

Visibility- and Horizontal visibility graph of Gaussian white noise,

𝐴𝑅 (1), 𝑀𝐴 (1) and 𝐴𝑅𝑀𝐴 (1,1)

FARNOOSH FARHANGIAN

GRY MERETHE NERJORDET

Exploration of stationary time-series’
network properties

SUPERVISOR

Jochen Jungeilges

University of Agder, 2019

School of Business and Law

Department of Economics and Finance

i

PREFACE

This thesis is the culmination of a five-year long economics study at the university in Agder. In our

studies, both of us have always opted for the more number-oriented electives. The choice of

financial economics as our specialization in the master program was therefore a natural one. We

are however not typical student straight out of high school. Farnoosh has a bachelor’s degree in

physics and Gry has a bachelor’s degree in both graphics and game design.

Visibility graphs is therefore a topic that suited us both, but in very different ways. Graph and

network theory are both closely interlinked with physics and the ability to visually explore graphs

enhance the understanding of its properties. This has resulted in a thesis with a different

approach and appearance compared to other studies in this subject. We have often opted to use

visual representations as an alternative to tables.

Another motivating factor was the fact that this topic was completely new. We both enjoy the

accumulation of knowledge and appreciate a challenge. Looking back to January, it is almost

unbelievable that we did not know the basics of the topic in which we now have written a master

thesis.

We express our gratitude to our supervisor, Jochen Jungeilges, for challenging us with this topic,

believing that we were up to this task, and having the nerve of letting the thesis evolve naturally

as our understanding of the topic grew. We would not have been able to arrive at our final results

without his input and guidance. In addition, he supplied us with the R-script which generate a

time-series’ adjacency matrix based on the horizontal visibility algorithm. We extended this script

to include the visibility graph algorithm as well, and it was essential script in our work.

We also wish to express our gratitude towards our families who, in the last five months, have

been both understanding and forgiving when we embarked on, and finished, this rather all-

consuming task.

ii

ABSTRACT

We have recorded the network properties of stochastic processes’ white noise, 𝑀𝐴(1), 𝐴𝑅(1)

and 𝐴𝑅𝑀𝐴(1,1) by means of visibility- and horizontal visibility algorithms. The sample series of

the stochastic processes were artificially generated and used in simulations with multiple

repetitions. We examined six global network properties: mean degree, normalized degree

centrality, degree distribution, transitivity, assortativity and average geodesic path to discover

how they reflect the structure of the series. These properties were also used to disclose change

in behavior due to variation in the series length. Our contribution to the literature is a thorough

recording of basic stochastic processes’ network statistics, and the interpretation of these related

to time-series. To our knowledge, this is the first time a documentation of this magnitude has

been attempted. The thesis result will disclose that the combined network statistics mentioned

above are able to recognize a Gaussian white noise process, both by visibility- and horizontal

visibility graphs. It is, in addition, possible to distinguish between the processes different

autocorrelation coefficients by means of the visibility graph.

iii

TABLE OF CONTENTS

1 Introduction ... 1

2 Evolution and application of time-serie-based networks ... 4

3 Stochastic prosesses and their simulations ... 7

3.1 White noise process .. 7

3.2 Moving average process .. 8

3.3 Autoregressive process ... 9

3.4 Autoregressive moving average process ... 11

3.5 Simulation of sample series of stochastic processes .. 13

4 Creation and analysis of visibility graphs .. 17

4.1 Visibility graph ... 17

4.2 Horizontal visibility graph .. 20

4.3 Network statistics .. 22

5 Discoveries ... 29

5.1 Variations in network properties due to change in length of the sample series 29

5.2 Identifying white noise processes through network statistic ... 32

5.3 Variation in network properties due to change in autocorrelation coefficient 36

5.4 Estimation of parameters on the basis of network statistics .. 48

6 Discussion .. 51

7 Conclusion ... 53

References ... 54

Appendices .. 56

A: Line plot of realizations generate by an 𝑀𝐴(1) with different parameters 57

B: Line plot of realizations generate by an 𝐴𝑅(1) with different parameters: 58

C: Line plot of realizations generate by an 𝐴𝑅𝑀𝐴1,1with different parameters for 𝐴𝑅 ∗ 59

D: Graphs of realizations generated by an 𝑀𝐴(1) with different parameters 60

E: Graphs of realizations generate by an 𝐴𝑅(1) with different parameters 67

F: : Line plot of realizations generate by an 𝐴𝑅𝑀𝐴(1,1) with different parameters for 𝐴𝑅 ∗ 74

G: OLS regression analysis ... 81

H: R- code .. 91

I: Reflection notes.. 116

iv

TABLE OF FIGURES

Figure 1: Typical realization of Gaussian white noise process .. 7

Figure 2: Typical realization of a moving average process of order one ... 8

Figure 3: Typical realization of an autoregressive process of order one .. 10

Figure 4: Typical realization of an autoregressive moving average process ... 12

Figure 5: Line chart of the example realization of white noise ... 13

Figure 6: Line chart of the example realization of 𝑀𝐴(1) .. 14

Figure 7: Line chart of the example realization of 𝐴𝑅(1) ... 15

Figure 8: Line chart of the example realization of 𝐴𝑅𝑀𝐴(1,1) .. 16

Figure 9: From time-series to visibility graph - a small example ... 19

Figure 10: From time-series to horizontal visibility grap - a small example.. 21

Figure 11: Network from an example realization of the white noise process 29

Figure 12: Change in network properties due to the length of sample series 31

Figure 13: Change in network properties due to length of sample series, fitted to functions 34

Figure 14: Selected network from example realization of 𝑀𝐴(1) .. 38

Figure 15: Change in network properties due to autocorrelation coefficient, 𝑀𝐴(1) 41

Figure 16: Selected network from example realization of 𝐴𝑅(1) .. 43

Figure 17: Change in network properties due to autocorrelation coefficient, 𝐴𝑅(1) 45

Figure 18: Selected network from example realization of 𝐴𝑅𝑀𝐴(1,1) ... 45

Figure 19: Change in network properties due to autocorrelation coefficient, 𝐴𝑅𝑀𝐴(1) 48

Figure 20: Relationship between transitivity and autocorrelation coefficient fitted to functions 49

Figure 21: Relationship between mean degree and autocorrelation coefficient fitted to functions ... 50

TABLE OF TABLES

Table 1: Descriptive statistics of the example realization of white noise ... 13

Table 2: Descriptive statistics of the example realization of 𝑀𝐴(1) .. 14

 Table 3: Descriptive statistics of the example realization of 𝐴𝑅(1) .. 15

 Table 4: Descriptive statistics of the example realization of 𝐴𝑅𝑀𝐴(1,1) ... 16

Table 5: Test for Gaussian white noise - upper and lower boundaries ... 35

Table 6: Parameters used in the classification of autocorrelation coefficient – transitivity................. 48

Table 7: Parameters used in the classification of autocorrelation coefficient - mean degree 49

file:///C:/_Skole/Master%20oppgave/_Thesis/Masteroppgave_190602_FINAL.docx%23_Toc10387612
file:///C:/_Skole/Master%20oppgave/_Thesis/Masteroppgave_190602_FINAL.docx%23_Toc10387613
file:///C:/_Skole/Master%20oppgave/_Thesis/Masteroppgave_190602_FINAL.docx%23_Toc10387614
file:///C:/_Skole/Master%20oppgave/_Thesis/Masteroppgave_190602_FINAL.docx%23_Toc10387615
file:///C:/_Skole/Master%20oppgave/_Thesis/Masteroppgave_190602_FINAL.docx%23_Toc10387616
file:///C:/_Skole/Master%20oppgave/_Thesis/Masteroppgave_190602_FINAL.docx%23_Toc10387617
file:///C:/_Skole/Master%20oppgave/_Thesis/Masteroppgave_190602_FINAL.docx%23_Toc10387618
file:///C:/_Skole/Master%20oppgave/_Thesis/Masteroppgave_190602_FINAL.docx%23_Toc10387619
file:///C:/_Skole/Master%20oppgave/_Thesis/Masteroppgave_190602_FINAL.docx%23_Toc10387620
file:///C:/_Skole/Master%20oppgave/_Thesis/Masteroppgave_190602_FINAL.docx%23_Toc10387621
file:///C:/_Skole/Master%20oppgave/_Thesis/Masteroppgave_190602_FINAL.docx%23_Toc10387622
file:///C:/_Skole/Master%20oppgave/_Thesis/Masteroppgave_190602_FINAL.docx%23_Toc10387623
file:///C:/_Skole/Master%20oppgave/_Thesis/Masteroppgave_190602_FINAL.docx%23_Toc10387624
file:///C:/_Skole/Master%20oppgave/_Thesis/Masteroppgave_190602_FINAL.docx%23_Toc10387625
file:///C:/_Skole/Master%20oppgave/_Thesis/Masteroppgave_190602_FINAL.docx%23_Toc10387626
file:///C:/_Skole/Master%20oppgave/_Thesis/Masteroppgave_190602_FINAL.docx%23_Toc10387627
file:///C:/_Skole/Master%20oppgave/_Thesis/Masteroppgave_190602_FINAL.docx%23_Toc10387628
file:///C:/_Skole/Master%20oppgave/_Thesis/Masteroppgave_190602_FINAL.docx%23_Toc10387629
file:///C:/_Skole/Master%20oppgave/_Thesis/Masteroppgave_190602_FINAL.docx%23_Toc10387630
file:///C:/_Skole/Master%20oppgave/_Thesis/Masteroppgave_190602_FINAL.docx%23_Toc10387631
file:///C:/_Skole/Master%20oppgave/_Thesis/Masteroppgave_190602_FINAL.docx%23_Toc10387632

1

1 INTRODUCTION

The accumulation of data gathered in the form of time-series have grown exponentially in the

latest decade. With internet of things and smart speakers listening in on conversations in almost

every households, the amount of data collected appear limitless. But the value of this data does

not lie in its sheer volume, it’s in what it can communicate about behaviors, trends, relationships

and dependencies. The traditional and often preferred method of studying time-series is by the

means of time-series analysis. Time-series analysis maps the change of a variable over time and

determines the relationship between variables.

Analyzing real-life time-series, however, may be problematic with this kind of analysis. They often

violate stationarity, which is an important assumption in time-series analysis. A series is stationary

when it has a constant variance and mean over time, a trait that seldom appear naturally. The

problem with stationarity is an old one, and it has been proven that using time-series analysis on

non-stationary series can give spurious results. The common solution to the reoccurring

stationarity problem is to transform the data until the series is stationary and then perform the

analysis. The issue with these transformations is that the result from the analysis are of the

transformed data, not the data which we were intending to study. The task of relating the results

of the analysis to the actual process under scrutiny can be challenging.

In recent years the idea of converting time-series to networks, bypassing the whole problem with

stationarity altogether, has bloomed. This is achieved by mapping a time-series into a graph by

an algorithm. Before we move further on, we need to clarify the use of the word graph. This is

often used as a common descriptor for any graphical representation of a dataset. In this context

though, we are discussing the mathematical graph. In his introductory book on graph theory

Wilson (2010, p. 8) describe a graph in exactly the same way as Newman (2010, p. 10) describes

a network in his introduction to networks. A network (and a graph) is a visualization of

relationships through dots (referred to as nodes) connected by lines (called edges). Thus, the term

graph and network are interchangeable in this text.

This mapping of time-series will also result in some information loss, but it will keep most of the

time-series’ original properties. The loss will therefore be less than the one faced when

transforming to achieve stationarity. The theory of complex networks is well-developed and have

the potential to provides as much information as a time-series analysis. One of the main focus in

this active field of science is the expectation that structural properties of the underlying data

generating process allows for discrimination between different types of processes.

When we were familiarizing ourselves with this topic, we were surprised by the lack of interest in

the basic network properties of the stochastic processes. Most articles focused on one

measurement, typically the cumulative degree distribution, and tried to find characteristics which

separates stochastic processes from chaos. And we were wondering: how are they supposed to

find differences with no clear idea about the baseline? Namely the network behavior of the

stochastic processes. We chose to start at the other end of the chase of finding a method to

identity chaos, by investigating and documenting the network behavior of stochastic processes.

2

Our intention with this exploratory exercise is to generate some benchmarks from which it would

eventually be possible to differentiate between processes.

There are multiple methods which can transform a time-series into a network. We chose to use

the visibility algorithm and the horizontal visibility algorithm. The conversion involves the use of

the visibility criterion which determine the connections based on the time-series different

realizations. The horizontal visibility graph is a subgraph of the visibility graph and has a stricter

visibility criterion. The mapping itself is achieved by an algorithm which generates an adjacency

matrix. This matrix records the connection, edges, between each pair of nodes. The number of

edges connected to a node is denoted as the node’s degree.

The visibility- and horizontal visibility graphs are linked directly to the time domain and this makes

it possible to identify which time-series properties the different network statistics are related to.

These algorithms also result in fast conversion which is a factor when dealing with larger sample

sizes.

As graph theory offers a vast number of measurements, we chose to narrow this down to the

global measurements with less of a social network orientation. The chosen statistics were mean

degree, normalized degree centrality, the properties of degree distribution, transitivity,

assortativity and averages shortest paths length. All statistics where calculated for both visibility

graph and its subgraph.

Our focus in this study is different from what has been done previously as we decided to study

four different types of stochastic processes. The stochastic processes used are Gaussian white

noise, autoregressive (𝐴𝑅), moving average (𝑀𝐴) and a combination of both autoregressive and

moving average, an 𝐴𝑅𝑀𝐴, processes, the last three are of order one.

To narrow the scope of our work we chose two research questions. Firstly, to explore how our

elected global network statistics behave with different sample lengths, if the network is

generated from a Gaussian white noise process. By recording these behaviors, we hope to

generate a baseline from which, it would be possible to recognize a white noise process,

independent of the time-series’ stationarity. Secondly, to identify how a change in

autocorrelation coefficients of 𝐴𝑅(1), 𝑀𝐴(1) and 𝐴𝑅𝑀𝐴(1,1) represent itself in the

corresponding networks properties. This will be done with white noise as a benchmark using

results and the insights from the first analysis to enhance the latter. Our purpose of this study is

to be able to distinguish between these three processes by means of their network statistics,

again independent of stationarity.

All time-series in this thesis are artificially generated in the free software 𝑅, and no real-life time-

series was used. Our research strategy involves numerical experiments. A basic experimental run

takes the following form: a sample series from a known 𝐴𝑅𝑀𝐴 type data generating processes is

represented as a network. Such a representation is achieved via a transformation of the

respective sample series. The resulting network structure is then captured and summarized the

selected network statistics. Thereby an element in the 𝐴𝑅𝑀𝐴 family (a specific stochastic

process) is associated with a point in the space of network characteristics. By replicating such a

3

basic run many times, we hope to identify the network properties of the underlying stochastic

process in a reliable fashion. For this approach to be viable, the algorithm facilitating the

transformation from the sample series into a network has to be both intuitive and fast. We also

created a reference set consisting of typical realizations from the different processes. These were

constructed such that each series had the same error term and network layout, thus the only

difference was the data generating process’. This made it possible to visually compare the graphs

and was used to enhance our understanding of the pattern revealed in the multiple repetition

simulations. By fixing the graphs layout we lose the ability to visually recognize communities,

especially with large sample sizes. Communities are groups of well-connected nodes which are

linked to external nodes by a few of its interconnected nodes. This was a sacrifice we were willing

to make as we have minimal use of communities in our thesis.

This study will describe and interpret the network behaviors of selected stochastic processes’ in

an extensive matter. The behavior can be used to identify stochastic processes, permitting the

development of tests and tools. Such a comprehensive analysis has not, to our knowledge, been

attempted before and may be the starting point to a different approach toward distinguishing

amongst different types of data generating processes.

The structure of the sections is organized as follows: the next section is a summary of the

evolution and use of networks with focus on time-series based networks. The development of

visibility- and horizontal visibility graphs will be emphasized. Next in section three, we will present

the stochastic processes studied, followed by a description of our simulation strategy with

selected results. Section four describes the mapping of time series as visibility- and horizontal

visibility graphs. It also presents the network statistics with examples. Next, in section five we

finally present and interpret our findings both individual and compared to each other. The final

sections include a discussion, section six, followed by a conclusion in section seven.

