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Abstract. A myriad of works has been published for achieving data
clustering based on the Bayesian paradigm, where the clustering some-
times resorts to Näıve-Bayes decisions. Within the domain of clustering,
the Bayesian principle corresponds to assigning the unlabelled samples
to the cluster whose mean (or centroid) is the closest. Recently, Oom-
men and his co-authors have proposed a novel, counter-intuitive and
pioneering PR scheme that is radically opposed to the Bayesian princi-
ple. The rational for this paradigm, referred to as the “Anti-Bayesian”
(AB) paradigm, involves classification based on the non-central quantiles
of the distributions. The first-reported work to achieve clustering using
the AB paradigm was in [1], where we proposed a flat clustering method
which assigned unlabelled points to clusters based on the AB paradigm,
and where the distances to the respective learned clusters was based on
their quantiles rather than the clusters’ centroids for uni-dimensional
and two-dimensional data. This paper, extends the results of [1] in many
directions. Firstly, we generalize our previous AB clustering [1], initially
proposed for handling uni-dimensional and two-dimensional spaces, to
arbitrary d-dimensional spaces using their so-called “quantiloids”. Sec-
ondly, we extend the AB paradigm to consider how the clustering can be
achieved in hierarchical ways, where we analyze both the Top-Down and
the Bottom-Up clustering options. Extensive experimentation demon-
strates that our clustering achieves results competitive to the state-of-
the-art flat, Top-Down and Bottom-Up clustering approaches, demon-
strating the power of the AB paradigm.

1 Introduction

Clustering is the task of grouping data points in a way that elements that exhibit
some similarity, or that inherently belong to the same class, end up in the same
group. It is a fundamental task in data analysis and inference, and it is, arguably,
among the most popular machine learning and data mining techniques [2] [3].
A range of different clustering methods have been proposed and each of them
vary with the understanding of what a cluster, actually, is. For instance, density
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models, such as OPTICS [4] and DBSCAN [5], coalesce most dense regions in
the space into a single cluster. As opposed to this, in hierarchical clustering [6]
[7], the aim is to arrange the data points into an underlying hierarchy which then
determines the various clusters. A third group of clustering algorithms constitute
the so-called “centroid” methods where all the points within a computed cluster
are represented by a single point, for example the cluster’s centroid. The most
prominent example of a scheme within this family is the acclaimed k-means clus-
tering algorithm where a centroid is represented by the mean value of the points
in the cluster. The central strategy motivating these clustering schemes involves
classifying unassigned data points to the different clusters based on the distances
to the means (or centroids) of the clusters. From the above, one can informally
see that any specific pattern classification algorithm can be conceptually ex-
panded to yield a clustering scheme. Thus, if we have k previously-determined
clusters, an unknown unlabelled sample can be assigned to any one of the k
classes by the corresponding classification algorithm, whence the specific cluster
can be grown to include this specific sample. Almost all the well-known classifiers
involved in pattern classification are based on a Bayesian principle which aims
to maximize the a posteriori probability. Quite recently, Oommen and his co-
authors proposed a completely counter-intuitive paradigm, known as CMQS, the
Classification by Moments of Quantile Statistics. CMQS works with a counter-
intuitive philosophy, and essentially compares the testing sample with points
from each class which are distant from the mean – as opposed to the Bayesian
principle which essentially compares it to the clusters’ means or the centroids

The question that begged investigation and that was considered open was
that of invoking these “Anti–Bayesian” (AB) PR algorithms to design the corre-
sponding clustering algorithms. This is the avenue of research undertaken here.
The pioneering steps taken in this direction were reported in [1], where we in-
troduced a novel alternative to the k-means clustering algorithm. The algorithm
presented in [1] follows the same steps dictated by a typical k-means clustering
algorithm. The main difference, however, is the manner by which it assigns the
data points to the already-formed clusters. Indeed, rather than follow a Bayesian
classification methodology, it traverses one of the AB-based PR CMQS-based
schemes reported earlier. In fact, unlike the k-means clustering strategies that
rely on centroid-based criteria, we resort to quantiles positions distant from the
cluster means [8] [9] [10], which is a strategy just as counter-intuitive and non-
obvious as the CMQS schemes themselves. Central to the development of such
CMQS clustering algorithms is the concept of a “Quantiloid” We will elaborate
on the phenomenon of Quantiloids in the next section. It is pertinent to mention
that by working with Quantiloids, we will have effectively extended our previ-
ous work [1]. However, apart from doing it in the “vanilla” manner, we shall
accomplish it by also invoking hierarchical clustering approaches.

