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Abstract 

The transition from non-renewable to renewable energy production requires a detailed 

optimization and quantification of the generated power. The loss of power due to wake effect 

is a common problem for wind farms. The wake effect is the reduction of velocity and increase 

of turbulence in the wind flow downstream from a wind turbine. The wake effect is a complex 

multivariable phenomenon and its understanding is capital for appropriate estimations of the 

power of a wind field and its turbines. 

This thesis builds an artificial neural network based on machine learning to model the 

performance of a single wind farm owned by WEICAN (Canada) taking into account the wake 

losses. Four different models have been considered. The first is not accounting for the wake 

losses; the second considers only the wake of the closest turbines; the third takes into account 

the wake in all the turbines; and the fourth provides all the data to the program in order to see 

what it can do on its own. The performance is evaluated using the mean absolute error, the root 

mean squared error and the normalized root mean square error. 

The best results are obtained using the third model, hence showing that the wake loss is 

significant and must be considered in the model. It is proved that with the appropriate input 

variables, an artificial neural network can predict the power of a wind farm accounting for the 

wake losses. The best performance of the artificial neural network is obtained for wind speeds 

up to 14 m/s. 
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1. Introduction 

1.1. World and energy 

The access to energy is a primary need for current and near-future societies. The Total Primary 

Energy Supply (TPES), which represents the amount of energy produced in the world, is expected 

to grow around 30% until 2040. This increase will be caused by global population growth and 

the development of less developed countries in Asia – specially in India and the Middle East – 

and Africa (International Energy Agency (IEA), 2017). At the same time, the use of oil – which 

currently accounts for 31.9 % of the total production – will decrease due to reduced availability, 

rising prices and the implementation of more strict environmental policies. While the TPES is 

going to increase basically due to population growth and development of non-industrialized 

nations, the implementation of renewable energies has to be supported and developed by all 

governments, companies, universities and population. Hence, modern societies face an 

important challenge in the transition from non-renewable to renewable energies.  

From the 1990’s, the growth of renewable energies has increased an average of 2%, higher than 

the 1.7% growth of the TPES. However, the largest share of TPES produced from non-renewable 

energy sources is still 86.3% (International Energy Agency (IEA), 2018) Figure 1.  

 

Figure 1. Fuel Shares in World Total Primary Energy Supply, 2016  (International Energy Agency (IEA), 2018) 

According to the New Policies scenario, the generation of electricity using renewable sources is 

going to rise from 24% in 2016 to 40% in 2040 (International Energy Agency (IEA), 2017) as 

summarized in Figure 2Figure 1. Hydropower – currently the main renewable energy source – 

will continue to dominate but its share among the renewables will decrease from the current 

67.6% to 39.48%. Wind and solar photovoltaic generation are going to increase substantially. 

Electricity generation from wind will increase from 981 TWh in 2016 to 4270 TWh in 2040. This 

means it is going to represent a share of 27.22% among the renewables, increasing around 18% 

annually (International Energy Agency (IEA), 2017). This information is represented in Figure 2. 
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Figure 2. 2016 vs 2040 electricity situation. Data from (International Energy Agency (IEA), 2017) 

Air pollution has been a concern in the European Union for decades due to its effects on human 

health. For instance, the concentration of Particulate Matter smaller than 2.5 µm (PM2.5) led to 

422.000 premature deaths in 41 European Countries in 2015 (European Environment Agency, 

2018a). According to the World Health Organization (WHO), 96% of European citizens living in 

urban areas are exposed to health damaging air pollution levels (European Environment Agency, 

2018b). The contributions to air pollution include energy generation, climate control, industry 

and agriculture. However, the most significant for human health is transport, due to the local 

contamination caused by cars in large cities (Niemenmaa et al., 2018). The possible solutions 

include switching from private cars to public transportation and replacing combustion with 

electric vehicles. These changes will only be effective if the electricity used to power the public 

transport and the electric cars is generated through renewable energies. 

In summary, to preserve a healthy environment and the Earth as an inhabitable planet in the 

long term, human societies have to invest in environmentally respectful energy generation 
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procedures. The engineering field has to be upfront in this movement, providing the industry 

with new knowledge to be implemented in the future in the market. 

1.2. Wind energy perspectives 

Electricity generated through wind energy has been rising during the last decades, and it is 

expected to continue doing it at least until 2040. Figure 3 presents the installed wind energy 

capacity from 2001 until 2017, which has been growing during the last 10 years (GWEC, 2018) 

in spite of a certain stagnation between 2009 and 2013 attributable to the global economic crisis. 

The improvements in wind energy generation during the last decade made it evolve from a 

subsidized to a fully competitive energy source, able to fight in the market with the rest energy 

sources in price (GWEC, 2018). Wind energy is now able to evolve not only due to environmental 

motives, but also due to economical ones. Optimizing the production and power of wind-

generated energy requires a deep understanding of their oscillations. Hence, it is essential to 

understand and create models to control and predict the energy that we are going to receive 

from wind.  

 

Figure 3. Global anual installed wind capacity 2001-2017. From (GWEC, 2018)  

1.3. Introduction to the wake effect 

The wake effect is the loss of velocity and appearance of turbulence in the wind flow 

downstream of the wind turbine due to the absorption of energy in the turbine. Additionally, 

the wake effect can generate unbalanced mechanical loads to the wind turbines, leading to 

fatigue in some components (Thomsen et al., 2007), (Frandsen, 2007). This disturbance makes 

the wind velocity lower and has to be taken into account when designing wind farms. However, 

it is difficult to know the power of a wind farm with important wake, due to the complexity of 

the calculations needed to know the wind velocity and profile downstream, which affects the 

wind that the turbines receive downstream. 

The first approach to the wake effect included using physical models. A full chapter of this thesis 

is devoted to explaining the different models and in which conditions they may be applied. 

However, although the physical models are found to give good results in specific cases, they 

provide neither the desired accuracy nor the flexibility required to face real-life problems. The 

use of physical models evolved into Computational Fluid Dynamics (CFD) programs. Some of 
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these programs are driven by complex equations that numerically solve the Navier-Stokes 

equations for the full wind flow in the wind farm. Theoretically, they provide better accuracy 

than the physical models due to their breadth and larger calculation range. In the other hand, 

they are found to use a lot of resources, requiring really expensive computers, energy and time 

to calculate. Another approach to the wake effect is through machine learning (Brusca et al., 

2017; Japar et al., 2014; Kusiak et al., 2009; Rǎzuşi and Eremia, 2011). Machine learning is a 

computer science that uses statistical techniques in order to give a computer the ability to learn 

and improve its performance on a specific task. These methods can deliver quite good results 

using significantly less resources than CFD. 

The objective of this study is to define a low resource model that takes into account the wake 

effect to estimate the power generated in a wind farm. 
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2. Theoretical Background 

This chapter summarizes the main theoretical topics treated on this thesis, focusing on the wake 

models. 

2.1. Wake effect 

Wind turbine wake is a volume of fluid downstream a turbine whose properties have been 

modified by the interaction between the wind and the turbine blades. The blades are designed 

as an airfoil, and when the wind moves through them they undergo lift and drag forces. These 

forces are converted to a rotational movement, which is driven through a different set of 

elements to finish in a motor that transforms this movement into electricity. In consequence, 

the wind leaving the turbine has lower energy than the wind upstream; its velocity will be 

reduced and it will have higher turbulence. As the distance from the disturbance increases, the 

flow spreads and it begins to return to free stream conditions.  

The optimization of wind farming requires maximizing the generated energy using the minimum 

number of turbines. The location of wind farms is limited by geographical restrictions and policy 

issues, resulting in turbines being generally close to each other. In conditions of wind directions 

where the wake produced by one turbine affects another one, because it is located downstream 

of the first one, it is said that the second wind turbine is in the shadow of the first one. 

Wake losses are a sophisticated, difficult to predict phenomenon because they are non-linear 

events of a complex nature. For instance, the wind hits the blades of a turbine making them 

rotate. The speed of the wind depends on uncountable variables, such as the weather or the 

aerodynamics of the place. The energy that the turbine is able to extracts from the wind also 

depends on many factors, such as wind speed, wind shear, turbulence, aerodynamic properties 

of the airfoils or pitch angle of the blades. Then, the rotation of the wind turbine’s blades is 

transited to a gearbox, which drives this energy to a generator. This generator transforms the 

mechanical energy to electrical energy in another non-linear event. In summary, the wake effect 

is the result of a wide series of events, and each of these events is difficult to calculate, making 

the wake effect a really complex phenomenon. 

Figure 4 shows a graphic representation of the wake effect, where some of the wind turbines 

are in the shadow zone. 
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Figure 4. Wind turbines in the wake shadow zone. From (González-Longatt et al., 2012) 

The wake effect can severely affect the total power output in certain turbine distributions when 

the wind is in a determinate direction. In a typical wind farm, the wake effect can cause 

differences around 10-20% between the power of the undisturbed turbines and the disturbed 

ones (Sørensen et al., 2006), (Barthelmie et al., 2009). In conditions where the wind is parallel 

to a column of wind turbines the power loss may even around 70% (Archer et al., 2018).  

Another problem related to wind wake is the appearance of turbulences. The wake effect 

increases the turbulence in comparison with the non-disrupted layer. This effect creates 

mechanical loads affecting the turbine structure and the blades. This loads can diminish the 

length of the life cycle of the turbine (Thomsen et al., 2007), (Frandsen, 2007). Figure 5 shows a 

graphic representation of the turbulence in front of a wind turbine, which generates deflections 

and material stress. 

 

Figure 5. Wind loading of a wind turbine structure. From (Frandsen, 2007)  
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2.2. Physical models 

The physical wake loss models are divided into two different groups on the approach to the 

phenomenon. On one hand, the analytical or kinematic models are characterized by looking for 

an analytical solution to the wind speed deficit in the turbines downstream. They are based in 

the conservation of mass and empirical equations of wake decay. On the other hand, the CFD 

models are based in the applications of Navier-Stokes equations to define the entire flow field 

in the wind farm (Archer et al., 2018). 

The first physical model used to describe wind turbines wake, known as kinematic model, was 

proposed by Lissaman (S. Lissaman, 1979). It uses the momentum equation to find the velocity 

deficit downstream. The model itself does not take into account the change in turbulence. 

