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Abstract

In predicting stock market returns, academic research has had its primary focus on

macroeconomic variables, and less attention has been paid towards technical indicators.

The evidence of the stock return predictability is either absent or weak, and there are

cases of contradicting evidence in the literature whether stock returns even are predictable.

Over the last ten years, several papers find evidence that stock return predictability exists

during the bad economic states. These papers have used different approaches, whereas

most of them have been using NBER chronology of expansions and recessions, or investor

sentiment index, to define good and bad economic times. Based on our knowledge, there

has been limited research regarding the use of bull and bear markets to determine these

market states. This thesis reexamines and extends previous studies on the time-varying

stock return predictability. Our research is similar to Huang et al. (2014), as we measure

the performance of different predictors by conducting a Newey-West-statistics derived

from one-state and two-state predictive regression for the in-sample forecast. However,

our thesis is extended by using four different definitions of market states to examine

whether there is significant evidence of stock return predictability. Result of this thesis

presents a mixed performance across the different macroeconomic variables and technical

indicators. Most of the predictors perform better in bull and bear markets compared to

expansions and recessions, and investor sentiment index. We have tried to compare our

results to previous studies, but each study applied a combination of different datasets,

approaches, and methodologies, and therefore, it would be impractical to compare the

findings.
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1 Introduction

Stock return predictability has been a popular topic amongst researchers in the field of

economics and finance for many years. One could argue that stock price has almost

the same probability distribution as a particle in Geometric Brownian motion. This

model for the continuous-time stochastic process has been used by Black and Scholes in

mathematical finance to model stock prices as early as in the 1960s. A critical assumption

of the Black and Scholes formula is that the market follows the efficient market hypothesis.

This hypothesis has been described in the groundbreaking research by Malkiel and Fama

(1970), where they stated that the prices in the market reflect all the available information,

and therefore it is impossible to beat the market.

A great deal of econometric research has been devoted to examining whether it is

possible to beat the market. Different articles used various methods, variables, and time

periods in an attempt to predict the market. Some of the findings contradict each other,

and it appears to be a publication bias in favor of the impression that prediction works;

hence, one is less attracted to articles that show no evidence of predictability. However,

Lettau and Ludvigson (2001) summarized the prevailing tone in the literature as "It is

now widely accepted that excess returns are predictable by variables such as dividend-

price ratios, earnings-price ratios, dividend-earnings ratios, and an assortment of other

financial indicators."

There is a long list of literature focusing on forecasting the stock market returns

with different predictive variables of price multiples, macroeconomic variables, corporate

actions, and measures of risk. An important research paper on this topic is written

by Welch and Goyal (2008), who did an extensive study about the performance of the

macroeconomic variables suggested by academic literature to be good predictors of the

stock returns. They diagnosed the performance of each variable for both in-sample and

out-of-sample forecast and concluded that most of the variables are unstable, and most of

them are no longer significant for an in-sample forecast. On the contrary, several authors

such as Inoue and Kilian (2004) and Cochrane (2007) argued that this could not prove as

evidence against stock returns predictability. However, it is evidence of the difficulty in

exploiting predictability with trading strategies.

Most of the attention has been in favor of macroeconomic variables to predict the
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stock market returns, and relatively little attention has been spent towards technical in-

dicators, despite the fact that these have been used among practitioners. Neely et al.

(2014) compared the forecasting ability of technical indicators with well-known macroe-

conomic variables that have been mentioned in Welch and Goyal (2008). Their study

presented that these technical indicators displayed statistical significance in- and out-of-

sample forecasting power that is matching or exceeding that of macroeconomic variables.

Furthermore, there is evidence that these two types of indicators provide complementary

information over the business cycle. It was stated by (Neely et al.,2014,p.2) as “Technical

indicators better detect the typical decline in the equity risk premium near business-cycle

peaks, while macroeconomic variables more readily pick up the typical rise in the equity

risk premium near cyclical troughs.” Their conclusion emphasizes that one should com-

bine the information from both technical indicators and macroeconomic variables. This

is in order to significantly improve the predictability of stock market returns, rather than

using either type of information alone.

However, in recent years, several respectable finance researchers have conducted

studies on the subject of time-varying stock return predictability and demonstrated that

the stock return predictability is mostly concentrated in times of economic recessions.

NBER chronology of recessions and expansions has been frequently used amongst authors

to define good and bad economic times. For instance, Gonzalo and Pitarakis (2012) argue

that the predictability of stock return may vary across different phases of cycles. In

addition, by using NBER chronology, Rapach et al. (2010), Henkel et al. (2011), and

Dangl and Halling (2012) found evidence that return predictability only exists during

recession periods. Nevertheless, there is contradicting evidence in the literature, whether

stock returns are even predictable in either of the states. In addition, researchers have been

analyzing human psychology and thereby paid more attention to investor sentiment and

how it may affect asset prices. Baker and Wurgler (2006) measure an investor sentiment

index that aggregates the information from six proxies. Their study shows that those

with high investor sentiment does predict lower returns for speculative stocks that are

difficult to exploit by arbitrage opportunities.

Most of the previous studies have shown significant evidence of predictability at a

minimum of one-year time-period or even several years, but few have focused on whether

one can predict the stock market by using monthly frequency. Another interesting ques-
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tion is to analyze how one can use bull and bear market in combination with macroeco-

nomic and technical predictor variables to predict the stock market. This is a relatively

novel approach, and currently, the literature on this problem is limited.

This thesis reexamines and extends previous studies on the time-varying stock

return predictability. We are going to use four different definitions of market states to

examine whether there exists significant evidence of stock return predictability in various

market states. This study is similar to Huang et al. (2014) as we measure the performance

of different predictors by conducting a Newey-West t-statistics derived from one-state

and two-state predictive regression for the in-sample forecast. We will only use in-sample

predictability since good and bad economic states cannot be detected in real time, because

they are detected as posteriori. Finally, we will conduct a robustness test by splitting the

total sample period into two equal subperiods and estimate the regression for each part.

The main goal is to see whether the results for the entire dataset still applies in these

subperiods.

We use monthly data spanning from January 1867 to December 2017 for 12 well-

known macroeconomic variables that are mentioned in Welch and Goyal (2008). This

dataset is the updated version of the one that has been used in their study. Further,

we will implement an additional four technical indicators of moving averages, momentum

rule, past monthly return, and conditional variance, which are good indicators to describe

the dynamics in the stock market. For definitions of the market states, we are using the

data provided by NBER for economic recessions and expansions, bull and bear states of

the stock market from Zakamulin (2017) and investor sentiment states from Baker and

Wurgler (2007).

Our results show mixed performance across the different macroeconomic variables

and technical indicators. Firstly, very few variables show a convincing performance of

predicting the stock return by excluding the market states. Only two out of 12 macroeco-

nomic variables are significant at the 10%, and only one technical indicator is significant

at the 1% level in predicting the stock returns. Secondly, most of the predictors are per-

forming better in bull and bear market compared to NBER chronology of market states

and investor sentiment index.

The rest of the thesis is organized as follows: Section 2 reviews the relevant litera-

ture to understand the background for our research and how it extends existing research.
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Section 3 considers the data, data sources, and sample period for our analysis. In this

section, we also present descriptive statistics. Section 4 describes the methods used for

regression analysis, performance measures, statistical estimations, and tests that we use.

Section 5 summarizes and presents results. Section 6 discusses our empirical results in

compliance with previous literature. Finally, Section 7 recap our thesis with the conclusion

and final remarks.

2 Literature review

In the past century, statisticians noticed that changes in stock prices seem to follow a

fair-game pattern. This behavior of stock prices was the foundation of the random walk

hypothesis. It was first introduced by Bachelier (1900) who believed that a random process

determines stock prices. He compared this process to the steps taken by a drunk man who

is expected to stagger in a totally unpredictable and random fashion. This hypothesis

was studied and intensely debated in the 1960s. Five years later, Fama (1965) published

empirical work on the efficient market hypothesis that presented consistent and strong

support for the model. The research conducted by Samuelson (1965), and Fama (1965)

indicated that correctly anticipated prices fluctuate randomly, which means that the prices

in the efficient market reflect all the available information, and therefore it is impossible

to beat the market without taking on any risk. Black and Scholes (1973) applied the

assumptions of the efficient market hypothesis to derive one of the most fundamental

concepts in a modern financial theory known as the Black-Scholes model. This model

assumes ideal conditions in the market and gives an estimate of the price of European

options.

However, performing tests on market efficiency appear to be complicated. Several

studies have proved some anomalous behavior that seems to be inconsistent with market

efficiency. Ball (1978) argued that this evidence could be interpreted as an indication of

shortcomings in the current model of expected returns. Fama (1997) supported this argu-

ment and stated that the apparent anomalies do require new behaviourally based theories

of the stock market. This model was viewed as an uncompleted model of asset pricing,

and therefore, they were indicative of a need to continue the search for better models.