1.1 Structure of the paper

In Section 2, we present the fundamental principles of AB clustering. In Section
3, we demonstrate the development of AB flat clustering in d-dimensional spaces.



The principles of hierarchical AB clustering are given in Section 4. In Section 5,
we report our experimental results which compare our AB flat and hierarchical
clustering schemes to their Bayesian counterparts. Section 6 concludes the paper.

2 The “Anti–Bayesian” Clustering Solution

2.1 Quantiloids

As alluded to earlier, the solution we propose is based on the concept of “Quan-
tiloids”. What then is a Quantiloid? The quantiloid associated with the real
number, θ, is, quite simply, for a uni-dimensional distribution, the unique point
where the Cumulative Distribution Function (CDF) has the value θ. This is the
unique point where the probability mass (i.e., the integral of the Probability
Density Function (PDF)) attains the value of θ. While this is an elementary
concept for uni-dimensional variables, the concept can be extended for multi-
dimensional vectors to be the hyper-surface under which the CDF has the value
θ. The goal of this paper is to develop quantiloid-based clustering algorithms
that work in an AB paradigm just as the centroid-based clustering algorithms
worked within the “Bayesian” paradigm. Indeed, rather than characterizing a
cluster by its centroid, we shall attempt to characterize it by its quantiloids,
which will then lead to the various AB clustering algorithms.

Although the concept of quantiloids is valid for multi-dimensional vectors,
the question of how they can be computed and represented is still open. We
shall thus restrict ourselves to uni-dimensional quantiloids by processing the
multi-dimensional distribution in terms of its uni-dimensional marginals.

2.2 “Anti–Bayesian” Classification Rules

We first summarize the AB classification rules designed and proven in [8], [9] and
[10] for uni-dimensional features. To do this, we use the notation that for the
jth dimension of the feature vector of class ωi, q

i,j
p is the quantiloid for the value

p, i.e., the position where the feature’s CDF has a value of p. In the case when
both the classes are characterized by only a single feature X, qip is ωi’s quantiloid

for the value p, i.e. more formally qip = Pr(X < p|X ∈ ωi). Observe that we
encounter the cases when the quantiloids overlap (i.e., q11−p < q2p) or when they
do not overlap (i.e., q11−p > q2p). Using this notation, the uni-dimensional AB
classification rules for the testing sample x∗ are:
Case 1: When the quantiloids are non-overlapping (see Figure 1 on the left):

If x∗ < q11−p ⇒ x∗ ∈ ω1;
If x∗ > q2p ⇒ x∗ ∈ ω2;
If (q11−p < x∗ < q2p) ∧ (‖x∗ − q11−p‖ < ‖x∗ − q2p‖)⇒ x∗ ∈ ω1;
If (q11−p < x∗ < q2p) ∧ (‖x∗ − q11−p‖ > ‖x∗ − q2p‖)⇒ x∗ ∈ ω2.

(1)

The reader will observe that the cases are mutually exclusive and that the clas-

sification border is:
q11−p+q2p

2 .



Case 2: When the quantiloids are overlapping (see Figure 1 on the right):

If x∗ < q2p ⇒ x∗ ∈ ω1;
If x∗ > q11−p ⇒ x∗ ∈ ω2;
If (q2p < x∗ < q11−p) ∧ (‖x∗ − q1p‖ < ‖x∗ − q21−p‖)⇒ x∗ ∈ ω1;
If (q2p < x∗ < q11−p) ∧ (‖x∗ − q1p‖ > ‖x∗ − q21−p‖)⇒ x∗ ∈ ω2.

(2)

In this case, the comparison is based on the distant quantiloids and so the

classification border is:
q1p+q21−p

2 .