4

2 EVOLUTION AND APPLICATION OF TIME-SERIE-BASED NETWORKS

The idea of visually presenting relationships through the means of a graph is not new. It was used

in games in ancient Egypt, to visualized family trees in the middle ages and as a categorization

tool in medieval literature. Even though this visualization method had been readily available for

thousands of years, the father of graph theory (the study of connection between things), Leonard

Euler, did not actually use this in his 1736 papers. It did not take long however before his

colleagues, like Vandermonde, Listing and Hamilton, used graph drawing in combination with

graph theory with great success (Kruja, Marks, Blair, & Waters, 2002).

Graph theory is now an established branch of mathematics. But the idea of being able to

characterize a time-series’ underlying process by the transformation to a complex network,

however, is new. It has only been around for about a decade. The possibility of using graph theory

to analyze data with problematic properties regarding to regular time-series analysis, makes this

notion widely attractive. It is still considered very much as an active field of science where most

of the efforts are focused on the use of complex networks to distinguish between a stochastic

process and a chaotic system.

As mentioned above, we try to understand the network properties associated with linear

stochastic processes (with white noise as a special case). The visibility graph and its subgraph are

our preferred methods of converting time-series to networks. The cleverly named visibility

algorithm generates a graph where the nodes are the value of each of the time-series data points

(realizations). The connections (edges) depend on the angle of a line between each node as well

as the value of nodes in between. If the time-series is plotted as a bar plot, the connection

criterion states simply that if the columns can see each other, they are considered to be linked.

This algorithm converts a time-series directly from the time domain resulting into a network that

inherits the time-series structure and is unaffected by rescaling and transformations (Lacasa,

Luque, Ballesteros, Luque, & Nuño, 2008). Another property of the visibility graph discovered by

Lacasa, Luque, Luque, and Nuño (2009) was the dependency between the degree distribution and

the Hurst parameter. This is in many cases used to differentiate stochastic processes from chaos.

They then proposed the possibility of estimating the Hurst exponent by the means of visibility

graphs and thereby be able to distinguish chaos from noise. Li et al. (2016) extended this theory

to short time-series by concluding that the Hurst exponent can be estimated by combining the

visibility graph with maximum likelihood equation and the KS statistics.

The horizontal visibility algorithm has stricter demands for when the nodes are connected. Thus,

creates a simple and analytically solvable subgraph of the visibility algorithm. Networks generated

by the horizontal visibility algorithm are also unaffected by rescaling and transformations.

Likewise, it is showed that, independent of the probability distribution of the time-series, the

degree distribution will have the same exponential functional form (Luque, Lacasa, Ballesteros, &

Luque, 2009). There have also been suggested, as with the visibility graph, that the exponential

degree distribution frontier can be used to distinguish between correlation stochastic,

uncorrelated stochastic and chaotic processes. This is done by considering the exponential degree

distribution as 𝑃(𝑘)~𝑒−𝜆𝑘, where 𝑘 is corresponding to the node degree and 𝜆 is a positive

parameter used for characterizing the process (Lacasa & Toral, 2010; Luque et al., 2009). Ravetti,

5

Carpi, Gonçalves, Frery, and Rosso (2014) discovered that for a white noise process, 𝜆 is computed

to be equal to ln (
3

2
), which will be more for correlated stochastic processes and less for chaotic

series. But they also discouraged the use of the exponential degree distribution as a general rule

for distinguish between processes, because they identified several cases where this hypothesis

did not hold. The use of this scaling factor as a method to distinguish stochastic from chaotic

dynamics where further advised against both in visibility and horizontal visibility graphs by Zhang,

Zou, Zhou, Gao, and Guan (2017). They stated that this could not be treated as a general law for

separating these dynamics, so the hunt for such a law, and the discovery of these graphs

properties continues.

We mentioned earlier that there is a lack of publications which documented the network statistics

of different stochastic processes. There are however a few who have embarked on this task.

When Luque et al. (2009) presented the horizontal visibility graph they also showed exact results

for random time series in three different network statistics. Four network properties of

autoregressive process of both first and second orders with time delay was studied by Zhang et

al. (2017) . The generalized autoregressive conditional heteroscedasticity process, GARCH, was

studied in a similar way by Segberg and Skoglund (2017) where they documented five different

network statistics.

The method of using graphs to analyze time-series are still very much in development, but

visibility and horizontal visibility have already been successfully applied in multiple studies.

Zhuang, Small, and Feng (2014) discovered that the node degree reflected historical incidents

which affected time-series from the developed financial markets. The series cycles were also

linked to the graph’s communities in which the density corresponded to the significance of the

cycles. This was also the case in the analysis of natural gas price in North America. They discovered

that large degree nodes which were linked with significant events and communities reflected the

time-series’ cycles (Sun, Wang, & Gao, 2016).

Yang, Qu, and Chang (2015) discovered that they could use visibility graphs to investigate the

relationship among parties in financing. It was shown that this result matches the current

situation and the default tendencies among the parties. They thereby proved that the network

analysis will provide the same results as traditional analysis.

An interesting study linking the coal price index and coal mining accident successfully generated

a warning for coal miners. This was based on economic indices by the use of a directed and

weighted network (Huang et al., 2016). Yu (2013) used the visiblity graph to analyse the gold price

time-series which revealed that the time-series was indeed a long-range dependent fractial

series.

Even though this text focuses on the visibility- and the horizontal visibility graphs, there are a

plethora of alternative transformation methods in the literature. The parametric natural visibility

graph is another subgraph of the visibility graph where the additional parameter view angle is

introduced, examining other dynamic properties than the original visibility graph (Bezsudnov &

Snarskii, 2014).

6

Zhang and Small (2006) created a complex undirected cycle network from pseudo periodic time-

series which were able to distinguish differences in the time-series’ properties. The networks

nodes corresponded to a cycle in the time-series and were connected with similar cycles. A phase

space-based algorithm was used by Xu, Zhang, and Small (2008) to sort chaotic and random noise

into different super families, thus being able to identify and differentiate these. Another methods

which use a recurrence matrix instead of the traditional adjacency matrix were purposed by

Marwan, Donges, Zou, Donner, and Kurths (2009). The recurrence matrix is generated from the

recurrences in phase space and the resulting graph showed potential for detecting dynamic

transitions. The authors also discovered that in an unweighted and undirected network the

adjacency and the recurrence matrix coincide. Network created using the recurrence matrix also

shows the relationship between the topological properties of the network and its underlying

dynamic systems (Donner, Zou, Donges, Marwan, & Kurths, 2010). This method is not derived

directly from the time domain though, it can be a challenge to interpret.

It has also been shown that the transformation of a time-series to a network can be reversed

opening the possibility of not just using network theory on time-series, but also using time-series

analysis on networks. Such a reversibility would only be possible if the transformed network

inherits characteristics from the time-series it is generated from (Campanharo, Sirer, Malmgren,

Ramos, & Amaral, 2011).

7

3 STOCHASTIC PROSESSES AND THEIR SIMULATIONS

We mentioned in the introduction that we narrowed our exploration of linear stochastic

processes to, 𝐴𝑅(1), 𝑀𝐴(1) and 𝐴𝑅𝑀𝐴(1,1) with the addition of the special case a white noise.

One might claim that these are the obvious start in the effort to determine the network properties

of stochastic processes.

3.1 White noise process

White noise is a homoscedastic, stationary process of random variables with no visible structure

and has the following properties:

𝐸(𝑦𝑡) = 𝜇 (1)

 𝑉𝐴𝑅(𝑦𝑡) = 𝜎2 (2)

 𝛾𝑡−𝑟 = {
𝜎2 𝑖𝑓 𝑡 = 𝑟
0 𝑖𝑓 𝑡 ≠ 𝑟

 (3)

Where 𝛾 denotes the autocovariance parameter. The process has a constant mean and variance

and zero covariance between observations of different lags and is identified as an uncorrelated

process. An uncorrelated process has no autocorrelation between different observations, and it

makes the process unpredictable.

We will use the Gaussian white noise process in our thesis. It is generated from a Gaussian

distributed random variable and creates an identically distributed zero white noise process. This

is a normally distributed process with a zero mean and a density function defined as:

 𝑓(𝑦) =
1

√2𝜋
 𝑒

−(𝑦−𝜇)2

2𝜎2⁄
 (4)

A typical plot display of a realization from a Gaussian white noise process will show perfect

fluctuation of observations around a constant mean of zero, as is shown in the figure below. This

mean reversion property could be used to determine the stationarity of the process. Even though

the observations fluctuate in the range from plus to minus three, the variance throughout the

series is constant and equal to one. The correlogram in the figure is depicting the realizations’

auto correlation parameter. It shows zero autocorrelation parameters for all the lags except the

lag of zero as expected. Lag zero will always be one because it shows the autocorrelation

parameter of a value with itself. The value from all other lags lies in the Bartlett’s band which

means their results are insignificant (Brooks, 2008, p. 209).

Line chart to the left, correlogram to the right of a typical realization with a sample size of 500

The blue line in the correlogram indicates the Bartlett’s band.

Figure 1: Typical realization of Gaussian white noise process

8

3.2 Moving average process

A moving average, (𝑀𝐴) process can be defined as a linear combination of white noise processes

and a process of order 𝑞, 𝑀𝐴(𝑞), is written as:

 𝑦𝑡= 𝜇 + 𝜃(𝐿)𝑢𝑡 (5)

which is expressing the dependence of the variable 𝑦𝑡 on the current and previous values of a

white noise term. The white noise terms are indicating the shocks in the process where:

 𝜃(𝐿) = 1 + 𝜃1𝐿 − 𝜃2𝐿2 + ⋯ + 𝜃𝑞𝐿𝑞 (6)

The order of 𝑞 is the number of lags of the white noise terms that impacts the value of the 𝑦𝑡.

A moving average process is a stationary process, where the autocovariance and autocorrelation

for the lags larger than 𝑞 are zero. The strengths of shocks effects are constructed by the

autocorrelation function. An autocorrelation function is defined as 𝜏𝑠 =
𝛾𝑠

𝛾0
 where 𝛾𝑠 is the

autocovariance at lag 𝑠, and 𝛾0 is interpreted as the autocovariance at lag zero (Brooks, 2008, pp.

211-214).

According to Verbeek (2004, p. 259) the length of the memory of the process could also be

constructed by the autocorrelation function. The value of the autocorrelation for lags greater

than 𝑞 is zero, and this implies that there will only be significant effect from shocks of current and

past 𝑞 periods on the value of 𝑦𝑡. For instant, for an 𝑀𝐴(1) there will be only significance effect

of shocks at time 𝑡 and 𝑡 − 1. This is illustrated in the figure below where we have presented a

realization of a 𝑀𝐴(1) process. The correlogram displays that the dependent variable does not

only get effect from shocks of the current period, but also the shock of the previous period. This

is consistent with the definition of an 𝑀𝐴(𝑞) process.

We limit the exploration of this thesis to a moving average process of order one, 𝑀𝐴(1). When

we manipulate the process’ autocorrelation coefficient, we are adjusting the previous value of

white noises’ effect on the current value.

Line chart to the left, correlogram to the right of a typical realization with a sample size of 500

The blue line in the correlogram indicates the Bartlett’s band. The vertical line outside the bend at tick one indicates

that the moving average process is at order one.

Figure 2: Typical realization of a moving average process of order one

9

3.3 Autoregressive process

A stochastic autoregressive process, (𝐴𝑅) is defined as a process where the current value of the

variable 𝑦 depends on its’ previous values and a stochastic error term, 𝑢𝑡. An autoregressive

process of order 𝑝, 𝐴𝑅(𝑝) , is written as:

 𝜑(𝐿)𝑦𝑡= 𝜇 + 𝑢𝑡 (7)

Where,

 𝜑(𝐿) = 1 − 𝜑1𝐿 − 𝜑2𝐿2 − ⋯ − 𝜑𝑝𝐿𝑝 (8)

and 𝑝 is the number of the lags. The expected value of the 𝑦𝑡 is expressed as the constant term

𝜇, and 𝑢𝑡 which is an unpredictable component expressing a white noise process.

An autoregressive process indicates that the current value of an observation is correlated with its

previous values. The correlation between the current value of an observation and a given lag

could be measured by the partial autocorrelation parameter as well as the autocorrelation

parameter. The only difference is that the partial autocorrelation function is removing the effects

from the intermediate lags while measuring the autocorrelation parameters, while the

autocorrelation function is considering the intermediate effects too. The correlations between

the current observation and it lags up to 𝑝 are significantly non-zero, while for lags larger than 𝑝,

there will be no significant correlations. This could be shown by the partial autocorrelation

function, where there is non-zero partial autocorrelation parameter up to lag 𝑝, and zero

thereafter. Unlike the partial autocorrelation function, the autocorrelation function of an

autoregressive process will show an exponential decay as lags get larger, it will not cut off to zero

for lags larger than 𝑝. A moving average process will show similar pattern in the partial

autocorrelation function (Brooks, 2008, pp. 215-225). How fast the autocorrelation parameters

of an 𝐴𝑅(𝑝) decrease in an autoregressive process is dependent on the correlation parameter 𝜑.

A large 𝜑 means that, it takes longer for the series to get back to its mean after a shock is

appearing (Verbeek, 2004, p. 260).

Stationarity is a desired property of an autoregressive process. According to Verbeek (2004, p.

258), a process is defined as a strictly stationary process, if any changes of the time origin do not

affect the properties of the process. This implies that the distribution of the process stays

unchanged. While a weakly stationary process, also called a covariance stationary process, is

referred to a process where its mean, variance and covariance are not dependent on time. The

world’s decomposition theorem states that any stationary process where |𝜑| < 1, could be

expressed as combination of a deterministic and a stochastic part. Based on this theorem, a

stationary autoregressive process of order 𝑝 with a mean of zero, could be represented as an

infinite order moving average model.

The mentioned relationship between the correlation parameter of an 𝐴𝑅(𝑝) and the decrease of

its autocorrelation parameters is shown in the illustration below of simulated 𝐴𝑅(1) process’,

their autocorrelation functions and partial autocorrelation functions. The plotted data shows

more mean reverting property for the correlation parameter of 0.3 (left) than for 𝜑 = 0.8 (right).

On the other hand, the autocorrelation function of the parameter of 𝜑 = 0.8 decreases

smoother. Which argues that a larger parameter leads to higher dependencies and makes the

10

process less mean reverting. This is because it takes a while for the autocorrelation function to

converge zero. Partial autocorrelation parameters converge to zero for lags larger than 𝑝. This is

what is shown in our example and as illustrated, no matter what parameter an 𝐴𝑅(1) process

have, the partial autocorrelation parameters for lags larger than one, lie inside the Bartlett’s band

and are therefore not significant.

Our explorations are limited to a stationary autocorrelated process of order one, 𝐴𝑅(1). When

we manipulate the process’ autocorrelation coefficient we are adjusting the previous values

effect on the current value. We keep the value of the autocorrelation coefficient in an interval

between plus and minus one to ensure stationarity.

From top to bottom: line chart, correlogram of the auto correlation function and correlogram of the partial auto

correlation function.

 Autocorrelation parameter equal to 0.3 to the left and 0.8 to the right of a typical realization with a sample size of

500.

The blue line in the correlograms indicates the Bartlett’s band. The vertical line outside the bend at tick one in the

partial autocorrelation indicates that the autoregressive process is at order one.

Figure 3: Typical realization of an autoregressive process of order one

11

3.4 Autoregressive moving average process

An autoregressive moving average process, (𝐴𝑅𝑀𝐴) is where the current value of series 𝑦

depends not only on its previous values but also on the current and previous values of the shocks

in the system. It means that a combination of an autoregressive process of order 𝑝 and a moving

average process of order 𝑞 results in an 𝐴𝑅𝑀𝐴 process of order 𝑝 and 𝑞, 𝐴𝑅𝑀𝐴(𝑝, 𝑞).

