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a b s t r a c t 

Energy harvesting by using functional materials in suspension systems bear potential to win-back certain (even 

if low) amounts of vibrational energy, otherwise dissipated via the conventional (passive) dampers. Piezoelectric 

(PE) ceramics are functional materials that can be used for transforming mechanical energy into electrical and 

vice versa. In this paper, we study the capabilities and efficiency of energy harvesting (EH) with PE transducers 

under two different kinds of external excitation: i) Periodic and ii) stochastic. An appropriate nonlinear lumped 

parameter electromechanical model (LPEM) is brought into the two-port network notation. Laboratory experi- 

ments were conducted under periodic external force-controlled excitation performed on a universal test machine 

(UTM). The two-port model parameters were identified and the model was validated by comparing results of 

numerical simulations and experiments. Extended simulations have been conducted to investigate the EH capa- 

bilities of PE transducers in automotive applications, i.e. EH in suspension systems under the standardized road 

conditions. The analysis results of the power conversion and EH efficiency are presented and discussed. 
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. Introduction 

Piezoelectric (PE) materials have been intensively used in actuation

ystems which require precision in micro- and nano-positioning, such

s micromanipulators, micro-valves, atomic force microscopes, adap-

ive optics, ultra-precision machine tools, but also structural dampers,

ee e.g. [7,11] and references therein for overview. PE materials are fa-

orable due to being compact, lightweight and with high precision and

andwidth response [7] . Despite being mostly known for their use as

ctuators, the exhibited piezoelectric effect can be divided into two –

irect and converse. When an electric field is applied between the elec-

rodes, it produces a mechanical strain which can be used for actuation

nd positioning control (converse effect). On the contrary, a PE mate-

ial induces an electric potential when stressed (direct effect), that can

e used for sensing applications, such as in electro-acoustic transducers,

ressure sensors in touch pads or tilt sensors, widespread in consumer

lectronics [29] . 

Over the last decades, PE materials have been actively investigated

lso in energy harvesting (EH) applications, mainly due to their high

ctuation frequency range, relatively high power density and bidirec-

ional coupling between the mechanical and electrical properties. For

ore extensive overview on the use of PE materials in energy harvest-

ng applications we refer to the several sources [2,4,20,24,31,33] . 
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If properly integrated into inherently-vibrating structures, the PE

aterials, with their high stiffness, can be seen as auxiliary harvest-

ng, yet not necessarily actuating, elements. At that point, one should

istinguish between harvesting and, otherwise common in nowadays

echnologies, recuperation mode. Semi-active and active suspension

ystems, in general, constitute a potential application field for a PE-

ased harvesting operation. Chassis technology for high-end cars are

lready successfully evolving towards the active or semi-active electro-

magneto-)mechanical suspensions. An associated more flexible and tar-

eted tuning of the vibration damping shows significant improvement in

ide performance, both in terms of handling (tire deflection) and comfort

sprung mass acceleration, suspension deflection, harshness) simultane-

usly [25] . Harvesting the energy, otherwise dissipated by the shock

bsorbers, is potentially advantageous, since a reduction of the overall

ower consumption is required for improving the fuel economy, bring-

ng down emissions, and supplying the power demand of additional sub-

ystems [40] in a vehicle. Most of the research literature on simultane-

us damping and energy harvesting address a complex approach that

an require a re-design of the suspension system as a whole [1,41] . High

ower-weight ratio and high (mechanical-to-electrical energy) conver-

ion efficiency solutions have been and remain of high relevance in in-

ustrial applications. Those alternatives that can be added into existing

hock absorber solutions, without major constructive modifications, are
earch and Innovation Programme ( H2020-MSCA-RISE-2016 ) under the Marie 

M. Ruderman). 

ctober 2019 

ticle under the CC BY-NC-ND license. 

https://doi.org/10.1016/j.mechatronics.2019.102294
http://www.ScienceDirect.com
http://www.elsevier.com/locate/mechatronics
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mechatronics.2019.102294&domain=pdf
https://doi.org/10.13039/501100007601
mailto:rafael.tavares@uia.no
mailto:michael.ruderman@uia.no
https://doi.org/10.1016/j.mechatronics.2019.102294
http://creativecommons.org/licenses/by-nc-nd/4.0/


R. Tavares and M. Ruderman Mechatronics 65 (2020) 102294 

o  

f  

t

1

 

l  

t

𝑆  

𝐷  

T  

d  

e  

t  

s  

(  

n  

s  

t  

(  

f  

h  

s  

a

 

f  

[  

f  

m  

e  

q

 

m  

t  

[  

n  

c  

t  

d  

m  

p  

t  

e

1

 

o  

t  

i  

o  

f  

e  

d  

o  

o  

c  

t  

a  

a  

T  

e  

fi  

o  

A  

e  

w  

s  

s

 

t  

b  

f  

a  

T  

r  

t  

e  

v  

a  

t  

o

2

2

 

e  

s  

i  

l  

d  

d

k

𝑚  

w  

d  

 

c  

s  

m  

e  

t  

c  

h  

b

 

a

𝑞  

w

𝑞  

w  

t  

a  

t

i  

c

𝑞  

𝐹  

1 The open-lead stiffness k is the stiffness of the piezoelectric transducer mea- 

sured in open-circuit, without the influence of nonlinear terms. 
f the most importance. The present paper aims to contribute toward

urther investigations with a feasibility study on the EH potential of PE

ransducers in the suspension systems. 