Fig. 1. The AB scheme: (a) When the quantiloids are non-overlapping on the left, and
(b) When the quantiloids are overlapping on the right.

The reader will observe that the latter case (Case 2) is the one that uses the
so-called “Dual” scenario (please see [8], [9] and [10]), and where the extreme
quantiloids are used for the classification as opposed to the quantiloids that are
close to the discriminant. In the symmetric cases analyzed in [8], [9] and [10], it is
easy to see that the assignments in the so-called “Dual” scenario reduce to those
involving comparisons to the quantiloids that are close to the discriminant, but
where the assignment is to the class that is the more distant one. The decision
rule for this is given below.
Case 2 (Revised): When the quantiloids are overlapping (again see Figure 1
on the right):

If x∗ < q2p ⇒ x∗ ∈ ω1;
If x∗ > q11−p ⇒ x∗ ∈ ω2;
If (q2p < x∗ < q11−p) ∧ (‖x∗ − q2p‖ < ‖x∗ − q11−p‖)⇒ x∗ ∈ ω2;
If (q2p < x∗ < q11−p) ∧ (‖x∗ − q2p‖ > ‖x∗ − q11−p‖)⇒ x∗ ∈ ω1.

(3)

The difference between the two versions of Case 2 (Eq. (2) and (3)) lies in the
assignments made in the last two statements, where they, however, are done
to the non-adjacent classes. In this case, the comparison is based on the closer

quantiloids and so the classification border is:
q2p+q11−p

2 . To distinguish between
these two scenarios, we shall refer to this version of the “Dual” scenario as the
“Swapped Border” scenario.



The cases when the second distribution (for ω2) is to the left of the first (for
ω1), is shown in Figure 2. Observe that this is identical to the case of the figure
on the left of Figure 1, except that the identities of the classes is interchanged.

Fig. 2. This figure depicts the case of when the quantiloids do not overlap but when
second distribution (for ω2) is to the left of the first (for ω1).

There is one additional scenario, and that occurs when there is a huge overlap
between the distributions (See Figure 3). The classification decision rule to be
used is not that obvious because the classes are highly overlapping. Apart from
this, the classification of an unknown sample itself is not just non-obvious, it is
actually “meaningless”. This case never occurred in our experiments.

Fig. 3. This figure depicts the scenario when there is a huge overlap between the
distributions.

3 The AB Multi-dimensional Clustering

We now consider the extensions of the results in [1] to the multi-dimensional sce-
nario. To explain this, we state that in [1], as explained above, we used the con-
cept of the closest quantile corners in two dimensions. For the multi-dimensional
scenario, instead of measuring the distances between the centroids as as done in
the Bayesian paradigm, we measure the distances between the quantiloids



3.1 The Quantiloids Used

In the d-dimensional feature space, letQ1 =
[
Q1

1, Q
1
2, ..., Q

1
d

]
andQ2 =

[
Q2

1, Q
2
2, ..., Q

2
d

]
denote the quantiloids of the distributions (clusters) of f1(X) and f2(X) respec-
tively. Q1 and Q2 are computed as follows:

– In each dimension, we decide which distribution (cluster) is to the left and
which is to the right. To decide this, we exactly follow the principles explained
in [1].

– For each of the three cases defined in [1] the elements in the ith dimension
of the quantiloid vectors is computed as follows:
• Case 1: Here f1() is to the left of f2(). Here we set Q1

i = q1i,p and

Q2
i = q2i,1−p. In this case, we also have to consider the case when an

exception occurs, i.e., when there is a degree of overlap between them.
Indeed, if the f1() and f2() are close in the ith dimension such that
the quantiles overlap, i.e. that q1i,p is to the right of q2i,1−p, then the

point should be classified to ω1 if it is closer to q2i,1−p and to ω2 if it is

closer to q1i,p. This corresponds to “Swapped Border” scenario (Case 2
(Revised)) in Section 2.2. With such overlapping quantiles we therefore
set Q1

i = q2i,1−p and Q2
i = q1i,p.

