the perspective (I, D, A, U) and y a continuous number

for the specific criterion. 

The last subsection is followed by Table 2 (p. 11–12 onwards).

While we reference related literature – particularly the related

evaluation articles compiled in Table 1 – directly for each intro-

duced criterion, this table provides a compilation of similarities

of terminology. For each criterion, we state the related work that

proposed a criterion by the same term. Moreover, we name terms

used with a similar meaning to our criterion. The table not only

means to better relate our contribution to the existing literature

but also to identify ambiguities – not all criteria must always be

referred to with the same term. In addition, some authors pro-

posed criteria that are subsumed by ours, with the term thus only

appearing in the detailed description of the criterion. The table can

also help to identify weakly delimited terms that are used for mul-

tiple criteria (typically overloaded terms such as operating system )

as well as super terms (e.g., features , which can mean hardware

feature, system feature, or both). 

3.2. Infrastructure perspective 

(I1) License: Particularly for commercial development, a frame-

work’s license is important. This question is often raised but not

only relevant for open-source software ( Dalmasso et al., 2013;

Ciman et al., 2014; Palmieri et al., 2012 ). Moreover, a framework

might be restrictive with regard to the usage of developed apps.

While it typically is most important to consider the terms for apps

developed by using the framework, license particularities regarding

the framework itself can also play a role. Consider, e.g., that the

long-term feasibility (I7) of a framework is limited. If the license is

liberal concerning modifications of the framework and an adopt-

ing company has the resources and willingness to put effort into

maintenance of it, the impact of a questionable long-term feasibil-

ity might be reduced. As part of the licensing, the pricing model

needs to be considered ( Hudli et al., 2015; Sommer and Krusche,

2013 ). Open-source frameworks are typically distributed freely un-

der varyingly permissive regulations; a premium might be charged

for maintenance and consultancy ( Fitzgerald, 2006 ). For-payment

frameworks might have a flat fee or either one-time or regular

payments bound to certain conditions such as the number of de-

velopers, developed apps, and so on. 
(I2) Supported target platforms: The reason for using a cross-

latform framework is to provide apps for several platforms while

eveloping only once. Consequently, the supported platforms are

 major concern ( Ciman et al., 2014; Palmieri et al., 2012 ). This

emains true with Android and iOS essentially dividing the market

or smartphones and tablets among themselves ( Forni and van

er Meulen, 2017 ). Widening cross-platform app development

o further device categories might in fact increase the number

f attractive platforms again ( Rieger and Majchrzak, 2018 ). In

ddition, two versions of a platform might be different enough

o consider developing for them to be similar to developing for

wo distinct platforms (major versions often introduce breaking

hanges to internal APIs as well as interface and design guide-

ines, e.g., Google LLC, 2018c ). This, again, is particularly relevant

hen considering different device categories. Typically, recent

ersions of platforms provide novel features exploited (only) by

agship devices. These might be heavily marketed – consider, e.g.,

amsung’s Edge displays ( Samsung, 2014 ) –, wherefore support

s important to reach early adopters ( Beal and Bohlen, 1957 ). At

he same time, many users will not adopt new devices, thereby

ot frequently getting platform upgrades – or none but for a few

ecurity upgrades. This problem is worsened by the update be-

aviour of device vendors who, particularly for Android, maintain

orks widely compatible to the official release but augmented with

ustom user interfaces and apps ( Dobie, 2012 ). The situation is

ikely to become direr in the near future, with markets in devel-

ping countries being entered. Inexpensive low-end devices might

uickly scale up in those markets but note that current devices

n several markets cannot run the same version of a platform for

eason of capabilities (see for example work by Donner (2008) ,

énard et al. (2012) , and Mir and Dangerfield (2013) ). A final con-

ideration are combined apps that bridge more than one device

lass. Such an app could, e.g., be designed for a second screen and

upport both smart TV and tablet ( Neate et al., 2017 ), or serve

s companion app such as for smartphones and smartwatches in

rder to offload computation, use alternative input and output

apabilities, or simply cater for different user preferences. 

(I3) Supported development platforms: Even though apps

re not normally developed on the platform they are designed

or, multiple possibilities can be encountered. Custom business

ogic and advanced configuration of the apps can be expressed

o different extents, possibly differing from the actual app

pecification (e.g., domain-specific notations) using one or mul-

iple interoperable programming languages. In addition, some

egrees of flexibility play a particular role if teams are het-

rogeneous, i.e., developers use specific hardware and software

 Palmieri et al., 2012 ). Software in this sense does not only

omprise the operation system (with Microsoft Windows and

pple MacOS being the typical choices) but also development

ools including the development environment. I3 thereby is

elated to D1 (development environment), although the latter

oncerns the integrated development environment (IDE) typically

sed (and often enhanced) for a framework. A good develop-

ent platform support is furthermore beneficial for integration

ith additional app development tasks. For example, user inter-

ace (UI) and UX design might benefit from multi-platform support

 Bishop, 2006 ). 

(I4) Distribution channels: For the majority of users, there are

nly few ways to acquire news apps for their devices. Typically,

latform- or vendor-specific app stores provide large repositories

f apps, such as the Apple App Store and Google Play ( Jansen and

loemendal, 2013 ). As users are accustomed to searching for

pps on these platforms, it is essential to support the proprietary

tores to reach a high number of users. While cross-loading of

pps technically is easy, vendors might hide this functionality for

trategical reasons, and to make sure users do not compromise
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heir own safety. Therefore, broad support for the relevant stores is

esirable. While this might seem as naturally given, not all kinds

f apps can necessarily be uploaded to all stores. One example

re PWAs, progressively-enhanced responsive web sites that are

iscoverable via search engines and provide app-like interactions

sing modern web technologies for offline capabilities, content

pdates, and notifications ( Russell, 2015; Majchrzak et al., 2018;

iørn-Hansen et al., 2018 )). While explicitly designed for mobile

evices, PWAs cannot be installed via traditional app stores. Also,

ross-platform frameworks differ in the degree of compatibility

ith app store restrictions and submission regulations ( Sommer

nd Krusche, 2013; Dhillon and Mahmoud, 2015 ). Particularly well

ntegrated frameworks may support features such as the rating of

pps to improve app store ranking as well as roll-out support for

pdates ( Hudli et al., 2015 ). 

(I5) Monetisation: Most apps have neither been created with

urely philanthropic purposes nor merely for the joy of program-

ing – although such apps surely exist ( Jakuben, 2013 ). Therefore,

he monetisation possibilities of apps created with a certain frame-

ork need to be assessed. There are several possibilities, which

ight also be used in combination ( Dhillon and Mahmoud, 2015 ).

ang (2016) distinguishes four major monetization models, and we

dd free apps as a fifth category of apps with specific business pur-

ose: 

• Paid : Apps can be sold for a one-time fee before download-

ing or after a limited test period. This is typically done using

the proprietary stores (see I4) by using their integrated pay-

ment options. 
• Freemium : If apps follow a freemium model, they can be

downloaded and used for free, but users need to pay if

they want to have access to advanced features or full con-

tent and services after reaching a predefined usage thresh-

old. This model is often employed in games (deprecatorily

coined pay-to-win ( Alha et al., 2014 ) if used excessively),

where players for example will progress quicker when buy-

ing items for actual money ( Hsiao and Chen, 2016 ). The pay-

ment is usually performed via in-app-purchases , in case of

games often consisting of very small payments ( micropay-

ment ) per feature or upgrade. 
• Paidmium : This model combines paid downloads and in-

app purchases, usually found in complex apps such as nav-

igation. Although not always paid for the initial download,

subscription-based models are a form of paidmium as they

are not usable without login to a paid account and necessi-

tate a regular payment in order to retain access to the app’s

full functionality. 
• In-app advertising : Advertisements can be shown as part of

the usage of the app. There are ample possibilities how this

can be done (including banner ads, sponsored content, and

white-labelling of the app itself) and to which degree the

advertisements interfere with the usage of the app ( Li et al.,

2018 ). 
• Free : Especially business apps ( Heitkötter et al., 2015 ) may

be offered for free to potential users while simultaneously

serving a specific business purpose. This includes informa-

tion portals to increase customer satisfaction as well as ad-

ditional services (e.g., apps for mobile banking or service

booking). They provide value to mobile users and improve

customer loyalty, besides fostering process automation (as

even studied before the emergence of the widened possibil-

ities through mobile computing ( Meuter et al., 20 0 0 )). 

Strictly speaking, apps might also provide features that are un-

esirable for users. For example, recent studies have revealed that

ome apps contain software components that are able to track ul-

rasonic sounds used for perfidiously tracking users ( Arp et al.,
016 ). While such means might offer a source of data monetisa-

ion, we exclude it from further considerations since we deem it

thically indefensible. 

Development frameworks may or may not support means of

onetisation and they might offer particular good support for

ome of them. Such features need to be judged in the light of di-

ect costs and omissions to the app store operator (see I4 (Dis-

ribution Channels)). Good support includes interfaces to payment

roviders, pre-designed functionality for in-app payments, support

or various types of advertisements, and access to advertising net-

orks ( Dewan and Chen, 2014; Google LLC, 2018e ). 

(I6) Internationalisation: Apps are typically distributed glob-

lly. Even if only one language version is available, there are nor-

ally no restrictions regarding who can install an app. There might

e specific reasons to restrict users to local versions or to even pre-

ent the distribution in certain geographic regions. For example, le-

al conflicts and national legislation may prohibit the distribution

n parts of the world (as reported by Ng et al. (2014) for China).

rom a positive point of view, internationalisation and localisation

an offer added value by broadening the base of potential users

nd by providing better targeted functionality. Localisation can be

upported by the development framework. It can even go as far

s built-in translation capabilities as well as an easy support of

 multi-language operation mode. This is further aided if features

uch as conversion tools (e.g., for dates, currencies, and units) are

rovided ( Sommer and Krusche, 2013 ). Additionally, frameworks

ight bring in support for national idiosyncrasies, e.g., API support

or state-specific services, for example regarding authentication or

ersonal data records. 

(I7) Long-term feasibility: The choice of an app development

pproach can be a strategic decision for a commitment over mul-

iple years. Depending on the framework, the kind of apps devel-

ped as well as their intended lifetime, and the situation in the

eveloping company, significant initial investment might be nec-

ssary. Moreover, there can be the risk of a technological lock-in

as particularly discussed in the context of proprietary software

y Zhu and Zhou (2012) ). Initial investment includes market stud-

es, assessments (which, as we hope, are much easier using our

ramework), fees, training materials and training courses, and re-

ruiting. The risk of lock-in can only be partly mitigated by look-

ng for good compatibility, adherence to standards, and the usage

f well-known technologies. It is particularly high for small compa-

ies, which might lack the resources to quickly correct an ill choice

nd which typically will invest in just one cross-platform develop-

ent framework at a time. Whether a framework is suitable for an

xtended period cannot be assessed in a completely objective way

you may forecast but you cannot prophesy), but maturity, stability,

nd activity are indicators that help with an educated judgement: 

• The maturity of a framework can be judged according to a

long-lasting existence, a large community of developers and

resulting apps, as well as historic events. The latter may for

example mean that it can be analysed how emergent secu-

rity flaws have been handled. 
• The stability can be particularly seen when looking at the

history and future schedule of releases. At which rate have

new features been introduced? Have major releases been

backward compatible, and if so, how far? Are update cycles

(for minor releases) sufficiently short? Are bug-fixes and se-

curity updates provided regularly and timely in case of ma-

jor flaws? 
• Besides release cycles, the activity of a framework relates to

the general contributions of developers and users: Does an

active community exist that reports bugs and discusses so-

lutions to these issues? Is this community likely to provide

support where official documentation falls short? Does this
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community probably even support the future development

of the framework when a major backer withdraws? Particu-

larly in case of open-source products not backed by a large

corporation, a healthy community might even blend with

the development team. 

Moreover, if a framework is supported, led, or even owned by

a company or a consortium, the reputation of the key stakehold-

ers should be scrutinized. Typically, financial or even technolog-

ical support (such as code contributions) by commercial entities

is particularly valuable for open-source frameworks (cf. the work

of Andersen-Gott et al., 2012 ). Additionally, news, plans, and ru-

mours can be checked. For example, the announcement of a new

framework by a company might eventually mean the demise of its

predecessor. Likewise, changes to fundamental technology (e.g., a

JavaScript engine) could mean that a framework is strengthened or

becomes obsolete. Technology breakthroughs may have the same

effect - as could happen with WebAssembly ( Wagner, 2017 ). Fi-

nally, it should be considered whether support inquiries require a

premium. Such costs might not necessarily be considered negative;

in fact, they may hint to a good outlook particularly in the case

of open-source software for which commercial “premium support”

exists to help with development issues ( Hudli et al., 2015; Sommer

and Krusche, 2013 ). 