.1. Piezoelectric modeling approaches 

The most conventional description of the piezoelectricity was pub-

ished by the standards committee of the IEEE [12] as linearized consti-

utive equations 

 𝑝 = 𝑠 𝐸 
𝑝𝑞 
𝑇 𝑞 + 𝑑 𝑘𝑝 𝐸 𝑘 (1)

 𝑖 = 𝑑 𝑖𝑞 𝑇 𝑞 + 𝜀 𝑇 
𝑖𝑘 
𝐸 𝑘 (2)

he constitutive equations state that the material strain S p and electrical

isplacement D i are linearly related to the mechanical stress T q and the

lectrical field E k . The piezoelectric constant d , permittivity 𝜀 , and elas-

ic compliance s are the material constants, while the i, k, p and q sub-

cripts indexes indicate the directions of displacement and polarization

see [8,12] for more in detail explanation). The superscripts E and T de-

ote that those constants are evaluated at constant electric field and con-

tant stress, respectively. Despite describing uniformly the general rela-

ionship between the electrical and mechanical domain, equations (1) ,

2) lack to capture both nonlinearities and dynamic transients, typical

or PE actuators and transducers. To those belong a rate-independent

ysteresis [5] , creep and vibrations [17] . Furthermore, the linear con-

titutive coefficients can turn out as temperature-dependent and show

n additional (strong) electric field dependency. 

Various modeling approaches have been proposed in the literature

or the electromechanical behavior of PE materials, see for example

11] and references within for a survey. In order to account for both

orward and feedback interactive couplings between the electrical and

echanical domains (and correspondingly both direct and converse PE

ffects), a rather physics or domain-oriented modeling approach is re-

uired, as referred e.g. in [7,29] . 

For applications envisaging the EH and potential damping adjust-

ent of a PE transducer, a physically reasoned electromechanical in-

erpretation that can be compatible with two-port network modeling

26] and incorporation of two-way coupling effects is needed. A most

otable approach was introduced with the lumped parameter electrome-

hanical model (LPEM) proposed in [8,9] , that managed to postulate

he principal behavioral phenomena evidenced by PE transducers. More

etails on LPEM model and its inclusion into the two-port network for-

ulation are given later in Section II. An extension of LPEM was also

roposed in [27] , where the state-varying capacitance and Voigt-Kelvin-

ype linear creep effects were augmented to the standard LPEM form and

xperimentally evaluated on a commercial PE-stack actuator. 

.2. Contribution and outline of work 

This paper provides experimental and numerical simulation studies

n EH when using a PE transducer, under the periodic and stochas-

ic excitations. The LPEM model is explicitly brought into a general-

zed two-port notation. This re-structure of the model with introduction

f new port variables (force, velocity, voltage and current) is suitable

or describing the bidirectional PE effects and further convenient for

nergy-based analysis. The hysteretic behavior observed in the electric

omain is included with the nonlinear extension, modeled by play-type

perators with identified parameters from experimental data. A series

f laboratory experiments under force-controlled external excitation are

onducted on an universal test machine (UTM), and also used for iden-

ification of the free model parameters, and subsequent model evalu-

tion. In particular, for mechanical excitation cycles we measure and

nalyze the harvested energy output of the PE transducer under stress.

he obtained experimental results, for various frequencies, amplitudes,

xcitation forces and resistive loads are used to conclude on the EH ef-

ciency under periodic excitation. Note that some preliminary results
f experimental investigation have been also reported recently in [35] .

fter validating the assumed model, our goal is to investigate the EH

fficiency when using the PE transducer in vibration-based applications

here the external excitation is rather of a stochastic nature. Numeric

imulations were conducted for a desired case, i.e. the EH in automotive

uspension systems under the standardized road profile conditions. 

The structure of the main part of the paper is as follows. In Section 2 ,

he nonlinear electromechanical lumped parameter model of PE is

rought into the two-port network notation. Section 3 introduces dif-

erent notations and definitions of EH efficiency, while we specify those

ssumed in the recent study according to the nature of input excitation.

he experimental evaluation of the PE transducer performed under pe-

iodic conditions is described in Section 4 , along with description of

he experimental setup, parameter identification, model validation and

valuation of the EH efficiency. A simulation study of the experimentally

alidated PE model incorporated in a vibration-based energy harvesting

pplication, which is conventional quarter-car passive suspension sys-

em, is described in detail in Section 5 . Finally, conclusions and brief

utlook are presented in Section 6 . 

. PE model 

.1. Electromechanical lumped parameter model (LPEM) 

The assumed modeling approach is based on the lumped parameter

lectromechanical model originally introduced in [8,9] . The LPEM de-

cribes the behavior of a 1-DOF (degree of freedom) PE-element brought

nto a topology consisting of the electrical and mechanical subsystems,

eading to the ordinary differential equations describing the principal

ynamic system behavior. Considering mechanical domain of a PE trans-

ucer as a mass-spring-damper system with mass m , open-lead stiffness 1 

 and damping coefficient b , the mechanical dynamics is governed by 

 ̈𝑥 + 𝑏 ̇𝑥 + 𝑘𝑥 = 𝐹 𝑡 + 𝐹 , (3)

here F t is the transduced force, representing coupling with electrical

omain, and F is the external mechanical force applied to PE transducer.

In the electric domain, the PE transducer is mainly governed by a

apacitive behavior, since PE materials are dielectric. Experimental ob-

ervations [8,9] disclosed hysteresis between the voltage and displace-

ent, as well as between the force and displacement under the shorted

lectrode leads. However, since there is no hysteresis observed with

he open electrode leads, but it is observed between displacement and

harge when they are closed, the LPEM model rationally concluded the

ysteresis lying in the electrical domain of PE transducers. Note that this

asic assumption is also inline with PE fundamentals, see e.g. [5] . 