For the past quarter of a century, several papers have argued against the efficient market
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hypothesis. For instance, Roll and Ross (1994) observed that it is almost impossible to

profit from even the most extreme violations of market efficiency. This can be explained

by the fact that stock market anomalies are considered as stochastic processes that do

not persist in the future.

Welch and Goyal (2008) reexamined the empirical evidence of stock return pre-

diction by investigating the in-sample and out-of-sample performance of linear regres-

sions that predict the equity premium with prominent variables. They analyzed how

these variables can predict the equity premium, but also demonstrated how the investor’s

decision-making process could improve portfolio allocation. They concluded that most of

the variables are unstable or even false, and some of them are no longer significant for

an in-sample forecast. Also, the out-sample performance has been particularly poor for

predictive regressions in the past few decades, and none have overperformed after the oil

shock in the 1970s.

Most of the attention has been in favor of macroeconomic variables to predict

the stock market returns. However, there is relatively little attention towards technical

indicators despite that these are used amongst investors today. Technical analysts attempt

to forecast prices by using different trading techniques. For instance, a trend following

strategy is typically based on switching between the market and the cash, depending on

whether the market prices trend upward or downward. When the strategy identifies that

prices trends upward or downward, it generates a buy or sell trading signal. As Brock

et al. (1992) described, technical analysis is the original form of investment analysis that

started in the 1800s. Many of these techniques were developed 60 years ago, and are still

used today.

There is a vast amount of literature, questioning whether it is possible to validate

the efficient market hypothesis. De Bondt and Thaler (1985), Fama and French (1986),

Poterba and Summers (1988), Chopra et al. (1992), amongst many others, presents evi-

dence of predictability of equity returns from past returns. However, these studies are in

sharp contrast with some earlier studies that supported the random walk hypothesis. In

contrast to supporting this hypothesis, they find that the predictable variation in equity

returns are minimal. Although some earlier studies do not find technical variables to be

useful on the predictability of equity returns from past returns, recent studies such as

Alexander (1961), Fama and Blume (1966), Levy (1967a), Levy (1967b), Jensen (1967),
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and Jensen and Benington (1970), suggest that this might be premature to conclude.

An important research article about technical trading rules was written by Brock et al.

(1992). In this article, they investigated two of the most common trading rules, which

are moving averages and trading-range breaks. In their first method, buy and sell signals

are generated by two moving averages, which are a long period and a short period. In the

second method, their signals are generated as stock prices hit new highs and lows. These

rules are evaluated by their ability to forecast future price changes. Their study finds

evidence that predictability of stock prices change by using these technical trading rules,

and they observed that returns during buy periods are more substantial but less volatile

compared to returns during sell periods.

In the last ten years, researchers have been evaluating the predictability of stock

returns in different market states. Some studies find evidence of time-varying dynamics

relationships between predictors and expected returns. The business cycles are, therefore,

considered to be an essential factor in describing the complex behavior of the predic-

tors. In the literature there exist studies such as Campbell and Cochrane (1999), Menzly

et al. (2004) and Baker and Wurgler (2007) that show evidence of risk premiums are

countercyclical, and the time-series behavior of risk premiums dictates some of the return

predictability. Fama and French (1989) and Ferson and Harvey (1991) find empirical evi-

dence of countercyclical risk premium in their research too. Another study conducted by

Henkel et al. (2011) estimated that the market risk premium is higher during recessions

in all of the G7 countries except Germany. However, Campbell and Cochrane (1999)

believed that the cyclical dynamics might not need to be synchronous since changing the

risk aversion alone would be insufficient to affect any return predictability.

Recently there has been growing popularity amongst academics to investigate the

effect of individual investor sentiment on stock returns. Diether et al. (2002) and Tetlock

(2007) point out the disagreement amongst investors and their reactions to the news seems

to predict future returns. Further, Cen et al. (2013) and Garcia (2013) find evidence that

investor disagreement and content of news does predict the stock return in bad economic

times. However, it is unclear what kind of mechanism that causes return predictability

to vary over the business cycle. One crucial factor is that investors learn at different

speeds regarding the news. Those investors that are fast learners are focusing on sharp

variations in the business cycles, while slow learners are more concentrate on long-term
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fluctuations. Once the difference in learning speeds increases, it would cause disagreement

amongst investors to spike, and prices are continuing to react to past news, which causes

deterioration in the economic conditions. Therefore, the stock return predictability is

concentrated in bad economic times, as stated by Patton and Timmermann (2010). Even

though investors are observing the same information, the disagreement amongst them

may occur because they use different models and have a different interpretation of the

data. Their economic conditions play a significant role in their learning differences, which

may lead to a pattern of disagreement that is changing over the business cycle. However,

Patton and Timmermann (2010) find that the adjustment of expectations is at comparable

speeds, and disagreement exhibits little variation in good economic times. Nonetheless,

there might be some implications with investor sentiment index since this phenomenon

is difficult to observe. We are using the method proposed by Baker and Wurgler (2007),

which has been widely used in academic research. It is based on a principal component

analysis with six proxies from market data.

In the literature, most research has been utilizing on NBER chronology of reces-

sions and expansions or investor sentiment index to define good and bad economic times.

However, there exist relatively few research papers on bull and bear markets. Zakamulin

pointed out that bull and bear markets are highly overlooked by researchers, and argued

that it has many advantages over other methods previously described. We examine these

claims and explain the differences in Section 6.
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3 Data

3.1 Return and prices

The S&P 500 index returns used by Welch and Goyal (2008) for the period 1926 to 2005

are from the Center for Research in Security Press (CRSP) for month-end values. It is

the continuously compounded returns on the S&P 500 index that includes dividends. The

data for yearly and longer frequencies prior to 1926 is from Robert Shiller’s 1.

The risk-free rate from 1920 to 2005 is the Treasury-bill rate. Welch and Goyal

(2008) estimated the risk-free short-term debt prior to the 1920s. Commercial paper

rates for New York City are from the National Bureau of Economic Research (NBER)

Macrohistory database. These commercial paper rates are available from 1871 to 1970.

They estimated the regression for 1920-1971 by the following equation:

Treasury − bill rate = −0.004 + 0.886 · Commercial Paper Rate, (1)

thereafter, the risk-free rate from 1871-1919 was instrumented with the predicted regres-

sion equation. The correlation for the period 1920-1971 between the equity premium was

computed by using the actual Treasury-bill rate. However, this Treasury-bill rate was

computed by using the predicted Treasury-bill rate from the commercial paper rate.

However, the data for our empirical analysis consists of monthly S&P Composite

index, which is the updated version of the one used by Welch and Goyal (2008)2. This

version is updated up to 2017. Also, they used time-averaged prices prior to 1925, which

led to the problem of the autocorrelation of the monthly returns. This problem resulted

in unrealistic high predictability of stock returns. Therefore, to avoid complication, we

used the dataset from Schwert (1989) for the period 1871-19253. The data consists of

point-sampled prices rather than the time-averaged price, which is a more appropriate

method for our analysis. Hence, our monthly return is different from the one used in

Welch and Goyal (2008). The monthly stock return at time t is computed as follows:
1http://www.econ.yale.edu/~shiller/
2http://www.hec.unil.ch/agoyal/
3http://schwert.ssb.rochester.edu/mstock.htm
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rt = ln

(
Pt

Pt−1

)
, (2)

where P t is the price of the monthly composite index at month t.

Table 1 reports a compile of statistics for the monthly S&P Composite index for

the whole period from January 1871 to December 2017. We also divided data into two

equal subperiods to see if there are any differences. The first subperiod begins in January

1871 and last until June 1944, and the second subperiod is from July 1944 to December

2017. We conducted a Shapiro-Wilk test to tests the null hypothesis to see whether the

sample of monthly S&P Composite index is normally distributed. All corresponding p-

values are 0.00, which is less than a significant level of 5%. Therefore, one can reject the

null hypothesis, and there exists evidence that the data is not normally distributed. Also,

while the total market return, capital gain return, and risk-free return are increasing from

first to the second period, the standard deviation is decreasing over time.

Table 2 reports a simple representation of data distribution of good and bad eco-

nomic states. Recessions and expansions, bull and bear market states have a total sam-

pling period that ranges from January 1871 to December 2017. However, the investor

sentiment index has a shorter sampling period that ranges from July 1965 to September

2015. The main point to reach from this table is that the percentage distribution varies

for each market state. Recessions and expansions have the highest variety, followed by

bull and bear, and lastly investor sentiment.