3.3. Development perspective 

(D1) Development environment: Rapid development is typi-

cally supported by the use of an IDE. The maturity and feature-

richness of IDEs can greatly influence development productivity

– sometimes also negatively when usability challenges of man-

aging too much functionality overburdens users ( Kline and Sef-

fah, 2005 ). Features such as auto-completion and the integration

of library documentation help with the actual coding. Built-in de-

buggers and emulators support a rapid app development cycle

( Hudli et al., 2015; Sommer and Krusche, 2013; Ciman et al., 2014;

Palmieri et al., 2012; Dhillon and Mahmoud, 2015 ). If a certain IDE

is not enforced by the cross-platform framework, and in particular

if there is freedom with regard to accustomed workflows, the ini-

tial effort of starting to work with a framework can be significantly

lowered. This can lower the set-up effort of dependencies such as

runtime environments or SDK ( Sommer and Krusche, 2013 ). 

(D2) Preparation time: Apps are typically developed rapidly.

Thus, the realized learning curve should be favourable, reflecting

rapid subjective progress of a developer in getting acquainted with

the capabilities of a framework. The entry barrier is also influ-

enced by the required technology stack and the number and kind

of supported programming languages ( Xanthopoulos and Xinoga-

los, 2013; Ciman et al., 2014; Sommer and Krusche, 2013; Palmieri

et al., 2012 ). Being able to rely on well-known programming

paradigms can further reduce the learning effort s needed before

being able to work productively ( Ciman et al., 2014 ). Moreover, the

documentation of the API is important – particularly, if a frame-

work poses unique characteristics or novel ways of providing com-

mon functionality. Additionally, “Getting started” guides, tutorials,

screencasts, and code examples make a framework more acces-

sible and help to clarify features and idiosyncrasies; a corpus of

best practices, user-comments, and technical specifications helps

with staying productive once an approach is initially conquered

( Sommer and Krusche, 2013; Dhillon and Mahmoud, 2015 ). 

(D3) Scalability: Particularly in large-scale or distributed de-

velopment projects, apps need to scale. For this purpose, proper

modularisation is needed. The app structure is heavily influenced

by the general possibilities for partitioning into subcomponents

and by architectural conditions. For example, using the widely ap-

plied Model-View-Controller pattern has profound ramifications for
ther design decisions. Ideally, more developers can be added to

 project while the app’s functionality grows ( Hudli et al., 2015;

almieri et al., 2012 ). A framework that supports modular or even

omponent-based development can support this division of labour

or even guide it. Moreover, when layering is supported and com-

onents can be given specified interfaces and interaction, a higher

evel of specialisation is possible for developers. Besides adding to

he scalability, this might have a positive impact on software qual-

ty. 

(D4) Development process fit: From the traditional waterfall

pproach ( Royce, 1970 ) over integrated methodologies such as the

ational Unified Process ( Jacobson, 1999 ) till the variety of ag-

le methods, many ways of developing software are employed. Al-

hough all methodologies have common characteristics ( Dyck and

ajchrzak, 2012 ), actual development differs widely. Compare, for

xample, the design-heavy waterfall approach to Extreme Program-

ing ( Beck, 1999 ). Consequently, a framework should be compat-

ble with custom ways of developing software. As the first step, it

an be scrutinized how much effort is required to create the min-

mum viable product . Frameworks differ with regard to the initial

onfiguration that has to be made, so-called boilerplate code, and

he following effort for incrementing the scope. Thereby, D4 is also

elated to D3 (Scalability), as the organisational aspect of speciali-

ation, which might be fostered by methodology-fit, influences the

calability in terms of functionality. Tailored views and specialised

ool can support modularising development with a profound role

oncept, contrasting the work of full-stack developers typically en-

ountered in small projects ( Wasserman, 2010 ). 

(D5) User interface design: The UI design is essential when

eveloping user-centred application, which most apps are. At the

ame time, the input and output heterogeneity of mobile device

ardware (A4, A5) poses challenges to the development approach

f mobile UIs using either flexible descriptions such as respon-

ive designs or multiple layouts for specific ranges of screen sizes

 Eisenstein et al., 2001; Rieger and Kuchen, 2018b ). Commonly, not

ll cross-platform frameworks put weight on platform-agnostic UI

spects, partially leaving it at individual implementations per tar-

et platform ( Google LLC, 2018f ). Graphical user interfaces are usu-

lly specific to a platform and in many cases only covered by a

efault appearance defined by the framework ( Heitkötter et al.,

013b ). Depending on development requirements, a separate What

ou See Is What You Get (WYSIWYG) editor can be very help-

ul. Such editors can be used to design appealing, ergonomic in-

erfaces for multiple devices. They can also increase the pace of

evelopment compared to repeatedly deploying the full app to a

evice or an emulator. At the same time, reasonable support for

latform-adequate designs without too much effort from develop-

rs is preferable, for instance considering round and rectangular

ayout types for smartwatches. 

(D6) Testing: User interface, business logic, and possible ad-

itional components of apps need to be thoroughly tested ( Hudli

t al., 2015; Sommer and Krusche, 2013 ). In addition to the well-

nown techniques and approved strategies of testing desktop and

erver applications such as unit tests, the context-sensitivity of

obile devices should be honoured. For this purpose, mobile sce-

arios (such as moving around, or getting a phone call while

sing an app) need to be considered and external influences

such as varying connectivity) could be simulated ( Majchrzak and

chulte, 2015 ). In addition to this, monitoring the app at runtime

an further improve its testability. This includes, e.g., providing a

eveloper console, meaningful error reporting, and logging func-

ionalities for app-specific and system events. Also, remote debug-

ing on a connected device rather than using emulator environ-

ents allows for more realistic test results. Additional tool support

an aid testing further and provide test coverage visualisation and

etrics to support test controlling ( Hudli et al., 2015 ). 
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(D7) Continuous delivery: Life cycle support does not end with

esting but should also include deployment. Being able to rely

n a solid toolchain greatly simplifies the deployment. For ex-

mple, a framework may leave you with source code generated

or the target platforms, may support the generation of native

pps, or may go all the way by providing signed packages, pos-

ibly even supporting developers in deploying these to devices or

pp stores. Frameworks vary greatly, from requiring each target

latform’s native SDKs to using external build services and cloud-

ased approaches ( Hudli et al., 2015; Sommer and Krusche, 2013 ).

articularly if following an agile method, continuous delivery plat-

orms to automate building, testing, and deploying an app may be

sed. Frameworks can be explicitly designed to integrate with such

oolchains, for example by generating project-specific scripts. Ad-

itionally, a framework might offer advanced build options (such

s code minification ) and continuous app store integration (e.g., for

utomatically publishing updated versions) ( Hudli et al., 2015 ). 

(D8) Configuration management: Often, apps do not exist in

solation but have multiple versions when considering multiple

oles (such as user and administrator with different capabilities),

heming (or branding for white-label apps), and significant re-

ional peculiarities (e.g., right-to-left script). Depending on avail-

ble app store features, developers in addition might need to sup-

ly different app packages for free and paid versions with varying

unctionality. Cross-platform frameworks can also support the de-

elopment of such feature variations similar to product lines, ei-

her by providing different app packages or by allowing a dynamic

ransition between versions without re-installing the app. 

(D9) Maintainability: The application life cycle does not typ-

cally end with one-time deployment (D7). Rather, software is

aintained for a shorter or longer period, over which the code

ase evolves ( Sommer and Krusche, 2013 ). Maintainability gener-

lly is hard to quantify. Although simple metrics such as lines of

ode (LOC) can give a basic idea (the more source code the harder

o maintain), more complex metrics might reveal a different pic-

ure, for instance when considering code complexity (cf. with the

ork of Gill and Kemerer, 1991 , but also with the critical assess-

ent of Shepperd (1988) ). While such metrics can be used to

ompare an app against reference apps, qualitative aspects need

o be taken into account. This concerns readability of code, use

f design patterns, the kind of in-code documentation and sim-

lar aspects; possibly in conjunction with the amount of train-

ng, familiarisation, and other preparatory efforts (see also D2).

hese considerations are similar to the discussion about program-

ing languages, where so-called gearing factors are used to com-

are the amount of code per unit of functionality ( QSM, 2009 ).

t is problematic to apply advanced maintainability metrics due

o the heterogeneity and varying complexity of frameworks. This

ounts even stronger for generative approaches and the resulting

iversity of platform-specific programming languages. As an ad-

itional aspect, the reusability of source code across development

rojects can be evaluated as well as the portability to other soft-

are projects ( Sommer and Krusche, 2013 ). 

(D10) Extensibility: Although a framework should cover a cer-

ain scope and enable the development of typical apps within that

cope, project-specific requirements may go beyond the provided

unctionality. However, if they are unlikely to be added as features

ue to a low general priority, a framework’s extensibility becomes

mportant. It can be more flexibly used if custom components can

e added and third-party libraries can be included. Typically cov-

red areas include extensions for the UI (such as alternative or ad-

itional widgets), access to device features, and libraries for com-

on tasks such as networking and data transfer ( Hudli et al., 2015;

almieri et al., 2012 ). 

(D11) Integrating custom code: Some applications require na-

ive code or third-party libraries to be run. While this seemingly
ontradicts the principle of cross-platform development, it can be

ecessary in some cases. This applies in particular when the de-

ired functionality cannot be realized using extensions (D10). Us-

ng native platform APIs might enable access to platform function-

lities and device features that are not currently supported by a

ramework or unique to a platform ( Sommer and Krusche, 2013;

almieri et al., 2012 ). Moreover, companies might want to integrate

ative code to reuse functionalities, for example when successively

igrating apps that were developed natively to a cross-platform

pproach. 

(D12) Pace of development: While many of the above crite-

ia have an influence on how rapid development will be, there

re some particularly influencing factors. Especially the amount

f boilerplate code necessary for functional app skeletons (cf.

eitkötter et al., 2014 ) and the availability of pre-defined function-

lity for typical requirements (such as user authentication) facil-

tate swiftness. Ignoring possible salary differences based on pro-

ramming language proficiency, the overall development speed has

irect influence on the variable costs and, ultimately, the return-

n-investment. 

.4. App perspective 

(A1) Access to device-specific hardware: While today’s devices

ossess high processing power, their hardware features – espe-

ially sensors – account for the versatility and ubiquitous use. In

onsequence, access to platform- and device-specific hardware is

ital for cross-platform frameworks ( Hudli et al., 2015; Dalmasso

t al., 2013; Ciman et al., 2014; Sommer and Krusche, 2013; Dhillon

nd Mahmoud, 2015 ). Frameworks with poor coverage incur the

isk of feature-poor apps to be developed. A plethora of device

ardware is present today, including sensors such as camera, mi-

rophone, GPS, accelerometer, gyroscope, magnetometer, and tem-

erature scale as well as novel additions such as a heart rate

onitor. Moreover, devices (more precisely: cyberphysical systems)

ay also offer bidirectional interaction through actuators, enabling

hem to modify their environment (e.g., in smart home apps). 

(A2) Access to platform-specific functionality: Similar to A1,

pps can only make use of the versatility of modern mobile de-

ices if frameworks provide access to the possibilities they offer.

uch platform-specific functionalities include a persistence layer,

roviding file system access and storage to a database, contact

ists, information on the network connection, and battery status

 Hudli et al., 2015; Dhillon and Mahmoud, 2015 ). Furthermore,

upport for extending the app with complex business logic us-

ng general-purpose programming languages might be required

n specific app projects but may be inherently restricted by the

ramework’s paradigm of development. In-app browser support

an make development much easier when web-based content is

ccessed ( Hudli et al., 2015 ). Background services can serve for the

ealisation of continuous feature execution such as push notifica-

ions and monitoring ( Sommer and Krusche, 2013 ). 

(A3) Support for connected devices: In addition to accessing

ardware and platform functionality (A1, A2), the support for con-

ected devices can be scrutinized. Wearables and other small mo-

ile devices as well as sensor/actuator networks of cyberphysical

ystems often rely on coupling with a master device, typically a

martphone. This enhances their capabilities or might be used for

ccasional synchronisation. The interaction of devices respectively

he extension of capabilities through other gadgets has become

ore important; thus, the support of viable device combinations

y frameworks should be assessed ( Seyed et al., 2015 ). Specifically,

his concerns the kind and richness of access to coupled devices,

heir data, and their sensors. Moreover, the provision of additional

I components should be evaluated, if applicable. The latter for ex-

mple applies to smartwatches, which on a smaller screen provide
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a selection of a host device’s functionality. Realising the support

can be trivial if a platform provides a layer of abstraction expos-

ing the coupled device as if it was a regular device component.

However, particularly due to the multitude of possible combina-

tions and the specificity of these, cross-platform frameworks will

need to provide explicit support in many cases, which brings addi-

tional complexity. 

