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Abstract

Individuals experiencing functional decline may often require some form of assistance

in order to reassume their activities of daily living. A common form of rehabilitation is

a stay at a short-term institution, yet readmissions to such care facilities often occur.

Home-based reablement has surfaced in Norway during the past ten years and aims

to assist the user in reaching their own activity goals through a self-committed and

intensive program, assisted by health care workers. The objective of this study is

inquiring into the patient �ows between home-nurse areas and short-term institutions in

southern Norway over the course of three years. We examine individual characteristics

such as gender, age, cohabitation and reablement participation, assessing the di�erences

in risk of admission and readmission based on these variables.

To achieve this, we use multiple-spell discrete-time survival analysis and estimate

several logistic regression models. Through our methods, we conclude that males,

the elderly and cohabitants all have higher likelihoods of admission and readmission to

short-term institutions than their respective counterparts. For reablement, participants

are at signi�cantly higher risk of admission, but a marginally lower risk of readmission,

compared to non-participants in a similar situation.
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1 Introduction

In this study we have examined the event histories of 4 496 individuals starting out in one of

11 di�erent home-nurse areas. Over the course of approximately three years, some of these

individuals have been admitted to, and released from, a short-term institution by the name

of Valhalla care center. While some individuals were never admitted at all, others traveled

frequently back and forth between the two states of existence.

The transition from one state to another was de�ned as the target event, and the time

elapsing between transitions constitute spells. Using some of the methods that together coin

the term survival analysis, we could attempt to recognize whether and when individuals

transition between states of existence.

In order to answer the question of why such transitions happen, we needed to know more

about the participants whose event histories we were examining. Fortunately, characteris-

tics such as the age, gender, living situation and history of receiving reablement services for

each person were available. Therefore, we set course to discern whether we could meaning-

fully explain the event histories of individuals by examining the relationship between the

characteristic variables and the estimated hazard probability of event occurrence.

The investigation of whether, when and why such events occur has been increasingly

relevant for policy makers. Reablement services have been at the forefront of this spotlight,

and may be de�ned as time-limited, intensive and goal oriented, home-based rehabilitation

targeted towards individuals with, or being at risk of, functional decline.(Forland & Skum-

snes, 2016, p. 11) Reablement is often focused around commitment and self-performance

from the participant in order to avoid over reliance on help from health care workers.(Forland

& Skumsnes, 2016; Hverdagsmestring og hverdagsrehabilitering , 2012)

Reablement is a fairly new service in Norway, and the e�ectiveness of reablement services

has been the focus of many practitioners and academics, yet the results have been mixed.

While some point to positive results(Tuntland, Aaslund, Espehaug, Førland, & Kjeken, 2015;

Burton, Lewin, & Boldy, 2015), others are more skeptical(Faeo, Petersen, & Boge, 2016;

Glendinning et al., 2010). Still, the general consensus is that more knowledge and experience

is needed(Forland & Skumsnes, 2016, pp. 10, 67), which has been a great motivation to
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perform this study.

The main aim of this study was inquiring into the di�erences in risk pro�les for gender,

age, cohabitation and reablement participation. For many of these characteristics there

exists temporal and locational dynamics, and thus the di�erence in risk depends on time

and place. In general, we �nd that being male, of old age or living in cohabitation are

generally associated with higher risks of admission to short-term institutions.

For those that have previously received reablement services, we �nd that they are gen-

erally at higher risk of admission to, and �rst-time release from, short-term institutions

compared to non-participants. In the case of readmission and repeat-visit release, these

di�erentials in risk pro�les are opposite of those for initial spells.

There are some individuals that are particularly worthy of our appreciation for their great

e�ort, patience, guidance and support in the fruition of this paper. We would like to thank

our supervisor, Jochen Jungeilges, for the constructive and inspiring conversations that we

have had together over the course of the past months.

We would also like to thank our assisting supervisor, Tore Bersvendsen, for sharing his

idea to write this very paper, his thoughtful suggestions of improvements to our work and

for putting us in contact with the municipality of Kristiansand such that we could be given

access to the data set we are using.

This would not have been possible without the data set that we were given access to,

and therefore we send our deepest regards to the municipality of Kristiansand for allowing

us to have the data set of patient �ows at our disposal.

Finally, we were inspired and motivated by an article written by John B. Willett and

Judith D. Singer named "It's Déjà Vu All Over Again: Using Multiple-Spell Discrete-Time

Survival Analysis" in 1995, see (Willett & Singer, 1995). This article has been at the very

core of building our empirical approach, and has greatly shaped our outlook to the problem

at hand.

The structure of this thesis aims at encompassing all relevant parts of performing a

multiple-spell discrete-time survival analysis. We begin with an examination of previous

and relevant literature before proceeding to the foundations of survival analysis, the usage

of logistic regression and maximum likelihood estimation. Following this, a section about
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comparing alternative models and assessing model adequacy is presented.

Going from theory to practical application, we take the reader through our model se-

lection process and the necessary steps in order to prepare for thorough and meaningful

interpretation. Before concluding, we endeavor to explain and present the resulting �ndings

from the chosen models, discussing them in the light of previous research and bringing at-

tention to some potential issues with our approach. Finally, we conclude with our principal

�ndings and suggest possibilities for further research e�orts.

2 Literature review

The literature presented in this review was selected based on relevancy to our own study. It

includes research in a similar setting related to our own objectives, and articles that serve

as methodological guidelines for performing multiple-spell discrete-time survival analysis.

In �Do hospital Length of stay and sta�ng ratio a�ect elderly patients' risk of readmis-

sion? A nation-wide study of Norwegian hospitals�, (Heggestad, 2002) uses Cox proportional

hazard regression analysis and Kaplan-Meier survival curves in order to examine the rela-

tionship between length of stay and rate of early, de�ned as within 30 days, readmission

using data from 59 hospitals for 113 055 patients. The independent variables used are age,

gender, type of admission, type of treatment, discharge destination and a dummy variable

for whether the patient lived near the hospital or not.

The research concluded that when average length of stay is relatively short, the rate of

early readmission increases signi�cantly but such e�ects can be compensated for by increased

sta�ng. In addition, it was found that the predictive factors were time dependent as hospital-

speci�c variables were less impactful for late readmissions. When it came down to the

main e�ect of age, the study found that patients older than 80 years had higher odds for

readmission compared to those between 67-80. Male patients were found to have higher odds

for readmission compared to their female counterparts.

In �Operating conditions of psychiatric hospitals and early readmission � e�ects of high

patient turnover� by (Heggestad, 2001) the objective was to study the relationship between

hospital's operating conditions and the risk of early readmission. She uses Cox regression
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analysis adjusting for clustering e�ects with data from 20 hospitals with 5520 patients. It

is concluded that high patient turnover and high bed-occupancy rates are associated with a

higher risk of early readmission. Older patients were found to have lower odds for readmission

compared to those below the age of 45. The gender and marital status of patients were not

found to have statistical signi�cance with regards to readmission.

�Hospital readmissions among elderly patients� by Bjorvatn (Bjorvatn, 2013) investigates

determinants of hospital readmission in public Norwegian hospitals from 1999 to 2006. She

uses probit and instrumental variable regression models for the analysis to identify the top

30 diagnostic related groups for readmission among elderly, 60 years or older, on a sample

of around one million observations. In her data male participants were found to have higher

odds for readmission when compared to female patients.

�Hverdagsrehabilitering� by Forland and Skumsnes(Forland & Skumsnes, 2016) is a re-

view article that summarizes the current knowledge about rehabilitation produced by the

center for care-research for the Norwegian ministry of health and care services. They de�ne

the home-based reablement program as a time-limited, intensive, and optimized rehabilita-

tion program taking place in the participants home and local home-nurse area, targeting

elderly with varying degrees of functional decline. Their collection of previous studies in the

�eld of reablement found limited empirical evidence for improvements in activities of daily

living (ADL). For the e�ect of reablement in their collection of studies done with di�erent

tests for physical function and activity level, no substantial evidence was found.

�Evidence for the long term cost e�ectiveness of home care reablement programs� by

Lewin, Alfonso and Alan(Lewin, Alfonso, & Alan, 2013) found individuals that received

reablement-services in the state of Western Australia were less likely to use home care services

over the next three years compared to elderly who had received traditional home care services.

They saw a reduction in need for ongoing support and lower costs associated with those

elderly that had undergone one of the two reablement-programs in a �ve-year follow-up

study period. Their adjusted prevalence ratio for home care service needs accounted for

age, gender, living alone, having a personal assistant, ADL dependency level and having

previously received home care service. They found the reablement-programs were more

e�cient in reducing the need for conventional home care services for: those 78 years and

10



older compared to those below that age, males compared to females and for those living with

family compared to those living alone.

�Predicting nursing home-admissions and length of stay: a duration analysis� by Liu,

Coughlin, McBride (Liu, Coughlin, & Mcbride, 1991) considers the challenge of predicting

characteristics of who enters nursing-homes, their length of stay and risk of readmission.

Hazard models are developed to examine travel from living in a community to a nursing-

home and vice versa, the risk of death while living in the community or at a nursing-home,

and adding a wide range of patient characteristics as possible predictors to the models.

Some of their results include that being older, living alone, having cognitive impairments,

higher levels of ADL impairments, receiving formal or informal care were associated with

shorter durations of living in a community before being admitted to a nursing home. Being

a homeowner or female were associated with longer durations in the community. As for

traveling from nursing-homes to the community they concluded that patients with cognitive

impairments are associated with longer stays at a nursing-home before discharge while high

availability of home care services were associated with a shorter stay at nursing-homes before

discharge.

�It's Dèjá Vu all over again: using multiple spell discrete-time survival analysis� by

John B. Willett and Judith D. Singer (Willett & Singer, 1995) con�icts and solves the

problem that vast amounts of the scholarship and technical work regarding survival methods

are centered around single non-repeatable events under continuous time with proportional-

hazard assumption and time-invariant predictors. As many phenomena experienced through

a lifetime occur in the form of spells or episodes, such as unemployment spells, pregnancy

or sick leaves and so forth, methods used for single events might not be adequate. Time

is often discretely measured, proportional-hazard assumptions are not met, and predictor

values are varying with time. All of this leads to the need for multiple-spell discrete-time

survival analysis to analyze repeated occurrence of a single event and sequential occurrences

of separate types of events. The advantages of this approach are both applicability to many

unique problems, the inclusiveness towards to time-invariant and time-varying predictors, no

need to invoke proportional-hazard assumptions and the fact that standard logistic regression

methods can be applied.
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"Methodological Issues in the design of longitudinal research: Principles and recommen-

dations for a Quantitative Study of teachers Careers" by Singer and Willett discusses the

methodological features and challenges in longitudinal studies of teachers careers. They

thereby create six key principles for research design. The �rst principle and main focus is

that of making sure that one collects truly longitudinal data. Secondly, they consider the

importance of viewing time both as an outcome and an explanatory variable. Thirdly, the

signi�cance of collecting data on both time-varying and time-invariant measures. Fourth,

the principle of collecting data prospectively. Fifth, collecting data from multiple base pe-

riods and �nally, from all levels of the organizational hierarchy and underlying institutions.

In �nding an optimal research design when employing longitudinal data, Singer and Willett

inform about several possible pitfalls and potential solutions to increase the usefulness and

accuracy of the research undertaken. They also outline major methodological issues relevant

to the design of large scale longitudinal research on teachers career recidivism.(Singer &

Willett, 1996, p. 267-269)

�Discrete-time Methods for the Analysis of Event Histories� by Paul D. Allison (Allison,

1982) concerns and elaborates on the problems surrounding censoring and time-varying ex-

planatory variables in traditional longitudinal data analysis techniques, such as serious bias

or loss of information. As praised and argued for by Willett and Singer in their 1995 pa-

per regarding multiple spell discrete-time analysis, due to the limitations of studies in the

social sciences, whereby the information about events mostly fall within the study-period in

discrete time units that are di�cult to measure continuously, one will often conclude that

the use of discrete-time methods is optimal. Breaking up everyone's event history into par-

titions of discrete time units, in which the event either occurred or failed to appear, one

can obtain estimators for binary regression models, as for example the ML estimators. This

approach is highly transferable to a world where one has repeated events or a vast array of

events, as most histories of groups or individuals containing event history have both relevant

explanatory variables, interaction terms and competing risks.
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3 Data

3.1 Origins of the data set

The data-set used for this thesis was provided by the municipality of Kristiansand. In

agreement with the municipality, this data set was only given temporarily and with strict

restrictions against sharing the data set with unauthorized third parties. Therefore, the data

set is not available in the appendix and access will not be granted upon request.

3.2 The data set and data cleaning procedure

For a complete description of the original data set and the data cleaning procedure, please

see Subsection 8.2 and 8.3 in the appendix, respectively. In short, the changes that were

performed in order to accommodate the analysis are found in Table 1.

In the data set

Description Before After

Observations 421 693 320 341

Individuals 5 608 4 496

Locations 6 2

Table 1: A description of changes in observations, number of individuals and states of existence

before and after data cleaning.

The censoring mechanism in a survival analysis renders the usual descriptive statistics

inappropriate, and necessitates that other statistics are utilized. We have therefore moved the

section of descriptive statistics to subsection 4.1.5. Prior to this, we present all components

that are necessary in order to interpret them.
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4 Empirical approach

4.1 Survival Analysis

4.1.1 What is survival analysis?

The term survival analysis is not always easily explained because it is not by any means

contained to a single step-wise procedure, rather it is a branch of statistics for the analysis

of a particular type of data which may be done in a wide spectrum of approaches. Survival

analysis and the analysis of survival data is a data analytic approach and is, generally,

�a collection of statistical procedures for data analysis for which the outcome variable of

interest is time until an event occurs.�(Kleinbaum & Klein, 2012, p. 4) Similarly, survival

analysis may be known as duration modeling, or modeling of duration data, because we are

interested in the time that elapses from the beginning of some event until its end or until

the measurement is taken, which may precede termination.(Greene, 2012, p. 902)

Alternatively, one may call such data transition data because what is recorded are

the sequences of states that were occupied, the times at which movements between them

occurred and we are therefore inherently interested in the transition from one state to

another.(Lancaster, 1990, p. 3) Some authors have also called this form of data event history

data and de�ned it as �a record of when events occurred to a sample of individuals.�(Tuma

& Hannan, 1979, p. 211) Yet another name for the data which survival analysis utilizes

is failure time data. This is because the major applications are often biomedical studies

and industrial life testing, and the occurrence of the event the researchers are interested in

is often referred to as a failure.(Kalb�eisch & Prentice, 2002, p. 1) In general, the use of

survival analysis should be considered whenever one is concerned with describing whether

or when events occur.(Singer & Willett, 2003, p. 306)

When deciding if survival analysis is the correct approach to the task at hand one should

conduct the �whether� and �when� test. If the interest lies in the question of �whether� events

occur and if they do, �when� they occur, then survival analysis is most likely an appropriate

approach.(Singer & Willett, 2003, p. 306) When one has decided to conduct a survival

analysis, three essential methodological features must be clearly de�ned before analysis can
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begin. These are the target event, the beginning of time and a metric for clocking time.

The target event is the occurrence that we are interested in, representing a transition

from one state to another, the requirements being that the states are mutually exclusive and

exhaustive. A �state� is simply a position a person exists in, for instance being employed or

unemployed are two mutually exclusive states of existence that a person is in at any time

by default. The requirement of mutual exclusiveness is that only one state is possible at

any given time, and exhaustive implies that the possible states are all covered and show a

complete representation of reality, as one cannot be in a third state of employment outside

these two broad all-encompassing states of employment.

Some states may only be occupied once, while others may be repeatedly occupied. For

instance, death is a non-repeatable event where the states of existence are being alive or dead.

On the other hand, marriage is a repeatable event whose states of existence are married or

unmarried. For repeatable events, one may �nd it appropriate to utilize the term spell,

which refers to a single transition into, or out of, one of a series of repeatable states.(Singer

& Willett, 2003, p. 311) For instance, a person may experience several employment spells

during their lifetime, each spell referring to the length of time between being hired and

leaving a job.

The beginning of time is the initial starting point where all units in the entire population

occupy a single state. No individual has experienced the target event yet, but all are at risk

of experiencing it. The term at risk refers to the possibility of event occurrence, and we use

the term event time for the duration between the beginning of time and the occurrence of

the target event. How one chooses to de�ne the beginning of time depends on the type of

study being conducted, but a wide variety of choices are available such as birth, release from

hospital or it may be entirely arbitrary when no standard measure is deemed appropriate.

The metric for clocking time must be a form of time scale which allows to count periods

in a meaningful way during the analysis. There are many ways of de�ning this time scale,

including but not limiting to, seconds, days, weeks, months, quarters, semesters or years.

We usually distinguish between continuous and discrete time based on how short or long the

intervals are, with the shortest and most precise intervals being continuous and their longer

counterpart being discrete. One should strive to record the data in the most precise and
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short intervals attainable with respect to cost and convenience, yet this is highly dependent

on the subject matter. For instance, the price of a stock may be recorded every second with

little to no cost, while the same cannot be said for recording the current state of health for

patients that have undergone surgery at a hospital.

4.1.2 Censoring

Although the term censored refers to any individual with an unknown event time, we distin-

guish between several types of censoring in survival analysis. First, we di�erentiate between

informative and non-informative censoring and then distinguish types of censoring namely

left, right and interval censoring. We begin by separating informative and non-informative

censoring. As an example, let us look upon a likely study on recovering addicts where the

event is a relapse into old habits. If the recovering addicts do not fail to report to their

case-workers during the study up and until the end of said study, the censoring is said to be

non-informative. All these participants are representative of those who would have remained

in the study had not data collection ended at that pre-planned date and censoring happening

does not give us any information or prediction on what happened next with regards to the

target event.

However, if the units of observation withdraw or are lost to follow-up one might suspect

this to be caused by the units getting the target event, here relapse, rendering our censoring

mechanism informative. Participants who are censored are then likely to either have expe-

rienced the target event, and the uncensored individuals will then di�er greatly from the

censored individuals. The validity of survival analysis is largely dependent on the assump-

tion that the censoring mechanisms are non-informative and that attrition and withdrawal

is not due to systematic events.(Singer & Willett, 2003, p. 318)

It is usually such that censoring occurs rather than truncation1, and the most usual

reasons for censoring are the study ending before the unit has the event of interest, that

the unit is lost to follow-up during the study or that the unit withdraws from the study

before its ends.(Kleinbaum & Klein, 2012, p. 6) There are also a few di�erent versions of

1We will be dealing with censoring, but a full explanation of truncation is found in the appendix, see

Subsection 8.5.
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censoring depending on the time frame in which information is lacking. The most common

form of censoring is right-censoring in which the true survival time is greater to or equal the

observed time. If a person does not experience an event, withdraws before the end of the

study or is lost to follow-up then that persons survival time is at least the observed one and

the data is right-censored. In other words, the units survival time extends beyond the lower

bound of our time horizon.

Left-censoring occurs if survival time is less than or equal to the observed survival time

and may occur if we have a unit that has already experienced the event, but we are not

sure about when. This may be applicable to a situation where we follow pregnant women

and the event is delivery of the baby, but at the �rst check-in one of the women already

had their child without knowing exactly when it happened, and the data is thus said to

be left-censored. A third form of censoring called interval-censoring incorporates both left

and right-censoring. Take again the example with the study of pregnant women and assume

that one woman had their child between two check-ins without knowing exactly when it

happened. We then know that the event occurred between the last and current check-in, but

not exactly when, and the data is thus interval-censored.(Kleinbaum & Klein, 2012, p. 8)

The occurrence of censoring a�ects statistical analysis and the interpretation of standard

descriptive methods of data in several ways which must be dealt with appropriately. For

instance, units who were right-censored at the end of the study cannot be assumed to have

had the target event at that time. This is because we know for a fact that non-informative

censoring tells us about event nonoccurrence rather than occurrence. Statisticians therefore

use the term �censored event times� instead of �event times� for these units because they

have yet to experience the target event.(Singer & Willett, 2003, p. 321) This unfortunately

a�ects the distribution of the data and renders the usual descriptive statistics such as the

mean, standard deviation, skewness and kurtosis inappropriate.

There have been attempts to overcome the issue that censoring has in several di�erent

ways. Some researchers have chosen to exclude observational units with censored event

times. Others have tried to impute the event time, sometimes assuming that the censored

event time is equal to the event time itself. The �rst approach may be unwanted because

it excludes data that may otherwise be of great importance to the analysis. The second
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approach may be inappropriate because it wrongly assumes event occurrence when we know

for a fact that censored event times state event nonoccurrence.

Some researchers have used a third method of dichotomizing the event histories at a

point in time and then asking whether the target event has occurred by that time. A

simpli�cation such as dichotomizing the data in such a way unfortunately implies a large

cost for the analysis for many reasons, many of which are explained in (Singer & Willett,

2003, p. 323). The alternative approach suggested by the authors of this book is using new

methods of describing survival data, namely the use of life tables, the survivor function and

the hazard function instead.

4.1.3 Descriptive statistics for survival analysis

The main tool for summarizing the sample distribution of event occurrence is the life

table.(Singer & Willett, 2003, p. 326) Such tables will span from the beginning of time

when all the units in the sample were at risk of the target event and until the end of the

data collection for the study. All life tables will have a few reoccurring columns, in which

the �rst is the column of rows indexing the time intervals for the data set. Please note that

each interval includes the beginning value and excludes the ending value such that the �rst

interval may be written as [1,2) because the interval spans from, and including, period one

and until, but not including, period two. Thereafter, the columns show the number of indi-

viduals that entered the current interval, those who had the target event during the interval

and those who were censored at the end of the interval.

Individuals that entered the current interval are known as being eligible to experience the

target event and are part of the risk set for that time period. The risk set is an important

concept and has the features of being able to decrease due to either event occurrence or

censoring and additionally the risk set has the feature of being irreversible. This implies

that the risk set for the next period is always the risk set for the previous period after

subtracting all units that either had the target event of were censored for various reasons,

and these units are never reintroduced back into the risk set. Together with the assumption

of non-informative censoring this means the risk set is at any time representative of all

individual units who would have been at risk of event occurrence for any given interval even
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if there was no censoring. This allows researchers to not only analyze the occurrence of the

target event among those in the risk set, yet also generalize the obtained results to the entire

population.(Singer & Willett, 2003, p. 329)

The hazard function, survivor function and the median lifetime are three essential ways

of statistically summarizing the information conveyed by a life table. The hazard function

is a quantity used to assess the unique risk of event occurrence in each discrete time period,

also known as the hazard. The survivor function also describes the distribution of event

occurrence over time, but unlike the hazard function, the survivor function cumulates the

period-by-period risks of event nonoccurrence to assess the probability that a randomly

selected will not experience the target event. The median lifetime identi�es the center of the

distribution, which would have been the mean in the case of no censoring and is therefore the

main way to estimate the central tendency in the data.(Singer & Willett, 2003, p. 330-337)

The discrete-time hazard is de�ned as the �conditional probability that individual i will

experience the event in time period k, given that he or she did not experience it in any earlier

time period.�(Singer & Willett, 2003, p. 330) The hazard is denoted by Equation 1 and the

set of the discrete-time hazard probabilities expressed as a function of time, labeled h(tik),

is known as the population discrete-time hazard function.2 Note the conditionality portion

of the hazard function because it brings forth an essential implication; The conditionality

implies that the hazard represents the probability of event occurrence for those units that

are eligible to experience the event in that speci�c interval, or in other words, the units in

the risk set. Therefore, one may refer to the hazard as the unique risk of event occurrence

for a speci�c unit in a given period.

h(tik) = Pr[Ti = k|Ti ≥ k] (1)

The discrete-time hazard has two important features and may be used for several appli-

cations. The main features of the discrete-time hazard is that the interpretation is of a

probability. First, this implies that the hazard rate will always be between zero and unity.

Second, we interpret hazards closer to unity as having greater risk of occurrence while es-

timates of hazard closer to zero as unlikely to occur. To show this one may display the

2Note that this is the discrete-time hazard function and that the continuous-time hazard function di�ers

from this one. For the continuous-time hazard function, see (Greene, 2012, p. 904).
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estimate of a discrete-time hazard by a function as given in Equation 2 where the estimate

of the hazard function is the number of events in period k divided by the number of units in

the risk set in the same period. A useful way of examining the hazard function may be done

graphically by plotting the estimated hazard function on the y-axis against time. This allows

researchers to identify especially risky time periods and the shape of the hazard function.

The shape will be able to determine whether the hazard is increasing, decreasing or staying

constant across time.(Singer & Willett, 2003, p. 333)

ĥ(tk) =
n eventsk
n at riskk

(2)

The survivor function, which is sometimes also called the survival function, assesses the

probability that a randomly selected individual will not experience the event.(Singer & Wil-

lett, 2003, p. 334) By this it is understood that the survivor function focuses solely on event

nonoccurrence rather than event occurrence as in the case of the hazard function. The sur-

vivor function in discrete-time is given by Equation 3 and is the probability that unit i will

not survive, that is, experience the target event, past time period k.(Kalb�eisch & Prentice,

2002, p. 6) The same implication follows here as in the conditionality segment of the hazard

function in that this individual has been retained in the risk set until period k, or in other

words not experienced the event in any earlier period.3

S(tik) = Pr[Ti > k] (3)

The survivor function has the property of always being equal to unity at the beginning

of time for the study as all the participants have yet to experience the target event. As

units who are censored or experience the event are not reintroduced to the risk set, the

survival function is always decreasing over time. The estimated survivor function is then the

proportion of those remaining in the risk set at period k of the study population, shown in

Equation 4.

Ŝ(tk) =
n who have not experienced the event by the end of time period k

n in the data set
(4)

3Some authors dealing exclusively with continuous time, for instance (Greene, 2012, p. 903) use a

de�nition for the survival function of �the probability that the spell is of length at least t� given by equation

S(t) = Pr(T ≥ t).
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As for the relationship and interaction between the hazard and survivor function, there is �a

clearly de�ned relationship between the two�.(Kleinbaum & Klein, 2012, p. 15) Whenever

the hazard is high, the survivor function will decrease quickly in that time period and vice

versa. One may derive the survivor function for any period by using the survivor function

for the previous period multiplied by one minus the hazard probability for that period as

shown in Equation 5. By repeated substitution of this equation it is possible to show that

�each years estimated survival probability is the successive product of the complement of

the estimated hazard probabilities across the current and all previous periods.�(Singer &

Willett, 2003, p. 337)

Ŝ(tk) = Ŝ(tk−1)[1− ĥ(tk)] (5)

The median lifetime takes the place of what would normally be the sample mean in a study

with no censoring. Formally, the estimated median lifetime �identi�es that value of T for

which the value of the estimated survivor function is 0.5�.(Singer & Willett, 2003, p. 337) In

other words, that is the time we estimate that half of the study sample have experienced the

target event. The equation for the estimated median lifetime is given in Equation 6 where

tm is the time interval in which the survivor function is just above 0.5, Ŝ(tm) the value of the

estimated survival function in that time period and Ŝ(tm+1) the value of the survivor function

in the next interval in which it has fallen just below 0.5. In some cases, the survivor function

may not reach 0.5 even by the end of the study, which simply means that less than half of

the population is expected to experience the event by the last period in the life table. One

may present cumulative survival rates instead, which are values of the estimated survivor

function after pre-speci�ed lengths of time.(Singer & Willett, 2003, p. 338)

tm +

[
Ŝ(tm)− 0.5

Ŝ(tm)− Ŝ(tm+1)

]
((tm + 1)− tm) (6)

4.1.4 Shortfall and empty cells

There is a structural and sampling shortfall when dealing with data on event occurrence.

(Willett & Singer, 1995, p. 52) This implies that as spells and periods increase, there is less

data that can be used for analysis. The structural shortfall arises because the life time of

the study is �xed, and there is therefore increasingly limited time to describe spells. For
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instance, in a study with a total of 10 periods, there is a maximum of 10 periods to describe a

�rst spell, a maximum of 9 periods of describe a second spell, and so on. The analytic impact

of structural shortfall is like that of structural zeros in contingency table analysis.(Willett &

Singer, 1995, p. 52)

The sampling shortfall becomes evident from the fact that the risk set shrinks because of

event occurrence and censoring, see Figure 1 and Table 15. Fewer individuals experience later

periods of any given spell, and fewer experience later spells as well.(Willett & Singer, 1995,

p. 52) By looking at the �rst �ve spells situated in a HNA we understand that, as the spells

increase, the periods within each spell decrease. This is suggested by the horizontal axis

denoting time, which shortens drastically between the �rst and ninth spell. These shortfalls

imply that one should be wary of empty cells when �tting statistical models of hazard and

showing care in interpreting estimated hazard plots as observed di�erences may simply be

due to sampling variation.(Willett & Singer, 1995, p. 53)

Tables usually contain some cells where ni = 0, which are referred to as empty cells, and

these are categorized into two types, namely structural and sampling zeros. The di�erence

between a structural and sampling zero or an empty cell lies in its expected value. First,

a sampling zero is an empty cell with expected value greater than zero. As the number

of observations in the sample increases, we expect this cell to eventually be non-zero. On

the other hand, a structural zero is an empty cell that will have expected value equal to

zero, regardless of the sample size. Structural zeros are not really part of the data, and

therefore do not contribute to the likelihood function or model �tting and any contingency

tables containing structural zeros are known as incomplete tables.(Agresti, 2013, p. 405)

The sampling zeros are part of the data and are often the cause of the nonexistence of

the maximum likelihood estimator. This is because certain patterns of zero counts in a

table make it impossible to maximize the log likelihood function by any vector of �nite

form.(Fienberg & Rinaldo, 2012, p. 997)

4.1.5 Descriptive statistics applied to data

Now that we have introduced the hazard function, survivor function and the median lifetime,

we are ready to apply them to our data. Due to the large number of spells, we only plot
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the hazard and survivor curves for the ten �rst spells in our sample. The sample hazard

functions for the �rst 10 spells are shown in Figure 1, the sample survival functions in Figure

2 and the estimated median lifetimes for each of the �rst ten spells are presented in Table

2. After each �gure we shortly describe the main characteristics.

Figure 1: Sample hazard functions for the �rst 10 spells.

The top row represents spells in home-nurse areas (1, 3, 5, 7, 9).

The bottom row represents spells at short-term institutions (2, 4, 6, 8, 10).

For spells in a HNA (top row), the hazard is large initially and decreases over time. This

indicates that the risk of admission, or readmission, is largest in the �rst few periods of any

given spell. For spells at a STI (bottom row), the hazard peaks around the third period. This

indicates that the likelihood of being released after three weeks at a short-term institution

is comparatively high to other periods. For some spells, hazard increases drastically towards

the end of the spell. This is clear for all spells in the top row except the �rst, and for the

two �rst spells in the bottom row.4 It is also possible to examine the ranges of the x-axes to

get an impression of the maximum length of each spell. For instance, the length of stay for

the �rst �ve spells at a short-term institution is rarely much longer than 25 weeks.

4A possible explanation is the sampling shortfall, which causes any event occurrence in a small risk set

to heavily in�uence the estimated hazard, as implicated by Equation 2.
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Figure 2: Sample survivor functions for the �rst 10 spells.

Spells in home-nurse areas (1, 3, 5, 7, 9) are in the top row.

Spells at short-term institutions (2, 4, 6, 8, 10) are in the bottom row.

The red line represents the median lifetime.

For the top row, the sample survivor function drops o� slowly in the �rst spell, reaching

the median lifetime by period 134. In the subsequent spell at a HNA, the median lifetime is

reduced drastically before beginning to stabilize around three to four weeks for spells 7 and 9.

On the other hand, the sample survivor functions for the bottom row are nearly indiscernible

in shape. An interesting observation is that the median lifetime in- and out-of-institution

spells seem to converge. If this pattern continues beyond the �rst ten spells, it indicates

that individuals with many readmissions tend to spend approximately as much time inside

as outside of the institution.
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Spell Median

1 133.7

2 3.5

3 29.2

4 3.0

5 8.0

6 2.9

7 3.9

8 2.7

9 2.6

10 2.9

Table 2: Sample median lifetime for the �rst ten spells. These values are where the red line and

sample survivor functions intersect in Figure 2.

4.2 Logistic regression

Any data analysis that concerns itself with describing the relationship between a dependent

variable and one or several explanatory variables, might consider using a logistic regression

model. Contrary to linear regression, the logistic regression model has an dependent variable

that is binary or dichotomous.(Hosmer, Lemeshow, & Sturdivant, 2013, p. 1) Both the

logit and probit model approaches uses functions that transforms the regression models to

a bound range between zero and one for a snakelike, S-shaped appearance of the logistic

function rather than the more unbelievable straight line from a linear model, see Equation

7.(Brooks, 2008, p. 514) The asymptotes of 0 and 1 in the logistic model means that even

though the x-axis values might fall to in�nitesimally small or large values, they will stay

bounded in the range. The logistic model is due to its non-linear nature not estimable by

ordinary least squares and thus require something like maximum likelihood.(Brooks, 2008,

p. 514)

f(z) =
1

1 + e−z
, f(−∞) = 0 f(+∞) = 1 (7)

Many distribution functions have been suggested for usage when dealing with dichotomous

outcome variables. Two advantages when choosing the logistic distribution are the mathe-

matical �exibility which gives great ease of usage and secondly and most importantly, the
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model parameters provides meaningful estimates.(Hosmer et al., 2013, p. 7) With a dichoto-

mous outcome variable, the conditional mean must be greater than or equal to zero and also

less than or equal to one 0 ≤ E(Y | x) ≤ 1. When the logistic distribution is used, one can

use the quantity π(x) = E(Y | x) to represent the conditional mean of Y given x.(Hosmer

et al., 2013, p. 7)

There are several approaches to the distribution of error term in linear and logistic regres-

sions. This section follows the arguments made in Hosmer and Lemeshow's book �Applied

Logistic Regression�.(Hosmer et al., 2013, p. 7) An important distinction between linear and

logistic regression models is the conditional distribution of the dependent variable. In a linear

model, the observation of the dependent variable can be expressed as Y = E(Y | x)+ε. The

term ε is called the error term and represents an observations conditional mean deviation.

Usually, when dealing with non-binary dependent variables ε follows a normal distribution

with mean zero and a variable that is constant across di�erent values of the independent

variables. When we live in models with dichotomous dependent variables, this harmony is

broken. We can express said dependent variable as Y = π(x) + ε. The error term ε can

here have two possible values, for Y = 1 the corresponding error term is given by 1 − π(x)

with the probability π(x). If Y = 0, the error term is −π(x) with probability 1 − π(x).

This means that the error term has a distribution with a mean of zero and a variance of

π(x)[1− π(x)], from this follows the conclusion that the dependent variable has a binomial

distribution with a probability π(x). We can surmise that the binomial and not the normal

distribution describes the distribution of errors, therefore being the distribution to use when

living in the logistic regression model analysis universe.

4.2.1 The Logistic Model

The framework for the logistic model approach consists of the observed independent variables

on the subject that we can use in the exponent in the logistic model to denote the conditional

probability statement for the event occurring during the given time period, as shown in

Equation 8, and De�nition 1.(Kleinbaum & Klein, 2010, p. 8)

De�nition 1 (Logistic model) The model is de�ned as logistic if the expression for the

probability of developing the disease, given the Xs, is 1 over 1 plus the e to minus the quantity

26



α plus the sum from i equals 1 to I of the βi times Xi.

P(X) =
1

1 + e−(α+
∑
βiXi)

(8)

4.2.2 Logistic link function

Specifying a model for a discrete-time hazard based on the logistic link function with the

dichotomous event indicator can be a good choice. This recommendation as formulated

in Equation 9 is according to the advice of Cox and Snell as Willett and Singer pointed

out.(Willett & Singer, 1995, p. 51)

E(Yijk = 1) = hij(k) =
1

1 + e−(COVARIATES, SPELL, PERIOD)
(9)

4.2.3 Odds ratio

The odds for something happening to an individual is the likelihood for it happening divided

by the likelihood of it not occurring. The formula for the odds will therefore simply be the

probability divided by 1 minus the probability as seen in Equation 10.(Kleinbaum & Klein,

2010, p. 18)

odds =
P

1− P
(10)

Following this line of thought the odds ratio is the ratio of two odds compared to each other.

This indicates that the odds of one group is compared to the odds of another group as seen

in Equation 11.(Kleinbaum & Klein, 2010, p. 22)

ORX1,X0 =
odds for X1

odds for X0

(11)

4.2.4 Logit transformation

To �nd an expression of P (X) that has many familiar properties to linear regression models,

one can perform a logit transformation as seen in Equation 12 to �nd the log odds and a

linear representation of the quantities.(Kleinbaum & Klein, 2010, p. 19)

logit P(X) = lne

[
P(X)

1− P(X)

]
= log odds for X

= α +
∑

βiXi

(12)
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When we insert the previous regression model from Equation 8 into the transformation we

get the expression for the independent variables on a linear form: α +
∑
βiXi. Thus, the

logit P (X) is linear in its expression, the x-values can be continuous, ranging from minus to

plus in�nity if necessary.(Hosmer et al., 2013, p. 7)

4.2.5 Risk odds ratio

We can take the odds-ratio for a group one and two, describe the risk in the logistic model

and get the comparative risk odds ratio from the same logistic model. To use an appropriate

formula for the risk odds ratio, we substitute the probability of X happening with the equally

valid logit form linear sum into the risk odds formula. Algebraic theory states that in cases

where one has exponents on both sides in a fraction the statement can be rewritten as the

exponential with the numerator exponent minus the denominator exponent. Doing this we

�nd that the risk odds ratio is the exponential of the di�erence between the two linear sums.