As an 𝐴𝑅𝑀𝐴(𝑝, 𝑞) process is a combination of an 𝑀𝐴(𝑞) and 𝐴𝑅(𝑝) , it gets the characteristics

of both processes. As discussed, the autocorrelation function of an 𝑀𝐴(𝑞) cuts off to zero for lags

larger than 𝑞, while it decreased geometrically for an 𝐴𝑅(𝑝). And the partial autocorrelation

function of an 𝐴𝑅(𝑝) cuts off to zero for lags larger than 𝑝,while it declines geometrically for an

𝑀𝐴(𝑞). Therefore, both the autocorrelation function and partial autocorrelation function of an

𝐴𝑅𝑀𝐴(𝑝, 𝑞) will decline geometrically as lags increases. The autocorrelation function of an

𝐴𝑅𝑀𝐴(𝑝, 𝑞) will show a combination characteristics of both a moving average and an

autoregressive process for the first 𝑞 lags, but its characteristics will be identical to an 𝐴𝑅(𝑝) for

lags larger than 𝑞 (Brooks, 2008, pp. 223-224). Which means the autocorrelation parameters for

lags larger than 𝑞 are identically equal to those of an 𝐴𝑅(𝑝). The same could be said about the

partial autocorrelation function. The partial autocorrelation parameters for lags larger than 𝑝, are

equal to those of an 𝑀𝐴(𝑞).

A stationary autoregressive process of order 𝑝 could be written as an 𝑀𝐴(∞). On the other hand,

an 𝑀𝐴(𝑞) could be written as an infinite order of autoregressive processes, 𝐴𝑅(∞), if the moving

average process is invertible, or with another word has unit roots. Verbeek indicates that if the

conditions of invertibility and stationarity of a moving average and an autoregressive process is

fulfilled, then it will be only “a matter of parsimony” choosing an 𝑀𝐴(𝑞), 𝐴𝑅(𝑝) or an

𝐴𝑅𝑀𝐴(𝑝, 𝑞) process. Which means that one could choose a process which is more convenient

with the purpose of study. If there is a matter of prediction, it will be more suitable to choose an

autoregressive process. While for determining the variances and covariances in a series, it will be

more convenient to choose a moving average process (Verbeek, 2004, p. 263).

The data generated for an 𝐴𝑅𝑀𝐴(1,1) process shows different behaviors between a highly

positive parameter and a lower one as shown in the illustration on the next page. The difference

is because of the autoregressive part of the process, since it has been shown that the behaviors

in a moving average process is the same for different parameters. Both the autocorrelation and

the partial autocorrelation functions shows a combination behavior of the both processes as has

been explained further above. For instant, the autocorrelation parameters defined by the first

two lags of the autocorrelation function are defining both processes, while the rest are identical

with an 𝐴𝑅(𝑝). The same holds for the partial autocorrelation function. The first partial

autocorrelation parameter is defined for both processes, and the rest are identical for an 𝑀𝐴(𝑞).

When we explored the properties of an 𝐴𝑅𝑀𝐴 process we limited it to order one of both 𝑀𝐴 and

𝐴𝑅 processes. In addition, we choose to fix the autocorrelation coefficient of the moving average

process. The effect from previous shocks are therefore constant in these experiments. The

autocorrelation coefficient of the autoregressive process was adjusted as described above.

12

From top to bottom: line chart, correlogram of the auto correlation function and correlogram of the partial auto

correlation function. Sample size of 500.

Correlation parameter equal to 0.3 for both AR(1) and MA(1) to the left and 0.8 for both AR(1) and MA(1) to the

right.

The blue line in the correlograms indicates the Bartlett’s band.

Figure 4: Typical realization of an autoregressive moving average process

13

3.5 Simulation of sample series of stochastic processes

We need to generate artificial sample series by means of the mentioned stochastic processes to

be able to explore their network properties and we used the programming tool 𝑅 for this purpose

(our programming codes are added to the appendix).

Our simulation strategy involved both an example run and a data run. The data run had 100

replications of each parameter summarizing the result in a boxplot diagram. This run used the

random number generator which produces a different data series each time, ensuring the

estimations validity. The example run does not have any replications, but results in outputs

regarded as a “typical” realization of the different sample series. This run has a set seed values

which ensures that the errors are identical in each case. This guarantees that the only change will

be due to the data generating process. The example run has a set sample size at 1000 datapoints.

All graph plots will be forced into the same graph-layout making it possible to detect how the

edge pattern change in the different stochastic processes. The data run will be used to examine

the general network properties while the example run will be used to visually display a

representation of each type and their differences.

White noise

The simulations consist of a series of random numbers generated by a process using a Gaussian

distribution, as described above, with a mean of zero and a standard deviation of one. The sample

size, or length, of the series are varied from 100 to 3000 and is regarded as the simulation’s

parameter.

The descriptive statistics and line chart from the example realization are presented below. This,

as in all the different simulations, will be the data used throughout the thesis as examples of a

typical realization. The values of the mean and the standard deviation are close to the zero and

one, and the line chart displays the expected mean reversion property.

Mean Std Max Min

WN -0.09 1.01 2.79 -3.30

Table 1: Descriptive statistics of the example

realization of white noise

Figure 5: Line chart of the example realization of white noise

14

Moving average process of order one

The simulations consist of series generated by an 𝑀𝐴(1) process, as described above, where the

autocorrelation coefficient is varied from −0.9 to 0.9. Length of the sample series is kept constant

at 1000 data points.

The descriptive statistics and line chart from selected parameters from the example realizations

are presented below. From the descriptive statistics we can see that the 𝑀𝐴(1) with the

parameter of zero is indeed equal to the statistics of white noise in table 1. This is expected when

the previous error terms effect is nulled out and we are using the same current error terms in all

example simulations. Another notable observation evident in both the statistics and in the line

charts, is that the 𝑀𝐴(1)′𝑠 with a negative autocorrelation coefficient have values and traits

closer to white noise than 𝑀𝐴(1)′𝑠 with positive parameters, especially when examining the

higher values. Complete presentation of all the example line charts can be found in the appendix.

Mean Std Max Min

-0.9 -0.01 1.36 4.30 -3.93

-0.8 -0.02 1.30 4.05 -3.73

-0.7 -0.03 1.24 3.81 -3.63

-0.6 -0.04 1.18 3.56 -3.58

-0.5 -0.05 1.13 3.31 -3.54

-0.4 -0.06 1.09 3.09 -3.49

-0.3 -0.07 1.06 2.97 -3.44

-0.2 -0.07 1.03 2.85 -3.39

-0.1 -0.08 1.02 2.73 -3.34

0 -0.09 1.01 2.79 -3.30

0.1 -0.10 1.02 2.91 -3.25

0.2 -0.11 1.03 3.03 -3.20

0.3 -0.12 1.05 3.15 -3.15

0.4 -0.13 1.09 3.26 -3.20

0.5 -0.14 1.13 3.38 -3.33

0.6 -0.15 1.18 3.50 -3.46

0.7 -0.16 1.23 3.62 -3.59

0.8 -0.17 1.29 3.77 -3.73

0.9 -0.18 1.36 3.94 -3.92

Table 2: Descriptive statistics of the example

realization of 𝑀𝐴(1)

Figure 6: Line chart of the example realization of 𝑀𝐴(1)

Autocorrelation coefficients from the top: -0.9, 0.1 & 0.9

15

Autoregressive process of order one

The simulations consist of series generated by an autoregressive process of order one, as

described above, where the parameters are varied from −0.9 to 0.9. Sample size is kept constant

at 1000 data points.

The descriptive statistics and line chart from selected autocorrelation coefficient from the

example realization are presented below. In addition to the mentioned control where the zero

parameter statistics is equal to the white noises, we can observe that, contradictory to the

observations of the 𝑀𝐴(1), changes in the 𝐴𝑅(1)’𝑠 autocorrelation coefficient results in the

generation of vastly different sample series. The difference between the 𝐴𝑅(1) and white noise

is palpable both when the parameter is large in both the positive and the negative end of the

scale. Complete presentation of all the example line charts can be found in the appendix.

Mean Std Max Min

-0.9 -0.04 2.11 6.60 -6.63

-0.8 -0.05 1.60 4.66 -4.98

-0.7 -0.05 1.37 3.86 -4.35

-0.6 -0.05 1.24 3.39 -4.00

-0.5 -0.06 1.15 3.21 -3.61

-0.4 -0.06 1.10 3.07 -3.47

-0.3 -0.07 1.06 2.97 -3.43

-0.2 -0.07 1.03 2.86 -3.39

-0.1 -0.08 1.02 2.73 -3.34

0 -0.09 1.01 2.79 -3.30

0.1 -0.10 1.02 2.90 -3.25

0.2 -0.11 1.03 2.98 -3.22

0.3 -0.13 1.06 3.03 -3.21

0.4 -0.15 1.10 3.28 -3.25

0.5 -0.18 1.16 3.57 -3.53

0.6 -0.22 1.27 3.91 -4.05

0.7 -0.29 1.43 4.29 -4.70

0.8 -0.42 1.73 4.79 -5.36

0.9 -0.82 2.45 7.01 -5.94

Table 3: Descriptive statistics of the example

realization of 𝐴𝑅(1)

Autocorrelation coefficients from the top: -0.9, 0.1 & 0.9

Figure 7: Line chart of the example realization of 𝐴𝑅(1)

16

Autoregressive moving average process

The simulations consist of sample series generated by an 𝐴𝑅𝑀𝐴(1,1) process as described above.

The autocorrelation coefficient for the 𝑀𝐴(1) process is fixed at 0.1 and the autocorrelation

coefficient for the 𝐴𝑅(1) process varies from −0.9 to 0.9. Sample sample size is kept constant at

1000 data points.

The descriptive statistics and line chart from selected autocorrelation coefficient from the

example realization are presented below. The realization from the 𝐴𝑅𝑀𝐴(1,1) process is very

similar to the 𝐴𝑅(1) process, but the presence of the 𝑀𝐴(1) can be detected when examining

the descriptive statistics. As we see, the 𝐴𝑅𝑀𝐴(1,1)s values in the summary statistics not equal

to white noise when the autocorrelation coefficient of the 𝐴𝑅(1) is zero. Which is natural since

the autocorrelation coefficient of the 𝑀𝐴(1) process is constant. Complete presentation of all

the example line charts can be found in the appendix.

Mean Std Max Min

-0.9 -0.05 1.93 5.93 -6.03

-0.8 -0.05 1.48 4.19 -4.51

-0.7 -0.05 1.28 3.57 -4.07

-0.6 -0.06 1.17 3.27 -3.72

-0.5 -0.06 1.10 3.05 -3.47

-0.4 -0.07 1.06 2.95 -3.43

-0.3 -0.08 1.03 2.85 -3.39

-0.2 -0.08 1.02 2.73 -3.34

-0.1 -0.09 1.01 2.79 -3.30

0 -0.10 1.02 2.91 -3.25

0.1 -0.11 1.03 3.00 -3.21

0.2 -0.12 1.05 3.07 -3.18

0.3 -0.14 1.09 3.22 -3.18

0.4 -0.17 1.15 3.49 -3.36

0.5 -0.20 1.23 3.80 -3.79

0.6 -0.24 1.34 4.16 -4.35

0.7 -0.31 1.53 4.56 -5.05

0.8 -0.46 1.87 5.23 -5.75

0.9 -0.90 2.68 7.69 -6.42

Table 4: Descriptive statistics of the example

realization of 𝐴𝑅𝑀𝐴(1,1)

Figure 8: Line chart of the example realization of 𝐴𝑅𝑀𝐴(1,1)

Autocorrelation coefficients from the top:

𝐴𝑅(1): -0.9 & 𝑀𝐴(1): 0.1

𝐴𝑅(1): 0.1 & 𝑀𝐴(1): 0.1

𝐴𝑅(1): 0.9 & 𝑀𝐴(1): 0.1

17

4 CREATION AND ANALYSIS OF VISIBILITY GRAPHS

4.1 Visibility graph

The visibility graph algorithm was, as mentioned earlier, proposed by Lacasa et al. (2008) as a

mapping between time-series and network graph. Their study shows that several properties of

the time-series will be transformed to the generated network, and these could in turn be used to

analyze some of time-series properties. The visibility algorithm creates a node for each measure

in the time-series such that the number of nodes in the network always will be equal to the length

of the original series. These nodes are connected, they share an edge, if they “see” each other.

To determine this Lacasa et al. established a geometric criterion called the visibility criteria. The

criteria proposed that two arbitrary values (𝑡𝑎 , 𝑦𝑎) and (𝑡𝑏 , 𝑦𝑏) are considered as connected, if

and only if, there are no intermediate data values like (𝑡𝑐 , 𝑦𝑐) that is deviating from visibility

criteria below:

𝑦𝑐 < 𝑦𝑏 + (𝑦𝑎 − 𝑦𝑏)
𝑡𝑏−𝑡𝑐

𝑡𝑏−𝑡𝑎
 (9)

Thus, the visibility only exists if the connection-line of visibility between any two nodes does not

cross the intermediate nodes’ connection-line. In other words, if the steepness of the connection-

line between two nodes is less than the steepness of intermediate nodes connection-lines with

one of the nodes in question, it will fulfil the visibility criteria. The resulting network can be

represented mathematically as an adjacency matrix. The matrix is constructed by mapping the

connections between each pair of the nodes and is either binary or weighted. Each elements of

the binary adjacency matrix’ input is either zero or one and is constructed such that

 𝐴𝑖𝑗 = {
1
0

 𝑖𝑓 𝑛𝑜𝑑𝑒𝑠 𝑖 𝑎𝑛𝑑 𝑗 𝑎𝑟𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑
𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑛𝑜 𝑐𝑜𝑛𝑒𝑛𝑐𝑡𝑖𝑜𝑛 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑛𝑜𝑑𝑒𝑠 𝑖 𝑎𝑛𝑑 𝑗

 (10)

Newman (2010, p. 111) pointed out that, if there are no self-edges in the network, the nodes are

not connected to themselves, the diagonal elements of the adjacency matrix will be zero.

When using a binary adjacency matrix some of the time-series information, as its structural

properties, will be lost. Therefore, this mapping is considered as irreversible – the constructed

network cannot be converted back to a time-series and still have the same structural properties.

The weighted adjacency matrix’ input can take on any value but are usually positive. This is an

additional set of information from the time-series received by the network expressing the

strength of the connections in a network. Lacasa et al. (2008) suggested using the slope of visibility

lines as weights, thus making the visibility graph reversible. The purpose of this paper is to

examine properties of different processes; thus, we will use binary adjacency matrix, disregarding

any information lost in the mapping.

Lacasa et al. (2008) presented three properties of the visibility graphs in their study. The first

property is that every node in the visibility graph is at least connected to its nearest neighbor(s),

thus there will never be loose nodes (unconnected nodes) in the graph. All of the nodes will be

connected to each other either directly or via the intermediate node. The second property is that

the edges are defined as undirected. Based on this property there will be no difference between

18

the in-coming and out-going edges to a node. When the connections in a visibility graph are

undirected the network will have a symmetric adjacency matrix with 𝑛2 elements, where 𝑛 is the

number of the nodes in a network (Newman, 2010, pp. 110-113). And the last property is that,

there will be no difference in the visibility graphs if the horizontal or vertical axes are rescaled or

time-series is translated.