(A4) Input device heterogeneity: Mobile devices allow for a

multitude of inputs. This includes traditional means such as key-

board and mouse, (multi-) touch screens, remote controls, and

hardware buttons, as well as modern means such as voice recogni-

tion and futuristic input technologies using gestures or neural in-

terfaces ( Rieger and Majchrzak, 2018 ). However, not all devices al-

low all possible means of input; this is even true within one device

class (consider, e.g., smartphones that understand ultrasound ges-

tures ( Horsley, 2016 )). In addition, devices typically support com-

plex inputs via several alternatives. Think, e.g., of a smartphone

screen, which can be manipulated via multi-touch gestures such as

taps, swipes, pinches, and pressure, but also reacts to orientation

changes and hardware buttons. Cross-platform frameworks need

to make these possibilities available to developers, consider the

lack of input actions on individual devices, and respect platform-

or device-specific patterns (e.g., scrolling on smartwatches may be

achieved by rotating bezels, digital crowns, or screen swiping). Ide-

ally, they should also provide support for simple usage – for ex-

ample by providing means to register multi-touch events or more

abstract user actions instead of the need to observe single touches

and make sense of their combination. 

(A5) Output device heterogeneity: Heterogeneity is also given

for the output possibilities a device offers. Most have screens for

visual output, which differ in size, resolution, format (quadratic vs.

rectangular vs. round), colour palette, frame rate (e.g., very slowly

updated E-ink screens), and opacity (e.g., augmented reality pro-

jections). Moreover, many other possibilities for output exist, such

as projection and sounds ( Rieger and Majchrzak, 2018 ). Adapt-

ability is challenging for traditional devices already ( Amatya and

Kurti, 2014 ) and becomes very complicated with novel gadgets.

Moreover, apps need to cope with device class specific context

changes to realize well-understood design ideals ( Schilit et al.,

1994 ) such as a day/night screen mode for in-vehicle apps. 

(A6) Application life cycle: The life cycle inherent to an app

should be supported by a framework. This must not be confused

with the development life cycle addressed in D4 (Development

process fit), D7 (Continuous delivery), and D9 (Maintainability).

The app life cycle comprises of starting, pausing, continuing, and

exiting an app ( Sommer and Krusche, 2013 ), as well as possible

others states in dependence on the platform. Multithreading, con-

tinuously running background services, and notifications further

extend the states in which an app is executed without necessar-

ily providing a graphical UI. In addition, individual views and view

elements might have divergent states or even life cycles, e.g., en-

forced teardown of inactive widgets on Android to reduce memory

usage ( Google LLC, 2018i ). 

(A7) System integration: Many apps rely on (business) back-

end systems, which is typically in the interest of the app ven-

dors ( Majchrzak and Heitkötter, 2013 ). Frameworks preferably of-

fer several options for integration in existing ecosystems and work-

flows, including support for data exchange protocols and serialisa-

tion as well as multiple data formats ( Dalmasso et al., 2013 ). Apps

need to be able to consume web services for data storage and

processing. Ideally, inter-app communication should be possible

(consider a banking app requesting transaction authorisation from

an identity verification app). Additionally, workflow-oriented use

cases typically rely on collaboration from several user roles, which

may be supported by an app framework. Finally, system integra-

tion also means that apps need to be customisable, e.g., to follow
he overall design endorsed by a corporate identity ( Sommer and

rusche, 2013 ). 

(A8) Security: App security is an increasingly discussed topic

ith many facets ( Watanabe et al., 2017 ). Frameworks can support

he development of secure apps with regard to several security at-

ributes ( Parker, 1998 ): 

• As regards confidentiality , mobile platforms provide means

for managing access permissions regarding platform and de-

vice features. In general, such permissions should be han-

dled restrictively. Apps should only request permissions on

demand (e.g., access to contacts only if contacts are to be

imported) ( Google LLC, 2018h ). Concerning the generally low

understanding of app permissions ( Kelley et al., 2012 ), this

might raise the user awareness and acceptance of apps re-

specting security best practices. 
• From an integrity point of view, sensitive data should be

secured using encryption on the device file system or

database. Moreover, secure data transfer protocols impede

eavesdropping when communicating with backend systems

and web services ( Dalmasso et al., 2013; Hudli et al., 2015 ). 
• Regarding control , support for user-input validation and pre-

vention of code injections, cross-site request forgery, and

similar attack patterns are preferable ( Hudli et al., 2015 ). 

A framework might provide basic or advanced support for se-

urity, ideally freeing inexperienced developers from explicitly im-

lementing security-relevant functionality. 

(A9) Robustness: Criteria A1–A5 leave much freedom to the

pp developer. Apps should include intelligent fallback mecha-

isms in case specific features are unsupported or restricted. The

aïve option is to redirect a user to a web page. More sophisticated

andling includes graceful degradation techniques such as simpler

epresentations ( Ernsting et al., 2016 ) and the employment of al-

ernative functions that make up for the unavailable ones. In ad-

ition, robustness also refers to fault-tolerant and resilient mech-

nisms, for example by acting gracefully if permissions are denied

y the user or sensors are deactivated. Fault-tolerance particularly

pplies to common situations with poor or unavailable Internet ac-

ess. A framework should enable offline capabilities to keep apps

perational in low connectivity situations, for example by storing

ssets and content locally on the device and caching data that

eeds to be sent to the backend server as soon as connectivity is

e-established (e.g., Chun et al. (2012) ). 

(A10) Degree of mobility: Mobility considerations for the de-

ired apps also influence the framework choice. In contrast to the

elated criteria on available target platforms (I2) and hardware ac-

ess (A1), different degrees of mobility strongly affect app mechan-

cs and emphasize features beyond infrastructure considerations.

n a high level, four categories can be distinguished ( Rieger and

ajchrzak, 2018 ): 

• Stationary : App-enabled devices do not need to be mobile

(e.g., smart home devices). They differ from traditional desk-

top applications regarding input/output characteristics but

barely need to consider contextual information. 
• Mobile : Typical mobile applications must process various

types of context information such as location, time, and fur-

ther sensor values (e.g., ambient light for in-vehicle UIs). 
• Wearable : In addition to the usage context, wearables need

to adapt to personal preferences and unobtrusively blend

with the user’s life (e.g., when to propose recommendations

or avoid distraction through notifications). Also, other types

of sensors might require continuous event processing for ap-

plications such as health monitoring. 
• Autonomous : The highest degree of mobility requires ad-

vanced self-adaptation capabilities for the cyber-physical
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system to react to expected and unexpected situations. The

app might therefore exhibit agent characteristics or apply

business rules for automated decision making. 

.5. Usage perspective 

(U1) Look and feel: The UI elements provided by a frame-

ork should have a native look and feel rather than resembling

 web site ( Sommer and Krusche, 2013 ). If generated apps use
able 2 

iterature references to criteria and related terms. 

Criterion Literature referencing the criterion or related/subordin

I1 License ( Palmieri et al., 2012; Heitkötter et al., 2013a; Dhillon

2015; Heitkötter et al., 2013a; Sommer and Krusche, 2

availability ( El-Kassas et al., 2017 ) 

I2 Target platforms Supported platforms ( El-Kassas et al., 2017; Dhillon an

et al., 2013; Heitkötter et al., 2013a ), mobile platforms

( Sommer and Krusche, 2013 ), mobile operating system

I3 Development 

platforms 

(Programming/development) languages ( Que et al., 20

et al., 2012; Vil ̌cek and Jakopec, 2017; Ribeiro and da

( Dhillon and Mahmoud, 2015 ), technologies ( Xanthop

I4 Distribution 

channels 

App store ( Charkaoui et al., 2015; Dhillon and Mahmo

distribution ( Que et al., 2017; Xanthopoulos and Xino

place deployment ( Xanthopoulos and Xinogalos, 2013

I5 Monetisation Sales ( Lachgar and Abdali, 2017 ), in-app purchases ( D

Mahmoud, 2015 ) 

I6 Internationalisation ( Sommer and Krusche, 2013 ) 

I7 Long-term 

feasibility 

( Heitkötter et al., 2013a ), popularity ( Lachgar and Abd

D1 Development 

environment 

( Latif et al., 2016; Heitkötter et al., 2013a; Ribeiro and

2015; Palmieri et al., 2012 ), tool restrictions ( Sommer

D2 Preparation time Documentation/documents ( Lachgar and Abdali, 2017;

completeness and quality ( Sommer and Krusche, 2013

Krusche, 2013 ), community ( Vil ̌cek and Jakopec, 2017 )

user support groups ( Hudli et al., 2015 ), ease of devel

D3 Scalability ( Latif et al., 2016; Heitkötter et al., 2013a ), complexity

implication ( Hudli et al., 2015 ), MVC support ( Dhillon

D4 Development 

process fit 

Development process ( Umuhoza and Brambilla, 2016 )

D5 UI design GUI design(er) ( Heitkötter et al., 2013a; Ohrt and Tura

( Botella et al., 2016 ), no-code/low-code support ( Hudl

D6 Testing ( Umuhoza and Brambilla, 2016; Sommer and Krusche

2015; Sommer and Krusche, 2013; Ohrt and Turau, 20

2012 ), test framework ( Hudli et al., 2015 ) 

D7 Continuous delivery Building time ( Jia et al., 2018 ), build service availabilit

simplified/automatic builds ( Sommer and Krusche, 20

( Charkaoui et al., 2015 ), upgrade ( Que et al., 2017 ), up

D8 Configuration 

management 

Production support ( Hudli et al., 2015 ) 

D9 Maintainability ( Latif et al., 2016; Heitkötter et al., 2013a ), supportabi

D10 Extensibility ( Sommer and Krusche, 2013 ), libraries ( Hudli et al., 20

2013 ), plug-in extendibility ( Palmieri et al., 2012 ) 

D11 Custom code 

integration 

Native access ( Botella et al., 2016 ), extensibility with n

( Botella et al., 2016 ), app layer ( Umuhoza and Brambi

D12 Pace of 

development 

Development rate ( Lachgar and Abdali, 2017 ), speed o

time to market ( Lachgar and Abdali, 2017 ), budget ( La

easiness of development ( Ahti et al., 2016 ) 

A1 Hardware access ( Xanthopoulos and Xinogalos, 2013 ), device features ( L

( Hudli et al., 2015 ), sensor data capture ( Dhillon and M

( Sommer and Krusche, 2013 ), mobile device functions 

( Palmieri et al., 2012 ), accelerometer ( Ciman and Gagg

2013; Palmieri et al., 2012; Ribeiro and da Silva, 2012 )

Mahmoud, 2015; Palmieri et al., 2012 ), proximity ( Cim

Que et al., 2017; Ciman and Gaggi, 2015; Ciman et al., 

( Sommer and Krusche, 2013; Vitols et al., 2013; Palmie

Gaggi, 2015; Ciman et al., 2014; Dhillon and Mahmoud

audio record ( Ciman and Gaggi, 2017 ), microphone ( Ci

Bluetooth ( Dhillon and Mahmoud, 2015; Ohrt and Tura

( Dhillon and Mahmoud, 2015 ), light ( Ciman and Gaggi

cancelation microphone ( Dhillon and Mahmoud, 2015 )

( Dhillon and Mahmoud, 2015 ), barometer ( Dhillon and

positioning ( Dhillon and Mahmoud, 2015 ), network ( So

Mahmoud, 2015 ), connection ( Palmieri et al., 2012 ), (h

( Palmieri et al., 2012 ) 
 truly native interface, it should be created in the way typical

or a platform. Elements, views, and interaction possibilities can

e evaluated according to the respective human interface guide-

ines provided by platform vendors ( Google LLC, 2018a; Apple Inc.,

018a ). Apps should also support the platform-specific usage phi-

osophy, e.g., regarding the position of navigation bars, scrolling,

nd gestures ( Sommer and Krusche, 2013 ). While form-based in-

erfaces suffice in many cases ( Heitkötter et al., 2013b ) and are

elatively simple to realize, richer user interfaces with 2D anima-
ate terms 

and Mahmoud, 2015 ), (direct) costs ( Dhillon and Mahmoud, 2015; Hudli et al., 

013 ), open-source ( Hudli et al., 2015; Vitols et al., 2013; Palmieri et al., 2012 ), 

d Mahmoud, 2015; Dalmasso et al., 2013; Sommer and Krusche, 2013; Vitols 

( Vil ̌cek and Jakopec, 2017 ), versions ( Botella et al., 2016 ), portability 

s ( Palmieri et al., 2012 ) 

17; Botella et al., 2016; Charkaoui et al., 2015; Ohrt and Turau, 2012; Palmieri 

Silva, 2012; Dhillon and Mahmoud, 2015 ), computer operating systems 

oulos and Xinogalos, 2013 ), OS support ( Palmieri et al., 2012 ) 

ud, 2015; Sommer and Krusche, 2013 ) publishing ( Lachgar and Abdali, 2017 ), 

galos, 2013; Heitkötter et al., 2013a ), market ( Charkaoui et al., 2015 ) market 

 ), analytics platform ( Dhillon and Mahmoud, 2015 ) 

hillon and Mahmoud, 2015 ), mobile ad platform support ( Dhillon and 

ali, 2017 ), count of updates ( Vitols et al., 2013 ), community ( Vitols et al., 2013 ) 

 da Silva, 2012 ), IDE ( Que et al., 2017; Dhillon and Mahmoud, 2015; Hudli et al., 

 and Krusche, 2013 ), dependencies ( Sommer and Krusche, 2013 ) 