• Case 2: Here f1() is to the right of f2() and, if the quantiles do not
overlap, we set Q1

i = q1i,1−p and Q2
i = q2i,p. If the quantiles overlap, we

switch the quantiles, as described above, to account for the “Swapped
Border” scenario as in Case 1.

• Case 3: Here we set Q1
i =

q1i,p+q1i,1−p

2 and Q2
i =

q2i,p+q2i,1−p

2 . This is the case
when the overlap is significant and the classification can be considered
to be “meaningless”. As mentioned earlier, this case occurs very rarely
in the domain of clustering.

The first two scenarios encountered above can be explained in the follow-
ing figures drawn in two dimensions. In each case, we have plotted the hyper-
rectangles defined by the quantiloids. If the overlap is small, the distances are
measured from the nearest quantiloids, as seen in Figure 4.

If the overlap is significant, the distances are measured from the fartherest
quantiloids (Case 2 of Section 2.2), or equivalently from the “Swapped Border”
(Case 2 (Revised)) quantiloids explained in Section 2.2 and shown in Figure 5.

3.2 The Distance Measures Used

Based on the definition of the quantiloids, we are now ready to define two types
of distances used in the framework of our AB clustering paradigm. The two types
of distance metrics we use are listed below:

– Data Point to Cluster (DPC) Distance: Once the quantiloids have been com-
puted following the procedure above, the points Z is classified to ω1 if Z is
closer, in terms of its Euclidean distance to Q1 than to Q2. Otherwise, Z is
classified to ω2. The DPC Distance has been used for flat clustering as well
as for Top-Down clustering.



Fig. 4. The case when the multi-dimensional distributions have little overlap. The
rectangles representing the quantiloids.

Fig. 5. The case when the multi-dimensional distributions have a large overlap. The
rectangles representing the quantiloids. Observe that in this case, we have utilized the
“Swapped Border” scenario to compute the quantiloids.

– Cluster to Cluster (CC) Distance The same notion can be used to character-
ize the distance between two clusters. The CC distance between two clusters
C1 and C2 is the Euclidean distance between their corresponding quantiloids



Q1 and Q2. The notion of the CC Distance is usually used for Bottom-Up
clustering techniques.

4 Principles of our Hierarchical Clustering

It is well-known that clustering can also be achieved hierarchically, where the
scheme is either of a Bottom-Up paradigm or of a Top-Down paradigm. These
traditional paradigms can be extended to our AB paradigm by merely modifying
the concept of the distances invoked, where in the AB scheme, the distance is
based on the concept of quantiloids. Thus, in essence, our algorithms follow the
classical hierarchical clustering philosophy [11] in all the relevant steps, except
that we consider the distances to the qunatiloids rather than the distances to
the centroids of the clusters. To explain these, we present the hierarchical AB
clustering methods. These are, precisely, the counter-parts of the classical hi-
erarchical clustering methods [11]. The only difference is the way by which we
specify the distances, i.e., whether we invoke the DPC or CC distance measures
based on the principles of the quantiloids rather than centroids.

4.1 Bottom-Up AB Clustering

A Bottom-Up clustering works with the principle that all the points are individu-
ally specified in the d-dimensional space. The points and then gathered together
to form clusters, to which the unclassified points are then subsequently added.
Thus, the steps of a Bottom-Up AB clustering are described below:

– Compute all pair-wise similarity distances between the different clusters and
populate the proximity matrix. The distance between the clusters is merely
the Euclidean distance between their corresponding quantiloids.

– Identify the closest clusters in terms of their similarity and merge them into a
single cluster. This results in updating the proximity matrix and decreasing
its order by unity.

– Repeat the above steps until we obtain the desired (pre-specified) number
of clusters.

4.2 Top-Down AB Clustering

A Top-Down clustering works with the principle that all the points are collec-
tively grouped into a single cluster in the d-dimensional space. The most distant
points are then separated to be the nuclei of two distinct clusters, and the points
closest to these are then included into their respective clusters. Again, in an AB
paradigm, the distances are measured in terms of the quantiloids rather than
the centroids. Thus, the steps involved in Top-Down AB clustering are described
below:

– Start at the top level with all the data points coalesced in a single cluster.
– Use a flat clustering scheme in order to split the cluster.