The transformation from time-series to visibility graph is rather straight forward and is explained

with the help of a small example located on the next page. Time-series are usually presented as

line charts as in figure 𝑎. To visually demonstrate which realizations that fulfil the visibility

criterion we need to convert this chart to a bar plot, 𝑏, and then adjust the bar plot such that all

realizations are positive, 𝑐. This transformation is totally unproblematic since visibility graphs are

scale free. The adjusted bar plot can then be used to examine the realizations visibility of each

other. The connection exists when we can draw a connection-line from a column to another

without it crossing a third column. If the value of realization 2 (orange) was a little higher for

example, it would break the visibility line between the nodes 1 (red) and 3 (yellow) and they

would no longer be connected. By examining realization 5 (green) we also observe how the

steepness of the visibility-lines change: the realizations are connected if the steepness of the

connection-line is less than the steepness of connection-lines linking intermediate realizations to

that same node. Figure 𝑑 is a cleaner visualization of the connections shown in 𝑐. The straight-

line show that all realizations are connected to their immediate neighbor(s). Some realizations

have additional connections represented as the curves below and above the straight line. These

connections are then transferred to the adjacency matrix, figure 𝑒, who, as explained earlier, is a

binary matrix where connections have a value of 1. The diagonal (grey) consists only of zeros

because no node is connected to itself. The values directly before and after the diagonal is one,

which is a result of all the realizations being connected to its immediate neighbor. Additional

connections will be marked as one in the matrix, and since there is no direction, the matrix is

symmetric. Realization 10 (pink) is at the end of our series, thus it does only have one neighbor,

9 (purple), and this connection is represented in the adjacency matrix 𝐴9,10 and 𝐴10,9. In addition,

realization 10 have a connection to realization 5 at 𝐴5,10 and 𝐴10,5. The other values in both

column and row 10 is equal to zero – no other connections. Finally, from the adjacency matrix we

can create the finished visibility network in figure 𝑓. Each realization is represented as a node,

and each connection converted to an edge. Note that all six images in the illustration represent

the same information about the data set: how the value of the realizations relate to each other.

19

The illustration consists of six images: from the top left:
a) Line chart displaying the 10 first realizations of an 𝐴𝑅(2)

b) Bar plot of the data in a

c) Adjusted bar plot of the data in a where there is an added constant equal to lowest realization in the

sample series

Connection-lines illustrate which pair of realizations fulfills the visibility criterion

d) Alternative illustration of how the realizations are connected.

e) The adjacency matrix

f) The visibility graph

The illustrations are color-coded where each realization is assigned a color; this color will follow the realization on

its transformation from a value in a series to a node in the network. As an example: the first observation in the

time-series, which color is red, corresponds to the red column in the box plots, the red column & row in the

adjacency matrix and the red node in the network.

The color-code is also consistent in both the example for visibility graph, and horizontal visibility graph

Figure 9: From time-series to visibility graph - a small example

a) b)

d) c)

e) f)

20

4.2 Horizontal visibility graph

A modification of the visibility algorithm called the horizontal visibility algorithm where proposed

by Luque et al. (2009). This algorithm is generating the horizontal visibility graph, a subgraph of

the visibility graph, which also can be used as a tool to distinguish chaotic series from random

ones. The horizontal visibility algorithm requires a horizontal visibility line connecting two nodes

without any intersection by intermediate nodes.

 𝑥𝑖 , 𝑥𝑗 > 𝑥𝑛 ∀𝑛 , 𝑖 < 𝑛 < 𝑗 (11)

The two nodes 𝑥𝑖 and 𝑥𝑗, are considered as connected in a horizontal visibility graph, if and only

if they both are higher than any other nodes standing in between them. Lacasa et al. (2009)

defined the horizontal visibility algorithm as both reversible and irreversible. As mentioned, a

visibility graph is determined by the adjacency matrix, which could be either a binary or weighted

matrix. The horizontal visibility graph could easily be made reversible by using the differences in

values as weights in the adjacency matrix.

The horizontal visibility graph has some additional properties in regard to the visibility graph.

Firstly, the horizontal visibility algorithm can generate both directed and undirected graphs. In a

directed graph the edges have direction and therefore one should distinguish between the in-

coming and out-going edge connected to each node. The directionality of the edges makes, as

mentioned above, an asymmetric adjacency matrix. Secondly, the visibility criterion in the

horizontal visibility graph is more restrictive than the general visibility criteria. This results in a

graph with few connections which makes the horizontal visibility algorithm faster and the

resulting graph easier to analyze (Luque et al., 2009).

The transformation from time-series to horizontal visibility graph is even more straight forward

than the visibility graph and is also explained with the help of a small example located on the next

page. The data set in the example are the same as in the previous, thus we can compare the two

networks and note their differences. Figures 𝑎, 𝑏 as well as the adjustments in 𝑐 have been

explained above. The connection between two realizations in figure 𝑐 exist if we can draw a

horizontal connection-line from a column to another without it crossing a third column. If the

value of realization 7 (light blue) had a larger value than the realization of 8 (dark blue) for

example, it would break the horizontal visibility line between 8 and 5 (green) and they would no

longer be connected. A cleaner representation of the connections can be observed in figure 𝑑,

which is explained above. Here it’s easy to observe that the horizontal visibility algorithm

generates fewer connections than the visibility graphs in the previous example. Both connection

between 1&3 and 7&9 in the visibility graph doesn’t exists in the horizontal visibility graph. By

this algorithm the values of realization 2 and 8 are large enough to prevent visibility. Connections

will also in the case of horizontal visibility graph be transferred to an adjacency matrix, figure 𝑒.

As in the previous example and have the same properties but, as discussed, fewer values of 1.

The final result, the horizontal visibility network in figure 𝑓 is generated from the adjacency

matrix. It has several similarities with the visibility graph, as is expected since it’s a subgraph, and

the differences are the two missing connections we already mentioned between 1&3 and 7&9.

21

The illustration consists of six images: from the top left:
a) Line chart displaying the 10 first realizations of an 𝐴𝑅(2)

b) Bar plot of the data in a

c) Adjusted bar plot of the data in a where there is an added constant equal to lowest realization in the

sample series

Connection-lines illustrate which pair of realizations fulfils the visibility criterion

d) Alternative illustration of how the realizations are connected.

e) The adjacency matrix

f) The horizontal visibility graph

The illustrations are color-coded where each realization is assigned a color; this color will follow the realization on its

transformation from a value in a series to a node in the network. As an example: the first observation in the time-

series, which color is red, corresponds to the red column in the box plots, the red column & row in the adjacency

matrix and the red node in the network.

The color-code is also consistent in both the example for visibility graph, and horizontal visibility graph

Figure 10: From time-series to horizontal visibility grap - a small example

a) b)

d) c)

e) f)

22

4.3 Network statistics

There are several different network metrics and measurements. In this thesis we are running

multiple simulations of time-series with a high number of observations. With this type of data

sets, looking at local values for each and every node would not be a sound strategy. We have

therefore chosen to focus on some of the common global network measurements which provide

important information about the properties of the networks. Global network properties are

either describing the network as a whole or are a calculated mean value from its local values.

Degree

Newman (2010, p. 133) defined the degree of a node as the total number of its connected edges.

An edge is what we earlier mentioned as the connection-line between vertices. In our examples

above, the first node (red) have a degree of two in the visibility graph, but only a degree of one

in the horizontal visibility graph.

The number of degrees is dependent on whether the network is directed or undirected. The edges

in an undirected network have no orientation. Therefore, there will be no difference between the

incoming and outgoing edges to a node. Considering the adjacency matrix of an undirected

network, 𝐴𝑖𝑗, the nodes degree could be written as:

𝑘i= ∑ 𝐴𝑛
𝑖=1 ij (12)

In a directed network on the other hand there is two degrees to be considered for each node, the

in-degree and out-degree. The in-degree of a node is computed as the number of the nodes that

are pointing to the node in question. The out-degree is computed as the number of other nodes

the node in question is pointing to. Considering the adjacency matrix of a directed network, the

incoming degree and the outgoing degree could be computed as:

𝑘i
in= ∑ 𝐴𝑛

𝑖=1 ij (13)

𝑘j
out= ∑ 𝐴𝑛

𝑖=1 ij (14)

In our experience, a nodes degree in a time-series correspond to the extremeness of the value in

the original time-series, relative to the values in its immediate vicinity. As in our examples above,

node five has a degree of seven in both visibility and horizontal visibility graphs. By examining

observations connected to node five, we discover that the closest are significantly lower in value.

This is more of a general rule in visibility graph than with the horizontal visibility graph, where the

effect will be lessened by the horizontal visibility criterion.

We are not the first to make this observation. In their article examining the financial market by

the means of visibility graphs Zhuang stated that “The measure of degree allows us to find those

important incidents that influence market integration, for example the 2008 financial crisis”

(Zhuang et al., 2014).

23

Mean degree

A node degree is calculated for each individual node and is as such a local network statistic. Since

our paper is built on the global statistics measures of a network, we are going to use the mean of

the nodes’ degrees instead of the degrees of each individual node in the network. The arithmetic

mean of the nodes degrees in an undirected network is defined as

 𝑐 =
1

𝑛
 ∑ 𝑘𝑛

𝑖=1 I (15)

And measures for the mean degree in a directed network, the mean in-degree and mean out-

degree, are constructed as

 𝑐𝑖𝑛=
1

𝑛
 ∑ 𝑘𝑛

𝑖=1 i
in

 (16)

𝑐𝑜𝑢𝑡 =
1

𝑛
 ∑ 𝑘𝑛

𝑖=1 j
out (17)

The mean degree in our examples, which are undirected networks, are respectively 3.2 for the

visibility graph and 2.8 for the horizontal visibility graph, illustrating the properties of fewer

degrees in the horizontal visibility graph.

Cumulative degree distribution

The probability that a node in a network has degree 𝑘 is referred to as the degree distribution

𝑝(𝑘). It measures the fraction of the nodes having a given degree, 𝑘, and gives the frequency

distribution of the node degrees in the network. The distribution has a tail of high degree nodes,

which means that the fraction of the nodes having a small degree is higher than the fraction of

having a higher degree in a network. Thus, the distribution of the node degrees is considered to

be right-skewed. The degree distribution can be computed for both directed and undirected

networks (Newman, 2010, pp. 243-246).

One of the interesting features of a degree distribution is whether it is power law distributed or

not. According to E. J. Newman (2004), a quantity is considered to be power laws if the probability

of having a given value like 𝑘 differs inversely as a power of that value. Thus, a power law degree

distribution is constructed as 𝑝𝑘 = 𝐶𝑘−𝛼. 𝛼 is the scaling parameter with the range 2 < 𝛼 < 3

and 𝐶 is a fixed constant used while dealing with a normalized degree distribution. A power law

distribution could be visualized by a histogram of the degree distribution as well as by

constructing its cumulative degree function. The cumulative distribution function measures the

fraction of nodes having a degree greater or equal to 𝑘, 𝑃(𝐾 ≥ 𝑘) (Newman, 2010, pp. 247-256).

According to Newman if a degree distribution is power laws with a scaling parameter of 𝛼, then

its cumulative distribution function will also follow a power law distribution with a scaling

parameter of 𝛼 − 1.

Networks with degree distributions following a power law distribution are called scale-free

networks (Newman, 2010, p. 249). Barabási and Albert (1999) proposed the scale-free networks,

the networks where their local connectivity distributions are free of scale, and where the

possibility of a new node, 𝐴 , entering the network joining an existence node, 𝐵, is dependent of

the degree of node 𝐵. A scale-free network in contrast to a random network contains some high

24

degree nodes as well as nodes with lower number of connections (Barabási & Bonabeau, 2003).

A new node added to the system will have high tendency to join a high degree node rather than

a node with a lower number of connections, which is referred to as the rich get richer (Barabási

& Albert, 1999).

To identify whether a given data set follows a power law distribution we use a goodness-of-fit

test. The test hypothesis is constructed as:

𝐻0 : 𝑝(𝑘) ≈ 𝑘−𝛼 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎 𝑠𝑒𝑡 𝑖𝑠 𝑑𝑟𝑎𝑤𝑛 𝑓𝑟𝑜𝑚 𝑎 𝑝𝑜𝑤𝑒𝑟 𝑙𝑎𝑤 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 (18)

𝐻1: 𝑝(𝑘) ≉ 𝑘−𝛼 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎 𝑠𝑒𝑡 𝑖𝑠 𝑛𝑜𝑡 𝑑𝑟𝑎𝑤𝑛 𝑓𝑟𝑜𝑚 𝑎 𝑝𝑜𝑤𝑒𝑟 𝑙𝑎𝑤 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 (19)

The hypothesis is tested based on the distance between the distribution of the given data set

and the hypothesized model, which is assumed to a power law distributed model, and the

Kolmogorov-Smirnov or so-called KS statistic is used as a measure of the maximum value of the

absolute distance between those two models. The KS test statistic is constructed as:

 𝐷 = max
𝑥≥𝑥𝑚𝑖𝑛

|𝑆(𝑥) − 𝑃(𝑥)| (20)

where 𝑆(𝑥) is defining the cumulative distribution function of the given data, and 𝑃(𝑥) is

expressing the cumulative degree distribution of the power law distributed fitted model (Clauset,

Shalizi, & Newman, 2009).

According to Clauset et al. (2009), this distance has to be compared to a comparable synthetic

distance. The synthetic distance is calculated from the distance between the empirical data set

and a synthetic data set, which is similar to the empirical data below 𝑥𝑚𝑖𝑛, and is power laws

thereafter. The p-value of the test is defining the probability of the synthetic distance being larger

than the empirical distance between the original data set and the power law distributed fitted

model. The conclusion of the test could be drawn from comparing the p-value and the considered

significance level of the test. If the p-value is less or equal to the significance level, the conclusion

will be to reject the null hypothesis and that the empirical data set is not following a power law

distribution. Otherwise, we fail to reject the null hypothesis and the evidence will be supporting

that the empirical data set is following a power law distribution.

The tests p-value in our examples are 0.4 in the visibility graph and 0.16 in the horizontal visibility

graph. Both values are larger than the significance level of 5%, giving evidence for the null

hypothesis and we fail to reject this. Both cumulative degree distributions follow a power law

distribution (are power laws) and our network examples are scale free.

Normalized degree centrality

Centrality is a network property which is used to measure how influential a node or a network is.

There are different types of network centrality, some of them are focusing on the centrality of a

given node and some on the centrality of a network as a whole. One of these measurements is

degree centrality. This is a local measure and is using the degree of a node as a representation of

25

the node’s influence. A high degree node is considered to be more central, thus more influential,

than a node with lower degree. The local measurement is converted to a global one by:

𝐶(𝐺) = ∑ (max
𝑤

𝑐𝑤 − 𝑐𝑣)𝑣 (21)

Where 𝑐𝑣 is the local degree centrality and 𝑐𝑤 is the local theoretical max. The global degree

centrality is normalized by dividing the value by the global theoretical max. This is the highest

centrality score possible attained by a network with the same number of nodes (Csardi, 2019).

Our examples above have a normalized degree centrality of 0.47 for the visibility graph

and 0.52 in the horizontal visibility graph. Both graphs have a global theoretical max of 81. In

these small examples we can easily see that there is one node, node five, which has a far larger

node degree than the rest. This very central node has seven edges in both graphs. If we then look

at mean degree in both cases, we realize that the difference between the degrees of the most

central node and the mean degree are less in the visibility graph than in the horizontal visibility

graph. This in return explain why the visibility graphs degree centrality is less than the horizontal

visibility graphs – a network is less central when the nodes have more or less the same number

of edges which in a time-series relates to few extreme values. In a more general sense, the

measurement of normalized degree centrality can be used to determine if there are extreme

values in a time-series.

Transitivity

Considering two nodes 𝐴 and 𝐵 which both are connected to node 𝐶. Newman (2003) is defining

the transitivity as the mean probability that nodes 𝐴 and 𝐵 are themselves connected. In other

words, transitivity is the probability that two randomly chosen nodes, which both are connected

with a third node, themselves are connected thus creating a triple. The transitivity of an

undirected network can be defined as the fraction of closed paths of length two in the network

(Newman, 2010, p. 201).

Transitivity have both a local and a global measurement. The global transitivity of a network is

constructed as:

𝐶 =
(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑜𝑠𝑒𝑑 𝑝𝑎𝑡ℎ𝑠 𝑜𝑓 𝑙𝑒𝑛𝑔𝑡ℎ 𝑡𝑤𝑜)

(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑡ℎ𝑠 𝑜𝑓 𝑙𝑒𝑛𝑔𝑡ℎ 𝑡𝑤𝑜)
 (22)

Where 𝐶 will be a parameter between 0 and one. 𝐶 = 1 shows the existence of perfect transitivity

and 𝐶 = 0 refers to cases where there are no triples in the network. Existence of perfect

transitivity requires all nodes being connected to each other. Since the probability of having a

perfect transitivity is so small, it is considered to be a useless concept in network. Perfect

transitivity, a clustering parameter of zero is also highly unlikely. Therefore, a partial transitivity

is considered to be a “very useful” concept in network.