 Que et al., 2017; Vil ̌cek and Jakopec, 2017; Botella et al., 2016 ), documentation 

 ), learning curve ( Lachgar and Abdali, 2017 ), learning effort ( Sommer and 

, speed and complexity of installation ( Vil ̌cek and Jakopec, 2017 ), developer and 

opment ( Heitkötter et al., 2013a ) 

( Lachgar and Abdali, 2017 ), architecture ( El-Kassas et al., 2017 ), architectural 

 and Mahmoud, 2015; Palmieri et al., 2012 ) 

, architecture ( Palmieri et al., 2012 ) 

u, 2012 ), graphical tool for GUI ( Lachgar and Abdali, 2017 ), UI design assistant 

i et al., 2015 ), customizability ( Sommer and Krusche, 2013 ) 

, 2013 ), debugging ( Que et al., 2017; Botella et al., 2016; Dhillon and Mahmoud, 

12 ), simulator ( Latif et al., 2016 ), emulator ( Hudli et al., 2015; Ohrt and Turau, 

y ( Dhillon and Mahmoud, 2015 ), build support ( Hudli et al., 2015 ), 

13 ), compile without SDK ( Ohrt and Turau, 2012 ), instant update 

dates ( Hudli et al., 2015 ) 

lity ( Sommer and Krusche, 2013 ) 

15 ), app extensions ( Dalmasso et al., 2013 ), plug-in repository ( Vitols et al., 

ative code ( Ohrt and Turau, 2012 ), native APIs ( Palmieri et al., 2012 ), reuse 

lla, 2016 ), access to native UI ( Dhillon and Mahmoud, 2015 ) 

f development ( Heitkötter et al., 2013a ), developing time ( Botella et al., 2016 ), 

chgar and Abdali, 2017 ), complexity of development ( Vil ̌cek and Jakopec, 2017 ), 

atif et al., 2016 ), device API ( Charkaoui et al., 2015 ), device resource support 

ahmoud, 2015 ), built-in features ( Dalmasso et al., 2013 ), hardware sensors 

( Vitols et al., 2013 ), platform-specific features ( Heitkötter et al., 2013a ), APIs 

i, 2017; 2015; Ciman et al., 2014; Dhillon and Mahmoud, 2015; Vitols et al., 

, compass ( Ciman and Gaggi, 2017; 2015; Ciman et al., 2014; Dhillon and 

an and Gaggi, 2017; Dhillon and Mahmoud, 2015 ), GPS ( Ciman and Gaggi, 2017; 

2014; Dhillon and Mahmoud, 2015; Ribeiro and da Silva, 2012 ), geolocation 

ri et al., 2012 ) camera ( Ciman and Gaggi, 2017; Que et al., 2017; Ciman and 

, 2015; Vitols et al., 2013; Palmieri et al., 2012; Ribeiro and da Silva, 2012 ), 

man and Gaggi, 2015; Ciman et al., 2014; Dhillon and Mahmoud, 2015 ), 

u, 2012; Palmieri et al., 2012 ), accelerator ( Que et al., 2017 ), GPU acceleration 

, 2017 ), notification light activation ( Dhillon and Mahmoud, 2015 ), noise 

, NFC ( Dhillon and Mahmoud, 2015; Palmieri et al., 2012 ), gyroscope 

 Mahmoud, 2015 ), Wi-Fi positioning ( Dhillon and Mahmoud, 2015 ), cellular 

mmer and Krusche, 2013; Vitols et al., 2013 ), low-level networking ( Dhillon and 

ardware) buttons ( Sommer and Krusche, 2013 ), device (information) 

( continued on next page ) 
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Table 2 ( continued ) 

Criterion Literature referencing the criterion or related/subordinate terms 

A2 Platform 

Functionality 

Native features ( Lachgar and Abdali, 2017 ), device resource support ( Hudli et al., 2015 ), functionality ( Botella et al., 2016 ), 

platform-specific features ( Heitkötter et al., 2013a ), contacts ( Que et al., 2017; Dhillon and Mahmoud, 2015; Vitols et al., 2013; 

Palmieri et al., 2012; Ribeiro and da Silva, 2012 ), media ( Que et al., 2017; Vitols et al., 2013; Ribeiro and da Silva, 2012 ), files/file 

system access ( Dhillon and Mahmoud, 2015; Vitols et al., 2013; Palmieri et al., 2012 ), (user/system/push/alert/sound) notifications 

( Dhillon and Mahmoud, 2015; Vitols et al., 2013; Palmieri et al., 2012 ), calendar ( Dhillon and Mahmoud, 2015; Palmieri et al., 2012 ), 

SMS ( Dhillon and Mahmoud, 2015 ), call log ( Dhillon and Mahmoud, 2015 ), voice activation ( Dhillon and Mahmoud, 2015 ), native map 

support ( Dhillon and Mahmoud, 2015 ), background processes ( Dhillon and Mahmoud, 2015 ), in-app browser ( Hudli et al., 2015 ), 

storage ( Vitols et al., 2013; Palmieri et al., 2012 ), data access ( Xanthopoulos and Xinogalos, 2013 ), local database ( Hudli et al., 2015 ), 

database access ( Sommer and Krusche, 2013 ), barcode (scanner) ( Vitols et al., 2013; Palmieri et al., 2012 ), menu ( Palmieri et al., 2012 ) 

A4 Input Heterogeneity touch support ( Hudli et al., 2015 ), gestures ( Sommer and Krusche, 2013 ), swipe, pinch ( Dhillon and Mahmoud, 2015 ) 

A6 App Life Cycle ( Sommer and Krusche, 2013 ) 

A7 System Integration Social APIs, Cloud APIs ( Dhillon and Mahmoud, 2015 ), backend communication ( Dalmasso et al., 2013 ), corporate identity 

( Sommer and Krusche, 2013 ) 

A8 Security ( Lachgar and Abdali, 2017; Latif et al., 2016; Dalmasso et al., 2013 ), secure storage access, code obfuscation ( Dhillon and 

Mahmoud, 2015 ), security vulnerabilities, encrypted local storage ( Hudli et al., 2015 ) 

A9 Robustness stability, reliability ( Sommer and Krusche, 2013 ) 

U1 Look and Feel ( Xanthopoulos and Xinogalos, 2013; Heitkötter et al., 2013a; Lachgar and Abdali, 2017 ), user experience ( Lachgar and Abdali, 2017; 

Ahti et al., 2016; Heitkötter et al., 2013a ), appearance ( Ahti et al., 2016 ), (rich) UI ( Botella et al., 2016; Dalmasso et al., 2013 ), UI 

response time ( Jia et al., 2018 ), interaction-response ( Humayoun et al., 2013 ), user-perceived performance ( Xanthopoulos and 

Xinogalos, 2013 ), intuitiveness ( Ohrt and Turau, 2012 ), UI functionality, native UI components ( Sommer and Krusche, 2013 ), fluidity, 

animations ( Lachgar and Abdali, 2017 ) 

U2 Performance ( Sommer and Krusche, 2013 ), execution time ( Biørn-Hansen and Ghinea, 2018 ), duration ( Corbalan et al., 2018; Delia et al., 2018 ), 

energy/power consumption ( Corbalan et al., 2018; Ciman and Gaggi, 2017; 2015; Ciman et al., 2014; Latif et al., 2016; Dalmasso et al., 

2013 ), app size ( Jia et al., 2018; Ahti et al., 2016; Ohrt and Turau, 2012 ), size of installation ( Biørn-Hansen et al., 2017; Sommer and 

Krusche, 2013 ), CPU (load) ( Corbalan et al., 2018; Latif et al., 2016 ), CPU occupancy ratio ( Que et al., 2017 ), RAM/memory usage ( Jia 

et al., 2018; Ohrt and Turau, 2012; Ahti et al., 2016 ), memory occupancy ( Que et al., 2017 ), application/activity launch time 

( Biørn-Hansen et al., 2017; Ohrt and Turau, 2012 ), rendering time ( Jia et al., 2018; Biørn-Hansen et al., 2017 ), start-up consuming time 

( Que et al., 2017 ), app starting time ( Ahti et al., 2016 ), installation consuming time ( Que et al., 2017 ), battery temperature ( Que et al., 

2017 ), network flow ( Que et al., 2017 ), resources consumption ( Latif et al., 2016 ), application speed ( Heitkötter et al., 2013a ) 

U3 Usage patterns User experience conventions ( Ohrt and Turau, 2012 ), screen rotation ( Dhillon and Mahmoud, 2015; Palmieri et al., 2012 ), device 

orientation ( Ciman and Gaggi, 2017 ), accessibility features ( Ohrt and Turau, 2012 ), frequency of use ( Lachgar and Abdali, 2017 ), offline 

mode ( Lachgar and Abdali, 2017; Charkaoui et al., 2015 ) 
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p

tions are harder to realize. 3D environments and multimedia fea-

tures are particularly challenging for cross-platform frameworks

( Dalmasso et al., 2013 ). 

(U2) Performance: Poorly performing apps likely face low user

acceptance. Performance comprises of aspects such as app load

time, app speed for changing views and computations resulting

from user interaction ( responsiveness ), perceived speed of network

access, and stability. While the subjective impression is important

and might differ according to individual projects’ requirements,

some performance aspects can be measured. This includes the

start-up time, the time to awake after interruptions, and the time

to shut down ( Dhillon and Mahmoud, 2015 ). Additionally, resource

utilisation can be scrutinized. This includes CPU load, memory us-

age, battery drain during runtime (and possibly while background

services remain active), and download size ( Sommer and Krusche,

2013; Ciman et al., 2014; Dalmasso et al., 2013; Ciman and Gaggi,

2015 ). Performance aspects need to be carefully balanced, as a pure

focus on performance can negatively impact many other criteria

and optimisation for other criteria might negatively affect perfor-

mance (for instance by bloating an app). 2 

(U3) Usage patterns: Apps are used in typical patterns. This in-

cludes many apps that are used infrequently and some apps that

are often used, although normally only for a short amount of time

and often with interruptions. Users desire an “instant on” expe-

rience and continue where they left the app. Unsaved data ide-

ally should be available even after closing the app or even af-

ter rebooting a device. Data retrieved from the Internet should

stay available when temporarily loosing connectivity. Apps should

align with personal workflows for information processing such as

sharing with other apps or saving to persistent storage. Moreover,

they should integrate with common apps for interaction with other
2 The interrelation of criteria is illustrated in Fig. 1 and discussed in 

Section 6.1 (p. 19 onwards). 

4

 

n  
sers, such as messaging, email and social media services. Data-

ntensive apps, especially if they have desktop counterparts, should

upport synchronisation of app data across multiple devices. In

articular, background synchronisation for seamless, transparent

ontext switching is desirable. Additionally, apps should make use

f platform-wide services such as a notification centre or means to

tore certain types of documents (such as Apple Wallet for boarding

asses and similar documents Apple Inc., 2018b ). 

(U4) User authentication: User management becomes increas-

ngly important: apps may have a purely local, single user, cloud-

ased accounts (e.g., enabling services such as synchronisation),

r employ centralised user management with multi-device ac-

ount management or role-based access rights ( Kunz et al., 2014 ).

imilarly, authentication is possible on an app-level or server-

ased. Apps might include session management, and they might

ache login information (e.g., for a limited-functionality offline

ode). Ideally, frameworks should offer several ways for user au-

hentication, including traditional pins and passwords, gestures,

ased on biometric information, and voice recognition ( Luca and

indqvist, 2015 ). While this criterion has many implications for the

pp perspective (and clever features of a framework can consider-

bly simplify the developers’ job), we have put it under the user

erspective to underline the importance of it for working with an

pp. 

. Weight profiles 

In the following, we first give the rationale of weight profiles

efore explaining the application. We then provide notable exam-

les. 

.1. Rationale 

There are two sides to the evaluation of technological and tech-

ical criteria. First, there is the actual assessment of a phenomenon
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o  
in this case of a cross-platform development framework) under

hat criterion. It should be based on facts and made as little sub-

ective as possible. Thereby, it should also be replicable. In general,

his assessment is not individual, i.e., it should be the same in-

ependent of situation, context, and assessor. Second, there is the

mportance of the criterion for the individual situation. This is spe-

ific to a setting and dependent on context, personal preferences,

nd applicability of the criterion. 

To cater for this observation, criteria ought to be weighted in-

tead of simply using their average assessment score to denote the

verall assessment of a framework. This also serves the purpose of

alancing different levels of technical depths of criteria, which is

navoidable given the heterogeneity of the considerations reflected

n our criteria catalogue. 

Despite the individuality of the weighting, developers and com-

anies in need of a decision typically face one of a number of com-

arable settings. Therefore, along with our evaluation framework

e propose weight profiles . These correspond to typical develop-

ent settings; they are a kind of patterns or templates. Profiles can

e used as-is for a quick assessment and to gain an overview. Al-

ernatively (or successively), they can be used as the foundation for

n individual assessment. Instead of needing to start from scratch,

 profile provides a reasonable weighting for a typical situation,

hich commonly will need only some tweaking. Weight profiles

re not meant to be static but to evolve with the general evolu-

ion of the mobile computing ecosystems. Thus, they also serve an

mportant part of keeping our framework timely. 