– Apply the procedure recursively until a termination condition on the depth
of the tree is reached or until each data point (singleton) ends up as its
own cluster (maximum depth). Usually, one invokes a termination condition
which involves the desired (pre-specified) number of clusters.

5 Experimental Results: “Anti–Bayesian” Clustering

In order to test the validity of the concepts proposed in this paper, we conducted
numerous experiments on synthetic data. In the interest of space and brevity,
we report the salient ones here.

In all our experiments, we used K = 3 clusters. All the synthetic data were
from multivariate Normal distributions, where we fixed d, the dimension of the
space, to be 4.

5.1 Data Generation

We shall first explain how the data points were generated for Normally-distributed
distributions. Let N(µk, Σk) denote a multivariate Normal distribution with an
expectation vector µk and a covariance matrix Σk, where k = 1, . . . ,K (where
we are dealing with K clusters). To generate the K distributions, it is crucial
that we determine how µk and Σk (k = 1, . . . ,K) are set.

In our experiments, the expectations, {µk} were uniformly spread on the
d−dimensional cube [0, D]d where D was chosen such that the clusters were
reasonably spread in space to their inter-class overlaps to be minimal. In the
experiments for which we report the results, we used D = 6.

The covariance matrices Σk for each cluster was generated by the following
procedure:

– Set the diagonal element to be equal to 1, i.e. the marginal variance was
equal to unity in all the dimensions;

– The correlation between each of the variables in the ith and jth dimensions
for i = 1, . . . , j < i was drawn uniformly from the interval [−ρmax, ρmax],
where ρmax < 1. In the experiments we used ρmax = 0.8;

– We checked if the generated covariance matrix was positive definite. If it was
not, we repeated the previous step, above3.

In what follows, we let n denote the number of samples generated from each
underlying cluster in the synthetic data. Thus, the total number of data points
generated were n ·K. In the experiments that we report, we used two values of
n, i.e., n = 20 and n = 100.

3 With ρmax = 0.8 and for d = 3 the matrix were almost always positive definite on
the very first attempt. For d = 5, on the average, about every third matrix that was
generated was positive definite.



5.2 Quantile and “Distance” Estimations

Since we constantly need to estimate the quantiloids, we opted to achieve this
using the corresponding quantiles in each of the projected dimensions. This was
done non-parametrically and parametrically as below:

– Non-parametrically (referred to in the columns titled “AB Non-parametric”
in the tables below): This was achieved in a manner similar to the work
presented in [1].

– Parametrically: This was achieved by assuming normality Here we estimated
the corresponding µ and σ and computed the respective quantiles from the
Normal distributions (referred to in the columns titled “AB Parametric” in
the tables).

The corresponding “distance” estimations for the experiments done were
achieved as below:

– Row titled “Bottom up”: These represent the classical version where all the
inter-point distances are computed. The distances were computed between
the centroids in case of the Bayesian clustering, and between the correspond-
ing quantiloids in the case of the AB clustering.

– Row titled “Bottom-Up Distance UD (uni-dimensional)”: In this case, we
sorted the data by the first dimension and repeatedly merged the closest
points in this dimension. This approach was a simplification of the general
approach where we should have considered all the dimensions. The present
approach required less computations. We expected that such a simplification
would result in a reduced accuracy as we only relied on the first dimension of
the data for executing the clustering, and this was, indeed, our experience.

– Row titled “Top-Down”: In this case, the points were repeatedly split in two
using k-means and the AB analog ([1]).

– Row titled “Top-Down Distance UD (uni-dimensional)”: In this case, the
data was sorted by the first dimension and repeatedly split in such a way
that the distance (Bayes or AB) between the clusters was as large as possible.
Again, this approach required less computations than the “Top-Down” one.
As before, it is reasonable to expect such a simplification to result in a
reduced accuracy. This was, indeed, the case.