Hence, it is not useful to calculate loads or the turbulence intensity if it is not combined with 

another model. 

2.2.1. Jensen’s model 

The most used wake model is likely the Jensen’s model (Jensen, 1983). It was later improved by 

Katic (I.KATIC et al., 1987), and thereafter known as Park model. It is quite simple, and although 

it is one of the oldest models it provides good results. The model neglects the disturbed field 

near the turbine, making possible to treat the fluid as turbulent wake. Then, it proposes to study 

the wake as linearly expanding, where the velocity deficit only depends on the downwind 

distance “d” shown in Figure 6. 

 

Figure 6. Scheme of Jensen’s wake model. From: (Bonanni et al., 2012) 

 



Intelligent estimation of the wake losses in wind farms 8 
University of Agder 
 

The equations governing the wind wake in Jensen’s single wake model develop as follows: 

 𝑟 =
𝐷

2
; 𝑟𝑤 =

𝐷𝑑
2

 (1) 

Conservation of momentum: 

 𝑀𝑤𝑖𝑡ℎ 𝑤𝑎𝑘𝑒 = 𝑀𝑖𝑑𝑒𝑎𝑙 −𝑀𝑙𝑜𝑠𝑠𝑒𝑠 → 𝜋 · 𝑟𝑤
2 · 𝑢𝑑 = 𝜋 · 𝑟𝑤

2 · 𝑢0 − 𝜋 · 𝑟
2 · (𝑢0 − 𝑢𝑤) (2) 

Simplifying: 

 

𝜋 · 𝑟2 · 𝑢𝑤 + 𝜋 · (𝑟𝑤
2 − 𝑟2) · 𝑢0 = 𝜋 · 𝑟𝑤

2 · 𝑢𝑑 → 

𝑢𝑑 =
𝜋 · 𝑟2 · 𝑢𝑤
𝜋 · 𝑟𝑤

2
+  

𝜋 · 𝑟𝑤
2 · 𝑢0

𝜋 · 𝑟𝑤
2

−
𝜋 · 𝑟2 · 𝑢0
𝜋 · 𝑟𝑤

2
→ 𝑢𝑑 = 𝑢0 +

𝑟2

𝑟𝑤
2
(𝑢𝑤 − 𝑢0) 

(3) 

 

Applying Betz theory (Ammara et al., 2002): 

 𝑢𝑤 = (1 − 2𝑎) · 𝑢0 (4) 

Replacing the equation (4) in the equation (3): 

 𝑢𝑑 = 𝑢0 +
𝑟2

𝑟𝑤
2
· ((1 − 2𝑎) · 𝑢0 − 𝑢0) = 𝑢0 + 𝑢0 ·

𝑟2

𝑟𝑤
2
· (−2𝑎) (5) 

Where 𝑎 is the axial flow induction coefficient, also expressed as follows: 

 𝑎 =
1 − √1 − 𝐶𝑡

2
 (6) 

Replacing (6) in (5): 

 𝑢𝑑 = 𝑢0 + 𝑢0 ·
𝑟2

𝑟𝑤
2
· (√1 − 𝐶𝑡 − 1) (7) 

Where 𝐶𝑡 is the thrust coefficient of the turbine. 

The radius of the wake cone, 𝑟𝑤 can be defined by the equation (8): 

 𝑟𝑤 = 𝑑 · (1 + 2𝛼 · 𝑑)/2  (8) 

Where 𝛼 is the decay constant, without dimension. It can be defined by the equation (9): 

 𝛼 = 0,5/ ln (
𝑧

𝑧0
) (9) 

The constants 𝑧 and 𝑧0 correspond the wind turbine’s hub height and the surface roughness 

respectively. 

The fully developed equation of the velocity of the wind can be represented as follows: 

 𝑢𝑑 = 𝑢0 · [1 −
1 −√1 − 𝐶𝑡
(1 + 2𝛼 · 𝑠)2

] · 𝜋 · 𝑟𝑤
2  (10) 

And:  

 𝑠 = 𝑑/2𝑟𝑤 (11) 
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It is important to note that the equation (10) is only meant to represent the wake effect in far 

wake regions, around 3-5 D on-shore or 6-8 D off-shore. 

The update of the Jensen model, the Park model, was implemented in WAsP (Mortensen et al., 

2001) software. 

 

2.2.2. Larsen’s model 

Another model used to represent the wake effect is the Larsen’s model (Larsen, 1988). The 

model is based on the turbulent boundary equations, and provides closed form solutions for the 

width and the mean wind profile of the wake. It assumes a self-similar velocity based in Prandl’s 

boundary layer equations profile and an incompressible, stationary and axisymmetric flow. 

In the first order approximation, the simplified form of the expression to be solved is as follows: 

 𝑈∞ ·
𝜕𝑢𝑥
𝜕𝑥

=
1

𝑟
·
𝜕

𝜕𝑟
[𝑙2 · 𝑟 · (

𝜕𝑢𝑥
𝜕𝑟
)
2

]  (12) 

Where 𝑟 is the radial direction, 𝑢𝑥 the inflow wake perturbation and 𝑥 the symmetry axis. To 

solve this equation two boundary conditions are needed. The first one is 𝑢𝑥 = 0 on the 

boundary of the wake. The second one, 𝑈∞ ≫ 𝑢𝑥, which comes from a momentum balance, 

according to the hypothesis that inflow velocity is much higher than the axial wake 

perturbations. 

Then, Larsen developed the first order equation for the boundary layer as shown below: 

 𝑟𝑤(𝑥, 𝑟) = (
35

2𝜋
)

1
5
· (3 · 𝑐1

2)
1
5 · (𝐶𝑡 · 𝐴(𝑥))

1
3  (13) 

 𝑢𝑥(𝑥, 𝑟) = −
𝑈∞
9
(𝐶𝑡𝐴𝑥

−2)
1
3 [𝑟

3
2(3 · 𝑐1

2 · 𝐶𝑡 · 𝐴 · 𝑥)
−
1
2 − (

35

2𝜋
)

3
10
· (3 · 𝑐1

2)−
1
5]

2

  (14) 

 𝑢𝑟(𝑥, 𝑟) = −
𝑈∞
3
(𝐶𝑡𝐴)

1
3 · 𝑥−

5
3 · 𝑟 [𝑟

3
2(3𝑐1

2 · 𝐶𝑡 · 𝐴 · 𝑥)
−
1
2 − (

35

2𝜋
)

3
10
· (3 · 𝑐1

2)−
1
5]

2

 (15) 

Where 𝑟𝑤 is the radius of the wake, 𝐴 is the rotor swept area, 𝐶𝑡 is the thrust coefficient of the 

wind turbine and 𝑐1 is the non-dimensional mixing length, defined by equation (16). 

 𝑐1 = 𝑙 · (𝐶𝑡 · 𝐴(𝑥))
1
3  (16) 

The solution for the second order equation was found to be negligible in real engineering 

applications (Larsen, 1988). 

The Larsen’s model is integrated in the software WindPRO (International A/S, 2010). 
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2.2.3. RANS models 

Other models intended to predict the wake or its effects. Depending on the conditions, some 

provide better results than others. Some of them, are based on Reynolds-averaged Navier 

Stokes (RANS) equations. FUGA (Ott et al., 2011) is a very robust CFD program that uses the 

cartesian form of the RANS equations. Most of these programs run computational fluid dynamics 

code. This kind of programs need a lot of resources to compute, and anyway normally they 

provide good results in a specific range of study. Some reviews of the models, programs and the 

theoretical way to understand them can be found in various articles, like the one from the 

Technical University of Denmark (Göçmen et al., 2016). 
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3. Artificial intelligence 

The story of artificial intelligence officially started in 1956, during a conference in Dartmouth 

College in Hanover, NH (USA). In this first conference, John McCarthy defined artificial 

intelligence as “the science and engineering of making intelligent machines”. However, 

philosophers and scientists have been playing with this idea for many centuries. For example, 

Descartes stated that animals are nothing more than complex machines. To this date, there’s no 

absolute consensus on the definition of artificial intelligence. Some, like Kaplan and Haenlein 

define AI as “a system’s ability to correctly interpret external data, to learn from such data, and 

to use those learnings to achieve specific goals and tasks through flexible adaptation” (Kaplan 

and Haenlein, 2018). 

Artificial intelligence can also be defined as the ability of a machine to think or behave in a 

specific way. For example, we can classify artificial intelligence into four categories, Thinking 

Humanly, Thinking Rationally, Acting Humanly and Acting Rationally (Russell and Norvig, 2009). 

These categories can disagree with each other, so it’s clear that there’s not a perfect way to 

define artificial intelligence. 

Another conflict is raised by the AI effect: as machines become able to do a task, this task is 

normally considered a non-intelligent task, because an intelligent human is not needed to 

perform it. Hence, as far as we develop machines to be intelligent, the goal of an intelligent 

machine is always going to be a little bit further. In fact, Tesler’s Theorem even defines 

intelligence as “whatever machines haven’t done yet” (Boosman, 2017). 

3.1. Learning 

Learning programs are those able to improve their performance doing a task due to the 

incorporation of data and feedback. The program is able to learn due to its capability of 

constructing itself. This raises an interesting question: why do we need a program that builds 

itself? Why do we need it to be able to learn, don’t we have the information to make it “perfect” 

in the first place? According to Russel and Norvig, there are three main reasons (Russell and 

Norvig, 2009). First of all, the designers of the program can not anticipate all the possible 

situations and relations that the program could find by himself. In the second place, if a program 

is designed and closed, meaning that no further change on the program is going to be made, the 

program is not going to be able to adapt to changes. In a self-built program, when the 

circumstances change the program is able to adapt its variables in order to provide better 

results, if it is designed to do so. In the third place, which corresponds to the case of this thesis, 

sometimes the problems are much too complex to find a solution. In these cases, to design a fix 

program to do this task can be too complicated. But when applying learning techniques, the 

problem changes to a “black box” point of view. There’s no need to deeply understand the 

problem, because the program will build itself just with input and output data. 
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3.1.1. Feedback 

When a designer is building an artificial intelligence program, there are three ways to make the 

program learn. 