Following to LPEM one assumes that the net electrical charge q p ,

cross the PE, is given by the sum of two components 

 𝑝 = 𝑞 𝑐 + 𝑞 𝑡 , (4)

here the voltage across the capacitor is defined by 

 𝑐 = 𝐶 𝑣 𝑡 , (5)

ith C to be the electrical capacitance of PE at constant strain. Recall

hat the electrical and mechanical domains are coupled via the direct

nd converse PE effects, so that charge q t is induced due to the rela-

ive displacement x (which is the PE stroke). The transduced force F t 
s proportional to the capacitor voltage, so that the electromechanical

ouplings between both domains are given by 

 𝑡 = 𝑇 𝑥, (6)

 𝑡 = 𝑇 𝑣 𝑡 . (7)
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Fig. 1. Two-port network model for the PE transducer. 

H

 

c

𝑣  

w  

b

𝑣  

I  

i  

P  

c

2

 

f  

f  

e  

b  

c  

v  

t  

c  

b

 

c  

d  

E  

o  

t  

m  

t  

a  

o  

o  

(  

p

2

 

[  

t  

d  

c

𝑞  

a  

t  

t  

v  

Fig. 2. Schematic representation of P-I play-type hysteresis model with super- 

position of two operators [35] . 
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ere the constant transformer ratio is denoted by T . 

The nonlinearity, introduced by hysteresis, between the overall

harge and voltage [8] can be expressed as 

 ℎ = 𝐻( 𝑞 𝑝 ) , (8)

hile the total terminal voltage, i.e. between the PE electrodes, is given

y 

 𝑝 = 𝑣 𝑡 + 𝑣 ℎ . (9)

t is worth noting that the PE charge is generally challenging to measure,

n practice. That means the resulting current 𝑖 𝑝 = �̇� 𝑝 flowing through the

E transducer can be rather measured when the PE leads are in a closed

ircuit. 

.2. Two-port network formulation 

Generic models of a two-port network transducer can be applicable

or most types of reciprocal power-converting elements, in particular

or electrostatic, piezoelectric, electromagnetic and electrodynamic, see

.g. [14,26] . A standard two-port model of an transducer can be defined

y its across and through variables. The across variable for an electri-

al element is voltage and the through variable is current. The across

ariable for mechanical element is force, while the through variable is

he displacement rate, i.e. relative velocity. The two-port formulation is

onvenient for energy analysis, since the power can be directly obtained

y multiplying the corresponding across and through variables. 

The transfer characteristics of a PE element are governed by me-

hanical and electrical subdynamics. A simple linear two-port PE trans-

ucer can be, therefore, directly formulated from linear the constitutive

qs. (1) and (2) , as has been done in [26] for estimating the maximum

utput power and efficiency of the system. Yet, one should keep in mind

hat a PE transducer two-port model is a bidirectionally coupled 2 × 2

ulti-input-multi-output (MIMO) system which is nonlinear, in general

erms. Therefore, our goal is to use a two-port model formulation suit-

ble of describing both actuating and sensing transducers’ effects. Obvi-

usly, the model formulation relies on the above mentioned principles

f a two-port network model for PE, and the LPEM equations given in

3)-(9). The resulting two-port network model of PE transducer with

ort variables F , �̇� , v p and i p is depicted by block-diagram in Fig. 1 . 

.3. Hysteresis modeling 

The hysteresis between the voltage and charge is described in

8,27] using the so-called Maxwell-slip structure, which coincides with

he Prandtl-Ishlinskii (P-I) stop-type hysteresis model, see e.g. [28] for

etails. According to the implemented two-port PE model, the hysteresis

an be inversely captured by 

 𝑝 = 𝐻 

−1 ( 𝑣 ℎ ) , (10)

nd therefore implemented by using the P-I play-type operators. Hys-

eretic play-type operators are well-known in mechanics and often used

o describe a kinematic play, also known as backlash. It provides a multi-

alued rate-independent map under a common input v for each operator.
he play-type operator dynamics can be described also in a differential

orm [28] as 

̇ = 

⎧ ⎪ ⎨ ⎪ ⎩ 
𝑤 ̇𝑣 if 

𝑞 

𝑤 

− 𝑟 = 𝑣 or 
𝑞 

𝑤 

+ 𝑟 = 𝑣, 

0 if 
𝑞 

𝑤 

− 𝑟 < 𝑣 < 

𝑞 

𝑤 

+ 𝑟. 
(11) 

ecall that the P-I type models can be used for describing both forward

nd inverse hysteresis, and allow for a fast analytical computation. With

uperposition of multiple play-type operators, as exemplary illustrated

n Fig. 2 , it is possible to sufficiently map a real hysteresis behavior

hile assuming a relatively small number of the free parameters. Note

hat the classical P-I model can characterize only symmetric and rate-

ndependent hysteresis behavior. Each operator is defined by two pa-

ameters, the dead-band width r j and the slope w j , with 𝑗 = { 1 , 2 , 3 } .
ncreasing the number of operators leads to increasing smoothness of

he input-output hysteresis map and, as implication, to higher (local)

ccuracy of the P-I model. At the same time it largely increases the com-

lexity of properly determining the distributed model parameters. 

. Efficiency of energy harvesting 

Vibration suppression and energy harvesting by a PE transducer can

e done by shunting the free leads to an impedance [23] . Recall that

ue to bidirectional couplings, the PE transducer can convert energy

rom the mechanical to the electrical domain and vice versa. The energy

onversion in PE transducer reveals how much of the power supplied

y vibrations gets actually converted into electricity. The subsequent

emoval of converted electrical energy from a PE transducer necessarily

esults in additional structural damping [18] . 