The intercepts (α) in the linear sums will cancel each other out, giving us a general

exponential formula for the risk odds ratio generated from the logistic model framework for

the comparison of two groups. If the odds for an event are 1.35, taken from antilogging the

coe�cient 0.3 from the explanatory variable MALE, then the odds for the event happening

for a male participant (MALE=1) are 35% higher than for a female(MALE=0).(Willett &

Singer, 1995, p. 58) One can use the Equation 13 for the same risk odds ratio from 1 to I,

giving us a representation on how each variable in the logistic model contributes jointly to

the odds ratio.(Kleinbaum & Klein, 2010, p. 25) To further understand the techniques for

estimation in a discrete-time model, one can look at the maximum likelihood approach.

ROR = e(α+
∑
βiX1i)−(α+

∑
βiX0i)

= e(α−α+
∑
βi(X1i−X0i))

= e
∑
βi(X1i−X0i)

RORX1,X0 = e
∑I

i=1 βi(X1i−X0i) (13)
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4.3 Maximum Likelihood

4.3.1 Motivation and drawbacks

There exists a variety of techniques for the generation of estimators in a setting of discrete

models, and some of these are the maximum likelihood, method of moments and least squares.

We focus on the technique of maximum likelihood as it is the method which we will utilize

throughout this paper. The estimators produced by the maximum likelihood method are

guaranteed to have optimal properties, which makes it very important for researchers to be

in control of.

The main drawback of this method is that closed form solutions are often not available

and thus requires numerical tools, but this is something that technological advancements have

made considerably easier to accommodate for. The underlying idea of maximum likelihood

estimation is based upon the assumption that the events which we observe in real life are

the most likely ones to occur. In other words, a realization of a sample was the most likely

outcome at the time which it was recorded. If we agree this this train of thought, then it

would be reasonable to accept parameter estimates as those estimators which maximize the

likelihood of the observed sample.(Jungeilges, 2017, p. 2)

4.3.2 Unconditional ML approach

Within the maximum likelihood estimation approach there is the unconditional and the

conditional method. In this section we focus on the unconditional one, but a short description

of the conditional method is found in the appendix, see Subsection 8.6. The formula for the

unconditional method is in Equation 14, and it describes the joint probability of the sample

data as the product of joint probability for the cases and the joint probability for the non-

cases. By cases and non-cases, it is here meant as subjects that have gotten the event

and those that were censored in the study. When the logistic model formula involving the

parameters of interest, Equation 8, is substituted into Equation 14, we obtain Equation

15.(Kleinbaum & Klein, 2010, p. 114)

LU =

y∏
l=1

P(Xl)
n∏

l=y+1

[1−P(Xl)] (14)
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LU =

∏n
l=1 exp(α +

∑I
i=1 βiXil)∏n

l=1[1 + exp(α +
∑I

i=1 βiXil)]
(15)

4.3.3 Likelihood function

The maximum likelihood estimation approach can be best described by investigating the

likelihood function (L(θ)), which represents the joint probability or likelihood of observing

the data that we have collected.(Kleinbaum & Klein, 2010, p. 112) By joint probability

we simply mean it is a probability that takes into consideration the contributions of all the

subjects in the study. The θ in the likelihood function is a vector of all the parameters in

the model including the intercept and contains the values that we wish to estimate. The

method of maximum likelihood estimation will choose the estimator of the set of parameters

for vector θ which maximizes the likelihood function, and this estimator is denoted as a

vector, θ̂. The components of θ are found by solving the equations of partial derivatives

of the likelihood, shown in Equation 16, for each individual parameter (p) in the model.

Note that maximizing the likelihood function is equivalent to maximizing the log likelihood

function, which is an easier task computationally, and is often used instead. If there are q

parameters in total, then there is a q set of equations in q number of unknowns, and the

equations must be solved in iterations by the program.(Kleinbaum & Klein, 2010, p. 113)

∂lnL(θ)

∂θp
= 0, p = 1, 2, ..., q (16)

The estimation procedure can then be separated into four steps for a parameter (θ) as

follows:(Jungeilges, 2018b, p. 12)

1. Given: Random sample X1, X2, ..., Xn from fx(X, θ)

2. Determine the probability of the occurrence of the sample x1, x2, ..., xn, the likelihood

of the sample as L(θ|x1, x2, ..., xn) =
∏n

i=1 fx(xi; θ).

3. Find that value of θ which maximizes the likelihood maxθ∈ΘL(θ|x1, x2, ..., xn).

4. Any value θ̂ such that L(θ̂) ≥ L(θ) for θ 6= θ̂ ∈ Θ constitutes a maximum likelihood

estimator of θ.
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4.3.4 Sample likelihood function for survival analysis

In the dataset, the entire population can be viewed as mutually exclusive subsample sets,

where a subsample j contains nj participants, who have had spell 1 to j. Subsample 1 thus

contains only those that have had spell 1 and none of the other succeeding spells. Likewise

subsample 2 contains those participants that have had both spell 1 and 2, but not any of the

later spells. So, if ji =1 the last spell participant i experienced was spell 1 and thus belongs

in subsample 1.(Willett & Singer, 1995, p. 44) The highest number of spells achieved in the

population, J , therefore determines the overall number n of subsamples.

In the general likelihood function, each sample individuals contribution can be repre-

sented through the subsequent density function for the observed event occurrence of the

terminating event. This contributions representation will subsequently be 1 minus the cu-

mulative distribution of the hazard if the participant is censored in the given period k where

the event y may happen later, after k.(Allison, 1982, p. 69)

Those that belong to subsample 1 only have the �rst spell occur in the time-span of the

study, yet it can be interesting to look at the censored members of said subsample. We

denote Kij as the last period individual i was observed in spell j, and Tj as the time period

of event occurrence for spell j. Their contribution to the sample likelihood can be given by

the probability that their �rst event will happen after period Ki1, presented in Equation 17,

Si1(Ki1) being the value of the survivor function of T1 in period Ki1.(Willett & Singer, 1995,

p. 45)

L
(1)
i (Censored) = Pri{T1 > Ki1} = Si1(Ki1) (17)

The uncensored members of subsample 1 contribute to the sample likelihood when they

have the event in period Ki1. Their contribution to the sample likelihood can be expressed

as in Equation 18, fi1(Ki1) being value of the probability mass function of T1 in period

Ki1.(Willett & Singer, 1995, p. 44)

L
(1)
i (uncensored) = Pri{T1 = Ki1} = fi1(Ki1) (18)

We de�ne a dichotomous censoring indicator cij, equal to 0 if the jth spell of the par-

ticipant i is uncensored and 1 if the individual is censored. In combining the additions of

the uncensored and censored members to the subsample likelihood we can use the censoring
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indicator, the probability mass function and the survivor function to express the participants

contribution as presented in Equation 19.(Willett & Singer, 1995, p. 45)

L1
i = [fi1(Ki1)]

1−ci1 [Si1(Ki1)]
ci1 (19)

Individuals in subsample 2 experience only the �rst and second spell. In order to qualify

for the second spell, one must not be censored during the �rst. If the terminating event

does not reoccur, they are censored in their second spell. Still, one needs to account for

their contribution from the �rst event occurrence. The contribution to the sample likelihood

must then be a product of the probability of event occurrence in Ki1 and the probability

of event nonoccurrence prior to Ki2. For uncensored individuals, the latter probability is

that of terminating the second spell in Ki2 instead. Proceeding to do this for all spells, one

achieves the net sample likelihood presented in Equation 20, which is a product of all the

contributions for all J subgroups, up to and including the last observed spell number Ji for

participant i.(Willett & Singer, 1995, p. 46)

L =
n∏
i=1

Ji∏
j=1

([fij(Kij)]
1−cij [Sij(Kij)]

cij) (20)

The net sample likelihood can be expressed using the product of the hazard probabilities,

given by the values for the probability mass function and the survivor function, respectively,

see Equation 21. For the computation of the value of probability mass function in the last

time period of the jth spell for the ith participant, expressed as hazard probabilities, one

can summarize the function as a product of terms for each period within the spell. This

describes the conditional probability for event occurrence in the speci�ed period, but not in

any period leading up to that event occurrence.(Willett & Singer, 1995, p. 47)

Using the same idea in expressing the survivor function values for the ith participant in

the last time period of the jth spell, into hazard probabilities (hij), we take the approach of

expressing the conditional probabilities for event occurrence not taking place in any of the

periods observed up to that period kij. To replace the censoring indicator, one can employ

a dichotomous event indicator (yijk). It is zero in all periods during the spell if the event

did not occur and the participant was censored, or one in the last period of the spell if there

was no censoring and the terminating event occurred in the last period of said spell.(Willett
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& Singer, 1995, p. 48)

L =
n∏
i=1

Ji∏
j=1

Kij∏
k=1

(hij(k))yijk(1− hij(k))1−yijk (21)

From the dichotomous event indicator (yijk) we can draw some further remarks. The ex-

pectation of the indicator is the probability that the terminating event occurs to the ith

participant in period k of spell j. We can further surmise that yijk only equals 1 in pe-

riod k if the participant did not have the event in all the previous periods k of the spell

j. The values of the dichotomous event indicator are observed realizations of the hazard

probability.(Willett & Singer, 1995, p. 48) Having presented the sample likelihood function

for survival analysis, we proceed to the assumptions of maximum likelihood estimation.

4.3.5 Assumptions

The assumptions for the maximum likelihood estimation method are:

(Jungeilges, 2018b, p. 13)

1. The probabilistic law fx(x, θ) is known.

2. Each sample point Xa is generated by the same underlying process fx(x, θ).

3. Xa andXb, a 6= b are pairwise stochastically independent. (⇔ f(XaXb) = f(Xa)f(Xb))

4. The function L(θ|x1, x2, ..., xn) has a global maximum.

5. There exists a method to locate the value in the parameter space

Θ for which L(θ|x1, x2, ..., xn) assumes its global maximum.

The �rst assumption about the probabilistic law being known is the same as stating that

we have information concerning the distribution function which has generated each observa-

tion in the sample. The second assumptions states that the data are identically distributed

where identically refers to coming from the same distribution. The third assumption implies

that the realization of any two sample points is viewed as the occurrence of two stochastically

independent events. The fourth assumption states that the function has a global maximum

which for instance excludes the possibility of it having several global maxima. The �fth and
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�nal assumption states there must exist a method to ensure that the likelihood function as-

sumes its global maximum. The assumptions outlined are important to keep in mind as one

executes data analysis as many challenges often hinge on the violation of these assumptions.

When the assumptions of the maximum likelihood technique are met, the maximum like-

lihood estimators have two important properties, namely that of invariance and optimality.

(Jungeilges, 2017, p. 6)

Property 1 (Invariance) Let g denote a continuous function. If θ̂ is a MLE for θ then

g(θ̂) is a MLE for g(θ).

This invariance property states that if we are interested in a function of the parameter θ,

then we can apply that function to our estimate of the parameter (θ̂), and if our estimate is

a maximum likelihood estimator for the true underlying parameter then the function applied

to our estimated parameter will be a maximum likelihood estimator for the same function of

the true but unknown θ as well. It is important to note that for small, or �xed, sample sizes

some maximum likelihood estimators are unbiased while others are not, and the same being

true for the case of the estimators being minimum variance unbiased estimators as well. In

large samples we have the second property of the maximum likelihood technique, which is

optimality.(Jungeilges, 2017, p. 7)

Property 2 (Optimality) Let θ̂n denote a ML estimator of the parameter θ based on a

random sample of size n from fx(X, θ). Then

1. θ̂n ∼ N(θ, ξn) where

ξ =
1

−nE[∂
2lnfX(X;θ)

∂θ2
]

(22)

2. The sequence of ML estimators θ̂1..., θ̂n, ... is best asymptotically normal (BAN).

Here it is stated that the sequence of maximum likelihood estimators will be best asymp-

totically normal with the variance of those estimators being determined by the Rao-Cramer

lower bound. In simple terms this property can be explained by the notions of the estimator

being optimal in large samples, or that the maximum likelihood estimator is �as good an

estimator there is�.(Jungeilges, 2017, p. 7)
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4.4 Comparing alternative models

4.4.1 Deviance statistic

When evaluating alternative models, one needs statistical tools to decide which one has

a better �t and which predictors are signi�cant and should be kept in the model. We �rst

need to inquire into log likelihood statistics and deviance statistics. Following this we present

an explanation of three classical test procedures based on maximum likelihood estimators:

the likelihood ratio test, the Wald test and the Lagrange multiplier test5. Firstly, the log

likelihood statistic is closely related to the log likelihood function. It is the numerical value

of the log likelihood function when the maximum likelihood estimates are substituted for

their corresponding parameter values.(Kleinbaum & Klein, 2010, p. 132) The log likelihood

statistic is a summary statistic, in many cases given as part of the output when running

a regression that uses a maximum likelihood procedure. A single log likelihood statistic is

not entirely informative, but is valuable for comparing similar models because larger log

likelihood statistics indicate a better �t.(Singer & Willett, 2003, p. 397)

As the statistical tests used to compare alternative models use deviance statistics and

not log likelihood statistics, we need to transform these. The idea of deviance is that it

quanti�es how the model at hand is compared to the best model possible, also known as the

saturated model. The deviance statistic for a saturated model must be zero, and we reach

the deviance statistic from the log likelihood statistic by applying Equation 23. When faced

with two deviance statistics one may be temped to simply pick the model with the smallest

one, but this is an ine�cient approach. For instance, one model may be parsimonious and

a better choice for the problem at hand in contrast to an unnecessarily complex alternative

model with a smaller deviance statistic. We therefore introduce the likelihood ratio test, the

Wald test and the Lagrange multiplier test which may be utilized when one is dealing with

such challenges.

Deviance = −2× ln(likelihood)current model (23)

5We have not used the LM test in this thesis, and have therefore moved the description to the Appendix,

see Subsection 8.7.
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4.4.2 Likelihood ratio test

The likelihood ratio test can be used to test hypotheses about one or several parameters

when dealing with nested models. Two models are required for the test, where one is called

the full model, containing all parameters of interest. The second model is known as the

reduced model which does not contain the parameters whose signi�cance, we are interested

in evaluating. We emphasize that the reduced model is only a subset of the full model, or

equivalently, that the reduced model is nested in the full model. Therefore, the reduced

model may only be achieved by setting one or several parameters in the full model equal to

zero. The idea behind this test is if the restrictions that are made are valid, imposing those

restrictions will not lead to a large reduction in the log likelihood value.(Greene, 2012, p.

565)

The test statistic is the di�erence of the deviance statistic between the full and reduced

model, which is equal to Equation 24 (Kleinbaum & Klein, 2010, p. 134). The null hypothesis

is H0 : βW1 = βW2 = . . . = βWI
= 0 (Singer & Willett, 2003, p. 399) and states that the

coe�cients of the parameters being tested, W1 through WI , are zero, or equivalently, the

odds ratios of said parameters are equal to unity.(Kleinbaum & Klein, 2010, p. 135) The

test statistic is known as a likelihood ratio statistic and is approximately chi-square (χ2),

distributed in large samples under the null hypothesis, with degrees of freedom equal to the

di�erence in the number of parameters between the two models that are being tested.

LR = −2× lnL1 − (−2× lnL2) (24)

The decision rule is (Jungeilges, 2017):

If LR ≥ χ2
1−α(r) then reject H0 else fail to reject H0

LR denotes the value of the test statistic and χ2
1−α that level of a chi-squared random

variable with r degrees of freedom which is exceeded with probability α. If we reject the

null hypothesis, this means we have witnessed a realization of the test statistic that is very

unlikely under the null hypothesis, and the coe�cient of at least one of the parameters being

tested is not equal to zero. One of the unfortunate downsides of the likelihood ratio test is

that one must estimate two models, both the full and reduced one, and to circumvent this

issue one may use the Wald test.(Greene, 2012, p. 567)
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4.4.3 Wald test

The Wald test is an alternative to the likelihood ratio test for testing the signi�cance of

parameters in a model, usually used when the interest lies in the signi�cance of only one

parameter.(Kleinbaum & Klein, 2010, p.138) The test for a single restriction is based on

the idea of comparing a parameter estimate to its asymptotic standard error, whose test

statistic is shown in Equation 25 (Singer & Willett, 2003; Greene, 2012, p. 403; p. 568).6

This is known as the Wald chi-square statistic because the ratio is squared and is therefore

chi-square distributed with one degree of freedom. Note that some authors also use a Wald

test statistic that is not squared where it instead is approximately normally distributed in

large samples under the null hypothesis.

Wald χ2 =

[
β̂W

ase(β̂W )

]2
∼ χ2 on 1 d.f. (25)

The null hypothesis when testing a single coe�cient is that the coe�cient of the parameter

being tested is zero, or equivalently written as βW = 0 (Singer & Willett, 2003, p. 403) and

the decision rule for the chi-square version of the Wald test is:

If W ≥ χ2
1−α(r) then reject H0 else fail to reject H0

It is equivalent to that of the likelihood ratio test.(Jungeilges, 2017, p. 6) When rejecting the

null the researcher states that the realization of the test statistic is highly unlikely under the

null hypothesis, and that the coe�cient of the parameter of interest is signi�cantly di�erent

from zero given that all other parameters are kept in the model. The Wald test is more

convenient than the LR test because only one model is required to be �tted instead of two,

and both tests give equal test statistics in large samples. However, when dealing with small

to moderate samples, the LR test should be preferred to the Wald test.(Kleinbaum & Klein,

2010; Singer & Willett, 2003, p. 139; p. 403)

6The test statistic for the Wald test when testing multiple restrictions at once can be found, for instance,

in (Greene, 2012, p. 568).
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4.4.4 Information Criteria

One might be interesting in comparing the goodness of �t of alternative models that are not

nested. If so, using information criteria can be a useful endeavor.(Singer & Willett, 2003, p.

401) Measures of the goodness of �t that are very popular as model selection criteria are the

Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC).(Brooks,

2008, p. 232) Both penalizes the log-likelihood statistic for the number of parameters present

in the model and in addition the BIC statistic also considers the total sample size.(Singer

& Willett, 2003, p. 402) Both criteria represent a trade o� between �t measured by the log

likelihood value, and parsimony measured by the number of free parameters. The model

with the smallest AIC and BIC value is mostly preferred, however one can choose to deviate

from this if the criterion value di�erences are small for the subset of the models.(Verbeek,

2004, p. 285) For a model that has p parameters, AIC = Deviance + (2× p). Similarly, we

can compute BIC as BIC = Deviance + (ln(N)× p).(Singer & Willett, 2003, p. 402)

4.4.5 Goodness of link test procedure

The goodness of link test, sometimes known as the link test, is a speci�cation test that con-

siders whether the link function is appropriate, or whether we may have a link error.(Baum,

2013, p. 11) The test is due to (Pregibon, 1980, p. 16), and here we present a slightly

di�erent but very intuitive approach of the test procedure, originally suggested in his PhD

dissertation in 1979.(StataCorp, 2017, p. 1318) The link test is performed by estimating the

model under the hypothesized link, and then regressing the dependent variable on the the

predicted values and their squares, including an intercept. If the link function is correctly

speci�ed, then the squares of the predicted values should be insigni�cant.(Baum, 2013, p.

11)

4.5 Assessing model adequacy

Once a logistic regression model has been �tted to our given data, the next question is

whether the model explains the underlying data well, which is often known as examining

the model adequacy. More speci�cally, we wish to know whether the probabilities given by
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our model re�ect the true outcome from the data, which is referred to as goodness of �t.

We begin by denoting the observed values of the dependent variable (y) in vector form as

y where y = (y1, y2, y3, ..., yn). We then denote the values estimated by our model, known

as �tted values, as ŷ where ŷ′ = (ŷ1, ŷ2, ŷ3, ..., ŷn). If the model �ts well, we expect that the

summary measures of distance between the two is small, and that contribution of each pair

(yi, ŷi), i = 1, 2, 3..., n, to these summary measures is unsystematic and small relative to the

error structure of the model.(Hosmer et al., 2013, p. 153)

In a general manner, the main approach in assessing the �t of the model consists of three

steps. The �rst step is computing and evaluating of overall measures of �t, the second is

examination of the individual components of the summary statistics, which is often done

graphically and, �nally, examination of other measures of the di�erence between observed

and �tted values.(Hosmer et al., 2013, p. 154) More speci�cally, the three main methods

for examining the adequacy of a logistic regression model are overall goodness of �t tests,

examining the area under the receiver operating characteristic curve and examination of

in�uential observations. The �rst step for assessing model adequacy in logistic regression

is the use of overall goodness of �t tests. These are usually general tests that compare the

observed and �tted values, testing for the �tted models general departure from the observed

data.(Lemeshow & Archer, 2006, p. 97)

4.5.1 Covariate patterns

First, we introduce the term covariate patterns, which are the di�erent con�gurations of the

covariates that are possible within the given model. For instance, a model has four covariate

patterns if the model contains race and gender only, where each variable is coded at two

levels.(Hosmer et al., 2013, p. 154) Our motivation for the explanation of covariate pattern

follows from the fact that there is a divergence from the testing of models, as in Subsection

4.4, with the tests of overall goodness of �t. The tests at the model development stage are

concerned with di�erences in parameters for the degrees of freedom and not the number of

covariate patterns. The tests for overall goodness of �t may on the other hand be a�ected by

the number of covariate patterns, whose number often increases drastically when continuous

variables are included in the model.(Hosmer et al., 2013, p. 155)
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To explain this divergence, consider a �tted model with p independent variables, x′ =

(x1, x2, ..., xp), and let R denote the number of distinct values of x observed.(Hosmer et

al., 2013, pp. 154-155) From this we understand that R represents the number of unique

covariate patterns.(Lemeshow & Archer, 2006, p. 98) Some subjects may have the same

values for x, and then R < n. We can therefore denote the number of participants with

x = xr by mr, r = 1, 2, 3, ..., R. From this follows that we may, for any �tted value and a

given covariate pattern r, separate it into the number of subjects of with the same covariate

pattern, denoted mr, and the estimated logistic probability, denoted π̂r, which is equal for

all subjects in the same covariate pattern.(Lemeshow & Archer, 2006, p. 98) The �tted

value for the rth covariate pattern may then be denoted by ŷr, shown in Equation 26, where

ĝ(xr) = β̂0 + β̂1xr1 + β̂2xr2 + ...+ β̂pxrp is the estimated logit.(Hosmer et al., 2013, p. 155)

ŷr = mrπ̂r = mr

{
eĝ(xr)

1 + eĝ(xr)

}
(26)

4.5.2 Three types of residuals

Before proceeding to the �rst test, we introduce three initial measures of the di�erence

between the observed and �tted values. These are the Pearson residual, the deviance residual

and the residual used in linear regression, following (Hosmer et al., 2013, pp. 155-156). The

Pearson residual (Res) is given for some particular covariate pattern r in Equation 27 and

the summary statistic based on these residuals is the Pearson chi-square statistic shown in

Equation 28. This residual has the di�erence between the observed and �tted value, y and ŷ

respectively, in the numerator. The denominator contains the square root of the �tted value

multiplied by one subtracted by the estimated probability for the participants in covariate

pattern mr.

Res(yr, π̂r) =
(yr −mrπ̂r)√
mrπ̂r(1− π̂r)

(27)

χ2 =
R∑
r=1

[Res(yr, π̂r)]
2 (28)

The deviance residual is given in Equation 29, the sign ± being the same as for yr −mrπ̂r,

with the summary statistic based on these given in Equation 30.

d(yr, π̂r) = ±
{

2

[
yrln

(
yr

mrπ̂r

)
+ (mr − yr)ln

(
(mr − yr)
mr(1− π̂r)

)]}1/2

(29)
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D =
R∑
r=1

d(yr, π̂r)
2 (30)

Finally, the linear regression-like residual is the di�erence between the observed and predicted

values, shown in Equation 31 where the accompanying �t statistic is the sum-of-squares, given

in Equation 32.(Hosmer et al., 2013, pp. 155-156)

s(yr, π̂r) = (yr −mrπ̂r) (31)

S =
R∑
r=1

s(yr, π̂r)
2 (32)

4.5.3 Overall goodness of �t tests

The �rst test for the overall goodness of �t presented in this section is the Pearson chi-

squared test. While this test may be used for several di�erent goals, such as goodness of �t,

homogeneity or independence, we focus on the �rst application. The test statistic is given

in Equation 28, which is approximately chi-square distributed with R − (p + 1) degrees of

freedom when mrπ̂r is large for every r, where R is the total number of covariate patterns

and p is the number of independent parameters.(Lemeshow & Archer, 2006, p. 98) The null

hypothesis is that there are no signi�cant di�erences between the observed and expected

values. If the test statistic exceeds the critical value, we reject the null and conclude that

the di�erence is signi�cant and we therefore do not have a well �tting model. The main issue

with the test is the inclusion of continuous variables in the model, which severely increases

the number of covariate patterns and renders the test ine�ective as mrπ̂r may be small for

every r when R ∼ n(Lemeshow & Archer, 2006, p. 99), which leads us to a set of overall

goodness of �t tests developed to deal with this issue.

The Hosmer-Lemeshow goodness of �t tests were developed in (Hosmer & Lemesbow,

1980) and (Lemeshow & Hosmer, 1982), where they suggested grouping based on the values

of the estimated probabilities.(Hosmer et al., 2013, p. 157) The most common suggestion

is to group the estimated probabilities into deciles of risk, by setting the number of groups,

denoted G, equal to ten. The test statistic is estimated by partitioning the observations into

these ten groups by their ordered estimated probability, π̂i, and a chi-squared test is then

calculated with the test statistic shown in Equation 33.(Lemeshow & Archer, 2006; Hosmer

41



et al., 2013, p. 99; p. 158)

Ĉ =
G∑
u=1

(o1u − n′uπu)2

n′uπu(1− πu)
(33)

To decompose the test statistic, we note that it is a sum from one to the number of

groups (G). The numerator is given by a sum of observed cases, yr, from one to the number

of covariates in the rth group, o1u =
∑cu

r=1 yr, cu being the number of covariate patterns in

the uth group. This sum of cases (o1u) is subtracted by the number of subjects in the uth

group, multiplied by the average estimated probability in the uth group which is equal to

the average of the sum from one to the number of covariate patterns for the �tted values,

ŷ = mrπ̂r. The test statistic is approximately chi-square distributed when the number of

covariate patterns is equal to, or approximately equal to, the total sample size.(Hosmer et

al., 2013, p. 158) The null hypothesis and decision criteria are the same as for the Pearson

goodness of �t test outlined above.

The Hosmer-Lemeshow goodness of �t tests have also been criticized by academics as

potentially having serious issues. The main problem is that the results may vary wildly

depending on the number of groups that are used, with no theory to guide researchers to

the most appropriate number of groups to be used. Adding substantive predictors with

highly signi�cant p-values may be expected to add to the goodness of �t of a model, but

the HL goodness of �t test sometimes suggests that the addition of highly signi�cant terms

such as interaction terms is inappropriate. Lastly, the opposite of this result may also be

encountered, where adding a non-signi�cant interaction or non-linearity and performing the

HL goodness of �t test may lead to the wrongful belief that the addition has improved the

�t of the model, when it is the contrary that is actually correct.(Hosmer-Lemeshow Test for

Logistic Regression | Statistical Horizons , 2019, p. 1)

4.5.4 Accuracy: Sensitivity and speci�city

Before moving on to the second step of assessing model adequacy, which is examination of

the individual components of the summary statistics, we take a quick aside to explain the

terms sensitivity and speci�city, and their relation to a statistical understanding of the term

accuracy. Accuracy is de�ned as the number of correct decisions divided by the total number
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of cases, and the number of correct decisions may be separated into the number of true

positive and true negative decisions.(Metz, 1978, p. 284) Decisions in this case refer to what

we have predicted will happen, while cases refer to what we observed to happen. A positive

simply means target event occurrence, and a negative means target event nonoccurrence.

Lastly, a true positive means that our prediction of event occurrence was correct, and a false

positive that our prediction of event occurrence was incorrect. The same applies for true

and false negatives only that it is for event nonoccurrence instead.

Sensitivity and speci�city are ways to represent two kinds of accuracy, namely for true

positive and true negative cases, respectively. Sensitivity, which may be called a true positive

fraction (TPF), is de�ned as the number of true positive decisions divided by the number

of actually positive cases. Speci�city, often referred to as the true negative fraction (TNF),

is then the number of true negative decisions divided by the number of actually negative

cases.(Metz, 1978, p. 285) The counterpart to the TPF and TNF are then the false positive

fraction (FPF) and the false negative fraction (FNF), and for each category the fractions

adding up to unity. Having explained these measures for accuracy, we turn our focus to how

they may be summarized in a simple table, known as a classi�cation table, or graphically by

what is known as the receiver characteristic curve.

4.5.5 Classi�cation table

The classi�cation table shows a comparison between observed and expected values of the

outcome variable in a binary way rather than as a probability of event occurrence.(Hosmer

et al., 2013, p. 170) It is usually presented in the form shown in Table 3, where each cell

contains each of the fractions described in Subsection 4.5.4. Since we wish to dichotomize

outcomes from estimated logistic probabilities, a cuto� point is required, in which 0.5 is

most used. A disadvantage is that the classi�cation is sensitive to the cuto� point used.

Classi�cation is also sensitive to the relative sizes of the two component groups and always

favors classi�cation in the larger one, and this is independent from the actual �t of the

model.(Hosmer et al., 2013, p. 171) Thus, accurate or inaccurate classi�cation does not

address criteria for goodness of �t and should only supplement a more rigorous assessment

using methods described in Subsection 4.5.3.(Hosmer et al., 2013, pp. 169-170) Since the
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classi�cation table depends on a single cuto� value, a better and more complete description

of classi�cation accuracy is usually presented by the area under the receiver characteristic

curve(Hosmer et al., 2013, p. 173), which is the focus of our next subsection.

Observed

Classi�ed Positive Negative Total

Positive True P False P Predicted P

Negative False N True N Predicted N

Total Actual P Actual N TOTAL

Table 3: The components of a classi�cation table.

Sensitivity = (True P / Actual P), Speci�city = (True N / Actual N)

4.5.6 Receiver Operating Characteristic (ROC) Curve

The ROC curve plots the true positive fraction, sensitivity, against the false negative fraction,

1 - speci�city, for an entire range of possible cuto� points. The area under the ROC, AUROC

for short, ranges from 0.5 to 1 and is a measure of the models ability to discriminate between

participants who experience the target event versus those that do not.(Hosmer et al., 2013,

p. 174) In its graphical representation, the ROC curve will have values approaching unity

when it is further towards the top left and approaching 0.5 when it lies close to the 45-degree

line. As for deciding what signi�es a good discrimination as given by the AUROC curve,
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there is a rule of thumb given in the literature(Hosmer et al., 2013, p. 177):

If =



ROC = 0.5
This suggests no discrimination, so we might

as well �ip a coin.

0.5 < ROC < 0.7
We consider this poor discrimination, not much

better than a coin toss.

0.7 ≤ ROC < 0.8 We consider this acceptable discrimination.

0.8 ≤ ROC < 0.9 We consider this excellent discrimination.

ROC ≥ 0.9 We consider this outstanding discrimination.

4.5.7 Examining in�uential observations

The third and �nal step of assessing model adequacy is by examination of in�uential ob-

servations. The idea is to see if the model �t is supported over all the sets of covariance

patterns (R), which can be done through a series of specialized measures, known as regres-

sion diagnostics, on all p covariates.(Hosmer et al., 2013, p. 186) This is di�erent from the

summary statistics considered in Subsection 4.5.3, as they provide with a single number

to base conclusions on. To provide intuitive understanding of regression diagnostics for lo-

gistic regression, one may draw comparisons to the procedures of regression diagnostics in

the framework of linear regression. Logistic regression diagnostics di�er to those in a linear

regression analysis due to the fact that in linear regression, it is assumed that the error

variance does not depend on the conditional mean. In contrast, as mentioned in Subsection

4.2, the error variance in a logistic regression is a function of the conditional mean due to

the nature of binomial errors, as shown in Equation 34.(Hosmer et al., 2013, p. 168)

var(Yr|xr) = mrE(Yr|xr)× [1− E(Yr|xr)]

= mrπ(xr)[1− π(xr)]
(34)

Continuing where we left o� in Subsection 4.5.1, we introduce crucial elements that

will aid our understanding as we go further along. Let Resr and dr denote the values of

the expressions for the Pearson residual from Equation 27 and the deviance residual from

Equation 23, respectively, for a covariate pattern xr. Examining equations 27 and 23, each
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residual has been divided by an approximate estimate of its standard error, and if the logistic

model is correct, we can expect the values to have a mean around zero and a variance close

to one.(Hosmer et al., 2013, p. 187)

A crucial element in the diagnostics of linear regression is what is known as the "hat"

matrix, H = X(X′X)−1X′), X being a R × (p + 1) data matrix, or design matrix, where

the �rst column equals one which represents the intercept of the model. The "hat" matrix

provides the �tted values of the dependent variable, in the form of ŷ = Hy, which is why it

is also known as the projection matrix.(Jungeilges, 2018a, p. 19) As for a "hat" matrix for

a logistic regression, this was approximated by (Pregibon, 1981), and is shown in Equation

35, where VR,R is a diagonal matrix with general element equal to Equation 36.(Hosmer et

al., 2013, 187)

H = V1/2X(X′VX)−1X′V1/2 (35)

vr = mrπ̂(xr)[1− π̂(xr)] (36)

In the setting of linear regression, the diagonal elements of the "hat" matrix are called

leverage values, hir
7 and enable the interpretation of the amount of in�uence the observed

value yr has on the �tted value ŷi.(Hoaglin & Welsch, 1978, p. 17) The leverage values are

proportional to the distance of xr to the mean of the data, x. Large values of leverage then

indicate points far away from the mean of the data, or the center of gravity (Jungeilges, 2018c,

p. 30), and as such may have a large e�ect on the values of the estimated parameters.(Hosmer

et al., 2013, p. 187).

In the setting of logistic regression, we denote hr as the rth diagonal element from

H from Equation 35, and state the possibility of showing the relationship in Equation

37. vr = mrπ̂(xr)[1 − π̂(xr)] is the model based estimator of the variance of yr and

br = x′r(X
′VX)−1xr is the weighted distance of xr, the vector of covariate values for the

rth covariate pattern, from x, the vector of means.(Hosmer et al., 2013, p. 187) Some care

should be taken in interpretation of the magnitude of the the leverage as it is a combined

e�ect of yr and br.(Hosmer et al., 2013, p. 188) Finally, while leverage values are useful for

7Note these should not be confused with hazard probabilities hij .
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detecting extreme points, they are not as viable for assessing their impact on the various

aspects of the �t.(Pregibon, 1981, p. 706) We therefore introduce some additional diagnostic

statistics, building upon the ideas introduced in Subsection 4.5.2.

hr = mrπ̂(xr)[1− π̂(xr)]x
′
r(X

′VX)−1xr

= vr × br
(37)

One might be interested in the e�ect that deleting all subject with a particular covariate

pattern has on the values of the estimated coe�cients and on summary statistics such as

χ2 and D.(Hosmer et al., 2013, p. 191) In order to motivate the following statistics, we

use the Pearson residual (Resr), from Equation 27, and standardize for covariate pattern

xr as shown in Equation 38. It was approximated in Equation 31 that [yr − mrπ̂r] ≈

(1 − hr)yr which would make the estimator of the variance of the residual approximately

yr−mrπ̂r[1− π̂r](1−hr).(Hosmer et al., 2013, p. 190) Comparing to the Pearson residual in

Equation 27, this implies that Resr does not have variance equal to one unless we standardize

it further.

Ressr =
Resr√
1− hr

(38)

The e�ects of deleting all participants with a particular covariate pattern may mainly be

presented in three di�erent ways in a setting of logistic regression. Following the work of

(Pregibon, 1981, pp. 716-720), he used linear approximations to derive the three diagnostic

statistics ∆β̂r, ∆χ2
r and ∆Dr, which are shown in Equations 39, 40 and 41, respectively.

The �rst statistic reveals those covariate patterns that have a great in�uence on the values

of the estimated parameters(Hosmer et al., 2013, p. 192), and is obtained as a standardized

di�erence between β̂ and β̂(−r). The former represents the maximum likelihood estimates

for all R covariate patterns and the latter excludes mr subjects with pattern xr, and �nally

standardizing using the estimated covariance matrix of β̂.

∆β̂r = (β̂ − β̂(−r))
′(X ′V X)(β̂ − β̂(−r))

=
Res2rhr

(1− hr)2

=
Res2srhr
(1− hr)

(39)
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∆χ2
r =

Res2

(1− hr)

= Res2sr

(40)

∆Dr =
d2r

(1− hr)
(41)

Derived similarly, the decrease in the value of the Pearson chi-square statistic (∆χ2
r), and the

change in the deviance (∆Dr) may reveal covariate patterns that are poorly �t by large values

for for either or both diagnostic statistics.(Hosmer et al., 2013, p. 191) Finally, we include

a list of what is considered the four most essential plots for an analysis of diagnostics from

(Hosmer et al., 2013, pp. 193-194) below. This list consist of all four diagnostic statistics

that we have described, and they have all been plotted versus π̂r, which is the estimated

logistic probability from the regression. Having introduced the necessary tools for model

assessment, we proceed to the section of the model building approach.