Table 1: S&P Composite Index

Statistics 1871-2017 1871-1944 1944-2017
CAP TOT RF CAP TOT RF CAP TOT RF

N 1764 882 882
Mean % 0.65 0.84 0.30 0.61 0.70 0.28 0.69 0.97 0.33
Std. Dev. % 4.97 4.72 0.22 5.69 5.24 0.16 4.11 4.12 0.26
Min % -29.94 -29.43 0.00 -29.94 -29.43 0.00 -21.76 -21.54 0.00
Max % 42.22 42.91 1.36 42.22 42.91 1.17 16.30 16.78 1.36
Shapiro Wilk 11.05 11.57 11.08 9.86 10.78 9.44 5.38 5.39 9.09
Swilk p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Descriptive statistics for monthly S&P Composite Index for three sample periods. TOT denotes
the total market return, CAP denotes the capital gain return, and RF denotes the risk-free
return. Shapiro-Wilk represents the test statistic for the normality.
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Table 2: Data distribution

Bad state % N Good state % N
Recessions 28.34 500 Expansions 71.66 1264
Bear 35.15 620 Bull 63.85 1144
Sentiment under hist. mean 45.94 277 Sentiment over hist. mean 54.06 326
Sentiment decreasing 48.59 293 Sentiment increasing 51.41 310

The distribution of good and bad economic state. % denotes percent distribution in the time-
series, N shows a number of observations over the whole time period.

3.2 Macroeconomic indicators

There is a long list of literature focusing on forecasting the stock market returns with

different predictive variables of price multiples, macroeconomic variables, corporate ac-

tions, and measures of risk. Studies such as Ang et al. (2007), Hodrick (1992), Campbell

and Shiller (1988), and Fama and French (1988), used the dividend yield to predict the

stock returns. Lamont (1998) and Campbell and Shiller (1988) examined the earnings-

price ratio. Pontiff and Schall (1998) and Kothari and Shanken (1997) conducted studies

using the book-to-market ratio. The short-term interest rate was presented by Ang et al.

(2007), Breen et al. (1989), Fama and Schwert (1977) and Campbell (1987). Tripathi and

Kumar (2014) examined the effect of inflation in their study. The term spread, default

yield spread, long term rate of return, and corporate issuing activity have been used by

Welch and Goyal (2008). They all find evidence in favor of predicting the stock returns

in-sample. However, several authors such as Torous et al. (2004), Lewellen (2004), Nel-

son and Kim (1993), Cavanagh et al. (1995) have questioned these findings due to the

persistence of the forecasting variables and the correlation with returns might bias the

regression coefficients.

Most of the macroeconomic indicators were available in the dataset used by Welch

and Goyal (2008). The following paragraph will briefly describe the data sources and

construction of the models as presented by Welch and Goyal (2008). Their first set of

independent variables are related to the characteristics of stocks. Dividends that start in

1871 to 1987 are taken from Robert Shiller’s website4, but for 1988-2017 are from the S&P

Corporation. Dividends are computed 12-month moving sums of dividends on the S&P
4https://www.econ.yale.edu//~shiller/data.htm
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500 index. The dividend-to-price ratio is defined by taking the difference between the log

of dividends and the log of prices. The dividend yield is calculated by taking the difference

between the log of dividends and the log of lagged prices, and the dividend payout ratio

is the difference between the log of dividends and the log of earnings (Campbell, 1987).

Earnings are also 12-month moving sums of earnings on the index. The data is

from the same website for the period 1871 to 1987. Welch and Goyal (2008) have esti-

mated earnings from 1988 to 2017 by using an interpolation method of quarterly earnings

provided by the S&P Corporation. Earning-to-price ratio is the difference between the

log of earnings and the log of prices.

Book values are from 1920 to 2017, and it is from Value Line’s website5 that

describes their Long-Term Perspective Chart of the Dow Jones Industrial Average. The

book-to-market ratio is the ratio of book value to market value for the Dow Jones Industrial

Average. If we look at the period from March to December, book-to-market-ratio is

computed by dividing book value at the end of the previous year by the price at the end

of the current month. For January and February, it is computed by dividing book value

at the end of two years ago by the price at the end of the current month (Kothari and

Shanken (1997) and Pontiff and Schall (1998)).

Cross-sectional premium measures the relative valuations of high- and low-beta

stocks. The data is from Polk et al. (2006), and it is available from May 1937 to December

2002.

There are two measures of Corporate Issuing Activity. The first measure is equity

expansion, which is the ratio of twelve-month moving sums of net issues by NYSE listed

stocks divided by the total market capitalization of NYSE stocks. The data is from 1926

to 2017. The second measure is percent equity issuing, which is the ratio of equity issuing

activity as a fraction of total issuing activity. Baker and Wurgler (2000) provided the data.

The first measure is relative to the aggregate market cap, while the second is relative to

aggregate corporate issuing.

Their next set of independent variables are related to interest-rate. Treasury bills

rates from 1920 to 1933 are the U.S Yields on Short Term Securities, Three-Six Month

Treasury Notes and Certificates, Three Month Treasury series from NBER’s Macrohistory
5https://fred.stlouisfed.org
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database6, while from 1934 to 2017 is the 3-Month Treasury Bill from economic research

database at Federal Reserve Bank at St.Louis6.

Long term yield from 1919 to 1925 is the U.S Yields On Long-Term United States

Bonds series are taken from NBER’s Macrohistory database6. Yields that range from

1926 to 2017 are from Ibbotson’s Stocks, Bills, Bonds and Inflation Yearbook. Long term

rate of return, which are long term government bond returns and came from the same

database. The term spread is the difference between the treasury bills and the government

long term yield.

Corporate Bond Yields on AAA- and BAA-rated bonds from 1919 to 2017 are from

FRED6. The default yield spread is calculated by taking the difference between AAA- and

BAA-rated corporate bonds yields. The default return spread is the difference between

the return on long-term corporate bonds and returns on the long-term government bonds.

Inflation is based on the Consumer Price Index for 1919 to 2017 that is taken

from the Bureau of Labor Statistics7. The information of inflation is released only in the

following month, and therefore, Welch and Goyal (2008) calculated one month of waiting

for their monthly regressions.

3.3 Technical indicators

We assume that prices move in trends, and by identifying the proper times for buying

and selling stocks, we can profit from it. In general, one can implement a simple trend

following strategy by buying (selling) assets if there is any indication that these assets will

be trending upward (downward) shortly. The simple concept of trend following might be

challenging to implement in practice due to price fluctuations. One can implement moving

averages to identify whether it is an upward or downward trend and use this technical

indicator to remove the noise from large price fluctuations. According to Brock et al.

(1992) and Zakamulin (2017), moving averages are one of the simplest and most common

ways to time the market and detect the underlying trend.
6https://fred.stlouisfed.org
7https://www.bls.gov/cpi/

12

https://fred.stlouisfed.org
https://www.bls.gov/cpi/


3.3.1 Moving Averages

According to Siegel (1994), the moving averages are a popular appliance for determining

when the trend might change and examines the relationship between the current price

and a moving average of past price movements. A moving average is the arithmetic

average of a given stock or index price over a fixed interval. There are different types of

moving average weighting schemes. Simple Moving Average (SMA) is the most common

type of moving averages where each price observation is equally weighted. Some analysts

hold a belief that the most recent stock prices observations might contain more relevant

information on the future direction of the stock price than earlier stock prices. Zakamulin

(2017) showed that for this idea to work, one needs to substitute the SMA with the

Linear Moving Average (LMA) where the weight of each price decreases in an arithmetic

sequence. If the arithmetic weighting-scheme in the LMA is too rigid, then another

alternative for investors is to use the Exponential Moving Average (EMA). This means

the price observations in this Exponential Moving Average are weighted exponentially.

A common approach is to use 200-day moving average when using daily data (or

10-month moving average when data is on a monthly basis). It uses the information for

the last 200 days (10-months) of closing prices. The advantage of using moving averages

over one-point prices is that they fluctuate far less, in addition to giving the trader room

for technical analysis. This also allows for identifying market trends by reducing the noise

of daily (monthly) pricing. Note that there is not one size fit all solution, but the longer

the time frame used, the smoother the moving average function will be. A shorter moving

average is more volatile, but the readings are closer to the origin.

Instead of using the simple formula of averaging prices, we are using an alternative

form suggested by Acar (1998) and Zakamulin (2017). An alternative representation of

the computation of the trading indicator is given by equation (2), which motivates the

computation of the moving average to be approximated using the returns instead of price

changes. The main advantage of using this approach is that one can remove the risk of

stationary of time series data, as stock prices are increasing over time.

The alternative method of computing moving average at time t of the last ten
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observed prices can be defined as:

SMAt(10) =
9∑

i=0

(10− i) · rt−i, (3)

where rt−i denotes the log return of the previous period, and (10− i) is weighing function

for returns on the simple moving average rule.