The first one is unsupervised learning. In this case, the learning agent learns using only the input 

information, without any feedback. This means that the program will extract its own patterns or 

“conclusions” from the given information. In a photo recognizing program for example, it can 

make groups of similar images and conclude that the image it sees represents the same thing. 

The second one is reinforcement learning. This kind of programs learns from feedback in forms 

of reward or punishment. At the end of a task, the learning agent receives a good or bad 

qualification, and it has to decide what is responsible for this mark, trying to improve it if it was 

a bad qualification. 

The third kind of feedback is the supervised learning. In this case, every time the learning agent 

receives input data it gets also the correct answer for this particular example. For example, in 

the same image recognition example, when the program gets learning data it receives also the 

answer or label - Figure 7 - which could be the object it represents (book, chair, cat, dog, …). 

 

Figure 7. Supervised learning, labeled photos of cats and dogs. From (mc.ai, 2018) 

In the case of this master’s thesis, the program learns through a supervised learning process. It 

gets a set of input data, like the angle and velocity of the wind, and it has to predict the output 

power of wind turbines. But when it is learning, the program also receives the power of the wind 

turbine, so the feedback is the answer it has to get. 

3.2. Neural networks basics 

Neural networks are artificial intelligence programs intended to work like human neurons. The 

idea of neural networks was proposed by the neurophysiologist Warren McCulloch and the 
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mathematician Walter Pitts in an article, explaining the functioning of neurons work, which 

modeled a simple neural network with electric circuits, Figure 8 (McCulloch and Pitts, 1943).  

 

Figure 8. Simple mathematical model for a neuron, developed by McCulloch and Pitts (1943). From: (Russell 

and Norvig, 2009) 

In the 1950s Nathaniel Rochester, a computer scientist at IBM, made the first unsuccessful 

attempts at the simulation of neural networks. The first successful neural network was 

developed by Bernard Widrow and Marcian Hoff of Stanford, in 1959. The two models they 

developed where called “Adaline” and “Madaline”. “Adaline” was developed to recognize binary 

patterns, and “Madaline” was designed to eliminate echoes on phone lines. “Madaline” was in 

fact the first neural network applied to a real world problem (Winter and Widrow, 1988). 

 

3.2.1. Functioning of a neuron 

The building and operation of artificial neural networks is based on the functioning of neurons 

and how they communicate with each other creating a network in human brains, providing with 

the ability to think. A neuron is a cell that has the purpose of transmitting information. 

Anatomically, its shape is similar to a tree, Figure 9. Neurons use electrical and chemical signals 

to transmit information through the brain and nervous system. Each neuron has three parts, the 

cell body and two extensions, the axon and the dendrite. The cell body contains the nucleus, 

which is responsible for the control of the activity of the cell and contains the genetic 

information. The axon is like a long tail, responsible for the transmission of messages to other 

neurons. The dendrites are like branches of a tree, coming from the cell body, and are 

responsible of receiving the messages from neurons close by (National Institute of Neurological 

Disorders and Stroke, 2018). The human brain is a really complex and huge grid including about 

86,000 million neurons (Herculano-Houzel, 2009), each one of which can be connected through 

its receiving and transmitting ends to 10,000 other neurons. 
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Figure 9. Anatomy of a neuron. By (National Institute of Neurological Disorders and Stroke, 2018) 

 

3.2.2. Artificial neurons 

Artificial neural networks try to copy the structure of our brain in a simplified way. In a neural 

network the neuron is represented by a node, a “mathematical neuron”. 

A simple kind of artificial neuron is the “perceptron”. The perceptrons where developed by Frank 

Rosenblatt (Rosenblatt, 1957), Figure 10.  

 

Figure 10. Perceptron. From (Nielsen, 2015) 

A perceptron has multiple binary inputs: 𝑥1, 𝑥2, 𝑥3 in the case of the example perceptron seen 

in Figure 9. To generate an output, Rosenblatt introduced the weights, real numbers which 

intention is to express the importance of each input to the output, corresponding in the example 

case to 𝑤1, 𝑤2, 𝑤3. The output of the neuron is binary, depending on whether the sum of the 

weights multiplied with each input variable is higher or lower than a threshold. The equation is 

mathematically written as follows: 

 𝑜𝑢𝑡𝑝𝑢𝑡 =

{
 

 0 𝑖𝑓 ∑ 𝑤𝑗 · 𝑥𝑗
𝑗

≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

1 𝑖𝑓 ∑ 𝑤𝑗 · 𝑥𝑗
𝑗

≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
  (17) 
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Simplifying this equation to have all the variables in the same part of the equation, the result is 

as follows: 

 𝑜𝑢𝑡𝑝𝑢𝑡 = {
0 𝑖𝑓 𝑤 · 𝑥 + 𝑏 ≤ 0
1 𝑖𝑓 𝑤 · 𝑥 + 𝑏 ≥ 0

  (18) 

Where: 

 ∑ 𝑤𝑗 · 𝑥𝑗
𝑗

 ≡ 𝑤 · 𝑥 (19) 

The variable 𝑏 is called bias, and it represents the difficulty of a perceptron to be true. 

3.2.3. Artificial neural networks structure 

Figure 11 shows an example of a neural network considering 6 variables. Inside the network, the 

input layer represents the data given to the program. The hidden layer(s) contain the neurons. 

The output layer gives the result of the network after a specific input. 

 

Figure 11. Example of the representation of a neural network. From (Nielsen, 2015) 

Each represented neuron in the first hidden layer has a weight for every input. In the example 

network, the 4 first-level hidden neurons have 6 weights corresponding to each input variable, 

a total of 24 weights. At the same time, each node of this layer has a bias, giving a total of 4 

biases. The second hidden layer has 12 weights and 3 biases, and the last one has 3 weights and 

1 bias. This results in a total of 47 variables that can be combined in complex ways by the 

network.  

The model has to learn from the given data, using one of the previously explained learning 

methods – unsupervised, reinforcement, supervised. In the case of this thesis the feedback is 

provided to the designed neural network using supervised learning. Both the input variables and 

the expected output corresponding to the actual measured values for speed and power are 
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provided and compared to the output calculated by the neural network model. Then a 

correction is made to the model to try to minimize the cost function, which represents the 

difference between them. 

Perceptrons are simplified neurons that can have a true or false output. The problem with 

perceptrons is that when a change is done in the model, a perceptron can change its behavior 

from 0 to 1, creating big differences in the output. The desired behavior is however that when a 

change is done in a weight it causes only a small change in the output. Then, with this small 

change the program can make the network perform better. 

3.2.4. Sigmoid neurons 

The solution to the problem found in the previous section is to introduce a different kind of 

neuron to introduce non-linearity, for example an activation function called sigmoid. In this kind 

of neurons, a small change in the weights or the bias causes only a small change in the output. 

The inputs can be any value between 0 and 1, and the output is now defined as follows: 

 𝜎(𝑤 · 𝑥 + 𝑏) (20) 

Where the sigmoid function, 𝜎, is defined by: 

 𝜎(𝑧) ≡
1

1 + 𝑒−𝑧
 (21) 

Or in the example case: 

 𝑜𝑢𝑡𝑝𝑢𝑡 =
1

1 + 𝑒𝑥𝑝(−(𝑤1·𝑥1+𝑤2·𝑥2+𝑤3·𝑥3)−𝑏)
 (22) 

In the case of the perceptrons, the shape of the activation function is a step and it can have 

either 0 or 1 as an output. The sigmoid function has the shape represented in Figure 12. 

 

Figure 12. Shape of sigmoid function. From (Nielsen, 2015) 
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3.2.5. Loss function 

Loss minimization or empirical risk minimization is a tool that determines whether the model 

performs adequately or not and whether a correction is required. A loss function is characterized 

for penalizing the model predictions when they differ from the assigned label. A simple 

commonly used loss function is the squared loss, named mean squared error (MSE) when 

applied to a set of data. It represents the averaged squared loss over the whole dataset, and can 

be calculated using the following equation: 

 𝑀𝑆𝐸 =
1

𝑁
∑ (𝑦 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛(𝑥))

2

(𝑥,𝑦)∈𝐷
 (23) 

Where (𝑥, 𝑦) is an example in which 𝑥 represents the input variables, 𝑦 the label, 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛(𝑥) 

is a function of weights and bias with the input variables, 𝐷 is a data set containing many labeled 

examples and 𝑁 is the number of examples in 𝐷. Although other loss functions can be defined, 

and MSE is not the best loss function to use, all the loss functions have the same purpose and a 

similar way to work. 

The first step is to reduce the loss using an iterative approach. At the start of the model all 

weights and bias are set up randomly. Then, the program gets data, in form of features and their 

corresponding labels. The model makes its prediction, and this prediction is compared to the 

label using the loss function. Afterwards, the program uses other tools to compute new 

parameters (weights and bias) and updates the model, returning to a fresh start with new 

features and labels as represented in Figure 13. 

 

Figure 13. Iterative approach procedure. From (Developers, 2018) 

3.2.6. Computing parameter updates 

The learning process is completed by defining how to compute new weights and bias. In this 

study a variant of the technique called gradient descent will be used. At first the cost function 

that will be minimized is defined. A two-dimension graphic representation of a cost function 

might for instance have the shape shown in Figure 14. 
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Figure 14. 2D Cost function representation. From (Nielsen, 2015) 

The goal of the technique has to be to find the minimum as fast as possible, but not all the cost 

functions are as simple as the shown in Figure 14. Mathematically, the easier way to find the 

minimum is through derivatives. In a complex problem considering more than 2 dimensions the 

derivation is performed using the gradient descent using the equations presented below to find 

a function to indicate the direction and magnitude in which the variables have to change in order 

to reduce the loss. In the case of a 2-variable problem: 

 ∆𝐶 ≈
𝜕𝐶

𝜕𝑣1
∆𝑣1 +

𝜕𝐶

𝜕𝑣2
∆𝑣2 (24) 

Where 𝑣𝑛 are the function variables and the increment of the cost function ∆𝐶 has to be 

negative. To do so, the gradient vector is defined: 

 ∇𝐶 ≡ (
𝜕𝐶

𝜕𝑣1
,
𝜕𝐶

𝜕𝑣2
)
𝑇

 (25) 

Expressing also the velocities as a vector, the equation (24) becomes: 

 ∆𝐶 ≈ ∇𝐶 · ∆𝑣 (26) 

The remaining parameter to add to this function is the learning rate 𝜂. The learning rate is a 

parameter meant to control the “velocity” (more accurately the size of the steps) that the 

program introduces in its parameters to reduce the cost. 

