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Abstract

Physical activity is a key factor in the treatment of chronic diseases such as
diabetes, cardiovascular disease, and depression. Doctors and personal trainers
have limited methods to accurately monitor and classify a patients actual activi-
ties based on training diaries and logs that are commonly used today. In this thesis,
we apply a tri-axial accelerometer carried by a patient to collect data associated to
different activities of daily life (ADL) and utilize deep learning (DL) algorithms
for classifying distinct activities based on the data obtained from the accelerome-
ter. Among various DL methods and algorithms, we adopt specifically deep neural
networks (DNN) and recurrent neural networks (RNN) to classify movement pat-
terns. In addition, we compare our proposed structures with the state-of-the-art
methods via extensive experiments. Numerical results show that our proposed
DNN model slightly exceeds, and our RNN model vastly outperforms the state-
of-the-art methods in classification of basic movement patterns. The overall solu-
tion for data collection and movement classification provides medical doctors and
trainers a promising way to precisely track and understand the physical activities
of a patient for a better treatment.
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Chapter 1

Introduction

1.1 Motivation

It is commonly known that physical inactivity is a risk factor for a variety of
chronic diseases such as diabetes, cardiovascular disease, and depression [8, 10].
There are limited methods for doctors and personal trainers to monitor a patient/-
customer’s actual activities, where training diaries/logs are commonly used. How-
ever, questions around the accuracy and credibility of these diaries/logs are raised,
as they intentionally, or unintentionally, may be subject to social desirability and
recall bias [8].

The use of accelerometers to collect activities and movement patterns are
rapidly increasing, where the raw data converted into activity count variables
which is further used to classify physical activity intensity and energy expendi-
ture [8]. Furthermore, supervised machine learning algorithms and probability
models have been used to classify active traveling methods [8], and activities of
daily life (ADL) [3] respectively, from the raw accelerometer data. These, state of
the art algorithms and models are further described in chapter 2, section 2.3.

Deep learning architectures are commonly used for classifying complex data
patterns. Thus, the main motivation of this thesis is to propose a deep learning
approach for classifying physical activity movements using accelerometer data.

10



CHAPTER 1. INTRODUCTION

1.2 Thesis Definition

The main objective for this thesis is to propose a Deep Learning classifier for
motion recognition through wearable sensors, where the research is divided
into three goals and three research questions.

1.2.1 Thesis Goal

Goal 1: Examine state-of-the-art research within the field of recognizing “Activities

of Daily Life” (ADL), and further improve it by introducing deep learning
methods.

Goal 2: Propose and evaluate a Deep Neural Network model for time series classi-
fication.

Goal 3: Research Recurrent Neural Network models, and evaluate the performance
of networks with “memory” compared to feed forward networks ( goal 2).

1.2.2 Research Questions

In this section, we discuss and put forward the research question of interest which
this thesis makes an effort to answer.

1. Are Deep Neural Network (DNN) classification models suitable for classi-
fying movement from raw accelerometer data?

To answer this research question, we have formulated subordinate questions
designed to thoroughly answer the question. Furthermore, different distri-
butions of the datasets are tested with the developed DNN model to increase
the chance of correctly recognizing movement patterns.

(a) Which combinations of hyper-parameters; optimizers and learning rates,
performs better on a already researched dataset1, wrist-worn dataset2.

1The results of the previous reseach of this dataset is explained in section 2.3
2An explanation of this dataset is given in section 3.1
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CHAPTER 1. INTRODUCTION

We are answering this question by testing different combinations of
hyper-parameters, which can be found in chapter 4.

(b) Is it possible to correctly classify “unknown” accelerometer data when
using a pre-trained deep neural classification model?

This question is answered by trained the models for 2000 training
steps, then providing it with unseen data to classify.

(c) Does deep neural network perform better then state-of-the-art algo-
rithms?

To answer this question we consider the result of the research ques-
tions above, and compare them to the state of the art results.

2. Are Recurrent Neural Networks (RNN) able to improve the classification of
time series compared to simple feed forward DNN?

We developed a RNN model, which is tested with the hyper-parameter com-
binations mentioned above, for each of the three sliding windows, to answer
this research question.

3. How well does the proposed RNN model perform on a new custom made
dataset?

To answer this question, we collaborated with the health department of the
University of Agder, Kristiansand, to collect movement patterns through
hip-worn accelerometers. This dataset is dividend into training- and testing-
data, which is used to train and test the developed RNN model.

1.3 Contribution

The main contributions of this thesis are:

• A DNN model to recognize movement patterns with comparable accuracies
to other implemented recognition model, with minimal data-processing.

12



CHAPTER 1. INTRODUCTION

• A RNN model designed to recognize time series movement with minimal
data-processing compared to previous research.

• Evaluation of the RNN model’s performance on a researched dataset and a
new dataset.

1.4 Thesis Outline

The structure of the remaining part of the thesis is structured in the following
manner:

Chapter 2 provides preliminary information about the deep learning methods pro-
posed in this thesis (2.1, 2.2). Furthermore, it provides a summary of the state-of-
the-art classification models used for ADL recognition (2.3).

Chapter 3 explains the specification of the two proposed deep learning mod-
els, DNN (3.2.1) and RNN (3.2.2) respectively. In addition, an overview of the
datasets (3.1) are given to provide information about the difficulties of the classi-
fication.

Chapter 4 contains experimental results for the algorithms presented in chapter 3.

Chapter 5 summarizes the work done in the thesis. In section 5.1, the research
questions and goals are concluded. While section 5.2, outlines a possible road-
map for future research within the domain of movement recognition.

13



Chapter 2

Background and Related Work

This section starts with an introduction to the algorithms used to answer the re-
search questions of this thesis. Furthermore, a short explanation of the prior re-
search within the field of recognizing movement patterns is presented2.

2.1 Deep Neural Networks

2.1.1 Artificial Neural Networks

Neural networks, or artificial neural networks (ANN), are computational mod-
els that are loosely inspired by biological nervous systems such as the brain; A
biological neuron fires an electrical signals when its chemical receptors are stim-
ulated by neurotransmitters. A way to emulate this mathematically is to use the
perceptron algorithm:

f(x) =

{
1 if

∑n
i=1(xi · wi) + b > 0

0 otherwise
(2.1)

Figure 2.1 illustrates how a perceptron takes a set of inputs x1, x2, x2, . . . , xn,
and a corresponding weight for each input w1, w2, w2, . . . , wn and calculates a

14



CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.1: Illustration of a perceptron with binary step activation function

weighted sum. This sum is fed into a binary activation function (Equation 2.1)
which will output zero or one.

A neural network is, as the name implies, a network of neurons and is usually
structured into separate layers: Starting with the input layer the data is fed into
the network and each layer will perform it’s calculations and feed it forward to the
next layer. This is known as a feed forward neural network, illustrated in Figure

2.2.

Figure 2.2: Illustration of a feed-forward neural network with a single hidden layer

2.1.2 Activation Function

When a neuron fires is dependant on the activation function. The perceptron il-
lustrated in Figure 2.1 uses the binary step function as defined in Equation 2.1.
When the activation function is non-linear, then a two-layer neural network can
be proven to be a universal function approximator [1, 4]. Thus, the purpose of the
activation function is usually to bring non-linearity into the network, and therefore
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Name Function Derivative

Identity f(x) = x f ′(x) = 1

Sigmoid f(x) =
1

1 + e−x
f ′(x) = f(x)(1− f(x))

TanH f(x) =
2

1 + e−2x
− 1 f ′(x) = 1− f(x)2

Binary Step f(x) =

{
0 x < 0

1 x ≥ 0
f ′(x) =

{
0 x 6= 0

? x = 0

ReLU f(x) =

{
0 x ≤ 0

x x > 0
f ′(x) =

{
0 x ≤ 0

1 x > 0

Leaky ReLU f(x) =

{
αx x ≤ 0

x x > 0
f ′(x) =

{
α x ≤ 0

1 x > 0

Table 2.1: Activation functions and their derivatives.

it is natural to use non-linear activation functions in the hidden layers of an ANN
[1].

Furthermore, a desirable property of an activation function is for it to be contin-
uously differentiable. The binary step function described earlier is not differen-
tiable at 0, and it differentiates to 0 for all other values. This means that gradient
based algorithms can make no progress with it.

Interestingly, it is unknown why an activation function works better for a par-
ticular problem and thus trial and error is used to find the best fitting function [9].
The Rectified Linear Unit (ReLU) and the TanH function have worked quite well
in ANN’s, but there exists several other alternatives. [6, 1, 7] See Table 2.1 for
such examples and their derivatives.
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2.1.3 Backpropagation and Optimizers

As mentioned previously, each cell has a bias and each connection between cells
has a weight. The weighted sum plus the bias is used with the activation function
and determines the output into the next layer. This continues until the last layer,
which in case for classification, usually uses a softmax activation function which
converts the output into vector whose values are between zero and one. This
vector can be interpreted as the probability of some input being in a class equal to
the respective component values yi in the output vector.

The weights matrix is often initialized randomly using a Gaussian normal dis-
tribution and the bias vector usually to a small constant value. Naturally this
means that the output probabilities are very bad, and for classifying n elements

the accuracy will tend to
1

n
. To increase the accuracy the output vector is com-

pared to the ground truth and the error between these two values is calculated.
This error is then propagated backwards into the model. Each cell calculates it’s
gradient and the weights and biases are adjusted proportionally to their contri-
bution to the error. This is known as backpropagation and is performed by the
optimization algorithm.

Figure 2.3: Illustration of small and large learning rates.

The optimization algorithm is in charge of propagating the error and updating
the weights and biases of the model. Considering that the weights and biases

17
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are randomly initialized, it could take a very long time until they converge to
a desirable value. A learning rate is therefore used to speed up the process of
converging to these optimal values. Figure 2.3 illustrates how a big learning rate
cause drastic updates which lead to divergent behaviours. On the other hand, a
small learning rate requires many updates before reaching the minimum point and
thus extending the time before convergence.

2.1.4 Achieving Depth

The neural network illustrated in Figure 2.2 has three layers; An input layer, a
single hidden layer, and an output layer. As mentioned previously, each layer
feeds data forward to the following layer using it’s activation function.
A single hidden layer may be sufficient for simple experiments however, stacking
these hidden layers gives the network the ability to learn highly complex and
abstract information from the initial data [5]. A network that has multiple hidden
layers is often regarded as a Deep Neural Network (DNN).

2.2 Recurrent Neural Network

In traditional neural networks, there is an underlying assumption that the inputs
are all independent from each other. This is not always the case, specifically in se-
quential information. For instance, to predict the next word in a sentence requires
knowledge of the previous words and maybe even the topic of the discussion. Due
to the structure of feed-forward networks, the information flows through the net-
work in a single direction. The information never touches a node twice, as such
the network has no memory of the input that is received previously and no notion
of order in time.