1. Plot hr versus π̂r.

2. Plot ∆χ2
r versus π̂r.

3. Plot ∆Dr versus π̂r.

4. Plot ∆β̂r versus π̂r.

4.6 Model building approach

4.6.1 Initial models for hazard

The three, initial discrete-time hazard models (A, B and C) include the main e�ect of period,

the e�ect of period and the main of e�ect of spell and the e�ect of period, main e�ect of

spell and their two-way interaction, respectively. The �rst model, denoted A, includes only

the main e�ect of period and constrains the population logit-hazard pro�les to be identical

across spells, and is shown in Equation 42.

logit(hij(k)) = [α1P1 + α2P2 + · · ·+ α159P159] (42)

The model includes all the period indicators yet does not include an intercept to avoid com-

plete linear dependency. The estimated parameters then describe the size and importance
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of the period-by-period constrained hazard probabilities.(Willett & Singer, 1995, p. 53) The

second model, denoted B, adds the main e�ect of spell by including all but one of the spell

indicators, and is shown in Equation 43. This allows the logit-hazard pro�les to di�er in

level across spell, but not in shape. The coe�cients of the spell indicators describe the

vertical displacement in hazard pro�le between the �rst spell and each subsequent spell,

respectively.(Willett & Singer, 1995, p. 54)

logit(hij(k)) = [α1P1 + α2P2 + · · ·+ α159PK ]

+ [β2S2 + β3S3 + ...+ βJSJ ]
(43)

The third model, denoted C, adds cross product terms which represent the two-way

interaction between periods and spells, and is shown in Equation 44. While model B allowed

the logit-hazard pro�les to di�er in levels across spells, model C also allows for them to

di�er in shape from spell to spell. The number of spell-by-period cross product terms is case

speci�c, but one should constrict them appropriately, here shown for the second and third

spell using 10 and 9 periods, respectively. This is to avoid linear redundancy and to account

for the presence of structural zeros caused by the data shortfalls described in Subsection 4.1.4.

Still, there is a �ne balance between model complexity and parsimony. A fully interactive

model such as model C may encounter several sampling zeros in later spells and periods,

which may be detrimental to the analysis. One should therefore explore possible smooth

functions to represent spells and periods instead by using appropriate substitutes.(Willett &

Singer, 1995, p. 56)

logit(hij(k)) =
K∑
m=1

αmPm +
J∑

m=2

βmSm

+
10∑
m=1

γm(S2 × Pm) +
9∑

m=1

γm+10(S3 × Pm)

(44)

4.6.2 Reparameterization of spell and period

Reparameterizations of spells and periods should be done in line with observations made

during investigations of the sample hazard plots, such as those presented in Figure 1. We

now present common themes that may be encountered for the spell indicator, before moving

on to possible reparameterizations of the period counter in the following section. The �rst
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observation that may be made is the commonalities of the hazard plots, for instance they

are all either generally increasing or decreasing across spells.

The second observation that is often found is that the hazard plots for spells of odd and

even numbers act di�erently, but that they are similar within their respective groups. This

simply means that hazard plots for spells in the states of existence one and two act di�erently

when compared, but that within one state of existence we observe similar patterns. Lastly,

it is possible to observe di�erences within states, for instance the initial spell signi�cantly

di�ering from repeat spells. Earlier literature that have encountered such patterns have

chosen two reparameterizations of the spell counter by using two dichotomous predictors

as well as their two-way interaction. One predictor is used to distinguish even and odd

numbered spells, and another predictor is used for distinguishing the initial from repeat

spells.

The parameterization of periods follows the same guidelines as for spells; by the inspection

of hazard sample plots. Since the parameterization of period dummies is usually retained

because of the jaggedness of sample hazard plots, interactions between periods and other

predictors are investigated instead. This is done by inspecting the interactions terms in

model C and applying an appropriate linear, quadratic or logarithmic transformation in

interaction with other predictors in the model.(Willett & Singer, 1995, p. 56) Examples

of such transformations include, but are not limited to, linear transformation by diving

one by the period indicator, squaring the period counter or taking the natural logarithm

of the period indicator variable. These transformations are then used in interactions with

predictors such as those outlined for the reparameterization of the spell indicator variable

or other substantive predictors, such as age or gender, in the fully extended version of the

model.

4.6.3 Standard Errors

Standard errors give a measure of the degree of uncertainty in the estimated values of the

coe�cients.(Brooks, 2008, p. 46) Period to period �uctuations are to be expected in the

population with sampling variation. To estimate the standard error for an estimated hazard

probability, ĥ(tk), we begin by considering the population hazard probability h(t) in the kth
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time period h(tk). We then estimate the parameter using Equation 2 as the proportion of

the population that have experienced the target event out of the risk set for period kth. One

can then estimate the corresponding standard error using the formula used when estimating

the standard error of a proportion, shown in Equation 45.(Singer & Willett, 2003, p. 348)

se(ĥ(tk)) =

√
ĥ(tk)(1− ĥ(tk))

n at riskk
(45)

Two general ideas can be interpreted from the equation and accompanying results. First,

the numerator in Equation 45 is at its maximum when the estimated hazard probability is

0.5. From this we can interpret that when ĥ(tk) is close to the extremes of 0 and 1, the

estimate will be more precise. Since there are more than two periods in most spells, leading

to the estimated hazard often staying below 0.5, we can say that a smaller estimated hazard

probability will often be measured more precisely. Second, the denominator in Equation 45

is the size of the risk set in period k. Thus, in a larger risk set, we have a more precise

hazard probability estimate. Additionally, in a spell where the risk set decreases due to the

individuals getting the target event, standard errors for the successive periods will tend to

increase, and thus the precision of the hazard estimate may be expected to decrease in later

periods.(Singer & Willett, 2003, p. 349)

Estimating the standard errors of the estimated survival probabilities is unfortunately

more complicated compared to the estimation of standard errors for the hazard probabilities.

The main reason for this is that the survival probability is a product of the probability for

survival in this time period and all previous periods, as implied by Equation 5. The idea of

an estimate based on products of former estimates is quite di�cult to execute statistically,

and therefore one might �nd it useful to rely on Greenwood's approximation from his seminal

paper on life tables, see (Greenwood, 1926). Greenwood shows that the standard error of the

estimated survival probability in a time period k can be approximated by Equation 46.8 This

equation tells us that the standard error is calculated by the estimated survival probability

for that period multiplied with a square root whose content involves the estimated hazard

probabilities of all periods up to and including the time unit of interest. This is advantageous

8As suggested by (Fayers, Harris, & Albert, 1992), one should be careful to trust Greenwood's approxi-

mation of standard errors in risk sets with fewer than 20 participants.
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as one one does not have to consider the estimation of the standard error using all of the

survival probabilities that have been estimated.(Singer & Willett, 2003, p. 350)

se(Ŝ(tk)) = Ŝ(tk)

√
ĥ(t1)

n1(1− ĥ(t1))
+

ĥ(t2)

n2(1− ĥ(t2))
+ ...+

ĥ(tk)

nk(1− ĥ(tk))
(46)

4.6.4 Clustered sandwich estimator of variance

By using the robust estimator of variance, one can relax the independence of observations

assumption in the conventional estimator.(StataCorp, 2017, p. 323) The equation for the

robust estimate of variance is presented in Equation 47, where V̂ is the conventional estimator

of variance and un is a row vector of the contribution from the nth observation.(StataCorp,

2017, p. 325)

V̂ = V̂(
N∑

n=1

ρ′nρn)V̂ (47)

For both linear and logistic regression models we have an asymptotic co-variance matrix

given by Equation 48.(Greene, 2012, p. 586)

Asy.Var[b] = (X′X)−1
[
X′(σ2Ω)X

]
(X′X)−1 (48)

The center matrix in the sandwich, as seen in Equation 49, motivates the robust estimator.

(Greene, 2012, p. 586)

X′(σ2Ω)X =
N∑
n=1

X′nΣXn (49)

The asymptotic variance in this context is called the sandwich estimator, the picture here

being that the center is a piece of ham between two pieces of bread. Data on individuals or

other micro-level cases are often grouped in "clusters", a useful feature of panel data when

observations cannot be considered independent.(Greene, 2012, p. 586) Each cluster is drawn

from a joint density fn(yn|Xn,θ),with the data-set consisting of n multivariate observations

[yn1, ..., ynTn ] where n goes from 1 to N . By these limitations, Greene suggests a general case

where the panel data-set consists of n multivariate observations dependent within cluster and

where each independent cluster across the data-set of observations is drawn from a density.

Greene suggests using the maximized pseudo-log-likelihood under the assumption that the
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same parameter vector θ enters the pseudo-likelihood, seen in Equation 50, as enters the

correct and appropriate sample log-likelihood.(Greene, 2012, p. 587)

ln LP =
N∑
n=1

Tn∑
t=1

ln g(yn|Xn,θ) (50)

When robust cluster variance estimators are employed in our software, standard errors are

based upon the inverse of the negative hessian matrix. Under such circumstances the usage

of the likelihood-ratio test is not appropriate.(StataCorp, 2013, p. 4) Having gained the

necessary knowledge for the model building approach, we proceed to the next section where

we introduce our initial model for time.

5 Empirical analysis and �ndings

5.1 Towards an initial model for time

5.1.1 Choosing an initial model for time

Following the illustrative approach from earlier articles that concern themselves with multiple-

spell discrete-time survival analysis, such as (Willett & Singer, 1995, p. 55), we introduce

a �gure which summarizes the main characteristics of all the preliminary hazard models

�tted to the data set. This �gure, shown in Figure 3, includes all the models discussed in

Subsection 4.6.1 as well as their reparametrized versions. For each model we have presented

the variables included, its deviance statistic and the number of parameters in the model. Be-

tween each of the nested models, we have supplied the value of the di�erence in the deviance

statistic, which is the basis for the likelihood ratio test introduced in Subsection 4.4.2, in

accordance with (Willett & Singer, 1995, p. 54).

After the di�erence in deviance statistics we show the di�erence in parameters between

the models and the conclusion of the likelihood ratio test.9 Since most of the coe�cients

9Models B, B2 and C drop 3 observations from the perfectly predicted event non-occurrences for spell 53.

Comparing models with those that have a di�erent number of observations is a violation of an assumption

for the likelihood-ratio test and these tests are therefore marked F as we have applied a force option in our

statistical program to perform the test.
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PD DUM
SP DUM
-2ll = 43 563.7
(206 parameters)

PD DUM
-2ll = 49 655.4
(155 parameters)

PD DUM
SP DUM
PD DUM×SP DUM
-2ll = 42 981.8
(260 parameters)

PD DUM
INS, REP
INS×REP
-2ll = 45 032.3
(158 parameters)

PD DUM
INS×PD DUM
REP×PD DUM
INS×REP×PD DUM
-2ll = 43 674.6
(195 parameters)

PD DUM
INS×PD DUM
REP×PD DUM
-2ll = 44 318.8
(185 parameters)

PD DUM
INS, INS×LPER
REP, REP×LPER
-2ll = 44 705.9
(159 parameters)

PD DUM
INS, INS×LPER
REP, REP×LPER
INS×REP×LPER
-2ll = 44 356.7
(160 parameters)

LR = 6091.67(51)F

LR = 581.92(54)

LR = 1468.56(48)F

LR = 692.82(65)F

LR = 1357.65(37)

LR = 644.20(10)

LR = 387.03(26)
LR = 682.08(26)

LR = 349.15(10)

A

B

C

B2

C2
D

E2
E

Figure 3: A taxonomy of multiple-spell discrete-time hazard models �tted to the data-set. Boxes

contain the predictors for each model, the deviance statistic and number of parameters. Arrows

between boxes indicate nested models, and their direction the model with the better �t as indicated

by a likelihood ratio test. Text beside each arrow displays the di�erence in the deviance statistic.

PD DUM = Period dummies, SP DUM = Spell dummies

INS = Institution spells (STI = 1), REP = Repeat spells (SP > 2), LPER = ln(Period)
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are signi�cant on a 1% level, we refrain from using stars to represent signi�cance levels of

coe�cients and tests. Instead, we use strike-through to represent insigni�cance (p−value ≥

0.10), italic to represent signi�cance on a 10% level, bold to represent signi�cance on a 5%

level and all other values presented in plain text represent signi�cance on a 1% level unless

stated otherwise by including the corresponding p-value.

The arrows between the models signify which model was concluded to �t better by the

means of the likelihood-ratio test alone. Whenever it was deemed necessary to investigate

the models further, used values for the AIC, BIC, the conclusions from a Hosmer-Lemeshow

goodness of �t test and a goodness of link test, found in Table 4. For readers interested in the

complete process of model selection we have included this in the appendix, see Subsection

8.10. Our �nal choice for the initial model was model E, and the reasoning for this choice is

given below.

Model AIC BIC Ĉ Link

A 49 965.4 51 618.9 0.00 Y

B 43 975.7 46 173.3 69.62 N

B2 45 348.3 47 033.8 134.61 N

C 43 501.8 46 275.5 77.75 N

C2 44 064.6 46 144.9 0.11 Y

D 44 688.8 46 662.4 0.79 N

E 45 023.9 46 720.1 8.85 Y

E2 44 676.7 46 383.6 45.67 N

Table 4: Values for AIC, BIC, Hosmer-Lemeshow goodness of �t test (G=10) and goodness of link

test (Y = Pass, N = No pass) for each of the model during the model selection process.

Model E cannot be said to have the best �t of all the initial models for time that we

have investigated up to this point, but it is parsimonious in its speci�cation and is concluded

to be well speci�ed. Compared to model D, it has a signi�cantly higher deviance statistic,

(LR = 398.00), but in contrast passes both speci�cation tests. It is also more parsimonious in

respect to the number of parameters involved, having 26 and 36 fewer parameters than model

D and C2, respectively. Finally, by using this model we have a sound way of interpreting

its coe�cients as it has been used in the earlier literature, as in (Willett & Singer, 1995,
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p. 58). While model C2 may be superior in some aspects, we consider model E completely

appropriate for the purpose of this analysis and leave the use of the more complex model as

a suggestion for further research. Having chosen our initial model for time and concluded

that the model �ts well as per the result of the Hosmer-Lemeshow goodness of �t test, we

now take a closer look at other summary measures for goodness of �t and perform some

model diagnostics before interpreting the estimated parameters.

5.1.2 Model diagnostics

Having chosen our initial model, we proceed to examining the classi�cation table and the

AUROC curve. We have already performed the Hosmer-Lemeshow goodness of �t test and

the goodness of link test, which is shown in Figure 3, in which the model was concluded

to be well speci�ed by both tests. The classi�cation table, with the default cuto� point

of 0.5, is shown in Table 5 together with the sensitivity and speci�city shown beneath the

table. The overall rate of correct classi�cation is estimated as 97.97%, with 99.7% correct

classi�cation of event nonoccurrence (speci�city) but only 13.71% correct classi�cation for

event occurrence (sensitivity). To answer why we get such a low value for the sensitivity,

we focus our attention to Figure 4, which plots the sensitivity and speci�city for all possible

cuto� points for the study.

Observed

Classi�ed Y = 1 Y = 0 Total

Y = 1 876 918 1 794

Y = 0 5 514 310 109 315 623

Total 6 390 311 027 317 417

Sensitivity = 876/6 390 = 13.71%;

Speci�city = 310 109/311 027 = 99.70%.

Table 5: Expected classi�cation table based on the logistic regression model E using a cuto� point

equal to 0.5.

We can then see that the two curves cross somewhere much closer to zero than 0.5, which

would be a more appropriate choice for a cuto� point if our goal was to choose a cuto� point

56



Figure 4: Plot of sensitivity and speci�city versus all possible cuto� points based on the logistic

regression model E.

to maximize both sensitivity and speci�city. After all, the ability of a model to discriminate

between event occurrence and nonoccurrence can be said to be more of a function of the

di�erence between the groups than the logistic model itself(Hosmer et al., 2013, p. 174),

and we are already fully aware that most people do not experience many spells, as evident

in Table 15, see Subsection 8.4 in the appendix. To complete this discussion of sensitivity

and speci�city, we present the AUROC for the model in Figure 5, which is 0.867, considered

�excellent� discrimination by the guidelines in Subsection (ROC). Examining the AUROC

curve for the models considered, we �nd it is never outside the realm of what might be

considered �excellent� discrimination. We now move on towards the third and �nal step of

assessing model adequacy; examination of in�uential observations.
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Figure 5: Plot of sensitivity versus 1-speci�city for all possible cuto� points based on the logistic

regression model E.

5.1.3 In�uential observations

For our discussion of in�uential observations, we have included the four plots discussed in

Subsection 4.5.7 in Figure 6. All plots have the estimated logistic probabilities (π̂) on the

x-axis, and for the y-axis the top left plot has the leverage values (h), the top right has ∆χ2,

the bottom left has ∆D and bottom right has ∆β̂. For the points in each plot we have added

the number of the covariate pattern, ranging from the somewhat arbitrary numbers 1 to 375,

as they vary with how one aggregates the data.(Hosmer et al., 2013, p. 198) Our process will

be to consider each plot, discuss its general appearance and take note of signi�cant outliers

that can be observed. Before we proceed, we will summarize our knowledge of the covariate

pattern numbers.

For each covariate pattern, all values of the independent variables and estimated probabil-

ities are equal. For instance, covariate pattern number one only has participants in their �rst

spell (REP = 0 & INS = 0), a stay at the HNA, in the 158th period (PD NUM = 158),

and estimated probability of event occurrence is ∼ 0.003. For the �nal covariate pattern,

375, all participants within this covariate pattern are in the �rst period (PD NUM = 1)

of a stay in the STI (INS = 1) which is not their �rst stay (REP = 1) and the estimated

probability of event occurrence is ∼ 0.052. Whenever we observe covariate patterns deemed

as appropriate candidates for closer investigation, we describe the characteristics of said
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Figure 6: Plots of four diagnostic statistics (h, ∆χ2, ∆D and ∆β̂) versus estimated hazard proba-

bility (π̂) based on the logistic regression model E.

covariate pattern in the examination that follows.

For the plot of leverage values against estimated probabilities, we can make a few

statements on its general appearance and take notes on covariate patterns of interest.

First, observe that many estimated probabilities are approximately zero, ranging widely

from a leverage value nearly zero to unity. Examining what the covariate patterns repre-

sent, the covariate patterns with high leverage (h > 0.9) values are those in later periods

(PD NUM = 114−159), and for early spells at the HNA (SP NUM = 1, 3). The covari-

ate patterns that do not have estimated probabilities close to zero, and leverage values not

approximately zero, usually have covariate pattern numbers larger than 300. This indicates

that these covariate patterns are for the earlier periods, not depending on the type of spell.

Lastly, a good amount of covariate patterns in the range (200 − 250) have high estimated

probabilities (π̂ = 0.6 − 0.8), and after closer examination it turns out all these covariate

patterns are for repeat visitors staying at the STI in periods ranging from 20 to 50.

For the plot of ∆χ2 against estimated probabilities, we �nd four covariate patterns (3, 364,

369 and 371) especially standing out from the rest, requiring closer examination. Covariate
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patterns 3 and 364 are both in the �rst spell and have low estimated probabilities (π̂ < 0.1).

They are in period 155 and 3 and have leverage values equal to 1 and 0.4, respectively. For

covariate patterns 369 and 371, both are in the second period of repeat spells, 369 being at

the HNA and 371 at the STI, with leverage values of 0.45 and 0.54, respectively. Thus, for

the �rst spell, period 155 has a great e�ect on the �t as given by ∆χ2. It also has a large

e�ect on the coe�cients, given by the leverage value. Additionally, period 3 has a big impact

on the �t as well, and it might not be coincidental that said period is also the peak of the

sample hazard pro�les as shown in Figure 1. As for repeat spells of either type, the second

period seems to be of great a�ect to the overall �t of the model from examination of this

plot.

For the plot of ∆D against estimated probabilities, in addition to the four points already

covered, we see a remarkably negative value for the �rst covariate pattern. For this covariate

pattern, participants are in their �rst spell, and in the �nal period, 158, and this covariate

pattern has a leverage value equal to 1. The leverage value indicates that this covariate

pattern greatly a�ects the estimated coe�cients, and the highly negative value of ∆D leads

us to the expectation that removing it will increase the deviance of the model signi�cantly.

For the �nal plot we have ∆β̂ against estimated probabilities, and we again observe

extremely large values for covariate pattern 1 and 3. To summarize this section, we include

a table shown in Table 6 where we state the covariate pattern numbers, the corresponding

values of the independent variables and the values for each of the diagnostic statistics.

When adjusting for clustering e�ects, we have included plots of the four diagnostic statis-

tics against estimated hazard probabilities in Figure 8 and a summary table describing the

most ill-�tted covariate patterns in Table 17 in the appendix. Adjusting for clustering ef-

fects, covariate patterns 1 and 3 are no longer observed as being highly in�uential, yet we

still experience issues with covariate pattern numbers above 300. Additionally, some of the

leverage values exceed unity for reasons unknown. Overall, the observed values of the di-

agnostic statistics are lower, especially for ∆β̂. Having examined our chosen model, we are

now ready to interpret the initial model for time in the next section.
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Covar.No. 1 3 364 369 371

INS 0 0 0 0 1

REP 0 0 0 0 1

PD NUM 158 155 3 2 2

yr 2 2 84 421 115

π̂ 0.0030 0.0029 0.0728 0.0876 0.1662

∆χ2 - 394.7 276.2 357.9 339.3

∆D -716.8 377.0 379.1 289.6 430.1

h 1.000 1.000 0.391 0.445 0.538

∆β̂ 1.8e+17 2.82e+16 177.1 286.9 394.9

Table 6: Covariate values, number of event occurrences (yr), estimated logistic probability (π̂) and

the value of four diagnostic statistics ∆χ2, ∆D, ∆β̂ and leverage (h) for �ve of the most in�uential

covariate pattern numbers. Based on the logistic regression model E, not adjusted for clustering

e�ects.

5.2 Interpreting the initial model for time

For our chosen initial model for time, model E, we plot the �tted hazard functions for the

�rst 10 spells in Figure 7. The full model output is shown in Table 19 in the appendix,

and odds ratios with corresponding 95% con�dence intervals adjusted for clustering e�ects

are in Table 7. We got a recommendation that adjusting for clustering e�ects might be

appropriate, which has been done in previous literature such as (Heggestad, 2001, 2002).

This is because some of the observations in the data set might not be independent, while

adjusting for clustering e�ects negates this requirement, as outlined in Subsection 4.6.4.

Therefore, all models and corresponding tables and �gures from this point onward have been

adjusted for clustering e�ects by clustering on the identi�cation variable, ID.

The coe�cients for Period1, P eriod2, ..., P eriod159 describe the logit-hazard pro�le for

the �rst spell at the HNA, when INS and REP are zero. Their magnitudes suggest the

logit-hazard is initially quite high in the �rst periods before decreasing and converging to a

constant level, re�ected in the �tted �rst-spell hazard pro�le in Figure 7. The �tted hazard

functions were attained by substituting estimated parameters into Equation 61 and solving

for logit(hij(k)), which for the �rst spell is simply antilogging each parameter estimate

for each period. To consider how the risk pro�les di�er across spells in di�erent states,
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Figure 7: Fitted hazard functions for the �rst 10 spells based on the logistic regression model E.

The top row represents spells at a home-nurse area (Spell 1, 3, 5, 7, 9).

The bottom row represents spells at short-term institutions (Spell 2, 4, 6, 8, 10).

we investigate the coe�cient for the INS and the interaction term with LPER. Since the

logarithm of unity is zero, the coe�cient for INS, −0.32, estimates the di�erence between

�tted in- and out-of-STI logit-hazard probabilities in Period 1.(Willett & Singer, 1995, p.

57) After antilogging, the estimated odds ratio of 0.72 means that the estimated odds of

Variable Odds ratio 95% CI

INS 0.72 (0.502, 1.047)

INS×LPER 4.57 (3.416, 6.106)

REP 4.01 (3.478, 4.620)

REP×LPER 0.88 (0.829, 0.938)

Table 7: Estimated odds ratios and 95% Con�dence Intervals for the initial model for time, Model

E, adjusted for clustering e�ects.

returning to a HNA after one period are 0.72 times that of leaving a HNA after one period.

If we divide one by the estimated odds ratio, we get 1.38, and we can say that the estimated

odds of leaving the HNA after one period are 38% higher than leaving the STI after one
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period.10

Since the estimated coe�cient on the interaction term is opposite to the main e�ect, and

very large, this means that the di�erential will reverse, and rather quickly. For instance, by

the second period the di�erential has already reversed, and after the second period a person

at a STI is more than twice as likely to leave the institution than someone at a HNA is likely

to enter, the procedure that led to this interpretation being shown in Equation 51.

e(β̂P2
+β̂INS+(ln(2)×β̂(INS×LPER)))

eβ̂P2

=

e(−3.645+(−0.322)+(ln(2)×1.519))

e−3.645

≈ 0.05476

0.02613
≈ 2.08 (51)

The e�ects of initial and repeat spells, whether the participants are at a HNA or STI,

are described by the coe�cients on the predictors REP and REP × LPER. The antilog of

1.39 (4.01) indicates that the odds a repeat spell of either type11 will end in the �rst period

are about 4 times larger than the odds for an initial spell ending in the same period.(Willett

& Singer, 1995, p. 58) Since the sign of the coe�cient on the interaction term is opposite

to that of the main e�ect, this suggests that this di�erential will also reverse over time.

Because the magnitude of the interaction term is not as large as in the previous case, it will

take signi�cantly longer before these di�erential reverses. By the 10th period, the odds ratio

has decreased to 3, to 2.5 by the 43rd period. However, it does not decrease below 2 during

the �rst 159 periods. Thus, in the �rst three years of a spell, returnees from a STI to a

HNA are at higher risk, at least twice as likely, of readmission than someone that has not

been admitted earlier. Similarly, for the same periods in a spell, those having been to the

institution previously are at higher risk of leaving than those there for the �rst time. Before

we proceed to interpreting other predictors of interest, we will describe how they are de�ned

and how we go about adding them to the original model.

10When adjusting for clustering e�ects, the coe�cient for INS is only signi�cant on a 10% level as opposed

to 1% without adjustment.
11Assuming no signi�cant di�erence in risk for in- or out-of-institution spells.
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5.3 Specifying the demographic variables

The predictors we will be using are characteristics representing the gender, cohabitation, age

and reablement program participation for each participant. The gender variable, MALE, is

a dichotomous variable equal to 1 if the participant is a male, and zero otherwise. The

cohabitation variable, ALONE, is equal to 1 if the participant lives alone, and zero other-

wise.12 The variable for age, AGE, is a categorical variable with 3 values, 0 to 2, and the

age that has been used is the participants age in the second year during the study. The

variable is equal to zero if the participant is younger than 67, equal to one if he or she is

between 67 and 80, and equal to two if older than 80. We will be using dummy variables in

order to compare di�erent age groups, using group 1 as the baseline group. The reablement

program participation variable, REHV1, is a dichotomous variable equal to 1 from the week

the participant enters the reablement program and for the rest of their time in the study.

We have also added REHV2, a dichotomous variable similar, but not equal to, the original

REHV1. The di�erence between them is that REHV2 does not include the time spent in

the program, but instead only records the time after reablement program participation. We

now summarize our estimation procedure for each variable involved.

We investigate the relationship between predictors by adding them to the initial model E

and comparing model goodness of �t with a likelihood ratio test13,(Willett & Singer, 1995,

p. 59) and run a HL goodness of �t test before interpreting the odds ratio of the main e�ect

and interaction e�ects. For each variable we estimate separate models and, in addition to

the main e�ect, add two-way interaction terms whenever meaningful and signi�cant. The

main e�ect describes the di�erential in hazard probabilities between values 0 and 1. If the

two-way interaction between the main e�ect and log-period is included and signi�cant, then

the coe�cient for the main e�ect explains the �rst period in the �rst spell only. If not, the

di�erential of the main e�ect does not change across time within spell. The interaction term

between the main e�ect and INS describes how hazard probabilities di�ers in spells at the

12More precisely, this variable is equal to one if the participant is unmarried, or not married/in a partner-

ship, or a widow(er), or separated/divorced, or married/partner is at an institution.
13The likelihood-ratio test is invalid when adjusting for clustering e�ects, and the value given is for the

corresponding unadjusted models.
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HNA and the STI. Finally, the interaction term between the main e�ect and REP describes

how hazard probabilities di�er between initial and repeat spells.

5.4 Separate models for demographic variables

We will begin this section by estimating separate models for each characteristic predictor

by adding them to the initial model. After this is complete, we will combine the separate

models into a fully integrated one. Following the conventions in literature such as (Hosmer

et al., 2013, p. 77), we provide the odds ratios and con�dence intervals of interest for each

model, adjusted for clustering e�ects, indicating the signi�cance level using the previously

established system. For completeness we have included tables with all coe�cients, standard

errors, p-values and con�dence intervals for each model in the appendix, see Subsection 8.13.

5.4.1 Gender

Model Gender includes the main e�ects of the gender variable, MALE, with odds ratio of the

main e�ect in Table 8 with corresponding 95% con�dence intervals adjusted for clustering

e�ects. The three two-way interactions with MALE were not signi�cant when adjusting for

clustering e�ects, W = 4.6, p = 0.2034, and were therefore omitted. The hazard pro�le for

men di�ers signi�cantly from that of women, LR = 14.96, p = 0.0001, and the model �ts

reasonably well, Ĉ = 5.12, p = 0.7446. The antilog of the coe�cient for MALE, 1.11, implies

that men have 11% higher odds compared to women of event occurrence, a di�erential that

does not change across time or depending on the type of spell considered.

Variable Odds ratio 95% CI

MALE 1.115 (1.026, 1.211)

Table 8: Estimated odds ratio and 95% Con�dence Interval for the Gender model, adjusted for

clustering e�ects.
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5.4.2 Living alone

Model Living alone includes the main and interaction e�ects of living arrangements, ALONE,

with odds ratios and corresponding 95% con�dence intervals in Table 9, all adjusted for

clustering e�ects. The two-way interaction for the main e�ect with REP was not signi�cant

when adjusting for clustering e�ects, W = 1.87, p = 0.1716, and was therefore omitted. The

�t improved signi�cantly by adding the additional parameters, LR = 256.75, and it was

concluded to be well speci�ed, Ĉ = 8.48, p = 0.3879. The odds ratio of the main e�ect (0.41)

is the di�erential for someone living alone in the �rst period of a spell at a HNA.14 This

means that someone that someone not living alone is more than twice as likely (2.46 = 1
0.41

)

of being admitted to the STI in the �rst period of any odd numbered spell.

The interaction with log-period is opposite to that of the main e�ect which means the

di�erential reverses across time within spell, and by the 131st week in a spell at a HNA,

it has fully reversed. For the �rst period of spells at a STI, someone living alone has 0.78

(e−0.9+0.65) times the odds of someone not living alone of release, which reverses by the 4th

period. Thus, while someone not living alone has higher odds of leaving, after four periods

the odds are turned and the di�erential increases from the 4th period and onward.

Variable Odds ratio 95% CI

ALONE 0.407 (0.317, 0.523)

ALONE×LPER 1.202 (1.106, 1.307)

ALONE×INS 1.925 (1.505, 2.462)

Table 9: Estimated odds ratios and 95% Con�dence Intervals for the cohabitation model, adjusted

for clustering e�ects.

5.4.3 Age

Model Age considers the e�ect aging has on hazard probabilities for event occurrence, with

odds ratios and their con�dence intervals presented in Table 10, all adjusted for clustering

e�ects. We have added two interactions terms, one for each age group, for each of the three

variables LPER, INS and REP. While some of these terms were signi�cant for one age group

14If the interaction with REP was signi�cant, the di�erential would only be for initial spells at a HNA.
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but not the other, all were kept in the model in order to preserve the complete structure

of the categorical variable. The model gives the largest decrease in the deviance statistic

of all models considered, LR = 482.74. The model passes both of the speci�cation tests,

Ĉ = 5.52, p = 0.7005.

For the younger group, the main e�ect and all but one two-way interaction term is sig-

ni�cant, which is the one between the main e�ect and LPER. Antilogging, the odds ratio

describing the di�erential in hazard due to age is 0.31 in any period of the �rst spell, indi-

cating that the reference group (age 67-80) is more than 3 times as likely of event occurrence

compared to those younger than 67 in any period during an initial spell at a HNA. If the

spell is not initial, but rather a repeat spell at a HNA, this odds ratio is 0.56 (e−1.18+0.59)

instead.

In any period of an initial spell at a STI, the younger cohort has an odds ratio of 0.81

compared to the reference group, meaning the reference group has 23% higher odds of leaving

a STI in any period of an initial spell. If it is a repeat spell at a STI, the odds ratio is 1.47 in

any period, with the younger group having 47% higher odds of leaving in any period. This

indicates persons in the reference group are more likely to leave the STI than the younger

cohort, but only if it is their �rst time at the STI.

For the group older than the reference group, anyone above the age of 80, the main e�ect

is not signi�cant while the two-way interactions term between AGE and LPER is signi�cant.

This means there are no signi�cant di�erences due to age in the �rst period of any spell,

but a di�erential occurs across time within spell, not depending on whether the spell is at a

HNA or a STI, nor initial or repeat. The interaction with LPER is positive and signi�cant,

meaning this di�erential escalates. For instance, by the 19th period the odds ratio is 1.51,

indicating that those older than 80 have 50% higher odds of being admitted to, or released

from, a STI than the reference group.
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Variable Odds ratio 95% CI

AGE

Group 0 0.309 (0.210, 0.454)

Group 2 0.858 (0.662, 1.112)

AGE×LPER

Group 0 1.037 (0.915, 1.175)

Group 2 1.150 (1.057, 1.252)

AGE×INS

Group 0 2.636 (1.686, 4.121)

Group 2 0.998 (0.765, 1.302)

AGE×REP

Group 0 1.806 (1.260, 2.588)

Group 2 0.854 (0.712, 1.026)

Table 10: Estimated odds ratios and 95% Con�dence Intervals for the age model, adjusted for

clustering e�ects.

5.4.4 Reablement

This section considers two models for the e�ects of reablement program participation in two

di�erent ways, one including (REHV1) and the other excluding (REHV2) the time spent in

the program. Model REHV1 includes the time spent in the program, with odds ratios and

con�dence intervals adjusted for clustering e�ects shown in Table 11.

Variable Odds ratio 95% CI

REHV1 1.519 (1.297, 1.780)

REHV1×REP 0.520 (0.408, 0.663)

Table 11: Estimated odds ratios and 95% Con�dence Intervals for the previous or current reablement

program participation model, adjusted for clustering e�ects.

The two-way interaction between the main e�ect and LPER or INS are not signi�cant,

W = 4.65, p = 0.0976, and have therefore been omitted. The �t is improved when adding

the extra parameters compared to model E, LR = 45.94, and passes both speci�cation tests,

Ĉ = 9.94, p = 0.2694. Antilogging the coe�cient of the main e�ect, we get an odds ratio

of 1.52, indicating that participants currently receiving or those that previously received
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reablement services have 52% higher odds of event occurrence in initial spells of either type.

Considering repeat spells of either type, the odds ratio is 0.79 in any period. This means

that in initial spells, having received or receiving reablement services brings forth higher risk

of either entering or leaving a STI compared to non-participants, while the opposite is true

for repeat spells of any type.

The odds ratios and con�dence intervals adjusted for clustering e�ects for the model

considering only previous program participation, REHV2, is shown in Table 12. The same

two-way interaction terms were insigni�cant as for model REHV1, W = 4.7, p = 0.0954, and

were therefore omitted. The model has a signi�cantly better �t than model E, LR = 48.25,

and passes both speci�cations tests, Ĉ = 7.81, p = 0.4522. Considering only the period after

program participation, the odds ratios are similar to that of REHV1. The odds ratio of

the main e�ect is 1.86, indicating that previous reablement program participators have 86%

higher odds of being admitted to, or released from, a STI in any given period of an initial

spell. In repeat spells, the odds ratio is 0.94 for any period. Summarizing, the odds are

signi�cantly higher for being admitted to a STI for the �rst time, and also higher leaving

than for non-participants. The odds are somewhat lower for being readmitted compared to

non-participants, but also lower for being released once readmission has occurred.

Variable Odds ratio 95% CI

REHV2 1.862 (1.560, 2.223)

REHV2×REP 0.506 (0.392, 0.652)

Table 12: Estimated odds ratios and 95% Con�dence Intervals for the previous reablement program

participation model, adjusted for clustering e�ects.

5.5 Combined models for demographic variables

We are interested in a model which incorporates several of the variables that we have consid-

ered thus far. The main goal is to investigate whether the conclusions made about reablement

program participation hold when we control for gender and age.15 Therefore, we combine

15The e�ects of living alone have not been included, the reasoning behind this discussed in Subsection

6.2.2.
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the models for reablement program participation with the models for e�ects of gender and

age and add two-way interaction terms for each of the main e�ects of reablement, gender and

age. Since we have two versions of the reablement participation variable, one including the

time spent in the program and one excluding it, we will have two versions of the combined

model.