 ∆𝐶 ≈ −𝜂 · 𝛻𝐶 · ∆𝑣 (27) 

In fact, to compute the change in the function variables, the equation should be: 

 ∆𝑣 = −𝜂 · ∆𝐶 (28) 

Using this method, the program should keep improving its performance, eventually finding a 

minimum to converge. 
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3.2.7. Summary 

An artificial neural network is a function that contains a set of neurons with assigned weights 

and a bias. The output signal sent by the neuron that depends on these weights, the bias, the 

input variables and the kind of activation function it uses – the sigmoid function for example. 

The network receives some data as input variables and an output (label). Then it generates an 

output, and it is compared with the actual value using a loss function. Afterwards, the gradient 

descent is calculated to know in which way the parameters have to change. Once they are 

updsted, the iterative process starts again with another set of data, until the problem converges, 

or all the programed iterations are done. 
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4. Wake losses estimation in a neural network 

The purpose of this thesis is to estimate the effect of the wake in a wind farm, or said in another 

way, to estimate the power of the wind farm having into account the wake. In this chapter the 

designed neural network will be presented, and also the experiments performed with this 

network and the available data. 

4.1. Presentation of the data 

The data used in this thesis belongs to a wind farm located in the Prince Edward Island, in 

Canada. The wind farm is a power generation plant that has 5 DeWind D9.2 turbines, with an 

individual power of 2 MW each and a total of 10 MW. The owner of the wind farm is a not-for-

profit entity formed in 1981 called Wind Energy Institute of Canada, focused in research, testing, 

innovation and collaboration in the field of wind energy. Figure 15 shows a view of the wind 

farm. 

 

Figure 15. WEICAN 10 MW wind farm. From (Canada, 2018) 

The received information consisted in ten minutes averaged performance data for turbines one 

to five. The data includes the wind direction at the farm, its velocity and power for each of the 

turbines. The satellite view in Figure 16 signals the location of each turbine. Due to problems 

during the harvesting of the information, a considerable amount of data from the fifth wind 

turbine is missing. However, this fifth turbine is located further away from the other turbines 

and it is not at the coast line. In the study cases the information of this turbine is not used as it 

is not relevant, but conclusions of the other ones as an independent wind farm can be extracted. 

In Figure 16 the turbines are localized with an identification. This identification is used to identify 

the wind turbines in the next sections. 
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Figure 16. WEICAN 10 MW Wind Farm Satellite view. From: (Google Earth Pro, 2018). (31/10/2018), Prince 

Edward Island, Canada. 47°02’07”N 64°00’52”S Eye Altitude 3.15 km [November 23, 2018] 

4.1.1. Data cleaning 

The data has to be cleaned before the artificial programming tests, meaning all the missing data 

points which could make the program perform inappropriately have to be removed. This step is 

undertaken using a code written in Microsoft Excel with Visual Basic. It can be found in Annex D

 Data cleaning program. Once processed, the remaining data is considered available 

data. Figure 17 shows the amount of available data over the total provided data. In the individual 

turbines cleaning, data is available when the turbine data point is not missing. In case of the T1-

T4 and T1-T5 data, it is only considered valid when all the turbines have a power recorded in the 

same ten minutes interval. 

 

Figure 17. Data available for each of the wind turbines 
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Also, when cleaning the data, it is appreciable that the turbines present highest performance 

when the wind is between 13 and 14 m/s. When the wind exceeds 14 m/s, it does not generate 

more power. To reduce the noise on the data and facilitate the work to the neural network, the 

wind values exceeding 14 m/s are reduced to 14 m/s. 

4.2. Summary of the clean data 

Table 1 presents a summary of the powers in the turbines that are going to be used in the 

experimental part. It is possible to appreciate that the performance of the different wind 

turbines is similar. 

 Power 1 Power 2 Power 3 Power 4 

count    2980 2980 2980 2980 

mean     1437.7 1379.4 1365.4 1469.7 

std       656.7 660 659.2 644.8 

min       105 102 101 109 

25% 814.8 759.8 745 849.8 

50% 1676.5 1530 1487.5 1834 

75% 2043 2029 2018 2032 

max      2365 2302 2290 2254 

Table 1. Summary of the clean data 

4.3. Neural network design 

In this section the designed neural network is described, starting from the basics, which are the 

software used to develop the program, followed by the buildup of the code and its functioning. 

4.3.1. Software 

The chosen software to write the neural network code is Python to take advantage of the 

previously developed applications and libraries (deposits of functions) in artificial intelligence, 

including Machine Learning and Neural Networks. The program selected to run Python in is 

PyCharm Community Edition 2018.2.4 from JetBrains developers. Anaconda is used to simplify 

the management of packages and complements needed to develop Neural Networks in 

PyCharm. Anaconda is a free and open-source software used in lots of computing fields like data 

science or machine learning, and it simplifies the management of all the packages and 

complements, allowing the development of applications in a virtual environment. Apart from 

PyCharm and Anaconda – the basic software used to build the Neural Network – two basic 

libraries, created specifically to develop artificial intelligence programs, have been used: 

TensorFlow and Keras. TensorFlow is an open-source machine learning library widely used in 

research. Together with Keras, another Python deep learning library, they provide a high-level 

API (Application Program Interface), which makes deep learning and neural networks designs 

simpler. 
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4.3.2. Programming the neural network 

This section explains the development of the code. The full program with some comments can 

be found in Annex A Neural network building program, and to fully understand it is 

recommended to read the chapter and the code at the same time. 

Once all the required libraries are imported, the first thing to do is to define a function to let the 

program know which variables or features it is going to work with. The same has to be done with 

the desired target, the output of the neural network. Both features and target can be defined as 

regular variables, available in the provided data, or as synthetic ones (combination of other 

variables). Then, the columns that TensorFlow is going to use as features have to be built using 

another function. These columns will contain only the variables used in each experiment. 

The next step is to define another function that will provide the batches of data to the training 

function. The inputs of this function are the features and the targets. Additionally, it needs some 

parameters such as the batch size, the shuffle parameter and the number of epochs. The batch 

size is the number of samples used to train (update) the neural network. The shuffle parameter 

defines whether to mix the data randomly to remove the time-related dependencies. The 

number of epochs defines the amount of times that a program can go through all the data to 

train the model, but it can also be restricted using the steps. 

The most important function of the program is the training function. This is the loop that will 

improve the results – decreasing the cost – iteration after iteration. The input variables of the 

function are the optimizer which will be used, and the steps, which are the number of times that 

the program will go through a batch calibrating the system every time a step is finished. It also 

needs the hidden layers and the number of neurons in each layer. Finally, it needs the training 

and validation data. The result of this set of steps is the optimized model of the neural network.  

Inside the training function, first of all, the periods are defined. The periods are a way to divide 

the training of the model in order to follow the process while the program is running. Then, 

there’s a line to clip the gradient in case it is too large to avoid overflow. The next step is to 

define the deep neural network regressor, which is the estimator to train the neural network. 

Next, the input functions are defined, calling the function explained in the previous step for the 

training data and the training and validation predictions. Then, the actual training loop starts 

and it will be repeated the number of periods defined before the neural network is completed. 

First, the model starts training from a random point or the last one if the previous is not the 

initial one. The training and validation losses are computed and printed to give the user some 

information on the construction of the networks. The progress data is saved in a list and the loop 

is finished. The last part of the training function is to provide the final performance of the neural 

network, the Root Mean Squared Error (RMSE), the Normalized Root Mean Squared Error 

(NRMSE) and the Mean Absolute Error (MAE). 

The last part of the program is the main program, which will call a series of functions when it is 

started. Initially the data is read from a csv file. Then, it is randomized and sorted into two 
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groups, training and validation data. A summary of the data is shown on the programmer screen 

to be verified. Finally, the remaining code is the one defining the parameters of the neural 

network, including the optimizer, the number of steps, the learning rate, the batch size and the 

architecture of the network (number of neurons per layer and number of hidden layers). These 

parameters have to be chosen by the programmer through tests. 

The tests show that the best optimizer is Adam (Kingma and Ba, 2014). Its functioning is similar 

to the Gradient Descent optimizer, but it is superior in some aspects like in its adaptable learning 

rate, which changes from variable to variable in the neural network. The learning rate is chosen 

through tests that observes the evolution of the performance of the network. The activation 

function used in the neurons is called ReLu. Its purpose and functioning is similar to the 

explained Sigmoid function, but it is proved to show better results in artificial neural networks 

(Glorot et al., 2011). The architecture of the neural network consists in two hidden layers with 

ten neurons each and full connection between layers. The model has provided the best 

performance in the undertaken tests. 

Figure 18 is a representation of the defined neural networks, where two fully connected hidden 

layers are represented: an input layer with one variable and an output layers with also one 

output variable. Depending on the experiment, more input variables are defined. 

 
Figure 18. Schematic representation of the defined artificial neural network 
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In the represented neural network, the model has 10 weights and 10 biases in the first hidden 

layer, 100 weights and 10 biases in the second hidden layer and 10 weights and 1 bias in the 

output layer, a total of 141 variables in the model. 

4.4. Designed experiments 

The experiments designed in this thesis have the purpose to prove if a model can be designed 

to have into account the wake created by wind turbines in other wind turbines. The experiments 

are presented in increasing order of complexity and compared using quality indications such as 

RMSE, NRMSE, MAE and the coefficient of determination (R2). The parameters of the network 

(hidden layers, learning rate, …) are kept constant throughout the different experiments. The 

dataset includes the points available from turbines T1-T4, represented in Figure 17. The data is 

separated into two groups: 2300 points will be used to train the model and 680 to validate it. 

4.4.1. Experiment 1 

In this experiment, only the wind speed recorded at a certain turbine is used to predict its power. 

This is the stand-alone case, in which none of the other turbines are taken into consideration. 

The program cannot take into account the wake of another turbine affecting the selected one, 

and as a consequence its power prediction will be less accurate. This approach should define the 

velocity-power characteristics of the turbine. The artificial neural network resulting from this 

model will have a total of 141 variables, like it has been explained with the Figure 18. 