26

Local transitivity is defined for a single node. It controls the flows between the nodes’ neighbors

and is assumed to be strongly correlated with the between-ness centrality of a network, a

measurement of how influential a given node is.

𝑐 =
(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑖𝑟𝑠 𝑜𝑓 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝑜𝑓 𝑖 𝑡ℎ𝑎𝑡 𝑎𝑟𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑)

(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑖𝑟𝑠 𝑜𝑓 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝑜𝑓 𝑖)
 (23)

Newman (2010, pp. 203 - 204) expressed that small groups of nodes are expected to have a higher

local clustering parameter. It is because of the existence of a smaller number of pairs of neighbors

for each node in a small group, which makes the denominator of the equation above small. On

the other hand, there will be more pairs of neighbors for nodes in a large group which makes the

denominator large and the local transitivity small. It means the local transitivity is negatively

dependent of nodes’ degree in a network (Lacasa & Toral, 2010; Ravetti et al., 2014).

The transitivity values in out examples are 0.51 (visibility graph), and 0.41 (horizontal visibility

graph). Two nodes, both connected to a third have a 51% chance of themselves being connected

in the visibility graph and a 41% chance in the horizontal visibility graph. If we examine the

examples, we do discover that the number of triples is larger in the visibility graph.

Transitivity levels in the horizontal visibility graph are particularly interesting because it indicates

that two nodes are separated by one or more intermediate nodes with a lower value. A typical

case will be the relationship between node three, four and five in the example. These three nodes

are parts of a triple, and if we examine the line chart, we see that the values of three and five are

larger than two. When the transitivity value is large it indicates that the original time-series often

have dips in the value followed by a correction. In financial time-series this can be used to indicate

investment opportunities. This interpretation cannot be extended to the visibility graph because

this algorithm allows for connection through angles, this allows for multiple events that can

produce triplets.

Assortativity

Assortativity or homophily is measuring the tendency of the nodes being connected with nodes

of the same pattern. According to Newman (2010, pp. 221 - 222), a network is considered to be

assortative, or have assortative mixing, if there is a significant number of connections between

nodes of similar patterns. The meaning of the term similar pattern is dependent on type of

network. For example, in a social network, nodes could be representing peoples which could be

classified based on their gender, languages, ethnicity and any other characteristics which could

also be a “scalar quantity” like age or income. So, if a significant fraction of the people being

connected with whom they are sharing similar characteristics, the network is considered to have

assortative mixing. On the other hand, we could have disassortative mixing in a network when

most of the connections are between the dissimilar nodes.

Newman (2002) is introducing assortative mixing by degree as the tendency of high degree nodes

being connected to other nodes of high degree and visa verse. Therefore, in an assortative mixing

by degree network, the most influential nodes will be connected together and become even more

important, and this core of high degree nodes will be surrounded by lower degree node. On the

other hand, in the disassortative mixing by degree networks, the high degree nodes prefer to

27

connect to the lower degree nodes and so there will be no clumps in the network. Newman (2010,

p. 230) is assuming that networks with disassortative mixing will have a “star-like” feature and

are more uniform. Newman (2002) showed that removal of high degree nodes of disassortative

mixing networks will differentiate them more than when the network is assortative mixing. it also

showed that many of the social networks tend to be assortative mixing while technological and

biological networks are disassortative.

The assortativity by degree is constructed as:

 𝑟 =
∑ (𝐴𝑖𝑗𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑚
) 𝑘𝑖𝑘𝑗

∑ (𝑘𝑖𝑗𝑖𝑗 𝛿𝑖𝑗−
𝑘𝑖𝑘𝑗

2𝑚
) 𝑘𝑖𝑘𝑗

 (24)

where 𝑟 is called the assortativity parameter and is the Pearson correlation parameter between

degrees of connected nodes. 𝐴𝑖𝑗 in the equation above is a given element of the adjacency matrix,

which will be one when nodes 𝑖 and 𝑗 are connected and zero otherwise. 𝑘𝑖 and 𝑘𝑗 are the degrees

of two random nodes, 𝑖 and 𝑗, and 𝛿𝑖𝑗 is the Kronecker delta which is considered to be one if

connected nodes are similar and in the same class, 𝑖 = 𝑗 and zero otherwise. An assortative mix

of zero is defined for random graphs, where there is randomness in placing the edges between

the nodes (Newman, 2002).

In our examples the visibility graph has as assortativity of −0.32, and the horizontal visibility

graph of −0.28. Both are negative, have disassortative mixing, indicating that the nodes which

are connected have different degree. The probability of a node being connected with another

node with a different degree is larger in the visibility graph than in the horizontal visibility graph.

By examining the examples, we can see that the visibility graphs nodes have a larger variation in

degrees than the horizontal visibility graph does. Assortativity can be used to identify cycles in

the original time-series. If we take the values five to nine in our example and repeat this pattern,

we have a cyclic series. The repeated value five will always be connected and they will have the

same high number of degrees creating clumps as described by Newman and a high positive

assortative mix.

Geodesic path

The geodesic path or the average shortest-path length, is the shortest path from one node to

another (Newman, 2003). A path is defined as a route connecting two given nodes passing

through other nodes standing between them. The length of the geodesic path will be computed

either from the number of the edges passing from a node to another or from the number of the

nodes standing in between those two give nodes. Mao and Zhang (2013) implies that there is at

least one path connecting any two nodes in a network, which is consistent by the property of a

visibility graph being connected. But there could be more than one geodesic path between any

two nodes (Newman, 2002).

Mao and Zhang (2013) define the average shortest-path length of a given graph 𝐺 as the average

number of edges in the shortest paths between all possible pairs of nodes, which could be

constructed for both directed and undirected graphs.

28

The average shortest-path length of an undirected graph is defined as:

 𝐴𝑆𝑃𝐿𝐺 =
∑ 𝑑𝑖𝑠𝑡(𝑣𝑖,𝑣𝑗)𝑁

𝑖,𝑗

∑ 𝑁(𝑁−1)𝑁
𝑖,𝑗

 (25)

where 𝑑𝑖𝑠𝑡(𝑣𝑖, 𝑣𝑗) is the value of the shortest-path length between all possible pairs of nodes,

and the 𝑁(𝑁 − 1) indicates the number of paths in graph. Newman (2010, p. 139) implies the

geodesic paths are self-avoiding and do not intersect themselves, which also indicates that there

will not be geodesic path between a node and itself. Therefore if 𝑣𝑖 = 𝑣𝑗, so 𝑑𝑖𝑠𝑡(𝑣𝑖, 𝑣𝑗) = 0.

The shortest path can easily be visualized in our examples. In the visibility graph, the shortest path

between one and eight are trough the nodes three and five which have a path length of three.

This is not the only path from one to eight however, we can create multiple paths maybe with a

detour around two and seven, but we cannot find one that is shorter than three. The average

shortest path here is 1.87 which indicates that the path length between any node in the network

is less than two. In the horizontal visibility graph, the shortest path between one and eight are

through nodes two, three and five and have a length of four. This path is longer because the

horizontal visibility algorithm generates graphs with fewer degrees, thus the path must be longer.

The average shortest path is 2.07 which is naturally larger than value in the visibility graph.

Average shortest path depends both on a networks number of degrees and their centrality.

29

5 DISCOVERIES

5.1 Variations in network properties due to change in length of the sample series

When working with global network statistics, it is easy to assume that some of these may depend

on the original time-series’ length. Does average geodesic path for example get exponentially

larger with sample size? What about the other network statistics? To gain further insight on how

sample size effects the networks properties we decided to record this relationship in series

generated from the white noise process. White noise process was the obvious choice because of

its lack of parameters. We are also using white noise as a benchmark in our further investigation,

and the thorough recording of its network properties will enhance the interpretation of our

results.

Visibility graph on the left (dark grey) and horizontal visibility graph (light grey) on the right

An example of how a time-series generated from a white noise process can present itself as a

network is illustrated above. These networks are generated from the typical realizations which

we presented earlier in the text, and this will be the case for every network example throughout.

The additional typical realizations and their corresponding networks can be found in the

appendix.

The visibility graph (on the left) and the horizontal visibility graph (on the right) both have a length

of 1000 observations and have as mentioned earlier been forced in the same layout. This makes

it difficult to immediately spot the difference between these two. But, as in every five-error game,

the differences are there if you only have the patience and look close enough. In this illustration

one of the discrepancies can be located at the far-right side where the visibility graph has three

visible edges, but the horizontal visibility graph only has two. The reason why we choose to force

an identical layout on every graph is because it will make it possible to study the changes in how

the nodes are connected dependent on the underlying generating process.

Figure 11: Network from an example realization of the white noise process

30

We can observe that these graphs have small clusters, communities, connected in a

counterclockwise fashion with very few edges crossing into the center. This is what we would

expect in a graph generated form a time-series with regular fluctuations around a center value.

To map the relationship between sample size and the different properties of the network, we

generated white noise series of different length. Starting with a length of 100 and ending

at 3000 by an interval of 100. We used 100 simulations of each sample size. The results are

presented on the next page, visibility graph on the left and horizontal visibility graph on the right.

We can clearly see that in all cases, except one, sample size has large impact when it is small, but

the effect is diminishing with the increase in length of the sample. We also note that the spread

within each simulation tend to reduce as the sample size increases. In addition, we observe that

the properties behave very similarly in both types of graphs. Mean degree, normalized degree

centrality, transitivity and assortativity all show signs of converging toward a value as the sample

size increases. In the case of mean degree, the visibility graph has a larger spread then the

horizontal visibility graph which is a result of the latter’s more restrictive visibility criterion. A

natural result when mean degree stabilizes with sample size, is that the normalized degree

centrality will converge toward zero. The theoretical maximum value used when normalizing the

degree centrality will increase with the length of the sample. As the measurement of degree

centrality is partly dependent on degree, its value will mirror the behavior of mean degree. Since

any number divided on an increasingly large number will converge toward zero, the normalized

degree centrality will converge to zero as a result of the increasing sample length. The local value

of transitivity is negatively dependent on the local degree, and the opposite behavior in the two

respective global measurements where expected. When this indeed was the case in our

experiment, it affirmed our theory that the relationship also extends to the global measurements.

One of the measurements which does not clearly converge toward a value is, as we prophesied

earlier, the average geodesic path. But even this measurement does level out such that changes

due to an expanding sample size decrease. We are not the first to discover this however as Sun

et al. (2016) states in their article:

 “We studied the change of the average shortest path length with the increase of

the number of nodes in visibility graph network. L is the average shortest path

length, N is the number of nodes. If there is linear relationship between L and

logarithm of N, then we have L = a + b ln N …” (Sun et al., 2016)

We do however show that this also is the case for the horizontal visibility graph. This is the only

measurement where the spread doesn’t reduce as samples increase.

The one network property which clearly differentiate itself from the others in this explorative

exercise is the p-values from the test regarding power law distribution. This value is significant for

all sample sizes and for both graphs leading us to theorize that networks generated from a white

noise process always have a degree distribution which is following power law distribution, thus

always are scale free.

31

From the top to bottom, visibility graph (VG) on the left side, horizontal visibility graph (HVG) on the right:

a) Mean degree, VG

b) P-value, H0 : cumulative degree

distribution follows power law, VG

c) Normalized degree centrality, VG

d) Transitivity, VG

e) Assortativity, VG

f) Average geodesic path, VG

g) Mean degree, HVG

h) P-value, H0 : cumulative degree

distribution follows power law, HVG

i) Normalized degree centrality, HVG

j) Transitivity, HVG

k) Assortativity, HVG

l) Average geodesic path, HVG

there are 100 simulation for each sample series length, ranging from 100 to 3000 by an interval of 100

Figure 12: Change in network properties due to the length of sample series

a) g)

b) h)

i) c)

d) j)

e) k)

f) l)

32

5.2 Identifying white noise processes through network statistic

Each of our recorded relationships, except geodesic path and p-values for power laws test, have

a reduction in spread as sample size increases. The relationships can in addition, except the p-

values, be nicely fitted to different functions. The recorded p-values are always relevant for all

tested sample sizes and do not show any signs of a trend, thus we can assume that this will always

be the case with a white noise process.

With these characteristics, we propose that it is possible to use network properties to identify

white noise series regardless of its stationarity status. This may be achieved both with the visibility

graph and the horizontal visibility graph. The horizontal visibility graph is often much preferred

because it is fast, easy and analytically solvable. In our results this sub graph actually has a smaller

spread, thus will be our recommended algorithm for this identification method.

We suggest a six-part test where the test object must fulfill all six criteria to be identified as a

white noise process. First of all, the series must have a degree distribution that is power laws.

Then its values for mean degree, normalized degree centrality, transitivity, assortativity and

average geodesic path must fit within a confidence interval given by the length of the series.

We choose to use the upper- and lower boundaries as our confidence interval since it accurately

reflects the observed changes in spread. For example, a 5% confidence interval would in most

cases be far too narrow at small sample sizes and far too wide at the larger ones.

We find the fitted functions for both upper and lower bounds of the statistics by examining two

different relation possibilities. At first, we consider the possible significant dependencies of each

of the statistics on the logarithm of the sample size. Then we examined whether there is a

significant relationship between the logarithm of the statistics and the logarithm of the sample

size. These two options could be examined for all of the statistics with exception of assortativity.

Assortativity is measured on a scale from −1 to +1 and the natural logarithm of minus values, as

well as zero, do not exist. Sun et al. (2016) inspired this approach with their proposal of a linear

relationship between the average shortest path length and logarithm of the series’ length.

We examined the adequacy of the relationships in both options by the use of a linear regression

and a partial two-sides Student’s t-test of its parameters. The null hypothesis under a Student’s

t-test is identifying the non-significance of the parameter; that there is no significant relationship

between the dependent and independent variables. The alternative hypothesis is assuming a

significantly non-zero parameter, indicating an adequate relationship. The test statistics is

defined as 𝑡 =
�̂�

𝑠𝑒�̂�
, where �̂� is the estimated value of the regression parameter, and 𝑠𝑒�̂� is the

estimated OLS standard error of 𝛽. Under the null hypothesis the test statistic will follow a

Student’s t-distribution with 𝑛 − 1 degrees of freedom, (𝑛 equal to the number of the

observations).

If the probability that the test statistic is larger than its ‘empirical value, 𝑝(𝑡 > 𝑡𝑒𝑚𝑝), is less than

the chosen significance level, the test will provide significant evidence for the alternative

33

hypothesis. This indicates that the relationship between the dependent and independent

variables is valid and significant (Hill, Griffiths, & Lim, 2011, pp. 95-113).

We used a 5% significance level in our tests. The results indicated mostly a significant relationship

both between the statistics and logarithm of the sample size and between logarithm of the

statistics and logarithm of the sample size. While in some cases, there are no significant

relationships between either form of the statistics mentioned above and the logarithm of the

sample’s length. This is the case for transitivity’s lower bounds of both graphs and for mean

degree’s upper bound of the visibility graph. To be able to create these boundaries we

investigated the statistics of the other quartiles, establishing that they all had a similar shape. We

fitted the best fitting function from the other quartiles to the problematic bound, which resulted

in a non-significant relationship when tested. These bounds are therefore not valid and further

study is required.

We choose the best fitting function for the statistics with adequate relationship by the use of

adjusted R-squared. The chosen fitted functions is the one with the highest adjusted R-squared.

The resulting functions plotted with our realizations are displayed below and the regression

analysis are available in the appendix.