We �nd that the most intuitive approach is the comparison of the coe�cients for the

combined models against the coe�cients from the separate models, which we have presented

in Table 13. The �rst combined model, COMB1, �ts signi�cantly better than model E,

LR = 569.48, and passes both speci�cation tests, Ĉ = 9.2, p = 0.3254. The second combined

model, COMB2, has very similar statistics with the same properties, LR = 565.27 for the

likelihood ratio test and Ĉ = 11.09, p = 0.1967 for the HL goodness of �t test.

Combining the separate models have modi�ed the coe�cients involved, both for the

e�ect of time and characteristic predictors. The di�erential in odds ratio for INS16 has

increased from 0.72 in model E to 0.63 and 0.62 in model COMB1 and COMB2, respectively,

while being approximately equal for the interaction with log-period. This indicates the odds

of event occurrence in the �rst period of an initial spell at a STI are even lower when

accounting for the other predictors involved, but the reversal across time within spell is

the same. The odds ratio for REP is approximately equal for model E and COMB1, but

lower for COMB2, while the interaction with log-period is the same for all three models.

This indicates controlling for REHV2 as opposed to REHV1 has the e�ect of reducing the

di�erential when considering the �rst period in a repeat spell of any type, while the reversal

e�ect remains unchanged.

For the predictors from the separate models, all coe�cients are still signi�cant in the

combined models, yet their magnitude has in some cases been modi�ed. The main e�ect of

gender is of larger magnitude for the combined models, odds ratios equal to 1.3 and 1.32 for

COMB1 and COMB2, respectively, as opposed to 1.11 for the separate model. This indicates

the di�erential in odds ratio due to gender is larger than we previously estimated when we

account for age and reablement program participation. The odds ratio for the youngest

cohort is slightly higher for the combined models, indicating a smaller di�erential due to

16Note that INS is now signi�cant at 1%, while it previously was only signi�cant at a 10% level.
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age when accounting for gender and reablement program participation. For the two-way

interaction terms accounting for gender and reablement had little to no e�ect, indicating

that previous expectations for di�erential behavior in repeat spells of any kind still hold.

Comparing the odds ratio for reablement in the combined models against their corre-

sponding separate models, the magnitude of the main e�ect decreases while the two-way

interaction with REP increases in both cases. The odds ratio of the main e�ect for REHV1

is 1.52 and 1.86 for REHV2, while it is 1.44 and 1.82 in COMB1 and COMB2, respectively.

In other words, controlling for age and gender decreased the likelihood of event occurrence

in initial spells due to reablement program participation. The odds ratio for the interaction

with REP increased, meaning there is a decrease in di�erence between program participants

and non-participants in repeat spells. For instance, recall that the odds ratio in repeat spells

was 0.94 for program participants in model REHV2, while now it is 0.9917 (e0.6−0.61). This

means accounting for gender and age has not only decreased the di�erential in initial spells,

but also in repeat spells.

Finally, none of the two-way interactions between the characteristic predictors were sig-

ni�cant at our chosen con�dence level. Even if the interaction between age and gender was

close to being signi�cant, p-values equal to 0.054 and 0.05 for COMB1 and COMB2, re-

spectively, we do not put any weight on this result. Our greatest interest was in �nding

meaningful interactions between age or gender and reablement participation, none of which

turned out to be of any signi�cance. In the next section we compare our �ndings to that of

previous literature in similar settings and assess the potential impact of our choices.

17We tried adding the interactions terms REHV2×LPER and REHV2×INS back into model COMB2 to

see if this would have an e�ect. Both interactions terms were insigni�cant, W = 2.24, p = 0.3268, yet the

odds ratio for REHV2 increased to 2.33 and the interaction with REP decreased to 0.508. Thus, adding

the interaction terms back in, while themselves being insigni�cant, had the e�ect of making the main e�ect

much larger in magnitude and the odds ratio in repeat spell increased from 0.99 to 1.186.
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Odds ratio (95% CI)

Variable Separate COMB1 COMB2

INS 0.725 0.628 (0.443, 0.891) 0.621 (0.440, 0.878)

INS×LPER 4.567 4.574 (3.496, 5.984) 4.591 (3.521, 5.986)

REP 4.008 4.035 (3.353, 4.857) 3.891 (3.235, 4.679)

REP×LPER 0.882 0.879 (0.826, 0.935) 0.880 (0.827, 0.936)

MALE 1.115 1.303 (1.109, 1.530) 1.317 (1.121, 1.547)

AGE

Group 0 0.309 0.364 (0.238, 0.559) 0.364 (0.237, 0.558)

Group 2 0.858 0.946 (0.725, 1.234) 0.940 (0.722, 1.225)

AGE×LPER

Group 0 1.037 1.032 (0.912, 1.167) 1.034 (0.913, 1.171)

Group 2 1.150 1.144 (1.053, 1.243) 1.145 (1.054, 1.244)

AGE×INS

Group 0 2.636 2.628 (1.683, 4.105) 2.640 (1.698, 4.105)

Group 2 0.998 1.000 (0.767, 1.302) 1.007 (0.777, 1.306)

AGE×REP

Group 0 1.806 1.821 (1.265, 2.621) 1.862 (1.293, 2.679)

Group 2 0.854 0.885 (0.735, 1.066) 0.893 (0.741, 1.076)

REHV1 1.519 1.436 (1.076, 1.916)

REHV1×REP 0.520 0.556 (0.438, 0.705)

REHV2 1.862 1.824 (1.349, 2.467)

REHV2×REP 0.506 0.542 (0.422, 0.697)

AGE×MALE

Group 0 0.727 (0.526, 1.005) 0.721 (0.520, 1.000)

Group 2 0.861 (0.713, 1.041) 0.862 (0.713, 1.042)

MALE×REHV 1.164 (0.892, 1.518) 1.101 (0.845, 1.433)

AGE×REHV

Group 0 0.899 (0.567, 1.425) 0.864 (0.516, 1.446)

Group 2 0.874 (0.652, 1.173) 0.853 (0.638, 1.142)

Table 13: Estimated odds ratios and 95% Con�dence Intervals for all separate and combined models,

adjusted for clustering e�ects.

6 Discussion

Here we discuss our �ndings in the light of previous literature, the choices we have made

during the work process and the potential e�ects our choices had on the results. In many

cases our �ndings are consistent with the conclusions of previous studies. The main themes

of choices and issues concerning these choices will be for the data cleaning approach and
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variable speci�cation.

6.1 Results in the light of previous studies

On the topic of gender, it has previously been shown that men have a hazard ratio of 1.18

compared to women concerning unplanned readmissions to Norwegian hospitals within 30

days, adjusted for clustering e�ects.(Heggestad, 2002, p. 655) Our results show that men

have an odds ratio of 1.1218 compared to women in a setting of traveling between home-nurse

areas and the short-term institutions in questions when adjusting for clustering e�ects. On

the other hand, Heggestad found no such relationship for later19 readmissions, while our

�ndings indicate that this di�erential is constant across time within spell.

On the topic of living alone, previous literature has considered the e�ect that living alone

and marriage has on the risk of being admitted to, or released from, a nursing-home. Their

results indicate living alone is associated with spending a shorter time living in a community

before being admitted to a nursing-home, and being married is associated with spending

longer time in the community before being admitted to a nursing-home.(Liu et al., 1991,

p. 132) Our �ndings indicates those living alone20 have lower odds of being admitted to a

STI21 and also lower odds of being released compared to those cohabiting, but that the odds

di�erential reverses within four weeks in a spell at a STI.

For the e�ect of age it has been found previously that individuals over the age of 80 have

a hazard ratio of 1.09 compared to individuals in the age group 67-80 for early readmissions,

and 1.21 for late readmissions to Norwegian hospitals.(Heggestad, 2002, p. 658) In a study

investigating nursing-home admission, it was found higher age was associated with shorter

duration in the community before admission, but no relationship between age and nursing-

home dismissal.(Liu et al., 1991, p. p 132) Our �ndings show the youngest cohort (AGE

18This odds ratio is for the separate model, while the combined models gave signi�cantly higher odds

ratios of 1.30 and 1.32.
1990-180 days after discharge.
20Recall that ALONE is made up of many variables, one of those representing whether a candidate is

married or not. Those that are unmarried have (ALONE=1) and as such are assumed to live alone.
21This �nding does not coincide with (Liu et al., 1991), but they considered nursing-homes, a form of long-

term institution. We have only covered admission to short-term institutions and not long-term alternatives.
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<67) are much less likely of being admitted to a STI, in all periods for both initial and

repeat spells. For the release from a STI, we �nd the youngest cohort much more likely to

be released than the reference group (ages 67-80), but only in repeat spells at a STI. For

the relationship between the reference group and the oldest cohort (80+), we �nd no initial

di�erence, but instead a di�erential appears and grows over time within spell. Additionally,

this escalation is not signi�cantly altered by which state or spell the participants are currently

in.

In previous studies investigating the e�ect of reablement program participation, the re-

sults have been mixed. One study concluded individuals who had received a reablement

service were less likely to use any type of home care over the three following years.(Lewin

et al., 2013, p. 1273) Another study concluded reablement was associated with a signi�cant

decrease in the use of social care service.(Glendinning et al., 2010, p. 117) On the other hand,

it was noted in a large review article on the e�ectiveness of reablement that two out of three

randomized controlled trials considered did not �nd signi�cantly improved physical function-

ality among recipients of reablement compared to standard home-care services.(Forland &

Skumsnes, 2016, p. 33) Another study also noted that a common weakness of reablement

studies was that they were lacking in quality by using small samples and being subject to

various types of bias.(Burton et al., 2015, p. 468)

Our �ndings on the topic of reablement are twofold and mainly depend on whether we

consider initial or repeat spells in a home-nurse area or in a short-term institution. We found

that for all models considered, individuals who are receiving or have received home-based

reablement services have higher odds of event occurrence in initial spells compared to those

not receiving such services. We believe this might be due to individuals receiving reablement

services often being in need of rehabilitation services because they have, or are at risk of,

some form of functional decline.(Forland & Skumsnes, 2016; Hjelle, Tuntland, Forland, &

Alvsvaag, 2017)

Considering this, all models also indicate that in repeat spells, current or previous re-

ablement participators have lower odds of event occurrence compared to non-participators.

Still, this e�ect is rather small (OR=0.989) when only considering the time after ending the

program and controlling for age and gender. Here it is important to note that this not only
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means lower odds of being readmitted but also lower odds of being released from the insti-

tution compared to non-participants in repeat spells. Finally, we did not �nd any signi�cant

interactions between reablement and gender or age in this study, and neither did we �nd any

meaningful rate of decay for the e�ects of reablement when adjusting for clustering e�ects.

Keeping this in mind we now move on to some choices that we have made during the study

process that could potentially a�ect the �ndings that we presented here.

6.2 Issues

6.2.1 Data

We begin by discussing the data set and the data cleaning procedure. The data set includes

considerable observational gaps and some missing values for di�erent variables. In our case,

we chose to ignore such gaps, while observational gaps in the data set may include critical

information that we have simply assumed to be unimportant.

As for the data cleaning procedure, manual changes were made, observations were omitted

and all other infringements on the original data set all constitute choices that may, and

reasonably should, be met with skepticism when interpreting the results given.

One particular issue is that de�ning the �rst spell as the �rst observable period a par-

ticipant is at the HNA is a questionable choice. We do not know when the person moved

into the HNA to begin with, and we therefore do not know their event time at the time

of event occurrence. Neither do we know if the person has been admitted to a STI before

entering the study, and then the second spell would not be his or her �rst time at the STI

after all, something which clearly compromises our distinction of initial and repeat spells for

the analysis.

Finally, we wish to bring attention to the point that stays at a STI are usually short,

and people are in most cases expected to return to their HNA, which deviates from previous

literature. Taking the study of (Willett & Singer, 1995, p. 42) as an example, a person

that is in the teaching profession and leaves is not entirely expected to return to teaching,

and therefore dividing spells into sets of two seems appropriate. Under other conditions,

when considering short stays at an institution in which those being admitted are expected

75



to recover and be able to return to their previous location, this might not be the case. This

could easily in�uence the analysis and suggest other, more appropriate choices for structuring

the variables than we have done in this article.

6.2.2 Variables

The next topic is that of variable speci�cation. The way in which the variables have been

de�ned may in�uence their interpretation in unforeseeable ways. First, the variable rep-

resenting whether the participant lives alone has been de�ned by combining several other

variables into a single, dichotomous variable. We were warned that the quality of each single

indicator is not great, and some values are missing, which makes the quality of the combined

variable questionable as well.

Second, our variable for the short-term institutions, STI, is a combination of two loca-

tions. The �rst location is the short-term institution itself, and the second is a rehabilitation

institution. We were informed that this rehabilitation institution is also a kind of short-term

institution, and we added it to our analysis as suggested.

By accounting for the issues in this section, one might expect changes in the hazard

functions, survivor functions and the estimated parameters in the estimated models. For

instance, the patient �ows of the two institutions may di�er if one institution is designed for

di�erent sub-populations. Thus, the estimated hazard functions may di�er when considering

the two institutions separately.

7 Conclusion

7.1 Summary and concluding remarks

In choosing an initial model, we based our decision on the ease of use, interpretation, and

a requirement of being well speci�ed. Suitable reparametrizations of the period and spell

indicators were found through visual inspection of the sample hazard functions for the �rst

10 spells. The initial model had high discrimination and a high overall rate of correct

classi�cation, but we experienced problematic covariance patterns as we were checking for
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potentially in�uential observations.

By comparing Figures 7 and 1, we could conclude that the initial model did a decent job of

describing the dependence of risk across periods and spells. For instance, the hazard in spells

at a home-nurse area was decreasing across time within spell, and the peak of the hazard

function was in the third period in spells at short-term institutions for both the sample

and �tted functions. We created separate models for the e�ect of time and characteristic

predictors before estimating two combined models for the e�ect of time, gender, age and

reablement. In the �rst combined model, the time spent in the reablement program was

included, while for the second combined model, it was excluded. We will be using the odds

ratios from the combined models for the concluding statements of di�erences in risk.

For initial spells, we �nd that individuals in their �rst week at a short-term institution

have odds approximately 37% lower for leaving than someone at a home-nurse area entering

in the same week. This di�erential reverses by the second week, when it is approximately

80% more likely that someone at a STI will leave than someone in a HNA in a similar

situation will enter. For repeat spells of any type, we �nd it approximately four times more

likely that a repeat spell of either type will end in the �rst week than an initial spell ending

in the same week. This di�erential is expected to slowly reverse over the course of more than

three years.

We �nd males have odds approximately 30% higher to leave or enter a short-term insti-

tution compared to women in a similar situation, not depending on how many times they

have been admitted previously.

For those living alone, we �nd they are much less likely, at an odds ratio equal to 0.41, to

be admitted or readmitted to a short-term institution compared to those not living alone in

the �rst period of a spell. This di�erence in risk slowly reverses across time within spell, and

has completely reversed after around two and a half years. For the release from a short-term

institution, those cohabiting have approximately 28% higher odds of being released in the

�rst period. Interestingly, this di�erential reverses quicker, and has fully reversed by the

fourth week in such a spell.

Concerning di�erences in risk due to age in initial spells, our results indicate those younger

than 67 years of age have odds approximately 64% lower for being admitted to a STI com-
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pared to those between 67 and 80 years of age. Concerning the risk of readmission for the

same age groups, the odds for the younger group are only around 33% lower instead. Con-

cerning release after initial admission, those in the younger cohort have approximately 4%

lower odds of being released compared to their older counterparts. For release after read-

mission, the younger cohort has approximately 75% higher odds for being released in any

period compared to the reference group.

For individuals over the age of 80, we only �nd a signi�cant escalation of a di�erence

in risk pro�les across time within spell. This means those older than 80 are more likely to

experience event occurrence compared to the reference group as more time is spent in a spell

of any type.

Reablement program participation is associated with higher risk of event occurrence in

initial spells. If we include the time spent in the program, those receiving and those who

previously received reablement services have 44% higher odds of being admitted to, or re-

leased from, a short-term institution compared to non-participants in any period. Excluding

the time in reablement, those that have previously received reablement services have 82%

higher odds of being admitted to, or released from, a short-term institution in any period.

For repeat spells, reablement program participation is associated with a lower risk of

readmission or release compared to non-participants. Including the time in the program,

those that have had reablement have odds approximately 20% lower than non-participants

for either readmission or release after readmission in any period. Excluding the time during

the program, previous program participators have odds that are approximately 1% lower

of being readmitted or released compared to non-participants. For either of the combined

models, we �nd no two-way interactions between the variables for age, gender or reablement

participation for our chosen level of signi�cance.

During the making of this paper, there were many ideas that could simply not come to

fruition due to constraints. Therefore, we �nalize this section with an outlook to the future,

and present some suggestions for further research.
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7.2 Suggestions for further research

There are many interesting possibilities for further research e�orts including, but not lim-

ited to, adding frailty components, removing the most troubling covariate patterns, trying

di�erent approaches to model estimation, de�ning variables di�erently and accounting for

other, interesting parameters.

While we have adjusted for clustering e�ects in this paper, it could prove useful to account

for heterogeneity in the model by adding what is known as frailty components.(Willett &

Singer, 1995, p. 61) During examination of several diagnostic statistics, we encountered

some highly in�uential and poorly �tted covariate patterns, and their removal could add an

interesting layer to later research e�orts, see (Hosmer et al., 2013, p. 199).

It could be interesting to use approaches which di�er from those we have put to work so

far, to see whether our results hold, i.e. are robust. For instance, using the complimentary

log-log link function(Willett & Singer, 1995, p. 51), or perhaps the conditional instead of

the unconditional maximum likelihood estimation approach.(Kleinbaum & Klein, 2010, p.

122)

One should perhaps attempt to deal with observational gaps di�erently than we have

and see if the yielded results change signi�cantly. The same goes for de�ning a di�erent

beginning of time, and dividing the dynamics of periods and spells di�erent than simply

distinguishing between spells in-and-out of the institutions and whether the spells are initial

or repeat.

While we �nd living alone is associated with much lower risk of admission to short-

term institutions, we do not know the risk-pro�les for admission to long-term institutions.

We therefore highly recommend a study which considers such risks, as they might reveal

important features in risk-pro�les which we were unable to account for.

We also observed some interesting results by explicitly distinguishing between persons

that had been in the study from the start and late entrants. Finally, an interesting outlook

would be to delve into the e�ects that living in a particular home-nurse area might have,

and the e�ect on patient �ows with varying degrees of capacity constraints at the short-term

institutions.
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8 Appendix

8.1 List of symbols and acronyms

Symbol Representation Acronym Meaning

N() Normally distributed -2LL Deviance statistic

c Dichotomous censoring indicator ADL Activities of daily living

Ĉ HL goodness of �t test statistic AGE Age group

d.f. Degrees of freedom AIC Akaike information criterion

ξ Rao-Cramer lower bound ALONE Living alone indicator

E Expected value of AUROC Area under ROC

e Error term BIC Bayesian information criterion

F Forced COMB1 Combined model 1

G Number of groups COMB2 Combined model 2

g Continuous function FNF False negative fraction

Γ Conditional mean of Y given x FPF False positive fraction

Ω Co-variance HL Hosmer Lemeshow

Θ Parameter space HL GOF HL goodness of �t

θ Vector of parameters HNA Home-nurse Area

σ2 Variance ID Patient identi�cation number

h() Hazard function INS Institution

H Hat matrix Link Goodness of link-test

H0 Null-hypothesis LL Log likelihood

hir Leverage LPER Natural logarithm of period number

h(tik) Hazard LR Likelihood ratio

i Individual MALE Gender indicator variable

I Highest number of individuals ML Maximum likelihood

j Spell MLE Maximum likelihood estimator

J Highest number of spells within study OR Odds ratio

k Period PD Parental divorce

K Highest number of periods within spell PD DUM Period dummy variable

L Likelihood function REHV1 Reablement member since start

med Median value REHV2 Reablement member since end

n Numerator REP Repeat spell

N Highest number Res Pearson residual

o1u Sum of observed cases ROC Receiver operating curve

Pr Probability ROR Risk odds ratio

π Estimated hazard probability SP DUM Spell dummy variable

q Number of parameters STI Short-term institution

r Covariate pattern TNF True negative fraction

R Highest number of cov.patterns TPF True positive fraction

S() Survivor function VAR Predictor placeholder

t Time

T Time at target event

V Diagonal matrix

W Wald test statistic

x,y,z Unknowns

χ2 Chi-square

y Event occurrence indicator

Table 14: Table of acronyms and abbreviations used in the paper.
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8.2 Description of original data set

Our original data set has a total of 421 693 observations of 35 variables and a total number of

units in the study equal to 5608. There are 6 dichotomous variables indicating the location or

state of existence for a unit at any time, whether it is a home-nurse area (HJSY / HJSY), one

of the available institutions or in a residential care home (BOLOM). These variables equal

to one whenever a unit is at the speci�ed locations and zero otherwise. The institutions

available for residence includes a stay at a rehabilitation (REHA) institution, special patient

care (STERK) institution, short-term (KORT) institution or long-term (LANG) institution.

If units are not at an institution, either short or long term, they are in a home-nurse area or

in a residential care home.

Three variables denote time, the identity of an unit and lastly a variable for easily iden-

tifying the location of a unit in any given time interval. The variable ID identi�es every

unit in the data set by giving each a single identi�cation number, from 1 to 5608. The data

set therefore in total contains observations from 5608 di�erent persons. The variable Uke

denotes which week the observation concerns and is a number from one and no larger than

159, a total period slightly longer than three years. Some of the units entered the study later

than the �rst week and some left before the study ended after three years, and therefore not

all units have observations for all the time periods. The variable Ansvar is an identi�cation

code used to determine who has the responsibility for the units stay at any given point in

time and can take the form of either zero, a three-digit or a four-digit number. If it is zero

then the unit is at an institution in that period, if it has three digits then the unit is at a

residential care home and if it has four digits then the unit is in a home-nurse area in the

given period.

Additionally, there are some gaps in the data for some of the units in the set, not neces-

sarily being restricted to one gap per unit. This entails that there are observations for the

unit when he or she enters the study but then some missing observations for one or more

periods before observations are again recorded for that unit. There is no guarantee that the

unit will be at the same location after the gap as before it, and unfortunately no way to

examine whether that unit experienced the event during the data gap. There are 10 variables
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used to calculate the average number of hours used per week for each of the variables.

There are 10 variables covering gender, marital status and the age of the unit in any

given period. The variable Mann is a time invariant dichotomous variable equal to one if

the unit is male and zero otherwise. There are 6 variables that can be used to examine the

martial status of the unit. These variables are all dichotomous variables equal to one if the

statement is true and they can change over time. The variables can be used to see if the

unit was married, in a partnership, divorced, a widow or widower, if the partner was at an

institution or if the social status was unknown in the given period. A note of caution was

given on the quality of these variables and that they perhaps could be restructured into a

dummy variable for whether the unit was living alone in the given period or not.

The age of the unit during the study is found in three variables named Alder14, Alder15

and Alder16. These give the age of the unit during the year 2014, 2015 or 2016, respectively.

Finally, there are 3 dummy variables used to denote in which year the observation was made.

These three variables are y2014, y2015 and y2016 and denote if the given observation was

made in 2014, 2015 or 2016, respectively.

8.3 Data cleaning procedure

The procedure of data cleaning is to accommodate for the upcoming analysis of the data

se. We begin by removing unnecessary variables, restructuring existing variables and doing

thorough visual inspection. The goal is to make the data easier to work with given our

research questions and uncover potential �aws and mistakes made during the recording of

the data set. We wish to decrease the available states of existence into a dichotomy where

only two states are possible. This section of data cleaning will go through the structuring

of the variable which addresses state existence and several important predictors used in the

�nal model. In addition, we work our way through the other possible states of existence in

order to incorporate them into the already de�ned variables in our data set.

We begin by explaining our restructuring of the variables in the data set. The variable

home-nurse area (HNA) is a dichotomous variable equal to unity whenever the unit is in the

state of being in a home-nurse area in the given period and zero otherwise. This variable

has been de�ned as being equal to one whenever the variable Ansvar is larger than 999,
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but less than 10000. Second, the variable short-term institution (STI) is a dichotomous

variable equal to unity whenever KORT is equal to unity or REHA is equal to unity and

zero otherwise.22 Thirdly, the variable long-term institution (LTI) is a dichotomous variable

equal to unity whenever a unit is in either STERK or LANG in the current period and zero

otherwise. Finally, BOLOM is a dichotomous variable equal to unity whenever the unit is

in residential home-care area and zero otherwise. The last two variables, BOLOM and LTI,

will be worked with in order to �nally exclude them from the data set by the time data

cleaning is complete.

As we have de�ned a stay at the home-nurse area as the �rst spell, no units may begin

their �rst spell until observed in a home-nurse area in the data set. We may therefore safely

delete all units that never stay in a home-nurse area during the study. We create a variable,

called HNAuser, which is equal to unity if a unit has been in a HNA at least once during

the study and zero otherwise. We proceed to delete all units for which this variable is zero,

and thus deleting 68 245 observations equal to 960 unique IDs and we are then left with

4648 unique IDs in the data set. Before we move on to the variable of BOLOM we check

if there are any participants with only a single observation, of which there are 135. Since a

single observation for any unit does not constitute longitudinal data but a mere cross-section

instead(Singer & Willett, 2003, 1996, p. Preamble V; p. 267), we delete those participants

with only a single observation during the entire study.

We proceed to deal with the variable of residential home-care (BOLOM). We wish to

eliminate this variable, but before this can be attempted one must investigate the potential

�aws this will bring. Possible issues could occur if the stays at BOLOM were in the middle

of the observations for any given unit because deleting such observations would distort the

reality of event occurrences. We therefore use several conditional statements in our data

program to identify those with stays at BOLOM in the middle of their observational period.

We then perform visual inspection of each identi�ed unit in order to decide whether deleting

the observation for BOLOM would have signi�cant negative consequences to the nature of

the data at hand. We conclude that in all cases except for one, stays at BOLOM occur either

22This has been done after discussion with our supervisor where we were informed that the rehabilitation

institution could be part of a short-term stay
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at the beginning or at the end of the observations for any one study participant. For the

participant with a short one-week stay at BOLOM during the middle of their contribution

to the sample both preceded and followed by stays at a HNA, we simply assumed this stay

to be a part of the stay at the HNA. For the rest of the cases, the variable does not interfere

and may thus safely be deleted without also deleting the entire event history of those that

either began or ended at BOLOM during the time they were participating in the study. We

delete BOLOM which removes 3316 observations from the data set, but does not remove

any participants from the data set.

Next in line is the variable for stays at the long-term institution, LTI. Like BOLOM, we

wish to delete this variable by the end of the data cleaning process in order to only consider

two possible states of existence for data analysis. Our concerns are the same as previously

in that stays at an LTI in the middle of study for any given unit will create gaps in the data

among other possible negative consequences. Instead of removing the entire ID whenever

they have been at LTI during the study, we decide that units that are either at the LTI at the

end or at the beginning need not be eliminated completely from the sample. Instead, only

the observations themselves that concern these stays should be omitted in order to preserve

the highest amount of potentially useful information. We create a variable identifying any

participant that has been to an LTI and is then sent to either STI or HNA in the next period.

Similarly, we create a variable which identi�es any unit that has been to either a HNA or

STI in any period with stays at LTI both before and after said period.

Although most participants that are sent to the LTI never return during the sample,

we notice that many participants tend to have what we term a �trial period� in which they

are sent from the LTI to either a HNA or STI for a short period, usually one week, before

ultimately being sent back to the LTI. We decide this trial period may be considered a part

of the LTI stay. On the other hand, some participants do return from an extended stay at

the LTI which complicates the data analysis. This is because it creates large structural gaps

in the middle of the observations for those units if we were to delete those observations. We

therefore made some manual changes to make sure our censoring mechanism would work

correctly in the future. For instance, one of these changes was to delete three observations

for a unit that returned to HNA after an extended stay at the LTI. To summarize this part of
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the data cleaning we made 12 changes to single observations to account for trial periods and

deleted a total of 169 single observations for seven unique IDs to make sure future censoring

works as intended. We were then ready to delete the variable LTI which removed 27 055

observations, and we were left with 4513 unique IDs in the sample.

The �nal stage of the data cleaning process was to de�ne an initial state of existence

for all participants involved in the study. We de�ne this as the �rst period a person is

observed in a HNA in sample. As some participants were not located at a HNA at their �rst

observation, we delete those entries which lead up to the de�ned beginning of time for each

individual. We therefore delete 2415 observations assuring all the participants occupy the

same initial state. Finally, we check again for any participants left with a single observation

as a consequence of the data cleaning. There are 17 such cases we promptly omit from the

sample and we are thus left with 4496 unique participants and a total of 320 358 observations

in the �nalized sample.

8.4 Distribution of spells (Subsamples)

Table 15 shows the maximum number of spells for all 4 496 participants of the study. The

sampling shortfall is clear here as 65% percent of the individuals only experience a �rst spell,

11% experience a �rst and a second spell and 10% experience a �rst, second and third. While

some experience 53 spells in total, nearly 90% have only experienced at most four spells,

which leaves little data for the explanation of event occurrence for later spells.
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Subsample Freq. Percent Cum. Subsample Freq. Percent Cum.

1 2,938 65.35 65.35 24 4 0.09 99.07

2 487 10.83 76.18 25 3 0.07 99.13

3 445 9.9 86.08 26 2 0.04 99.18

4 159 3.54 89.61 27 2 0.04 99.22

5 147 3.27 92.88 28 4 0.09 99.31

6 68 1.51 94.4 29 2 0.04 99.35

7 49 1.09 95.48 30 4 0.09 99.44

8 29 0.65 96.13 32 1 0.02 99.47

9 22 0.49 96.62 33 1 0.02 99.49

10 17 0.38 97 34 3 0.07 99.56

11 13 0.29 97.29 35 3 0.07 99.62

12 14 0.31 97.6 36 3 0.07 99.69

13 11 0.24 97.84 38 2 0.04 99.73

14 8 0.18 98.02 40 2 0.04 99.78

15 4 0.09 98.11 41 1 0.02 99.8

16 10 0.22 98.33 42 1 0.02 99.82

17 5 0.11 98.44 44 1 0.02 99.84

18 8 0.18 98.62 46 1 0.02 99.87

19 5 0.11 98.73 47 1 0.02 99.89

20 6 0.13 98.87 48 1 0.02 99.91

22 3 0.07 98.93 49 2 0.04 99.96

23 2 0.04 98.98 53 2 0.04 100

Total 4,496 100

Table 15: Summary of the distribution of spells. Includes frequencies of participants in each sub-

sample, percentage of frequencies in each subsample and cumulative percent frequencies. Subsamples

are de�ned in accordance with Subsection 4.3.4.

8.5 The di�erence between censoring and truncation

Terms such as censoring and truncation are similar yet di�erent ideas one must become

familiar with to perform survival analysis. Censored data occurs if the data for the dependent

variable is unobserved outside a certain range. Truncated data occurs if the data for both the

dependent and independent variables are unobserved for a certain range.(Brooks, 2008, p.

535) To demonstrate this di�erence, consider that we are interested in the time for a person

to complete a test, which is the event, and they are required to �ll in personal information

such as age either before or after the test, which will be used as independent variables later.

Now consider a person that withdraws from the test in the middle of it. If that person

�lled out his personal information at the beginning of the test the researchers still have

access to it and only the dependent variable, the time at which the test was completed, is
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unobserved. Then we may say that the data for this unit was censored. If, on the other

hand, the person was to �ll out his personal at the end of the test and left during, then the

researchers would not have access to those independent variables and the data for that unit

would then be truncated instead.

8.6 Conditional maximum likelihood

The selection criteria for whether one should use the conditional or unconditional method is

the number of parameters relative to the total number of units in the study. If this number is

small then the unconditional is preferred, while if it is large one should choose the conditional

method. Additionally, one should use the conditional method whenever there is matching in

the model and if there is any doubt on which should be used. That is because the conditional

method is always unbiased while the unconditional method may overestimate the parameters

of interest if it is inappropriate in the given case.

The formula for the conditional method is in Equation 52 and it may be observed that

the numerator of this equation is the same as the formula for the unconditional method with

the exception of the intercept (α). It is di�erent only in the denominator which sums the

joint probability of all possible con�gurations of the given data. Substituting the formula

for the logistic model into the equation for the conditional methods, we obtain Equation 53.

The main di�erence between the equations for the conditional and unconditional approach

is that the estimate of the intercept α is not included in the equation for the conditional

method. As the measure of e�ect in a logistic model is the odds ratio which does not include

α, it may be interpreted as a nuisance parameter.(Kleinbaum & Klein, 2010, p. 116)

LC =

∏y
l=1 P(Xl)

∏n
l=y+1[1−P(Xl)]∑

u

{∏y
l=1 P(Xul)

∏n
l=y+1[1−P(Xul)]

} (52)

LC =

∏y
l=1 exp(

∑k
i=1 βiXli)∑

u

[∏y
l=1 exp(

∑k
i=1 βiXlui)

] (53)

8.7 Lagrange Multiplier test

The Lagrange multiplier test is an alternative to the likelihood ratio test and allows one to

test restrictions that are imposed in estimation. Unlike the Wald test which requires that
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the model without the restriction is estimated, the Lagrange multiplier test requires that the

model under the null hypothesis is estimated instead.(Verbeek, 2004, p. 172) The idea of the

test is that if the restriction imposed is valid, then the restricted estimator should be near

the point that maximizes the log likelihood. If correct, the slope of log likelihood function

should be close to zero at the restricted estimator.(Greene, 2012, p. 566) As the slopes, the

�rst derivatives, are referred to as scores, the Lagrange multiplier test is often known as the

score test.(Verbeek, 2004, p. 174) It is important to note that there are several di�erent

versions of the Lagrange multiplier test statistic as well, as it may be based either on the

gradient or on the Lagrangian multiplier.(Jungeilges, 2017, p. 8)

The motivation of the test statistic can be made by performing the calculus of a con-

strained optimization problem, which we will quickly show for a case of scalar magnitudes

only. The constrained optimization problem is shown in Equation 54 and if θ solves this prob-

lem it ful�lls the associated �rst order condition, shown in Equation 55.(Jungeilges, 2017,

pp. 7-8) We may display the Lagrangian multiplier version of the test statistic in Equation

56, where the �rst and third term on the right-hand side are 55 and its transpose, and the

middle term denoting the inverse of the information matrix. Please note all the terms are

evaluated at the restriction given in the null hypothesis. Under the null hypothesis, the test

statistic has a limiting chi squared distribution with degrees of freedom equal to the number

of restrictions.(Greene, 2012, p. 570) The decision criteria are then equivalent to the other

tests above:

If LM ≥ χ2
1−α(r) then reject H0 else fail to reject H0.

maxθ∈ΘL(θ) = l(θ)− λ(θ − θW ) (54)

∂L(θ)

∂θ
=
∂l(θ)

∂θ
− λ = 0⇔ ∂l(θ)

∂θ
= λ (55)

LM =

(
∂lnL(θ̂W )

∂θ̂W

)′
[I(θ̂W ))]−1

(
∂lnL(θ̂W )

∂θ̂W

)
(56)

8.8 Collinearity and multicollinearity

Collinearity concerns the extent to which one or more explanatory variables in a model can

be predicted from other predictors in the model.(Kleinbaum & Klein, 2010, p. 270) If there
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is no relationship between these explanatory variables, we can say they are orthogonal to

each other.(Brooks, 2008, p. 170) However, living in the real world, we rarely expect there

to be zero correlation between variables, and as such, a small degree of collinearity is to be

expected. There is something rotten in the state of Denmark, a dark age of Shakespearian

villainy, when the explanatory variables are highly correlated with each other, in what we

can call multicollinearity.(Brooks, 2008, p. 171) If there exist highly correlated relationships

among some or all the predictors, the �tted model could yield some strange regression co-

e�cients, with high variances. The model will in such a case struggle with the collinearity

problems.(Kleinbaum & Klein, 2010, p. 271)

We must di�erentiate between perfect multicollinearity and near multicollinearity as they

are two classes of the problem. If one is to use the same predictor twice in the model by

accident, one will be getting perfect multicollinearity as there is a wrongfully inserted, but

real exact relationship between two variables in the model. Two variables that are perfectly

related to one and another, for example one being a multiple of the other, contain only

enough information to estimate one parameter. Going deeper into this situation, one would

have a problem inverting the variance-covariance matrix since the matrix would not be of

full rank, due to two of the columns being linearly dependent on each other.(Brooks, 2008,

p. 171) Note that the Fisher information matrix is used to calculate covariance matrices,

in cases with non-linear models were maximum likelihood estimation is used, and thus the

estimated variance-covariance matrix is called the inverse of the information matrix in such

situations.(Kleinbaum & Klein, 2010, p. 271)

Near multicollinearity refers to the cases where there are strong relationships between

explanatory variables that should not be ignored.(Brooks, 2008, p. 171) This is a common

occurrence when two explanatory variables are highly correlated, such as the explanatory

variables number of hours of sunshine and mean temperature during a summer is highly

correlated in explaining the yearly sale of ice cream. Note however that a high correlation

between the dependent variable, sale of ice cream, and one of the independent variables, mean

summer temperature, is not multicollinearity, rather it is hopefully a successful signi�cant

explanation of the dependent variable. In searching for collinearity, one should have two

objectives. First, to determine the reliability of the �tted model and, second, to determine
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if the estimated variances with corresponding standard errors are large enough to indicate

problems in the models explanatory variables.(Kleinbaum & Klein, 2010, p. 271) Solutions

to the problem of multicollinearity ranges from ignoring it if the model is otherwise adequate,

transforming variables into ratios and to dropping the collinear variables. Note that when

one drops a correlated variable one must be vary of omitted variable bias if the removed

variable was relevant in the data generating process.(Brooks, 2008, p. 173)

8.9 Time invariant and time varying variables

Time-invariant predictors such as gender, geographical area and their relationship with the

hazard probability are interesting tools for greater clarity in a model. One can investigate

these relationships by adding them to the full multiple-spell discrete-time model and draw

comparisons on the goodness-of-�t, before and after the addition. An interaction coe�cient

might indicate whether a di�erence increases or decreases over all the observations when a

time-invariant predictor is at play.(Willett & Singer, 1995, p. 59)

Time-varying predictors such as outside and inside spell states can be analyzed by similar

or identical methods, yet one must account for the strong possibility for there being time-

varying predictors operating only in some of the spells and not in other spells. Due to

this complication the e�ects must be regarded and studied with the utmost of care as the

time spent in the state depends on exogenous covariates that are likely to change over the

period.(Petersen, 1986, p. 287) Time-varying predictors are a challenge as the interpretation

of the hazard functions, due to a vast amount of time-based combinations possible from the

di�erent values on the timeline of the time-varying predictor.(Willett & Singer, 1995, p. 60)

By adding a time-varying predictor we can compare di�erent groups of participants at

di�erent times, such as comparing children with or without divorced parents growing up.