One of the experts we asked to assess our criteria catalogue

see Section 5 ) noted that such an “approach could help also to

ocument thoroughly the rationale behind specific tool selections”.

his might be particularly important in corporate decision mak-

ng, where ultimately “supervisors with or without technical ex-

erience” will decide. Additionally, weight profiles also honour a

ivide-and-conquer proceeding in which individual criteria are as-

essed by narrow-area experts, criteria categories are evaluated

y experts with more general focus (compare, e.g., a backend

rogrammer to a senior software engineer), IT managers set the

eights, and finally general management makes the decisions. 

.2. Application 

Each of the 33 criteria receive a weight between 1 and 7 3 . The

otal is 100 points, i.e., each point denotes a 1% weight. In case a

riterion should be omitted in the assessment, assigning a weight

f 0 is also possible. 

Each evaluated criterion is assigned a score from 0 (criterion

nsatisfied) to 5 (criterion fully satisfied). The overall score S of an

ssessment is then calculated as the weighted arithmetic mean of

he criteria, i.e., as 

 = 

∑ 7 
j=1 w i, j ∗ i j + 

∑ 12 
j=1 w d, j ∗ d j + 

∑ 10 
j=1 w a, j ∗ a j + 

∑ 4 
j=1 w u, j ∗ u j 

100 

, 
∑ 

k w k = 100 

ith i j , d j , a j , and u j being the criteria score from the infras-

ructure, development, app, and user perspective, respectively, and

 i, j , w d, j , w a, j , and w u, j the corresponding weights for each cri-

erion. We suggest rounding to two decimal digits; finer-grained

cores hardly have a practical relevance. The nearer the score is

o 5, the more wholesome is a framework; a score of 0 would be
3 Higher weights are not only impractical but also questionable given the granu- 

arity of our criteria. With high weights for single criteria, the weight for the major- 

ty of criteria would be very low, possibly leading to a point where assessing them 

ould make little sense since they would have no significant effect on the over- 

ll score. Our criteria are meant to offer a balanced assessment where no single 

riterion inherently is more important than the other. 

(  

e  

u  

e  

w  

a  

i  
iven to one that is entirely dysfunctional. Which ranges of scores

re to be expected, sufficient, and realistic will be revisited in the

iscussion ( Section 6 ) of this article. 

This weighted summation is deliberately chosen to ensure sim-

licity and understandability for all stakeholders in the assess-

ent process. Essential requirements such as weights being pro-

ortional to the relative value of criterion score changes are ful-

lled by using equal intervals for all scores across heterogeneous

riteria ( Hobbs, 1980 ). In contrast to more advanced techniques

or multi-criteria analysis such as rank-based criteria assessment

r pair-wise comparisons ( Barron and Barrett, 1996 ), the chosen

pproach is modular in nature such that weights and scores can

e defined by different experts in the respective domain. In addi-

ion, new frameworks can easily be added to the decision process

ithout re-evaluating all combinations. This capability is particu-

arly suited for today’s fast-changing world in which mobile devel-

pment frameworks constantly appear and disappear. 

.3. Example profiles 

Table 3 (following in the next section, p. 14) provides a weight-

ng with the weights of the smartphone weight profile, along with

he weights of five additional profiles. The smartphone profile is

he most standardized profile; its weights are well backed by em-

irical and theoretical work as well as experience from practice. 

Prior work has shown that cross-platform approaches often fo-

us developers’ need ( Research2guidance, 2014 ). Typically, open-

ource approaches will be appreciated (I1 (License)). Undoubtedly,

ood support of the desired target platforms has a high value (I2),

nd a long-term feasibility will be sought (I7). In alignment with

hese infrastructure considerations, developers find a proper devel-

pment environment (D1), an adequate preparation time (D2) and

wift development progress (D12 (Pace of development)) impor-

ant. For smartphone usage, a good user interface (D5 (UI Design))

s essential. Regarding the actual app, particularly proper access to

evice hardware (A1) and platform functionality is needed (A2). Fi-

ally, from the user perspective smartphone apps needs to provide

 near-native appearance (U1 (Look and feel)) and a good runtime

erformance (U2). Consequently, in the smartphone weight profile
1 
3 of the criteria (i.e., 11) have 56% of the total weight. 

This generic smartphone profile can be amended to fit with par-

icular needs. For example, if the choice of a framework has spe-

ific strategical significance, full weight (7) could be given to I1 (Li-

ense) and I7 (Long-term feasibility), and possibly a higher weight

o D9 (Maintainability) and A7 (System integration). At the same

ime, D2 (Preparation time) and D3 (Scalability) could be assigned

ery low weights. 

Similarly to the smartphone profile, it makes sense to provide

 tablet profile. It could be used for apps specifically targeting

ablets. Depending on the target of development, it might be used

n conjunction with the smartphone profile, e.g., when apps are

upposed to provide specific support to different screen sizes and

rientations. The tablet profile is very similar with smaller devia-

ion of typically only 1. However, such small deviations might tip

he scales if several matured frameworks are almost equipollent

ith the smartphone weights. 

The entertainment profile applicable for example to augmented/

irtual reality devices has many similarities to the aforementioned

nes; however, less emphasis is given to the app perspective

with exception of an app’s robustness (A9) – low robustness of,

.g., games is very frustrating). Much attention is given to the

ser perspective to satisfy users’ needs when using an app to be

ntertained. The notable exception is the look and feel (U1). While

e routinely stress the importance of a native look and feel of an

pp, entertainment apps often come with a highly individual user

nterface. Particularly games often do not adhere to a platform’s
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Table 3 

Comparison of frameworks and device class weight profiles for the exemplary scenario. 
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a  
interface standards at all but provide custom elements to create

an immersive atmosphere. 

Although the app-enablement of cars is just at its beginning

and uncertainty exists regarding the best approach for secure and

reliable platforms ( Mandal et al., 2018 ), we propose a vehicle pro-

file to illustrate a weighting that is less similar to the former three

than those are to each other. Save for the long-term-feasibility

(I7), less weight could be given to the infrastructure perspective.

Regarding development, we consider the UI design (D5) to be

particularly important, so that apps for cars can be aligned with

existing infotainment systems. Moreover, testing of such apps (D6)

is vital, as even in non-security critical areas app crashes and mal-

functions are highly undesirable for their distraction alone. In the

app perspective, we would put weight on access to hardware (A1),

which would be unlike the hardware apps typically have access

to. Highest importance must be given to security (A8). Particularly

an app that has been given wide hardware access must not be
xploitable to gain access to a car’s internal functions. Additionally,

he degree of mobility (A10) should ideally be very high. 

Finally, due to the rise of IoT applications with interfaces to

onsumer usage, we deem a smart home profile to be utile. Even

hough this field is also still emerging and the weights might

eed adjustments in the near future, an initial assessment can

e made. Due to the very high heterogeneity, adequate support

f possible target platforms (I2) is essential. For the same reason,

pecial emphasis should be put on long-term feasibility (I7) at this

tage. Development aspects can get somewhat less focus but for

 powerful IDE and a low preparation time, enabling a rapid start

ith trying out functionality – and a low penalty for changing

o another framework if necessary. An app requires profound

ardware access (A1), good connectivity with a wealth of other

evices (A3), and a high level of security (A8). 

Weight profiles are not limited to typical settings in corporate

pp development. One of our experts suggested that weighting
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ould also be useful if students work on development projects.

eighting would then be aligned with the curriculum. Thus, there

ould for example be a CS-123 “Mobile App Development Labo-

atory” profile. It would be a specialisation from the smartphone

rofile that discards – in this setting – superfluous criteria such

s I4 (Distribution channels), I5 (Monetisation), I6 (Internationali-

ation), and D8 (Configuration management). 

. Evaluation study 

According to the taxonomy by Majchrzak et al. (2015a) , three

ain approaches to develop apps can be distinguished (although

ecently introduced frameworks such as React Native and Native-

cript are blurring the lines between them): 

1. app employing a runtime-environment, subdivided into

(Progressive) Web Apps, hybrid apps (similar to Web Apps

but wrapped in installable containers), and self-contained

runtimes, 

2. generative approaches, subdivided into model-driven soft-

ware development and transpiling of existing apps, and 

3. native development. 

Obviously, only the first two qualify for cross-platform develop-

ent. The following evaluation compares a heterogeneous selec-

ion of frameworks in order to demonstrate the applicability of the

roposed evaluation scheme to different development approaches.

n particular, native app development is contrasted to the hybrid

pp framework PhoneGap as well as to React Native and to (Pro-

ressive) Web Apps. PhoneGap was chosen due to its perennial

rominence and popularity as leading cross-platform development

ool using hybrid apps ( Stack Overflow, 2018 ). As a relatively new

pproach, React Native aims to combine the advantages of native

I elements with the familiarity of JavaScript among web develop-

rs ( Facebook Inc., 2018 ). Web Apps on the other end of the spec-

rum bridge the gap to traditional web development – especially

ith regard to the recently introduced concept of progressive Web

pps, which intensify the integration of web and smartphone ap-

lications. 

This evaluation does not aim for a comprehensive survey of

he investigated frameworks but rather serves as a benchmark

or our evaluation criteria. Nevertheless, it can be used by re-

earchers to scrutinize our criteria; for practitioners is can serve as

 starting point. More detailed comparisons of specific frameworks

re for example provided by Dhillon and Mahmoud (2015) or

udli et al. (2015) . 

.1. Method 

The criteria presented in Section 3 have been assessed by sev-

ral experts, both academic researchers involved in mobile app re-

earch and practitioners with experience in cross-platform devel-

pment tools. Their feedback has been incorporated in the im-

roved criteria description. 

To demonstrate the applicability of our criteria catalogue and

eighting scheme, we perform an evaluation study. Resulting from

he recent emergence of devices, barely any (commercial or aca-

emic) framework exists that allows for cross-platform develop-

ent within one or across multiple device classes regarding novel

obile devices (cf. Section 2 ). Our evaluation study therefore fo-

uses on cross-platform smartphone frameworks to demonstrate

he applicability of our weighted criteria approach, which can be

acked with empirical and theoretical work. For better assessment,

he corresponding criteria (or rather their short identifiers) are

iven in brackets when discussing aspects of a frameworks through

ections 5.2 –5.5 . 
As a hands-on scenario of a cross-platform app, we consider the

xample of a typical business app that performs data manipulation

asks for field service workers. Salespersons need ubiquitous access

o the company’s information systems to support their daily work.

or example, they are often away on business and frequently expe-

ience context switches in sales talks with customers or while trav-

lling. Retrieving up-to-date information such as current inventory

evels is essential for decision making. Also, performing tasks such

s order placement or master data management can be accom-

lished efficiently. Using a mobile cross-platform app, field service

orkers can use a device of their choice and benefit from digitized

usiness processes. 

As elaborated in Section 4 , the chosen weights presented in

able 3 (p. 14) are therefore not inalterable but adapted to this

pecific use case. Arguably, they represent a suitable weight profile

egarding business apps for company-internal usage based on

he following considerations. Previous studies have shown that

ross-platform approaches are often driven by IT departments

o enable efficient development for multiple target platforms

 Research2guidance, 2014 ). From an infrastructure perspective, this

eans that open and extensible approaches are considered to be

articularly important. Concerning long-term feasibility, the domi-

ance of Android and iOS as main players on the mobile operating

ystem market ( Forni and van der Meulen, 2017 ) has created

 stabilized smartphone ecosystem. Consequently, distribution 

hannels are mostly limited to the respective platform-specific

pp stores, which offer a broad set of features such as limiting the

eployment to a geographic region or offering multiple language

ersions. 

App developers want to use existing standards and pre-

ious knowledge to progress quickly with the task at hand

 Research2guidance, 2014 ). Until now, apps are commonly de-

eloped in small development teams. Hence, the organisational

spects of software engineering practices such as scalability,

aintainability, and the integration in team-oriented development

rocesses have low priority ( Research2guidance, 2014 ). With

ncreasing variety of devices and complexity of the apps itself,

ffective testing of app artefacts becomes more important when

ealing with essential business activities. A targeted delivery

f related apps (e.g., language-specific variants or functional

ariability) is, however, negligible for the given scenario. Most

mportant, UI design using characteristic platform widgets and

nteraction patterns seems to be an ongoing challenge for cross-

latform framework. Beyond company-internal apps, it may even

ecome more important for “standing out from the mass of apps”

 Amatya and Kurti, 2014 ). 

On the application side, access to a broad rage of device

unctionalities is frequently requested by practitioners. This trend

s facilitated by the convergence of input and output capabilities

n the matured smartphone market. In general, apps are mostly

sed for entertainment and communication purposes ( Lella and

ipsman, 2017 ); thus, business integration and security issues are

pecific requirements for digitisation projects allowing for the

ransmission of sensitive data to mobile devices. 