In a recurrent neural network the information cycles through a loop. That is,
the network performs the same task for every element of a sequence. The output in
such a system is dependent on the previous computations, and every decision takes
not only the current input into consideration, but also the output of the previous
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iteration.

Figure 2.4: Illustration of a recurrent neural network and it’s unfolding in time.

Figure 2.41 illustrates a recurrent neural network: The left side is the closed short-
hand form of an RNN, while the right hand side shows how the network is unrolled
for each time step. Here xt is the input and ot is the output at time t .
The hidden state st, sometimes noted as ht, is the state at time step t and can be
regarded as the “memory” of the network. It captures the information of the pre-
vious time steps, and so basic RNN’s use this as short term memory, as it cannot
capture information for more than a few iterations. This is limited because of the
back-propagation and how the error becomes increasingly smaller for each time
step. In order to calculate the first hidden state s−1 is typically initialized to all
zeroes.

2.2.1 Long Short-Term Memory and Gated Recurrent Units

As mentioned previously, RNN’s have the ability to remember information, how-
ever not for very long. As the time steps increase, it fails to derive context from
time steps which are far behind. By extending the cells to have a specific memory
channel one can give them the ability to learn for longer periods of time. Each cell
decides to store or delete information from this memory based on the importance
of the information. What is important or not is dependant on the weights, thus

1This illustration is found at: wildml.com
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as the network trains over time it will learn which information is important and
which is not. These cells are called Long Short-Term Memory cells (LSTM).

Figure 2.5: Illustration of a LSTM and GRU cells.

The LSTM cells are computationally expensive as they do many operations to de-
cide what to remember and what to forget. To reduce training time Gated Recur-
rent Units (GRU) cells can be used. The GRU cells control the flow of information
like the LSTM unit, but rather than deciding what to remember and what to forget
they expose the full hidden content without any control. This makes them much
more efficient and is illustrated in Figure 2.52.

2This illustration is found at: isaacchanghau.github.io
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2.3 State-of-the-art

Prior research within the field of recognizing Activities of Daily Life (ADL),
uses data collected by wearable sensor devices. More accurately a single wrist-
mounted tri-axial accelerometer [2]. The previous research divides the categories
into 14 low-level activities called motion primitives. These primitives are uniquely
related to five major ADL categories shown in table 3.1. Multiple motion prim-
itives can refer to the same ADL, thus it is possible to infer the activity when
recognizing the primitive.

The system architecture of the proposed solution in [3], consist of two distinct
modules, a model builder and a classifier. The model builder creates a probabilis-
tic models of the relevant motion primitives extracted from the recordings, while
the classifier uses a comparison of new, unseen, acceleration data with the avail-
able models. Using Gaussian Mixture Modeling and Gaussian Mixture Regres-
sion the previous research achieved promising results for very specific primitives.
Table 2.2 from Bruno et al. (2013) [3] illustrates the results.

Model TP TN
Climbing the stairs 20 % 93.34 %
Drinking from a glass 100 % 83.34 %
Getting up from the bed 60 % 66.67 %
Pouring water in a glass 100 % 80 %
Sitting down on a chair 0 % 93.34 %
Standing up from a chair 60 % 83.34 %
Walking 40 % 70 %

Table 2.2: Recognition accuracy focusing on getting up from bed

It is important to note that [3] calculates a model for each movement category
and the results shown in 2.2 are incomplete. Furthermore, using True Positives
(TP) and True Negatives (TN) as the performance metrics can be misleading. For
instance, the model “Sitting down on a chair” has zero score in TP, but a score of
93.34 in TN. Any model that always classifies false would achieve similar results.

This thesis will try to achieve greater results than shown in [3] and metrics
like Recall, Precision, and F1-score are used in this thesis as they give a clearer
picture of performance.
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Chapter 3

Dataset and Model Structure

This chapter gives a description of the two datasets which are used for the ex-
periments. Additionally, we are giving an explanation of algorithms which are
implemented for recognizing the different movement patterns of the datasets.

3.1 Dataset and Data Structure

This thesis applies the proposed deep learning recognition models on two different
movement datasets, where the first one is an existing dataset and the second one
is a newly collected dataset.

Dataset 1: A public collection of labelled accelerometer data recordings aquired from
UCI Machine learning Repository. It is a dataset for activities-of-dailylife
(ADL) collected through wrist-worn accelerometers, here by referred to as
the wrist-worn dataset.

Dataset 2: A dataset collected by participants associated with the University of Agder,
Kristiansand. It is a dataset of labled movement patterns collected through
a hip-worn accelerometers, here by referred to as the hip-worn dataset.
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3.1.1 Wrist-Worn Dataset

The wrist-worn dataset which is used throughout the experiments consists of 14
different motion primitives performed by 16 volunteers. To test and examine the
performance of the proposed algorithms these motion primitives are divided into
broader, less complex, ADL categories. The correlation between these ADL cate-
gories and the motion primitives is shown in table 3.1.

ADL Motion Primitives

Personal hygiene
Brush teeth
Comb Hair

Mobility
Climb Stairs
Descend Stairs
Walk

Feeding

Drink from glass
Pour water into glass
Eat with knife and fork
Eat with spoon

Communication Use telephone

Functional transfers

Get out of bed
Lie down in bed
Stand up from chair
Sit down on chair

Table 3.1: Correlation between ADL categories and Motion primitives

The distribution of the data-points for these ADL’s and motion primitives are
shown in figure 3.1, where the ADL distribution is on the left and the motion
primitives on the right 1 2.

Looking at the ADL distribution it is clear that it is not evenly distributed as
three categories; mobility, feeding and functional transfers, consist of above 100

1 The indexes of the movement categories in the figure correlates to the categories as shown
in table B.1 and B.2, in appendix A.

2All images in section 3.1.1 shows the distribution of ADL categories on the left and Motion
primitives on the right.
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000 data-points each. While personal hygiene and communication only consists
of about 50 000 and 20 000 data-points respectively.

The overall distribution of the movement primitives can be considered some-
what even; with the exceptions of walking, eating with spoon, and lying down, as
most of them are within the range of 20 000 to 40 000 data-points.

Figure 3.1: Raw data distribution for the wrist-worn dataset

Preparing the raw data for the experiments is done by dividing the data into sliding
windows. The accelerometers used when gathering the data, collects 32 data-
points each second. Three types of sliding windows are used in the experiments;
a three second-, a five second- and a ten second- sliding window.

Figure 3.2: Three second sliding window distribution for the wrist-worn dataset

The three second sliding window differs from the other two sliding windows, as
the shift for each window also is set to three seconds. It is created by collect-
ing three seconds of data - which is a total of 96 data-points - then sliding three
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seconds to create the next sliding window. Thus, there is no overlapping of data-
points within this type of sliding window. Dividing the dataset into these three
second sliding windows, yields a dataset consisting of approximately 4000 slid-
ing windows distributed as shown in figure 3.2 1.

When generating the five second sliding windows, the shift for each window is
set to one second. Thus, each sliding window contains an overlap of four seconds
to the previous window. This yields a dataset of approximately 10 000 sliding
windows, with the distribution shown in figure 3.3 1.

Figure 3.3: Five second sliding window distribution for the wrist-worn dataset

The final type of sliding window is ten seconds of data, also sliding by one second
for each window. This creates a dataset consisting of approximately 6000 sliding
windows, and its distribution is shown in figure 3.4 1.

Figure 3.4: Ten second sliding window distribution for the wrist-worn dataset
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3.1.2 Hip-Worn Dataset

The hip-worn dataset is consists of ten movement patterns performed by eight
volunteers, where some of the movement patterns are different variations of a
movement, such as different speeds of walking. The collected movement patterns
are cycling, jogging, laying still, sitting, sitting in a vehicle, sitting relaxed, walk-
ing stairs, standing, walking fast, and walking normal. This dataset consists of 1.6
million data-points distributed among the categories as shown in figure 3.5 3.

Similar to the wrist-worn dataset, the hip-worn dataset is divided into three
types of sliding windows; three-, five-, and ten second windows respectively. The
hip-worn dataset in unevenly distributed, as most of the data-points are in the
relaxing categories such as lying down, and sitting. This pattern in the distribution
is carried over to the sliding window datasets.

Figure 3.5: Raw data distribution for the hip-worn dataset
Figure 3.6: Three second sliding window distribution for the
hip-worn dataset

Generating the dataset for three second sliding windows is done the same as for
the wrist-worn, three seconds of data shifting by three seconds. However, the
accelerometers used on this dataset collects 30 data-points each second, giving
the three second sliding window dataset around 15 000 sliding windows with the
distribution shown in figure 3.6 3.

The five- and ten- second sliding window datasets are created with a shift of
one second, the same as for the wirst-worn dataset. Both types of sliding window

3. The indexes of the movement categories in the figure correlates to the categories as shown
in table A.1, in appendix A
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creates a dataset with approximately 54 000 sliding windows, where the distri-
bution for the five seconds are shown in figure 3.7 3, and for the ten seconds are
shown in figure 3.8 3.

Figure 3.7: Five second sliding window distribution for the
hip-worn dataset

Figure 3.8: Ten second sliding window distribution for the
hip-worn dataset

3.2 Model Structure

In this section we describe the experimental setup for the two implemented algo-
rithms for recognizing the movement types describe in the previous section4.

3.2.1 Deep Neural Network Model

The implemented model for the deep neural network consists of five layers; An
input and output layer, and three hidden layers. The three hidden layers have a
constant number of cells, more specifically, the first hidden layer has 512 cells,
the second hidden layer has 258 cells, and the last hidden layer has 128 cells.
While the input and the output layer adapt to the dataset; The input layer will
always fit the length of the samples, while the output layer will always have n
cells, where n is the number of classes that need to be classified.

To evaluate performance of the model, the output of the network is compared with
the true label and the different performance metrics; accuracy, recall, precision,

4Code available at GitHub: https://github.com/SahandJ/MovementRecognition
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and f1 score, are calculated. A simplified illustration of the model is shown in
figure 3.9

Figure 3.9: The structure of the Deep Neural Network model

During the training phase, the input data is split up into smaller batches of 100
elements. The model will predict a label for each element and the weights and
biases are adjusted from the sum of the errors between the predicted labels and
true labels. The testing dataset is not split up into smaller batches. Thus, the
entire testing dataset is used for calculating the performance metrics.

3.2.2 Recurrent Neural Network Model

The second implemented model is reccurent neural network which consists of two
components; the recurrent element of the network and a fully connected network.

The first component, the recurrent element, consists of cells which in our case
are Gated Recurrent Unit’s (GRU). Each of these cells are connected to each other
and they all have a fixed number of states. The number of cells, and the number
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of states each cell has is provided as a parameter to the network. The recurrent
element of the network returns two values; The current state of the [recurrent]
network St, and the output of each state Ot. The output of each state will be an
array of length t where t is the number of items in the timeseries that is sent into
the network.