3.3.2 Momentum rule

The Momentum rule is one of the simplest and most basic market timing rules. This

rule compares the last closing price with the closing price n-1 periods ago. If the last

closing price is higher than the closing price n-1 periods ago, then it is an indication

for a buy signal. This rule holds if one can observe that the market prices have been

increasing or decreasing over the last n-1 periods, then one can assume that the prices

will continue to increase or decrease over the subsequent period. This means we will most

likely observe the n-1 trend will continue in the future (Zakamulin,2007,p.67). Moskowitz

et al. (2012) and Antonacci (2014) were the ones that looked at some of the advantages

of the momentum rule strategy. The results have shown persistence in returns for one to

12 months, over a long time period. We chose to use 12 months of lagged values as it uses

the longest time horizon.

Zakamulin (2017) demonstrated that momentum rule could be computed in a sim-

ilar way as moving averages:

MOMt(12) =
11∑
i=0

rt−i, (4)

where rt−i denotes the log return of the previous period and n-1 periods ago, in an equally

weighted form.

3.3.3 Conditional variance

Most investors wish to make a portfolio that offers the highest returns with the lowest pos-

sible risk. If volatility spikes, we would assume that uncertainty grows among investors.

This could have a domino effect following more volatility and uncertainty. French et al.

(1987) stated that unexpected stock market returns are negatively related to the unex-

pected change in the volatility of stock returns. Therefore, we would expect a negative
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coefficient in bad economic times. Goyal and Welch (2008) used a conditional variance,

which is computed as a sum of squared daily returns on the S&P 500 index. Daily returns

were provided by Schwert (1989) for the period 1871-19268, and for the second period,

1926-2017 are from CRSP9.

3.3.4 Past monthly return

Like conditional variance, we assume that past monthly return has an impact on investors

and their trading behavior. Same findings were suggested by Li and Yu (2012), where

the author demonstrates interaction effects between lagged returns and predictability. We

expect the coefficient for bad economic times to be positive because the autoregression is

stronger during this market state.

3.4 Good and Bad economic states

3.4.1 Expansions and Recessions

The NBER’s Business Cycle Dating Committee maintains a chronology of the U.S business

cycle. It compromises alternating dates of peaks and troughs in economic activity. They

define a recession as a period between a peak and a trough, whereas an expansion occurs

between a period when economic activity rises substantially. A recession can last from

a few months to more than a year, while an expansion usually lasts for several years. It

may occur brief reversals, which means a recession may have a short period of expansion

followed by further decline; an expansion may include a short period of recessions followed

by further growth. They do not use a fixed definition of economic activity. Instead, they

choose to examine and compare the behavior of various measures for the economic activity,

like real GDP measured on the product and income sides, economy-wide employment, and

real income (NBER, 2010).

Table 3 reports recessions and expansions state in the US over the total sample

period from June 1857 to November 201710. According to this data, there were 33 periods

of recession and 34 periods of expansion from December 1854 to June 2009. The most
8https://schwert.ssb.rochester.edu/mstock.htm
9https://www.crsp.com/

10https://www.nber.org/cycles/
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extended recession period was in March 2001, and the shortest in January 1920. It lasted

1278 months in total. On the other hand, the expansion period lasted almost half of the

time of the recession period with 693 months. It was longest in June 2009, and shortest

in December 1914.

Table 3: Expansions and Recessions data

Recession Expansion
Dates Duration Dates Duration

Dec 1854-May 1857 30
Jun 1857-Nov 1858 18 Dec 1858-Sep 1860 22
Oct 1860-May 1861 8 Jun 1861-Mar 1865 46
Apr 1865-Nov 1867 32 Dec 1867-May 1869 18
Jun 1869-Nov 1870 18 Dec 1870-Sep 1873 34
Oct 1873-Feb 1879 65 Mar 1879-Feb 1882 36
Mar 1882-Apr 1885 38 May 1885-Feb 1887 22
Mar 1887-Mar 1888 13 Apr 1888-May 1890 27
Jul 1890-Apr 1891 10 May 1891-Des 1892 20
Jan 1893-May 1894 17 Jun 1894-Nov 1895 18
Dec 1895-May 1897 18 Jun 1897-May 1899 24
Jun 1899-Nov 1900 18 Dec 1900-Aug 1902 21
Sep 1902-Jul 1904 23 Aug 1904-Apr 1907 33
May 1907-May 1908 13 Jun 1908-Des 1909 19
Jan 1910-Des 1911 24 Jan 1912-Des 1912 12
Jan 1913-Nov 1914 23 Dec 1914-Jul 1918 44
Aug 1918-Feb 1919 7 Mar 1919-Des 1919 10
Jan 1920-Jun 1921 18 Jul 1921-Apr 1923 22
May 1923-Jun 1924 14 Jul 1924-Sep 1926 27
Oct 1926-Oct 1927 13 Nov 1927-Jul 1929 21
Aug 1929-Feb 1933 43 Mar 1933-Apr 1937 50
May 1937-May 1938 13 Jun 1938-Jan 1945 80
Feb 1945-Sep 1945 8 Oct 1945-Oct 1948 37
Nov 1948-Sep 1949 11 Oct 1949-May 1953 45
Jul 1953-Apr 1954 10 May 1954-Jul 1957 39
Aug 1957-Mar 1958 8 Apr 1958-Mar 1960 24
Apr 1960-Jan 1961 10 Feb 1961-Nov 1969 106
Dec 1969-Oct 1970 11 Nov 1970 -Oct 1973 36
Nov 1973-Feb 1975 16 Mar 1975-Des 1979 58
Jan 1980-Jun 1980 6 Jul 1980-May 1981 12
Jul 1981-Oct 1982 16 Nov 1982-May 1990 92
Jul 1990-Feb 1991 8 Mar 1991-Feb 2001 120
Mar 2001-Oct 2001 8 Nov 2001-Nov 2007 73
Dec 2007-May 2009 18 Jun 2009-Nov 2017 102

US Business Cycle Recessions and Expansions. The data is provided by National Bureau of
Economic Research. Duration is measured in the number of months.
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Figure 1: S&P 500 Index - January 1871 to December 2017
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Recession and expansion markets over the historical period. Shaded
areas indicate recession market phases.

Figure 2: S&P 500 Index - January 1871 to December 1944
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Figure 3: S&P 500 Index - January 1945 to December 2017
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Figure 2 and 3 show the expansion and recession markets over the two
historical subperiods: 1871-1944 and 1995-2017. Shaded areas indicate
recession market phases.
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3.4.2 Bull and Bear states

There is no formal definition of bull and bear markets in the finance literature, and

therefore, there is no single preferred method to identify the state of the stock market.

Financial analysis has a common consensus that a bull market characterizes as a period of

generally rising prices, whereas a bear market is a period of falling prices. However, ana-

lysts have a different point of view when it comes to the dating of bull and bear markets.

In this case, one finds that they are broken up into two distinct groups. According to

(Zakamulin,2017,p.183), one group insists that in order to qualify as a bull (bear) market

phase, the stock market prices should increase (decrease) substantially. For example, the

rise (fall) in the stock market price should be greater than 20% from the previous local

trough (peak) in order to qualify for being a distinct bull (bear) market. However, the

other group believes that in order to qualify for a bull (bear) name, the stock market price

should increase (decrease) over a substantial period. For example, the stock market price

should rise (fall) over a period of greater than five months in order to qualify for being a

distinct bull (bear) market.

Our data for bull and bear market is from Zakamulin (2017), which have been

generated by using a dating algorithm proposed by Pagan and Sossounov (2003) to detect

the turning points between the bull and bear markets. They adopted another formal

dating method proposed by Bry and Boschan (1971), with some slight modifications to

identify turning points in the business cycles.