In 2016, worldwide mobile usage has already surpassed desktop

sage ( StatCounter, 2016 ), a trend which is potentially acceler-

ted by the plethora of upcoming wearable devices. Therefore,

martphones cannot be treated as merely displaying web content

rom anywhere – a platform-specific look and feel as well as

erformance considerations remain important topics for mobile

pp development. Finally, user authentication is often required for

pps because a central backend or cloud environment often serves

s content provider for the application or is used for additional

ervices such as synchronisation across devices. 

According to this scenario and the derived weight profile,

he following subsections discuss the suitability of PWAs, Phone-
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4 Current ambitions of introducing further high-level languages to browsers using 

binary instructions such as WebAssembly ( http://webassembly.org/ ) open up inter- 

esting perspectives to native in-browser development, but cannot be considered a 

feasible alternative, yet. 
Gap, and React Native in contrast to traditional native app

development. We do not justify each score separately (which

would require at least 32 ∗ 5 = 160 sentences clumsily filled

with numbers). Rather, we address particularly noteworthy parts

of the evaluation, especially if scores do not intuitively make

sense in the light of the frameworks and based on above

considerations. 

5.2. (Progressive) Web Apps 

Web Apps are web sites created with web technologies –

HTML5, Cascading Style Sheets (CSS), and JavaScript (JS) – that are

optimized for mobile usage. They are run inside a browser, which

makes them compatible with any device providing a browser

that supports the features of employed versions of HTML, CSS,

and JS. Consequently, Web Apps integrate well with traditional

web development tooling (I1 (License), I2 (Target platforms), I3

(Development platforms)), yet app distribution cannot be con-

trolled as no centralised app store exists (I4 (Distribution chan-

nels)). Furthermore, the web development foundation constraints

its “app-like” behaviour, resulting in recurring features of apps

for cloud-based services to be re-implemented manually, e.g.,

regarding internationalisation, payments, or user authentication

(I6 (Internationalisation), D12 (Pace of development), U4 (Devel-

opment process fit)). As smartphones become computationally

more powerful and web development standards evolve to incor-

porate new (hardware) features in public APIs of browser envi-

ronments, the long-term feasibility (I7) of this approach can be

assured. 

The recent development has led to so-called Progressive Web

Apps (PWA), which need to be distinguished from “classic” Web

Apps. While PWAs are also created using web technologies, their

possibilities go beyond what was possible so far ( Majchrzak et al.,

2018 ). According to Google, the key characteristics to provide a

better user experience are to create reliable, fast , and engaging ap-

plications ( Google LLC, 2018h ). Using Service Workers , PWAs can be

added to a smartphone’s home screen without the need to install

them like native apps. In addition, recent standards for in-browser

storage are used to load app logic and previous content from the

device and provide functional applications even in situations with

unavailable or unstable network connection. They might thereby

close the gap between web site and native apps, providing a con-

tender for the unifier of mobile development ( Biørn-Hansen et al.,

2017 ). 

With regard to developing apps, an immense community of

developers exists as standard web development skills are required;

many tutorials and profound tool support are available to learn (D1

(Development environment), D2 (Preparation time)). However, this

flexibility also limits the goal-oriented creation of apps. The struc-

ture of source code and UI development completely depend on the

developers, for instance requiring boilerplate code. Frameworks can

provide guidance by structuring the components of the app and

consistently applying the concepts of PWAs (D3 (Scalability), D4

(Development process fit), D5 (UI design)). For example, the Ionic

framework ( Ionic, 2018 ) is based on the common JS library Angu-

lar and focuses on the fast creation of Web Apps though a large

variety of pre-defined components for UI design and interactions.

Whereas several techniques for testing JavaScript exist, desktop

browsers can only inadequately emulate the characteristics of

mobile devices and mobile in-browser debugging of the complete

app life cycle is complicated (D6 (Testing)). On the other hand,

established tool chains (for instance build tools such as Grunt

or Gradle) can be used to assemble Web Apps in a continuous

delivery process, especially regarding the increasing complexity

of app product lines (D7 (Continuous delivery), D8 (Configuration

management)). 
The Ionic framework and similar libraries simplify the devel-

pment of Web Apps through modular components that can be

eused in multiple projects; in addition, they are extensible using

hird-party plug-ins (D10). The execution of native code is, how-

ver, generally unsupported within a browser environment 4 (D11

Custom code integration)). Instead, device components can be ac-

essed via HTML5 APIs such as Media Capture Stream and Bat-

ery Status, which are varyingly supported by mobile browsers

A1 (Hardware access), A2 (Platform functionality)) and depend

n the platform vendors’ willingness to support these standards

 MobileHTML5, 2015 ). Considering input and output mechanisms,

eyboard and gesture support are well established through JS

vents. These are based on traditional web page behaviour, thus

roviding only limited support for novel mechanisms such as

oice-based interfaces (A4 (Input heterogeneity), A5 (Output het-

rogeneity), U1 (Look and feel)). Web Apps and PWAs are inher-

ntly bound to JavaScript engines, which are unavailable on most

earable devices; also, browser environments are not designed to

nteroperate with connected devices (A3 (Connected devices), A10

Degree of mobility)). 

As stated before, all aspects regarding system integration, se-

urity, and robustness have to be built manually based on web

echnology without platform-specific abstraction (A7 (System inte-

ration), A8 (Security), A9 (Robustness)). The largest advantages of

WAs are related to the usage perspective. By storing application

ode and previous content on the device instead of fully reload-

ng a web site, the perceived performance is drastically improved

 Google LLC, 2018g ). Through service workers running in the back-

round even after “leaving” the Web App, the application life cycle

s better supported (A6). Also, the application can save user-related

haracteristics to the local device and instantly adapt to the users’

references when reopening the PWA (U2 (Performance), U3 (Us-

ge patterns)). 

.3. PhoneGap 

The first stable release of PhoneGap was developed in 2009,

ust two years after the introduction of the first smartphones

uch as Apple’s iPhone. Since then, it has evolved to one of the

op-used cross-platform development tools ( Davis, 2009; Stack

verflow, 2018 ). PhoneGap and its open-source foundation Apache

ordova are representatives of the hybrid app development ap-

roach. Essentially, a regular Web App is developed with HTML5

nd JavaScript and subsequently wrapped in a container that uses

 Web view component for rendering the content without browser

ontrols. In addition, the framework provides a bridge to access

ative device functionality through a common JavaScript API (A1

Hardware access), A2 (Platform functionality)). The platform-

pecific wrappers allow for packaging installable apps for all major

martphone platforms. These can be distributed via regular app

tores and utilize their general monetisation and internationalisa-

ion features except for deeply integrated features such as in-app

urchases (I1–I6). 

Because of the underlying app content, most of the freedoms

nd restrictions of Web Apps apply likewise. The framework’s

tructure is well documented and many tutorials are provided by

he community to quickly gain momentum and start custom de-

elopment from a minimal running app skeleton. Consequently,

he developer can create the app using any methodology, modular

tructure, and web development environment (D1-D5, D12 (Pace of

evelopment)). 

http://webassembly.org/
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Due to subtle differences between browser engines on desktop

omputers and smartphones, hybrid apps with embedded Web-

iew components are more complex to test than Web Apps. Also,

unning a WebView interlinked with custom app code introduces

ew security risks Luo et al. (2011) . To support the testing of

ntermediate app prototypes, PhoneGap offers a remote debugging

nterface that connects to actual devices (D6 (Testing), A8 (Secu-

ity)). Furthermore, the delivery of the resulting apps is simplified

hrough a cloud-based deployment service to build app packages

ithout locally installed SDKs (D7 (Continuous delivery)). Through

he extensive API as level of abstraction, differences across plat-

orms are counterbalanced, which increases the overall speed

f development and ensures the maintainability when platform

mplementations evolve (D9 (Maintainability), D12 (Pace of devel-

pment). A large set of plug-ins exist to augment the PhoneGap

ore functionality with additional features (D10 (Extensibility)). In

ontrast to Web Apps, this also includes native code components

hat can be added to the bridge component in order to extend the

S-accessible API to further device hardware (D11 (Custom code

ntegration)). Consequently, various input and output capabilities

re supported. The Event API and Device API additionally allow

or managing the overall app life cycle (A4–A6) ( Apache Software

oundation, 2015; Adobe Systems Inc., 2015 ). 

Similar to Web Apps, the approach is limited to smartphones

nd tablets due to the required JavaScript engine (A10 (Degree

f mobility)). However, third-party plug-ins exist to connect

honeGap apps to external devices such as Wear OS smartwatches

 Gardner, 2018 ) (A3 (Connected devices)). With regard to the

ative look and feel, PhoneGap apps not automatically comply

ith individual platform guidelines but provide a generic mobile

ppearance (U1 (Look and feel)). All app functionality needs to

e implemented manually (A7 (System integration), A8 (Security),

9 (Robustness), U3 (Usage patterns), U4 (User authentication)).

inally, the additional functionality through the wrapper com-

onent incurs a performance overhead (U2) as, e.g., analysed by

hillon and Mahmoud (2015) . 

.4. React Native 

Traditionally, the decision of implementing apps using either a

ybrid approach or native development splits the community of

evelopers into two camps. Besides many subordinate differences,

 long-lasting controversy revolves around sacrificing a convincing

latform-aligned appearance for the benefit of using web tech-

ologies well-known by a large community of developers. Several

apers have investigated this topic and works such as the present

rticle aim to guide developers in choosing an approach adequate

o the project-specific requirements ( Mercado et al., 2016; Que

t al., 2017; Angulo and Ferre, 2014 ). However, a variety of frame-

orks such as NativeScript and Flutter have recently emerged that

ry to bridge this chasm by creating native UI components while

pecifying the app with JavaScript ( Progress Software Corp., 2018;

oogle LLC, 2018d ). A popular framework, React Native, is backed

y Facebook and was presented in 2015 ( Occhino, 2015 ). Using

he API of the JavaScript framework React (also called ReactJS), the

hole app, including view elements, is specified using JavaScript

nd a template syntax called JSX. Instead of rendering the content

n a browser component, the frameworks is based on a runtime

pproach that uses a JavaScript engine to execute business logic

ut transforms UI-related code into commands to the native UI

lements. 

React Native is distributed under the permissive MIT license

A1) and currently targets the two major platforms Android and

OS (A2). Developers can freely choose their development plat-

orm and environment that supports JavaScript (I3 (Development

latform), D1 (Development environment)). As the resulting arte-
acts are installable app packages, capabilities and restrictions

egarding distribution channels and app store features such as

onetisation and internationalisation are similar to hybrid apps

I4–I6). However, due to the relative youth of the framework,

ong-term reliability (I7) has not yet established and the developer

ommunity is still comparably small. The current trend towards

avaScript frameworks with native UI components might change

his assessment in the future. Also, being backed by Facebook

educes the risk of discontinuation before the framework has

atured. 

Developers experimenting with React Native benefit from an

xtensive documentation and profit from previous knowledge of

eactJS (D2 (Preparation time)). Due to the highly component-

entred architecture of React Native, apps can be easily subdivided,

hich improves development and long-term maintainability (D3

Scalability), D4 (Development process fit), D9 (Maintainability)).

enerally, this structure is favourable for including third-party

xtensions; yet, comparatively few of them exist (D10 (Extensibil-

ty)). On the other hand, the composition of components within

he reactive programming paradigm complicates UI development

nd testing because app interactions are hard to simulate within

nd no visual editor supports the custom JSX notation (D5 (Ui

esign), D6 (Testing), D7 (Continuous delivery). Consequently, the

dvantages of using JavaScript cannot yet be fully utilized in terms

f development speed, mainly because of the relatively recent

ntroduction of the framework and supporting tools (D12 (Pace of

evelopment)). 

With regard to app capabilities, 34 APIs exist to access plat-

orm functionality and hardware features (A1, A2), although some

over only individual platforms. Supporting established JavaScript

nput/output events allows for a decent coverage of user interac-

ion possibilities (A4 (Input heterogeneity),A5 (Output heterogene-

ty)). Due to its underlying native foundation, integrating custom

ative code is also possible (D11 (Custom code integration)) and

hird-party components provide Message APIs to interact with con-

ected devices on a case-by-case basis, e.g., Wear OS smartwatches

A3 (Connected devices)). The overall app life cycle as well as in-

egration and security characteristics are comparable to PhoneGap

pps with native components but for an additional layer of ab-

traction (A6 (App life cycle), A7 (System integration), A8 (Secu-

ity)). Similar to other JavaScript approaches, functionality and us-

ge patterns need to be re-implemented manually and the novelty

f the approach restricts the range of predefined components (U3

Usage patterns), U4 (User authentication), A9 (Robustness)). How-

ver, the runtime approach provides additional flexibility for future

evelopment, especially creating connectors to map the React Na-

ive APIs to non-smartphone platforms and thus support a much

arger range of devices compared to web views (A10 (Degree of

obility)). 