The last element of the outputs is used and sent forwarded to the fully connected
network. The fully connected network is much smaller than the previous model
and only consists of two layers. The input layer, which takes the input from the
recurrent network and an output layer that is used to predict the class. A simplified
illustration of the recurrent neural network model is shown in figure 3.10.

Figure 3.10: The structure of the Recurrent Neural Network model
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Chapter 4

Experiments and Results

The dataset provided by UCI Machine Learning Reporistory, which we refer to as
the wrist-worn dataset, is thoroughly tested for the proposed deep learning models,
the Deep Neural Network (DNN) model and a Reccurent Neural Network (RNN)
model respectively.

Four different learning rates are used; 0.1, 0.01, 0.001 and 0.0001. These
are tested in combination with three well known optimizers; Adagrad, Adam and
Stochastic Gradient Descent (SGD). Furthermore, these combinations of optimiz-
ers and learning rates are tested for all three types of sliding windows; three-, five-
and ten- seconds, both for the basic- and specific- movement categories. Consider-
ing the number of data-points available in the datasets, all experiments are stopped
after 2000 training steps. Thus, reducing the chance of overfitting through repeat-
edly training on the same data.

Furthermore, the hip-worn dataset, provided by UiA Kristiansand, is tested
using only the proposed RNN model, with the different hyper-parameter combi-
nations discussed above. The decision to not run this dataset through the proposed
DNN model is the fact that the results of the wrist-worn dataset shows that the
RNN model consistently outperforms the DNN for this type of time series move-
ment patterns.
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4.1 Deep Neural Network

Throughout this section a detailed explanation of the best performing results, with
regards to the overall F1 score 1, is given. For each type of sliding window -
three-, five- and ten- seconds - the best performing combination of optimizer and
learning rate will be given for both the basic- and specific- movement categories.

As mentioned, multiple combinations of hyper-parameters are tested for the
UCI dataset. The overall results of all the tested combinations are show in the
appendices, appendix B.1 for the basic movement categories, and appendix B.2

for the specific movement types.

Looking at these result overviews, low learning rates are shown to be more
suited for movement recognition, for both the Adagrad- and the Adam- optimizer.
When using a high learning rate of 0.1, both the Adagrad and Adam optimizer
get a low F1 score. The recall of these results shows that the algorithms guesses
“randomly”. The probable cause of this might be the high learning rate. Thus, the
algorithm diverges from the global minimum, which prevents it from learning the
patterns of the movements.

Furthermore, the result of the SGD optimizer is to some extent unexpected.
However, the result can be explained through the proposed structure of the DNN.
The model uses ReLU as its activation function. Using ReLU with SGD often
leads to vanishing gradients, which stagnates the learning of the algorithm.

4.1.1 Wrist-Worn Dataset: Basic Movement

Three second sliding window:

Testing the different hyper-parameter combinations on the three second sliding
window, shows the highest achieved overall accuracy and F1 score are 80.94%
and 78.46% respectively. This result is reached when using a low learning rate,
0.0001, with the Adam optimizer.

1F1 score is defined as: 2 * ((Precision * Recall) / (Precision + Recall))
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Figure 4.1: Confusion matrix of the best result for basic
movement three second window using DNN

Category Recall Precision F1 Score

0 Hygiene 73.7% 83.61% 78.35%

1 Mobility 89.33% 88.7% 89.01%

2 Feeding 87.13% 84.44% 85.76%

3 Communication 66.23% 79.69% 72.34%

4 F-Transfer 67.57% 64.6% 66.05%

Table 4.1: Best result of basic movement three second win-
dow using DNN

Figure 4.1 shows a confusion matrix for the results of each movement type. This
matrix is created to evaluate the algorithm, and interpret why the algorithm achieved
its results and where the incorrect classifications occurs. Table 4.1 adds additional
information; the recall-, precision- and F1- percentages, about the classification
of the movement types.

The classification inaccuracies for three seconds sliding windows are under-
standable considering the data distribution shown in figure 3.2. The most distinct
pattern in the matrix is that each category is to some extent inaccurately recog-
nized as a functional transfer, even without it being the category with the largest
amount of data-points.

However, the probable cause of this pattern is the fact that the data is collected
through a wrist-worn accelerometer; Each of the 14 participants might have dif-
ferent personal traits when moving, especially hand movements. This could af-
fect the classification. Thus, giving functional transfers a lower precision score 2,
shown in table 4.1.

The ADL category which is inaccurately classified the most is the communication
category, which contains the least amount of data-points. Furthermore, when it
is incorrectly classified it is often interpreted as similar movement patterns, either
hygiene or feeding. Functional transfers is the category with the second highest

2Precision score is defined as: True Positives / (True Positives + False Positives).
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percentage of inaccurate classification. Again, some of these classification might
be affected by traits of the participants, thus classifying it as feeding. On the
other hand, functional transfers are often classified as mobility, which is a more
comparable category with regards to the movement types in those categories.

Five second sliding window:

Using the Adam optimizer combined with a low learning rate of 0.0001, on the
five second sliding windows, the proposed DNN achieves an overall accuracy of
86.01% and an overall F1 score of 82.37%.

There are clear patterns in the inaccurate classifications of the ADL categories
shown in the confusion matrix in figure 4.2.

The DNN model incorrectly classifies the communication data as feeding (20%

of the time), similar to the three second sliding window. Considering the resem-
blance in the movement patterns when using a telephone and eating, this confusion
is understandable, especially when seeing the difference in the data distribution,
shown in figure 3.3.

Figure 4.2: Confusion matrix of the best result for basic
movement five second window using DNN

Category Recall Precision F1 Score

0 Hygiene 89.69% 84.33% 86.93%

1 Mobility 94.53% 89.38% 91.88%

2 Feeding 98.37% 83.69% 90.43%

3 Communication 71.72% 72.82% 72.26%

4 F-Transfer 50.54% 88.89% 64.44%

Table 4.2: Best result of basic movement five second win-
dow using DNN

Explaining the miss-classification of the functional transfer category is partially
based on assumptions. The two most commonly classified classes are mobility
and feeding. As mentioned for the three second slidining window, the specific
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movement types in the mobility class and the functional transfer class (see table
3.1) are comparable. It is understandable that getting up from a chair or the bed is
interpreted as one of the mobility movements. However, looking at possible rea-
sons for the DNN to interpret functional transfers as feeding, the most reasonable
explanation would, as mentioned, be the placement of the accelerometer.

Ten second sliding window:

The Adam optimizer and a low learning rate of 0.0001 is again the best perform-
ing combination when testing it on ten second sliding windows. Achieving an
impressive overall accuracy of 92.4% and an overall F1 score of 89.43%.

Looking at the confusion matrix in figure 4.3, it is clear to see that a ten second
sliding window allows the DNN model to observe and distinguish the differences
between these basic movement patterns. The probable cause of the lower F1 score
of communication is its low number of data-points; shown in the data distribution
in figure 3.4, which influences its precision score. Thus, predicting 5% of the
hygiene data-points as communication heavily affects the precision score.

Figure 4.3: Confusion matrix of the best result for basic
movement ten second window using DNN

Category Recall Precision F1 Score

0 Hygiene 84.1% 96.49% 89.87%

1 Mobility 95.95% 97.51% 96.72%

2 Feeding 95.87% 93.67% 94.75%

3 Communication 91.3% 70.59% 79.62%

4 F-Transfer 87.74% 81.4% 84.45%

Table 4.3: Best result of basic movement ten second window
using DNN
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4.1.2 Wrist-Worn Dataset: Specific Movement

As the number of movement types is increased in the specific movement distri-
bution of the UCI dataset, the complexity of recognizing them also increases. In
addition, the distribution of data-points is lower for each categories3 as they are
no longer combined as for the basic distribution.

Three second sliding window:

The best result achieved for three second sliding windows for specific movement
is an accuracy of 59.93% and a F1 score of 56.59%. This result is achieved by the
Adagrad optimizer with a learning rate of 0.01.

Analyzing the confusion matrix in figure 4.4, the most difficult movement to
recognize is lying down in bed. Considering that it is the movement with the
second lowest amount of sliding windows, see the distribution in figure 3.2, it is
to some extent expected.

Figure 4.4: Confusion matrix of the best result for specific movement three second window using DNN

3See the distributions in the figures in section 3.1.1
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Category Recall Precision F1 Score
0 Brush teeth 81.29% 90.0% 85.42%
1 Climb stairs 48.07% 39.55% 43.39%
2 Comb hair 61.82% 79.07% 69.39%
3 Descend stairs 46.15% 57.69% 51.28%
4 Drink 52.74% 64.63% 58.08%
5 Eat w/ knife & fork 90.0% 60.71% 72.51%
6 Eat w/ spoon 44.44% 59.26% 50.79%
7 Get out bed 43.75% 49.46% 46.43%
8 Lie down bed 9.52% 66.67% 16.67%
9 Pour water 72.14% 52.73% 60.92%

10 Sit down 34.12% 46.03% 39.19%
11 Stand up 39.58% 39.58% 39.58%
12 Telephone 44.87% 77.78% 56.91%
13 walk 72.75% 67.41% 69.98%

Table 4.4: Best result of specific movement three second window using DNN

The other reasonable miss-classified movement patterns are full body movements.
Both climbing and descending stairs are often wrongly interpreted as walking,
which is understandable as walking is the largest category in terms of data-points
and the movements are comparable. In addition, the two functional transfers,
sitting down and standing up, are also interpreted as walking.

Furthermore, descending stairs is either wrongly recognized as either walking
or descending stairs. The accelerometer used collects the g-forces, and as it is
placed on the wrist. Thus, the patterns on climbing and descending stairs are
relatively equal as the axes changes when rotating the hand.

Another conspicuous miss-interpretation is when the algorithm recognizes eat-
ing with spoon as pouring water into a glass. The assumption here is that the
collected data of pouring water is from a mug. Thus, the resemblance in hand
movements affects the algorithm. As an example, when eating soup one slowly
moves the spoon from the plate, up towards the mouth before one tilts the spoon
inside the mouth. The same pattern goes for pouring water from a mug into a
glass. First the mug is lifted, then tilted to pour the water.
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Five second sliding window:

Testing the DNN on the five second sliding windows, the highest performing
hyper-parameter combination is the Adagrad optimizer and a learning rate of 0.01.
Achieving an overall accuracy of 67.83% and an overall F1 score of 62.11%.