The algorithm proposed by Pagan and Sossounov (2003) is based on a complex set

of rules and consists of two main steps: determination of initial turning points in raw data

and censoring operations. Firstly, in order to determine the initial turning points, one

has to use a window of length Twindow = 8 months on either side of the date and identifies

a peak (trough) as point higher (lower) than other points in the window. Secondly,

one enforces the alternation of turning points by selecting the highest of multiple peaks

and lowest of multiple troughs. Censoring operations require that one should eliminate

phases less than four months unless changes exceed 20%, and eliminate cycles less than 16

months. A short description of the algorithm of Bry and Boschan (1971) is based on the

idea that the trend in the stock market price should continue over a substantial period

from the previous peak or trough in order to qualify as a distinct phase.
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Table 4: Bull and Bear data

Bull markets Bear markets

Dates Duration Amplitude Dates Duration Amplitude
Jan 1857-Oct 1857 10 -45

Nov 1857-Mar 1858 5 45 Apr 1858-Jun 1859 15 -15
Jul 1859-Oct 1860 16 57 Nov 1860-May 1861 7 -24
Jun 1861-Mar 1864 34 176 Apr 1864-Mar 1865 12 -26
Apr 1865-Oct 1866 19 18 Nov 1866-Apr 1867 6 -9
May 1867-Aug 1869 28 33 Sep 1869-Dec 1869 4 -1
Jan 1870-Apr 1872 28 21 May 1872-Nov 1873 19 -22
Dec 1873-Apr 1875 17 2 May 1875-Jun 1877 26 -39
Jul 1877-May 1881 47 119 Jun 1881-Jan 1885 44 -35
Feb 1885-Nov 1886 22 33 Dec 1886-Mar 1888 16 -16
Apr 1888-May 1890 26 18 Jun 1890-Jul 1891 14 -18
Aug 1891-Feb 1892 7 7 Mar 1892-Jul 1893 17 -38
Aug 1893-Aug 1895 25 25 Sep 1895-Aug 1896 12 -27
Sep 1896-Aug 1897 12 35 Sep 1897-Apr 1898 8 -7
May 1898-Apr 1899 12 34 May 1899-Jun 1900 14 -9
Jul 1900-Aug 1902 26 52 Sep 1902-Sep 1903 13 -29
Oct 1903-Jan 1906 28 63 Feb 1906-Oct 1907 21 -36
Nov 1907-Sep 1909 23 57 Oct 1909-Jul 1910 10 -18
Aug 1910-Sep 1912 26 13 Oct 1912-Jul 1914 22 -24
Aug 1914-Oct 1916 27 51 Nov 1916-Nov 1917 13 -31
Dec 1917-Oct 1919 23 29 Nov 1919-Aug 1921 22 -22
Sep 1921-Feb 1923 18 33 Mar 1923-Jul 1923 5 -14
Aug 1923-Aug 1929 73 295 Sep 1929-Jun 1932 34 -85
Jul 1932-Jan 1934 19 83 Feb 1934-Mar 1935 14 -21
Apr 1935-Feb 1937 23 95 Mar 1937-Mar 1938 13 -53
Apr 1938-Dec 1938 9 36 Jan 1939-Apr 1942 40 -38
May 1942-Jun 1943 14 52 Jul 1943-Nov 1943 5 -6
Dec 1943-May 1946 30 64 Jun 1946-Feb 1948 21 -24
Mar 1948-Jun 1948 4 11 Jul 1948-Jun 1949 12 -11
Jul 1949-Dec 1952 42 77 Jan 1953-Aug 1953 8 -12
Sep 1953-Jul 1956 35 112 Aug 1956-Dec 1957 17 -16
Jan 1958-Jul 1959 19 45 Aug 1959-Oct 1960 15 -10
Nov 1960-Dec 1961 14 29 Jan 1962-Jun 1962 6 -20
Jul 1962-Jan 1966 43 60 Feb 1966-Sep 1966 8 -16
Oct 1966-Nov 1968 26 35 Dec 1968-Jun 1970 19 -30
Jul 1970-Apr 1971 10 33 May 1971-Nov 1971 7 -6
Dec 1971-Dec 1972 13 16 Jan 1973-Sep 1974 21 -45
Oct 1974-Dec 1976 27 45 Jan 1977-Feb 1978 14 -15
Mar 1978-Nov 1980 33 58 Dec 1980-Jul 1982 20 -21
Aug 1982-Jun 1983 11 41 Jul 1983-May 1984 11 -7
Jun 1984-Aug 1987 39 115 Sep 1987-Nov 1987 3 -28
Dec 1987-May 1990 30 46 Jun 1990-Oct 1990 5 -15
Nov 1990-Jan 1994 39 49 Feb 1994-Jun 1994 5 -5
Jul 1994-Aug 2000 74 231 Sep 2000-Sep 2002 25 -43
Oct 2002-Oct 2007 61 75 Nov 2007-Feb 2009 16 -50
Mar 2009-Apr 2011 26 71 May 2011-Sep 2011 5 -16
Oct 2011-Dec 2017 75 63

The dates of bull and bear markets over the total sample period from January 1857
to December 2017. Duration is measured in the number of months. Amplitudes
are defined as % changes in the stock index prices (not adjusted for dividends).
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3.4.3 Investor sentiment

Baker and Wurgler (2007) developed a new investor sentiment approach that is called top-

down model. They argued that many of the bottom-up models lead to a similar reduced

form of variation over time in mass psychology, and therefore, it is certain that none of the

models is uniquely true. Also, they point out that investors and markets behavior is too

complicated to be summarized by a few selected biases and trading frictions. Therefore,

their new top-down approach focuses on the measurement of reduced-form, aggregate

sentiment, and traces its effect to market returns and individual stocks. The new direction

in this approach is built on the two broader and more irrefutable assumptions of behavioral

finance. These two assumptions involve sentiment and the limits to arbitrage to explain

which stocks are likely to be most affected by sentiment, rather than simply pointing out

the level of stock prices in the aggregate depend on sentiment. However, variables like

stocks of low capitalization, younger, unprofitable, non-dividend paying, high volatility,

growth companies, or stock of firms in financial distress are likely to be sensitive to investor

sentiment.

Baker and Wurgler (2007) defined the sentiment index by the first principal compo-

nent of six measures of investor sentiment. This component analysis filters out unsystem-

atic noise in the six measures and focuses on their common component, which is investor

sentiment. These six measures are the closed-end fund discount, the number of IPOS,

the NYSE share turnover, the equity share in new issues, the average first-day return of

IPOs, and the dividend premium. Baker and Wurgler (2007) remove the business cycle

information by taking regression of each of the raw sentiment measures on a set of macroe-

conomic variables, and they use the residuals to develop the sentiment index. We use this

sentiment index11 to generate two dummy variables for good and bad economic states.

The first one is defined by detecting whenever the sentiment index is above or below its

historical mean. However, Zakamulin (2017) argued that more applicable method is to

examine the relative change of the sentiment index. The algorithm to detect whenever

the sentiment index is increasing or decreasing is the same as the one used in bull and

bear market.

11http://people.stern.nyu.edu/jwurgler/
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Table 5: Sentiment states data

Increasing sentiment Decreasing sentiment

Dates Duration Amplitude Dates Duration Amplitude
Jul 1965-Dec 1969 54 -250 Jan 1970-Dec 1971 24 -143
Jan 1972-Mar 1973 15 -67 Apr 1973-Nov 1974 20 407
Dec 1974-Jul 1975 8 -18 Aug 1975-Nov 1976 16 43
Dec 1976-Sep 1979 34 -94 Oct 1979-Mar 1980 6 32
Apr 1980-Dec 1981 21 -343 Jan 1982-May 1983 17 -123
Jun 1983-Feb 1984 9 -1471 Mar 1984-Apr 1986 26 -79
May 1986-Jan 1987 9 167 Feb 1987-Nov 1988 22 -136
Dec 1988-Apr 1990 17 -156 May 1990-Jan 1991 9 -1050
Feb 1991-Mar 1993 26 -438 Apr 1993-Aug 1993 5 -46
Sep 1993-Dec 1993 4 117 Jan 1994-Jul 1995 19 -103
Aug 1995-Apr 1997 21 9700 May 1997-Dec 1998 20 -123
Jan 1999-Feb 2001 26 -2667 Mar 2001-Aug 2003 30 -127
Sep 2003-Apr 2007 44 -239 May 2007-Apr 2009 24 -245
May 2009-Aug 2009 4 -57 Sep 2009-Mar 2010 7 64
Apr 2010-May 2011 14 -158 Jun 2011-Jun 2012 13 -160
Jul 2012-Oct 2012 4 -360 Nov 2012-Sep 2015 35 120

Table 5 reports increasing and decreasing sentiment states in the US over the total sample
period from July 1965 to September 2015. Duration is measured in the number of months,
and amplitudes are defined as % change in the sentiment index price from the previous peak or
through. The data is from Baker and Wurgler (2007)

21



Figure 4: Sentiment Index - increasing and decreasing sentiment
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Figure 5: Sentiment Index - bull and bear states
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Figure 4 and 5 show the sentiment stages from July 1965 to September 2015. After
1961 which defines the period for the crash of growth stocks, the investor sentiment
was low from this point. Followed to a subsequent peak in 1968 and following with
an electronic bubble in 1969. It fell once again by the mid- 1970s, but it picked itself
up and reached a peak in the late 1970s because of the biotech bubble. After that,
it dropped in the late 1980s, but it started to rise in the early 1990s and reached a
peak in the Internet bubble. The late 1960s, early and mid-1980s, mid-1990 and the
begin of 2000 are periods of high-sentiment. Also, the sentiment index has been almost
constant in the recent decade.
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4 Methodology

4.1 Predictive regression

The basic linear predictive regression model for stock return is modeled as:

rt = α + βXt−1 + εt, (5)

where rt is the stock return in month t, α is a constant, β is a slope of the regression line,

Xt−1 is the predictor of stock returns at month t− 1 and εt is the error term.