Over time children with the group membership �no parent divorce� might sadly loose said

membership, transferring to the PD = 1 since their parents broke up.(Singer &Willett, 2003,

p. 430) To examine the sample hazard functions based upon separate temporal patterns of

time-varying explanatory variables is rarely done. Firstly, due to the multitude of di�erent

temporal patterns, there is often too small samples of unique patterns to say anything of

signi�cance. An additional complication is when the model does not specify a relationship
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between the explanatory variable's patterns and the logit hazard, giving us little insight into

what contributions each type of pattern has.(Singer & Willett, 2003, p. 431)

A time-varying predictor can be state dependent if the explanatory variable value is

a�ected by the participants event status, whether the event has occurred or not. Thus, one

should look out if the predictors values at the time tj are a�ected by the state of the event

occurrence at that time.(Singer & Willett, 2003, p. 440)

8.10 The model selection process

There are a few commonalities for all the models involved, namely the exclusion of an inter-

cept and the exclusion of several period indicator variables. First, exclusion of the intercept

is to accommodate the inclusion of all the period indicator variables without complete lin-

ear dependency.(Willett & Singer, 1995, p. 53) Second, something all the models have in

common, is the exclusion of four period indicator variables, namely the period indicator

variables for period 135, 154, 157 and 159.23 As the period indicators are excluded, so are

the observations tied to these periods, the number of observations being 875, 706, 678 and

663, respectively. This is also why the parameters in model A is shown as being 155 instead

of the total number of period indicators, which is 159.

First, we consider the three initials models that do not include any reparameteriza-

tions at all, namely models A, B and C. We reject the null hypothesis of there being

no di�erence in risk across spells for the likelihood ratio test between models A and B,

(LR = 6045.96).(Willett & Singer, 1995, p. 54) Wishing to avoid adding too many inter-

actions yet still covering the �rst ten spells, our application of model C has been de�ned

as shown in Equation 57, and adds 54 cross-product terms to model B. Comparing models

B and C with a likelihood ratio test, (LR = 630.53), we reject the null hypothesis of the

e�ect of the period indicator variables on logit-hazard being constant across spells.(Willett

& Singer, 1995, p. 54) It is worthwhile to mention that while most of the interactions in

23This is a mechanism of the statistical software that has been utilized and is caused by the reason that

there are no target event occurrences in any of said periods. If these periods were to be included, target

occurrence, or rather non-occurrence, for these periods would be predicted perfectly and thus the coe�cient

for the period indicators would be in�nite.

95



model C are not signi�cant, there are a few observations to be made. For the �rst spells,

2-4, it is the initial periods, 1-3, that are signi�cant while for the last spells, especially 7, 9

and 10, most of the interactions are signi�cant. While this information may be invaluable

to the experienced econometric modeler, we can only content ourselves with simply stating

these observations for now and move on to the reparametrized models.

logit(hij(k)) =
159∑
m=1

αmPm +
53∑
m=2

βmSm +
10∑
m=1

γm(S2Pm) +
9∑

m=1

γ(m+10)(S3Pm)+

8∑
m=1

γ(m+19)(S4Pm) +
7∑

m=1

γ(m+27)(S5Pm) + ...+
2∑

m=1

γ(m+52)(S10Pm) (57)

The reparameterizations of the spell and period indicators must accommodate for the

data at hand and the research questions involved. In our case, from investigating the sample

hazard plots, see Figure 1 in Subsection 4.1.5, we can conclude there is a clear di�erence

between odd and even numbered spells, in other words a di�erence between spells at the

HNA and the STI, respectively. Additionally, we �nd it useful to distinguish between initial

and repeat visits to the short-term institution, as Table 15 in the appendix indicates most

participants never experience more than a single or at most two spells. For distinguishing the

�rst and second state, we introduce the dummy variable named INS for institution, which is

equal to one whenever a participant is at the STI, and zero otherwise. For distinguishing the

initial from recurring spells, we create a dummy variable named REP for repeat, which is

equal to one whenever a participant is not in their �rst or second spell. These variables are

deemed appropriate counterparts for those that were used in studies performed with di�erent

subpopulations and fewer numbers of spells in their data set, as in (Willett & Singer, 1995,

p. 56). Having covered our reparameterizations of the spell indicator, we will introduce the

models that utilize them and save our discussion of period indicator for the next subsection,

see 4.6.2.

The reparametrized versions of the models B and C, denoted B2 and C2 in Figure 3, are

shown in Equation 58 and 59, respectively, and have signi�cantly di�erent deviance statistics

compared to their original counterparts. Compared to B, B2 has a higher deviance statistic

and higher values for both AIC and BIC, both the models failing the speci�cations tests that

have been applied. Model B can be concluded to be preferred over B2. Compared to C, C2
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has a higher deviance statistic but it passes both speci�cation tests contrary to its original

parameterization, has a lower value for BIC, but not AIC. As it is clear from the summary

in Figure 3, model C2 is perhaps the �t of all the initial models for time as well as having

the advantage of passing both speci�cation tests. Its greatest merits are encompassed in

its three-way interaction between INS, REP and the period dummies, which we will now

demonstrate with our next model.

logit(hij(k)) =
159∑
m=1

αmPm + β1INS

+ β2REP + β3(INS ×REP ) (58)

logit(hij(k)) =
159∑
m=1

αmPm +
15∑
m=1

βm(INS × Pm)

+
15∑
m=1

β(m+15)(REP × Pm) +
10∑
m=1

β(m+30)(REP × INS × Pm) (59)

In model D, the last term from model C2 has been eliminated, and the model is given

by Equation 60. This last term represents the two-way interaction between INS and REP,

denoted INS × REP , and the three-way interaction between INS, REP and the period

dummies. Comparing model C2 and D, we reject the hypothesis that the logit-hazard pro�le

di�ers by whether a spell is initial or repeat and, independently, whether it is at a HNA

or STI, given by the di�erence in the deviance statistics, (LR = 634.18).(Willett & Singer,

1995, p. 56) It is also implied model D is lacking as it fails the goodness of link, while its

predecessor does not.24 It should be noted that even if we reintroduce the two-way interaction

INS × REP to model D, we still reject the null hypothesis of no three-way interaction,

(LR = 89.87), but the main contribution comes from the two-way interaction itself. This is

found by testing the two-way interaction using a Wald test, (χ2 = 520.14, df = 1). We shall

keep this in mind as we introduce the next model which utilizes reparameterizations of the

period indicator as well as reparameterizations of the spell indicator.

logit(hij(k)) =
159∑
m=1

αmPm +
15∑
m=1

βm(INS × Pm) +
15∑
m=1

β(m+15)(REP × Pm) (60)

24We still reject the null hypothesis of the goodness of link test at a 1% signi�cance level if we replace the

logit-link function with the complimentary log-log link function.
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We shall explore di�erent forms of transformations for the period indicator, namely a

linear, quadratic or logarithmic transformation, for which a summary is found in Table 16.

The idea is to replace the period dummy variables used in two-way interactions between INS

and REP used for model D. We have tried di�erent approaches to transforming the period

indicator. A linear transformation in which we take 1 divided by the period indicator, 1
PDNUM

,

a quadratic where we square the period indicator, (PDNUM)2 , and lastly, a logarithmic

transformation by taking the natural logarithm of the period indicator, ln(PDNUM). The

quadratic transformation gives the worst �t and the linear the best in terms of deviance

statistics, but the linear transformation fails the HL goodness of �t test while the logarithmic

transformation does not. As the model utilizing a logarithmic transformation is the one that

passes both speci�cations tests, this is the one we will be using going forward, and it is shown

in Equation 61, and will be denoted as model E.

Model Deviance AIC BIC HL GOF Link

Quadratic 45 460.14 45 778.14 47 474.35 6.36 N

Linear 44 665.66 44 983.66 46 679.86 14.41 Y

Logarithmic 44 705.86 45 023.86 46 720.07 8.85 Y

Table 16: Values for AIC, BIC, Hosmer-Lemeshow goodness of �t test (G=10) and goodness of

link test for each of the model during the period reparameterization process.

logit(hij(k)) = [α1P1 + α2P2 + . . .+ α159P159]

+ β1INS + β2(INS × LPER)

+ β3REP + β4(REP × LPER) (61)
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8.11 Diagnostics adjusted for clustering e�ects

Figure 8: Plots of four diagnostic statistics (h, ∆χ2, ∆D and ∆β̂) versus estimated hazard proba-

bility (π̂) based on the logistic regression model E, adjusted for clustering e�ects.

Covar.No. 357 360 364 365 371

INS 0 0 0 0 1

REP 1 0 0 1 1

PERIOD 5 4 3 3 2

yr 177 57 84 552 115

π̂ 0.0848 0.0369 0.0728 0.2151 0.1662

∆χ2 - 294.92 - - -

∆D -115.13 380.51 -1134.51 -15.19 -1364.45

Leverage 1.029 0.813 1.204 3.084 1.146

∆β̂ 45 569.9 1 283.219 4 887.362 27.708 8464.287

Table 17: Covariate values, number of event occurrences (yr), estimated logistic probability (π̂) and

the value of four diagnostic statistics ∆χ2, ∆D, ∆β̂ and leverage (h) for �ve of the most in�uential

covariate pattern numbers. Based on the logistic regression model E, adjusted for clustering e�ects.

8.12 Di�erences in admission among Home Nurse Areas

The odds ratios and 95% con�dence intervals for the model investigating di�erences in ad-

mission among the 11 home-nurse areas is shown in Table 18. The dummy-variables for the

di�erent home nurse areas are dichotomous variables with value 1 if the observation is in
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that speci�c area and 0 if elsewhere. Each HNA dummy variable compares to the arbitrary

null-baseline district. For the di�erent HNA dummy variables in the model, we can see there

are some signi�cant di�erences between some areas in terms of odds ratios for getting the

target event compared to the randomly chosen baseline area.

The model considers the main e�ects of each home-nurse area has on the odds for target

event occurrence. The deviance statistic decreases compared to the plain E model (78.46, p =

0.000 and the model is well speci�ed (Ĉ = 7.85, p = 0.447). We can see from the model

that 3 areas (and 1 on a 10% level) have a signi�cantly higher odds ratios at a 5% level for

getting the target event compared to the baseline area. These areas have therefore higher

odds for sending their patients to the short-term institution compared to the baseline area.

As one cannot be at the institution and the home nurse area at the same time in the data-set,

these main e�ects are only impacting the odds of being sent from the speci�ed area to the

institution and not the other way.25

Variable Odds ratio 95% CI

HNA1 1.21 (0.85, 1.71)

HNA2 1.29 (0.97, 1.72)

HNA3 1.03 (0.75, 1.42)

HNA4 1.21 (0.91, 1.60)

HNA5 0.87 (0.64, 1.18)

HNA6 1.41 (1.07, 1.88)

HNA7 1.45 (1.09, 1.93)

HNA8 1.35 (1.03, 1.78)

HNA9 1.06 (0.80, 1.40)

HNA10 1.11 (0.84, 1.48)

Table 18: Estimated odds ratio and 95% Con�dence Interval for the model of HNA a�liation,

adjusted for clustering e�ects.

25This can be shown by including a two-way interaction term between the home-nurse area dummies and

INS, which will all be omitted due to multicollinearity.
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8.13 Complete model outputs

Variable Coe�. Std. Err. z p-value 95% CI Variable Coe�. Std. Err. z p-value 95% CI Variable Coe�. Std. Err. z p-value 95% CI

P1 -3.961 0.0914 -43.31 <0.001 -4.140 -3.782 P55 -5.226 0.2794 -18.71 <0.001 -5.774 -4.678 P109 -5.309 0.4099 -12.95 <0.001 -6.113 -4.506

P2 -3.645 0.1065 -34.23 <0.001 -3.853 -3.436 P56 -5.581 0.3339 -16.72 <0.001 -6.236 -4.927 P110 -5.991 0.5784 -10.36 <0.001 -7.125 -4.858

P3 -2.545 0.0657 -38.72 <0.001 -2.673 -2.416 P57 -5.281 0.2895 -18.24 <0.001 -5.848 -4.713 P111 -5.287 0.4099 -12.90 <0.001 -6.090 -4.484

P4 -3.261 0.0764 -42.68 <0.001 -3.411 -3.111 P58 -5.448 0.3171 -17.18 <0.001 -6.069 -4.826 P112 -5.682 0.5015 -11.33 <0.001 -6.665 -4.699

P5 -3.564 0.0885 -40.28 <0.001 -3.738 -3.391 P59 -5.942 0.4082 -14.56 <0.001 -6.742 -5.142 P113 -5.112 0.3793 -13.48 <0.001 -5.855 -4.368

P6 -4.415 0.1006 -43.89 <0.001 -4.612 -4.218 P60 -5.319 0.3032 -17.54 <0.001 -5.913 -4.724 P114 -5.945 0.5786 -10.27 <0.001 -7.079 -4.811

P7 -4.738 0.1151 -41.16 <0.001 -4.964 -4.512 P61 -4.996 0.2594 -19.26 <0.001 -5.504 -4.487 P115 -5.426 0.4477 -12.12 <0.001 -6.303 -4.548

P8 -4.802 0.1308 -36.70 <0.001 -5.059 -4.546 P62 -5.613 0.3544 -15.84 <0.001 -6.308 -4.918 P116 -5.924 0.5785 -10.24 <0.001 -7.057 -4.790

P9 -4.956 0.1464 -33.85 <0.001 -5.243 -4.669 P63 -5.602 0.3543 -15.81 <0.001 -6.297 -4.908 P117 -5.065 0.3795 -13.35 <0.001 -5.809 -4.321

P10 -4.733 0.1433 -33.03 <0.001 -5.014 -4.452 P64 -5.184 0.2902 -17.87 <0.001 -5.753 -4.616 P118 -7.004 1.0008 -7.00 <0.001 -8.966 -5.043

P11 -4.925 0.1505 -32.72 <0.001 -5.220 -4.630 P65 -4.820 0.2445 -19.71 <0.001 -5.299 -4.341 P119 -5.378 0.4486 -11.99 <0.001 -6.257 -4.499

P12 -4.846 0.1467 -33.03 <0.001 -5.133 -4.558 P66 -5.851 0.4091 -14.30 <0.001 -6.653 -5.049 P120 -6.289 0.7082 -8.88 <0.001 -7.677 -4.901

P13 -4.995 0.1643 -30.40 <0.001 -5.317 -4.673 P67 -5.140 0.2906 -17.69 <0.001 -5.710 -4.571 P121 -5.179 0.4093 -12.65 <0.001 -5.981 -4.376

P14 -4.905 0.1667 -29.42 <0.001 -5.231 -4.578 P68 -5.046 0.2784 -18.13 <0.001 -5.591 -4.500 P122 -5.862 0.5785 -10.13 <0.001 -6.996 -4.728

P15 -5.346 0.1985 -26.93 <0.001 -5.735 -4.956 P69 -5.805 0.4085 -14.21 <0.001 -6.606 -5.005 P123 -5.340 0.4488 -11.90 <0.001 -6.220 -4.461

P16 -5.136 0.1918 -26.77 <0.001 -5.512 -4.760 P70 -5.098 0.2890 -17.64 <0.001 -5.664 -4.532 P124 -6.243 0.7081 -8.82 <0.001 -7.631 -4.855

P17 -5.426 0.2203 -24.63 <0.001 -5.858 -4.994 P71 -5.491 0.3550 -15.47 <0.001 -6.187 -4.795 P125 -5.538 0.5014 -11.04 <0.001 -6.520 -4.555

P18 -5.230 0.2013 -25.98 <0.001 -5.624 -4.835 P72 -5.478 0.3552 -15.42 <0.001 -6.174 -4.782 P126 -6.220 0.7080 -8.78 <0.001 -7.607 -4.832

P19 -5.329 0.2090 -25.49 <0.001 -5.738 -4.919 P73 -5.750 0.4100 -14.03 <0.001 -6.554 -4.947 P127 -6.210 0.7081 -8.77 <0.001 -7.597 -4.822

P20 -5.047 0.1881 -26.83 <0.001 -5.416 -4.679 P74 -6.840 0.7076 -9.67 <0.001 -8.227 -5.453 P128 -5.796 0.5785 -10.02 <0.001 -6.930 -4.662

P21 -5.132 0.1988 -25.82 <0.001 -5.522 -4.743 P75 -5.573 0.3791 -14.70 <0.001 -6.316 -4.830 P129 -4.935 0.3798 -12.99 <0.001 -5.679 -4.190

P22 -5.152 0.2011 -25.62 <0.001 -5.546 -4.758 P76 -5.562 0.3788 -14.68 <0.001 -6.304 -4.819 P130 -6.181 0.7082 -8.73 <0.001 -7.569 -4.793

P23 -5.008 0.1895 -26.43 <0.001 -5.380 -4.637 P77 -5.419 0.3553 -15.25 <0.001 -6.115 -4.722 P131 -5.477 0.5014 -10.92 <0.001 -6.459 -4.494

P24 -5.294 0.2207 -23.99 <0.001 -5.726 -4.861 P78 -5.693 0.4084 -13.94 <0.001 -6.493 -4.892 P132 -5.237 0.4488 -11.67 <0.001 -6.117 -4.357

P25 -5.434 0.2394 -22.70 <0.001 -5.903 -4.965 P79 -5.861 0.4489 -13.06 <0.001 -6.741 -4.981 P133 -5.741 0.5785 -9.92 <0.001 -6.875 -4.608

P26 -5.121 0.2079 -24.64 <0.001 -5.529 -4.714 P80 -5.667 0.4095 -13.84 <0.001 -6.470 -4.865 P134 -4.874 0.3797 -12.84 <0.001 -5.618 -4.130

P27 -5.013 0.2006 -25.00 <0.001 -5.406 -4.620 P81 -4.801 0.2692 -17.83 <0.001 -5.328 -4.273 o.P135

P28 -5.121 0.2123 -24.12 <0.001 -5.537 -4.705 P82 -5.630 0.4101 -13.73 <0.001 -6.434 -4.826 P136 -5.410 0.5014 -10.79 <0.001 -6.392 -4.427

P29 -5.195 0.2343 -22.17 <0.001 -5.654 -4.736 P83 -5.462 0.3795 -14.39 <0.001 -6.205 -4.718 P137 -6.789 1.0008 -6.78 <0.001 -8.751 -4.828

P30 -5.176 0.2239 -23.12 <0.001 -5.615 -4.738 P84 -5.199 0.3351 -15.51 <0.001 -5.856 -4.542 P138 -5.680 0.5786 -9.82 <0.001 -6.814 -4.546

P31 -5.574 0.2757 -20.22 <0.001 -6.114 -5.034 P85 -6.004 0.5018 -11.96 <0.001 -6.988 -5.021 P139 -6.078 0.7081 -8.58 <0.001 -7.466 -4.690

P32 -5.636 0.3074 -18.34 <0.001 -6.239 -5.034 P86 -5.584 0.4092 -13.65 <0.001 -6.386 -4.782 P140 -5.377 0.5014 -10.72 <0.001 -6.359 -4.394

P33 -5.700 0.2995 -19.03 <0.001 -6.287 -5.113 P87 -5.571 0.4089 -13.63 <0.001 -6.372 -4.770 P141 -5.360 0.5014 -10.69 <0.001 -6.343 -4.377

P34 -5.329 0.2483 -21.46 <0.001 -5.816 -4.842 P88 -6.251 0.5783 -10.81 <0.001 -7.384 -5.117 P142 -5.635 0.5786 -9.74 <0.001 -6.769 -4.501

P35 -5.252 0.2434 -21.58 <0.001 -5.729 -4.775 P89 -6.241 0.5775 -10.81 <0.001 -7.373 -5.109 P143 -6.726 1.0008 -6.72 <0.001 -8.687 -4.764

P36 -5.128 0.2328 -22.03 <0.001 -5.584 -4.672 P90 -5.716 0.4482 -12.75 <0.001 -6.594 -4.837 P144 -5.329 0.5015 -10.63 <0.001 -6.312 -4.346

P37 -5.343 0.2604 -20.52 <0.001 -5.853 -4.832 P91 -6.214 0.5779 -10.75 <0.001 -7.347 -5.082 P145 -6.009 0.7082 -8.48 <0.001 -7.397 -4.621

P38 -5.264 0.2528 -20.83 <0.001 -5.760 -4.769 P92 -6.608 0.7075 -9.34 <0.001 -7.995 -5.222 P146 -5.995 0.7082 -8.47 <0.001 -7.383 -4.607

P39 -5.526 0.2895 -19.09 <0.001 -6.094 -4.959 P93 -5.684 0.4482 -12.68 <0.001 -6.562 -4.805 P147 -5.281 0.5015 -10.53 <0.001 -6.264 -4.298

P40 -5.438 0.2793 -19.47 <0.001 -5.986 -4.891 P94 -5.672 0.4489 -12.63 <0.001 -6.552 -4.792 P148 -5.264 0.5007 -10.51 <0.001 -6.246 -4.283

P41 -5.425 0.2806 -19.33 <0.001 -5.975 -4.875 P95 -4.964 0.3171 -15.65 <0.001 -5.585 -4.342 P149 -5.536 0.5786 -9.57 <0.001 -6.670 -4.402

P42 -6.136 0.3979 -15.42 <0.001 -6.916 -5.356 P96 -5.053 0.3347 -15.10 <0.001 -5.709 -4.397 P150 -5.924 0.7081 -8.36 <0.001 -7.312 -4.536

P43 -5.028 0.2334 -21.55 <0.001 -5.486 -4.571 P97 -5.153 0.3548 -14.52 <0.001 -5.848 -4.457 P151 -5.214 0.5014 -10.40 <0.001 -6.197 -4.231

P44 -5.456 0.2910 -18.75 <0.001 -6.027 -4.886 P98 -5.608 0.4481 -12.51 <0.001 -6.487 -4.730 P152 -4.788 0.4100 -11.68 <0.001 -5.591 -3.984

P45 -5.219 0.2627 -19.87 <0.001 -5.734 -4.705 P99 -5.419 0.4092 -13.24 <0.001 -6.221 -4.617 P153 -5.470 0.5787 -9.45 <0.001 -6.604 -4.336

P46 -5.504 0.3064 -17.97 <0.001 -6.105 -4.904 P100 -5.247 0.3795 -13.82 <0.001 -5.991 -4.503 o.P154

P47 -5.138 0.2494 -20.60 <0.001 -5.627 -4.649 P101 -5.231 0.3791 -13.80 <0.001 -5.974 -4.488 P155 -5.851 0.7082 -8.26 <0.001 -7.239 -4.463

P48 -5.595 0.3168 -17.66 <0.001 -6.215 -4.974 P102 -6.068 0.5785 -10.49 <0.001 -7.202 -4.934 P156 -5.143 0.5015 -10.26 <0.001 -6.126 -4.160

P49 -5.169 0.2751 -18.79 <0.001 -5.709 -4.630 P103 -5.772 0.5003 -11.54 <0.001 -6.752 -4.791 o.P157

P50 -4.968 0.2364 -21.01 <0.001 -5.432 -4.505 P104 -5.758 0.5013 -11.49 <0.001 -6.740 -4.775 P158 -5.816 0.7082 -8.21 <0.001 -7.204 -4.428

P51 -4.896 0.2309 -21.20 <0.001 -5.348 -4.443 P105 -5.748 0.5012 -11.47 <0.001 -6.730 -4.766 o.P159

P52 -5.748 0.3536 -16.26 <0.001 -6.442 -5.055 P106 -7.130 0.9995 -7.13 <0.001 -9.089 -5.171 INS -0.322 0.1878 -1.71 0.086 -0.690 0.046

P53 -5.250 0.2774 -18.93 <0.001 -5.794 -4.707 P107 -5.512 0.4487 -12.28 <0.001 -6.392 -4.633 INS×LPER 1.519 0.1482 10.25 0.000 1.228 1.809

P54 -5.407 0.3021 -17.90 <0.001 -5.999 -4.815 P108 -5.505 0.4484 -12.28 <0.001 -6.384 -4.626 REP 1.388 0.0725 19.15 0.000 1.246 1.530

REP×LPER -0.126 0.0314 -4.01 0.000 -0.188 -0.064

Table 19: Complete table including the variable names, estimated parameters, standard errors, z-

statistics, p-values and 95% Con�dence Intervals for the initial model, E, adjusted for clustering

e�ects.
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Variable Coe�. Std. Err. z p-value 95% CI Variable Coe�. Std. Err. z p-value 95% CI Variable Coe�. Std. Err. z p-value 95% CI

P1 -4.004 0.0926 -43.24 <0.001 -4.185 -3.822 P56 -5.624 0.3337 -16.85 <0.001 -6.278 -4.970 P111 -5.328 0.4102 -12.99 <0.001 -6.132 -4.524

P2 -3.689 0.1086 -33.98 <0.001 -3.901 -3.476 P57 -5.323 0.2903 -18.34 <0.001 -5.892 -4.754 P112 -5.723 0.5018 -11.41 <0.001 -6.707 -4.740

P3 -2.589 0.0672 -38.53 <0.001 -2.720 -2.457 P58 -5.490 0.3172 -17.30 <0.001 -6.112 -4.868 P113 -5.153 0.3795 -13.58 <0.001 -5.897 -4.409

P4 -3.305 0.0773 -42.76 <0.001 -3.456 -3.153 P59 -5.984 0.4086 -14.64 <0.001 -6.785 -5.183 P114 -5.986 0.5790 -10.34 <0.001 -7.121 -4.851

P5 -3.607 0.0914 -39.44 <0.001 -3.786 -3.428 P60 -5.361 0.3040 -17.64 <0.001 -5.957 -4.765 P115 -5.467 0.4479 -12.21 <0.001 -6.344 -4.589

P6 -4.460 0.1015 -43.95 <0.001 -4.659 -4.261 P61 -5.038 0.2596 -19.41 <0.001 -5.547 -4.529 P116 -5.965 0.5786 -10.31 <0.001 -7.099 -4.831

P7 -4.783 0.1164 -41.11 <0.001 -5.011 -4.555 P62 -5.655 0.3551 -15.92 <0.001 -6.351 -4.959 P117 -5.106 0.3801 -13.43 <0.001 -5.851 -4.361

P8 -4.848 0.1310 -37.02 <0.001 -5.105 -4.591 P63 -5.645 0.3546 -15.92 <0.001 -6.340 -4.950 P118 -7.045 1.0008 -7.04 <0.001 -9.007 -5.083

P9 -5.003 0.1468 -34.07 <0.001 -5.291 -4.715 P64 -5.227 0.2905 -17.99 <0.001 -5.796 -4.657 P119 -5.419 0.4490 -12.07 <0.001 -6.299 -4.539

P10 -4.778 0.1426 -33.51 <0.001 -5.058 -4.499 P65 -4.862 0.2453 -19.82 <0.001 -5.343 -4.381 P120 -6.330 0.7085 -8.93 <0.001 -7.719 -4.941

P11 -4.968 0.1509 -32.92 <0.001 -5.264 -4.673 P66 -5.893 0.4096 -14.39 <0.001 -6.696 -5.090 P121 -5.220 0.4098 -12.74 <0.001 -6.023 -4.416

P12 -4.889 0.1468 -33.30 <0.001 -5.177 -4.601 P67 -5.182 0.2909 -17.81 <0.001 -5.752 -4.612 P122 -5.903 0.5791 -10.19 <0.001 -7.038 -4.768

P13 -5.038 0.1645 -30.63 <0.001 -5.361 -4.716 P68 -5.088 0.2788 -18.25 <0.001 -5.634 -4.541 P123 -5.382 0.4492 -11.98 <0.001 -6.262 -4.501

P14 -4.949 0.1676 -29.54 <0.001 -5.277 -4.621 P69 -5.847 0.4086 -14.31 <0.001 -6.648 -5.046 P124 -6.284 0.7084 -8.87 <0.001 -7.673 -4.896

P15 -5.390 0.1978 -27.25 <0.001 -5.778 -5.002 P70 -5.140 0.2893 -17.76 <0.001 -5.707 -4.572 P125 -5.579 0.5015 -11.12 <0.001 -6.562 -4.596

P16 -5.181 0.1913 -27.08 <0.001 -5.556 -4.806 P71 -5.532 0.3556 -15.56 <0.001 -6.229 -4.835 P126 -6.261 0.7086 -8.84 <0.001 -7.650 -4.872

P17 -5.469 0.2203 -24.82 <0.001 -5.901 -5.038 P72 -5.519 0.3556 -15.52 <0.001 -6.216 -4.822 P127 -6.251 0.7084 -8.82 <0.001 -7.640 -4.863

P18 -5.273 0.2014 -26.18 <0.001 -5.667 -4.878 P73 -5.792 0.4104 -14.11 <0.001 -6.596 -4.987 P128 -5.837 0.5787 -10.09 <0.001 -6.972 -4.703

P19 -5.372 0.2094 -25.65 <0.001 -5.782 -4.961 P74 -6.882 0.7070 -9.73 <0.001 -8.267 -5.496 P129 -4.976 0.3802 -13.09 <0.001 -5.721 -4.231

P20 -5.091 0.1895 -26.86 <0.001 -5.462 -4.719 P75 -5.614 0.3793 -14.80 <0.001 -6.357 -4.871 P130 -6.222 0.7084 -8.78 <0.001 -7.611 -4.834

P21 -5.176 0.1993 -25.98 <0.001 -5.566 -4.785 P76 -5.603 0.3792 -14.78 <0.001 -6.346 -4.859 P131 -5.518 0.5018 -11.00 <0.001 -6.502 -4.535

P22 -5.195 0.2024 -25.67 <0.001 -5.592 -4.799 P77 -5.460 0.3561 -15.33 <0.001 -6.158 -4.762 P132 -5.279 0.4488 -11.76 <0.001 -6.158 -4.399

P23 -5.051 0.1904 -26.53 <0.001 -5.424 -4.678 P78 -5.734 0.4083 -14.04 <0.001 -6.534 -4.934 P133 -5.783 0.5787 -9.99 <0.001 -6.917 -4.649

P24 -5.336 0.2208 -24.17 <0.001 -5.769 -4.903 P79 -5.902 0.4498 -13.12 <0.001 -6.783 -5.020 P134 -4.915 0.3800 -12.93 <0.001 -5.660 -4.171

P25 -5.476 0.2400 -22.82 <0.001 -5.947 -5.006 P80 -5.708 0.4098 -13.93 <0.001 -6.511 -4.905 o.P135

P26 -5.164 0.2083 -24.79 <0.001 -5.572 -4.756 P81 -4.842 0.2699 -17.94 <0.001 -5.371 -4.313 P136 -5.451 0.5017 -10.87 <0.001 -6.434 -4.468

P27 -5.056 0.2016 -25.08 <0.001 -5.451 -4.661 P82 -5.671 0.4104 -13.82 <0.001 -6.475 -4.866 P137 -6.831 1.0010 -6.82 <0.001 -8.793 -4.869

P28 -5.164 0.2127 -24.27 <0.001 -5.581 -4.747 P83 -5.502 0.3797 -14.49 <0.001 -6.247 -4.758 P138 -5.722 0.5789 -9.88 <0.001 -6.857 -4.587

P29 -5.238 0.2353 -22.26 <0.001 -5.699 -4.776 P84 -5.240 0.3357 -15.61 <0.001 -5.898 -4.582 P139 -6.120 0.7084 -8.64 <0.001 -7.508 -4.731

P30 -5.219 0.2242 -23.28 <0.001 -5.658 -4.779 P85 -6.045 0.5019 -12.04 <0.001 -7.029 -5.061 P140 -5.418 0.5016 -10.80 <0.001 -6.401 -4.435

P31 -5.616 0.2757 -20.37 <0.001 -6.157 -5.076 P86 -5.625 0.4092 -13.75 <0.001 -6.427 -4.823 P141 -5.402 0.5016 -10.77 <0.001 -6.385 -4.418

P32 -5.678 0.3074 -18.47 <0.001 -6.281 -5.076 P87 -5.612 0.4094 -13.71 <0.001 -6.414 -4.809 P142 -5.677 0.5791 -9.80 <0.001 -6.812 -4.542

P33 -5.742 0.3000 -19.14 <0.001 -6.330 -5.154 P88 -6.291 0.5786 -10.87 <0.001 -7.425 -5.157 P143 -6.768 1.0010 -6.76 <0.001 -8.730 -4.806

P34 -5.371 0.2491 -21.56 <0.001 -5.859 -4.883 P89 -6.282 0.5774 -10.88 <0.001 -7.413 -5.150 P144 -5.371 0.5015 -10.71 <0.001 -6.354 -4.388

P35 -5.294 0.2441 -21.69 <0.001 -5.773 -4.816 P90 -5.756 0.4485 -12.84 <0.001 -6.635 -4.877 P145 -6.050 0.7084 -8.54 <0.001 -7.439 -4.662

P36 -5.170 0.2335 -22.14 <0.001 -5.628 -4.713 P91 -6.255 0.5781 -10.82 <0.001 -7.388 -5.122 P146 -6.036 0.7083 -8.52 <0.001 -7.424 -4.648

P37 -5.385 0.2613 -20.61 <0.001 -5.897 -4.873 P92 -6.649 0.7077 -9.40 <0.001 -8.036 -5.262 P147 -5.322 0.5020 -10.60 <0.001 -6.306 -4.338

P38 -5.307 0.2535 -20.94 <0.001 -5.804 -4.810 P93 -5.725 0.4484 -12.77 <0.001 -6.604 -4.846 P148 -5.305 0.5011 -10.59 <0.001 -6.287 -4.323

P39 -5.569 0.2898 -19.22 <0.001 -6.137 -5.001 P94 -5.713 0.4494 -12.71 <0.001 -6.594 -4.832 P149 -5.577 0.5789 -9.63 <0.001 -6.712 -4.443

P40 -5.481 0.2805 -19.54 <0.001 -6.031 -4.931 P95 -5.005 0.3176 -15.76 <0.001 -5.627 -4.382 P150 -5.964 0.7086 -8.42 <0.001 -7.353 -4.576

P41 -5.467 0.2816 -19.42 <0.001 -6.019 -4.915 P96 -5.094 0.3354 -15.19 <0.001 -5.752 -4.437 P151 -5.255 0.5018 -10.47 <0.001 -6.238 -4.271

P42 -6.178 0.3982 -15.51 <0.001 -6.958 -5.397 P97 -5.194 0.3551 -14.63 <0.001 -5.890 -4.498 P152 -4.829 0.4102 -11.77 <0.001 -5.633 -4.025

P43 -5.071 0.2340 -21.67 <0.001 -5.530 -4.612 P98 -5.650 0.4482 -12.60 <0.001 -6.528 -4.771 P153 -5.511 0.5788 -9.52 <0.001 -6.646 -4.377

P44 -5.498 0.2916 -18.86 <0.001 -6.070 -4.927 P99 -5.460 0.4101 -13.31 <0.001 -6.264 -4.656 o.P154

P45 -5.262 0.2633 -19.98 <0.001 -5.778 -4.745 P100 -5.288 0.3798 -13.92 <0.001 -6.033 -4.544 P155 -5.892 0.7085 -8.32 <0.001 -7.281 -4.503

P46 -5.546 0.3069 -18.07 <0.001 -6.148 -4.945 P101 -5.272 0.3790 -13.91 <0.001 -6.015 -4.529 P156 -5.184 0.5018 -10.33 <0.001 -6.168 -4.201

P47 -5.180 0.2493 -20.78 <0.001 -5.669 -4.692 P102 -6.109 0.5788 -10.56 <0.001 -7.244 -4.975 o.P157