When referring to energy harvesting, the term efficiency is generally

ssociated with energy conversion efficiency, i.e. the ratio of output to

nput energy in a harvesting system. Although, there is no consistency

etween multiple authors when it comes to definition of the efficiency

erm, being often presented as ratio of energy as in [21,38] or also in

erms of a power ratio as in [10,26,32] . 

In numerous studies the efficiency is commonly expressed analyt-

cally, as a relation to the electromechanical coupling factor squared

10,26] , which represents how efficient is the PE material alone, in

erms of the energy conversion. Although, this definition does not ac-

ount for structural design and further contributing aspects the con-

ected electrical circuit. Therefore, the total EH efficiency is mostly sig-

ificantly smaller than the material coupling factor [38] . 

Several analytical expressions have been deducted, as shown in the

iterature, in order to calculate the theoretical maximum value of effi-

iency. An upper limit of 46% has been reported in [32] , considering

he efficiency of energy conversion by assuming a load resistance which

an actively change to the maximize power output. Such upper limit

as been argued by [16] , stating that the efficiency could reach 80%,

hile no experimental evidence can be found for that. It is obvious that

arge discrepancies in efficiency values are directly linked to the view-

oint taken for the definition and additional assumptions about energy
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Fig. 3. Electronic circuit for voltage and current measurement. 
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osses. Ratios of energy per cycle are of a large interest when describ-

ng the applications associated with a periodic excitation, for instance

antilever vibration harvesters [21,26] . At the same time, when facing

xcitations of a stochastic nature, a definition of efficiency in terms of

verage power appears as more appropriate. 

In this work, we define the efficiency of energy harvesting 𝜂 depend-

ng on the principal signals’ pattern of the applied excitation. For peri-

dic excitations, we consider the efficiency as given by 

P = 

�̃� 𝑜𝑢𝑡 

�̃� 𝑖𝑛 

= 

�̃� 𝑒𝑙𝑒 

�̃� 𝑚𝑒𝑐 

, (12)

ith �̃� to be the average energy per cycle. On the contrary for non-

eriodic excitations, the efficiency we assume is given by 

NP = 

𝑃 𝑜𝑢𝑡 

𝑃 𝑖𝑛 
= 

𝑃 𝑒𝑙𝑒 

𝑃 𝑚𝑒𝑐 
, (13)

here 𝑃 is the average power in terms of a spectral distribution. For the

vailable experimental setup conditions, only periodic excitations were

xperimentally evaluated (see Section 4 ), while non-periodic excitations

ere further evaluated in simulations (see Section 5 ). In a PE-based har-

esting system, P in is the mechanical power input supplied by a force

xcitation, and P out is the electrical power output, both given by 

 𝑚𝑒𝑐 = 𝐹 �̇� and 𝑃 𝑒𝑙𝑒 = 𝑣 𝑝 𝑖 𝑝 (14)

espectively. 

The maximum power 𝑃 , of a uniform periodic excitation where each

ycle is defined between t 1 and t 2 , is given by 

̂
 = max ( 𝑃 ( 𝑡 )) , 𝑡 ∈ [ 𝑡 1 , 𝑡 2 ] . (15)

Finally, the energy per cycle �̃� can be obtained by numerical inte-

ration of (14) , while the energy losses dissipated in a PE transducer

due to damping and coupling effects) can be expressed by 

 𝑙𝑜𝑠𝑠 = 𝐸 𝑚𝑒𝑐 − 𝐸 𝑒𝑙𝑒 . (16)

. Experimental study 

.1. Experimental setup 

The experimental setup, used in this work, consists of a PE transducer

nder compressive load excitation, as described in [35] in more details.

uring experiments, four variables are being monitored, the excitation

orce F applied to PE element, the relative displacement correspondingly

troke of the prestressed PE element x , the voltage v p across the two

lectrodes of PE element, and the current i p flowing through the overall

losed circuit. In the experimental study, only periodic signal excitations

ere considered due to equipmental restrictions of the laboratory setup.

The measuring circuit includes a resistive load and a shunt resistance

 𝑅 𝑠ℎ𝑢𝑛𝑡 = 100 Ω) for current measurement, as shown in Fig. 3 . A current

ense amplifier was used to increase the voltage output of the current

hunt resistance (TI INA213), resulting in the measured voltage v 
sense 
ith an amplification factor of 50. Two other operational amplifiers

AD8510) were used as buffers for measuring the voltage between the

lectrode ends of the PE stack. Three different impedances were used as

 passive load: 𝑅 𝑙𝑜𝑎𝑑 = { 51 . 43 , 97 . 78 , 143 . 8 } k Ω. 

The specimen was tested using an UTM from SI-Plan. Due to charac-

eristics of the servohydraulic actuator of the UTM, only periodic excita-

ions were experimentally realized. Several load experiments were con-

ucted under compression using two types of the force loads: step and

inusoidal. The experiments carried out under step load excitations con-

isting in a periodic repetition of a step force applied during 5 seconds,

ollowed by the release of the force. Experiments were carried out with

ifferent loads 𝐹 𝑠𝑡𝑒𝑝 = { 0 . 50 , 0 . 75 , 1 . 00 , 1 . 25 } kN. The experiments with

inusoidal load profile were conducted under different maximum peak

orces 𝐹 max = {0 . 50 , 0 . 75 , 1 . 00 , 1 . 25 , 1 . 50} kN, and for different frequen-

ies 𝑓 = { 1 , 2 , 3 , 4 , 5 } Hz. Note that the sinusoidal excitation frequencies

 are relatively low comparing to the high resonance frequencies of the

E transducer. A minimum peak force offset around 0.1 kN was applied

o avoid loss of a mechanical contact due to no compression forces. 