34

From the top to bottom, visibility graph (VG) on the left side, horizontal visibility graph (HVG) on the right:

a) Mean degree, VG

b) Normalized degree centrality, VG

c) Transitivity, VG

d) Assortativity, VG

e) Average geodesic path, VG

f) Mean degree, HVG

g) Normalized degree centrality, HVG

h) Transitivity, HVG

i) Assortativity, HVG

j) Average geodesic path, HVG

Upper and lower boundaries marked with grey lines, while median is plotted as a red line. The results from our

simulations are plotted as dots. There are 100 simulated realization.

The length of the sample series ranging from 100 to 3000 by an interval of 100.

Figure 13: Change in network properties due to length of sample series, fitted to functions

a)

b)

c)

d)

e) j)

i)

h)

g)

f)

35

On the basis of the results above we propose a six-part test which can determine if a time-series’

data generating process is Gaussian white noise. The hypothesis will be constructed as follows:

𝐻0 : 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎 𝑠𝑒𝑡 𝑖𝑠 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑓𝑟𝑜𝑚 𝑎 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑤ℎ𝑖𝑡𝑒 𝑛𝑜𝑖𝑠𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 (26)

𝐻1 : 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎 𝑠𝑒𝑡 𝑖𝑠 𝑛𝑜𝑡 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑓𝑟𝑜𝑚 𝑎 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑤ℎ𝑖𝑡𝑒 𝑛𝑜𝑖𝑠𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 (27)

where the criteria to reject the null hypothesis will consist of six sub-tests. All six sub-tests have

to fail to reject the null – all the networks statistics needs to be within our confidence bands.

1. 𝐻0 ∶ 𝑝 − 𝑣𝑎𝑙𝑢𝑒 > 0,05

𝐻1 ∶ 𝑝 − 𝑣𝑎𝑙𝑢𝑒 ≤ 0,05

2. 𝐻0 ∶ 𝑦𝑙 ≤ 𝑦𝑎𝑠𝑠𝑜𝑟𝑡𝑎𝑡𝑖𝑣𝑖𝑡𝑦 ≤ 𝑦𝑢

𝐻1 ∶ 𝑦𝑎𝑠𝑠𝑜𝑟𝑡𝑎𝑡𝑖𝑣𝑖𝑡𝑦 < 𝑦𝑙 𝑜𝑟 𝑦𝑎𝑠𝑠𝑜𝑟𝑡𝑎𝑡𝑖𝑣𝑖𝑡𝑦 > 𝑦𝑢

3. 𝐻0 ∶ 𝑦𝑙 ≤ 𝑦𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑔𝑒𝑜𝑑𝑒𝑠𝑖𝑐 𝑝𝑎𝑡ℎ ≤ 𝑦𝑢

𝐻1 ∶ 𝑦𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑔𝑒𝑜𝑑𝑒𝑠𝑖𝑐 𝑝𝑎𝑡ℎ < 𝑦𝑙 𝑜𝑟 𝑦𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑔𝑒𝑜𝑑𝑒𝑠𝑖𝑐 𝑝𝑎𝑡ℎ > 𝑦𝑢

4. 𝐻0 ∶ 𝑦𝑙 ≤ 𝑦𝑑𝑒𝑔𝑟𝑒𝑒 𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 ≤ 𝑦𝑢

𝐻1 ∶ 𝑦𝑑𝑒𝑔𝑟𝑒𝑒 𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 < 𝑦𝑙 𝑜𝑟 𝑦𝑑𝑒𝑔𝑟𝑒𝑒 𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 > 𝑦𝑢

5. 𝐻0 ∶ 𝑦𝑙 ≤ 𝑦𝑚𝑒𝑎𝑛 𝑑𝑒𝑔𝑟𝑒𝑒 ≤ 𝑦𝑢

𝐻1 ∶ 𝑦𝑚𝑒𝑎𝑛 𝑑𝑒𝑔𝑟𝑒𝑒 < 𝑦𝑙 𝑜𝑟 𝑦𝑚𝑒𝑎𝑛 𝑑𝑒𝑔𝑟𝑒𝑒 > 𝑦𝑢

6. 𝐻0 ∶ 𝑦𝑙 ≤ 𝑦𝑡𝑟𝑎𝑛𝑠𝑖𝑣𝑖𝑡𝑦 ≤ 𝑦𝑢

𝐻1 ∶ 𝑦𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 < 𝑦𝑙 𝑜𝑟 𝑦𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 > 𝑦𝑢

The functions for the different values for upper and lower bound are presented in the table below.

Network statistic Boundary Visibility graph Horizontal visibility graph

Assortativity Upper 𝑦𝑢 = 0.0052 ∗ 𝑙𝑛(𝑥) + 0.0855 𝑦𝑢 = 0.0096𝑙𝑛(𝑥) + 0.1281

 Lower 𝑦𝑙 = 0.0445 ∗ 𝑙𝑛(𝑥) − 0.262 𝑦𝑙 = 0.0521 ∗ 𝑙𝑛(𝑥) − 0.2492

Geodesic path Upper 𝑦𝑢 = 1.3265𝑙𝑛(𝑥) − 0.4985 𝑦𝑢 = 1.3064 ∗ 𝑙𝑛(𝑥) + 0.2167

 Lower 𝑦𝑙 = 1.2586𝑙𝑛(𝑥) − 2.2446 𝑦𝑙 = 1.2845 ∗ 𝑙𝑛(𝑥) − 1.8815

Degree centrality Upper 𝑦𝑢 = 7.1956 ∗ 𝑥−0.82 𝑦𝑢 = 6.6267 ∗ 𝑥−0.842

 Lower 𝑦𝑙 = 1.8246 ∗ 𝑥−0.725 𝑦𝑙 = 1.452 ∗ 𝑥−0.723

Mean degree Upper 𝑦𝑢 = −0.004 ∗ 𝑙𝑛(𝑥) + 4.7987 𝑦𝑢 = 0.0245𝑙𝑛 ∗ (𝑥) + 3.8074

 Lower 𝑦𝑙 = 0.1064 ∗ 𝑙𝑛(𝑥) + 3.8437 𝑦𝑙 = 0.0697𝑙𝑛 ∗ (𝑥) + 3.4486

Transitivity Upper 𝑦𝑢 = 0.5527 ∗ 𝑥−0.038 𝑦𝑢 = 0.4418 ∗ 𝑥−0.033

 Lower 𝑦𝑙 = 0.3961 ∗ 𝑥−6𝐸−04 𝑦𝑙 = 0.3364 ∗ 𝑥−0.002

Table 5: Test for Gaussian white noise - upper and lower boundaries

The test is performed on a time-series by first transforming it to either a visibility- or horizontal

visibility graphs. Then the mentioned statistics must be calculated. The boundaries for each

statistic are found by using the length of the time-series. Then the statistics can be compared to

the boundaries. If the statistics fits within all of the boundaries – we fail to reject the null and the

time-series generating process is a Gaussian white noise.

36

5.3 Variation in network properties due to change in autocorrelation coefficient

A change in autocorrelation coefficient(s) of an 𝐴𝑅(1), 𝑀𝐴(1) or 𝐴𝑅𝑀𝐴(1,1) implies different

statistical properties of the sample series. We demonstrated this in our description of stochastic

processes, and it can be further examined in the appendix. We will study how the value of the

(true but unknown) parameter of the stochastic process would be reflected in the properties of

the associated network.

In the exploration on how a stochastic processes’ autocorrelation coefficient influences the

visibility- and the horizontal visibility graph, we examined changes in the visual representations

of the time-series as a network as well as the network statistics. This was achieved as mentioned

earlier with a data run and an example run, both runs had a sample size of 1000. The value of the

parameter is varied from −0.9 to 0.9 by an interval of 0.1. In the examination of the

𝐴𝑅𝑀𝐴(1,1) process, the autocorrelation coefficient of the moving average process was fixed at

0.1, and the autocorrelation coefficient of the autoregressive process was varied as described

above.

The data run had 100 simulations for each parameter, and the example run used a set seed and

a forced layout on all network realizations. White noise is included in both runs as a benchmark.

When the autocorrelation coefficients of an 𝐴𝑅(1) and 𝑀𝐴(1) are equal to zero their values

should coincide with the results from a white noise process. This will not be the case with the

𝐴𝑅𝑀𝐴(1,1) because of the effects from the fixed autocorrelation coefficient of the 𝑀𝐴(1).

 𝑴𝑨(𝟏)

The visual network representations of time-series generated from a moving average process of

order one is illustrated below, with visibility graph to the left and horizontal visibility graph to the

right. We have included the parameters −0.9, 0.1 and 0.9, top to bottom, to present the

extremes, but network representations of all parameters are available in the appendix.

Again, it is difficult to find the differences between the visibility- and the horizontal visibility

graphs, but the differences are always present. What is quite noticeable however is that there

are many differences observed in the graphs generated by processes of different autocorrelation

coefficients. The edges do clearly not form the same pattern, and the number of visible edges

seems to increase with the value of the parameter. When we inspect the line plot of the same

series presented in an earlier section (also available in the appendix) we do detect subtle

differences in the series which are reflected in the generated networks.

Neither of the networks share edge-pattern with the network created from a white noise process,

illustrated in the previous section. But when we take a closer look at the network generated from

an 𝑀𝐴(1) process with a parameter of zero in the appendix, we do find the similarity which we

would expect in the edge-patterns. This similarity arises purely because we use the same set of

errors in all our example simulations and should not be considered as a common rule.

37

38

Figures are placed on the previous page, from top to bottom:

a) Visibility graph – -0.9

b) Visibility graph – 0.1

c) Visibility graph – 0.9

d) Horizontal visibility graph – -0.9

e) Horizontal visibility graph – 0.1

f) Horizontal visibility graph – 0.9

The networks are color-coded: the network and the box in the boxplot representing the same process and parameter

share a color. The numbers relate to the process’s autocorrelation coefficient

The outcomes from our explorations with multiple simulations are presented below. White noise

is used as a benchmark and its result is placed to the left of the plot and colored grey. The plot

then continues with results from an 𝑀𝐴(1). Starting with an autocorrelation coefficient of −0.9

followed by increasingly larger parameters until a parameter of 0.9.

We can see that the different parameters do have an effect on the network statistics. In this case,

in opposite of the study by sample size in the previous section, the results from the visibility graph

are often notably different from the results from its subgraph. Another initial observation consists

of how similar the results from a white noise and an 𝑀𝐴(1) with the autocorrelation coefficient

of zero are. Most of the outputs only tend to differentiate from white noise when the

autocorrelation coefficient is large and positive.

Both visibility- and horizontal visibility graphs are inclined to have a low normalized degree

centralization. The visibility graphs’ values are similar to white noise as long as the autocorrelation

coefficients are negative and then decrease as the value of the parameters increase. While in the

horizontal visibility graphs values are larger than white noise for negative parameters and smaller

for positive. The values for the visibility graph are higher than the ones for the horizontal visibility

graph as we expected. When we take a closer look at the example network above, we do see that

there are fewer edges across the center when the autocorrelation coefficients are high, indicating

less degree centrality. Low degree centrality indicates few extreme values in the series, and we

can confirm that this is the case by examining the example line chart presented previously, which

are also available in the appendix. An 𝑀𝐴(1) process with a high negative autocorrelation

coefficient have more extreme values than this process with a high positive parameter. The

extreme values are easier to detect by the horizontal visibility algorithm, which is why degree

centrality is higher than white noise for negative parameters in this case. This is not reflected in

the results from the visibility graph.

The opposite is the case of assortativity, where the horizontal visibility graphs’ values are similar

to white noise for negative autocorrelation coefficients and then increase as the parameter

increases. The visibility graph values are u shaped with values higher than white noise at either

end of the parameters scale. All results are positive thus indicating assortative mixing. The values

of horizontal visibility graph are higher than the ones for the visibility graph as expected. There is

a 22% chance that nodes in the horizontal visibility graph generated from a process with very

high positive autocorrelation coefficient are connected with nodes of the same degree. This

indicates that a large number of nodes share a similar degree, which suggest that there is

Figure 14: Selected network from example realization of 𝑀𝐴(1)

39

something like a repeating pattern in this series. We cannot however confirm this by examining

the line plot or the network realizations.

The p-values are all significant, even though the values are declining with larger parameters they

are still above the 5% significance level. Thus, every tested autocorrelation coefficient result in a

network which is power laws.

The results regarding transitivity take a form quite different from the rest with an s-shape both in

visibility- and horizontal visibility graphs. The outcomes from the negative autocorrelation

coefficients are closer to the white noise than the positive in both cases. By examining the

horizontal visibility graph for large positive parameters, there is a 37.5% chance that two

realizations in the original series are separated by one, or more, realizations of lower value. This

is an increase of ca 5% from the values for a large negative autocorrelation coefficient and are

supported by the associated line plots. The values from the visibility graph are higher than ones

from the horizontal visibility graph which is expected due to the differences in their algorithms.

The exploration of mean degree resulted in a very different pattern in the results from the

visibility- and horizontal visibility graphs. The visibility graph has an s-shape while the horizontal

visibility graph is displaying results very similar to white noise. This result is expected due to the

differences in their algorithms. As we expected all the values from the horizontal visibility graph

are lower than the minimum of the results from the visibility graph. If we examine the different

line plots, we discover that they differ mainly the frequency of which the values change and the

presence of extreme values. This will not affect the results from the horizontal visibility graph

since the algorithm do not allow for angles and all the frequencies are rather high. We suggest

that mean degree from a horizontal visibility graph created from a series with high frequency will

have similar results as white noise. As the frequency decrease, the value of mean degree will also

be reduced. The frequency affects the results from the visibility graph differently because of its

algorithm. A high frequency series will result in more visibility lines crossing each other, which is

denying visibility, and thus the resulting mean degree will be lower than white noise. A lower

frequency will allow for more visibility thus the mean degree will be higher than white noise.

The average geodesic paths are both increasing with the value of the autocorrelation coefficient,

which may seem like an error, especially in the case of the visibility graph, where the mean degree

also is increasing with the parameter. This however is also connected to the degree centrality,

which is declining with the parameter. The increase in mean degree cannot compensate for the

lack of centrality, thus the result in both graphs are expected.

40

a) b) g) h)

c) d) i) j)

e) f) k) l)

41

The figures are placed on the previous page: from the top to bottom, visibility graph on the left side, horizontal

visibility graph on the right:

a) Mean degree, VG

b) Mean degree, HVG

c) Normalized degree centrality, VG

d) Normalized degree centrality, HVG

e) Assortativity, VG

f) Assortativity, HVG

g) P-value, H0 : cumulative degree

distribution follows power law, VG

h) P-value, H0 : cumulative degree

distribution follows power law, HVG

i) Transitivity, VG

j) Transitivity, HVG

k) Average geodesic path, VG

l) Average geodesic path, HVG

There are 100 simulation for each process with different autocorrelation coefficient, ranging from -0.9 to 0.9 by an

interval of 0.1.

The sample size of the series is 1000. The first box plot in the box plot (grey) is the benchmark value of white noise

 𝑨𝑹(𝟏)

As with the moving average process we have included chosen networks with the autocorrelation

coefficients of −0.9, 0.1 and 0.9 below. The full presentations of these can also be found in the

appendix. Because the edge pattern is very different from white noise, it may be easier to find

differences between the visibility- and the horizontal visibility graphs in this display, but they are

still subtle.

The differences between the networks generated by processes with different parameters

however are anything but subtle. In both the extreme autocorrelation coefficients there are no

edges crossing the center of the network, but the number of visible edges increases quite a bit in

both. The line plot of the same series is vastly different which is reflected in the large variance in

edge-pattern. By comparing the 𝑀𝐴(1) networks with the 𝐴𝑅(1)s, we realize that if both have

an autocorrelation coefficient of 0,1, their edge-patterns will be very similar. As in the case with

the 𝑀𝐴(1), the 𝐴𝑅(1) with an autocorrelation coefficient of zero (located in the appendix) has

an edge-pattern very similar to white noise.

The outcome of our multiple simulation exploration is presented at page 51, using the same

layout as in 𝑀𝐴(1), and it is apparent that the value of autocorrelation coefficients changes the

network statistics. In addition, we can see that the changes are different from the ones in the

case of 𝑀𝐴(1). This is of course expected since they are totally different data generating

processes, which is apparent the line plots, especially with extreme values of the autocorrelation

coefficient.