P48 -5.637 0.3175 -17.75 <0.001 -6.259 -5.014 P103 -5.813 0.5005 -11.62 <0.001 -6.794 -4.832 P158 -5.857 0.7085 -8.27 <0.001 -7.246 -4.469

P49 -5.211 0.2759 -18.89 <0.001 -5.752 -4.670 P104 -5.799 0.5015 -11.56 <0.001 -6.782 -4.816 o.P159

P50 -5.011 0.2368 -21.16 <0.001 -5.475 -4.547 P105 -5.789 0.5015 -11.54 <0.001 -6.772 -4.806 INS -0.324 0.1866 -1.74 0.08 -0.690 0.042

P51 -4.938 0.2313 -21.35 <0.001 -5.391 -4.484 P106 -7.171 0.9995 -7.18 <0.001 -9.130 -5.212 INS×LPER 1.520 0.1465 10.38 <0.001 1.233 1.807

P52 -5.790 0.3540 -16.36 <0.001 -6.484 -5.097 P107 -5.553 0.4491 -12.36 <0.001 -6.433 -4.673 REP 1.383 0.0728 19.00 <0.001 1.241 1.526

P53 -5.292 0.2778 -19.05 <0.001 -5.837 -4.748 P108 -5.546 0.4485 -12.37 <0.001 -6.425 -4.667 REP×LPER -0.123 0.0314 -3.93 <0.001 -0.185 -0.062

P54 -5.449 0.3026 -18.01 <0.001 -6.042 -4.856 P109 -5.350 0.4099 -13.05 <0.001 -6.154 -4.547 MALE 0.109 0.0422 2.58 0.01 0.026 0.192

P55 -5.268 0.2796 -18.84 <0.001 -5.816 -4.720 P110 -6.032 0.5788 -10.42 <0.001 -7.167 -4.898

Table 20: Complete table including the variable names, estimated parameters, standard errors, z-

statistics, p-values and 95% Con�dence Intervals for the model of gender, adjusted for clustering

e�ects.
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Variable Coe�. Std. Err. z p-value 95% CI Variable Coe�. Std. Err. z p-value 95% CI Variable Coe�. Std. Err. z p-value 95% CI

P1 -3.430 0.0950 -36.12 <0.001 -3.616 -3.244 P57 -5.163 0.2958 -17.45 <0.001 -5.743 -4.584 P113 -5.093 0.3879 -13.13 <0.001 -5.853 -4.332

P2 -3.167 0.1152 -27.50 <0.001 -3.393 -2.942 P58 -5.333 0.3229 -16.52 <0.001 -5.965 -4.700 P114 -5.927 0.5860 -10.11 <0.001 -7.075 -4.779

P3 -2.093 0.0865 -24.21 <0.001 -2.263 -1.924 P59 -5.829 0.4116 -14.16 <0.001 -6.636 -5.022 P115 -5.409 0.4554 -11.88 <0.001 -6.302 -4.517

P4 -2.831 0.0921 -30.75 <0.001 -3.011 -2.650 P60 -5.209 0.3084 -16.89 <0.001 -5.813 -4.604 P116 -5.909 0.5854 -10.09 <0.001 -7.056 -4.761

P5 -3.156 0.0965 -32.72 <0.001 -3.345 -2.967 P61 -4.888 0.2674 -18.28 <0.001 -5.412 -4.364 P117 -5.051 0.3872 -13.04 <0.001 -5.810 -4.292

P6 -4.025 0.1083 -37.15 <0.001 -4.237 -3.812 P62 -5.508 0.3607 -15.27 <0.001 -6.215 -4.801 P118 -6.992 1.0042 -6.96 <0.001 -8.960 -5.023

P7 -4.362 0.1196 -36.47 <0.001 -4.597 -4.128 P63 -5.500 0.3608 -15.24 <0.001 -6.207 -4.792 P119 -5.367 0.4568 -11.75 <0.001 -6.262 -4.471

P8 -4.440 0.1352 -32.85 <0.001 -4.705 -4.175 P64 -5.084 0.2981 -17.05 <0.001 -5.668 -4.499 P120 -6.279 0.7129 -8.81 <0.001 -7.676 -4.882

P9 -4.604 0.1498 -30.74 <0.001 -4.898 -4.311 P65 -4.721 0.2550 -18.52 <0.001 -5.221 -4.221 P121 -5.170 0.4178 -12.37 <0.001 -5.988 -4.351

P10 -4.393 0.1490 -29.48 <0.001 -4.685 -4.101 P66 -5.754 0.4162 -13.83 <0.001 -6.570 -4.939 P122 -5.854 0.5835 -10.03 <0.001 -6.998 -4.711

P11 -4.601 0.1558 -29.53 <0.001 -4.906 -4.295 P67 -5.046 0.2993 -16.86 <0.001 -5.632 -4.459 P123 -5.334 0.4600 -11.59 <0.001 -6.235 -4.432

P12 -4.531 0.1516 -29.89 <0.001 -4.828 -4.234 P68 -4.953 0.2870 -17.26 <0.001 -5.516 -4.391 P124 -6.237 0.7150 -8.72 <0.001 -7.639 -4.836

P13 -4.684 0.1675 -27.96 <0.001 -5.013 -4.356 P69 -5.715 0.4129 -13.84 <0.001 -6.524 -4.906 P125 -5.533 0.5085 -10.88 <0.001 -6.530 -4.537

P14 -4.602 0.1693 -27.18 <0.001 -4.933 -4.270 P70 -5.010 0.2976 -16.83 <0.001 -5.593 -4.427 P126 -6.217 0.7127 -8.72 <0.001 -7.613 -4.820

P15 -5.052 0.2027 -24.93 <0.001 -5.449 -4.655 P71 -5.405 0.3614 -14.96 <0.001 -6.113 -4.697 P127 -6.208 0.7130 -8.71 <0.001 -7.605 -4.810

P16 -4.850 0.1966 -24.66 <0.001 -5.235 -4.464 P72 -5.394 0.3634 -14.84 <0.001 -6.106 -4.682 P128 -5.795 0.5843 -9.92 <0.001 -6.940 -4.650

P17 -5.143 0.2239 -22.97 <0.001 -5.582 -4.704 P73 -5.668 0.4162 -13.62 <0.001 -6.484 -4.852 P129 -4.935 0.3893 -12.68 <0.001 -5.698 -4.172

P18 -4.953 0.2049 -24.18 <0.001 -5.355 -4.552 P74 -6.760 0.7130 -9.48 <0.001 -8.158 -5.363 P130 -6.182 0.7133 -8.67 <0.001 -7.580 -4.784

P19 -5.064 0.2138 -23.69 <0.001 -5.483 -4.645 P75 -5.495 0.3837 -14.32 <0.001 -6.247 -4.743 P131 -5.480 0.5103 -10.74 <0.001 -6.480 -4.479

P20 -4.791 0.1918 -24.98 <0.001 -5.166 -4.415 P76 -5.485 0.3864 -14.20 <0.001 -6.243 -4.728 P132 -5.241 0.4599 -11.39 <0.001 -6.142 -4.339

P21 -4.881 0.2045 -23.87 <0.001 -5.282 -4.481 P77 -5.345 0.3624 -14.75 <0.001 -6.055 -4.634 P133 -5.746 0.5854 -9.82 <0.001 -6.894 -4.599

P22 -4.907 0.2050 -23.93 <0.001 -5.309 -4.505 P78 -5.621 0.4139 -13.58 <0.001 -6.432 -4.809 P134 -4.880 0.3889 -12.55 <0.001 -5.642 -4.118

P23 -4.769 0.1939 -24.60 <0.001 -5.149 -4.389 P79 -5.791 0.4540 -12.76 <0.001 -6.680 -4.901 o.P135

P24 -5.058 0.2269 -22.29 <0.001 -5.502 -4.613 P80 -5.599 0.4148 -13.50 <0.001 -6.412 -4.786 P136 -5.418 0.5133 -10.55 <0.001 -6.424 -4.412

P25 -5.203 0.2432 -21.39 <0.001 -5.679 -4.726 P81 -4.734 0.2766 -17.12 <0.001 -5.276 -4.192 P137 -6.799 1.0044 -6.77 <0.001 -8.767 -4.830

P26 -4.896 0.2134 -22.94 <0.001 -5.314 -4.478 P82 -5.565 0.4153 -13.40 <0.001 -6.379 -4.751 P138 -5.691 0.5868 -9.70 <0.001 -6.841 -4.541

P27 -4.793 0.2072 -23.13 <0.001 -5.199 -4.386 P83 -5.398 0.3866 -13.96 <0.001 -6.156 -4.641 P139 -6.089 0.7131 -8.54 <0.001 -7.487 -4.692

P28 -4.905 0.2192 -22.38 <0.001 -5.334 -4.475 P84 -5.138 0.3434 -14.96 <0.001 -5.811 -4.465 P140 -5.389 0.5091 -10.59 <0.001 -6.387 -4.391

P29 -4.983 0.2392 -20.83 <0.001 -5.452 -4.514 P85 -5.945 0.5068 -11.73 <0.001 -6.938 -4.951 P141 -5.373 0.5091 -10.55 <0.001 -6.371 -4.375

P30 -4.969 0.2311 -21.50 <0.001 -5.421 -4.516 P86 -5.526 0.4182 -13.21 <0.001 -6.345 -4.706 P142 -5.650 0.5848 -9.66 <0.001 -6.796 -4.504

P31 -5.368 0.2805 -19.14 <0.001 -5.918 -4.818 P87 -5.515 0.4154 -13.28 <0.001 -6.329 -4.700 P143 -6.741 1.0079 -6.69 <0.001 -8.716 -4.765

P32 -5.434 0.3108 -17.48 <0.001 -6.043 -4.824 P88 -6.196 0.5832 -10.62 <0.001 -7.339 -5.053 P144 -5.346 0.5109 -10.46 <0.001 -6.347 -4.344

P33 -5.500 0.3032 -18.14 <0.001 -6.094 -4.906 P89 -6.188 0.5823 -10.63 <0.001 -7.329 -5.047 P145 -6.026 0.7137 -8.44 <0.001 -7.425 -4.627

P34 -5.136 0.2573 -19.96 <0.001 -5.640 -4.631 P90 -5.664 0.4546 -12.46 <0.001 -6.555 -4.773 P146 -6.013 0.7138 -8.42 <0.001 -7.412 -4.614

P35 -5.063 0.2491 -20.32 <0.001 -5.551 -4.574 P91 -6.164 0.5860 -10.52 <0.001 -7.313 -5.016 P147 -5.300 0.5097 -10.40 <0.001 -6.299 -4.301

P36 -4.942 0.2389 -20.69 <0.001 -5.411 -4.474 P92 -6.560 0.7109 -9.23 <0.001 -7.953 -5.166 P148 -5.284 0.5107 -10.35 <0.001 -6.285 -4.284

P37 -5.160 0.2644 -19.52 <0.001 -5.678 -4.642 P93 -5.637 0.4551 -12.39 <0.001 -6.529 -4.745 P149 -5.557 0.5854 -9.49 <0.001 -6.704 -4.409

P38 -5.085 0.2609 -19.49 <0.001 -5.597 -4.574 P94 -5.626 0.4547 -12.37 <0.001 -6.517 -4.735 P150 -5.945 0.7151 -8.31 <0.001 -7.347 -4.544

P39 -5.349 0.2958 -18.09 <0.001 -5.929 -4.770 P95 -4.919 0.3255 -15.11 <0.001 -5.557 -4.281 P151 -5.237 0.5116 -10.24 <0.001 -6.239 -4.234

P40 -5.265 0.2860 -18.41 <0.001 -5.826 -4.705 P96 -5.011 0.3446 -14.54 <0.001 -5.686 -4.335 P152 -4.811 0.4223 -11.39 <0.001 -5.639 -3.983

P41 -5.255 0.2861 -18.37 <0.001 -5.816 -4.695 P97 -5.111 0.3636 -14.06 <0.001 -5.824 -4.399 P153 -5.494 0.5877 -9.35 <0.001 -6.646 -4.342

P42 -5.963 0.3999 -14.91 <0.001 -6.747 -5.179 P98 -5.568 0.4549 -12.24 <0.001 -6.460 -4.677 o.P154

P43 -4.868 0.2426 -20.06 <0.001 -5.343 -4.392 P99 -5.380 0.4192 -12.84 <0.001 -6.202 -4.559 P155 -5.877 0.7143 -8.23 <0.001 -7.277 -4.477

P44 -5.296 0.2972 -17.82 <0.001 -5.878 -4.713 P100 -5.210 0.3903 -13.35 <0.001 -5.975 -4.445 P156 -5.170 0.5104 -10.13 <0.001 -6.171 -4.170

P45 -5.063 0.2686 -18.85 <0.001 -5.590 -4.537 P101 -5.195 0.3871 -13.42 <0.001 -5.954 -4.437 o.P157

P46 -5.350 0.3101 -17.25 <0.001 -5.957 -4.742 P102 -6.034 0.5834 -10.34 <0.001 -7.177 -4.891 P158 -5.845 0.7144 -8.18 <0.001 -7.245 -4.445

P47 -4.993 0.2579 -19.36 <0.001 -5.499 -4.488 P103 -5.739 0.5077 -11.30 <0.001 -6.734 -4.744 o.P159

P48 -5.453 0.3204 -17.02 <0.001 -6.081 -4.824 P104 -5.726 0.5078 -11.28 <0.001 -6.722 -4.731 INS -0.681 0.1732 -3.93 <0.001 -1.021 -0.342

P49 -5.030 0.2802 -17.95 <0.001 -5.580 -4.481 P105 -5.718 0.5066 -11.29 <0.001 -6.711 -4.725 INS×LPER 1.480 0.1407 10.52 <0.001 1.204 1.756

P50 -4.832 0.2441 -19.80 <0.001 -5.310 -4.354 P106 -7.102 1.0019 -7.09 <0.001 -9.065 -5.138 REP 1.335 0.0726 18.38 <0.001 1.193 1.478

P51 -4.762 0.2361 -20.17 <0.001 -5.225 -4.299 P107 -5.485 0.4559 -12.03 <0.001 -6.378 -4.591 REP×LPER -0.108 0.0310 -3.48 <0.001 -0.169 -0.047

P52 -5.618 0.3567 -15.75 <0.001 -6.317 -4.919 P108 -5.480 0.4598 -11.92 <0.001 -6.381 -4.578 ALONE -0.899 0.1281 -7.02 <0.001 -1.150 -0.648

P53 -5.122 0.2824 -18.14 <0.001 -5.676 -4.569 P109 -5.285 0.4179 -12.65 <0.001 -6.104 -4.466 ALONE×LPER 0.184 0.0425 4.34 <0.001 0.101 0.268

P54 -5.282 0.3063 -17.24 <0.001 -5.882 -4.681 P110 -5.968 0.5835 -10.23 <0.001 -7.112 -4.825 ALONE×INS 0.655 0.1255 5.22 <0.001 0.409 0.901

P55 -5.104 0.2859 -17.85 <0.001 -5.664 -4.543 P111 -5.265 0.4197 -12.55 <0.001 -6.088 -4.443

P56 -5.462 0.3408 -16.03 <0.001 -6.129 -4.794 P112 -5.662 0.5089 -11.12 <0.001 -6.659 -4.664

Table 21: Complete table including the variable names, estimated parameters, standard errors,

z-statistics, p-values and 95% Con�dence Intervals for the model of cohabitation, adjusted for clus-

tering e�ects.
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Variable Coe�. Std. Err. z p-value 95% CI Variable Coe�. Std. Err. z p-value 95% CI Variable Coe�. Std. Err. z p-value 95% CI

P1 -3.704 0.1104 -33.54 <0.001 -3.92 -3.49 P59 -5.997 0.4122 -14.55 <0.001 -6.81 -5.19 P117 -5.137 0.3870 -13.27 <0.001 -5.90 -4.38

P2 -3.429 0.1226 -27.98 <0.001 -3.67 -3.19 P60 -5.375 0.3070 -17.51 <0.001 -5.98 -4.77 P118 -7.077 1.0032 -7.05 <0.001 -9.04 -5.11

P3 -2.353 0.0923 -25.49 <0.001 -2.53 -2.17 P61 -5.052 0.2649 -19.07 <0.001 -5.57 -4.53 P119 -5.451 0.4530 -12.03 <0.001 -6.34 -4.56

P4 -3.088 0.0980 -31.51 <0.001 -3.28 -2.90 P62 -5.668 0.3588 -15.80 <0.001 -6.37 -4.97 P120 -6.362 0.7114 -8.94 <0.001 -7.76 -4.97

P5 -3.414 0.1041 -32.80 <0.001 -3.62 -3.21 P63 -5.658 0.3581 -15.80 <0.001 -6.36 -4.96 P121 -5.249 0.4141 -12.68 <0.001 -6.06 -4.44

P6 -4.279 0.1143 -37.45 <0.001 -4.50 -4.05 P64 -5.241 0.2975 -17.62 <0.001 -5.82 -4.66 P122 -5.932 0.5820 -10.19 <0.001 -7.07 -4.79

P7 -4.612 0.1266 -36.44 <0.001 -4.86 -4.36 P65 -4.877 0.2546 -19.16 <0.001 -5.38 -4.38 P123 -5.411 0.4577 -11.82 <0.001 -6.31 -4.51

P8 -4.685 0.1400 -33.47 <0.001 -4.96 -4.41 P66 -5.911 0.4145 -14.26 <0.001 -6.72 -5.10 P124 -6.312 0.7119 -8.87 <0.001 -7.71 -4.92

P9 -4.847 0.1526 -31.77 <0.001 -5.15 -4.55 P67 -5.201 0.2948 -17.64 <0.001 -5.78 -4.62 P125 -5.607 0.5078 -11.04 <0.001 -6.60 -4.61

P10 -4.629 0.1544 -29.98 <0.001 -4.93 -4.33 P68 -5.107 0.2861 -17.85 <0.001 -5.67 -4.55 P126 -6.287 0.7110 -8.84 <0.001 -7.68 -4.89

P11 -4.831 0.1582 -30.54 <0.001 -5.14 -4.52 P69 -5.870 0.4128 -14.22 <0.001 -6.68 -5.06 P127 -6.275 0.7114 -8.82 <0.001 -7.67 -4.88

P12 -4.761 0.1540 -30.92 <0.001 -5.06 -4.46 P70 -5.165 0.2969 -17.39 <0.001 -5.75 -4.58 P128 -5.861 0.5858 -10.01 <0.001 -7.01 -4.71

P13 -4.917 0.1696 -28.99 <0.001 -5.25 -4.58 P71 -5.559 0.3608 -15.41 <0.001 -6.27 -4.85 P129 -4.998 0.3884 -12.87 <0.001 -5.76 -4.24

P14 -4.834 0.1721 -28.09 <0.001 -5.17 -4.50 P72 -5.545 0.3613 -15.35 <0.001 -6.25 -4.84 P130 -6.244 0.7140 -8.74 <0.001 -7.64 -4.84

P15 -5.283 0.2044 -25.85 <0.001 -5.68 -4.88 P73 -5.819 0.4163 -13.98 <0.001 -6.63 -5.00 P131 -5.539 0.5082 -10.90 <0.001 -6.54 -4.54

P16 -5.080 0.1980 -25.66 <0.001 -5.47 -4.69 P74 -6.910 0.7102 -9.73 <0.001 -8.30 -5.52 P132 -5.300 0.4556 -11.63 <0.001 -6.19 -4.41

P17 -5.378 0.2238 -24.03 <0.001 -5.82 -4.94 P75 -5.644 0.3843 -14.69 <0.001 -6.40 -4.89 P133 -5.807 0.5853 -9.92 <0.001 -6.95 -4.66

P18 -5.188 0.2057 -25.22 <0.001 -5.59 -4.78 P76 -5.632 0.3837 -14.68 <0.001 -6.38 -4.88 P134 -4.936 0.3897 -12.67 <0.001 -5.70 -4.17

P19 -5.290 0.2134 -24.78 <0.001 -5.71 -4.87 P77 -5.490 0.3629 -15.13 <0.001 -6.20 -4.78 o.P135

P20 -5.010 0.1914 -26.18 <0.001 -5.39 -4.64 P78 -5.766 0.4124 -13.98 <0.001 -6.57 -4.96 P136 -5.476 0.5065 -10.81 <0.001 -6.47 -4.48

P21 -5.097 0.2031 -25.10 <0.001 -5.50 -4.70 P79 -5.936 0.4549 -13.05 <0.001 -6.83 -5.04 P137 -6.859 1.0031 -6.84 <0.001 -8.83 -4.89

P22 -5.122 0.2066 -24.79 <0.001 -5.53 -4.72 P80 -5.742 0.4149 -13.84 <0.001 -6.56 -4.93 P138 -5.749 0.5848 -9.83 <0.001 -6.90 -4.60

P23 -4.983 0.1959 -25.43 <0.001 -5.37 -4.60 P81 -4.877 0.2794 -17.46 <0.001 -5.42 -4.33 P139 -6.146 0.7112 -8.64 <0.001 -7.54 -4.75

P24 -5.271 0.2254 -23.39 <0.001 -5.71 -4.83 P82 -5.704 0.4152 -13.74 <0.001 -6.52 -4.89 P140 -5.445 0.5081 -10.72 <0.001 -6.44 -4.45

P25 -5.416 0.2448 -22.12 <0.001 -5.90 -4.94 P83 -5.533 0.3853 -14.36 <0.001 -6.29 -4.78 P141 -5.429 0.5071 -10.71 <0.001 -6.42 -4.43

P26 -5.108 0.2125 -24.04 <0.001 -5.52 -4.69 P84 -5.272 0.3412 -15.45 <0.001 -5.94 -4.60 P142 -5.706 0.5850 -9.75 <0.001 -6.85 -4.56

P27 -5.003 0.2060 -24.29 <0.001 -5.41 -4.60 P85 -6.080 0.5061 -12.01 <0.001 -7.07 -5.09 P143 -6.795 1.0035 -6.77 <0.001 -8.76 -4.83

P28 -5.115 0.2202 -23.23 <0.001 -5.55 -4.68 P86 -5.660 0.4144 -13.66 <0.001 -6.47 -4.85 P144 -5.398 0.5106 -10.57 <0.001 -6.40 -4.40

P29 -5.193 0.2396 -21.67 <0.001 -5.66 -4.72 P87 -5.652 0.4167 -13.56 <0.001 -6.47 -4.83 P145 -6.077 0.7146 -8.50 <0.001 -7.48 -4.68

P30 -5.176 0.2285 -22.66 <0.001 -5.62 -4.73 P88 -6.332 0.5832 -10.86 <0.001 -7.48 -5.19 P146 -6.064 0.7143 -8.49 <0.001 -7.46 -4.66

P31 -5.576 0.2798 -19.93 <0.001 -6.12 -5.03 P89 -6.323 0.5812 -10.88 <0.001 -7.46 -5.18 P147 -5.351 0.5068 -10.56 <0.001 -6.34 -4.36

P32 -5.641 0.3114 -18.11 <0.001 -6.25 -5.03 P90 -5.799 0.4520 -12.83 <0.001 -6.68 -4.91 P148 -5.335 0.5072 -10.52 <0.001 -6.33 -4.34

P33 -5.707 0.3049 -18.72 <0.001 -6.30 -5.11 P91 -6.297 0.5805 -10.85 <0.001 -7.44 -5.16 P149 -5.607 0.5855 -9.58 <0.001 -6.75 -4.46

P34 -5.339 0.2537 -21.05 <0.001 -5.84 -4.84 P92 -6.693 0.7101 -9.42 <0.001 -8.08 -5.30 P150 -5.993 0.7132 -8.40 <0.001 -7.39 -4.59

P35 -5.266 0.2468 -21.34 <0.001 -5.75 -4.78 P93 -5.768 0.4522 -12.76 <0.001 -6.65 -4.88 P151 -5.279 0.5107 -10.34 <0.001 -6.28 -4.28

P36 -5.143 0.2379 -21.62 <0.001 -5.61 -4.68 P94 -5.757 0.4574 -12.59 <0.001 -6.65 -4.86 P152 -4.851 0.4178 -11.61 <0.001 -5.67 -4.03

P37 -5.359 0.2638 -20.31 <0.001 -5.88 -4.84 P95 -5.048 0.3254 -15.51 <0.001 -5.69 -4.41 P153 -5.530 0.5878 -9.41 <0.001 -6.68 -4.38

P38 -5.283 0.2598 -20.34 <0.001 -5.79 -4.77 P96 -5.139 0.3456 -14.87 <0.001 -5.82 -4.46 o.P154

P39 -5.545 0.2974 -18.65 <0.001 -6.13 -4.96 P97 -5.236 0.3605 -14.52 <0.001 -5.94 -4.53 P155 -5.907 0.7121 -8.30 <0.001 -7.30 -4.51

P40 -5.461 0.2856 -19.12 <0.001 -6.02 -4.90 P98 -5.690 0.4531 -12.56 <0.001 -6.58 -4.80 P156 -5.194 0.5088 -10.21 <0.001 -6.19 -4.20

P41 -5.451 0.2863 -19.04 <0.001 -6.01 -4.89 P99 -5.501 0.4154 -13.24 <0.001 -6.32 -4.69 o.P157

P42 -6.160 0.3991 -15.43 <0.001 -6.94 -5.38 P100 -5.329 0.3848 -13.85 <0.001 -6.08 -4.58 P158 -5.865 0.7122 -8.23 <0.001 -7.26 -4.47

P43 -5.060 0.2400 -21.08 <0.001 -5.53 -4.59 P101 -5.313 0.3849 -13.80 <0.001 -6.07 -4.56 o.P159

P44 -5.488 0.2946 -18.63 <0.001 -6.07 -4.91 P102 -6.151 0.5840 -10.53 <0.001 -7.30 -5.01 INS -0.452 0.1787 -2.53 0.01 -0.80 -0.10

P45 -5.255 0.2696 -19.50 <0.001 -5.78 -4.73 P103 -5.856 0.5057 -11.58 <0.001 -6.85 -4.86 INS×LPER 1.524 0.1415 10.77 <0.001 1.25 1.80

P46 -5.541 0.3103 -17.86 <0.001 -6.15 -4.93 P104 -5.843 0.5062 -11.54 <0.001 -6.83 -4.85 REP 1.383 0.0923 14.97 <0.001 1.20 1.56

P47 -5.181 0.2569 -20.17 <0.001 -5.68 -4.68 P105 -5.833 0.5100 -11.44 <0.001 -6.83 -4.83 LPER×REP -0.142 0.0316 -4.50 <0.001 -0.20 -0.08

P48 -5.639 0.3224 -17.49 <0.001 -6.27 -5.01 P106 -7.217 1.0015 -7.21 <0.001 -9.18 -5.25 0.AGE -1.176 0.1967 -5.98 <0.001 -1.56 -0.79

P49 -5.215 0.2831 -18.42 <0.001 -5.77 -4.66 P107 -5.597 0.4558 -12.28 <0.001 -6.49 -4.70 1.AGE

P50 -5.015 0.2461 -20.38 <0.001 -5.50 -4.53 P108 -5.589 0.4549 -12.29 <0.001 -6.48 -4.70 2.AGE -0.153 0.1323 -1.16 0.25 -0.41 0.11

P51 -4.943 0.2377 -20.80 <0.001 -5.41 -4.48 P109 -5.390 0.4157 -12.97 <0.001 -6.20 -4.57 0.AGE×LPER 0.036 0.0637 0.57 0.57 -0.09 0.16

P52 -5.797 0.3583 -16.18 <0.001 -6.50 -5.10 P110 -6.071 0.5821 -10.43 <0.001 -7.21 -4.93 2.AGE×LPER 0.140 0.0433 3.23 <0.001 0.06 0.22

P53 -5.300 0.2833 -18.71 <0.001 -5.86 -4.74 P111 -5.364 0.4176 -12.84 <0.001 -6.18 -4.55 0.AGE×INS 0.969 0.2279 4.25 <0.001 0.52 1.42

P54 -5.457 0.3074 -17.75 <0.001 -6.06 -4.85 P112 -5.757 0.5060 -11.38 <0.001 -6.75 -4.77 1.AGE×INS

P55 -5.278 0.2845 -18.55 <0.001 -5.84 -4.72 P113 -5.185 0.3866 -13.41 <0.001 -5.94 -4.43 2.AGE×INS -0.002 0.1355 -0.01 0.99 -0.27 0.26

P56 -5.634 0.3390 -16.62 <0.001 -6.30 -4.97 P114 -6.019 0.5826 -10.33 <0.001 -7.16 -4.88 0.AGE×REP 0.591 0.1836 3.22 <0.001 0.23 0.95

P57 -5.335 0.2940 -18.14 <0.001 -5.91 -4.76 P115 -5.498 0.4524 -12.15 <0.001 -6.38 -4.61 1.AGE×REP

P58 -5.502 0.3261 -16.87 <0.001 -6.14 -4.86 P116 -5.996 0.5888 -10.18 <0.001 -7.15 -4.84 2.AGE×REP -0.157 0.0933 -1.69 0.09 -0.34 0.03

Table 22: Complete table including the variable names, estimated parameters, standard errors,

z-statistics, p-values and 95% Con�dence Intervals for the model of age, adjusted for clustering

e�ects.

104



Variable Coe�. Std. Err. z p-value 95% CI Variable Coe�. Std. Err. z p-value 95% CI Variable Coe�. Std. Err. z p-value 95% CI

P1 -3.981 0.0922 -43.20 <0.001 -4.161 -3.800 P56 -5.607 0.3337 -16.80 <0.001 -6.261 -4.953 P111 -5.318 0.4101 -12.97 <0.001 -6.122 -4.515

P2 -3.666 0.1069 -34.30 <0.001 -3.875 -3.456 P57 -5.307 0.2898 -18.31 <0.001 -5.875 -4.739 P112 -5.715 0.5017 -11.39 <0.001 -6.698 -4.731

P3 -2.564 0.0659 -38.88 <0.001 -2.693 -2.434 P58 -5.474 0.3170 -17.27 <0.001 -6.095 -4.853 P113 -5.144 0.3795 -13.55 <0.001 -5.888 -4.400

P4 -3.280 0.0769 -42.65 <0.001 -3.431 -3.130 P59 -5.968 0.4083 -14.62 <0.001 -6.768 -5.168 P114 -5.977 0.5788 -10.33 <0.001 -7.112 -4.843

P5 -3.584 0.0886 -40.44 <0.001 -3.758 -3.410 P60 -5.345 0.3035 -17.61 <0.001 -5.940 -4.750 P115 -5.458 0.4474 -12.20 <0.001 -6.334 -4.581

P6 -4.435 0.1010 -43.90 <0.001 -4.633 -4.237 P61 -5.022 0.2595 -19.35 <0.001 -5.531 -4.513 P116 -5.956 0.5787 -10.29 <0.001 -7.090 -4.821

P7 -4.757 0.1154 -41.23 <0.001 -4.983 -4.531 P62 -5.639 0.3546 -15.90 <0.001 -6.334 -4.944 P117 -5.098 0.3791 -13.45 <0.001 -5.841 -4.356

P8 -4.821 0.1311 -36.78 <0.001 -5.078 -4.564 P63 -5.630 0.3545 -15.88 <0.001 -6.325 -4.935 P118 -7.037 1.0009 -7.03 <0.001 -8.999 -5.076

P9 -4.975 0.1469 -33.87 <0.001 -5.263 -4.687 P64 -5.212 0.2895 -18.01 <0.001 -5.779 -4.645 P119 -5.411 0.4483 -12.07 <0.001 -6.289 -4.532

P10 -4.755 0.1437 -33.10 <0.001 -5.036 -4.473 P65 -4.847 0.2447 -19.81 <0.001 -5.326 -4.367 P120 -6.322 0.7084 -8.92 <0.001 -7.710 -4.933

P11 -4.946 0.1507 -32.82 <0.001 -5.241 -4.650 P66 -5.878 0.4093 -14.36 <0.001 -6.680 -5.076 P121 -5.212 0.4092 -12.74 <0.001 -6.014 -4.410

P12 -4.867 0.1466 -33.20 <0.001 -5.154 -4.579 P67 -5.168 0.2907 -17.78 <0.001 -5.737 -4.598 P122 -5.896 0.5780 -10.20 <0.001 -7.029 -4.763

P13 -5.017 0.1639 -30.60 <0.001 -5.338 -4.695 P68 -5.073 0.2787 -18.20 <0.001 -5.620 -4.527 P123 -5.374 0.4491 -11.97 <0.001 -6.254 -4.494

P14 -4.925 0.1664 -29.59 <0.001 -5.251 -4.599 P69 -5.833 0.4086 -14.28 <0.001 -6.634 -5.033 P124 -6.277 0.7083 -8.86 <0.001 -7.665 -4.889

P15 -5.365 0.1986 -27.02 <0.001 -5.754 -4.976 P70 -5.126 0.2893 -17.72 <0.001 -5.693 -4.559 P125 -5.572 0.5016 -11.11 <0.001 -6.555 -4.589

P16 -5.156 0.1916 -26.90 <0.001 -5.532 -4.781 P71 -5.520 0.3552 -15.54 <0.001 -6.216 -4.824 P126 -6.255 0.7083 -8.83 <0.001 -7.643 -4.867

P17 -5.446 0.2202 -24.73 <0.001 -5.878 -5.014 P72 -5.507 0.3554 -15.50 <0.001 -6.203 -4.810 P127 -6.245 0.7083 -8.82 <0.001 -7.633 -4.857

P18 -5.252 0.2016 -26.05 <0.001 -5.647 -4.857 P73 -5.778 0.4103 -14.08 <0.001 -6.583 -4.974 P128 -5.833 0.5787 -10.08 <0.001 -6.967 -4.698

P19 -5.350 0.2090 -25.60 <0.001 -5.760 -4.941 P74 -6.868 0.7077 -9.70 <0.001 -8.255 -5.481 P129 -4.972 0.3800 -13.09 <0.001 -5.717 -4.228

P20 -5.069 0.1884 -26.90 <0.001 -5.439 -4.700 P75 -5.601 0.3787 -14.79 <0.001 -6.343 -4.859 P130 -6.218 0.7080 -8.78 <0.001 -7.606 -4.831

P21 -5.154 0.1991 -25.89 <0.001 -5.545 -4.764 P76 -5.589 0.3790 -14.75 <0.001 -6.332 -4.846 P131 -5.514 0.5016 -10.99 <0.001 -6.497 -4.530

P22 -5.174 0.2014 -25.69 <0.001 -5.569 -4.779 P77 -5.447 0.3553 -15.33 <0.001 -6.143 -4.750 P132 -5.273 0.4478 -11.78 <0.001 -6.151 -4.396

P23 -5.030 0.1896 -26.53 <0.001 -5.402 -4.659 P78 -5.721 0.4087 -14.00 <0.001 -6.522 -4.920 P133 -5.776 0.5778 -10.00 <0.001 -6.909 -4.644

P24 -5.316 0.2210 -24.05 <0.001 -5.749 -4.882 P79 -5.889 0.4491 -13.11 <0.001 -6.770 -5.009 P134 -4.908 0.3801 -12.91 <0.001 -5.653 -4.163

P25 -5.455 0.2397 -22.76 <0.001 -5.925 -4.986 P80 -5.695 0.4097 -13.90 <0.001 -6.499 -4.892 o.P135

P26 -5.143 0.2079 -24.74 <0.001 -5.550 -4.735 P81 -4.829 0.2691 -17.95 <0.001 -5.356 -4.302 P136 -5.444 0.5017 -10.85 <0.001 -6.428 -4.461

P27 -5.035 0.2006 -25.10 <0.001 -5.428 -4.642 P82 -5.658 0.4101 -13.80 <0.001 -6.462 -4.854 P137 -6.825 1.0010 -6.82 <0.001 -8.786 -4.863

P28 -5.143 0.2125 -24.21 <0.001 -5.559 -4.726 P83 -5.488 0.3797 -14.46 <0.001 -6.232 -4.744 P138 -5.716 0.5788 -9.88 <0.001 -6.850 -4.581

P29 -5.217 0.2347 -22.23 <0.001 -5.677 -4.757 P84 -5.226 0.3354 -15.58 <0.001 -5.884 -4.569 P139 -6.113 0.7083 -8.63 <0.001 -7.501 -4.725

P30 -5.198 0.2238 -23.22 <0.001 -5.637 -4.760 P85 -6.032 0.5020 -12.01 <0.001 -7.015 -5.048 P140 -5.411 0.5012 -10.80 <0.001 -6.394 -4.429

P31 -5.596 0.2758 -20.29 <0.001 -6.137 -5.056 P86 -5.611 0.4092 -13.71 <0.001 -6.413 -4.809 P141 -5.394 0.5017 -10.75 <0.001 -6.377 -4.410

P32 -5.659 0.3077 -18.39 <0.001 -6.263 -5.056 P87 -5.598 0.4086 -13.70 <0.001 -6.399 -4.797 P142 -5.669 0.5783 -9.80 <0.001 -6.803 -4.536

P33 -5.723 0.2999 -19.08 <0.001 -6.311 -5.135 P88 -6.278 0.5785 -10.85 <0.001 -7.412 -5.144 P143 -6.759 1.0009 -6.75 <0.001 -8.721 -4.797