Figure 4.5: Confusion matrix of the best result for specific movement five second window using DNN

Category Recall Precision F1 Score
0 Brush teeth 93.49% 91.56% 92.52%
1 Climb stairs 16.95% 32.72% 22.33%
2 Comb hair 66.78% 82.08% 73.64%
3 Descend stairs 17.29% 79.31% 28.4%
4 Drink 79.06% 59.97% 68.2%
5 Eat w/ knife & fork 83.3% 74.58% 78.7%
6 Eat w/ spoon 81.91% 68.75% 74.76%
7 Get out bed 51.93% 68.18% 58.96%
8 Lie down bed 23.42% 37.68% 28.89%
9 Pour water 63.38% 80.12% 70.77%

10 Sit down 38.06% 68.6% 48.96%
11 Stand up 40.67% 49.19% 44.53%
12 Telephone 78.26% 66.12% 71.68%
13 walk 87.47% 64.0% 73.91%

Table 4.5: Best result of specific movement five second window using DNN

The results of the five second sliding windows are similar to the results of the three
second sliding windows, where most of the movement categories have a slight
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increase in their recall score. As mentioned in section 3.1.1, each five second
sliding window consists of some overlapping data. Allowing the algorithm to
more easily recognize the patterns of the movements.

However, the movements which were miss-interpreted as walking are more
frequently interpreted incorrect. This, pattern has a correlation to the distribution;
see figure 3.3, as these movement categories, climbing and descending stairs, have
fewer sliding windows for five seconds than for three seconds. Thus, the algorithm
has fewer samples to train on, which affects the result.

Ten second sliding window:

For ten second sliding windows, Adagrad combined with a learning rate of 0.01
gives an overall accuracy of 81.29% and an F1 score of 66.75%

Figure 4.6: Confusion matrix of the best result for specific movement ten second window using DNN

Looking at the results shown in the confusion matrix in figure 4.5, it follows the
same patterns as for the five second sliding window. The recall scores averagely
increases, due to the increase of the window size. As the window size increase,
the amount of sliding widows decreases for the climbing- and descending- stairs
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Category Recall Precision F1 Score
0 Brush teeth 94.77% 98.82% 96.75%
1 Climb stairs 4.9% 35.0% 8.59%
2 Comb hair 57.26% 84.81% 68.37%
3 Descend stairs 2.17% 33.33% 4.08%
4 Drink 68.28% 60.77% 64.3%
5 Eat w/ knife & fork 93.01% 82.06% 87.19%
6 Eat w/ spoon 95.79% 93.81% 94.79%
7 Get out bed 85.66% 83.27% 84.44%
8 Lie down bed 29.55% 61.9% 40.0%
9 Pour water 66.48% 85.21% 74.69%

10 Sit down 62.5% 60.61% 61.54%
11 Stand up 52.78% 55.88% 54.29%
12 Telephone 85.54% 58.44% 69.44%
13 walk 96.55% 83.3% 89.44%

Table 4.6: Best result of specific movement ten second window using DNN

movements. Thus, further decreasing their recall score, as they are more consis-
tently interpreted as walking.

The most distinguish pattern in the ten second sliding window confusion matrix,
is the miss-interpretation of standing up. It is approximately 40% of the time
interpreted as getting out of bed. Indicating that the similarity of getting out of the
bed, and standing up from a chair is quiet high when monitoring ten seconds of
those movements.
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4.2 Recurrent Neural Network

In this section we discuss the best results4 of the Recurrent Neural Network (RNN)
experiments. As for the DNN, a detailed explanation of the best combination
of hyper-parameters is given for each sliding window, for both the basic- and
specific- movement categories. In addition, the results for the secondary dataset,
the hip-worn data, are explained.

The hyper-parameters are the same as for the DNN. However, two additional
parameters are tested; Number of cells in the RNN, and the size of the cells. The
RNN is run with four and eight cells, for each of the learning rates. Furthermore,
these were both tested with two different sizes for the cells, 16 and 32 respectively.

Looking at the result overviews in appendix C, lower learning rates often perform
better than higher. However, Adagrad performs surprisingly bad with the lowest
learning rate. The assumption here is that the number of training steps are to low
for the Adagrad optimizer to learn the patterns with such a low learning rate.

The same pattern for the SGD optimizer are shown for the RNN; SGD does
not learn with the ReLU cells, except it is able to achieve relatively impressive
results with the lowest learning rate.

4.2.1 Wrist-Worn Dataset: Basic Movement

In this section the best performing results with regards to the overall F1 score for
the basic movements, for each sliding window type, are explained.

Three second sliding window:

Running a RNN, consisting eight cells of size 32, with the Adam optimizer and a
low learning rate of 0.001, an overall accuracy of 84.89% and an overall F1 score
of 82.56% is achieved. Comparing these results to the DNN results5, it is an in-

4The best result is decided by the overall f1 score
5The dnn results are discussed in section 4.1.1
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crease of approximately 4%.

Figure 4.7: Confusion matrix of the best result for basic
movement three second window using RNN

Category Recall Precision F1 Score

0 Hygiene 84.81% 88.42% 86.58%

1 Mobility 88.62% 95.61% 91.98%

2 Feeding 93.12% 80.86% 86.56%

3 Communication 62.34% 85.71% 72.18%

4 F-Transfer 73.22% 73.53% 73.38%

Table 4.7: Best result of basic movement three second win-
dow using DNN

Looking at the confusion matrix in figure 4.7, the results again shows that when-
ever a sliding window is miss-interpreted it is often guessed as a hand movement.
As an example, the category with the lowest amount of sliding windows, com-
munication, is often guessed as feeding. This is understandable because of the
similarity in movements, and also due to the fact that feeding is the category with
the second most sliding windows, see distribution in figure 3.2.

The other noticeable result is the interpretation of functional transfers. As dis-
cussed in previous sections, the placement of the accelerometer can be used as an
explanation. Placing it at the wrist is probably affecting the movement pattern, as
a small hand gesture can have an influence on the algorithms. Thus, the assump-
tion is that functional transfers is classified as feeding due to the accelerometer
placement.

Five second sliding window:

Using a learning rate of 0.01 and the Adagrad optimizer with the five second
sliding windows, achieves an impressive 94.65% overall accuracy and a 93.03%
overall F1 score.
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Figure 4.8: Confusion matrix of the best result for basic
movement five second window using RNN

Category Recall Precision F1 Score

0 Hygiene 96.95% 93.73% 95.31%

1 Mobility 94.86% 98.36% 96.58%

2 Feeding 97.16% 95.66% 96.41%

3 Communication 83.33% 91.67% 87.3%

4 F-Transfer 90.85% 87.79% 89.29%

Table 4.8: Best result of basic movement five second win-
dow using RNN

The only result standing out in the confusion matrix in figure 4.8, is the communi-
cation category. However, the “low” accuracy is explained by looking at the dis-
tribution6. Consisting of the fewest sliding windows, communication is expected
to be the hardest class to predict for the RNN.

Ten second sliding window:

The highest performing combination of hyper-parameters for ten second sliding
windows, is also the highest performing result for basic movements in general.
Combining the Adam optimizer with a learning rate of 0.001, in a RNN with 4
cells of size 32, an overall accuracy of 98.75% and an overall F1 score of 98.06%
is achieved.

Considering the overlapping of data-point in the sliding windows, and the fact
that RNN uses prior knowledge to improve. These results are expected. The few
miss-interpreted sliding windows is assumed to be caused by the “noise”7 from
the placement of the accelerometer.

6The Communication category consists of the fewest sliding windows, see figure 3.3
7As mentioned individual hand-gestures from participants during data collection might affect

the data patterns, we consider this as “noise”
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Figure 4.9: Confusion matrix of the best result for basic
movement ten second window using RNN

Category Recall Precision F1 Score

0 Hygiene 99.85% 98.79% 99.32%

1 Mobility 99.58% 99.08% 99.33%

2 Feeding 99.66% 98.35% 99.0%

3 Communication 92.93% 99.42% 96.07%

4 F-Transfer 94.71% 98.27% 96.45%

Table 4.9: Best result of basic movement ten second window
using RNN

4.2.2 Wrist-Worn Dataset: Specific Movement

Throughout this section we explain and discuss the results of the best performing
hyper-parameters for all three types of sliding windows for specific movement.

Three second sliding window:

The results of the RNN for three second sliding window, are noticeably better than
for the DNN. A RNN with four cells, with size 32, a learning rate of 0.001 and
the Adam optimizer, gives an overall accuracy of 70.39% and an overall F1 score
of 65.58%.

One of the main differences between the results of the RNN and the DNN,
are both descending and climbing the stairs. Figure 4.10 shows that the RNN
have reduced the number of miss-interpretations of stair movements as walking.
Thus, we assume that the “memory” of the RNN are able to remember the small
differences between walking and moving upwards or downwards.

Many of the miss-interpreted movements are movements of similar types,
mostly different hand movements. Thus, some sliding windows are interpreted
incorrectly as another hand-movement. Examples of such miss-interpretations
are: drinking interpreted as pouring water, Eating with a spoon interpreted as
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Figure 4.10: Confusion matrix of the best result for specific movement three second window using RNN

Category Recall Precision F1 Score
0 Brush teeth 83.87% 86.09% 84.97%
1 Climb stairs 72.38% 71.2% 71.78%
2 Comb hair 69.09% 83.52% 75.62%
3 Descend stairs 75.38% 87.5% 80.99%
4 Drink 56.72% 73.08% 63.87%
5 Eat w/ knife & fork 92.35% 73.02% 81.56%
6 Eat w/ spoon 63.89% 50.0% 56.1%
7 Get out bed 44.23% 57.86% 50.14%
8 Lie down bed 11.11% 36.84% 17.07%
9 Pour water 74.13% 65.35% 69.46%

10 Sit down 48.24% 45.56% 46.86%
11 Stand up 57.29% 37.67% 45.45%
12 Telephone 83.33% 66.33% 73.86%
13 walk 86.15% 84.3% 85.22%

Table 4.10: Best result of specific movement three second window using RNN

pouring water. These movements are all hand-gestures which understandably can
be confused with each other.

The bad results of body movements such as lying down, sitting down and
standing up has a low precision score due to their low data distribution, shown in
figure 3.2. Considering the low amount of sliding windows, these classes are miss-
interpreted as a few different categories. However, they are mostly interpreted as
similar movements such as: lying down as either getting out of bed, sitting down
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or walking, sitting down as standing up, and standing up as getting out of bed.

Five second sliding window:

An overall accuracy of 85.6% and an overall F1 score of 81.67% is the highest
performing result of five second sliding windows with RNN. The RNN used to
accomplish these results is a network consisting on 4 cells of size 32. This network
uses Adam as its optimizer and a learning rate of 0.01.

The result of the five second sliding windows are overall increased compared
to the three second sliding windows. This is probably due to the overlap in the
sliding windows, which further allows the network to recognize the differences in
the movement patterns.