4.4.2. Experiment 2 

In the second experiment, the power of each turbine is predicted using the velocity of the wind 

in the selected wind turbine and its closest neighbors. A relationship matrix tells the program in 

which conditions a wind turbine influences another. This matrix multiplies by one the wind 

speed of a turbine when it has an effect in the studied wind turbine, and by zero when it has no 

effect. For example, when the wind turbine 1 is being modeled, the matrix is only 1 when the 

wind comes from the direction of wind turbine 2. In this experiment only the closest turbines 

are considered. In this case, the artificial neural network resulting from the model will have a 

total of 151 or 161 weights and biases. Annex E Matrix program includes the code of the 

program used in the experiments 2 and 3 to build the matrix, developed in Excel VBA. 

4.4.3. Experiment 3 

This third experiment is similar to the second but all the wind turbines are considered when the 

wind comes from their direction. For example, the power of the first turbine may be influenced 

by all the others when the wind is blowing at certain angles. The performance and accuracy of 

this model are then expected to be higher than the second experiment if the faraway wake 

effect is important. The resulting neural network built using this experiment will have a total of 

171 variables. 
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4.4.4. Experiment 4 

In this fourth experiment the model is fed information on all the wind speeds and angle of the 

wind at the wind farm without a direct input on when the wake is relevant. Since the program 

is expected to learn on its own all the information given by the programmer in experiment 3, it’s 

an interesting way to check if it can find these patterns automatically. The artificial neural 

network resulting from this experiment will have 181 variables. 

4.5. Evaluation of the models 

The experimental design includes a model built for each particular case. For example, in the first 

experiment, there’s a model for the wind turbine 1, another for the wind turbine 2, the 3rd and 

the 4th. The same happens with the other experiments, up to a total of 16 models. This setup 

implies that a model representing the first wind turbine will be independent of the second one. 

Each model has been run with all the available data to present their performance. Then, the 

results are plotted against the labeled power (real power measured at the wind farm). If the 

model was perfect, this graph should be a straight line. R2 gives statistical information about 

how well a model follows linearity. Also, a line representing the model is plotted in the same 

graph. Other statistical indicators such as the RMSE, the NRMSE and the MAE are used to discuss 

the accuracy of the models. The equations to calculate these statistical indicators are presented 

below. 

Mean absolute error (MAE): 

 𝑀𝐴𝐸 =
∑ |𝑦̂𝑖 − 𝑦𝑖|
𝑛
𝑖=1

𝑛
 (29) 

Where 𝑛 is the number of experiments, 𝑦̂ the power predicted by the model for a data point 𝑖 

and 𝑦 the labeled power for the same 𝑖 data point. 

Root mean squared error (RMSE): 

 𝑅𝑀𝑆𝐸 = √
∑ (𝑦̂𝑖 − 𝑦𝑖)

2𝑛
𝑖=1

𝑛
 (30) 

And the normalized root mean squared error (NRMSE): 

 𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛 
 (31) 

Where 𝑦𝑚𝑎𝑥 and 𝑦𝑚𝑖𝑛 are respectively the maximum and minimum of the labeled powers. 

The evaluation includes the comparison of the performance of each wind turbine independently. 

This way, it is possible to compare the outcome of the different experiments for all the different 

wind turbines. 
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5. Results 

This section includes the predictions made by the neural network. First, the results are presented 

divided into experiments, representing the results through graphs. Then, the results are grouped 

into turbines to find which model explains the behavior of each turbine better. 

5.1. Results divided into experiments 

5.1.1. Experiment 1 

Figure 19, Figure 20, Figure 21 and Figure 22 represent the predictions of the first experiment 

for turbines one to four. All the models show a linear correlation between the measured power 

and the one predicted by the artificial neural network. The coefficient of determination R2 has 

the highest value in turbine four, meaning it is the best model following linearity.

 
Figure 19. Power at wind turbine 1 in experiment 1 

 
Figure 20. Power at wind turbine 2 in experiment 1 

 
Figure 21. Power at wind turbine 3 in experiment 1 

 
Figure 22. Power at wind turbine 4 in experiment 1 
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The plot also shows that when the maximum wind speed is reduced to 14 m/s to limit the noise, 

following the procedure explained in the data cleaning section, the representation has the shape 

of a line in the top part. Setting a maximum of wind velocity results in a better fit than the using 

same model without the filter. Table 2 shows the calculated error indicators for all the turbines 

in the experiment 1. The best performance of the neural network corresponds to turbine 4 as it 

has both the highest R2 and the lowest MAE, RMSE, and NRMSE.  

 

E1 T1 T2 T3 T4 

R2 0.79116 0.7857 0.7938 0.8063 

RMSE 350.7625 366.3888 349.656 332.0038 

MAE 296.1015 308.1293 297.6755 276.917 

NRMSE 0.1552 0.1665 0.1597 0.1548 

Table 2. Experiment 1 indicators 

 

5.1.2. Experiment 2 

Figure 23, Figure 24, Figure 25 and Figure 26 represent the predictions of the second experiment 

for the turbines one to four. All the models show a linear correlation between the measured 

power and the one predicted by the artificial neural network. In this experiment, the turbine 

with the highest R2 value is the first one, followed by the fourth 

.

 

Figure 23. Power at wind turbine 1 in experiment 2 

 

Figure 24. Power at wind turbine 2 in experiment 2 
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Figure 25. Power at wind turbine 3 in experiment 2 

 

Figure 26. Power at wind turbine 4 in experiment 2 

Table 3 presents the calculated indicators for all the turbines in the experiment 2. In this case, 

the best indicators also correspond to turbine 4 apart from the NRMSE, which is slightly lower 

in turbine 1. 

 

E2 T1 T2 T3 T4 

R2 0.8131 0.7929 0.7962 0.8055 

RMSE 310.5114 318.9844 314.413 310.4788 

MAE 260.2317 264.24826 261.2116 257.0302 

NRMSE 0.1374 0.145 0.1436 0.1447 

Table 3. Experiment 2 indicators 

 

5.1.3. Experiment 3 

Figure 27, Figure 28, Figure 29 and Figure 30 represent the predictions of the third experiment 

for the turbines one to four. All the models show a linear correlation between the measured 

power and the one predicted by the artificial neural network. In this experiment turbines one, 

two and four present really close R2 values, but the highest value is the one of the second wind 

turbine. 
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Figure 27. Power at wind turbine 1 in experiment 3 

 

Figure 28. Power at wind turbine 2 in experiment 3 

 

Figure 29. Power at wind turbine 3 in experiment 3 

 

Figure 30. Power at wind turbine 4 in experiment 3 

Table 4 shows the indicators calculated for the four turbines in this experiment. In this 

experiment both the first and second wind turbines perform similarly good according to the 

indicators. The wind turbine four is also close to the best results. 

E3 T1 T2 T3 T4 

R2 0.8082 0.8096 0.7972 0.8037 

RMSE 304.3329 304.8149 310.6873 305.3367 

MAE 253.8752 247.871 256.8317 252.8263 

NRMSE 0.1347 0.1386 0.1419 0.1423 

Table 4. Experiment 3 indicators 
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5.1.4. Experiment 4 

Figure 31, Figure 32, Figure 33 and Figure 34 represent the predictions of the fourth experiment 

for the turbines one to four. All the models show a linear correlation between the measured 

power and the one predicted by the artificial neural network.  The coefficient of determination 

R2 has the highest value in turbine one, meaning fits linearity better.

 

Figure 31. Power at wind turbine 1 in experiment 4 

 

Figure 32. Power at wind turbine 2 in experiment 4 

 

Figure 33. Power at wind turbine 3 in experiment 4 

 

Figure 34. Power at wind turbine 4 in experiment 4 

 

Table 5 shows the calculated indicators for all the turbines in the experiment 4. In this case, the 
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E4 T1 T2 T3 T4 

R2 0.7822 0.7602 0.7752 0.7789 

RMSE 324.0669 339.1047 332.5054 308.8229 

MAE 258.0322 267.9857 265.926 247.0056 

NRMSE 0.1434 0.1541 0.1519 0.144 

Table 5. Experiment 4 indicators 

5.2. Results divided into wind turbines 

5.2.1. Wind turbine 1 

Table 6 presents the indicators for the first wind turbine in the experiments one to four. 

T1 E1 E2 E3 E4 

RMSE 350.7625 310.5114 304.3329 324.0669 

MAE 296.1015 260.2317 253.8752 258.0322 

NRMSE 0.1552 0.1374 0.1347 0.1434 

Table 6. Wind turbine 1 indicators 

The lowest value for all the indicators is found in the experiment 3, which creates an artificial 

neural network providing as data the wind of the first turbine and the winds of the other three 

turbines as well as a matrix to indicate when the wake of this turbines should influence the first 

wind turbine. The second best performing model is the one built in the second experiment. 

Then, the one from the experiment four and the last is the experiment one. 

5.2.2. Wind turbine 2 

Table 7 presents the indicators for the second wind turbine in the experiments one to four. 

T2 E1 E2 E3 E4 

RMSE 366.3888 318.9844 304.8149 339.1047 

MAE 308.1293 264.2483 247.871 267.9857 

NRMSE 0.1665 0.145 0.1386 0.1541 

Table 7. Wind turbine 2 indicators 

The same way that happened with the first wind turbine, for the second one the lowest value 

for all the indicators belongs to the experiment three. The second best model is the one from 

the second experiment; then come experiments four and one. 

5.2.3. Wind turbine 3 

Table 8 presents the indicators for the third wind turbine in the experiments one to four. 

T3 E1 E2 E3 E4 

RMSE 349.656 314.413 310.6873 332.5054 

MAE 297.6755 261.2116 256.8317 265.926 

NRMSE 0.1597 0.1436 0.1419 0.1519 

Table 8. Wind turbine 3 indicators 
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As well as in the wind turbines one and two, the best model to represent the behavior of wind 

turbine three is the one belonging to the experiment three. It presents the lowest value for all 

the indicators. Also like in the two previously studied turbines, order of the other models from 

best to worse is model two, four and the worst is the first model one. 