The force measurements were provided by the load cell installed

n the servo-hydraulic actuator of the UTM. The used load cell SI-Plan

8390 is with ± 25 kN range, sensitivity 0.593 mV/V, and 700 Ω bridge.

or determining offset voltage for zero load, to be subtracted from the

nalog voltage output, the corresponding calibration curves have been

sed. The stroke x of the PE is measured by a laser-optical displacement

ensor (Micro-Epsilon ILD2300-2, measuring range: 2 mm, resolution:

.03 μm) configured in a direct reflection mode. The sensor provides

 configurable analog voltage output through the C-Box conditioning

ignal unit. A 3D-printed frame was fabricated to allow the adjustment

f the measurement range and the fixture of the sensor to the bottom

rame of the machine. The laboratory view of the developed PE setup

nder load excitation in the UTM is shown in Fig. 4 . To guarantee a

niform load distribution over the PE surface and minimize the effects

f minor misalignments between the top clamp and bottom frame of the

achine, the load was applied into a sphere joint and then transferred

o the PE through a steel rod. An additional metal plate was added to

reate a reflection surface for the laser beam. The analog signals mon-

tored during experiments were collected using a dSpace MicroLabBox

ia the standard BNC connectors. The analog measuring input channels

ave a voltage range of ± 10 V followed by an ADC with a resolution

f 16 bit, while the sampling rate was set to 1 kHz. 

.2. Experimental results 

The measured relative displacement (respectively stroke) x , current

 p and voltage v p , recorded during two exemplary taken force load ex-

eriments, are depicted in Fig. 5 and Fig. 6 ( 𝑅 𝑙𝑜𝑎𝑑 = 51 . 43 k Ω). The volt-

ge and current peaks, cf. Fig. 5 , resulting from the step force loading,

eflect the charge flowing through the PE as a result of change of PE po-

arization due to mechanical stress. On the contrary, the output current
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Fig. 5. Measured PE response under step load excitation: (a) force and displace- 

ment; (b) voltage and current ( 𝑅 𝑙𝑜𝑎𝑑 = 51 . 43 k Ω). 

Fig. 6. Measured PE response under sinusoidal load excitation: (a) force and 

displacement; (b) voltage and current ( 𝑅 𝑙𝑜𝑎𝑑 = 51 . 43 k Ω). 
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Fig. 7. Measured hysteresis: (a) displacement-force; (b) displacement-voltage 

( 𝑅 𝑙𝑜𝑎𝑑 = 51 . 43 k Ω). 

Table 1 

�̃� 𝑒𝑙𝑒 and 𝑃 𝑒𝑙𝑒 for step excitation. 

Force (kN) R load (k 𝛀) �̃� 𝑒𝑙𝑒 (mJ) 𝑃 𝑒𝑙𝑒 (mW) 

0.50 51.43 0.594 0.579 

0.50 97.78 0.519 0.339 

0.50 143.8 0.470 0.257 

0.75 51.43 1.397 1.484 

0.75 97.78 1.213 0.856 

0.75 143.8 1.090 0.634 

1.00 51.43 2.450 2.386 

1.00 97.78 2.123 1.366 

1.00 143.8 1.908 0.996 

Table 2 

�̃� 𝑚𝑒𝑐 and 𝑃 𝑚𝑒𝑐 for step excitation. 

Force (kN) R load (k 𝛀) �̃� 𝑚𝑒𝑐 (mJ) 𝑃 𝑚𝑒𝑐 (mW) 

0.50 51.43 15.241 24.623 

0.50 97.78 15.163 24.655 

0.50 143.8 15.540 25.111 

0.75 51.43 31.997 46.927 

0.75 97.78 28.925 47.124 

0.75 143.8 29.246 48.172 

1.00 51.43 45.359 73.847 

1.00 97.78 44.665 77.284 

1.00 143.8 44.807 76.928 
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nd voltage are also symmetrical sinusoidal signals under a sinusoidal

oad, cf. Fig. 6 . The hysteresis between the voltage and displacement, as

ell as between the force and displacement were equally observed, cf.

ith [8,9] . From the sinusoidal load excitation under different frequen-

ies, one sees that for low frequencies (1–5 Hz) the overall measured

ysteresis remains truly rate-independent, as shown in Fig. 7 . Here one

hould notice that an expectable stretching, correspondingly rounding,

f the hysteresis curves at higher frequencies, are largely related to the

oupled subdynamics (with the corresponding phase lag) of the overall

lectromechanical system. Those spurious interpretations of the mea-

ured input-output PE characteristics, involving relative displacement,

re sometimes reported as rate-dependent PE hysteresis, while an iso-

ated PE hysteresis in electrical domain is rate-independent, cf. [5,8] 
Based on (14) , one can estimate the average electrical energy which

an be harvested per cycle (one cycle also considers the step load and

tep unload) and the corresponding power peaks. Newton–Cotes Simp-

on’s rule was used for the discrete numerical integration of the power

uantities. The velocity �̇� was obtained via numerical differentiation of

he measured stroke. A Butterworth third order low-pass filter with cut-

ff frequency of 100 Hz was applied afterward to the determined �̇� , in

rder to remove the effects of derivative signal noise. The same filter

as applied to the measured force F so as to introduce the same phase

ag and, therefore, allowing for unshifted calculation of the P mec , and

orrespondingly E mec , values. 