P34 -5.352 0.2485 -21.54 <0.001 -5.839 -4.865 P89 -6.268 0.5776 -10.85 <0.001 -7.400 -5.136 P144 -5.362 0.5017 -10.69 <0.001 -6.345 -4.378

P35 -5.276 0.2439 -21.63 <0.001 -5.754 -4.798 P90 -5.743 0.4483 -12.81 <0.001 -6.622 -4.864 P145 -6.041 0.7084 -8.53 <0.001 -7.430 -4.653

P36 -5.151 0.2331 -22.10 <0.001 -5.608 -4.695 P91 -6.242 0.5780 -10.80 <0.001 -7.375 -5.109 P146 -6.028 0.7084 -8.51 <0.001 -7.416 -4.639

P37 -5.366 0.2604 -20.61 <0.001 -5.877 -4.856 P92 -6.636 0.7076 -9.38 <0.001 -8.023 -5.249 P147 -5.314 0.5018 -10.59 <0.001 -6.298 -4.331

P38 -5.288 0.2528 -20.91 <0.001 -5.783 -4.792 P93 -5.711 0.4484 -12.74 <0.001 -6.590 -4.833 P148 -5.298 0.5010 -10.57 <0.001 -6.279 -4.316

P39 -5.550 0.2898 -19.15 <0.001 -6.118 -4.982 P94 -5.700 0.4487 -12.71 <0.001 -6.580 -4.821 P149 -5.568 0.5789 -9.62 <0.001 -6.703 -4.434

P40 -5.463 0.2797 -19.53 <0.001 -6.011 -4.914 P95 -4.992 0.3174 -15.73 <0.001 -5.615 -4.370 P150 -5.955 0.7084 -8.41 <0.001 -7.344 -4.567

P41 -5.450 0.2810 -19.40 <0.001 -6.000 -4.899 P96 -5.083 0.3350 -15.17 <0.001 -5.739 -4.426 P151 -5.246 0.5017 -10.46 <0.001 -6.229 -4.263

P42 -6.162 0.3985 -15.46 <0.001 -6.943 -5.381 P97 -5.183 0.3551 -14.59 <0.001 -5.879 -4.487 P152 -4.819 0.4099 -11.76 <0.001 -5.622 -4.016

P43 -5.053 0.2336 -21.63 <0.001 -5.510 -4.595 P98 -5.639 0.4483 -12.58 <0.001 -6.518 -4.760 P153 -5.501 0.5789 -9.50 <0.001 -6.636 -4.366

P44 -5.481 0.2912 -18.82 <0.001 -6.051 -4.910 P99 -5.450 0.4091 -13.32 <0.001 -6.251 -4.648 o.P154

P45 -5.244 0.2628 -19.96 <0.001 -5.759 -4.729 P100 -5.278 0.3794 -13.91 <0.001 -6.021 -4.534 P155 -5.883 0.7084 -8.30 <0.001 -7.271 -4.495

P46 -5.530 0.3068 -18.02 <0.001 -6.131 -4.928 P101 -5.263 0.3790 -13.89 <0.001 -6.006 -4.520 P156 -5.175 0.5013 -10.32 <0.001 -6.158 -4.192

P47 -5.163 0.2496 -20.68 <0.001 -5.652 -4.674 P102 -6.099 0.5787 -10.54 <0.001 -7.234 -4.965 o.P157

P48 -5.619 0.3169 -17.73 <0.001 -6.240 -4.998 P103 -5.803 0.5004 -11.60 <0.001 -6.784 -4.822 P158 -5.847 0.7084 -8.25 <0.001 -7.236 -4.459

P49 -5.195 0.2749 -18.90 <0.001 -5.733 -4.656 P104 -5.789 0.5015 -11.54 <0.001 -6.772 -4.806 o.P159

P50 -4.994 0.2367 -21.10 <0.001 -5.458 -4.530 P105 -5.780 0.5014 -11.53 <0.001 -6.762 -4.797 INS -0.326 0.1885 -1.73 0.08 -0.695 0.044

P51 -4.922 0.2308 -21.33 <0.001 -5.374 -4.469 P106 -7.161 0.9999 -7.16 <0.001 -9.121 -5.201 INS×LPER 1.512 0.1489 10.15 <0.001 1.220 1.804

P52 -5.774 0.3537 -16.33 <0.001 -6.467 -5.081 P107 -5.543 0.4490 -12.35 <0.001 -6.423 -4.663 REP 1.444 0.0732 19.72 <0.001 1.300 1.587

P53 -5.276 0.2773 -19.02 <0.001 -5.820 -4.732 P108 -5.537 0.4487 -12.34 <0.001 -6.416 -4.658 LPER×REP -0.120 0.0314 -3.82 <0.001 -0.182 -0.058

P54 -5.432 0.3021 -17.98 <0.001 -6.024 -4.840 P109 -5.340 0.4102 -13.02 <0.001 -6.144 -4.536 REHV1 0.418 0.0808 5.18 <0.001 0.260 0.577

P55 -5.252 0.2794 -18.79 <0.001 -5.800 -4.704 P110 -6.024 0.5786 -10.41 <0.001 -7.158 -4.890 REHV1×REP -0.654 0.1238 -5.28 <0.001 -0.896 -0.411

Table 23: Complete table including the variable names, estimated parameters, standard errors, z-

statistics, p-values and 95% Con�dence Intervals for the model of current or previous reablement

participation, adjusted for clustering e�ects.
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Variable Coe�. Std. Err. z p-value 95% CI Variable Coe�. Std. Err. z p-value 95% CI Variable Coe�. Std. Err. z p-value 95% CI

P1 -3.974 0.0917 -43.33 <0.001 -4.154 -3.794 P56 -5.618 0.3337 -16.84 <0.001 -6.272 -4.964 P111 -5.333 0.4102 -13.00 <0.001 -6.137 -4.528

P2 -3.660 0.1065 -34.38 <0.001 -3.869 -3.452 P57 -5.318 0.2898 -18.35 <0.001 -5.886 -4.750 P112 -5.730 0.5018 -11.42 <0.001 -6.713 -4.746

P3 -2.561 0.0657 -38.97 <0.001 -2.690 -2.432 P58 -5.485 0.3170 -17.30 <0.001 -6.107 -4.864 P113 -5.159 0.3797 -13.59 <0.001 -5.903 -4.414

P4 -3.278 0.0763 -42.95 <0.001 -3.428 -3.129 P59 -5.979 0.4084 -14.64 <0.001 -6.780 -5.179 P114 -5.992 0.5789 -10.35 <0.001 -7.126 -4.857

P5 -3.585 0.0883 -40.59 <0.001 -3.758 -3.412 P60 -5.356 0.3035 -17.65 <0.001 -5.951 -4.761 P115 -5.474 0.4474 -12.23 <0.001 -6.351 -4.597

P6 -4.437 0.1006 -44.09 <0.001 -4.634 -4.240 P61 -5.033 0.2595 -19.39 <0.001 -5.542 -4.524 P116 -5.973 0.5788 -10.32 <0.001 -7.107 -4.838

P7 -4.761 0.1150 -41.38 <0.001 -4.986 -4.535 P62 -5.651 0.3547 -15.93 <0.001 -6.346 -4.956 P117 -5.114 0.3789 -13.50 <0.001 -5.857 -4.372

P8 -4.826 0.1307 -36.93 <0.001 -5.082 -4.570 P63 -5.641 0.3546 -15.91 <0.001 -6.336 -4.946 P118 -7.053 1.0010 -7.05 <0.001 -9.014 -5.091

P9 -4.982 0.1464 -34.04 <0.001 -5.268 -4.695 P64 -5.223 0.2895 -18.04 <0.001 -5.790 -4.655 P119 -5.427 0.4482 -12.11 <0.001 -6.306 -4.549

P10 -4.760 0.1432 -33.24 <0.001 -5.041 -4.480 P65 -4.858 0.2447 -19.85 <0.001 -5.337 -4.378 P120 -6.338 0.7085 -8.95 <0.001 -7.727 -4.949

P11 -4.954 0.1506 -32.89 <0.001 -5.249 -4.659 P66 -5.889 0.4093 -14.39 <0.001 -6.691 -5.086 P121 -5.229 0.4093 -12.78 <0.001 -6.032 -4.427

P12 -4.876 0.1467 -33.23 <0.001 -5.163 -4.588 P67 -5.178 0.2906 -17.82 <0.001 -5.748 -4.609 P122 -5.912 0.5778 -10.23 <0.001 -7.045 -4.780

P13 -5.026 0.1641 -30.64 <0.001 -5.348 -4.705 P68 -5.084 0.2789 -18.23 <0.001 -5.631 -4.538 P123 -5.391 0.4492 -12.00 <0.001 -6.271 -4.511

P14 -4.932 0.1664 -29.64 <0.001 -5.258 -4.606 P69 -5.843 0.4087 -14.30 <0.001 -6.644 -5.042 P124 -6.294 0.7084 -8.88 <0.001 -7.683 -4.906

P15 -5.374 0.1985 -27.07 <0.001 -5.763 -4.984 P70 -5.136 0.2893 -17.75 <0.001 -5.703 -4.569 P125 -5.591 0.5018 -11.14 <0.001 -6.575 -4.608

P16 -5.166 0.1917 -26.95 <0.001 -5.541 -4.790 P71 -5.531 0.3552 -15.57 <0.001 -6.227 -4.834 P126 -6.273 0.7084 -8.86 <0.001 -7.661 -4.885

P17 -5.456 0.2199 -24.81 <0.001 -5.887 -5.025 P72 -5.518 0.3555 -15.52 <0.001 -6.215 -4.822 P127 -6.263 0.7084 -8.84 <0.001 -7.651 -4.874

P18 -5.260 0.2012 -26.14 <0.001 -5.655 -4.866 P73 -5.790 0.4103 -14.11 <0.001 -6.594 -4.986 P128 -5.849 0.5788 -10.11 <0.001 -6.983 -4.715

P19 -5.359 0.2087 -25.67 <0.001 -5.768 -4.950 P74 -6.880 0.7077 -9.72 <0.001 -8.267 -5.493 P129 -4.988 0.3800 -13.13 <0.001 -5.733 -4.244

P20 -5.079 0.1882 -26.98 <0.001 -5.448 -4.710 P75 -5.613 0.3785 -14.83 <0.001 -6.355 -4.871 P130 -6.234 0.7080 -8.81 <0.001 -7.622 -4.847

P21 -5.164 0.1989 -25.96 <0.001 -5.554 -4.774 P76 -5.602 0.3791 -14.78 <0.001 -6.345 -4.859 P131 -5.531 0.5018 -11.02 <0.001 -6.514 -4.547

P22 -5.184 0.2012 -25.76 <0.001 -5.579 -4.790 P77 -5.459 0.3553 -15.37 <0.001 -6.156 -4.763 P132 -5.290 0.4482 -11.80 <0.001 -6.169 -4.412

P23 -5.041 0.1895 -26.61 <0.001 -5.413 -4.670 P78 -5.734 0.4089 -14.02 <0.001 -6.535 -4.932 P133 -5.794 0.5776 -10.03 <0.001 -6.926 -4.662

P24 -5.327 0.2209 -24.11 <0.001 -5.760 -4.894 P79 -5.903 0.4491 -13.14 <0.001 -6.783 -5.023 P134 -4.926 0.3803 -12.95 <0.001 -5.672 -4.181

P25 -5.467 0.2397 -22.81 <0.001 -5.936 -4.997 P80 -5.710 0.4098 -13.93 <0.001 -6.513 -4.906 o.P135

P26 -5.154 0.2078 -24.80 <0.001 -5.562 -4.747 P81 -4.843 0.2695 -17.97 <0.001 -5.371 -4.315 P136 -5.463 0.5019 -10.89 <0.001 -6.447 -4.480

P27 -5.046 0.2004 -25.18 <0.001 -5.439 -4.654 P82 -5.673 0.4101 -13.83 <0.001 -6.476 -4.869 P137 -6.844 1.0011 -6.84 <0.001 -8.806 -4.882

P28 -5.154 0.2126 -24.24 <0.001 -5.571 -4.738 P83 -5.503 0.3798 -14.49 <0.001 -6.247 -4.759 P138 -5.735 0.5790 -9.91 <0.001 -6.870 -4.600

P29 -5.229 0.2346 -22.28 <0.001 -5.689 -4.769 P84 -5.241 0.3355 -15.62 <0.001 -5.899 -4.584 P139 -6.132 0.7084 -8.66 <0.001 -7.521 -4.744

P30 -5.210 0.2237 -23.29 <0.001 -5.648 -4.771 P85 -6.046 0.5021 -12.04 <0.001 -7.030 -5.062 P140 -5.430 0.5011 -10.84 <0.001 -6.412 -4.448

P31 -5.607 0.2756 -20.34 <0.001 -6.148 -5.067 P86 -5.626 0.4091 -13.75 <0.001 -6.428 -4.824 P141 -5.414 0.5019 -10.79 <0.001 -6.398 -4.430

P32 -5.670 0.3076 -18.43 <0.001 -6.272 -5.067 P87 -5.613 0.4086 -13.74 <0.001 -6.414 -4.812 P142 -5.690 0.5783 -9.84 <0.001 -6.823 -4.556

P33 -5.733 0.2997 -19.13 <0.001 -6.321 -5.146 P88 -6.292 0.5785 -10.88 <0.001 -7.426 -5.158 P143 -6.779 1.0010 -6.77 <0.001 -8.741 -4.817

P34 -5.364 0.2483 -21.60 <0.001 -5.850 -4.877 P89 -6.282 0.5777 -10.88 <0.001 -7.414 -5.150 P144 -5.381 0.5019 -10.72 <0.001 -6.365 -4.398

P35 -5.287 0.2438 -21.69 <0.001 -5.764 -4.809 P90 -5.757 0.4484 -12.84 <0.001 -6.636 -4.878 P145 -6.061 0.7085 -8.55 <0.001 -7.449 -4.672

P36 -5.163 0.2330 -22.15 <0.001 -5.620 -4.706 P91 -6.256 0.5781 -10.82 <0.001 -7.389 -5.123 P146 -6.047 0.7085 -8.54 <0.001 -7.436 -4.659

P37 -5.377 0.2602 -20.66 <0.001 -5.888 -4.867 P92 -6.650 0.7077 -9.40 <0.001 -8.037 -5.263 P147 -5.334 0.5020 -10.63 <0.001 -6.318 -4.350

P38 -5.299 0.2526 -20.98 <0.001 -5.794 -4.804 P93 -5.725 0.4485 -12.77 <0.001 -6.604 -4.846 P148 -5.318 0.5012 -10.61 <0.001 -6.301 -4.336

P39 -5.561 0.2896 -19.20 <0.001 -6.128 -4.993 P94 -5.714 0.4486 -12.74 <0.001 -6.593 -4.834 P149 -5.588 0.5791 -9.65 <0.001 -6.723 -4.453

P40 -5.473 0.2795 -19.58 <0.001 -6.021 -4.925 P95 -5.005 0.3175 -15.77 <0.001 -5.628 -4.383 P150 -5.976 0.7085 -8.43 <0.001 -7.364 -4.587

P41 -5.460 0.2808 -19.44 <0.001 -6.011 -4.910 P96 -5.097 0.3351 -15.21 <0.001 -5.754 -4.440 P151 -5.266 0.5019 -10.49 <0.001 -6.250 -4.283

P42 -6.172 0.3979 -15.51 <0.001 -6.952 -5.392 P97 -5.197 0.3552 -14.63 <0.001 -5.893 -4.500 P152 -4.839 0.4100 -11.80 <0.001 -5.642 -4.035

P43 -5.065 0.2336 -21.68 <0.001 -5.522 -4.607 P98 -5.653 0.4485 -12.61 <0.001 -6.532 -4.774 P153 -5.519 0.5791 -9.53 <0.001 -6.654 -4.384

P44 -5.493 0.2908 -18.89 <0.001 -6.062 -4.923 P99 -5.465 0.4091 -13.36 <0.001 -6.267 -4.664 o.P154

P45 -5.256 0.2626 -20.01 <0.001 -5.771 -4.741 P100 -5.293 0.3794 -13.95 <0.001 -6.037 -4.550 P155 -5.900 0.7085 -8.33 <0.001 -7.289 -4.511

P46 -5.541 0.3066 -18.07 <0.001 -6.142 -4.940 P101 -5.278 0.3790 -13.93 <0.001 -6.021 -4.535 P156 -5.192 0.5013 -10.36 <0.001 -6.174 -4.209

P47 -5.175 0.2497 -20.72 <0.001 -5.665 -4.686 P102 -6.115 0.5788 -10.56 <0.001 -7.249 -4.981 o.P157

P48 -5.631 0.3169 -17.77 <0.001 -6.252 -5.010 P103 -5.819 0.5006 -11.62 <0.001 -6.800 -4.838 P158 -5.864 0.7086 -8.28 <0.001 -7.253 -4.476

P49 -5.206 0.2747 -18.95 <0.001 -5.744 -4.667 P104 -5.803 0.5015 -11.57 <0.001 -6.786 -4.820 o.P159

P50 -5.005 0.2367 -21.14 <0.001 -5.469 -4.541 P105 -5.795 0.5015 -11.56 <0.001 -6.778 -4.812 INS -0.334 0.1865 -1.79 0.07 -0.699 0.032

P51 -4.933 0.2306 -21.39 <0.001 -5.385 -4.481 P106 -7.176 0.9997 -7.18 <0.001 -9.136 -5.217 INS×LPER 1.515 0.1473 10.28 <0.001 1.226 1.803

P52 -5.786 0.3537 -16.36 <0.001 -6.479 -5.092 P107 -5.558 0.4491 -12.38 <0.001 -6.439 -4.678 REP 1.414 0.0725 19.51 <0.001 1.272 1.557

P53 -5.288 0.2774 -19.06 <0.001 -5.831 -4.744 P108 -5.552 0.4488 -12.37 <0.001 -6.432 -4.673 LPER×REP -0.119 0.0315 -3.78 <0.001 -0.181 -0.057

P54 -5.444 0.3021 -18.02 <0.001 -6.036 -4.852 P109 -5.356 0.4103 -13.05 <0.001 -6.161 -4.552 REHV2 0.622 0.0903 6.89 <0.001 0.445 0.799

P55 -5.262 0.2794 -18.84 <0.001 -5.810 -4.715 P110 -6.039 0.5787 -10.44 <0.001 -7.173 -4.905 REHV2×REP -0.681 0.1298 -5.25 <0.001 -0.936 -0.427

Table 24: Complete table including the variable names, estimated parameters, standard errors, z-

statistics, p-values and 95% Con�dence Intervals for the model of previous reablement participation,

adjusted for clustering e�ects.
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Variable Coe�. Std. Err. z p-value 95% CI Variable Coe�. Std. Err. z p-value 95% CI Variable Coe�. Std. Err. z p-value 95% CI

P1 -3.847 0.1173 -32.80 <0.001 -4.077 -3.617 P62 -5.800 0.3610 -16.07 <0.001 -6.507 -5.092 P123 -5.541 0.4599 -12.05 <0.001 -6.443 -4.640

P2 -3.574 0.1311 -27.27 <0.001 -3.831 -3.317 P63 -5.790 0.3603 -16.07 <0.001 -6.496 -5.084 P124 -6.443 0.7130 -9.04 <0.001 -7.840 -5.045

P3 -2.494 0.0946 -26.37 <0.001 -2.680 -2.309 P64 -5.373 0.2997 -17.93 <0.001 -5.960 -4.785 P125 -5.738 0.5094 -11.26 <0.001 -6.736 -4.739

P4 -3.229 0.0996 -32.44 <0.001 -3.424 -3.034 P65 -5.008 0.2581 -19.40 <0.001 -5.514 -4.502 P126 -6.419 0.7124 -9.01 <0.001 -7.815 -5.022

P5 -3.552 0.1080 -32.90 <0.001 -3.763 -3.340 P66 -6.042 0.4170 -14.49 <0.001 -6.859 -5.225 P127 -6.406 0.7126 -8.99 <0.001 -7.803 -5.010

P6 -4.420 0.1173 -37.67 <0.001 -4.650 -4.190 P67 -5.332 0.2971 -17.95 <0.001 -5.915 -4.750 P128 -5.994 0.5876 -10.20 <0.001 -7.146 -4.843

P7 -4.752 0.1288 -36.89 <0.001 -5.005 -4.500 P68 -5.238 0.2885 -18.15 <0.001 -5.803 -4.672 P129 -5.131 0.3902 -13.15 <0.001 -5.896 -4.367

P8 -4.828 0.1407 -34.32 <0.001 -5.104 -4.552 P69 -6.001 0.4147 -14.47 <0.001 -6.814 -5.188 P130 -6.378 0.7152 -8.92 <0.001 -7.779 -4.976

P9 -4.990 0.1523 -32.77 <0.001 -5.288 -4.692 P70 -5.295 0.2994 -17.69 <0.001 -5.882 -4.708 P131 -5.672 0.5096 -11.13 <0.001 -6.671 -4.674

P10 -4.771 0.1540 -30.99 <0.001 -5.072 -4.469 P71 -5.689 0.3628 -15.68 <0.001 -6.400 -4.978 P132 -5.433 0.4565 -11.90 <0.001 -6.327 -4.538

P11 -4.969 0.1616 -30.75 <0.001 -5.286 -4.653 P72 -5.675 0.3636 -15.61 <0.001 -6.388 -4.963 P133 -5.938 0.5860 -10.13 <0.001 -7.086 -4.789

P12 -4.898 0.1553 -31.53 <0.001 -5.202 -4.593 P73 -5.949 0.4182 -14.22 <0.001 -6.768 -5.129 P134 -5.067 0.3917 -12.93 <0.001 -5.834 -4.299

P13 -5.053 0.1711 -29.53 <0.001 -5.388 -4.717 P74 -7.040 0.7108 -9.90 <0.001 -8.433 -5.647 o.P135

P14 -4.970 0.1764 -28.17 <0.001 -5.316 -4.625 P75 -5.774 0.3855 -14.98 <0.001 -6.529 -5.018 P136 -5.607 0.5081 -11.03 <0.001 -6.603 -4.611

P15 -5.420 0.2056 -26.36 <0.001 -5.823 -5.017 P76 -5.762 0.3857 -14.94 <0.001 -6.517 -5.006 P137 -6.990 1.0040 -6.96 <0.001 -8.958 -5.022

P16 -5.216 0.2000 -26.08 <0.001 -5.609 -4.824 P77 -5.619 0.3651 -15.39 <0.001 -6.335 -4.904 P138 -5.880 0.5863 -10.03 <0.001 -7.029 -4.731

P17 -5.512 0.2257 -24.42 <0.001 -5.954 -5.070 P78 -5.895 0.4137 -14.25 <0.001 -6.706 -5.084 P139 -6.277 0.7125 -8.81 <0.001 -7.673 -4.881

P18 -5.322 0.2089 -25.47 <0.001 -5.732 -4.913 P79 -6.065 0.4600 -13.19 <0.001 -6.967 -5.163 P140 -5.576 0.5096 -10.94 <0.001 -6.575 -4.578

P19 -5.425 0.2181 -24.87 <0.001 -5.853 -4.998 P80 -5.871 0.4168 -14.09 <0.001 -6.687 -5.054 P141 -5.559 0.5088 -10.93 <0.001 -6.556 -4.562

P20 -5.145 0.1951 -26.38 <0.001 -5.528 -4.763 P81 -5.005 0.2819 -17.75 <0.001 -5.558 -4.452 P142 -5.836 0.5855 -9.97 <0.001 -6.983 -4.688

P21 -5.233 0.2073 -25.25 <0.001 -5.639 -4.826 P82 -5.832 0.4166 -14.00 <0.001 -6.648 -5.015 P143 -6.925 1.0042 -6.90 <0.001 -8.893 -4.956

P22 -5.257 0.2114 -24.87 <0.001 -5.671 -4.843 P83 -5.660 0.3866 -14.64 <0.001 -6.418 -4.902 P144 -5.526 0.5117 -10.80 <0.001 -6.529 -4.524

P23 -5.116 0.2011 -25.44 <0.001 -5.510 -4.722 P84 -5.399 0.3434 -15.72 <0.001 -6.072 -4.726 P145 -6.204 0.7162 -8.66 <0.001 -7.608 -4.800

P24 -5.404 0.2279 -23.71 <0.001 -5.851 -4.957 P85 -6.207 0.5076 -12.23 <0.001 -7.202 -5.212 P146 -6.191 0.7157 -8.65 <0.001 -7.594 -4.789

P25 -5.548 0.2478 -22.39 <0.001 -6.033 -5.062 P86 -5.788 0.4161 -13.91 <0.001 -6.603 -4.972 P147 -5.478 0.5085 -10.77 <0.001 -6.475 -4.481

P26 -5.240 0.2156 -24.31 <0.001 -5.663 -4.818 P87 -5.779 0.4182 -13.82 <0.001 -6.599 -4.959 P148 -5.462 0.5083 -10.75 <0.001 -6.459 -4.466

P27 -5.136 0.2100 -24.46 <0.001 -5.547 -4.724 P88 -6.459 0.5845 -11.05 <0.001 -7.605 -5.314 P149 -5.734 0.5870 -9.77 <0.001 -6.885 -4.583

P28 -5.247 0.2230 -23.53 <0.001 -5.684 -4.810 P89 -6.449 0.5822 -11.08 <0.001 -7.591 -5.308 P150 -6.118 0.7144 -8.56 <0.001 -7.518 -4.717

P29 -5.325 0.2428 -21.93 <0.001 -5.801 -4.849 P90 -5.926 0.4537 -13.06 <0.001 -6.815 -5.037 P151 -5.403 0.5129 -10.53 <0.001 -6.408 -4.398

P30 -5.308 0.2310 -22.98 <0.001 -5.761 -4.855 P91 -6.425 0.5818 -11.04 <0.001 -7.566 -5.285 P152 -4.977 0.4189 -11.88 <0.001 -5.798 -4.156

P31 -5.708 0.2811 -20.30 <0.001 -6.259 -5.157 P92 -6.820 0.7111 -9.59 <0.001 -8.214 -5.426 P153 -5.656 0.5885 -9.61 <0.001 -6.809 -4.502

P32 -5.773 0.3134 -18.42 <0.001 -6.387 -5.158 P93 -5.895 0.4538 -12.99 <0.001 -6.785 -5.006 o.P154

P33 -5.838 0.3075 -18.99 <0.001 -6.441 -5.236 P94 -5.885 0.4580 -12.85 <0.001 -6.782 -4.987 P155 -6.033 0.7132 -8.46 <0.001 -7.430 -4.635

P34 -5.471 0.2575 -21.24 <0.001 -5.975 -4.966 P95 -5.177 0.3278 -15.79 <0.001 -5.819 -4.534 P156 -5.318 0.5105 -10.42 <0.001 -6.318 -4.317

P35 -5.398 0.2501 -21.58 <0.001 -5.888 -4.908 P96 -5.267 0.3485 -15.11 <0.001 -5.950 -4.584 o.P157

P36 -5.275 0.2414 -21.86 <0.001 -5.749 -4.802 P97 -5.365 0.3628 -14.79 <0.001 -6.076 -4.654 P158 -5.989 0.7134 -8.39 <0.001 -7.387 -4.590

P37 -5.490 0.2666 -20.59 <0.001 -6.013 -4.967 P98 -5.820 0.4548 -12.80 <0.001 -6.712 -4.929 o.P159

P38 -5.414 0.2630 -20.58 <0.001 -5.930 -4.899 P99 -5.631 0.4180 -13.47 <0.001 -6.450 -4.811 INS -0.465 0.1784 -2.61 0.01 -0.814 -0.115

P39 -5.677 0.2998 -18.94 <0.001 -6.264 -5.089 P100 -5.460 0.3865 -14.13 <0.001 -6.217 -4.702 INS×LPER 1.520 0.1371 11.09 <0.001 1.252 1.789

P40 -5.593 0.2892 -19.34 <0.001 -6.160 -5.026 P101 -5.444 0.3865 -14.09 <0.001 -6.201 -4.686 REP 1.395 0.0946 14.75 <0.001 1.210 1.580

P41 -5.583 0.2893 -19.30 <0.001 -6.150 -5.016 P102 -6.281 0.5854 -10.73 <0.001 -7.428 -5.134 REP×LPER -0.129 0.0315 -4.10 <0.001 -0.191 -0.067

P42 -6.290 0.4004 -15.71 <0.001 -7.074 -5.505 P103 -5.987 0.5066 -11.82 <0.001 -6.979 -4.994 MALE 0.265 0.0821 3.22 <0.001 0.104 0.425

P43 -5.191 0.2432 -21.35 <0.001 -5.668 -4.715 P104 -5.973 0.5077 -11.76 <0.001 -6.969 -4.978 0.AGE -1.010 0.2183 -4.63 <0.001 -1.437 -0.582

P44 -5.618 0.2970 -18.92 <0.001 -6.200 -5.036 P105 -5.964 0.5112 -11.67 <0.001 -6.966 -4.962 1.AGE

P45 -5.386 0.2720 -19.80 <0.001 -5.919 -4.853 P106 -7.347 1.0030 -7.32 <0.001 -9.313 -5.381 2.AGE -0.055 0.1358 -0.41 0.68 -0.322 0.211

P46 -5.671 0.3128 -18.13 <0.001 -6.284 -5.058 P107 -5.727 0.4571 -12.53 <0.001 -6.623 -4.831 0.AGE×LPER 0.031 0.0629 0.50 0.62 -0.092 0.155

P47 -5.313 0.2597 -20.46 <0.001 -5.822 -4.804 P108 -5.720 0.4564 -12.53 <0.001 -6.614 -4.825 2.AGE×LPER 0.135 0.0424 3.17 <0.001 0.051 0.218

P48 -5.771 0.3238 -17.82 <0.001 -6.405 -5.136 P109 -5.519 0.4173 -13.22 <0.001 -6.337 -4.701 0.AGE×INS 0.966 0.2275 4.25 <0.001 0.520 1.412

P49 -5.346 0.2851 -18.75 <0.001 -5.905 -4.787 P110 -6.202 0.5834 -10.63 <0.001 -7.345 -5.058 1.AGE×INS

P50 -5.148 0.2488 -20.69 <0.001 -5.635 -4.660 P111 -5.494 0.4200 -13.08 <0.001 -6.318 -4.671 2.AGE×INS 0.000 0.1350 0.00 1.00 -0.265 0.264

P51 -5.075 0.2404 -21.11 <0.001 -5.546 -4.604 P112 -5.888 0.5077 -11.60 <0.001 -6.883 -4.893 0.AGE×REP 0.599 0.1857 3.23 <0.001 0.235 0.964

P52 -5.929 0.3606 -16.44 <0.001 -6.635 -5.222 P113 -5.315 0.3883 -13.69 <0.001 -6.076 -4.554 1.AGE×REP

P53 -5.431 0.2856 -19.02 <0.001 -5.991 -4.872 P114 -6.150 0.5840 -10.53 <0.001 -7.294 -5.005 2.AGE×REP -0.122 0.0947 -1.29 0.20 -0.307 0.064

P54 -5.589 0.3096 -18.05 <0.001 -6.195 -4.982 P115 -5.628 0.4539 -12.40 <0.001 -6.517 -4.738 REHV1 0.362 0.1472 2.46 0.01 0.073 0.650

P55 -5.411 0.2877 -18.81 <0.001 -5.974 -4.847 P116 -6.125 0.5898 -10.39 <0.001 -7.281 -4.969 REHV1×REP -0.588 0.1213 -4.84 <0.001 -0.826 -0.350

P56 -5.766 0.3403 -16.95 <0.001 -6.433 -5.099 P117 -5.267 0.3882 -13.57 <0.001 -6.028 -4.507 0.AGE×MALE -0.319 0.1653 -1.93 0.05 -0.643 0.005

P57 -5.467 0.3004 -18.20 <0.001 -6.056 -4.878 P118 -7.208 1.0040 -7.18 <0.001 -9.176 -5.240 1.AGE×MALE

P58 -5.634 0.3276 -17.20 <0.001 -6.276 -4.992 P119 -5.581 0.4541 -12.29 <0.001 -6.471 -4.691 2.AGE×MALE -0.149 0.0964 -1.55 0.12 -0.338 0.040

P59 -6.129 0.4138 -14.81 <0.001 -6.940 -5.318 P120 -6.491 0.7125 -9.11 <0.001 -7.888 -5.095 MALE×REHV1 0.152 0.1357 1.12 0.26 -0.114 0.417

P60 -5.507 0.3095 -17.79 <0.001 -6.113 -4.900 P121 -5.378 0.4157 -12.94 <0.001 -6.193 -4.564 0.AGE×REHV1 -0.106 0.2351 -0.45 0.65 -0.567 0.354

P61 -5.184 0.2678 -19.35 <0.001 -5.709 -4.659 P122 -6.063 0.5830 -10.40 <0.001 -7.205 -4.920 1.AGE×REHV1

2.AGE×REHV1 -0.134 0.1500 -0.90 0.37 -0.428 0.160

Table 25: Complete table including the variable names, estimated parameters, standard errors,

z-statistics, p-values and 95% Con�dence Intervals for the combined model including previous or

current reablement participation, adjusted for clustering e�ects.
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Variable Coe�. Std. Err. z p-value 95% CI Variable Coe�. Std. Err. z p-value 95% CI Variable Coe�. Std. Err. z p-value 95% CI

P1 -3.842 0.1166 -32.95 <0.001 -4.071 -3.614 P62 -5.814 0.3611 -16.10 <0.001 -6.522 -5.106 P123 -5.564 0.4601 -12.09 <0.001 -6.466 -4.662

P2 -3.571 0.1304 -27.39 <0.001 -3.827 -3.316 P63 -5.804 0.3605 -16.10 <0.001 -6.510 -5.097 P124 -6.465 0.7131 -9.06 <0.001 -7.862 -5.067

P3 -2.496 0.0939 -26.58 <0.001 -2.680 -2.312 P64 -5.386 0.2996 -17.98 <0.001 -5.974 -4.799 P125 -5.761 0.5096 -11.30 <0.001 -6.760 -4.762

P4 -3.231 0.0987 -32.73 <0.001 -3.425 -3.038 P65 -5.021 0.2582 -19.45 <0.001 -5.527 -4.515 P126 -6.441 0.7127 -9.04 <0.001 -7.838 -5.045

P5 -3.557 0.1075 -33.09 <0.001 -3.768 -3.346 P66 -6.055 0.4169 -14.52 <0.001 -6.872 -5.238 P127 -6.430 0.7127 -9.02 <0.001 -7.827 -5.033

P6 -4.426 0.1169 -37.87 <0.001 -4.655 -4.197 P67 -5.345 0.2971 -17.99 <0.001 -5.928 -4.763 P128 -6.017 0.5876 -10.24 <0.001 -7.168 -4.865

P7 -4.760 0.1283 -37.11 <0.001 -5.012 -4.509 P68 -5.251 0.2888 -18.18 <0.001 -5.817 -4.685 P129 -5.153 0.3903 -13.20 <0.001 -5.918 -4.388

P8 -4.837 0.1403 -34.47 <0.001 -5.112 -4.562 P69 -6.013 0.4148 -14.50 <0.001 -6.826 -5.201 P130 -6.399 0.7152 -8.95 <0.001 -7.801 -4.998

P9 -5.000 0.1517 -32.95 <0.001 -5.297 -4.703 P70 -5.309 0.2996 -17.72 <0.001 -5.896 -4.722 P131 -5.695 0.5099 -11.17 <0.001 -6.695 -4.696

P10 -4.780 0.1534 -31.15 <0.001 -5.081 -4.479 P71 -5.703 0.3630 -15.71 <0.001 -6.415 -4.992 P132 -5.455 0.4571 -11.93 <0.001 -6.351 -4.559

P11 -4.981 0.1616 -30.82 <0.001 -5.298 -4.664 P72 -5.691 0.3637 -15.64 <0.001 -6.403 -4.978 P133 -5.961 0.5858 -10.18 <0.001 -7.109 -4.813

P12 -4.909 0.1557 -31.54 <0.001 -5.215 -4.604 P73 -5.963 0.4183 -14.26 <0.001 -6.783 -5.144 P134 -5.090 0.3921 -12.98 <0.001 -5.859 -4.322

P13 -5.065 0.1712 -29.59 <0.001 -5.401 -4.730 P74 -7.056 0.7108 -9.93 <0.001 -8.449 -5.662 o.P135

P14 -4.981 0.1762 -28.27 <0.001 -5.326 -4.635 P75 -5.789 0.3854 -15.02 <0.001 -6.545 -5.034 P136 -5.631 0.5085 -11.07 <0.001 -6.627 -4.634

P15 -5.431 0.2054 -26.43 <0.001 -5.834 -5.028 P76 -5.777 0.3858 -14.97 <0.001 -6.533 -5.021 P137 -7.014 1.0041 -6.99 <0.001 -8.982 -5.046

P16 -5.229 0.1998 -26.16 <0.001 -5.620 -4.837 P77 -5.635 0.3654 -15.42 <0.001 -6.351 -4.919 P138 -5.905 0.5865 -10.07 <0.001 -7.054 -4.755

P17 -5.525 0.2253 -24.53 <0.001 -5.966 -5.083 P78 -5.911 0.4141 -14.27 <0.001 -6.723 -5.099 P139 -6.301 0.7127 -8.84 <0.001 -7.698 -4.905