5.2.4. Wind turbine 4 

Table 9 presents the indicators for the fourth wind turbine in the experiments one to four.  

T4 E1 E2 E3 E4 

RMSE 332.0038 310.4788 305.3367 308.8229 

MAE 276.917 257.0302 252.8263 247.0056 

NRMSE 0.1548 0.1447 0.1423 0.144 

Table 9. Wind turbine 4 indicators 

The wind turbine four presents also the best indicators when calculated from the model three. 

In this case though, the lower MAE was found in the fourth model, which is the second best 

model according to the indicators. Then the second and the last, like in all the other wind 

turbines, is the model built in the experiment one. 

5.3. Summary of results 

Table 10 presents a summary of the times that, according to the calculated indicators, a model 

performs the best, 2nd, 3rd or 4th. The best model to represent the behavior of all the turbines is 

always the third, where the program has all well-organized data in order to take into account 

the effect of the wake. Also, the worst model according to the indicators is number one, where 

no actual measurements were provided to the program in order to make the artificial neural 

network learn whether or not the wake was influencing the obtained power. 

 Model 1 Model 2 Model 3 Model 4 

No. times best 0 0 4 0 

No. times 2nd  0 3 0 1 

No. times 3rd 0 1 0 3 

No. times 3th 4 0 0 0 

Table 10. Number of times that a model is the best, 2nd, 3rd or 4th according to the indicators 

Table 11 presents the reduction (%) of the Mean Absolute Error between models three and one. 

This decrease exceeds 10 %. 

 T1 T2 T3 T4 Mean 

MAE reduction E1 vs E3 (%) 14.2608 13.0282 13.7209 8.6996 12.4274 

Table 11. MAE reduction between models 3 and 1 

Table 12 shows the relative error represented using the MAE indicator for model three and its 

correlation to the actual measured power in all the studied turbines. 
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 Wind turbine 1 Wind turbine 2 Wind turbine 3 Wind turbine 4 

Mean power (kW) 1437.7 1379.4 1365.4 1469.7 

MAE model 3 (kW) 253.8752 247.871 256.8317 252.8263 

MAE/Mean power (%) 17.66 17.97 18.81 17.20 

Table 12. Error percentatge MAE model 3/Mean power 

 

Annex C Example of weights and bias includes a presentation of all the weights and 

values for one of the modeled artificial neural networks, specifically for the wind turbine two in 

the experiment three.  
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6. Discussion 

The aim of this master thesis was to build a model based on artificial neural networks able to 

estimate the power of wind turbines in a certain wind farm considering the wake effect. In the 

experimental part, four models were presented in order to provide different inputs to the 

system and determinate which kind of inputs could make the model build the best artificial 

neural network. The best model is the one corresponding to the third experiment. In the 

experimental part for each wind turbine 4 indicators are calculated, giving a total of 16 

indicators. From this indicators, 13 are best when calculated from the estimations done by the 

artificial neural network built using the experiment three. The particularity of this experiment is 

that it provides the program with the required information to take into account the wake losses 

to estimate the power of the wind turbines. Then, this model is the best at explaining the 

behavior of the wind turbines and the wake losses in a maximum of situations possible. 

From the plots in the previous section (Figure 19 to Figure 34) it is possible to appreciate that 

the model represents the performance of the wind farms in most of the cases. However, it is 

possible to recognize a strange behavior of the models in all the experiments when the power 

is high, or more precisely, when the wind is high. It is a matter to study further why the models 

are not able to learn good enough the fact that at a certain wind speed, the increase of this wind 

speed is not transported in an increase of the power. To minimize this problem, a filter in the 

data cleaning was set.   

Table 12 presents the error percentage that the MAE represents over the real power mean. The 

values are around 17%. Although the model clearly represents the behavior of the wind turbines, 

the accuracy of the model is not high. A possible explanation for this fact is the case commented 

in the previous paragraph. Also, it is possible that the amount of available data used to build the 

model is not enough for the program to learn some particularities. In future research it would 

be interesting to gather more data from the same wind farm and build the models again. 

Theoretically, more data point should make the neural network learn more patterns from it, like 

the fact that when the winds are higher than 14 m/s the power is not getting higher. 
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7. Conclusions 

Wind energy plays an important role in the electric generation worldwide, and the share of 

power generated through it is going to increase in the next twenty years. Hence, it is important 

to further research in the field, in order to provide better wind farms in the future. 

One of the actual problems in wind energy is to know the power that a wind farm is going to 

generate in certain conditions. This is difficult due to the complexity of the physics involved in 

all the variables that influence the result. One of the factors to take into account is the wake 

effect. It is the loss of velocity and appearance of turbulence in the wind downstream a turbine, 

due to the disturbance created the same. This effect reduces the energy that the wind turbines 

can generate downstream, and it is then interesting to study and take into account when 

predicting wind farms power and designing new wind farms. 

Between the different approaches used to calculate the wake effect, or the power of a wind 

farm including the wake effect, a relatively new is through artificial intelligent problems. This 

thesis applies machine learning through artificial neural networks, in order to find out if a model 

can be built with the available resources (a regular computer) to calculate the power of a certain 

wind farm taking into account the losses due to the wake effect. A limitation is presented by the 

inability of the neural network to learn with the available data that a shift in the pattern such as 

that from certain wind speed the power will not increase any further. 

A total of 16 models have been built in the experimental part, four representing each wind 

turbine in all the wind turbines. According to all the indicators, the best performing models have 

always been the ones where information was provided to the program in order to build a neural 

network to have into account the wake losses to calculate the power of the turbines. In the best 

model information for the program to learn about far and close wake effect was provided, in 

the second best only to consider wake from close wind turbines. In the second worse, the 

information was provided to the model to learn from far and close wind turbines wake, but 

additional information about how to do it. The worst model was the one where no way to learn 

from wake was provided. In summary, more refined organization of the data provided to the 

neural network provides the best results. Given the presented results, it is possible to predict 

the power of wind turbines taking into account the wake losses by using an artificial neural 

network that improves the performance of an artificial neural network that is not considering 

wake losses. 
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Annex 

Annex A Neural network building program 

# Start of the code importing the libraries 
from __future__ import absolute_import, division, print_function 
import math 
import numpy as np 
import pandas as pd 
import tensorflow as tf 
from sklearn import metrics 
from tensorflow.python.data import Dataset 
 
# Function to define the inputs. Different depending on the model and turbine 
def preprocess_features(wind_farm_dataframe): 
    selected_features = wind_farm_dataframe[ 
        ["WSpeed_1"]] 
    processed_features = selected_features.copy() 
    return processed_features 
 
 
def preprocess_targets(wind_farm_dataframe):  # Function to define the target of the neural 
network. “Power_1” changes depending on the wind turbine 
    selected_targets = wind_farm_dataframe[ 
        ["Power_1"]] 
    output_targets = selected_targets.copy() 
    return output_targets 
 
# Function used to construct the columns used by the program with the data 
def construct_feature_columns(input_features): 
    return set([tf.feature_column.numeric_column(my_feature) for my_feature in 
input_features]) 
 
# Function in charge to provide the batches of data to the training function 
def my_input_fn(features, targets, batch_size=1, shuffle=True, num_epochs=10): 
    features = {key: np.array(value) for key, value in dict(features).items()} 
    ds = Dataset.from_tensor_slices((features, targets)) 
    ds = ds.batch(batch_size).repeat(num_epochs) 
 
    if shuffle: 
        ds = ds.shuffle(10000) 
 
    features, labels = ds.make_one_shot_iterator().get_next() 
    return features, labels 
 
 
def train_nn_regression_model(my_optimizer, steps, batch_size, hidden_units, 
training_examples, training_targets, 
                              validation_examples, validation_targets):  # Training function 
    periods = 10  # Definition of the number of periods in which to separate the training 
    steps_per_period = steps / periods 
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    my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0)  # Clipping 
of the gradient, to avoid overflow 
 
    # Definition of the regressor (estimator) used to train the neural network. The model is saved 
with the name specified by model_dir, which changes with every wind turbine and experiment. 
    dnn_regressor = 
tf.estimator.DNNRegressor(feature_columns=construct_feature_columns(training_examples), 
hidden_units=hidden_units, optimizer=my_optimizer, model_dir='Program_1_T1') 
 
    # Creation of the input data columns which the network will use. “Power_1” changes 
depending on the modeled wind turbine 
    def training_input_fn(): return my_input_fn(training_examples, 
training_targets["Power_1"], batch_size=batch_size) 
 
    def predict_training_input_fn(): return my_input_fn(training_examples, 
training_targets["Power_1"], shuffle=False, num_epochs=1) 
 
    def predict_validation_input_fn(): return my_input_fn(validation_examples, 
validation_targets["Power_1"], shuffle=False, num_epochs=1) 
 
    print("Training model...")  # Information for the developer about the program track 
    print("RMSE (on training data):") 
    # Creation of two variables vectors, which will store the training and validation rmse to 
monitor the progress 
    training_rmse = [] 
    validation_rmse = [] 
 
    # Start of the training. Inside a loop, to provide updates to the developer 
    for period in range(0, periods): 
        dnn_regressor.train(input_fn=training_input_fn, steps=steps_per_period)  # Training of 
the ANN 
 
        # Compute and manage predictions on the training data 
        training_predictions = dnn_regressor.predict(input_fn=predict_training_input_fn) 
        training_predictions = np.array([item['predictions'][0] for item in training_predictions]) 
 
        # Compute and manage predictions on the validation data 
        validation_predictions = dnn_regressor.predict(input_fn=predict_validation_input_fn) 
        validation_predictions = np.array([item['predictions'][0] for item in 
validation_predictions]) 
 
        # Compute training and validation root mean squared error 
        training_root_mean_squared_error = 
math.sqrt(metrics.mean_squared_error(training_predictions, training_targets)) 
        validation_root_mean_squared_error = 
math.sqrt(metrics.mean_squared_error(validation_predictions, validation_targets)) 
 
        # Print the training root mean squared error as information for the developer 
        print(" period %02d : %0.2f" % (period, training_root_mean_squared_error)) 
 
        # Adds training and validation RMSE to the vector generated before 
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        training_rmse.append(training_root_mean_squared_error) 
        validation_rmse.append(validation_root_mean_squared_error) 
 