5.3 Evaluation of Clustering Performance

The better a clustering algorithm performs, the better we expect that the fol-
lowing is satisfied: If two points are in the same clusters for the true clusters
described by the “state of nature’, they should ideally also be in the same clus-
ter in the results obtained from the clustering algorithm. Conversely, if two
points are not in the same clusters for the true clusters, they should not be in
the same cluster in the results of the clustering algorithm either. As a measure
of clustering performance, we measured the portion of pair of points satisfying
this agreement between the true clusters and the clusters from the algorithm.



5.4 Clustering performance

Tables 1 and 2 show results for the different clustering algorithms when n = 20
and n = 100, respectively. Comparing the non-parametric and parametric AB

Bayes AB Non-parametric AB Parametric

Flat clustering 0.098 (0.094, 0.103) 0.098 (0.094, 0.102) 0.099 (0.094, 0.103)
Bottom-Up 0.21 (0.201, 0.219) 0.277 (0.266, 0.288) 0.275 (0.265, 0.286)
Bottom-up Distance UD 0.423 (0.415, 0.43) 0.434 (0.427, 0.442) 0.443 (0.435, 0.45)
Top down 0.13 (0.125, 0.135) 0.132 (0.127, 0.137) 0.13 (0.125, 0.135)
Top-Down Distance UD 0.335 (0.329, 0.341) 0.369 (0.363, 0.375) 0.358 (0.352, 0.365)

Table 1. The clustering errors of the various methods with n = 20.

Bayes AB Non-parametric AB Parametric

Flat clustering 0.079 (0.064, 0.094) 0.089 (0.072, 0.107) 0.082 (0.065, 0.099)
Bottom-Up 0.247 (0.203, 0.291) 0.322 (0.268, 0.375) 0.369 (0.311, 0.428)
Bottom-up Distance UD 0.479 (0.451, 0.507) 0.481 (0.451, 0.512) 0.504 (0.476, 0.532)
Top-Down 0.108 (0.087, 0.129) 0.097 (0.08, 0.114) 0.126 (0.104, 0.148)
Top-Down Distance UD 0.346 (0.32, 0.372) 0.364 (0.342, 0.385) 0.334 (0.311, 0.358)

Table 2. The clustering errors of the various methods n = 100.

approaches, we do not observe any (significant) differences in the results show-
ing that both approaches perform about equally well. Comparing the AB ap-
proaches to the Bayesian approach we observe that the two methods perform
about equally well for all the methods except for the Bottom-Up approach in
which the Bayes perform a little better. We also observe that the uni-dimensional
approaches (rows three and five) perform far poorer than the other methods doc-
umenting that such a uni-dimensional approaches are not satisfactory. Overall
we see that the Anti-Bayesian paradigm performs very well in clustering data
and competitive to the Bayesian paradigm.

6 Conclusion

In this paper, we have considered an “Anti-Bayesian” (AB) paradigm for clus-
tering. All of the reported clustering algorithms (except the one reported in
[1]) operate on Bayesian principles, (where the Bayesian principle corresponds
to assigning the unlabelled samples to the cluster whose mean (or centroid) is
the closest). Our aim here has been to see if the “Anti-Bayesian” (AB) classifi-
cation philosophy, introduced recently by Oommen and his co-authors, can be
extended into the domain of clustering. The AB principle involves classification



based on the non-central quantiles of the distributions, which involves utilizing
the information resident in the outlier samples.

In this paper, we have extended the first-reported AB clustering methods pro-
posed in [1]. This paper has extended the results of [1] in many directions. Firstly,
we have generalized our previous AB clustering [1], initially proposed for han-
dling uni-dimensional and two-dimensional spaces, to arbitrary d-dimensional
spaces using their so-called “quantiloids”. Secondly, we have extended the AB
paradigm to consider how the clustering can be achieved in hierarchical ways,
where we have analyzed both the Top-Down and the Bottom-Up clustering
options. The AB paradigm can also use an anti-Näıve-Bayesian computational
mechanisms. The paper contains the results of extensive experimentation that
demonstrate that our clustering achieves results competitive to the state-of-the-
art flat, Top-Down and Bottom-Up clustering approaches.

In the future, we envisage an ambitious goal of devising an AB clustering
method based on applying majority voting on the decision made in each dimen-
sion of the quantile vector.
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