The values obtained under different experimental conditions are

rouped and summarized in Tables 1 and 2 for the step excitation, and

n Tables 3 and 4 for the sinusoidal excitation. 

.3. Identification of model parameters 

The two-port model was parameterized for a commercially available

E ring stack transducer (Noliac NAC2125-H10). The overall mass was

alculated from the geometry and density of the material. The mechani-

al stiffness k was calculated using the blocking force and free endpoint
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Table 3 

�̃� 𝑒𝑙𝑒 and 𝑃 𝑒𝑙𝑒 for sinusoidal excitation ( 𝑅 𝑙𝑜𝑎𝑑 = 51 . 43 k Ω) . 

F = 0.5 kN F = 0.75 kN F = 1 kN 

f �̃� 𝑒𝑙𝑒 𝑃 𝑒𝑙𝑒 �̃� 𝑒𝑙𝑒 𝑃 𝑒𝑙𝑒 �̃� 𝑒𝑙𝑒 𝑃 𝑒𝑙𝑒 

(Hz) (mJ) (mW) (mJ) (mW) (mJ) (mW) 

1 0.22 0.04 0.57 0.12 1.02 0.21 

2 0.34 0.08 0.94 0.21 1.70 0.36 

3 0.39 0.08 1.20 0.25 1.93 0.39 

4 0.41 0.09 1.26 0.26 2.02 0.41 

5 0.42 0.09 1.28 0.26 2.08 0.42 

Table 4 

�̃� 𝑚𝑒𝑐 and 𝑃 𝑚𝑒𝑐 for sinusoidal excitation ( 𝑅 𝑙𝑜𝑎𝑑 = 51 . 43 k Ω). 

F = 0.5 kN F = 0.75 kN F = 1 kN 

f �̃� 𝑚𝑒𝑐 𝑃 𝑚𝑒𝑐 �̃� 𝑚𝑒𝑐 𝑃 𝑚𝑒𝑐 �̃� 𝑚𝑒𝑐 𝑃 𝑚𝑒𝑐 

(Hz) (mJ) (mW) (mJ) (mW) (mJ) (mW) 

1 11.01 2.57 20.80 4.20 31.14 6.78 

2 21.11 4.33 41.34 8.29 61.94 12.52 

3 32.04 6.39 65.24 12.60 92.34 18.84 

4 42.91 8.32 88.67 18.95 123.14 26.17 

5 53.81 11.01 112.59 24.68 155.62 34.43 

Table 5 

Determined system parameters. 

Variable Description Value Units 

m Mass 0.0158 kg 

b Damping coefficient 885.6 Ns/m 

k Open-lead stiffness coefficient 2.596 × 10 8 N/m 

R load Load impedance 51.43 k Ω
C Capacitance 3.2 μF 

T Electromechanical coupling 10.698 –

r 1 P-I operator 1 threshold 0.094 μF 

r 2 P-I operator 2 threshold 0.213 μF 

r 3 P-I operator 3 threshold 0.584 μF 

w 1 P-I operator 1 slope 1.2 V/μF 

w 2 P-I operator 2 slope 0.8 V/μF 

w 3 P-I operator 3 slope 2.3 V/μF 
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Fig. 8. Measured and model predicted displacement and current response to a 

step load ( 𝐹 𝑠𝑡𝑒𝑝 = 1 . 25 kN). 

Fig. 9. Measured and model predicted displacement and current response to a 

sinusoidal load ( 𝐹 max = 1 . 5 kN and 𝑓 = 2 Hz). 
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d  

T  
isplacement to the rated voltage, nominal values provided by the sup-

lier. The nominal value of linear electrical capacitance C is also avail-

ble from the datasheet of the PE transducer. The initial values (prior

o identification) for the unknown damping coefficient b and electrome-

hanical coupling ratio T were assumed from the previously published

esearch studies, cf. [8] . 

The residual model parameters, see in (3) –(9) , were identified from

he experimental measurements. The P-I hysteresis model was dis-

retized with 𝑛 = 3 elements. 2 The r j and w j parameters have been iden-

ified simultaneously with the damping coefficient b and transformer

atio T . The parameters identification used the minimization of 

in ∫
[
𝑊 𝑖 

(
𝑖 ( 𝑡 ) − ̂𝑖 ( 𝑡 ) 

)2 + 𝑊 𝑥 ( 𝑥 ( 𝑡 ) − �̂� ( 𝑡 ) ) 2 
]
dt , (17)

here 𝑖 ( 𝑡 ) and �̂� ( 𝑡 ) are two-port model estimated outputs for current

nd displacement, and 𝑊 𝑖 = 1∕ mean ( |𝑖 |) and 𝑊 𝑥 = 1∕ mean ( |𝑥 |) are the

eighting coefficients. The measured data collected under the excita-

ion conditions 𝐹 max = 0 . 50 to 1.25 kN were used for parameter identi-

cation, while 1.5 kN was used for evaluation of the identified model

nder sinusoidal loads. The determined system parameters are listed

n Table 5 . The comparison between the experimental response of the

E transducer and its two-port model-based prediction are visualized in

igs. 8 and 9 , for the step and sinusoidal loads correspondingly. The tran-
2 Simulations shown that 3 elements were sufficient to shape the hysteresis, 

nd further increasing the number of elements does not further improve the 

ccuracy in the model response. 

f  

e  

d  

i  

o  
ient and steady-state match of both predicted output quantities (elec-

rical and mechanical) with the real system response verify the validity

f the identified two-port model and argue in favor of its use for further

tudies. 