    # End of the training loop. Printing of some vectors. 
    print("Model training finished.") 
    print(training_rmse) 
    print(validation_rmse) 
 
    # Prints the final training and validation RMSE 
    print("Final RMSE (on training data):   %0.2f" % training_root_mean_squared_error) 
    print("Final RMSE (on validation data): %0.2f" % validation_root_mean_squared_error) 
 
    return dnn_regressor, training_rmse, validation_rmse  # End of the training function 
 
 
# First executed lines on the code. Lecture of the data file 
wind_farm_dataframe = pd.read_csv('4T_data_z.csv', sep=";") 
# Randomization of the data 
wind_farm_dataframe = 
wind_farm_dataframe.reindex(np.random.permutation(wind_farm_dataframe.index)) 
 
# Separation of the data into training and validation 
training_dataframe = wind_farm_dataframe.head(2300) 
validation_dataframe = wind_farm_dataframe.tail(680) 
 
# Definition of the training data input variables and targets, calling the preprocess function 
training_examples = preprocess_features(training_dataframe) 
training_targets = preprocess_targets(training_dataframe) 
 
# Definition of the validation data input variables and targets, calling the preprocess function 
validation_examples = preprocess_features(validation_dataframe) 
validation_targets = preprocess_targets(validation_dataframe) 
 
 
# Description of the data 
print('Training examples summary:') 
print(training_examples.describe()) 
print('Validation examples summary:') 
print(validation_examples.describe()) 
 
print('Training targets summary:') 
print(training_targets.describe()) 
 
print('Validation targets summary:') 
print(validation_targets.describe()) 
 
 
# Definition of the variables of the network. It also calls the training function, starting the 
training process 
_, adam_training_losses, adam_validation_losses = train_nn_regression_model( 
    my_optimizer=tf.train.AdamOptimizer(learning_rate=0.003), 
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    steps=2000, 
    batch_size=120, 
    hidden_units=[10, 10], 
    training_examples=training_examples, 
    training_targets=training_targets, 
    validation_examples=validation_examples, 
    validation_targets=validation_targets) 
# End of the program 
 
 
The function preprocess_targets changes depending on the experiment and wind turbine. The 

code shown above corresponds to the first experiment and first wind turbine. 

 

Second experiment second wind turbine: 

def preprocess_targets(wind_farm_dataframe):  # Function to define the target of the neural 
network, changes depending the model  
    selected_features = wind_farm_dataframe[ 
        ["WSpeed_2"]] 
    processed_features = selected_features.copy() 
    # Create a synthetic feature. Only turibines 1 and 3 are close to turbine 2 
    processed_features["WW12"] = ( 
            wind_farm_dataframe["WSpeed_1"] * 
            wind_farm_dataframe["T1_T2"]) 
    processed_features["WW32"] = ( 
            wind_farm_dataframe["WSpeed_3"] * 
            wind_farm_dataframe["T3_T2"]) 
    return processed_features 
 
 
Third experiment second wind turbine: 

def preprocess_features(wind_farm_dataframe): # Function to define the target of the neural 
network, changes depending the model 
    selected_features = wind_farm_dataframe[ 
        ["WSpeed_2"]] 
    processed_features = selected_features.copy() 
    # Create a synthetic feature. All the turbines are considered 
    processed_features["WW12"] = ( 
            wind_farm_dataframe["WSpeed_1"] * 
            wind_farm_dataframe["T1_T2"]) 
    processed_features["WW32"] = ( 
            wind_farm_dataframe["WSpeed_3"] * 
            wind_farm_dataframe["T3_T2"]) 
    processed_features["WW42"] = ( 
            wind_farm_dataframe["WSpeed_4"] * 
            wind_farm_dataframe["T4_T2"]) 
    return processed_features 
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Fourth experiment any wind turbine: 

def preprocess_features(wind_farm_dataframe): # Function to define the target of the neural 
network, changes depending the model 
    selected_features = wind_farm_dataframe[ 
        ["Direction", 
         "WSpeed_1", 
         "WSpeed_2", 
         "WSpeed_3", 
         "WSpeed_4"]] 
    processed_features = selected_features.copy() 
    return processed_features 
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Annex B Prediction program 

# Start of the code importing the libraries 
from __future__ import absolute_import, division, print_function 
import math 
import numpy as np 
import pandas as pd 
import tensorflow as tf 
from sklearn import metrics 
from tensorflow.python.data import Dataset 
 
 
# Function to define the inputs. Different depending on the model and turbine 
def preprocess_features(wind_farm_dataframe): 
    selected_features = wind_farm_dataframe[ 
        ["WSpeed_1"]] 
    processed_features = selected_features.copy() 
    return processed_features 
 
# Function to define the target of the neural network. “Powe_1” changes depending on the 
modeled wind turbine 
def preprocess_targets(wind_farm_dataframe): 
    selected_targets = wind_farm_dataframe[ 
        ["Power_1"]] 
    output_targets = selected_targets.copy() 
    return output_targets 
 
# Function used to construct the columns used by the program with the data 
def construct_feature_columns(input_features): 
    return set([tf.feature_column.numeric_column(my_feature) for my_feature in 
input_features]) 
 
# Function in charge to provide the data to the prediction function 
def my_input_fn(features, targets, batch_size=120, shuffle=False, num_epochs=10): 
    features = {key: np.array(value) for key, value in dict(features).items()} 
    ds = Dataset.from_tensor_slices((features, targets)) 
    ds = ds.batch(batch_size).repeat(num_epochs) 
    if shuffle: 
        ds = ds.shuffle(10000) 
    features, labels = ds.make_one_shot_iterator().get_next() 
    return features, labels 
 
 
# Function to make the predictions. Changes depending on the modeled wind turbine 
def make_predictions(data_examples, data_targets): 
    # Input data into columns 
    def predict_data_input_fn(): return my_input_fn(data_examples, data_targets["Power_1"], 
shuffle=False, num_epochs=1) 
 
    # Definitions of some parameters of the network. They have to be the same than the built 
model 
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    print("Computing predictions") 
    data_rmse = [] 
    my_optimizer = tf.train.AdamOptimizer(learning_rate=0.003) 
    dnn_regressor = 
tf.estimator.DNNRegressor(feature_columns=construct_feature_columns(training_examples), 
hidden_units=[10,10], optimizer=my_optimizer, model_dir='Program_1_T1')  # model_dir 
specifies the names of the built neural network to use. Changes with every model and turbine 
    # Computes the predictions for the data 
    data_predictions = dnn_regressor.predict(input_fn=predict_data_input_fn) 
    data_predictions = np.array([item['predictions'][0] for item in data_predictions]) 
 
    # Calculate and print the data root mean squared error 
    print("RMSE on data data:") 
    data_root_mean_squared_error = math.sqrt( 
        metrics.mean_squared_error(data_predictions, data_targets)) 
    print(data_root_mean_squared_error) 
 
    # Calculate and print the data mean absolute error 
    print("MAE on data data:") 
    data_mean_absolute_error = metrics.mean_absolute_error(data_predictions, data_targets) 
    print(data_mean_absolute_error) 
 
    # Calculate and print the data normalized root mean squared error 
    print("NRMSE on data:") 
    dt_max = data_targets.max() 
    dt_min = data_targets.min() 
    dt_range = dt_max - dt_min 
    nrmse = data_root_mean_squared_error / dt_range 
    print("%.4f" % nrmse) 
    nothing = 0 
 
    # Save the predictions in a csv file. Changes for every wind turbine and model 
    np.savetxt("E1_T1_predictions.csv", data_predictions, fmt='%i', delimiter=".") 
 
    return dnn_regressor, data_rmse, nothing 
 
 
# First executed lines on the code. Lecture of the data file 
wind_farm_dataframe = pd.read_csv('4T_data_z.csv', sep=";") 
 
# Division into training (0 data points) and prediction points (all data) 
training_dataframe = wind_farm_dataframe.head(0) 
data_dataframe = wind_farm_dataframe.tail(2980) 
 
# Definition of the training data input variables and targets, calling the preprocess function 
training_examples = preprocess_features(training_dataframe) 
training_targets = preprocess_targets(training_dataframe) 
 
# Definition of the validation data input variables and targets, calling the preprocess function 
data_examples = preprocess_features(data_dataframe) 
data_targets = preprocess_targets(data_dataframe) 
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make_predictions( 
    data_examples, 
    data_targets,) 
# End of the program 
 
 
The same way it happened with the neural network building program, the function 

preprocess_targets changes depending on the experiment and wind turbine. The code shown 

above corresponds to the first experiment and first wind turbine. 

 

Second experiment third wind turbine: 

def preprocess_targets(wind_farm_dataframe):  # Function to define the target of the neural 
network, changes depending the model  
    selected_features = wind_farm_dataframe[ 
        ["WSpeed_3"]] 
    processed_features = selected_features.copy() 
    # Create a synthetic feature. Only turivines 1 and 3 are close to turbine 2 
    processed_features["WW23"] = ( 
            wind_farm_dataframe["WSpeed_2"] * 
            wind_farm_dataframe["T2_T3"]) 
    processed_features["WW43"] = ( 
            wind_farm_dataframe["WSpeed_4"] * 
            wind_farm_dataframe["T4_T3"]) 
    return processed_features 
 
 
Third experiment third wind turbine: 

def preprocess_features(wind_farm_dataframe): # Function to define the target of the neural 
network, changes depending the model 
    selected_features = wind_farm_dataframe[ 
        ["WSpeed_3"]] 
    processed_features = selected_features.copy() 
    # Create a synthetic feature. All the turbines are considered 
    processed_features["WW13"] = ( 
            wind_farm_dataframe["WSpeed_1"] * 
            wind_farm_dataframe["T1_T3"]) 
    processed_features["WW23"] = ( 
            wind_farm_dataframe["WSpeed_2"] * 
            wind_farm_dataframe["T2_T3"]) 
    processed_features["WW43"] = ( 
            wind_farm_dataframe["WSpeed_4"] * 
            wind_farm_dataframe["T4_T3"]) 
    return processed_features 
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Fourth experiment any wind turbine: 

def preprocess_features(wind_farm_dataframe): # Function to define the target of the neural 
network, changes depending the model 
    selected_features = wind_farm_dataframe[ 
        ["Direction", 
         "WSpeed_1", 
         "WSpeed_2", 
         "WSpeed_3", 
         "WSpeed_4"]] 
    processed_features = selected_features.copy() 
    return processed_features 
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Annex C Example of weights and bias 

The variables of the artificial neural network built for experiment three on turbine two are 

presented in this section. 