Figure 4.11: Confusion matrix of the best result for specific movement five second window using RNN

Again, the worst performing categories are the ones with the lowest distribution
of sliding windows. Thus, they are interpreted as movements with similar patterns
to its own.
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Category Recall Precision F1 Score
0 Brush teeth 96.01% 96.21% 96.11%
1 Climb stairs 88.78% 75.15% 81.4%
2 Comb hair 92.54% 92.23% 92.39%
3 Descend stairs 81.2% 81.82% 81.51%
4 Drink 90.42% 81.36% 85.65%
5 Eat w/ knife & fork 92.9% 87.77% 90.26%
6 Eat w/ spoon 94.68% 89.9% 92.23%
7 Get out bed 79.23% 77.34% 78.27%
8 Lie down bed 52.25% 63.04% 57.14%
9 Pour water 88.03% 84.84% 86.41%

10 Sit down 72.9% 68.48% 70.62%
11 Stand up 57.33% 69.92% 63.0%
12 Telephone 54.11% 95.73% 69.14%
13 walk 89.14% 93.84% 91.43%

Table 4.11: Best result of specific movement five second window using RNN

Ten second sliding window:

Ten second sliding windows are again, the highest performing distribution of the
data-points. Achieving an overall accuracy of 96.52% and an overall F1 score of
93.43%, when using Adam as the optimizer, a learning rate of 0.001 on a RNN
consisting of 8 cells of size 32.

Figure 4.12: Confusion matrix of the best result for specific movement ten second window using RNN
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Category Recall Precision F1 Score
0 Brush teeth 99.32% 99.77% 99.54%
1 Climb stairs 92.31% 85.71% 88.89%
2 Comb hair 98.72% 98.72% 98.72%
3 Descend stairs 91.3% 84.0% 87.5%
4 Drink 95.16% 94.65% 94.91%
5 Eat w/ knife & fork 98.94% 99.36% 99.15%
6 Eat w/ spoon 100% 95.0% 97.44%
7 Get out bed 90.16% 94.02% 92.05%
8 Lie down bed 68.18% 85.71% 75.95%
9 Pour water 97.25% 95.68% 96.46%

10 Sit down 100% 88.89% 94.12%
11 Stand up 94.44% 85.0% 89.47%
12 Telephone 93.98% 93.98% 93.98%
13 walk 97.49% 98.42% 97.95%

Table 4.12: Best result of specific movement ten second window using RNN

Most miss-interpretations are eliminated with the exception of lying down, the
category with the fewest sliding windows. There are some concerns to these re-
sults as the small shift of one second for each ten seconds sliding window might
cause the algorithms to overfit during training. Thus, achieving such impressive
results. The problem however is the size of the dataset, increasing the shift of the
sliding window drastically reduces the number of sliding windows in the dataset.
Leading to poor training as the size of the dataset would be low.

4.2.3 Hip-Worn Dataset

In this section we discuss the highest performing results for the RNN on the newly
collected dataset, provided by participants associated with UiA Kristiansand. This
dataset was tested for each type of sliding window, which are separately discussed
throughout this section.

Three second sliding window:

The highest performing result for the three second sliding window gets an overall
accuracy of 85.5%, and a F1 score of 84.04%. Examining the results shown in
the confusion matrix in figure4.13, the wrongly interpreted sliding windows are
reasonable.
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Examples are laying down which is interpreted as sitting relaxed, which in
some cases might be a person almost lying in a sofa. Walking is sometimes con-
fused with walking fast, which might be explained by differences in walking speed
between participants. One persons normal walking speed might be the same speed
as another persons speed when walking fast. Thus, confusing the algorithm.

Figure 4.13: Confusion matrix of the best result for three second window of hip-worn data using RNN

Category Recall Precision F1 Score
0 Cycling 81.33% 82.99% 82.15%
1 Jogging 77.67% 94.28% 85.17%
2 Laying still 87.8% 86.82% 87.31%
3 Sitting 93.73% 83.56% 88.36%
4 Sitting in a vehicle 72.09% 98.53% 83.26%
5 Sitting relaxed 88.19% 85.55% 86.85%
6 Walking stairs 77.96% 83.04% 80.42%
7 Standing 83.27% 82.45% 82.85%
8 Walking fast 87.97% 81.27% 84.49%
9 Walking normal 75.63% 77.2% 76.41%

Table 4.13: Best result of three second window of hip-worn data using RNN

Looking at the categories, shown in table 4.13, and their individual performances,
shown in figure 4.13. The lower performing category is sitting in a vehicle. As
there are multiple vehicle options it can be hard to predict this category. For
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instance, if one of the participants where sitting in a buss, then the three second
sliding window have a possibility to be when the buss is at a stop. Thus, making
the algorithm believe it is a person who is sitting still.

The results explained above are achieved through a RNN with 4 cells, with cell
sizes of 32, a learning rate of 0.1 and Adagrad as its optimizer.

Five second sliding window:

Using Adagrad as the optimizer for a RNN with four cells, of size 32, combined
with a 0.1 learning rate, an accuracy of 88.48% and a F1 score of 85.29% is
achieved. Again the category of sitting in a vehicle is among the lowest perform-
ing categories, as different vehicles have different driving patterns which might
confuse it with other categories.

Figure 4.14: Confusion matrix of the best result for five second window of hip-worn data using RNN

However, looking at the results of both the category for walking stair and walk-
ing fast, shown in the confusion matrix in figure 4.14, their recall score decreased
compared to the three second sliding window. We assume that the patterns be-
tween walking stairs and walking in normal speed are easier to distinguish when
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Category Recall Precision F1 Score
0 Cycling 78.08% 78.74% 78.41%
1 Jogging 85.82% 89.39% 87.57%
2 Laying still 90.61% 94.86% 92.69%
3 Sitting 94.84% 86.27% 90.35%
4 Sitting in a vehicle 76.81% 97.51% 85.93%
5 Sitting relaxed 96.19% 90.63% 93.33%
6 Walking stairs 68.61% 78.83% 73.37%
7 Standing 84.24% 80.89% 82.53%
8 Walking fast 74.51% 98.56% 84.86%
9 Walking normal 90.78% 70.02% 79.06%

Table 4.14: Best result of five second window of hip-worn data using RNN

using three seconds of data compared to five. Thus, the results gets worse for five
second sliding window within this category.

Ten second sliding window:

A clear pattern in the results is that ten second sliding windows performs better
compared to the three- and five- second sliding windows. Testing the RNN with
the hip-worn dataset is no exception. When combining a learning rate of 0.01
with a RNN with four cells, with a size of 32, and using Adam as the optimizer,
an accuray of 89.31% with a F1 score of 89.36% is achieved.

Category Recall Precision F1 Score
0 Cycling 87.55% 89.67% 88.6%
1 Jogging 89.41% 96.54% 92.84%
2 Laying still 98.52% 82.88% 90.02%
3 Sitting 94.27% 87.44% 90.73%
4 Sitting in a vehicle 79.01% 98.36% 87.63%
5 Sitting relaxed 85.97% 96.12% 90.76%
6 Walking stairs 93.18% 94.41% 93.79%
7 Standing 85.09% 81.83% 83.43%
8 Walking fast 77.3% 98.55% 86.64%
9 Walking normal 94.69% 76.51% 84.63%

Table 4.15: Best result of ten second window of hip-worn data using RNN

The results shown in the confusion matrix, see figure 4.15, are impressively high.
Most categories are interpreted correctly more than 85% of the time, with the
exception of sitting in a vehicle and walking fast. Other incorrectly interpreted
sliding windows are confused with related categories, such as standing interpreted
as sitting, and sitting relaxed as laying still.
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Figure 4.15: Confusion matrix of the best result for ten second window of hip-worn data using RNN

4.3 Summary of Results, and Discussion

This section summarizes the results of the experiments, and discuss their perfor-
mances compared to the state-of-the-art algorithm.

To summarize the results of the DNN, the results are as expected. Recognizing
ADLs, few categories, are accomplished with good success. The DNN achieve
accuracies between 80-93% and F1 scores between 80-90% for basic movements,
see table 4.16.

Increasing the complexity of the dataset, by using specific movement cate-
gories, the accuracies significantly decreases. This is expected as there are more
categories to learn and recognize. The achieved accuracies for the specific move-
ment types, using DNN, are between 60-80%, while the F1 socres are between
55-65%, also shown in table 4.16. Considering each experiment trained the model
for 2000 training steps, then providing it with unseen data to classify, the DNN is
able to classify “unkown” data, answering research question 1b.
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As expected, different combinations of hyper-parameters perform better de-
pending on which categorization of the movement patterns were used. For the
broad categories, ADLs, low learning rates and the Adam optimizer achieves the
highest F1 scores; 78.5% for three second-, 82.4% for five second- and 89.4% for
ten second- sliding windows. Recognizing the specific movements, Adagrad with
a learning rate of 0.01 gets the highest results; 56.6%, for three seconds, 62.1%
for five seconds and 67.8% for ten seconds. The answer to research question 1a

according to our hyper-parameter search is Adam and a learning rate of 0.0001
for ADLs, and Adagrad and a learning rate of 0.01 for specific movements.

Dataset Sliding Window Accuracy F1 Score

Wrist Worn:
Basic Movement

3 Second 80.94% 78.46%
5 Second 86.01/% 82.37%
10 Second 92.4/% 89.43%

Wrist-Worn:
Specific Movement

3 Second 59.93% 56.59%
5 Second 67.83% 62.11%
10 Second 81.29% 66.75%

Table 4.16: Summary of the DNN results and Discussion

It is difficult to determine whether the proposed DNN model performs better than
the state-of-the-art algorithm. The state-of-the-art algorithm performs better at
some categories; Drinking from a glass, climbing stairs, pouring water into glass
and standing up from a chair, while the DNN model performs better at others;
Getting out of bed, sitting down on a chair, and walking. Additionally the DNN
model is trained to recognize all of the categories in the wrist-worn dataset, not
just a selection.

Analyzing Table 4.18, the proposed DNN model achieves relatively good re-
sults considering the complexity of the classification. Comparing it to the state-
of-the-art, which classifies seven categories, the DNN achieves comparable re-
sults using all 14 categories. Thus, we argue that the proposed DNN model at the
very least matches the performance of the state-of-the-art algorithm, answering
research question 1c.

Compared to the DNN, the accuracies are consistently higher for RNN. Achieving
accuracies between 85-99% and F1 scores between 83-98% for the basic move-

52



CHAPTER 4. EXPERIMENTS AND RESULTS

ment types. For the specific movement the accuracies are between 70-97%, while
the F1 scores are between 65-94%, shown in table 4.17.

The intuition at the start of this research was that the RNN model would per-
form better on time-series data, compared to the feed-forward DNN model. The
results shown in table 4.18 confirms this intuition, and also answers research ques-

tion 2, as the recognition of each category improves when using the RNN model.
The results of the RNN are either improvements or similar to the highest achieved
percentages of the state-of-the-art, even with all categories. Thus, it is fair to argue
that the proposed RNN model is better than both the state-of-the-art algorithm and
the DNN model.