In the resulting apps, the native UI components achieve an ap-

earance well-adapted to the target platform. Also, a comparably

ow performance overhead is induced by the runtime because it

an delegate performance-heavy UI computations to the native en-

ironment (U1 (Look and feel), U2 (Performance)). 

.5. Native apps 

Although technically not a cross-platform approach, it makes

ense to compare frameworks with the baseline of native apps

o highlights the potential of cross-platform app development. In

articular, the native approach does not achieve a perfect score:

espite individual platform capabilities being fully exploitable,

rawbacks result from the separate development of multiple apps.

oreover, development in the native languages and using the

ypical environment for native development is not necessarily

ore efficient; in fact, even the performance of a native app
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6

might be challenged by one that undergoes runtime optimiza-

tion, as has been discussed 

5 for desktop applications written in

Java ( Goetz, 2005 ). Besides, using native development might feel

clumsy compared to the convention-over-configuration approach

typical for modern frameworks ( Vuksanovic and Sudarevic, 2011 ). 

Obviously, the target platforms are limited to only one, whereas

the app itself may be developed using various development plat-

forms or technologies (I2 (Target platforms), I3 (Development plat-

forms)). Using the freely distributed platform SDKs, a full inte-

gration of apps with the respective app store infrastructure can

be achieved, including runtime interactions such as in-app pay-

ments and updates (I1 (License), I4 (Distribution channels), I5

(Monetisation), I6 (Internationalisation)). Because iOS and Android

have emerged as stable duopoly of smartphone operating sys-

tem vendors, long-time reliability is ensured ( Forni and van der

Meulen, 2017 ). Yet, even within such ecosystems, technological

changes occur over time, e.g., introducing new programming lan-

guages such as Swift for iOS or Kotlin for Android (I7 (Long-term

feasibility)). 

With regard to the development perspective, knowledge of

these programming languages is mandated but in general, platform

vendors provide detailed documentation of the APIs and best prac-

tices to the large community of developers (D1 (Development en-

vironment), D2 (Preparation time)). In addition, platform-adapted

IDEs often support the development process through visual editors

for UI design (D5) or suitable tools for testing, bundling, and de-

ploying apps (D6 (Testing), D7 (Continuous delivery)). On the other

hand, this flexibility requires the developer to decide on appropri-

ate processes to develop, scale, and maintain the app (D3 (Scala-

bility), D4 (Development process fit), D9 (Maintainability)). For ex-

ample, developers can use platform and app store features to de-

velop multiple app versions such as regional language translations

or theming, but the actual integration of provided low-level func-

tionality needs to be performed by hand. As different programming

languages and platform characteristics prohibit the reuse of code

across multiple platforms, the redundant implementation of apps

leads to a very inefficient pace of development (D11 (Custom code

integration)). 

Native apps can access all possible features of a given plat-

form (A1–A7). Again, this flexibility is provided on a low level of

platform interfaces and developers have the responsibility to ade-

quately use the provided features. For example, platforms allow for

a fine-grained control over app permissions or network connectiv-

ity, yet it is up to the developers to exploit these capabilities and

react to app-external changes of context. Similarly, the app state

can be monitored to integrate typical usage patterns and provide a

pleasant user experience (A8 (Security), A9 (Robustness), U3 (Us-

age patterns), U4 (User authentication)). 

Finally, native app development ensures that visual appearance

and user interactions can be fully aligned with the respective plat-

form guidelines (U1 (Look and feel)). At the same time, develop-

ers can achieve the best performance on computationally restricted

mobile devices as overhead of cross-platform abstractions through

frameworks or runtimes is avoided (U2 (Performance)). 

5.6. Intermediate conclusions 

In this section, we have demonstrated how the proposed crite-

ria catalogue can be put into practice by performing an evaluation

study. While focussing on business apps for smartphones, we com-

pared different development paradigms for mobile apps with the
5 Benchmarking just-in-time compiled programs is an extremely hard endeavour 

( Georges et al., 2007 ). For native apps, research on runtime optimization is an open 

task. 

 

p  

s  

f  

i

elp of representative and widespread frameworks. More specific,

ative development for multiple platforms is contrasted to purely

rowser-based Web Apps and enhanced Progressive Web Apps us-

ng the Ionic Framework, hybrid apps with PhoneGap/Apache Cor-

ova, and the runtime-based approach React Native. 

For the given scenario, it can be concluded that native app de-

elopment supports the widest set of features but comes at the

ost of multiple redundant implementations. Though simple to de-

elop, Web Apps do not provide an adequate solution for cross-

latform apps – yet Progressive Web Apps enable more app-like

ehaviour and significantly reduce the drawbacks of in-browser

pps on supported platforms. Hybrid app frameworks such as

honeGap on the one hand outperform the previous approaches by

ombining the ease of web development using technologies such

s JavaScript while at the same time creating installable apps with

ccess to hardware sensors and platform features. On the other

and, native app appearance and performance are unobtainable

nd critically noticed by users ( Ahti et al., 2016 ). Finally, trend-

ng runtime-based frameworks such as React Native aim to solve

he usage drawbacks of hybrid apps through native UI components

hile still being programmed using JavaScript. However, due to

heir novelty these frameworks have not yet established a large

ommunity to provide third-party libraries and equivalent cover-

ge of functionality. 

We want to stress that this evaluation is largely influenced

y the scenario-specific weight profile and based on the specific

rameworks’ capabilities. Changing the weights would arguably

ead to different recommendations. In fact, having no eminent win-

er of the evaluation underlines the benefits that situation-specific

eights provide. This also has implications for research and prac-

ice: Scientific assessment of cross-platform app development is far

rom being complete. At the same time, practitioners are undoubt-

dly provided with a choice of good option; finding the optimal is

trongly dependent on context. We recommend to do at least indi-

idual weighting, if feasible also additional assessment. 

Moreover, the evaluation must be seen in the light of ongo-

ng developments. For example, novel frameworks such as React

ative might soon be on a par with long-standing frameworks

hen the community of developers grows and openly shares com-

onents for reuse in other projects. Also, target platforms evolve

uch that PWAs might be better supported in the future; thus fur-

her blurring the lines between apps and the Web. Our evaluation

tudy should therefore rather be seen as a present-day snapshot

f the mobile app development landscape instead of a final as-

essment. We by no means claim to provide a definite ranking of

rameworks. On the contrary, such universal evidence does not ex-

st but strongly relies on assumptions derived from the applica-

ion domain, company guidelines, team members’ experience, and

roject-specific requirements. 

In order to provide the necessary flexibility for customised eval-

ations, the weight profiles can be used to tailor the compre-

ensive list of criteria to the respective use case as described in

ection 4 . Moreover, our catalogue of criteria can be applied to

ifferent classes of mobile devices and considers the varying im-

ortance of specific criteria. Consequently, this work can be used

y practitioners as well as researchers for systematically selecting

 suitable cross-platform development framework. 

. Discussion 

Although most feedback by the experts consulted to examine (a

rior iteration of) our catalogue is already incorporated in the pre-

ented set of criteria, some overarching topics are discussed in the

ollowing. In addition, we revisit literature gaps, limitations, and

mplications on further research. 
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Fig. 1. Visualisation of main dependencies among evaluation criteria. 
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.1. Assessment 

To validate our evaluation framework and the criteria of the

atalogue, we contacted several experts from academia and prac-

ice with experience in the field of mobile app development to

crutinize the approach. More specific, open-ended questions were

sked to assess the following requirements for each criterion 

6 : 

• Comprehensibility : Are descriptions clear even for people

without cross-platform proficiency? 
• Unambiguousness : Is it impossible to wrongly interpret cri-

teria or the way how frameworks should be assessed accord-

ing to them? 
• Adequacy : Do the criteria really cover important aspects for

selecting a framework? 
• Completeness : Are the criteria collectively exhaustive and

cover all relevant aspects of cross-platform framework se-

lection? 
• Consistency : Are descriptions free from contradictions? Are

criteria mutually exclusive? 
• Verifiability : Can the criteria realistically be used to assess

cross-platform development frameworks? Are the descrip-

tions specific enough to be operationalisable? 

Additional questions dealt with the following overarching as-

ects: 

• Are all criteria operationalisable? This includes whether we

realistically describe them and whether they are not too

generic. 
• Do our criteria align with the “business routine” in soft-

ware development? In particular, do they fit with different

development methodologies (e.g., agile vs. traditional) and

paradigms? And does the catalogue reflect app development

practices in teams (e.g., team size, roles etc.)? 
• Besides smartphones and tablets, does our catalogue suf-

ficiently cover requirements towards app development

for novel and future app-enabled devices such as smart

watches, cars, smart glasses, VR devices etc.? If not, which

changes or even which new criteria are needed? 
• Does the catalogue constitute a good balance between prac-

tical relevance and rigorous work on the criteria? 

Overall, we received very positive feedback on the criteria we

eem important for evaluating cross-platform frameworks. The

eedback has resulted in several clarifications to the criteria de-

criptions and are incorporated in the criteria catalogue presented

n Section 3 . The experts noted that particularly for rather generic

riteria such as D12 (Pace of development) disjunction with other

riteria needs to be scrutinized. Undoubtedly, full independence of

riteria is unobtainable even if direct overlaps are avoided to the

egree achieved by us; in the example of D12, its relationship to

2 (Preparation time) is evident. Further influences between crite-

ia in the presented catalogue are visualized in Fig. 1 . 

The directed edges in Fig. 1 can be read as “having an inherent

nfluence”, not as “having a constituting influence”. This means that

o criterion is a superordinate or marks a kind of prerequisite for

nother one. Rather, some criteria share characteristics that despite

ll strive for cohesion are not independent in typical settings in

ractice. 

Consider, e.g., (I2) supported target platforms. The supported

latforms, and the way they are supported for example regarding

ifferent versions, cannot fully be untied from the (I7) long-term
6 We roughly follow typical assessment criteria used in requirements engineering 

 Sommerville, 2011 , p. 94). These are handy for cases in which a comprehensive 

pecification is desired. 

s  

f  

t  

t  

i  
easibility. Undoubtedly, unsatisfying platform support will hardly

o along with a good long-term feasibility. However, the other way

round, very good platform support does not mandate long-term

easibility, which is dependent on many other factors. Addition-

lly, (A1) Access to Device-specific Hardware and (A2) Access to

latform-specific Functionality are influenced by I2. The worse the

latform support is, the less likely it is to meet satisfying levels of

ardware and platform access. Again, this is a unidirectional rela-

ionship. 

Explicating such interdependencies should make it easier to as-

ess and advance our framework. For practical usage, there should

ardly be any consequences. However, with any future changes to

he framework keeping the high cohesion of criteria needs to be

n explicit aim. 

Cross-platform app development for mobile devices extends be-

ond “traditional” smartphones and tablets. With novel classes of

obile devices such as smartwatches and smart TVs reaching a

ore widespread adoption and further ones such as connected

ars, smart glasses, and augmented/virtual reality devices foresee-

ble ( Rieger and Majchrzak, 2018 ), new apps might be developed

or multiple platforms within such a device class or even bridging

ifferent heterogeneous devices. Therefore, our experts were fur-

her asked whether the existing set of criteria satisfies the addi-

ional requirements or what changes need to be made. Although

one of the interviewed experts had previous practical experience

ith novel app-enabled devices from a developer perspective, to

heir perception the presented catalogue is apt to these new chal-

enges. 

The applicability of our criteria catalogue for real projects is an

mportant consideration to assess whether we have managed to

chieve a good balance between practical relevance and rigorous

ork on the criteria. In addition, the criteria catalogue needs to

lign with typical business routines. For example, development

ethodologies such as agile approaches or typical team structures

uch as team size and role distribution influence the ability to

ollow the approach presented in this work. Responses indicate

hat our catalogue is well applicable and can easily be tailored

o a project-specific configuration. Not all criteria are equally

mportant; therefore, the weighting approach presents a suitable
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s  
solution to filter and prioritize the comprehensive set of possible

criteria and adapt it to company- or project-specific requirements.

One expert stated it would be helpful to have an additional check-

list in order to simplify the assessment of the score for individual

criteria. This was also backed by another expert who expressed

concerns that some criteria require much effort for assessment

(such as the robustness, A9) or are hard to verify (such as the

performance, U2). We are aware of the practical benefits of a

checklist; however, the fast-moving mobile domain would require

a constantly updated list of current and upcoming features for

a broad set of frameworks. Instead, the list of criteria relevant

for cross-platform frameworks has stabilized over time and is a

long-term contribution to the field of research. Moreover, we have

noted when project-specific requirements should be considered. 

6.2. Ongoing demand for research 

The comprehensive literature search that serves as foundation

for our criteria catalogue revealed five gaps that call for further re-

search in the field of assessing mobile cross-platform frameworks. 

First, the selection of criteria often appears to be chosen in

an ad-hoc manner and rarely covers all four perspectives nor an

exhaustive list of criteria within one specific perspective. For in-

stance, Ribeiro and da Silva (2012) focus on the development and

app perspectives but do not mention essential criteria such as the

effort to set up (D2) and continuously maintain (D9) developed

apps. Our weighting approach aims to guide the selection pro-

cess by focusing on important criteria from the large catalogue.