Hidden layer 0 biases (10):  

[-2.2629993  0.0  -2.3334885 -2.1038103 -2.3230484 -1.5351306  5.3352494 -1.9405178 -

1.613827  -1.9217118] 

Hidden layer 0 weights (40): 

[ 1.5577463  -0.5589123   1.2662009   1.4083465   1.6274635   1.3164632  -0.5147033   

2.0170853   1.4034286   1.4338775 ]  [ 0.10441468 -0.21803194 -0.1592556   0.10318922  

0.70210016  0.52267194  -0.14389883  0.48518068 -0.22579837 -0.06501166]  [-0.3916983  -

0.60563266 -0.4928379   0.45800066 -0.14909334  0.33005875   0.516707   -0.376141    

0.53988814  0.2710582 ] [ 0.06120335  0.18874496 -0.44205     0.65646493 -0.12867501  

0.8255637  -0.34948352 -0.27778846  0.0477577  -0.29761925] 

Hidden layer 1 biases (10): 

[-1.7156622   0.  0.  -1.2858016  -1.4235102  -0.08341152  -0.15444517 -1.5596482  -1.5470536  

-0.13749859] 

Hidden layer 1 weights (100): 

[ 1.02061856e+00 -5.42722940e-01 -4.12156314e-01  8.65389824e-01  1.43676686e+00 -

3.90585005e-01 -6.18425965e-01  1.59634686e+00   9.21121001e-01 -2.31957704e-01]  [ 

1.28054380e-01 -1.37600303e-01  3.32804561e-01  2.01771498e-01  7.06251264e-02 -

3.15542102e-01  3.69530559e-01 -2.19855100e-01  -2.60879219e-01  4.43746150e-01]  [ 

1.40822208e+00 -4.19518173e-01 -1.81456327e-01  7.83065915e-01  1.17729330e+00 -

4.96812791e-01  1.53294697e-01  6.34682178e-01  1.14038789e+00  2.80405313e-01]  [ 

1.70690370e+00  4.00354266e-02 -4.82270807e-01  1.42761171e+00  7.64858663e-01 -

3.95639926e-01  1.78135887e-01  1.37728548e+00  1.71924436e+00  1.43486083e-01]  [ 

1.22178602e+00 -4.73049402e-01  3.20699692e-01  1.56479418e+00  7.42276192e-01 -

8.17710906e-02  1.14480406e-01  1.13044453e+00  1.34552848e+00  3.40805292e-01]  [ 

1.49686325e+00 -5.19893110e-01 -3.31989974e-01  1.64493823e+00  1.70003986e+00  

1.39515817e-01 -1.36673048e-01  1.06868792e+00  1.02461112e+00 -3.43844771e-01]  [-

5.78605461e+00  1.39009714e-01 -1.48350120e-01 -5.82846165e+00  -6.01868296e+00 -

4.21262681e-01  2.99277276e-01 -5.51626205e+00  -5.14218473e+00  8.90611708e-02]  [ 

1.71358025e+00 -3.57750058e-02 -1.99437797e-01  6.33343935e-01  1.41652727e+00  

2.04169840e-01  1.48590684e-01  1.25519311e+00  1.36558366e+00 -2.32458100e-01]  [ 

1.90962303e+00 -3.58574033e-01 -1.80594325e-01  1.25331187e+00  1.22728205e+00 -

3.51428092e-01 -3.56823415e-01  2.18730259e+00  2.13092041e+00  1.61754116e-01]  [ 
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1.77002585e+00 -5.39994240e-03 -3.57782006e-01  1.36180329e+00  1.90675390e+00  

2.14951783e-02  2.78257817e-01  1.76161599e+00  1.25287867e+00 -5.53097665e-01] 

Output layer bias (1): 

[-0.2766465] 

Output layer weights (10): 

[ 1.9593222 ]  [ 0.6672378 ]  [ 0.26278406]  [ 2.3600223 ]  [ 1.917514  ]  [ 0.264897  ]  [-

0.47745773]  [ 1.8691419 ]  [ 2.6341004 ]  [-0.2943368 ] 

 

Total number of parameters: 171 
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Annex D Data cleaning program 

Data cleaning program, developed in VBA for Microsoft Excel: 

Sub cleaning() 
 
'Declare excel files 
Dim wb_cur As Workbook   'Declaration of the file which is being used 
Dim sh_cur As Worksheet   'Declaration of the working sheet 
 
'Declaration of variables 
Dim P1 As Double 
Dim P2 As Double 
Dim P3 As Double 
Dim P4 As Double 
Dim P5 As Double 
Dim Erased As Double 
Dim initial_data As Double 
Dim i As Integer 
Dim cont As Integer 
 
Set wb_cur = ActiveWorkbook  'Assignation of wb_cur to the current open file 
Set sh_cur = wb_cur.Sheets(1)  'The same with the shit (number) 
 
''''''''''''''''''''''''''''''''''Body of the program'''''''''''''''''''''''''''''''''' 
initial_data = sh_cur.Range(Cells(3, 1), Cells(3, 1).End(xlDown)).Rows.Count + 2 'Counting the 
number of data 
Erased = 0      'Initiation of variables 
cont = 1 
i = 3 
While cont < 7823     'Cleaning loop 

P1 = sh_cur.Cells(i, 3)    'Powers lecture 
P2 = sh_cur.Cells(i, 5) 
P3 = sh_cur.Cells(i, 7) 
P4 = sh_cur.Cells(i, 9) 
If P1 <= 100 Or P2 <= 100 Or P3 <= 100 Or P4 <= 100 Then 'Condition to clean the row 

Cells(i, 1).Select 
Range(Selection, Selection.End(xlToRight)).Select   'Cleaning the row 
Selection.Delete Shift:=xlUp 
Erased = Erased + 1 
i = i - 1 

End If 
i = i + 1 
cont = cont + 1 

Wend       'End of the cleaning loop 
End Sub      'End of the program 
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Annex E Matrix program 

Code used to build the matrix for the experiments 2 and 3, developed in VBA for Microsoft 
Excel: 
 
Sub matrix() 
 
'Declare excel files 
Dim wb_cur As Workbook  'Declaration of the file which is being used 
Dim sh_cur As Worksheet  'Declaration of the working sheet 
 
'Declaration of variables 
Dim initial_data As Double 
Dim i As Integer 
 
'Defineixo arxius excel 
Set wb_cur = ActiveWorkbook  'Assignation of wb_cur to the current open file 
Set sh_cur = wb_cur.Sheets(1)  'The same with the shit (number) 
 
''''''''''''''''''''''''''''''''''Body of the program'''''''''''''''''''''''''''''''''' 
 
initial_data = sh_cur.Range(Cells(2, 1), Cells(2, 1).End(xlDown)).Rows.Count 'Counting the 
number of data 
i = 2 
While i < initial_data + 2 'Loop used to build the matrix 
  'T1_T2 

If sh_cur.Cells(i, 1) >= 5 And sh_cur.Cells(i, 1) <= 35 Then 
sh_cur.Cells(i, 10) = 1 

Else: sh_cur.Cells(i, 10) = 0 
End If 
'T2_T3 
If sh_cur.Cells(i, 1) >= 17 And sh_cur.Cells(i, 1) <= 47 Then 

sh_cur.Cells(i, 11) = 1 
Else: sh_cur.Cells(i, 11) = 0 
End If 
'T3_T4 
If sh_cur.Cells(i, 1) >= 26 And sh_cur.Cells(i, 1) <= 56 Then 

sh_cur.Cells(i, 12) = 1 
Else: sh_cur.Cells(i, 12) = 0 
End If 
'T4_T3 
If sh_cur.Cells(i, 1) >= 206 And sh_cur.Cells(i, 1) <= 236 Then 

sh_cur.Cells(i, 13) = 1 
Else: sh_cur.Cells(i, 13) = 0 
End If 
'T3-T2 
If sh_cur.Cells(i, 1) >= 197 And sh_cur.Cells(i, 1) <= 227 Then 

sh_cur.Cells(i, 14) = 1 
Else: sh_cur.Cells(i, 14) = 0 
End If 
'T2_T1 
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If sh_cur.Cells(i, 1) >= 185 And sh_cur.Cells(i, 1) <= 215 Then 
sh_cur.Cells(i, 15) = 1 

Else: sh_cur.Cells(i, 15) = 0 
End If 
'T1-T3 
If sh_cur.Cells(i, 1) >= 10 And sh_cur.Cells(i, 1) <= 40 Then 

sh_cur.Cells(i, 16) = 1 
Else: sh_cur.Cells(i, 16) = 0 
End If 
'T1-T4 
If sh_cur.Cells(i, 1) >= 15 And sh_cur.Cells(i, 1) <= 45 Then 

sh_cur.Cells(i, 17) = 1 
Else: sh_cur.Cells(i, 17) = 0 
End If 
'T2-T4 
If sh_cur.Cells(i, 1) >= 22 And sh_cur.Cells(i, 1) <= 52 Then 

sh_cur.Cells(i, 18) = 1 
Else: sh_cur.Cells(i, 18) = 0 
End If 
'T4-T2 
If sh_cur.Cells(i, 1) >= 202 And sh_cur.Cells(i, 1) <= 232 Then 

sh_cur.Cells(i, 19) = 1 
Else: sh_cur.Cells(i, 19) = 0 
End If 
'T4-T1 
If sh_cur.Cells(i, 1) >= 195 And sh_cur.Cells(i, 1) <= 225 Then 

sh_cur.Cells(i, 20) = 1 
Else: sh_cur.Cells(i, 20) = 0 
End If 
'T3-T1 
If sh_cur.Cells(i, 1) >= 190 And sh_cur.Cells(i, 1) <= 220 Then 

sh_cur.Cells(i, 21) = 1 
Else: sh_cur.Cells(i, 21) = 0 
End If 

     
i = i + 1 

     
Wend    'End of the matrix loop 
End Sub   'End of the program 
 