P18 -5.333 0.2085 -25.58 <0.001 -5.742 -4.925 P79 -6.081 0.4602 -13.21 <0.001 -6.983 -5.179 P140 -5.601 0.5097 -10.99 <0.001 -6.600 -4.602

P19 -5.437 0.2178 -24.97 <0.001 -5.864 -5.010 P80 -5.887 0.4169 -14.12 <0.001 -6.705 -5.070 P141 -5.584 0.5091 -10.97 <0.001 -6.582 -4.587

P20 -5.157 0.1949 -26.46 <0.001 -5.539 -4.775 P81 -5.022 0.2825 -17.78 <0.001 -5.576 -4.468 P142 -5.862 0.5854 -10.01 <0.001 -7.009 -4.715

P21 -5.244 0.2070 -25.34 <0.001 -5.650 -4.839 P82 -5.849 0.4165 -14.04 <0.001 -6.666 -5.033 P143 -6.950 1.0044 -6.92 <0.001 -8.918 -4.981

P22 -5.270 0.2112 -24.95 <0.001 -5.684 -4.856 P83 -5.677 0.3870 -14.67 <0.001 -6.436 -4.919 P144 -5.551 0.5120 -10.84 <0.001 -6.555 -4.548

P23 -5.129 0.2009 -25.54 <0.001 -5.523 -4.736 P84 -5.417 0.3436 -15.77 <0.001 -6.090 -4.744 P145 -6.229 0.7162 -8.70 <0.001 -7.632 -4.825

P24 -5.417 0.2278 -23.78 <0.001 -5.864 -4.971 P85 -6.224 0.5078 -12.26 <0.001 -7.220 -5.229 P146 -6.216 0.7159 -8.68 <0.001 -7.619 -4.813

P25 -5.561 0.2478 -22.45 <0.001 -6.047 -5.076 P86 -5.805 0.4161 -13.95 <0.001 -6.621 -4.990 P147 -5.503 0.5088 -10.82 <0.001 -6.500 -4.506

P26 -5.255 0.2153 -24.41 <0.001 -5.677 -4.833 P87 -5.796 0.4183 -13.86 <0.001 -6.616 -4.977 P148 -5.488 0.5088 -10.79 <0.001 -6.485 -4.491

P27 -5.149 0.2097 -24.56 <0.001 -5.560 -4.738 P88 -6.477 0.5846 -11.08 <0.001 -7.622 -5.331 P149 -5.759 0.5873 -9.81 <0.001 -6.910 -4.608

P28 -5.261 0.2232 -23.57 <0.001 -5.698 -4.823 P89 -6.467 0.5821 -11.11 <0.001 -7.608 -5.326 P150 -6.143 0.7146 -8.60 <0.001 -7.544 -4.742

P29 -5.339 0.2428 -21.99 <0.001 -5.815 -4.863 P90 -5.943 0.4538 -13.10 <0.001 -6.832 -5.054 P151 -5.429 0.5132 -10.58 <0.001 -6.435 -4.423

P30 -5.322 0.2307 -23.06 <0.001 -5.774 -4.869 P91 -6.442 0.5819 -11.07 <0.001 -7.583 -5.302 P152 -5.002 0.4192 -11.93 <0.001 -5.824 -4.181

P31 -5.721 0.2810 -20.36 <0.001 -6.272 -5.171 P92 -6.837 0.7112 -9.61 <0.001 -8.231 -5.443 P153 -5.680 0.5889 -9.65 <0.001 -6.834 -4.526

P32 -5.785 0.3132 -18.47 <0.001 -6.399 -5.171 P93 -5.913 0.4539 -13.03 <0.001 -6.803 -5.023 o.P154

P33 -5.851 0.3072 -19.05 <0.001 -6.453 -5.249 P94 -5.901 0.4577 -12.89 <0.001 -6.799 -5.004 P155 -6.056 0.7134 -8.49 <0.001 -7.455 -4.658

P34 -5.484 0.2572 -21.32 <0.001 -5.988 -4.980 P95 -5.193 0.3278 -15.84 <0.001 -5.836 -4.551 P156 -5.341 0.5106 -10.46 <0.001 -6.341 -4.340

P35 -5.411 0.2499 -21.65 <0.001 -5.901 -4.921 P96 -5.285 0.3489 -15.15 <0.001 -5.968 -4.601 o.P157

P36 -5.289 0.2412 -21.92 <0.001 -5.762 -4.816 P97 -5.382 0.3629 -14.83 <0.001 -6.094 -4.671 P158 -6.012 0.7137 -8.42 <0.001 -7.410 -4.613

P37 -5.503 0.2664 -20.66 <0.001 -6.025 -4.981 P98 -5.838 0.4550 -12.83 <0.001 -6.730 -4.947 o.P159

P38 -5.429 0.2628 -20.65 <0.001 -5.944 -4.913 P99 -5.650 0.4181 -13.51 <0.001 -6.469 -4.830 INS -0.476 0.1766 -2.70 0.01 -0.822 -0.130

P39 -5.690 0.2994 -19.00 <0.001 -6.277 -5.103 P100 -5.479 0.3866 -14.17 <0.001 -6.237 -4.721 INS×LPER 1.524 0.1353 11.26 <0.001 1.259 1.789

P40 -5.606 0.2887 -19.42 <0.001 -6.172 -5.040 P101 -5.463 0.3866 -14.13 <0.001 -6.221 -4.705 REP 1.359 0.0941 14.43 <0.001 1.174 1.543

P41 -5.596 0.2889 -19.37 <0.001 -6.162 -5.029 P102 -6.300 0.5855 -10.76 <0.001 -7.448 -5.153 REP×LPER -0.128 0.0316 -4.04 <0.001 -0.190 -0.066

P42 -6.302 0.3995 -15.78 <0.001 -7.085 -5.519 P103 -6.006 0.5068 -11.85 <0.001 -7.000 -5.013 MALE 0.275 0.0822 3.35 <0.001 0.114 0.436

P43 -5.206 0.2430 -21.42 <0.001 -5.682 -4.730 P104 -5.992 0.5079 -11.80 <0.001 -6.987 -4.996 0.AGE -1.012 0.2187 -4.63 <0.001 -1.440 -0.583

P44 -5.632 0.2963 -19.01 <0.001 -6.213 -5.052 P105 -5.984 0.5114 -11.70 <0.001 -6.986 -4.982 1.AGE

P45 -5.400 0.2720 -19.86 <0.001 -5.933 -4.867 P106 -7.366 1.0029 -7.34 <0.001 -9.332 -5.400 2.AGE -0.061 0.1349 -0.45 0.65 -0.326 0.203

P46 -5.685 0.3124 -18.20 <0.001 -6.297 -5.073 P107 -5.746 0.4575 -12.56 <0.001 -6.643 -4.850 0.AGE×LPER 0.034 0.0634 0.53 0.59 -0.090 0.158

P47 -5.327 0.2598 -20.50 <0.001 -5.837 -4.818 P108 -5.739 0.4566 -12.57 <0.001 -6.634 -4.844 2.AGE×LPER 0.135 0.0424 3.19 <0.001 0.052 0.218

P48 -5.785 0.3239 -17.86 <0.001 -6.420 -5.150 P109 -5.539 0.4176 -13.27 <0.001 -6.357 -4.721 0.AGE×INS 0.971 0.2252 4.31 <0.001 0.529 1.412

P49 -5.360 0.2849 -18.81 <0.001 -5.918 -4.801 P110 -6.221 0.5836 -10.66 <0.001 -7.365 -5.077 1.AGE×INS

P50 -5.161 0.2486 -20.76 <0.001 -5.649 -4.674 P111 -5.512 0.4199 -13.13 <0.001 -6.335 -4.689 2.AGE×INS 0.007 0.1326 0.05 0.96 -0.253 0.267

P51 -5.089 0.2403 -21.18 <0.001 -5.560 -4.618 P112 -5.907 0.5078 -11.63 <0.001 -6.902 -4.912 0.AGE×REP 0.621 0.1858 3.34 <0.001 0.257 0.986

P52 -5.943 0.3607 -16.48 <0.001 -6.649 -5.236 P113 -5.334 0.3886 -13.73 <0.001 -6.096 -4.573 1.AGE×REP

P53 -5.445 0.2857 -19.06 <0.001 -6.005 -4.885 P114 -6.168 0.5841 -10.56 <0.001 -7.313 -5.024 2.AGE×REP -0.113 0.0950 -1.19 0.23 -0.299 0.073

P54 -5.602 0.3097 -18.09 <0.001 -6.209 -4.995 P115 -5.649 0.4539 -12.45 <0.001 -6.539 -4.760 REHV2 0.601 0.1541 3.90 <0.001 0.299 0.903

P55 -5.423 0.2876 -18.85 <0.001 -5.987 -4.859 P116 -6.147 0.5900 -10.42 <0.001 -7.304 -4.991 REHV2×REP -0.612 0.1281 -4.78 <0.001 -0.863 -0.361

P56 -5.779 0.3399 -17.00 <0.001 -6.445 -5.113 P117 -5.288 0.3878 -13.64 <0.001 -6.048 -4.528 0.AGE×MALE -0.327 0.1668 -1.96 0.05 -0.654 0.000

P57 -5.481 0.3002 -18.25 <0.001 -6.069 -4.892 P118 -7.228 1.0041 -7.20 <0.001 -9.196 -5.260 1.AGE×MALE

P58 -5.648 0.3274 -17.25 <0.001 -6.289 -5.006 P119 -5.604 0.4542 -12.34 <0.001 -6.494 -4.713 2.AGE×MALE -0.148 0.0965 -1.54 0.12 -0.338 0.041

P59 -6.142 0.4139 -14.84 <0.001 -6.953 -5.331 P120 -6.513 0.7127 -9.14 <0.001 -7.910 -5.116 MALE×REHV2 0.096 0.1347 0.71 0.48 -0.168 0.360

P60 -5.520 0.3096 -17.83 <0.001 -6.127 -4.913 P121 -5.402 0.4159 -12.99 <0.001 -6.217 -4.587 0.AGE×REHV2 -0.147 0.2629 -0.56 0.58 -0.662 0.368

P61 -5.198 0.2680 -19.39 <0.001 -5.723 -4.672 P122 -6.085 0.5830 -10.44 <0.001 -7.228 -4.943 1.AGE×REHV2

2.AGE×REHV2 -0.159 0.1487 -1.07 0.29 -0.450 0.133

Table 26: Complete table including the variable names, estimated parameters, standard errors,

z-statistics, p-values and 95% Con�dence Intervals for the combined model including previous re-

ablement participation, adjusted for clustering e�ects.
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8.14 Stata do-�le(s)

// Import

use "C:\ Users \Panel_master_students2 . dta " , c l e a r

// Restructure home−nurse area va r i ab l e

gen HNA = 0

rep l a c e HNA = 1 i f ( Ansvar > 999) & (Ansvar < 10000)

drop HJNA HJHJ HJSY

// Restructure cohab i ta t i on

gen bora lene = 0

r ep l a c e bora lene = 1 i f ( Ug i f t == 1 | Enke_enkem == 1 | Sep_ski l t == 1 | Gift_sam_inst == 1 | Gift_sam ==

0)

drop Ug i f t Gift_sam Sep_ski l t Enke_enkem Gift_sam_inst Ikke_oppgit

// Generate STI va r i ab l e (KORT or REHA)

gen STI = 0

r ep l a c e STI = 1 i f (KORT == 1 | REHA == 1)

drop KORT REHA

// Generate LTI va r i ab l e (STERK, LANG)

gen LTI = 0

r ep l a c e LTI = 1 i f (STERK == 1 | LANG == 1) // 80 989

drop LANG STERK

// HNA user

egen hnauser = max(HNA) , by ( ID)

// Drop i f never been to HNA, no s p e l l 1

s o r t ID

by ID : drop i f hnauser == 0 // 68 245

drop hnauser

// Drop i f only 1 obs

by ID : egen nobs = count (Uke)

drop i f nobs == 1 // 135

drop nobs

// Tackle BOLOM

tab ID i f BOLOM == 1 & (HNA[_n+1] == 1 | STI [_n+1] == 1) & (HNA[_n−1] == 1 | STI [_n−1] == 1)

r ep l a c e HNA = 1 i f BOLOM == 1 & ID == 3153

drop i f BOLOM == 1 // 3 316

drop BOLOM

// Tacle LTI

by ID : gen t r i a l = 1 i f (HNA == 1 | STI == 1) & (LTI [_n −1] == 1) & (LTI [_n +1] == 1)

// Set t r i a l STI == LTI so that we can de l e t e a l l LTI a f t e r

r ep l a c e LTI = 1 i f t r i a l == 1 // 11

drop t r i a l

// LTIuser

// egen l t i u s e r = max(LTI) , by ( ID)

//drop i f l t i u s e r == 0

// Manual checks o f any use r s with more than 2 s p e l l s

// t s s p e l l LTI , fcond ( (LTI != LTI [_n−1]) )

// tab _spe l l

// tab ID i f _spe l l == 3

// ID 302 447 650 1088 1350 1463 1466 1470 2993 3321 3759 4138 4326 4875

// Manual changes and de l e t i n g

// S ing l e d e l e t i o n s

by ID : drop i f ID == 1466 & (_n == _N)

by ID : drop i f ID == 2993 & (_n == _N)

r ep l a c e STI = 1 i f ( ID == 4238 & Uke == 107) // This i s a l s o t r i a l per iod

// More than s i n g l e changes

by ID : gen ba ck l t i = 1 i f LTI == 1 & (HNA[_n+1] == 1 | STI [_n+1] == 1)

by ID : r ep l a c e b a c k l t i = 1 i f ( ID == 1088) & ( ba ck l t i [_n−1] == 1) // 24

by ID : r ep l a c e b a c k l t i = 1 i f ( ID == 1470) & ( ba ck l t i [_n−1] == 1) // 9

by ID : r ep l a c e b a c k l t i = 1 i f ( ID == 3759) & ( ba ck l t i [_n−1] == 1) // 3

by ID : r ep l a c e b a c k l t i = 1 i f ( ID == 4138) & ( ba ck l t i [_n−1] == 1) // 15

by ID : r ep l a c e b a c k l t i = 1 i f ( ID == 4326) & ( ba ck l t i [_n−1] == 1) // 91
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// Drop obse rva t i on s

by ID : drop i f b a c k l t i == 1 // 167

by ID : drop i f LTI == 1 // 27 055

// Now t s s p e l l the data

// Begin by i d e n t i f y i n g s p e l l 1 , f i r s t time HNA

by ID (Uke) , s o r t : gen noccur = sum(HNA)

by ID : gen byte hnastar t = noccur == 1 & noccur [_n − 1 ] != noccur

by ID : r ep l a c e hnastar t = 1 i f hnastar t [_n−1] == 1

drop i f hnastar t == 0 // 2 415

drop hnastar t noccur b a ck l t i

// Units only have 1 obse rvat ion in to ta l , d e l e t e these (147)

by ID : egen nobs = count (Uke)

drop i f nobs == 1 // 17

drop nobs

// How many unique un i t s are we l e f t with ?

by ID , s o r t : gen nva l s = _n == 1

count i f nva l s // 4 496

drop nva l s

r ep l a c e HNA = 1 i f ( Ansvar == . | Ansvar == 2) // 140

// Ready to t s s p e l l

t s s p e l l HNA, fcond ( (HNA != HNA[_n−1]) ) // Ignore s gaps

by ID : gen byte c e n s o r e d l e f t = _seq == 1 & _n == 1

by ID : gen byte c en so r ed r i gh t = _end == 1 & _n == _N

gen event = _end − c en so r ed r i gh t // 6 390 events

// 320 341 obse rva t i on s

drop LTI Alder14 KORT_d_u REHA_d_u HJNA_t_u HJHJ_t_u HJSY_t_u REHV_t_u y2016 HNAdummy11

// Set up f o r ana l y s i s

f o r v a l u e s j = 1/159 {

gen _period ` j '=0

r ep l a c e _period ` j ' = 1 i f _seq == [ ` j ' ] }

f o r v a l u e s j = 1/53 {

gen _spel l ` j '=0

r ep l a c e _spel l ` j ' = 1 i f _spe l l == [ ` j ' ] }

gen OUTSIDE = 0 // This i s i n s t i t u t i o n ( INS)

r ep l a c e OUTSIDE = 1 i f ( STI == 1)

gen LPER = ln (_seq )

by ID (Uke) , s o r t : gen noccur = sum(REHV)

by ID : gen byte REHVMEM = noccur == 1 & noccur [_n − 1 ] != noccur

by ID : r ep l a c e REHVMEM = 1 i f REHVMEM[_n−1] == 1 // This i s REHV1

drop noccur

gen REHVMEM2 = REHVMEM

rep l a c e REHVMEM2 = 0 i f (REHV == 1) // This i s REHV2

gen LATE = 1

by ID , s o r t : gen f i r s t o b s = _n == 1

by ID : r ep l a c e LATE = 0 i f (Uke == 1 & _seq == 1 & f i r s t o b s == 1)

by ID : r ep l a c e LATE = 0 i f LATE[_n−1] == 0

gen NOTFIRST = 1 // This i s REP

rep l a c e NOTFIRST = 0 i f ( _spe l l == 1) | ( _spe l l == 2)

egen ALDER3 = cut ( Alder15 ) , at (0 ,67 ,81 ,120) i c ode s // This i s age

gen HNADUM = 0

rep l a c e HNADUM = 0 i f Ansvar == 1116

r ep l a c e HNADUM = 1 i f Ansvar == 1542

r ep l a c e HNADUM = 2 i f Ansvar == 1667

r ep l a c e HNADUM = 3 i f Ansvar == 2051

r ep l a c e HNADUM = 4 i f Ansvar == 2142

r ep l a c e HNADUM = 5 i f Ansvar == 2730

r ep l a c e HNADUM = 6 i f Ansvar == 3424

r ep l a c e HNADUM = 7 i f Ansvar == 3449

r ep l a c e HNADUM = 8 i f Ansvar == 3789

r ep l a c e HNADUM = 9 i f Ansvar == 4413
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r ep l a c e HNADUM = 10 i f Ansvar == 4446

so r t ID Uke

// Run taxonomy of models

// Model A LL −24827.7 (155)

l o g i t event _period1−_period159 , nocons

e s t s t o r e mA

es t a t gof , group (10) // 0 .00 1 .000

l i n k t e s t // Y

// Repeat f o r a l l models below

// M B −21781.86 (206)

l o g i t event _period1−_period159 _spel l2−_spel l53 , nocons

// M B2 −22516.14 (158)

l o g i t event _period1−_period159 OUTSIDE NOTFIRST c .OUTSIDE#c .NOTFIRST, nocons

// M C −21490.9 (260)

l o g i t event _period1−_period159 _spel l2−_spel l53 c . ( _period1−_period10 )#c . ( _spe l l2 ) c . ( _period1−_period9 )#

c . ( _spe l l3 ) c . ( _period1−_period8 )#c . ( _spe l l4 ) c . ( _period1−_period7 )#c . ( _spe l l5 ) c . ( _period1−_period6 )#

c . ( _spe l l6 ) c . ( _period1−_period5 )#c . ( _spe l l7 ) c . ( _period1−_period4 )#c . ( _spe l l8 ) c . ( _period1−_period3 )#

c . ( _spe l l9 ) c . ( _period1−_period2 )#c . ( _spe l l10 ) , nocons

// M C2 −21837.31 (195)

l o g i t event _period1−_period159 c . ( _period1−_period15 )#c .OUTSIDE c . ( _period1−_period15 )#c .NOTFIRST c . (

_period1−_period10 )#c . ( c .OUTSIDE#c .NOTFIRST) , nocons

// M D −22159.41 (185)

l o g i t event _period1−_period159 c . ( _period1−_period15 )#c .OUTSIDE c . ( _period1−_period15 )#c .NOTFIRST, nocons

// M E −22352.93 (159)

l o g i t event _period1−_period159 OUTSIDE c .OUTSIDE#c .LPER NOTFIRST c .LPER#c .NOTFIRST, nocons

// M E2 −22178.35 (160)

l o g i t event _period1−_period159 OUTSIDE c .OUTSIDE#c .LPER NOTFIRST c .LPER#c .NOTFIRST c .LPER#c .OUTSIDE#c .

NOTFIRST, nocons

// OTHER REPARAM OF PERIOD

gen SQPER = _seq^2

gen LINPER = 1/_seq

// MSQ −22730.07 (159)

l o g i t event _period1−_period159 OUTSIDE c .OUTSIDE#c .SQPER NOTFIRST c .SQPER#c .NOTFIRST, nocons

// MDIV −22332.83 (159)

l o g i t event _period1−_period159 OUTSIDE c .OUTSIDE#c .LINPER NOTFIRST c .LINPER#c .NOTFIRST, nocons

// Do l r−t e s t s f o r a l l nested models

l r t e s t M1 M2, s t a t s // f o r c e i f nece s sa ry

// Creat ing sample p l o t s

s t s e t _seq i f _spe l l == 1 , f a i l u r e ( event ) id ( ID)

drop s // or h f o r hazard

s t s gen s = s // or h

so r t _seq

twoway l i n e s _seq i f _seq < 160 , y t i t l e ( Surv iva l ) x t i t l e (Weeks in s p e l l ) y l i n e ( 0 . 5 ) // or Hazard

graph save Graph "C:\ Users \ Stata \Sample_hazard_may\ s p e l l 1 . gph"

cd "C:\ Users \ Stata \"

gr combine " s p e l l 1 " " s p e l l 3 " " s p e l l 5 " " s p e l l 7 " " s p e l l 9 " " s p e l l 2 " " s p e l l 4 " " s p e l l 6 " " s p e l l 8 " " s p e l l 1 0 " , c o l

(5 )

// Creat ing f i t t e d hazard p l o t s

l o g i t event _period1−_period159 OUTSIDE c .OUTSIDE#c .LPER NOTFIRST c .NOTFIRST#c .LPER, nocons vce ( c l u s t e r ID

)

p r ed i c t p

graph twoway l i n e p _seq i f _spe l l == 1 , s o r t x t i t l e (Weeks in s p e l l ) y t i t l e ( Hazard )

graph save Graph "C:\ Users \ Stata \ s p e l l 1 . gph"

// C l a s s i f i c a t i o n t ab l e s and ROC curves a f t e r model E

l r o c

l s e n s

// I n f l u e n t i a l ob s e rva t i on s
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pr ed i c t p // Probab i l i t y o f a p o s i t i v e outcome ( pi hat )

p r ed i c t covno , number // Gen cova r i a t e pattern numbers

p r ed i c t db , dbeta // Pregibon de l t a beta hat i n f l u e n c e s t a t

p r ed i c t dx , dx2 // HL de l t a x^2 i n f l u e n c e s t a t

p r ed i c t ddev , ddeviance // HL de l t a D i n f l u e n c e s t a t

p r ed i c t hat , hat // Pregibon l ev e rage

s c a t t e r hat p , mlab ( covno )

s c a t t e r dx p , mlab ( covno )

s c a t t e r ddev p , mlab ( covno )

s c a t t e r db p , mlab ( covno )

// Check d e t a i l s , e . g .

tab _seq i f covno == 3

tab _spe l l i f covno == 3

tab p i f covno == 3

tab hat i f covno == 3

// Models f o r gender , age , cohab i tat ion , rehv1 , rehv2 , comb1 , comb2 w/ c l u s t e r i n g

l o g i t event _period1−_period159 OUTSIDE c .OUTSIDE#c .LPER NOTFIRST c .NOTFIRST#c .LPER Mann c .Mann#c .LPER c .

Mann#c .OUTSIDE c .Mann#c .NOTFIRST, nocons vce ( c l u s t e r ID)

t e s t c .Mann#c .LPER c .Mann#c .OUTSIDE c .Mann#c .NOTFIRST // 4 .6 0 .2034

l o g i t event _period1−_period159 OUTSIDE c .OUTSIDE#c .LPER NOTFIRST c .NOTFIRST#c .LPER Mann, nocons vce (

c l u s t e r ID)

// −22 345.451 GOF 5.12 0.7446 l i n k OK

parmest , sav ing ("C:\ Users \ Stata \Gendervce . dta " , r ep l a c e )

l o g i t event _period1−_period159 OUTSIDE c .OUTSIDE#c .LPER NOTFIRST c .NOTFIRST#c .LPER bora lene c . bora lene#c .

LPER c . bora lene#c .OUTSIDE c . bora l ene#c .NOTFIRST, nocons vce ( c l u s t e r ID)

t e s t c . bora lene#c .NOTFIRST // 1 .87 0.1716

l o g i t event _period1−_period159 OUTSIDE c .OUTSIDE#c .LPER NOTFIRST c .NOTFIRST#c .LPER bora lene c . bora lene#c .

LPER c . bora lene#c .OUTSIDE, nocons vce ( c l u s t e r ID)

// −22 226.385 GOF 8.48 0.3879 l i n k OK

l o g i t event _period1−_period159 OUTSIDE c .OUTSIDE#c .LPER NOTFIRST c .LPER#c .NOTFIRST b1 .ALDER3 i0 .ALDER3#c .

LPER i2 .ALDER3#c .LPER b1 .ALDER3#c .OUTSIDE b1 .ALDER3#c .NOTFIRST, nocons vce ( c l u s t e r ID)

// GOF 5.52 0.7005 l i n k OK

l o g i t event _period1−_period159 OUTSIDE c .OUTSIDE#c .LPER NOTFIRST c .LPER#c .NOTFIRST REHVMEM c .REHVMEM#c .

LPER c .REHVMEM#c .OUTSIDE c .REHVMEM#c .NOTFIRST, nocons vce ( c l u s t e r ID)

t e s t c .REHVMEM#c .OUTSIDE c .REHVMEM#c .LPER // 4 .65 0.0976

l o g i t event _period1−_period159 OUTSIDE c .OUTSIDE#c .LPER NOTFIRST c .LPER#c .NOTFIRST REHVMEM c .REHVMEM#c .

NOTFIRST, nocons vce ( c l u s t e r ID)

// −22 329.958 GOF 9.94 0.2694 l i n k OK

l o g i t event _period1−_period159 OUTSIDE c .OUTSIDE#c .LPER NOTFIRST c .LPER#c .NOTFIRST REHVMEM2 c .REHVMEM2#c .

LPER c .REHVMEM2#c .OUTSIDE c .REHVMEM2#c .NOTFIRST, nocons vce ( c l u s t e r ID)

t e s t c .REHVMEM2#c .OUTSIDE c .REHVMEM2#c .LPER // 4 .7 0 .0954

l o g i t event _period1−_period159 OUTSIDE c .OUTSIDE#c .LPER NOTFIRST c .LPER#c .NOTFIRST REHVMEM2 c .REHVMEM2#c .

NOTFIRST, nocons vce ( c l u s t e r ID)

// −22 328.802 GOF 7.81 0.4522

// COMBINED1

l o g i t event _period1−_period159 OUTSIDE c .OUTSIDE#c .LPER NOTFIRST c .NOTFIRST#c .LPER Mann b1 .ALDER3 i0 .

ALDER3#c .LPER i2 .ALDER3#c .LPER b1 .ALDER3#c .OUTSIDE b1 .ALDER3#c .NOTFIRST REHVMEM c .REHVMEM#c .NOTFIRST

b1 .ALDER3#c .Mann c .Mann#c .REHVMEM b1 .ALDER3#c .REHVMEM, nocons vce ( c l u s t e r ID)

// −22 073.413 GOF 9.2 0 .3254 l i n k OK

// COMBINED2

l o g i t event _period1−_period159 OUTSIDE c .OUTSIDE#c .LPER NOTFIRST c .NOTFIRST#c .LPER Mann b1 .ALDER3 i0 .

ALDER3#c .LPER i2 .ALDER3#c .LPER b1 .ALDER3#c .OUTSIDE b1 .ALDER3#c .NOTFIRST REHVMEM2 c .REHVMEM2#c .NOTFIRST

b1 .ALDER3#c .Mann c .Mann#c .REHVMEM2 b1 .ALDER3#c .REHVMEM2, nocons vce ( c l u s t e r ID)

// 22 075.078 GOF 11.09 0.1967 l i n k OK

// Re−run a l l models without c l u s t e r i n g and do LR−t e s t s

// Some other ana l y s i s t o o l s

// Subsamples

// Make l a s t obs f o r each uni t
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by ID , s o r t : egen f i r s t t im e = min( cond ( _spe l l == 1 , Uke , . ) )

by ID : egen l a s t t ime = max( cond ( _spe l l == 1 , Uke , . ) )

gen byte f i r s t = Uke == f i r s t t im e

gen byte l a s t = Uke == la s t t ime

// Make max s p e l l

by ID : egen spel lmax = max( _spe l l )

tab spel lmax i f l a s t == 1 // Shows l a s t s p e l l

tab _seq i f l a s t == 1 & _spe l l == 1 // Shows l a s t per iod

// Gives max number o f Uke f o r each uni t

by ID : egen nobs = count (Uke)

// Shows maximum number o f pe r i ods f o r each ID

by ID : egen seqmax = max(_seq )

// Subsample 1 = Spellmax (1)

tab ID i f spel lmax == 1

// (Un) censored members o f subsample 1

by ID : egen evmax = max( event ) // Had event ? I f yes == 1

tab ID i f spel lmax == 1 & evmax == 1 // Uncensored , as expected 0

tab ID i f spel lmax == 1 & evmax == 0 // Censored

// Like Assign var iab l e , REHV i s time−var iant and miss ing when uni t in STI

tab ID i f REHV == 1 & STI == 1

rep l a c e REHV = . i f ( STI == 1)

// How many l a t e ent rant s ?

sum ID i f (Uke == 1 & _seq == 1 & f i r s t o b s == 1) // 1887

8.15 Re�ection note

This re�ection note serves the purpose of discussing the topics internationalization, innova-

tion and responsibility in the light of the theme and �ndings for the thesis. The main theme

of this paper is health care economics. Speci�cally, we have examined patient �ows between

home-nurse areas and short-term institutions in Norway. The main objective has been inves-

tigating whether, when and which individuals are admitted to short-term institutions. The

writing of this thesis has been a journey �lled with learning new concepts and overcoming

many challenges.

We did not know much about neither reablement nor survival analysis when we began

our journey approximately six months ago, and a deep delve into the academic literature was

needed. We spent many hours �ndings articles, some of which turned out to be of critical

importance to our work, while others did not bear any fruit with respect to the formation of

our thesis. Still, it was very exciting to learn about many of the �ne nuances within the topic

that we had chosen. The data cleaning procedure was a challenging a�air, and we spent a lot

of time creating event history paths and assessing ways we could approach the data cleaning

in an appropriate manner. We consulted many books, performed recommended exercises

and attempted to recreate examples in order to understand the way survival analysis was
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conducted and the inner mechanics of the methods applied.

Whenever we had speci�c issues with no simple solution in our textbooks, we consulted

various places for guidance. For instance, it was very helpful to us how much Dr. Nicholas J.

Cox from Durham University has contributed to Statalist, a forum for our main software of

choice. When we encountered an interpretation in an article that we could not understand,

we consulted MatRIC for assistance. When even further inquiry into the interpretations was

required, we consulted the respective authors for clari�cation. We were always met with

respect and understanding, and the people we met did their best in order to lead us onto the

right path. In short, the journey of writing our thesis has been an overall great experience

full of learning, sometimes requiring considerable e�ort in order to overcome challenges that

we met.

Summarizing the �ndings, we �nd that being male, of old age or living in cohabitation

are all generally associated with higher risk of admission to short-term institutions. The

last variable we investigated was reablement, and we found that admission was much more

likely among previous participants in the reablement program, but readmission was slightly

less likely, compared to non-participants in similar situations. Since reablement is a recent

phenomenon in Norway and has gained much interest with policy makers, it will be the

largest focus throughout this section.

The unit of analysis may depend on the perspective one considers. In other words, one

may focus on either the product or the process. For the �rst case, the units of analysis

are the individuals situated in home-nurse areas and are at risk of being admitted to a

short-term institution. Otherwise, one may consider the short-term institutions as the units

of analysis because they constitute the operating environment the patients are processed

by. The question remaining is whether we should focus on the people or the institution,

and it may be argued the former is more relevant in this case. This is because home-based

reablement is a service given to the individuals in order to increase self-su�ciency and reduce

the likelihood of admission to an institution, and is not intervening with the process at the

institutions in question.

An important point is that many parts of the world are facing what is known as the

age wave, which refers to a population shift resulting in a larger subpopulation of elderly
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people. A natural consequence of age is functional decline in a variety of forms and may in

some cases inhibit the ability to e�ciently perform activities of daily living. If this occurs,

some rehabilitation is often needed, where short-term institutions are one of many possible

alternatives. Unfortunately, the institutions only have a certain amount of capacity and

operating costs are signi�cant once all factors such as medication and wages for health care

workers are considered. In the light of our results, we �nd elderly are at higher risk of

admission to short-term institutions compared to the younger population. It is therefore

necessary that reablement services are further improved because of the population shift

expected to occur. Reablement services aim to increase the performance of those receiving

it so they can stay in the community with a reduced need for stays at such institutions.

This brings us to the international perspectives of reablement programs, where close co-

operation and sharing of knowledge is required in order to increase the e�ciency and quality

of those services. Throughout the thesis we have investigated the �ndings of research in ac-

cordance to reablement services in other countries such as Canada, Australia and the United

Kingdom. Reablement programs di�er with respect to the target audience, the strategy and

the level of commitment from both the user and the surrounding community. Some span

over just a few weeks in a person's own home, while others are performed at institutions

over a longer period. With all the di�erent nuances the reablement services inhibit, there

has been a large variety in their results. It is therefore essential for the experiences of both

users and administrators of the services are recorded and shared, such that they may be im-

proved upon and learned from, especially because reablement was quite recently introduced

as an alternative to other rehabilitation services. Summarizing, it is through the sharing of

knowledge and experiences among health care workers and reablement participants one may

improve the already existing services that are provided today.

For the theme of innovation, many possibilities for improvements of reablement services

exist. It has been mentioned that reablement services have many di�erent modi�cations with

respect to length, location and services provided. One possibility is that, as new knowledge

and experience is gained, it is found that di�erent forms of reablement are more e�ective for

some people than others. Since reablement is often suggested for those with challenges in

activities of daily living, di�erent forms of reablement programs may be organized around
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those activities that groups of users require the most. One reablement program may be

targeted towards those with physical health challenges, and another for those with mental

health issues. The argument for this is those who require assistance with personal hygiene,

cooking or getting dressed from a purely physical perspective may warrant other types of

rehabilitation than people struggling with anxiety, forgetfulness or loneliness.

Specialized reablement programs can therefore be administrated by di�erent specialists

for each program in their own �eld of expertise, and services will be better suited to the

needs of individuals. In the light of our study, we �nd being male is associated with a higher

risk of admission. One should examine the di�culties males experience, and customize the

reablement services males receive to address the challenges they are facing. Furthermore, we

�nd living alone has much lower risk of admission compared to cohabitants. Therefore, one

should examine why people living alone have lower risk of admission and, if possible, apply

principles that take advantage of this knowledge when mapping out reablement services.

Summarizing, innovations for reablement services can be made by examining the patterns in

needs and risk pro�les of the participants and customizing programs targeted towards those

with higher risk of admission, addressing speci�c challenges they are experiencing.

For the topic of responsibility, it is important to remember, in a health care setting, we

are dealing with people. Reablement services are targeted towards those having, or being at

risk of, functional decline, often elderly people. This means one must show extreme care so

personally identifying information is not compromised, and is stored with outmost security.

Furthermore, when dealing with individuals in vulnerable populations it is important to

show compassion and empathy in dealing with their situation. Finally, the work required in

recording the process and progress of participants should be upon those that administer the

services rather than the participants themselves. Vulnerable populations are receiving re-

ablement services for a reason and requiring them to �ll out large amounts of paperwork may

be detrimental to their performance and motivation to continue participating and making

progress according to their own goals.

Finally, we must not forget to consider the people in our own life that are possibly

experiencing challenges of their own. One should take time out of their day in order to take

care of their loved ones and thereby contributing to an increase in their overall health. The
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theme of responsibility is relevant not only for health care workers, but for everyone that

surround those that are e�ected by various degrees of functional decline. Summarizing, one

must show great care when dealing with patients and patient data, and not forget to make

contributions themselves. Not only should one treat the person in a way which shows respect

for their situation in a professional setting, but in a personal setting as well, and personal

information should always be handled in accordance with the policies and regulations that

are required by law.

In short, reablement services are a new and exciting form of treatment with many inter-

esting qualities and room for improvement, and it has been a pleasure to delve into the �ner

details of this topic. First, one should attempt to share newfound knowledge and experience

in order to learn more, and improve the services provided. Second, improving reablement

services can possibly be achieved by customized programs specializing in di�erent goals pa-

tients set for themselves and require the most assistance with. Third, ones that administer

the services must know they are dealing with people who are often part of a vulnerable sub-

population. Fourth, when assessing the e�ciency of the services o�ered through analysis,

one should be especially careful in the storage and use of the personal data for the partici-

pants it concerns. Finally, we must all work together and be responsible in order to secure

the health of our loved ones and the community at large.

- Daniil Evgenjevich Rudsengen
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