We are using macroeconomic and technical predictors for the regression analysis

to examine whether there exists significant evidence of predicting the stock return in

different economic states. The alternative predictive regression for the two-state model is

computed as:

rt = α + βgood · (1− Ibad,t−1) ·Xt−1 + βbad · Ibad,t−1 ·Xt−1 + εt, (6)

where Ibad,t-1 is a dummy variable equal to 1 in the bad economic state and 0 otherwise.

These dummy variables are calculated from the previous period t− 1. One needs to esti-

mate regressions (5) and (6) and see the difference, whether βgood and βbad are statistically

significant, and whether R2 is higher.

When the past monthly return is used as a predictor, the regression is called the

autoregression model of order 1, and in the one-state model it is computed as:

rt = α + βrt−1 + εt, (7)

moreover, in the two-state market:

rt = α + βgood · (1− Ibad,t−1) · rt−1 + βbad · Ibad,t−1 · rt−1 + εt. (8)
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4.2 Newey–West estimator

Most of the macroeconomic and technical predictors are persistent variables. Hence, we

expect the εt exhibits serial dependency. Therefore, one needs a particular method for

computing standard errors. We are using a Newey-West estimator that is controlling for

heteroskedasticity and autocorrelation, which is derived from Newey and West (1987).

Geweke (1981) pointed out that by using multi-month lagged returns to predict future

returns can increase statistical power. One is required to set a maximum lag order of auto-

correlation to compute a Newey-West estimator. It can be challenging to find an optimal

lag length in a time series, because there exist several criteria for different techniques,

depending on the model one wants to use. The frequency spectrum of the time series

and the sampling rate are two crucial factors to look into when choosing the optimal lag

length. We are using Newey-West t-statistics with a 12-month lag for all the regression

since we are using monthly data.

One wants to test the hypothesis for the significance of a single regression coeffi-

cient. Equation (9) is a t-statistics where the standard errors are measured by Newey-West

estimator. It is computed by the following equation:

t =
β̂i − β∗

i

SENewey(β)
. (9)

We are testing the null hypothesis H0:βi = 0 against the alternative hypothesis

H1:βi 6= 0 for i = 0,1,2,... for significant level of 1%, 5% and 10%. If the probability value

for the Newey West t-statistics for the given regressor is less than the significant level,

there is evidence of a variation in predictors will have a significant effect on the stock

return, given that all other factors are constant.

4.3 R-squared

According to Verbeek (2008), the R-squared (R2) is a statistic that explains the goodness

of fit of a model. This statistical measure shows the proportion of the (sample) variance

of the dependent variable (rt) that is explained by the independent variable (Xt−1). R-

squared ranges between value 0 and 1, where 1 indicates that the regression predictions

perfectly fit the data.
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The adjusted R-squared is a modified version of R-squared that has been adjusted

for the number of predictors in the model. It only increases when including new inde-

pendent variable explain more than what one would expect by chance, which penalizes

the use of unnecessary variables in the model. We are only using adjusted R-squared as

a measurement to compare the goodness of fit for one-state and two-state models. The

R-squared is computed as:

R2 = 1− SSres

SStot
, (10)

moreover, the adjusted R-squared:

R2 = 1− (1−R2)

[
n− 1

n− p− 1

]
, (11)

where SS res is the sum of squares of residuals, SS tot is the total sum of squares that

explain the proportional to the variance of the data, n is sample size, and p is the number

of predictors.

5 Empirical results

In this section, we present the results of our analysis conducted using the methods previ-

ously described. We evaluate the in-sample goodness of fit and statistical significance of

the coefficient for predictors of stock return in a given market state. The data starts from

January 1871 to December 2017 with a window length of 1764 months. However, some of

the data for macroeconomic variables, technical indicators, and investor sentiment were

not available from the beginning; we included the exact length of analysis in our tables.

The sentiment data has a shorter sample period that starts from July 1965 to Septem-

ber 2015 with a window length of 603 months. The one-state and two-state regression

models estimate the predictability of the stock return that is presented in Tables 6-9.

Each table reports the estimator of β coefficient respectively to the market state (βgood

and βbad), the corresponding probability value of the Newey-West t-statistics (P>|t|), the

adjusted R-squared (R2) and the change in the adjusted R-squared (∆R2) between one-

and two-state regression models.

The results of the one-state predictive regression serve as a benchmark for the

comparison of the two-state model. For the one-state model, only earnings-to-price ratio
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and long-term return has shown significant performance in predicting the stock market

returns at 5% level or stronger, with an R2 of 0.19% and 0.11%. Their beta coefficients

are 0.01 and 0.10, respectively. However, we do not find any significant evidence of

predictability by using technical indicators.

5.1 Expansions and Recessions

The two-state regression model of recessions and expansions is shown in Table 6. By ana-

lyzing macroeconomic variables, we observe that five variables are significant in predicting

the stock returns good economic times, and seven variables are significant in bad economic

times at 10% level or stronger. Only dividend-to-price and earnings-to-price were signifi-

cant in both market states at 5% level or stronger. Also, the adjusted R-squared has also

improved in the two-state regression model for every macroeconomic variable, ranging

from 0.01% for the long-term return to 1.7% for the dividend-price ratio.

In the absence of technical variables, MOM(12) and SMA(10) are significant in pre-

dicting the stock return in good economic states, on 5% and 10%, respectively. However,

in bad economic times, only a conditional variance was significant on 1%. The change in

adjusted R-squared ranged between -0.06% for MOM(12) and SMA(10) to 1.85% for a

conditional variance.

5.2 Bull and Bear states

The two-state regression model of a bull and bear market is shown in Table 7. By

analyzing macroeconomic variables, we observe that most of the variables are significant

in predicting the stock returns both in bull and bear markets on 5% level or stronger.

The long-term return is the only variable that does not predict in both market states.

Almost all variables that are significant in good economic times have a positive and higher

beta coefficient, whereas dividend-to-price ratio and default return spread have a negative

and lower coefficient. They are significant at 1% and 5% level, respectively. However,

eight variables that are significant in bad economic times have negative and lower beta

coefficients. The adjusted R-squared has also improved for every variable in the two-state

regression model.

In contrast to macroeconomic variables, there is only one technical predictor that
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is significant in predicting the stock return in both bull and bear markets, which is condi-

tional variance. It is significant at 1% in both markets, but the beta coefficient is positive

in periods of a bull market and negative in a bear market. Past monthly return and

SMA(10) are significant at 10% and 5% in bear markets with positive beta coefficients.

The adjusted R-squared is also higher for all technical variables.

5.3 Investor sentiment

The two-state regression model of high and low investor sentiment index is shown in

Table 8. When analyzing macroeconomic variables, we observe that only the long-term

return is significant at the 5% in times where investor sentiment is below the historical

mean, with a positive beta coefficient, and an adjusted R-squared of 0.61%. None of

the macroeconomic variables have shown significance in times where investor sentiment

is above the historical mean.

In the absence of technical variables, a conditional variance is the only indicator

that is significant. In the periods of high sentiment, it is significanc at 1%, and 5%

in periods of low sentiment. It has a negative beta coefficient in both market states.

The adjusted R-squared has decreased for almost every macroeconomic and technical

predictor, with the exception of long-term return and conditional variance.

Table 9 reports the two-state regression model of increasing and decreasing investor

sentiment index. We observe some slight adjustment in the predictability of the macroe-

conomic variables. The Term spread is the only macroeconomic variables that have shown

significant predictability in times of increasing investor sentiment. It is significant at the

10% with a coefficient of 0.23 and an adjusted R-square of 0.08. In the times of decreasing

investor sentiment, only long-term return and default return spread are significant at 5%

and 1% level, with coefficients of 0.22 and 0.1, and adjusted R-square of 1% and 0.1%,

respectively.