Dataset Sliding Window Accuracy F1 Score

Wrist Worn:
Basic Movement

3 Second 84.89% 82.56%
5 Second 94.65/% 93.03%
10 Second 98.75/% 98.06%

Wrist-Worn:
Specific Movement

3 Second 70.39% 65.58%
5 Second 85.6% 81.67%
10 Second 96.52% 93.43%

Hip-Worn
3 Second 85.5% 84.04%
5 Second 88.48% 85.29%
10 Second 89.31% 89.36%

Table 4.17: Summary of the RNN results

In addition to the ADLs and specific movement types, for the wrist-worn dataset,
we tested the hip-worn dataset with the RNN. The results of this dataset are im-
pressive considering that it consists of movements of similar type, with different
intensities. Achieving accuracies between 85-90% and F1 scores of 84-90%.
Thus, showing that the RNN model is able to perform at a high level on new
datasets, answering research question 3.

Table 4.18 shows a comparison of the results of the two proposed deep learn-
ing models and the state-of-the-art algorithm. The comparable percentages are
the true positives of the state-of-the-art and the recall score of the deep learning
models.
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DNN results State-of-the-art RNN results

Category Recall Precision F1 score True positives True negatives Recall Precision F1 score

Brushing teeth 94.77% 98.82% 96.75% - - 99.32% 99.77% 99.54%

Climbing stairs 4.9% 35.0% 8.59% 20% 93.34% 92.31% 85.71% 88.89%

Comb hair 57.26% 84.81% 68.37% - - 98.72% 98.72% 98.72%

Descend stairs 2.17% 33.33% 4.08% - - 91.3% 84.0% 87.5%

Drinking 68.28% 60.77% 64.3% 100% 83.34% 95.16% 94.65% 94.91%

Eat w/ fork and knife 93.01% 82.06% 87.19% - - 98.94% 99.36% 99.15%

Eat w/spoon 95.79% 93.81% 94.79% - - 100% 95.0% 97.44%

Getting out of bed 85.66% 83.27% 84.44% 60% 66.67% 90.16% 94.02% 92.05%

Lying down on the bed 29.55% 61.9% 40.0% - - 68.18% 85.71% 75.95%

Pour water into glass 66.48% 85.21% 74.69% 100% 80% 97.25% 95.68% 96.46%

Sitting down on a chair 62.5% 60.61% 61.54% 0% 93.34% 100% 88.89% 94.12%

Standing up from a chair 52.78% 55.88% 54.29% 60% 83.34% 94.44% 85.0% 89.47%

Using the telephone 85.54% 58.44% 69.44% - - 93.98% 93.98% 93.98%

Walking 96.55% 83.3% 89.44% 40% 70% 97.49% 98.42% 97.95%

Table 4.18: Comparison of thesis results and state-of-the-art

54



Chapter 5

Conclusion and Future Work

This chapter concludes the research done throughout this thesis. Additionally, we
discuss a possible road map for future research based on this thesis.

5.1 Conclusion

Determining whether DL classification models are suitable for classifying move-
ment from raw data, we answer the subordinate research questions. Applying
different combinations of hyper-parameters; optimizers, and learning rates, we
discovered that depending on the categorizations of the movement patterns it dif-
fers. However, the proposed DNN model is able to recognize “unlabeled” data
with an acceptable overall recall percentage of 64%, using 14 categories, which
is a 10% increase compared to the state-of-the-art algorithm which has a 54%
overall recall score for seven categories.

The proposed RNN model is shown to perform significantly better on these
time-series data, reaching an overall recall score of 94%, which is a 40% increase
compared to the DNN. The results of the RNN model surpasses the percentages
for most categories compared to the state-of-the-art, even when classifying all cat-
egories in the dataset. Furthermore, the RNN model is able to recognize different
movement pattern from a new dataset, consisting of movement types of different
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intensities. Thus, the proposed RNN model is the best suited algorithm, of the
discussed algorithms in this thesis, for movement pattern recognition. With this
in mind, we believe that we meet the goals defined at the start of this thesis.

5.2 Future Work

The research throughout this thesis proposed two deep learning algorithms for
recognition of movement patterns, with relatively high accuracies. However, there
are room for improvements.

Possible research areas based on this thesis could be:

• Updating the structure of the deep learning models

• Extensive hyper-parameter search for the proposed deep learning models

Updating the structure:

As shown in this thesis, deep learning models are easily able to differentiate the
broad categories for movement pattern, while sometimes struggling with the spe-
cific categories. Thus, restructuring the proposed deep learning models to first
recognize these broad ADL categories, then classifying which specific movement
type within the ADL it is. For instance, the deep learning models first recognizes
a pattern as walking, then determines the intensity or direction; walking normal,
fast, upstairs or downstairs.

Extensive hyper-parameter search:

The hyper-parameter search of this thesis, consists of testing different optimizers
in combination with different learning rates. Howere, as mentioned in the results
the activation function we used is not suited for all optimizers, thus gaining poor
results. In future researches, testing different activation functions might improve
these results
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Appendix A

Explanation Tables

A.1 Hip-Worn Movement Types

Index Motion Primitives
0 Cycling
1 Jogging
2 Laying still
3 Sitting
4 Sitting in vehicle
5 Sitting relaxed
6 Walking stairs
7 Standing
8 Walking Fast
9 Walking Normal

Table A.1: Index to motion primitives explanation table for the hip-worn dataset
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A.2 Wrist-Worn ADL Categories

Index Activities-of-Daily-life
0 Personal hygiene
1 Mobility
2 Feeding
3 Communication
4 Functional transfers

Table A.2: Index to ADL explanation table for the wrist-worn dataset

A.3 Wrist-Worn Movement Types

Index Motion Primitives
0 Brush teeth
1 Climb stairs
2 Comb hair
3 Descend stairs
4 Drink from glass
5 Eat with knife and fork
6 Eat with spoon
7 Get out of bed
8 Lie down in bed
9 Pour water into glass
10 Sit down on chair
11 Stand up from chair
12 Use telephone
13 Walk

Table A.3: Index to motion primitives explanation table for the wrist-worn dataset
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Overall Deep Neural Network
Results

B.1 Wrist-Worn Dataset - Basic Movements

Learning Rate Sliding window Recall Precision F1 Score

0.0001
10 second 85.93% 85.53% 85.73%
3 second 67.4% 71.27% 69.28%
5 second 73.83% 76.27% 75.03%

0.001
10 second 88.48% 89.07% 88.77%
3 second 69.95% 76.65% 73.15%
5 second 80.47% 82.13% 81.29%

0.01
10 second 83.73% 88.13% 85.87%
3 second 72.68% 79.98% 76.16%
5 second 81.01% 82.4% 81.7%

0.1
10 second 20.0% 7.23% 10.62%
3 second 72.26% 77.17% 74.63%
5 second 70.41% 76.17% 73.18%

Table B.1: Results for basic movement using Adagrad with DNN
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Learning Rate Sliding window Recall Precision F1 Score

0.0001
10 second 90.99% 87.93% 89.43%
3 second 76.79% 80.21% 78.46%
5 second 80.97% 83.82% 82.37%

0.001
10 second 84.29% 87.78% 86.0%
3 second 71.38% 77.16% 74.16%
5 second 71.39% 81.32% 76.03%

0.01
10 second 81.99% 81.54% 81.76%
3 second 63.93% 67.93% 65.87%
5 second 72.89% 70.16% 71.5%

0.1
10 second 20.0% 7.23% 10.62%
3 second 20.0% 6.77% 10.12%
5 second 20.0% 6.97% 10.34%

Table B.2: Results for basic movement using Adam with DNN

Learning Rate Sliding window Recall Precision F1 Score

0.0001
10 second 20.0% 3.99% 6.65%
3 second 20.0% 2.57% 4.55%
5 second 20.0% 3.09% 5.35%

0.001
10 second 20.0% 3.99% 6.65%
3 second 20.0% 2.57% 4.55%
5 second 20.0% 3.09% 5.35%

0.01
10 second 20.0% 3.99% 6.65%
3 second 20.0% 2.57% 4.55%
5 second 20.0% 3.09% 5.35%

0.1
10 second 20.0% 3.99% 6.65%
3 second 20.0% 2.57% 4.55%
5 second 20.0% 3.09% 5.35%

Table B.3: Results for basic movement using SGD with DNN

61



APPENDIX B. OVERALL DEEP NEURAL NETWORK RESULTS

B.2 Wrist-Worn Dataset - Specific Movement

Learning Rate Sliding window Recall Precision F1 Score

0.0001
10 second 54.24% 54.43% 54.33%
3 second 35.24% 37.62% 36.39%
5 second 47.55% 48.34% 47.94%

0.001
10 second 62.88% 64.96% 63.9%
3 second 43.7% 48.49% 45.97%
5 second 57.61% 62.8% 60.09%

0.01
10 second 63.95% 69.8% 66.75%
3 second 52.95% 60.76% 56.59%
5 second 58.71% 65.92% 62.11%

0.1
10 second 7.14% 2.08% 3.22%
3 second 23.62% 17.24% 19.93%
5 second 7.14% 1.68% 2.72%

Table B.4: Results for specific movement using Adagrad with DNN

Learning Rate Sliding window Recall Precision F1 Score

0.0001
10 second 64.49% 65.94% 65.21%
3 second 48.8% 53.78% 51.17%
5 second 58.64% 65.66% 61.95%

0.001
10 second 56.88% 64.13% 60.29%
3 second 53.29% 54.66% 53.97%
5 second 57.96% 62.44% 60.12%

0.01
10 second 34.35% 28.11% 30.92%
3 second 38.15% 56.95% 45.69%
5 second 37.66% 37.58% 37.62%

0.1
10 second 7.14% 2.08% 3.22%
3 second 7.14% 1.54% 2.53%
5 second 7.14% 1.68% 2.72%

Table B.5: Results for specific movement using Adam with DNN
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Learning Rate Sliding window Recall Precision F1 Score

0.0001
10 second 7.14% 0.96% 1.69%
3 second 7.14% 0.53% 0.99%
5 second 7.14% 0.67% 1.23%

0.001
10 second 7.14% 0.96% 1.69%
3 second 7.14% 0.53% 0.99%
5 second 7.14% 0.67% 1.23%

0.01
10 second 7.14% 0.96% 1.69%
3 second 7.14% 0.53% 0.99%
5 second 7.14% 0.67% 1.23%

0.1
10 second 7.14% 0.96% 1.69%
3 second 7.14% 0.53% 0.99%
5 second 7.14% 0.67% 1.23%

Table B.6: Results for specific movement using SGD with DNN
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Appendix C