.4. Efficiency of energy harvesting 

In the sinusoidal force solicitation, it is notable that the harvesting

otential saturates as the frequency increases, due to the resistive cir-

uit load. The harvesting potential can be further increased by using

he synchronized switch harvesting inductor (SSHI) techniques [19,37] ,

hich consist in adding up a switching circuit in parallel with the PE el-

ment. In SSHI harvesting methods, the PE voltage is always increasing,

xcept during the switch which inverts the PE voltage at each peak, and

as always the same sign as the velocity �̇� . However, an explicit design

nd implementation of the optimized harvesting load circuits for the PE

ransducer are out of scope of the recent study and, therefore, subject

o the future works. 

Fig. 10 visualizes the variation in the obtained average electrical

nd mechanical energies, �̃� 𝑒𝑙𝑒 and �̃� 𝑚𝑒𝑐 , over 𝐹 max and f under the si-

usoidal load. Note that the power dissipated by the load resistance is

inor when compared with the power provided by the mechanical load

xcitation. At the same time, the PE shunt-damping introduced by the

esistance R load reduces the mechanical vibration and, consequently, the

otal harvested energy. The harvesting power can be increased by tuning

he shunt-circuit impedance to the excitation frequency. 

The efficiency of EH under periodic excitation is calculated by

12) for periodic excitations. The variation of efficiency 𝜂P , with the

ifferent F step and R load , is shown in Fig. 11 for the step excitations.

he variation of efficiency 𝜂P , with the different F max and frequencies

 , is shown in Fig. 12 for the sinusoidal excitations. The maximal EH

fficiency of 4.9% was obtained for the sinusoidal excitation under the

escribed laboratory conditions. In the literature, an estimated theoret-

cal efficiency is reported to be significantly higher, see e.g. [38] . The

btained experimental results are in line with other experimental stud-
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Fig. 10. Variation of �̃� 𝑒𝑙𝑒 in (a) and �̃� 𝑚𝑒𝑐 in (b), for different F max and f of the 

sinusoidal excitation. 

Fig. 11. Efficiency 𝜂P for step excitation. 
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Fig. 12. Efficiency 𝜂P for sinusoidal excitation. 

Fig. 13. Diagram of the quarter-car suspension model augmented by the PE 

transducer. 
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es reporting results of much lower efficiency ranging from 1 to 10%.

or PZT (lead zirconate titanate), studies report efficiencies of 7.5% for

echanical vibrations in the range of 50–150 Hz with amplitude of 1 kN

15] , 5.4% for sinusoidal cantilever vibration in the range of 20–60 Hz

39] , 3.1% for < 100 Hz excitation of a PE laminate sandwiched be-

ween two Terfenol-D discs [3] , 1.2% for impact-based harvesters in

ow frequency vibrations ( < 30 Hz) [13] and 10% for a fixed-fixed

eam with ball mass drop impact [36] . 

. Simulation study with suspension system 

.1. System description 

In order to analyze more realistic aperiodic EH cases, consider a prac-

ical application of EH in an automotive suspension. We assume a single

orner of a ground vehicle, i.e. the standard quarter-car model with in-
eractions between the suspension system, the tire, and the chassis as

 two degrees-of-freedom system. This allows to study the vibrational

esponse of the vehicle to a road-induced excitation. The PE transducer

s introduced between the suspension rod and the unsprung mass, as

hown in Fig. 13 . This setup allows for analyzing the EH behavior of

n structure-integrated PE transducer, while the road excitation x 0 is

efined according to the ISO standard 8608. 

Applying the Newton’s second law, the dynamic equations of sus-

ension system can be written as 

 1 ̈𝑥 1 = 𝑘 1 ( 𝑥 0 − 𝑥 1 ) + 𝑏 1 ( ̇𝑥 0 − �̇� 1 ) − 𝐹 , (18)

 2 ̈𝑥 2 = 𝑘 2 ( 𝑥 + 𝑥 1 − 𝑥 2 ) + 𝑏 2 ( ̇𝑥 + �̇� 1 − �̇� 2 ) , (19)

hile assuming 1/4 of the vehicle chassis mass m 2 , the unsprung mass

 1 , the tire stiffness coefficient k 1 , the tire damping coefficient b 1 , the

pring stiffness coefficient k 2 , the damping coefficient b 2 , the unsprung

ass (wheel) displacement x 1 , the suspended mass (chassis) displace-

ent x 2 , and the kinematic road excitation x 0 . The terms x , �̇� and F rep-

esent the relative displacement, velocity, and applied force variables,

espectively, as they used before in the PE two-port model. 

.2. Standardized road profiles 

The standard ISO 8608 defines classification of the longitudinal road

rofiles based on the vertical displacement power spectral density (PSD).

or an extensive comparison of the parameters used to simulate the road

rofiles based on the ISO 8608 we refer to [22] , for overview and refer-

nces therein. The road roughness is typically represented as a station-

ry stochastic Gaussian process, with the displacement power spectral
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Table 6 

Road roughness S 0 [m 

2 /(cycle/m)] at reference spatial frequency 𝜈0 

according to ISO 8608 classification. 

Road class S 0 range, ×10 −6 S 0 mean, ×10 −6 

A (Very good) < 8 4 

B (Good) 8 − 32 16 

C (Average) 32 − 128 64 

D (Poor) 128 − 512 256 

E (Very poor) 512 − 2048 1024 

Fig. 14. Sections of the generated input profiles for the road classes A, B and C. 
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Fig. 15. Simulation of quarter-car on a generated ISO 8608 class C road. 

Table 7 

Quarter-car simulation parameters. 