Conditional variance is the only technical variable which is significant in decreasing

sentiment index at 1% with a negative beta coefficient, and none were significant when

investor sentiment index was increasing. Compared to the previous model of high and

low sentiment, the adjusted R-squared has slightly increased for most of the technical

variables, with the exception of past monthly return.
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5.4 Robustness tests

To check the robustness in our results, we split a sample into two equal subperiods and

estimate regressions for each part. We would like to see whether the results for the entire

dataset still apply in these subperiods. If there is no evidence of robustness in the results,

then one should further investigate the deviation in each period. Perhaps there was a

change in some rules and regulations, a financial crisis or other events that might have

caused the findings to be inconsistent. The two subperiods for NBER’s chronology of

recessions and expansions, and bull and bear markets are divided into January 1871 to

December 1943, and January 1944 to December 2017, respectively. The data of investor

sentiment has a shorter time period, and therefore, the first period starts from July 1965

to July 1990, whereas the second period begins in August 1990 to September 2015. The

robustness tests are shown in Tables 10-13, which can be found in appendices.

5.4.1 Expansions and Recessions

The robustness test of the expansions and recessions is shown in Table 10. For the first

subperiod, two out of 12 macroeconomic variables are significant in predicting the stock

returns both in good and bad economic states. Those are earnings-to-price ratio and book-

to-market with positive beta coefficients. The earnings-to-price ratio is significant at the

10% in periods of expansions and 5% in periods of recessions, whereas book-to-market is

significant at 1% and 5% level. However, net equity expansions is only significant at the

5% level in bad economic times with a negative beta coefficient.

In contrast to macroeconomic variables, there are three technical predictors that

are significant in predicting the stock return in good economic states, whereas none is

significant in bad economic states. A conditional variance, MOM(12) and SMA(10) are

significant at 1% and 5% level.

For the second subperiod, the dividend-to-price is the only macroeconomic predic-

tor that is significant in both good and bad economic states. It is significant at the 5% in

periods of expansions and 1% in periods of recessions with positive beta coefficients. On

the other hand, net equity expansions, long-term return, and default return spread are

significant at the 5% in bad economic states with positive beta coefficients.

When it comes to technical indicators, a conditional variance is significance at the
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10% in recessions and 1% in expansions with negative beta coefficients. Past monthly

return and SMA(10) are significant at 5% and 10% with positive beta coefficients in

expansions states.

5.4.2 Bull and bear market states

The robustness test of the bull and bear markets is shown in Table 11. For the first

subperiod, eight macroeconomic variables are significant in predicting the stock returns

both in bull and bear markets. Dividend-to-price ratio and book-to-market are the only

variables that are significant in both market states. They have positive beta coefficients,

but the former is significant at the 10% in a bear market, whereas the latter is significant

at 1% in a bull market. Almost every variable that is significant at 1% and 5% level in

a bull market have a positive beta coefficient, and the large percentage of those variables

that are significant at 1% and 10% level in a bear market have a negative beta coefficient.

When it comes to technical indicators, only a conditional variance is significant at the 1%

level in both market states with a positive beta coefficient in bull and a negative value in

bear. Past monthly return is significant at the 10% in a bull market with a positive beta

coefficient.

For the second subperiod, seven macroeconomic variables are significant in both

bull and bear markets. The long-term return and inflation are significant in either of

the market states. The long-term return is significant at the 10% in a bull market with

positive beta coefficients, whereas inflation is significant at the 1% level in a bear market

with a negative beta coefficient. Like the first subperiod, almost every variable that is

significant at 1% and 10% level in a bull market have a positive beta coefficient, except

for default return spread. On the other hand, the most of variables that are significant

at 1% and 5% level in a bear market have a negative beta coefficient.

However, two technical predictors are significant in both market states. A condi-

tional variance and past monthly return are significant at the 1% in bull and bear. The

former has a positive beta coefficient in a bull market, and negative in a bear market.

The latter has the opposite signs. Lastly, SMA(10) is significant at the 10% in a bear

market with a positive beta coefficient.
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5.4.3 Investor sentiment

The robustness test of the high and low sentiment is shown in Table 12. For the first

subperiod, three macroeconomic variables are significant in predicting the stock returns

in both market states. The dividend-price ratio and default yield spread are significant at

5% and 1% level with positive beta coefficients, whereas inflation is significant at 1% and

5% level with negative beta coefficients. Net equity expansions and long-term return are

significant in either good or bad economic states. The first variable is significant at the

5% level in periods of good economic states with a negative beta coefficient. The second

variable is significant at the 10% in periods of bad economic states with a positive beta

coefficient. In contrast to macroeconomic variables, one technical indicator is significant

in periods of high sentiment. A conditional variance is significance at the 10% with a

negative beta coefficient.

For the second subperiod, only the default yield spread is significant at the 10%

level with negative beta coefficients in good and bad economic states. Net equity expan-

sions is significant at the 5% with a positive coefficient in periods of bad economic states.

For the technical indicators, we do observe that conditional variance is significant at the

1% with a negative beta coefficient in periods of low sentiment.

The robustness test of the increasing and decreasing sentiment is shown in Table

13. For the first subperiod, two macroeconomic variables are significant in predicting

the stock return in both market states. The dividend-to-price ratio is significant at 5%

with a positive beta coefficient in good and bad economic states, which is the same as in

high and low sentiment. However, the default yield spread is significant at 5% and 1%,

respectively. Net equity expansions, long-term return, default return spread, and inflation

are significant in either good or bad economic states. The first variable is significant at

5% in periods of increasing sentiment with a negative beta coefficient, and the last three

variables are significant at 1%, 5% and 10% in periods of decreasing sentiment. Inflation

is the only variable with a negative beta coefficient. None of the technical indicators are

significant.

For the second subperiod, none of the macroeconomic variables are significant in

both market states. Net equity expansions is significant at the 10% level in bad economic

states with a positive beta coefficient. On the contrary to the first subperiod, conditional
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variance and MOM(12) are significant at 1% and 10% in periods of decreasing sentiment.

6 Discussion

Firstly, the results of one-state regression model for in-sample prediction are very weak.

Only two out of 12 macroeconomic variables are significant at the 10% level. These find-

ings are similar to Welch and Goyal (2008), who stated that most of the macroeconomic

variables seems to be unstable and are no longer significant in an in-sample forecast.

Secondly, the two-state regression model for NBER chronology of recessions and

expansions has shown that a whole eight out of 12 macroeconomic variables are significant

at 10% level or stronger in periods of recessions, whereas only five out of 12 are significant

at 5% and 10% levels in periods of expansions. The proportion of the variance in the stock

return that is predictable from the macroeconomic variables and technical indicators is

slightly higher in the two-state regression model. By comparing our findings to previous

studies, we do find some similarities. For instance, Rapach et al. (2010) and Dangl and

Halling (2012) find evidence that return predictability appears during recessions as well

as during expansions, but the evidence is much stronger during recessions. In addition,

predictability increases during bad economic states and decreases during good economic

states.

On the other hand, our empirical results are, in some way, contradicting to other

findings. For instance, Henkel et al. (2011) do not find evidence that in-sample pre-

dictability is the case during expansions, whereas our study finds that only four out of

12 are significant. The main difference is that they reexamined the predictability using a

framework of regime-switching vector autoregression (RSVAR) that can match the time-

varying dynamics of predictors to the dynamics of expected returns. Additionally, Henkel

et al. (2011) chose to forward their attention towards international data samples of G7

countries; this dataset consist of country index returns from the time period of 1973 to

2007. Similarly, Dangl and Halling (2012) also focus their attention on roughly the same

time period, from May 1973 to December 2008, attempting to analyze the monthly total

excess returns of the S&P 500 index. A noticeable difference between the aforementioned

studies and ours, is thereby that our study additionally includes most of the downturns in

the US economy before 1950, whereas the others have chosen to exclude periods in time
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involving some of the major economic crisis. We think it is important that studies should

include these major economic crises in order to identify whether there is a trend in bad

economic times.

Another interesting observation is that our results are contradicting to Neely et al.

(2014). They stated that technical indicators displayed statistical significance in-sample

forecasting power that is matching or exceeding that of macroeconomic variables. Fur-

thermore, there is evidence that these two types of indicators provide complementary

information over the business cycles. This was quoted as follows; “Technical indicators

better detect the typical decline in the equity risk premium near business cycle-peaks,

while macroeconomic variables more readily pick up the typical rise in the equity risk

premium near cyclical throughs” (Neely,2014,p.2). Our study finds the opposite effect on

expansions and recessions. Technical indicators that are significant in periods of reces-

sions have positive beta coefficients, whereas four out of eight macroeconomic variables

that are significant in bad economic times have negative beta coefficients.

The results from bull and bear markets show significant evidence of the coefficients

for most of the macroeconomic variables and some of the technical indicators. The ad-

justed R-squared has shown improvement for many predictors in the two-state compared

to the one-state regression model. An interesting discovery is that those variables that are

significant in a bull market have positive beta coefficients, and those that are significant

in a bear market have the opposite sign. The bull and bear markets appear to be a more

suitable and advantageous measure of the market states as it is identified with a shorter

delay compared to expansions and recessions, which are dated after one to two years.