The shapes of the visibility- and the horizontal visibility graphs are often similar, with either a

concave or a convex shape where the zero parameter marks either maximum or minimum. If the

network is constructed from an 𝐴𝑅(1) with an autocorrelation coefficient of zero, the value of all

of the statistics will be similar to the benchmark white noise in both graphs.

Figure 15: Change in network properties due to autocorrelation coefficient, 𝑀𝐴(1)

42

43

Figures are placed on the previous page, from top to bottom:

a) Visibility graph – -0.9

b) Visibility graph – 0.1

c) Visibility graph – 0.9

d) Horizontal visibility graph – -0.9

e) Horizontal visibility graph – 0.1

f) Horizontal visibility graph – 0.9

The numbers relate to the process’s autocorrelation coefficientThe networks are color-coded: the network and the box

in the boxplot representing the same process and parameter share a color.

Visibility- and horizontal visibility graphs both have low normalized degree centralization with a

maximum value equal to white noise. This coincides with our discoveries when we examined the

networks commenting on the lack of edges through its center. The horizontal visibility graphs

values are lower than the values from the visibility graphs which is expected as it has fewer edges.

In addition, we observe that the large positive autocorrelation coefficient effects the horizontal

visibility graph more than the visibility graph. The extreme values of the autocorrelation

coefficient in an 𝐴𝑅(1) generate vastly different series. Where the large negative values have a

high frequency with distinct sections of different amplitude, while the large positive values tend

to wander similarly to a random walk. Both of these are resulting in fewer extreme values as

reflected in the values of the degree centralization.

Both associativity and the p-values share a concave form with degree centrality. The p-values are

significant for both graphs and indicating power laws for all autocorrelation coefficients. The

results regarding assortativity are very close to zero in both cases, where the extreme high

parameters actually indicate disassortative mixing. The values of the horizontal visibility graph

are as expected due to its algorithm, larger than the visibility graphs values. Low assortativity

suggest that there are no cycles in the series, which is confirmed by examining the line chars.

The visibility graphs’ transitivity results have a similar shape as the results from our 𝑀𝐴(1)

experiment, but the s-shape is less distinct in this case. But the horizontal visibility graph has a

different shape. The changing amplitude with high negative autocorrelation coefficients results

in a higher transitivity for the horizontal visibility than for a high frequency series with constant

amplitude. The reason is because it is more likely that two realizations are separated by one, or

more realizations, of a lower value in the case with different amplitudes. The probability of having

triples is even higher when the autocorrelation coefficient of the series is high. This series may be

described as “hills and valleys” which is the perfect environment for generating triples by the

horizontal visibility algorithm.

When we examine the results of mean degree we realize that the shape of both boxplots are

different from the results for 𝑀𝐴(1). The visibility graph has an increasing number of degrees as

the autocorrelation coefficient increases, while the horizontal visibility graph has a concave shape

where the effect of a high parameter is larger than the effect of a lower one. The change in

amplitude in the lower value parameter, and the reduction in frequency in the higher amplitudes,

both impacts the results as we discussed in the previous section. As in the results from the 𝑀𝐴(1),

the result of average geodesic path is a direct consequence of the degree centrality, which here

has a convex shape. The relationship is negatively correlated; thus, the convex shape of the

average geodesic paths is as expected.

Figure 16: Selected network from example realization of 𝐴𝑅(1)

44

a) b) g) h)

c) d) i) j)

e) f) k) l)

45

The figure is placed on the previous page: from the top to bottom, visibility graph on the left side, horizontal

visibility graph on the right:

a) Mean degree, VG

b) Mean degree, HVG

c) Normalized degree centrality, VG

d) Normalized degree centrality, HVG

e) Assortativity, VG

f) Assortativity, HVG

g) P-value, H0 : cumulative degree

distribution follows power law, VG

h) P-value, H0 : cumulative degree

distribution follows power law, HVG

i) Transitivity, VG

j) Transitivity, HVG

k) Average geodesic path, VG

l) Average geodesic path, HVG

There are 100 simulation for each autocorrelation coefficient, ranging from -0.9 to 0.9 by an interval of 0.1.

The sample size of the series is 1000. The first box plot in the box plot (grey) is the benchmark value of white noise

𝑨𝑹𝑴𝑨(𝟏, 𝟏)

To explore the changes that the autocorrelation coefficients of both 𝐴𝑅(1) and 𝑀𝐴(1) implies

on the network statistics together, we added 𝐴𝑅𝑀𝐴(1,1) to our experiments. We chose to vary

the autocorrelation coefficient of 𝐴𝑅(1) and keep the 𝑀𝐴(1)s autocorrelation coefficient fixed

at 0.1. The resulting boxplots have, in addition to the box representing white noise, another grey

box which represents the values from the 𝑀𝐴(1) with an autocorrelation coefficient of 0.1.

When we compare the network realizations from the 𝐴𝑅𝑀𝐴(1,1) we immediately realize that

they share a lot of the edge patterns from 𝐴𝑅(1). One notable difference is that the edge straight

across the center of the graph of 𝐴𝑅(1) with an autocorrelation coefficient of 0.1 not is present

in the case of 𝐴𝑅𝑀𝐴(1,1) with the same parameter.

From the experiment with multiple simulations the similarities with the 𝐴𝑅(1) continues,

outcome presented at page 54. The only observable change made by 𝑀𝐴(1) is that it increases

the effect that the large positive parameters have on the normalized degree centrality. We did

observe that one of the edges in the center of both networks was indeed missing for

𝐴𝑅𝑀𝐴(1,1) realizations and a decrease in degree centralization was therefore expected. As a

consequence of this, the results from average geodesic path are also different for 𝐴𝑅(1) with an

even steeper increase of length with large positive autocorrelation coefficient.

Figures are placed on the previous page, from top to bottom:

a) Visibility graph – -0.9

b) Visibility graph – 0.1

c) Visibility graph – 0.9

d) Horizontal visibility graph – -0.9

e) Horizontal visibility graph – 0.1

f) Horizontal visibility graph – 0.9

The numbers relate to the process’s autocorrelation coefficient

The networks are color-coded: the network and the box in the boxplot representing the same process and

parameter share a color.

 Figure 18: Selected network from example realization of 𝐴𝑅𝑀𝐴(1,1)

Figure 17: Change in network properties due to autocorrelation coefficient, 𝐴𝑅(1)

46

47

a) b) g) h)

c) d) i) j)

e) f) k) l)

48

The figure is placed on the previous page: from the top to bottom, visibility graph on the left side, horizontal

visibility graph on the right:

m) Mean degree, VG

n) Mean degree, HVG

o) Normalized degree centrality, VG

p) Normalized degree centrality, HVG

q) Assortativity, VG

r) Assortativity, HVG

s) P-value, H0 : cumulative degree

distribution follows power law, VG

t) P-value, H0 : cumulative degree

distribution follows power law, HVG

u) Transitivity, VG

v) Transitivity, HVG

w) Average geodesic path, VG

x) Average geodesic path, HVG

There are 100 simulation for each parameter, ranging from -0.9 to 0.9 by an interval of 0.1.

The sample size of the series is 1000. The first box plot in the box plot (grey) is the benchmark value of white noise

5.4 Estimation of parameters on the basis of network statistics

Some of our results from the visibility graphs presented above have properties that can be used

to distinguish between time-series parameters without any need to determine stationarity status.

Both measures of mean degree and transitivity generates unique values for each parameter.

Therefore, it is possible to compare these results to the statistics for any time-series generated

from an 𝑀𝐴(1), 𝐴𝑅(1) or 𝐴𝑅𝑀𝐴(1,1) and identify its parameter. This is only the cases for

visibility graph though, as the values in its subgraph do not share this property.

 As in the previous case we used the upper and lower quartile to create the upper and lower band

of our confidence interval. We chose in this case to use some of the self-starting functions in 𝑅

because of the special properties our result exhibited.

The S-shape in the transitivity results was fitted to the Boltzmann model.

𝑦 = 𝑐 +
𝑑−𝑐

1+𝑒𝑏∗(𝑥−𝑒) (28)

Which is described as an asymptotic five-parameter logistic model. The resulting parameter for

each of the boundaries is presented below, as is the display of the fitted functions with our

realizations.

MA(1)

AR(1)

ARMA(1,1)

Boltz. Upper Lower Upper Lower Upper Lower

b -3.464 -3.710 2.506 -2.421 -2.412 -2.337

c 0.396 0.372 0.373 0.358 0.378 0.355

d 0.489 0.458 0.484 0.472 0.504 0.479

e 0.297 0.295 0.032 0.302 0.171 0.211

Table 6: Parameters used in the classification of autocorrelation coefficient – transitivity

Figure 19: Change in network properties due to autocorrelation coefficient, 𝐴𝑅𝑀𝐴(1)

49

From left to right: 𝑀𝐴(1), 𝐴𝑅(1), 𝐴𝑅𝑀𝐴(1,1) and a comparison with the reference value of white noise

The value of white noise is equal to the median of white noise for sample size 1000 from the previous experiment with

sample size

Mean degree result had two distinctive shapes. The S-shape was fitted to the Boltzmann model

(28) the concave shapes was fitted to the Asymptotic regression model:

𝑦 = 𝐴𝑠𝑦𝑚 + (𝑅0 − 𝐴𝑠𝑦𝑚) ∗ 𝑒(−𝑒𝑙𝑟𝑐∗𝑥) (29)

The resulting parameter for each of the boundaries is presented below, as is the display of the

fitted functions with our realizations.

MA

AR(1,1)

ARMA(1,1)

Boltz Upper Lower Asymp. Upper Lower Upper Lower

b -3.736 -4.153 Asym 5.374 4.970 5.377 5.002

c 4.630 4.504 R0 4.785 4.614 4.814 4.629

d 4.988 4.815 lrc -0.745 -0.330 -0.642 -0.380

e 0.045 0.182

Table 7: Parameters used in the classification of autocorrelation coefficient - mean degree

Figure 20: Relationship between transitivity and autocorrelation coefficient fitted to functions

50

From left to right: 𝑀𝐴(1), 𝐴𝑅(1), 𝐴𝑅𝑀𝐴(1,1) and a comparison with the reference value of white noise.

The value of white noise is equal to the median of white noise for sample size 1000 from the previous experiment with

sample size

We were tempted to suggest the use of this results in a test similar to our six-part white noise

test, as a three-part test where the parameters was p-value, transitivity and mean degree. The

principle would be the same, the tested series values have to lay within the upper and lower

bands to be identified as either an 𝐴𝑅(1), 𝑀𝐴(1) or 𝐴𝑅𝑀𝐴(1,1) with a determined parameter.

When we realized how close these values are of each other however, we knew that they were in

practice inseparable by the means of these results alone. We propose therefore this as a

classification tool where we can determine the parameter of any 𝑀𝐴(1), 𝐴𝑅(1) or 𝐴𝑅𝑀𝐴(1,1),

but it cannot distinguish between these.

Figure 21: Relationship between mean degree and autocorrelation coefficient fitted to functions

51

6 DISCUSSION

During our exploration we made two significant discoveries. First of all, we revealed a significant

relationship between white noises’ network statistics and the length of sample size. Some of

these relationships were already established as previously mentioned by Luque et al. (2009). They

stated that a horizontal visibility graph will have a mean degree of four for large sample sizes

which is reflected in our results as well. The degree distribution in our results were always power

laws, consistent with the finding of Luque et al. Another result which was consistent with Luque’s

findings was the relationship between the average shortest path length and logarithm of sample

size for graphs generated from the horizontal visibility algorithm. This relationship was extended

to the visibility graph by Sun et al. (2016)

We discovered however that every relationship is valid for both visibility- and horizontal visibility

graph. This was revealed by the simulations for white noise of different sample sized up to a

sample size of 3000. Our results were used to fit functions which could in theory predict the

further development with larger sample sizes. As mentioned above we were unable to fit

functions to some of our boundaries. The values were to erratic and we needed to run the

simulations multiple times to gain a better understanding on how these behave. We also noticed

problems with the functions that we have fitted, even those with a very large goodness of fit

measurements. When we extend the sample size, the boundaries do not behave as we would

expect, some of them even change from upper to lower bounds. This indicates that our functions

do not capture the true nature of our data and the topic should be revisited. Despite of these we

could purpose a test from which a white noise series could be identified for series with a sample

size up to 3000. This test could be applied for both stationary and non-stationary time-series.

Secondly, we documented the change in network statistics due to alterations in the auto

correlation functions of 𝐴𝑅(1), 𝑀𝐴(1) and 𝐴𝑅𝑀𝐴(1). In this case though, we could not

distinguish between those three processes from the output, the results were to similar. What we

did realize was that we could use the relationships between the parameters of the studied

processes and two of the network statistics, mean degree and transitivity, to determine the

parameters of the mentioned processes. Thus, creating a tool for identifying the parameter of an

𝐴𝑅(1), 𝑀𝐴(1) or 𝐴𝑅𝑀𝐴(1,1) which is independent of the original time-series stationarity status.

A similar result as ours was discovered by Segberg and Skoglund (2017) in their exploration of

𝐺𝐴𝑅𝐶𝐻. They were able to distinguish between 𝐺𝐴𝑅𝐶𝐻 parameters on the basis of average

shortest path length and mean degree. These relationships only hold for the networks generated

by the visibility graph algorithm. Zhang et al. (2017) are as far as we know the only ones who have

explored the network statistics’ behavior of the auto regressive processes of orders one and two.

They however used a different approach and considered the effect from re-sampling time delay.

Their findings are therefore not comparable to ours due to our use of a fixed sample size

Our results were obtained by the use of a fixed sample size of 1000 and we cannot speculate in

how these relationships would change due to changes in the length of the time-series.

52

All of our data have been artificially generated in 𝑅, which may not be completely reliable to

generate the desired series for our investigations. We did not however have any surprising results

which may have been caused by errors in the generation of data. Since we are novices in the field

of network theory, we may have missed such realizations. Every simulation has been performed

with 100 repetitions of each variable, and this might not be enough to gain valid results. As we

can see in our different boxplots, the values of white noise and a process with zero auto

correlation coefficient are close, but not identical. This difference is insignificant though, taking

the samples nature into consideration.

Although there are plenty of issues, but we believe that our findings are a contribution towards

the identification of stochastic processes through networks.

We encourage the further development and testing of our work. Our discoveries should be tested

against real data to enhance their validity before further use. We also suggest investigating the

relationship between sample size and network properties for the auto regressive and moving

average processes in addition to their combination, of different auto correlation coefficients.

53

7 CONCLUSION

We have discovered a test which can determine a white noise process in addition to a

classification tool which can determine the parameter of moving average-, autoregressive- and

autoregressive moving average processes. Neither of them is dependent on the series

stationarity. In addition, we gained insight into how a networks statistic rely back to its original

time-series, thus aiding the interpretation of different network properties when used with time-

series.

We realize that the use of our findings may be limited, they are un-tested and have specific

sample size requirements, but we do look at this as a first step towards recording stochastic

series. We encourage the continuation of our work by testing our purposed tool and explore the

sample size effect further both in white noise but also in the other processes examined in this

thesis.

54

REFERENCES

Barabási, A.-L., & Albert, R. (1999). Emergence of Scaling in Random Networks. Science, 286(5439),
509-512. Retrieved from https://science.sciencemag.org/content/sci/286/5439/509.full.pdf.
doi:10.1126/science.286.5439.509

Barabási, A.-L., & Bonabeau, E. (2003). Scale-Free Networks. Scientific American, 288(5), 60-69.
Retrieved from http://www.jstor.org/stable/26060284.

Bezsudnov, I. V., & Snarskii, A. A. (2014). From the time series to the complex networks: The
parametric natural visibility graph. Physica A: Statistical Mechanics and its Applications, 414,
53-60. Retrieved from
http://www.sciencedirect.com/science/article/pii/S0378437114005676.
doi:https://doi.org/10.1016/j.physa.2014.07.002

Brooks, C. (2008). Introductory Econometrics for Finance. The United States of America, New York:
Cambridge University Press.