However, how to create adequate weight profiles or setting cus-

tom weights are still open questions. We have provided the tools

but how to use them most effectively needs to be identified. On

the one hand, the domain of (novel) mobile devices still evolves

quickly and many new devices are proposed. The identified device

classes might therefore change in the future and evolutionary ef-

fects of convergence (e.g., fitness devices and smartwatches share

commonalities such as health tracking capabilities) or divergence

(e.g., augmented and virtual reality devices might develop charac-

teristic features when more devices appear) might be observed. On

the other hand, the chosen weights in this work are convincingly

argued but need to be validated through real-world projects and

are open for revisions. Because of the limited availability of case

studies on novel mobile devices, the overall prioritisation of crite-

ria for different device classes needs further research (nevertheless,

project-specific adaptations are always possible). 

Second, a need for common benchmarks arises from the multi-

tude of individual and incomparable evaluation studies. Researches

put significant effort in the assessment of cross-platform frame-

works, yet various parameters limit the comparability of their re-

sults: 

• Features : Various software and hardware features can be

considered for framework comparisons. No uniform set of

features that are expected has been described. 
• Metrics : Measuring the performance of feature usage is

complex. Sensor modes (e.g., network- or hardware-based

location detection), data retrieval methods (getting the last

known value vs. waiting for the next update), and the

amount of system- or app-specific setup instructions (event

listeners, etc.) have a great impact on the outcome when

measuring execution times and resource utilization. How-

ever, benchmarks with detailed specification of constituent

metrics are usually omitted and thus limit reproducibility. 
• Platforms : Commonly, the distinction is made between the

two major operating systems Android and iOS but not all

studies cover both (e.g., Que et al., 2017 ) such that results

cannot be transferred. Moreover, different versions of each
may qualify as distinct platforms if the internal (e.g., per-

formance improvements by using different browser engines)

or visible characteristics (e.g., the introduction of material

design affecting usability) have significantly changed ( El-

Kassas et al., 2017 ). 
• Devices : Emulated and physical devices exhibit a large va-

riety of hardware characteristics which affect the outcome.

In addition, current settings such as energy modes as well

as contextual influences (e.g., network connectivity) or back-

ground tasks influence the application behaviour. 
• Framework architecture : The underlying architecture of a

framework can further complicate the comparison. For ex-

ample, the performance of traditional and reactive handling

of UI components is hard to assess objectively and frame-

works may provide custom events for accessing sensors such

as the camera which influences available metrics. 

As a result, studies produce vastly different – sometimes sur-

rising or contradicting – results, even for quantitative and seem-

ngly objective performance measures. For instance, surprisingly

low execution times for NativeScript’s video playback feature ob-

erved by Corbalan et al. (2018) cannot clearly be attributed to the

evice, the platform version, or the framework itself for lack of

epetition. Also, studies tend to either specialize on a large set of

riteria and a limited set of evaluated frameworks (e.g., Que et al.,

017 ) or vice versa (e.g., Umuhoza and Brambilla, 2016 ). Given

he rapid emergence of new frameworks and the degeneration

nto insignificance of others, a stable set of common, repeatable

enchmarks would be beneficial to enable more comparable re-

ults among different evaluation studies. For example, energy con-

umption is well researched for established frameworks such as

honeGap, Sencha Touch, and Titanium ( Ciman and Gaggi, 2017;

almasso et al., 2013 ) but there is no simple solution to compare

hese results with a measurement using a recent framework such

s React Native. Automating the testing procedure to compare a

arge variety of devices with different platform versions as, e.g.,

erformed by Que et al. (2017) is a worthwhile step towards this

im. However, the set of features and procedures to build such a

enchmark suite need to be further researched. Also, it is not obvi-

us whether an isolated examination of hardware or software fea-

ures is sufficient or whether (and which) app scenarios (e.g., Biørn-

ansen et al., 2017 ) are better suited to assess a framework under

ealistic conditions. 

Third, frameworks are nowadays designed to provide simi-

ar applications for different platforms and thus different users.

ith the advent of wearables and other app-enabled devices,

pp ecosystems are likely to change. For example, the same user

ight own multiple devices and use them in combination or

ubsequently depending on personal preferences ( Rieger and Ma-

chrzak, 2016 ). Frameworks can possibly adapt to this by reusing

ource code of one existing app ( El-Kassas et al., 2017 ), applying

ulti-level code generation ( Umuhoza and Brambilla, 2016; Rieger

nd Kuchen, 2019 ), or using other techniques related to the evolu-

ion of cross-platform software. Evaluating a framework for such

 usage scenario is, however, barely considered and subject to

urther research. In addition, research on usability and UI design

eeds to scrutinize whether it is desirable that the interaction with

everal design classes should converge. Dependent apps for differ-

nt types of devices that are unified as much as possible while

eeping traits specific to (and desired for) a class would make a

lass-spanning cross-platform development framework even more

omplex than it already is. At the same time, a framework that

rovides such functionality would dramatically simplify develop-

rs’ life. 

Besides the user-centred aspects, one expert also suggested that

ystem integration (A7) might become (even) more important in



C. Rieger and T.A. Majchrzak / The Journal of Systems and Software 153 (2019) 175–199 195 

t  

u  

b  

w  

o  

v  

p

 

e  

t  

n  

A  

p  

e  

t  

s

6

 

s  

e  

w  

f  

s  

e

 

s  

N  

e  

(  

l  

a  

t  

o  

t  

w  

w  

o  

c  

v  

h  

c

 

r  

r  

c

 

r  

g  

u  

e  

s  

b  

t  

i  

b  

fi  

r  

i  

c

 

e  

e  

m  

w  

c  

i

s  

w  

e  

c  

a  

c

6

 

p  

o  

w

 

o  

c  

T  

f  

e  

t  

o  

p  

b  

w  

a  

l

 

f  

o  

n  

s  

g  

t  

d  

s  

b  

K  

w  

t  

s  

s  

b

 

o  

q  

a  

d

7

 

c  

f  

i  

f  

r

 

g  

M  

fl  

s  

o  

C  

m  
he future, possibly even suggesting to split up the criterion. While

sing cloud services is essential for many apps already, the em-

edding of them in whole ecosystems of services and applications

ill likely require more attention with the expected convergence

f mobile computing and IoT. When a multitude of devices pro-

ide functionality from the same app ecosystem, aspects of re-use,

artitioning and distribution could also require more attention. 

Finally, whereas security and data privacy issues are important

specially in a business context, studies on mobile security suggest

hat current apps created using cross-platform tools are commonly

ot designed with security in mind. For example, an analysis on

pache Cordova apps by Willocx et al. (2017) revealed that best

ractices for the framework are mostly ignored. Integrating and

valuating the security of cross-platform apps is another challenge

hat has not been studied systematically and mandates further re-

earch. 

.3. Limitations 

Although we deem our evaluation framework theoretically

ound and usable in practice, opportunities for further research

xist. Being based on existing literature and validated by experts

ith cross-platform experience, the criteria catalogue has a solid

oundation and is expected to provide a comprehensive and rather

table set of criteria. However, the technological evolution of app-

nabled devices and platforms is hard to foresee. 

For example, Tesla initially announced an own SDK but recon-

idered this approach due to security concerns ( Lambert, 2016 ).

ew kinds of devices are designed with a focus on app-

nablement – or not. Regarding platform evolution, Wear OS

 Google LLC, 2018j ) might unify development for wearables or at

east consolidate different streams. Alternatively, ecosystems such

s the Universal Windows Platform ( Microsoft Inc., 2017 ) might es-

ablish themselves as integrated platforms that simplify the devel-

pment for multiple devices. Also, it remains to be seen whether

he success of Web technology and plethora of JavaScript frame-

orks for bridging the heterogeneity of devices will extend to-

ards new device classes. So-called instant apps can be run with-

ut installation on smartphones ( Ganapathy, 2016 ) and might also

ontribute to future changes. Yet for now, most novel mobile de-

ices do not support JavaScript engines such as WebKit (e.g., due to

ardware constraints) and require different approaches to achieve

ross-platform compatibility. 

Therefore, while the criteria catalogue can be expected to be

elatively stable, keeping up with the technological progress will

emain an inherent limitation of any work on assessing mobile

omputing technology. 

Regarding the established weight profiles, limitations have al-

eady been mentioned in Section 6.2 . More research is needed to

ain empirical insights in suitable weights. Moreover, it would be

tile to provide better support in criteria-specific evaluations. For

xamples, what would be the expected interval in which mea-

urements are to be found for quantitative criteria? What would

e sufficient expectations for qualitative ones? How would this be

ransferred to the score, and how could it be ensured that progress

s reflected in these scores? Moreover, which ranges of scores could

e expected in general, and which scores for assessment are suf-

cient and realistic? We have put these questions as boundaries

ather than as tasks for future research for now, as answering them

n a generalizable manner, aiming at the same soundness as our

riteria catalogue as such, will be next to impossible. 

On a more general level, it needs to be questioned whether full

cosystems similar to the current situation for smartphones will

merge for all device classes. The multitude of upcoming devices

akes cross-platform development much more difficult, especially

hen considering the interrelations of multiple devices used in
ombination by the same user. A cloud-based middleware, mirror-

ng techniques, or other “remote” approaches could solve issues 

uch as low performance, hardware heterogeneity, and security

ithout even relying on device-installed apps directly ( Gallidabino

t al., 2016; Koren and Klamma, 2016 ). Nonetheless, the criteria

atalogue established in this work is flexible enough to deal with

 wide range of technological bases which enable cross-platform

apabilities. 

.4. Future work 

Although we are confident that we have reached the goal of

roviding not another but the definitive framework for evaluation

f cross-platform app development approaches, we will continue

ith our work on related topics. 

One of the experts suggested that for better operationalisation

f own assessments, it would be helpful to have a per-criteria

hecklist. Remember for instance criterion I2 (Target Platforms).

he checklist could comprise Android, iOS, and Windows Mobile

or smartphones. However, whether it should not contain more op-

rating systems would be a matter of discussion, as would be how

he checklist should be kept up to date. Moreover, if you think of

ther criteria, it can be extremely hard to propose a relatively sim-

le list. For example, D4 (Development Process Fit) can hardly be

roken down into single items that can be checked (or not). Thus,

e deem research on such checklists, and in general on assessment

dvice (How to do it? Single choice, multiple choice, multiple se-

ect?) a target of our future work. 

Ongoing research concentrates on engineering cross-platform

rameworks for novel mobile devices and approaches for devel-

ping apps across multiple device classes. Besides numerous tech-

ical considerations, the prevalent conceptual challenges relate to

uitable abstractions for developing apps for devices with hetero-

eneous input and output capabilities as well as different capabili-

ies. Also, multi-device interactions become important when using

ifferent devices sequentially or concurrently depending on per-

onal preferences or usage context. In the domain of data-driven

usiness apps, model-driven approaches such as MAML ( Rieger and

uchen, 2018a; Rieger, 2018 ) and MD 

2 ( Heitkötter et al., 2013b )

ith high levels of abstraction are promising for extending them

owards new device classes such as smartwatches. However, it is

till very hard to image proper abstractions for different domains

uch as home automation apps for devices that fall under the um-

rella of smart home technology. 

In addition to the two concrete topics, we will continue with

ur work on building the theory of modern mobile computing. This

uest will be built upon a close scrutinisation of work in practice

nd strive to provide rigour where fast-pace developments pre-

ominate. 

. Conclusion 

In this article, we have proposed an evaluation framework for

ross-platform app development approaches. Building on previous

rameworks and being broken down into sound abstract criteria,

t sets out to be the way of assessing cross-platform development

rameworks for all situations in which app-enabled devices play a

ole. 

We have shown that much literature exists yet few works have

one the lengths of providing comprehensive, holistic frameworks.

oreover, the complexity introduced by novel mobile devices is re-

ected in many works yet needed to be grasped and built into as-

essment criteria. We have provided and, in much detail, explained

ur criteria catalogue, which provides a synthesis of the literature.

riteria are grouped into four perspectives: infrastructure, develop-

ent, app, and usage. To provide means for a tailored, customised
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assessment, we have proposed the usage of weight profiles. With

the help of these, a criteria-based assessment can be adapted to

whatever situation is concretely met. In fact, one assessment can

even be used to cater for multiple decisions. 

We have demonstrated the feasibility of our framework with an

evaluation study. This study has been done by applying the crite-

ria catalogue to several app development approaches, namely (Pro-

gressive) Web Apps, PhoneGap, React Native, and native apps for

comparison. The framework has been proven handy. Moreover, we

have provided exemplary weight profiles. Our results have been as-

sessed by several experts from the field of mobile computing. 

We have identified much need for future research, most notably

regarding the weighting, the understanding of the technological

progress, and the emergence of device ecosystems. We will con-

tinue to work on solving these challenges. Eventually, we hope to

be able to provide further synthesis articles such as this. The the-

ory on modern mobile computing ought to be extended! 
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