Lastly, the results from investor sentiment have been disappointing. According to

Diether et al. (2002) and Tetlock (2007), the disagreement amongst investor and their

reactions to the news seems to predict future returns. Further, Patton and Timmermann

(2010) pointed out that polarization of opinions may produce a spike in disagreement,

which causes return predictability to be concentrated in bad economic times. They em-

phasized that the effect of investor sentiment can skew rational behavior and make for

overly optimistic or pessimistic choices. However, we do not have enough evidence in our

results to confirm these claims. An implication with investor sentiment data is due to the

fact that it has a shorter sample period compared to expansions and recessions, and bull

and bear markets. This leads to an unrealistic comparison of the results. In addition,

36



Figure 5 shows that investor sentiment has barely moved from the historical mean in

the last ten years. These arguments might be the reasons why we did not receive more

significant results for investor sentiment.

7 Conclusion

Our thesis systematically investigates the in-sample performance of linear regressions that

predict the stock return with macroeconomic and technical variables. These variables

have been considered to be good indicators of the stock returns from previous academic

research. In the last two decades, many researchers have proposed that information about

the past market state can influence stock return predictability. We examined these claims

by including four different definitions of the market state in the analysis.

We tried to replicate methods used by Welch and Goyal (2008) and Huang et al.

(2014) and estimated the one-state and two-state predictive regressions to see the dif-

ferences, whether βgood and βbad are statistically significant, and whether R2 is higher.

Firstly, some of the empirical results are similar to Welch and Goyal (2008) for the one-

state model where most of the predictors are unstable and spurious; only two out of 16

variables are significance at the 10% level. Secondly, the two-state model showed mixed

performance across the different macroeconomic variables and technical indicators. NBER

chronology of recession and expansions performed better in most cases; seven out of 16

variables are significant in good economic states, and eight out of 16 in bad economic

states. The goodness of fit was also improved for almost every variable that we have

tested. However, most of the predictors performed better in bull and bear markets, where

the vast majority have shown improved goodness of fit; most of the insignificant variables

in one-state became significant in the two-state model. Also, despite the popularity of

Baker and Wurgler (2006) definition of investor sentiment, we were unsuccessful in identi-

fying any improvement for both of our methods used. There might be some implications

with investor sentiment index since human psychology is difficult to observe.

Lastly, Welch and Goyal (2008) argued that the predictability of different predictors

had been diminished, and their evidence suggested that most of the models are unstable in

the last four decades. We tried to examine this phenomenon by conducting the robustness

test. For simplicity, we divided data into two equal subperiods and compared the results.
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However, our robustness test for the two-state models did not show convincing differences

in the subperiods.

There are several subjects that are of interest for future research. One could apply

the two-state regression model to other markets, such as commodity and currency markets,

to see whether these markets are affected by the different business cycles in the economy as

in the stock market. In addition, one could analyze the effect of more unusual underlying

variables, applying different time horizons and implement other models to characterize

economic market states. Finally, the effect of changes in beta coefficients are relevant and

an interesting topic considered from a macroeconomic perspective.
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Reflection note of Filip

To finish a master’s degree in Financial Economics, Johnny and I were looking into topics

where we could use our theoretical knowledge that we attained throughout our 5-year

journey at the University of Agder. We were suggested by our supervisor Valeriy Ivanovich

Zakamulin to write a thesis about stock market predictability. The goal was to test

the performance of macroeconomic and technical indicators, together with four different

definitions of market states. Most of the methods used were applied in previous studies

like the one carried out by Welch and Goyal (2008) and Huang et al. (2014).

Our thesis contributed to financial research by examining more recent data, includ-

ing different macroeconomic and technical variables and evaluating various definitions

of good and bad market states. We found interesting results when analyzing those 12

macroeconomic and four technical indicators in the one-state and two-state model regres-

sion model. We found that the two-state model has demonstrated better performance for

recessions and expansions, and bull and bear markets. However, investor sentiment index

has shown poor predictability and seemed unstable.

The writing process of this thesis has been challenging but also exciting and ed-

ucational. I improved my programming skills using statistical software called Stata and

learned how to prepare documents in LaTeX. Also, for us to understand and apply these

methodologies, the background materials provided by the University of Agder were essen-

tial. Mathematical and financial courses like statistics, research methods, econometrics,

and finance theory, were highly relevant.

The predictability of stock returns is very much linked to internationalization.

It can be applied in all the countries, indexes of the stock markets and other markets,

such as commodity and currency markets. Today, cross-border financial markets are

more connected and reliable than ever before. We have observed how other financial

markets around the globe were affected by the economic crash in the US in 2008 as an

example. There have been higher correlations between different indexes over time, and a

lot indicates that relationship only will be stronger in the future. Information is publicly

available for all the investors to absorb. And since trading can often be done instantly,

portfolio managers can take more data into consideration when investing in stocks and

developing portfolios.
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Innovation is an essential factor in the financial world. In the last decade, we

have observed the rise of big data and algorithmic trading on the stock market. Most of

the investment banks and mutual funds utilize computers to some degree when trading.

Many would even argue that machines and artificial intelligence will take over the trading

world in the near future. And while our study is to some extent a reexamination of other

studies, we believe that some of our work is innovative and the use of our approaches and

methods presented could be implemented in practice.

Responsibility is also closely linked to the topic discussed. Institutional investors

are responsible for other people’s money. They are expected to deliver high returns every

year but are also expected to operate within the boundaries of the law. In other words,

we are expecting a fair trade, no insider information, and robust, long-term investments

strategies. Also, we assume that the government and lawmakers act responsible, protect,

and control the interest of the people and future generations. However, there have been

many instances where financial identities were misusing their trust and advised expensive

funds in hope for higher bonuses for themselves. Therefore, I believe that there should

be stronger regulation system and higher penalties when financial identity put himself in

front of costumer’s rights.
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Reflection note of Johnny

We chose to write about “Time-varying stock return predictability” in which we could

utilize our quantitative knowledge and skills that we have adopted throughout our studies.

There is contradicting evidence in the literature, whether there is possible to predict the

stock market. We replicated previous studies on this topic to see whether stock return

predictability exist in bad economic times. Our thesis examined one-state and two-state

linear predictive regression for different macroeconomic variables and technical indicators.

In talks with our supervisor we agreed upon how it could be beneficial to compare different

definitions of market states to see which one is more sufficient. He argued that bull and

bear markets are highly overlooked by researchers, and he also pointed out that it has

many advantage over other methods. Our study found mixed performance across the

dierent predictors, where a large percentage of these predictors performed better in bull

and bear market compared to the other definitions of market states.

When it comes to internationalization, we do see that this topic is closely related

to international trends and globalization. In modern times, the development of computers

and internet has led to a more interconnected stock markets across countries than ever

before. The information of the stock market in different countries are available for any

investors, and therefore trades are being executed instantaneously between them. The in-

creasing globalization of world economy creates new and better opportunities for investors

to analyze and use different methods of predictability for different derivatives and trading

products. Nonetheless, investors should keep in mind that international factors do play a

significant role in identifying whether there is a trend of stock return predictability in bad

economic states. They have to consider that this trend might be different in some country

compared to others, and therefore they have to carefully implement investing strategies

that analyze the complex structure of the global economy as a whole.

Our thesis is based on stock return predictability in good and bad economic times

where we use different definitions for the market states. Some implications with these

markets are due to the fact that investors might overreact to news. This indicate that the

market is inefficient and investors seems to be not fully rational, and the existing services

do not take this gap into account. In recent times, a new trend is emerging which is based

on using artificial intelligence and machine learning to predict stock market returns. These
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technologies would effect the stock market in a way that it is evolving and moving in a

more standardized way. These innovations in the field will likely increase computer power

to predict stock return in different economic circumstances.

The importance of responsible investing is one of the most heated discussion in

financial industry over the last century. The investment industry appears to be plagued

with conflicts of interest, and we know that brokers do not always act and invest within

the boundaries of laws and regulations. Some of them want to earn commissions and

are therefore under intense pressure to do so. Due to this pressure they are not always

investing based on the interest of investors. We do see that some brokers are tempted to

sell excessively risky products, even though it is beyond investors preferences. Therefore,

institutional investors do have great power because their actions have a great impact

on people’s economy and welfare. The society has expectation that those with power

is obligated to act with high responsibility. However, climate problems are one of the

biggest crisis in today’s society, and therefore we are expecting that institutional investors

should focus on sustainable investments such as renewable energy and climate friendly

technologies. Nevertheless, we do see some investment banks or institutional investors

that do not focus on sustainable investments nor maximizing customers wealth within

the boundaries of law. This hurts the environment among investors. The government

should impose stricter penalties for those who break these ethical norms and regulations.
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