Overall Reccurent Neural Network
Results

C.1 Wrist-Worn Dataset - Basic Movements

C.1.1 Results for three second sliding window

Learning Rate Cells Cell Size Recall Precision F1 Score

0.0001
4

16 35.95% 26.16% 30.28%
32 40.58% 43.15% 41.83%

8
16 32.83% 17.73% 23.03%
32 50.85% 41.87% 45.93%

0.001
4

16 67.28% 74.87% 70.87%
32 73.57% 82.89% 77.95%

8
16 57.75% 55.39% 56.55%
32 74.3% 80.44% 77.25%

0.01
4

16 78.36% 80.3% 79.32%
32 79.29% 83.57% 81.37%

8
16 78.66% 80.78% 79.71%
32 79.75% 82.59% 81.15%

0.1
4

16 78.19% 81.85% 79.98%
32 77.0% 83.15% 79.96%

8
16 74.81% 79.55% 77.11%
32 77.54% 81.69% 79.56%

Table C.1: Results for three second window of basic movement using Adagrad with RNN
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Learning Rate Cells Cell Size Recall Precision F1 Score

0.0001
4

16 71.27% 75.93% 73.53%
32 80.81% 84.14% 82.44%

8
16 71.49% 76.9% 74.1%
32 76.23% 77.7% 76.96%

0.001
4

16 79.44% 83.86% 81.59%
32 78.6% 82.81% 80.65%

8 16 75.82% 81.68% 78.64%
32 80.42% 84.82% 82.56%

0.01
4

16 48.58% 52.19% 50.32%
32 76.4% 79.36% 77.85%

8
16 20.0% 2.57% 4.55%
32 20.0% 6.77% 10.12%

0.1
4

16 20.0% 6.77% 10.12%
32 20.0% 6.77% 10.12%

8
16 20.0% 6.77% 10.12%
32 20.0% 2.57% 4.55%

Table C.2: Results for three second window of basic movement using Adam with RNN

Learning Rate Cells Cell Size Recall Precision F1 Score

0.0001
4

16 77.38% 83.52% 80.33%
32 77.59% 81.31% 79.41%

8
16 75.82% 80.91% 78.28%
32 77.27% 79.26% 78.25%

0.001
4

16 20.0% 2.57% 4.55%
32 20.0% 6.77% 10.12%

8
16 20.0% 2.57% 4.55%
32 78.45% 82.46% 80.41%

0.01
4

16 20.0% 2.57% 4.55%
32 20.0% 2.57% 4.55%

8
16 20.0% 2.57% 4.55%
32 20.0% 2.57% 4.55%

0.1
4

16 20.0% 2.57% 4.55%
32 20.0% 2.57% 4.55%

8
16 20.0% 2.57% 4.55%
32 20.0% 2.57% 4.55%

Table C.3: Results for three second window of basic movement using SGD with RNN
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C.1.2 Results for five second sliding window

Learning Rate Cells Cell Size Recall Precision F1 Score

0.0001
4

16 26.55% 19.72% 22.63%
32 42.27% 46.94% 44.48%

8
16 20.0% 6.97% 10.34%
32 57.88% 45.53% 50.97%

0.001
4

16 75.72% 81.82% 78.65%
32 82.33% 85.29% 83.78%

8
16 78.55% 84.15% 81.25%
32 83.32% 88.27% 85.72%

0.01
4 16 90.78% 91.1% 90.94%

32 92.63% 93.44% 93.03%

8
16 85.16% 89.57% 87.31%
32 91.53% 91.89% 91.71%

0.1
4

16 81.33% 80.02% 80.67%
32 90.87% 92.24% 91.55%

8
16 85.58% 84.08% 84.82%
32 20.0% 3.09% 5.35%

Table C.4: Results for five second window of basic movement using Adagrad with RNN

Learning Rate Cells Cell Size Recall Precision F1 Score

0.0001
4

16 81.71% 86.92% 84.23%
32 89.55% 90.33% 89.94%

8
16 78.39% 78.56% 78.47%
32 85.45% 89.53% 87.44%

0.001
4

16 91.14% 91.37% 91.25%
32 92.1% 93.62% 92.85%

8
16 81.18% 86.5% 83.76%
32 90.85% 90.33% 90.59%

0.01
4

16 86.94% 92.54% 89.65%
32 20.0% 3.09% 5.35%

8
16 20.0% 6.97% 10.34%
32 85.23% 85.72% 85.47%

0.1
4

16 20.0% 6.97% 10.34%
32 20.0% 6.97% 10.34%

8
16 20.0% 6.97% 10.34%
32 20.0% 3.09% 5.35%

Table C.5: Results for five second window of basic movement using Adam with RNN
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Learning Rate Cells Cell Size Recall Precision F1 Score

0.0001
4

16 82.89% 84.32% 83.6%
32 91.35% 90.34% 90.84%

8
16 84.75% 86.32% 85.53%
32 87.2% 86.44% 86.82%

0.001
4

16 20.0% 3.09% 5.35%
32 31.09% 38.33% 34.33%

8
16 20.0% 3.09% 5.35%
32 88.37% 88.59% 88.48%

0.01
4

16 20.0% 3.09% 5.35%
32 20.0% 3.09% 5.35%

8
16 20.0% 3.09% 5.35%
32 20.0% 3.09% 5.35%

0.1
4

16 20.0% 3.09% 5.35%
32 20.0% 3.09% 5.35%

8
16 20.0% 3.09% 5.35%
32 20.0% 3.09% 5.35%

Table C.6: Results for five second window of basic movement using SGD with RNN

C.1.3 Results for ten second sliding window

Learning Rate Cells Cell Size Recall Precision F1 Score

0.0001
4

16 24.86% 18.64% 21.31%
32 53.74% 49.72% 51.65%

8
16 29.5% 22.65% 25.63%
32 51.88% 44.34% 47.81%

0.001
4

16 77.24% 87.36% 81.99%
32 89.41% 89.99% 89.7%

8
16 71.57% 67.93% 69.7%
32 92.87% 91.38% 92.12%

0.01
4

16 95.84% 95.19% 95.51%
32 96.99% 97.42% 97.2%

8
16 94.73% 94.17% 94.45%
32 94.17% 96.32% 95.23%

0.1
4

16 95.9% 97.09% 96.49%
32 96.94% 97.07% 97.0%

8
16 20.0% 3.99% 6.65%
32 95.44% 93.74% 94.58%

Table C.7: Results for ten second window of basic movement using Adagrad with RNN
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Learning Rate Cells Cell Size Recall Precision F1 Score

0.0001
4

16 91.49% 91.37% 91.43%
32 94.98% 95.94% 95.46%

8
16 87.86% 91.69% 89.73%
32 95.79% 96.01% 95.9%

0.001
4 16 95.99% 96.43% 96.21%

32 97.35% 98.78% 98.06%

8
16 94.93% 96.14% 95.53%
32 96.98% 96.92% 96.95%

0.01
4

16 94.91% 94.64% 94.77%
32 20.0% 3.99% 6.65%

8
16 20.0% 3.99% 6.65%
32 54.97% 54.65% 54.81%

0.1
4

16 20.0% 7.23% 10.62%
32 20.0% 3.99% 6.65%

8
16 20.0% 3.99% 6.65%
32 20.0% 3.99% 6.65%

Table C.8: Results for ten second window of basic movement using Adam with RNN

Learning Rate Cells Cell Size Recall Precision F1 Score

0.0001
4

16 90.45% 90.59% 90.52%
32 96.18% 95.51% 95.84%

8
16 91.61% 91.04% 91.32%
32 95.13% 92.68% 93.89%

0.001
4

16 20.0% 3.99% 6.65%
32 20.0% 7.23% 10.62%

8
16 20.0% 3.99% 6.65%
32 82.7% 89.51% 85.97%

0.01
4

16 20.0% 3.99% 6.65%
32 20.0% 3.99% 6.65%

8
16 20.0% 3.99% 6.65%
32 20.0% 3.99% 6.65%

0.1
4

16 20.0% 3.99% 6.65%
32 20.0% 3.99% 6.65%

8
16 20.0% 3.99% 6.65%
32 20.0% 3.99% 6.65%

Table C.9: Results for ten second window of basic movement using SGD with RNN
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C.2 Wrist-Worn Dataset - Specific Movement

C.2.1 Results for three second sliding window

Learning Rate Cells Cell Size Recall Precision F1 Score

0.0001
4

16 9.43% 3.7% 5.31%
32 9.88% 6.18% 7.6%

8
16 7.14% 0.68% 1.24%
32 6.83% 0.7% 1.27%

0.001
4

16 28.91% 28.54% 28.72%
32 47.23% 53.63% 50.23%

8
16 23.42% 21.67% 22.51%
32 45.08% 49.46% 47.17%

0.01
4

16 52.24% 57.33% 54.67%
32 62.61% 63.28% 62.94%

8
16 50.05% 55.6% 52.68%
32 58.78% 58.95% 58.86%

0.1
4

16 61.19% 58.5% 59.81%
32 60.98% 62.09% 61.53%

8
16 7.14% 1.54% 2.53%
32 61.17% 62.91% 62.03%

Table C.10: Results for three second window of specific movement using Adagrad with RNN

Learning Rate Cells Cell Size Recall Precision F1 Score

0.0001
4

16 43.97% 49.08% 46.38%
32 54.36% 62.15% 57.99%

8
16 39.68% 44.78% 42.08%
32 55.95% 59.01% 57.44%

0.001
4 16 47.74% 47.75% 47.74%

32 65.58% 65.59% 65.58%

8
16 58.5% 61.17% 59.81%
32 61.93% 64.37% 63.13%

0.01
4

16 47.5% 53.0% 50.1%
32 7.28% 8.69% 7.92%

8
16 14.2% 8.39% 10.55%
32 59.32% 61.52% 60.4%

0.1
4

16 7.14% 1.54% 2.53%
32 7.14% 1.54% 2.53%

8
16 7.14% 1.54% 2.53%
32 7.14% 1.54% 2.53%

Table C.11: Results for three second window of specific movement using Adam with RNN
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Learning Rate Cells Cell Size Recall Precision F1 Score

0.0001
4

16 49.04% 53.4% 51.13%
32 53.83% 63.52% 58.27%

8
16 38.96% 42.81% 40.79%
32 52.87% 57.07% 54.89%

0.001
4

16 33.36% 41.18% 36.86%
32 7.14% 0.53% 0.99%

8
16 37.0% 40.35% 38.6%
32 45.43% 53.15% 48.99%

0.01
4

16 7.14% 0.53% 0.99%
32 7.14% 0.53% 0.99%

8
16 7.14% 1.54% 2.53%
32 7.14% 0.53% 0.99%

0.1
4

16 7.14% 0.53% 0.99%
32 7.14% 0.53% 0.99%

8
16 7.14% 0.53% 0.99%
32 7.14% 0.53% 0.99%

Table C.12: Results for three second window of specific movement using SGD with RNN