Variable Description Value Units 

m 1 Unsprung mass 50 kg 

m 2 Sprung mass 450 kg 

k 1 Tire elastic coefficient 200000 N/m 

k 2 Passive spring coefficient 50000 N/m 

b 1 Tire damping coefficient 1400 Ns/m 

b 2 Passive damping coefficient 5000 Ns/m 

Table 8 

Simulations results of the quarter-car with PE model. 

Road class 𝑃 𝑒𝑙𝑒 (mW) 𝑃 𝑚𝑒𝑐 (mW) 𝜂NP (%) 

A 0.0271 1.765 1.536 

B 0.1108 6.718 1.650 

C 0.4774 27.360 1.745 

D 1.7541 98.905 1.774 

E 7.4179 421.605 1.759 
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ensity (PSD) in m 

2 /(cycle/m) units, given by 

 PSD 

( 𝜈) = 𝐺 𝑟 𝜈
𝛽 . (20)

ere 𝜈 is the spatial frequency (cycle/m), 𝐺 𝑟 = 𝑆 0 ∕ 𝜈
𝛽

0 is the road rough-

ess coefficient, S 0 is the displacement PSD at 𝜈0 = 1∕(2 𝜋) , and a com-

only approximated fitting parameter, see e.g. [41] , is 𝛽 = −2 . The ISO

lassification is based on the value of S 0 as shown in Table 6 (adapted

rom [41] ). 

Accurate road excitation PSDs, based on the ISO 8608, can be mod-

led as white noise input feed through a first-order filter [34,41] . Con-

idering the angular frequency 𝜔 = 2 𝜋𝑣𝜈, the PSD of the road excitation

an be expressed as 

 PSD 

( 𝜔 ) = 

2 𝜋𝐺 𝑟 𝑣 

𝜔 

2 + 𝜔 

2 
0 

, (21)

here v is the longitudinal velocity of the vehicle, and 𝜔 0 is the low-

ass filter (LPF) cutoff frequency. Considering the Laplace operator

 = 𝜎 + 𝑗𝜔 for steady-state signal analysis ( 𝜎 = 0 ), the road disturbance,

orrespondingly excitation, can be then modeled as a white noise signal,

ltered by a first-order filter defined as 

( 𝑠 ) = 

√
2 𝜋𝐺 𝑟 𝑣 

𝑠 + 𝜔 0 
. (22)

 is a linear transfer function of the Laplace variable s . Examples of the

oad profiles generated through the described method for 𝑣 = 50 km/h

re shown in Fig. 14 . For instance, the depicted sections of the generated

rofiles correspond to a drive distance of ≈ 69.4 m. 

.3. Simulation results 

The modeled system was simulated with the quarter-car setup, see

.g. [30] for detail. The assumed numerical values, listed in Table 7 , are

artially based on the used literature [30] and partially on the values

vailable from the automotive suspension manufacturers. For the PE

wo-port model, the simulation parameters used are previously listed in

able 5 . Fig. 15 shows the displacements of the unsprung x an sprung
1 
 2 masses when the vehicle is moving with 𝑣 = 50 km/h on a generated

SO 8608 class C road with input x 0 . 

.4. Efficiency of energy harvesting 

The average power 𝑃 and efficiency 𝜂NP are computed by (14) and

13) , respectively. The results of the simulation for different class roads

re summarized in Table 8 . 

Other experimental studies in applications with random vibration

xcitations report an efficiency of 7% with a random vibration signal

rom 0 to 500 Hz [33] , and between 1 and 2% for a bistable system [6] .

espite the low efficiency obtained in simulations, this feasibility study

lready indicates that the amount of harvested power estimated through

imulations seems enough to power some small electronic circuit and

ensors placed on the unsprung mass (wheel) of the vehicle. 

. Conclusions 

In this paper, we conducted a feasibility study of using PE transduc-

rs for energy harvesting, while envisaging applications in suspensions

ystems. A two-port network model of a PE transducer has been for-

ulated and implemented and the model parameters were identified

rom experimental data. The two-port model is based on the lumped pa-

ameter electromechanical model [8] which couples the electrical and

echanical domains in both directions. Distinct efficiency definitions

ere introduced for both periodic and stochastic excitations. 

Experimental measurements allowed to observe the expected hys-

eric behavior and transient oscillations. The two-port network model

as validated by an accurate prediction of both (electrical and mechan-

cal) output variables in comparison with experimental data under pe-

iodic excitations. A maximum EH efficiency 𝜂P = 4 . 9% was experimen-

ally demonstrated, in line with what have been reported by other stud-

es ranging from 1 to 10%. 
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The analysis of power in the electrical domain demonstrates the po-

ential capabilities of PE transducers to harvest sufficient energy for sup-

lying small electronic circuits, even though the applied resistive load is

ot optimal in the recent study. SSHI energy harvesting strategies should

e further investigated to improve the EH efficiency. 

An accurate prediction of both mechanical and electrical output vari-

bles by the derived two-port network model argues in favor of its fur-

her use in analysis and design of a PE-based energy harvesting system.

o investigate the EH capabilities of PE transducers in suspension sys-

ems, we conducted numerical simulations for a classical parameterized

uarter-car suspension under generated standard road excitations. For

 poor road (ISO 8608 class D), an average power 𝑃 𝑒𝑙𝑒 of 1.747 mW can

e harvested, according to the numerical simulations which involved

he validated two-port PE model. That corresponds to an efficiency of

NP = 1 . 77% . Experimental evaluations with stochastic load profiles and

n real vibration suspension systems are subject of our future works. 
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