C.2.2 Results for five second sliding window

Learning Rate Cells Cell Size Recall Precision F1 Score

0.0001
4

16 7.12% 12.04% 8.95%
32 10.96% 7.16% 8.66%

8
16 13.89% 8.5% 10.55%
32 13.3% 9.26% 10.92%

0.001
4

16 28.2% 25.28% 26.66%
32 58.61% 61.82% 60.17%

8
16 31.16% 32.31% 31.72%
32 65.09% 66.78% 65.92%

0.01
4

16 67.65% 68.44% 68.04%
32 80.04% 80.81% 80.42%

8
16 53.36% 61.4% 57.1%
32 79.23% 80.0% 79.61%

0.1
4

16 74.8% 74.09% 74.44%
32 77.61% 78.49% 78.05%

8
16 7.14% 1.68% 2.72%
32 70.07% 72.84% 71.43%

Table C.13: Results for five second window of specific movement using Adagrad with RNN
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Learning Rate Cells Cell Size Recall Precision F1 Score

0.0001
4

16 47.25% 47.31% 47.28%
32 74.52% 73.55% 74.03%

8
16 45.98% 45.44% 45.71%
32 66.9% 68.3% 67.59%

0.001
4

16 74.21% 73.18% 73.69%
32 79.51% 80.75% 80.13%

8
16 77.18% 76.98% 77.08%
32 80.47% 79.79% 80.13%

0.01
4 16 66.1% 65.71% 65.9%

32 80.68% 82.69% 81.67%

8
16 7.14% 0.67% 1.23%
32 7.14% 1.68% 2.72%

0.1
4

16 7.14% 0.67% 1.23%
32 7.14% 1.68% 2.72%

8
16 7.14% 1.68% 2.72%
32 7.14% 1.68% 2.72%

Table C.14: Results for five second window of specific movement using Adam with RNN

Learning Rate Cells Cell Size Recall Precision F1 Score

0.0001
4

16 68.27% 70.48% 69.36%
32 75.2% 78.34% 76.74%

8
16 43.22% 47.84% 45.41%
32 69.16% 72.96% 71.01%

0.001
4

16 53.98% 63.3% 58.27%
32 7.14% 0.67% 1.23%

8
16 61.77% 65.64% 63.65%
32 7.14% 0.67% 1.23%

0.01
4

16 7.14% 0.67% 1.23%
32 7.14% 0.67% 1.23%

8
16 7.14% 0.67% 1.23%
32 7.14% 0.67% 1.23%

0.1
4

16 7.14% 0.67% 1.23%
32 7.14% 0.67% 1.23%

8
16 7.14% 0.67% 1.23%
32 7.14% 0.67% 1.23%

Table C.15: Results for five second window of specific movement using SGD with RNN
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C.2.3 Results for ten second sliding window

Learning Rate Cells Cell Size Recall Precision F1 Score

0.0001
4

16 6.82% 1.46% 2.41%
32 13.69% 8.89% 10.78%

8
16 13.41% 6.12% 8.4%
32 19.89% 12.61% 15.43%

0.001
4

16 39.34% 37.44% 38.37%
32 73.71% 81.43% 77.38%

8
16 41.53% 39.42% 40.45%
32 68.0% 69.1% 68.55%

0.01
4

16 74.44% 77.76% 76.06%
32 85.92% 85.59% 85.75%

8
16 74.44% 79.21% 76.75%
32 82.14% 84.09% 83.1%

0.1
4

16 7.14% 0.96% 1.69%
32 43.19% 44.36% 43.77%

8
16 7.14% 2.08% 3.22%
32 58.33% 65.71% 61.8%

Table C.16: Results for ten second window of specific movement using Adagrad with RNN

Learning Rate Cells Cell Size Recall Precision F1 Score

0.0001
4

16 48.69% 49.71% 49.19%
32 75.95% 77.94% 76.93%

8
16 57.59% 62.79% 60.08%
32 70.21% 74.76% 72.41%

0.001
4

16 81.07% 81.8% 81.43%
32 91.46% 92.4% 91.93%

8 16 89.99% 90.27% 90.13%
32 94.09% 92.78% 93.43%

0.01
4

16 42.9% 47.2% 44.95%
32 7.14% 2.08% 3.22%

8
16 77.81% 83.59% 80.6%
32 89.94% 89.62% 89.78%

0.1
4

16 7.14% 2.08% 3.22%
32 7.14% 0.96% 1.69%

8
16 7.14% 2.08% 3.22%
32 7.14% 0.96% 1.69%

Table C.17: Results for ten second window of specific movement using Adam with RNN
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Learning Rate Cells Cell Size Recall Precision F1 Score

0.0001
4

16 72.67% 76.99% 74.77%
32 85.58% 88.94% 87.23%

8
16 57.57% 59.39% 58.47%
32 82.52% 85.69% 84.08%

0.001
4

16 46.52% 49.96% 48.18%
32 7.14% 0.96% 1.69%

8
16 7.14% 0.96% 1.69%
32 7.14% 0.96% 1.69%

0.01
4

16 7.14% 0.96% 1.69%
32 7.14% 0.96% 1.69%

8
16 7.14% 0.96% 1.69%
32 7.14% 0.96% 1.69%

0.1
4

16 7.14% 0.96% 1.69%
32 7.14% 0.96% 1.69%

8
16 7.14% 0.96% 1.69%
32 7.14% 0.96% 1.69%

Table C.18: Results for ten second window of specific movement using SGD with RNN
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C.3 Hip-Worn Dataset

C.3.1 Results for three second sliding window

Learning Rate Cells Cell Size Recall Precision F1 Score

0.0001
4

16 16.67% 11.56% 13.65%
32 14.02% 6.89% 9.24%

8
16 8.48% 3.9% 5.34%
32 11.77% 3.69% 5.62%

0.001
4

16 17.12% 8.09% 10.99%
32 45.85% 53.05% 49.19%

8
16 32.18% 28.22% 30.07%
32 43.77% 39.01% 41.25%

0.01
4

16 58.35% 65.49% 61.71%
32 72.89% 77.26% 75.01%

8
16 58.91% 57.49% 58.19%
32 79.62% 82.33% 80.95%

0.1
4 16 58.51% 75.14% 65.79%

32 82.56% 85.57% 84.04%

8
16 61.89% 71.11% 66.18%
32 62.84% 67.27% 64.98%

Table C.19: Results for three second window of hip-worn data using Adagrad with RNN

Learning Rate Cells Cell Size Recall Precision F1 Score

0.0001
4

16 39.32% 34.38% 36.68%
32 47.33% 48.38% 47.85%

8
16 48.92% 52.81% 50.79%
32 51.51% 51.99% 51.75%

0.001
4

16 69.07% 78.73% 73.58%
32 76.44% 83.44% 79.79%

8
16 73.89% 76.15% 75.0%
32 79.16% 84.42% 81.71%

0.01
4

16 77.39% 77.09% 77.24%
32 17.79% 35.66% 23.74%

8
16 64.62% 66.84% 65.71%
32 80.61% 83.65% 82.1%

0.1
4

16 10.0% 0.17% 0.33%
32 10.0% 0.17% 0.33%

8
16 10.0% 2.15% 3.54%
32 10.0% 0.17% 0.33%

Table C.20: Results for three second window of hip-worn data using Adam with RNN
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C.3.2 Results for five second sliding window

Learning Rate Cells Cell Size Recall Precision F1 Score

0.0001
4

16 6.13% 2.84% 3.88%
32 10.0% 2.14% 3.53%

8
16 10.98% 7.78% 9.11%
32 10.0% 2.14% 3.53%

0.001
4

16 24.53% 21.16% 22.72%
32 40.01% 32.31% 35.75%

8
16 36.01% 30.26% 32.89%
32 46.64% 41.13% 43.71%

0.01
4

16 56.68% 56.38% 56.53%
32 74.1% 78.32% 76.15%

8
16 69.17% 77.22% 72.97%
32 74.11% 74.86% 74.48%

0.1
4 16 77.07% 86.1% 81.34%

32 84.05% 86.57% 85.29%

8
16 62.75% 64.09% 63.41%
32 65.15% 69.65% 67.32%

Table C.21: Results for five second window of hip-worn data using Adagrad with RNN

Learning Rate Cells Cell Size Recall Precision F1 Score

0.0001
4

16 28.91% 27.88% 28.39%
32 51.97% 50.6% 51.28%

8
16 52.17% 51.05% 51.6%
32 63.03% 65.73% 64.35%

0.001
4

16 62.83% 67.68% 65.16%
32 74.19% 77.96% 76.03%

8
16 67.47% 74.88% 70.98%
32 77.22% 81.88% 79.48%

0.01
4

16 36.11% 48.36% 41.35%
32 21.65% 31.26% 25.58%

8
16 17.29% 12.06% 14.21%
32 10.0% 0.18% 0.35%

0.1
4

16 15.7% 7.12% 9.8%
32 10.0% 0.18% 0.35%

8
16 10.0% 0.18% 0.35%
32 10.0% 0.18% 0.35%

Table C.22: Results for five second window of hip-worn data using Adam with RNN

75



APPENDIX C. OVERALL RECCURENT NEURAL NETWORK RESULTS

C.3.3 Results for ten second sliding window

Learning Rate Cells Cell Size Recall Precision F1 Score

0.0001
4

16 8.17% 2.05% 3.28%
32 11.44% 5.81% 7.71%

8
16 13.64% 5.16% 7.49%
32 10.0% 3.46% 5.14%

0.001
4

16 22.92% 16.4% 19.12%
32 41.69% 37.18% 39.31%

8
16 17.66% 12.18% 14.42%
32 44.1% 43.89% 43.99%

0.01
4

16 63.56% 66.86% 65.17%
32 84.28% 85.29% 84.78%

8
16 59.36% 60.89% 60.12%
32 72.61% 78.8% 75.58%

0.1
4

16 86.49% 89.18% 87.81%
32 10.0% 0.17% 0.33%

8
16 10.0% 0.17% 0.33%
32 68.35% 76.79% 72.32%

Table C.23: Results for ten second window of hip-worn data using Adagrad with RNN

Learning Rate Cells Cell Size Recall Precision F1 Score

0.0001
4

16 41.61% 41.08% 41.34%
32 58.04% 57.66% 57.85%

8
16 44.43% 40.81% 42.54%
32 58.12% 64.15% 60.99%

0.001
4

16 73.08% 80.97% 76.82%
32 79.59% 83.51% 81.5%

8
16 67.51% 76.0% 71.5%
32 84.72% 84.99% 84.85%

0.01
4 16 21.54% 26.25% 23.66%

32 88.5% 90.23% 89.36%

8
16 75.98% 78.61% 77.27%
32 10.0% 0.17% 0.33%

0.1
4

16 10.0% 0.17% 0.33%
32 10.0% 0.17% 0.33%

8
16 10.0% 0.17% 0.33%
32 10.0% 0.17% 0.33%

Table C.24: Results for ten second window of hip-worn data using Adam with RNN
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