Campanharo, A. S. L. O., Sirer, M. I., Malmgren, R. D., Ramos, F. M., & Amaral, L. A. N. (2011). Duality
between Time Series and Networks. PLOS ONE, 6(8), e23378. Retrieved from
https://doi.org/10.1371/journal.pone.0023378. doi:10.1371/journal.pone.0023378

Clauset, A., Shalizi, C. R., & Newman, M. E. J. (2009). Power-Law Distributions in Empirical Data. SIAM
Review, 51(4), 661-703. doi:10.1137/070710111

Csardi, G. (2019). Centralization. Retrieved from
https://www.rdocumentation.org/packages/igraph/versions/0.7.1/topics/centralization

Donner, R. V., Zou, Y., Donges, J. F., Marwan, N., & Kurths, J. (2010). Recurrence networks—a novel
paradigm for nonlinear time series analysis. New Journal of Physics, 12(3), 033025. Retrieved
from http://dx.doi.org/10.1088/1367-2630/12/3/033025. doi:10.1088/1367-
2630/12/3/033025

E. J. Newman, M. (2004). Power Laws, Pareto Distributions and Zipf's Law (Vol. 46).
Hill, R. C., Griffiths, W. E., & Lim, G. C. (2011). Principles of Econometrics. The United States of

America: John Wiley & Sons, Inc.
Huang, Y., Cheng, W., Luo, S., Luo, Y., Ma, C., & He, T. (2016). Features of the Asynchronous

Correlation between the China Coal Price Index and Coal Mining Accidental Deaths. PLOS
ONE, 11(11), e0167198. Retrieved from https://doi.org/10.1371/journal.pone.0167198.
doi:10.1371/journal.pone.0167198

Kruja, E., Marks, J., Blair, A., & Waters, R. (2002). A short note on the history of graph drawing. In
(Vol. 2265, pp. 272-286).

Lacasa, L., Luque, B., Ballesteros, F., Luque, J., & Nuño, J. C. (2008). From time series to complex
networks: The visibility graph. Proceedings of the National Academy of Sciences, 105(13),
4972. Retrieved from http://www.pnas.org/content/105/13/4972.abstract.
doi:10.1073/pnas.0709247105

Lacasa, L., Luque, B., Luque, J., & Nuño, J. C. (2009). The visibility graph: A new method for estimating
the Hurst exponent of fractional Brownian motion. EPL (Europhysics Letters), 86(3), 30001.
Retrieved from http://dx.doi.org/10.1209/0295-5075/86/30001. doi:10.1209/0295-
5075/86/30001

Lacasa, L., & Toral, R. (2010). Description of stochastic and chaotic series using visibility graphs (Vol.
82).

Li, R., Wang, J., Yu, H., Deng, B., Wei, X., & Chen, Y. (2016). Fractal analysis of the short time series in
a visibility graph method. Physica A: Statistical Mechanics and its Applications, 450, 531-540.
Retrieved from http://www.sciencedirect.com/science/article/pii/S0378437115010997.
doi:https://doi.org/10.1016/j.physa.2015.12.071

Luque, B., Lacasa, L., Ballesteros, F., & Luque, J. (2009). Horizontal visibility graphs: Exact results for
random time series. Physical Review E, 80(4), 046103. Retrieved from
https://link.aps.org/doi/10.1103/PhysRevE.80.046103. doi:10.1103/PhysRevE.80.046103

https://science.sciencemag.org/content/sci/286/5439/509.full.pdf
http://www.jstor.org/stable/26060284
http://www.sciencedirect.com/science/article/pii/S0378437114005676
https://doi.org/10.1016/j.physa.2014.07.002
https://doi.org/10.1371/journal.pone.0023378
https://www.rdocumentation.org/packages/igraph/versions/0.7.1/topics/centralization
http://dx.doi.org/10.1088/1367-2630/12/3/033025
https://doi.org/10.1371/journal.pone.0167198
http://www.pnas.org/content/105/13/4972.abstract
http://dx.doi.org/10.1209/0295-5075/86/30001
http://www.sciencedirect.com/science/article/pii/S0378437115010997
https://doi.org/10.1016/j.physa.2015.12.071
https://link.aps.org/doi/10.1103/PhysRevE.80.046103

55

Marwan, N., Donges, J. F., Zou, Y., Donner, R. V., & Kurths, J. (2009). Complex network approach for
recurrence analysis of time series. Physics Letters A, 373(46), 4246-4254. Retrieved from
http://www.sciencedirect.com/science/article/pii/S0375960109011852.
doi:https://doi.org/10.1016/j.physleta.2009.09.042

Newman, M. E. J. (2002). Assortative Mixing in Networks. Physical Review Letters, 89(20), 208701.
Retrieved from https://link.aps.org/doi/10.1103/PhysRevLett.89.208701.
doi:10.1103/PhysRevLett.89.208701

Newman, M. E. J. (2003). The Structure and Function of Complex Networks. SIAM Review, 45(2), 167-
256. Retrieved from https://epubs.siam.org/doi/abs/10.1137/S003614450342480.
doi:10.1137/s003614450342480

Newman, M. E. J. (2010). Networks : an introduction. Oxford: Oxford University Press.
Ravetti, M. G., Carpi, L. C., Gonçalves, B. A., Frery, A. C., & Rosso, O. A. (2014). Distinguishing Noise

from Chaos: Objective versus Subjective Criteria Using Horizontal Visibility Graph. PLOS ONE,
9(9), e108004. Retrieved from https://doi.org/10.1371/journal.pone.0108004.
doi:10.1371/journal.pone.0108004

Segberg, E., & Skoglund, S. (2017). Visibility Graph Analysis of Real-Life and GARCH-Simulated
Financial Time-Series. University of Agder, Kristiansand, Norway.

Sun, M., Wang, Y., & Gao, C. (2016). Visibility graph network analysis of natural gas price: The case of
North American market. Physica A: Statistical Mechanics and its Applications, 462, 1-11.
Retrieved from http://www.sciencedirect.com/science/article/pii/S0378437116303193.
doi:https://doi.org/10.1016/j.physa.2016.06.051

Verbeek, M. (2004). A Guide to Modern Econometrics. England: John Wiley & Sons Inc.
Wilson, R. J. (2010). Introduction to Graph Theory (5th ed. ed.): United Kingdom: Pearson Education

M.U.A.
Xu, X., Zhang, J., & Small, M. (2008). Superfamily phenomena and motifs of networks induced from

time series. Proceedings of the National Academy of Sciences, 105(50), 19601-19605.
Retrieved from https://www.pnas.org/content/pnas/105/50/19601.full.pdf.
doi:10.1073/pnas.0806082105

Yang, J., Qu, Z., & Chang, H. (2015). Investigation on Law and Economics Based on Complex Network
and Time Series Analysis. PLOS ONE, 10(6), e0127001. Retrieved from
https://doi.org/10.1371/journal.pone.0127001. doi:10.1371/journal.pone.0127001

Yu, L. (2013). Visibility graph network analysis of gold price time series. Physica a-Statistical
Mechanics and Its Applications, 392(16), 3374-3384. Retrieved from <Go to
ISI>://WOS:000320292500009. doi:10.1016/j.physa.2013.03.063

Zhang, J., & Small, M. (2006). Complex Network from Pseudoperiodic Time Series: Topology versus
Dynamics. Physical Review Letters, 96(23), 238701. Retrieved from
https://link.aps.org/doi/10.1103/PhysRevLett.96.238701.
doi:10.1103/PhysRevLett.96.238701

Zhang, R., Zou, Y., Zhou, J., Gao, Z.-K., & Guan, S. (2017). Visibility graph analysis for re-sampled time
series from auto-regressive stochastic processes. Communications in Nonlinear Science and
Numerical Simulation, 42, 396-403. Retrieved from
http://www.sciencedirect.com/science/article/pii/S1007570416301332.
doi:https://doi.org/10.1016/j.cnsns.2016.04.031

Zhuang, E., Small, M., & Feng, G. (2014). Time series analysis of the developed financial markets’
integration using visibility graphs. Physica A: Statistical Mechanics and its Applications, 410,
483-495. Retrieved from
http://www.sciencedirect.com/science/article/pii/S0378437114004397.
doi:https://doi.org/10.1016/j.physa.2014.05.058

http://www.sciencedirect.com/science/article/pii/S0375960109011852
https://doi.org/10.1016/j.physleta.2009.09.042
https://link.aps.org/doi/10.1103/PhysRevLett.89.208701
https://epubs.siam.org/doi/abs/10.1137/S003614450342480
https://doi.org/10.1371/journal.pone.0108004
http://www.sciencedirect.com/science/article/pii/S0378437116303193
https://doi.org/10.1016/j.physa.2016.06.051
https://www.pnas.org/content/pnas/105/50/19601.full.pdf
https://doi.org/10.1371/journal.pone.0127001
https://link.aps.org/doi/10.1103/PhysRevLett.96.238701
http://www.sciencedirect.com/science/article/pii/S1007570416301332
https://doi.org/10.1016/j.cnsns.2016.04.031
http://www.sciencedirect.com/science/article/pii/S0378437114004397
https://doi.org/10.1016/j.physa.2014.05.058

56

APPENDICES

A: Line plot of realizations generated by an 𝑀𝐴(1) with different parameters

B: Line plot of realizations generate by an 𝐴𝑅(1) with different parameters

C: Line plot of realizations generated by an 𝐴𝑅𝑀𝐴(1,1) with different parameters for AR*

D: Graph of realizations generated by an 𝑀𝐴(1) with different parameters

E: Graph of realizations generate by an 𝐴𝑅(1) with different parameters

F: Graph of realizations generated by an 𝐴𝑅𝑀𝐴(1,1) with different parameters for AR*

G: OLS regression analysis

H: R-code

I: Reflection notes

57

A: Line plot of realizations generate by an 𝑴𝑨(𝟏) with different parameters

The processes’ autocorrelation coefficient is shortened to “coef” in the table

Coef=0:

Coef=-0.1:

Coef=0,1:

Coef=-0.2:

Coef= 0.2:

Coef=-0.3:

Coef= 0.3:

Coef=-0.4:

Coef= 0.4:

Coef=-0.5:

Coef= 0.5:

Coef=-0.6:

Coef= 0.6:

Coef=-0.7:

Coef= 0.7:

Coef=-0.8:

Coef= 0.8:

Coef=-0.9:

Coef= 0.9:

58

B: Line plot of realizations generate by an 𝑨𝑹(𝟏) with different parameters:

The processes’ autocorrelation coefficient is shortened to “coef” in the table

Coef=0:

Coef=-0.1:

Coef= 0.1:

Coef=-0.2:

Coef= 0.2:

Coef=-0.3:

Coef= 0.3:

Coef=-0.4:

Coef= 0.4:

Coef=-0.5:

Coef= 0.5:

Coef=-0.6:

Coef= 0.6:

Coef=-0.7:

Coef= 0.7:

Coef=-0,8:

Coef= 0.8:

Coef=-0.9:

Coef=0.9:

59

C: Line plot of realizations generate by an 𝑨𝑹𝑴𝑨(𝟏, 𝟏)with different parameters for 𝑨𝑹 ∗

The processes’ autocorrelation coefficient is shortened to “coef” in the table

*Autocorrelation coefficient of 𝑀𝐴(1) is constant and set at 0.1

Coef=0:

Coef=-0.1:

Coef= 0.1:

Coef=-0.2:

Coef= 0.2:

Coef=-0.3:

Coef= 0.3:

Coef=-0.4:

Coef= 0.4:

Coef=-0.5:

Coef= 0.5:

Coef=-0.6:

Coef= 0.6:

Coef=-0.7:

Coef= 0.7:

Coef=-0.8:

Coef= 0.8:

Coef=-0.9:

Coef=0.9:

60

D: Graphs of realizations generated by an 𝑴𝑨(𝟏) with different parameters

The processes’ autocorrelation coefficient is shortened to “coef” in the table

 Visibility graph Horizontal visibility graph

Coef=-0.9:

Coef=-0.8:

Coef=-0.7:

61

 Visibility graph Horizontal visibility graph

Coef=-0.6:

Coef=-0.5::

Coef=-0.4:

62

 Visibility graph Horizontal visibility graph

Coef=-0.3:

Coef=-0.2:

Coef=-0.1:

63

 Visibility graph Horizontal visibility graph

Coef=0:

Coef= 0.1:

Coef= 0.2:

64

 Visibility graph Horizontal visibility graph

Coef= 0.3:

Coef= 0.4:

Coef= 0.5:

65

 Visibility graph Horizontal visibility graph

Coef= 0.6:

Coef= 0.7:

Coef= 0.8:

66

 Visibility graph Horizontal visibility graph

Coef= 0.9:

67

E: Graphs of realizations generate by an 𝑨𝑹(𝟏) with different parameters

The processes’ autocorrelation coefficient is shortened to “coef” in the table

 Visibility graph Horizontal visibility graph

Coef=-0.9:

Coef=-0.8:

Coef=-0.7:

68

 Visibility graph Horizontal visibility graph

Coef=-0.6:

Coef=-0.5::

Coef=-0.4:

69

 Visibility graph Horizontal visibility graph

Coef=-0.3:

Coef=-0.2:

Coef=-0.1:

70

 Visibility graph Horizontal visibility graph

Coef=0:

Coef= 0.1:

Coef= 0.2:

71

 Visibility graph Horizontal visibility graph

Coef= 0.3:

Coef= 0.4:

Coef= 0.5:

72

 Visibility graph Horizontal visibility graph

Coef= 0.6:

Coef= 0.7:

Coef= 0.8:

73

 Visibility graph Horizontal visibility graph

Coef= 0.9:

74

F: : Line plot of realizations generate by an 𝑨𝑹𝑴𝑨(𝟏, 𝟏) with different parameters for 𝑨𝑹 ∗

The processes’ autocorrelation coefficient is shortened to “coef” in the table

 Visibility graph

 Horizontal visibility graph

Coef=-0.9:

Coef=-0.8:

Coef=-0.7:

75

 Visibility graph

 Horizontal visibility graph

Coef=-0.6:

Coef=-0.5:

Coef=-0.4:

76

 Visibility graph

 Horizontal visibility graph

Coef=-0.3:

Coef=-0.2:

Coef=-0.1:

77

 Visibility graph

 Horizontal visibility graph

Coef=0:

Coef= 0.1:

Coef= 0.2:

78

 Visibility graph

 Horizontal visibility graph

Coef= 0.3:

Coef= 0.4:

Coef= 0.5:

79

 Visibility graph

 Horizontal visibility graph

Coef= 0.6:

Coef= 0.7:

Coef= 0.8:

80

 Visibility graph

 Horizontal visibility graph

Coef= 0.9:

*Autocorrelation coefficient for 𝑀𝐴(1) is constant and set at 0.1

81

G: OLS regression analysis

Statistics of both visibility- and horizontal visibility graphs converted from a white noise process

Average shortest path length – Visibility graph:

Lower boundary: 𝐴𝑆𝑃𝐿 = −2.24 + 1.26 𝑙𝑛(𝑁)

Upper boundary: 𝐴𝑆𝑃𝐿 = −0.5 + 1.33 𝑙𝑛(𝑁)

Regression Statistics

Multiple R 0.9955

R Square 0.9911

Adjusted R Square 0.9908

Standard Error 0.1033

Observations 30

ANOVA

df SS MS F Significance F

Regression 1 33.2258 33.2258 3112.7769 0.0000

Residual 28 0.2989 0.0107

Total 29 33.5247

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept -2.2446 0.1611 -13.9298 0.0000 -2.5747 -1.9145 -2.5747 -1.9145

ln(N) 1.2586 0.0226 55.7923 0.0000 1.2124 1.3048 1.2124 1.3048

Regression Statistics

Multiple R 0.9705

R Square 0.9419

Adjusted R Square 0.9398

Standard Error 0.2853

Observations 30

ANOVA

df SS MS F Significance F

Regression 1 36.9069 36.9069 453.5774 0.0000

Residual 28 2.2783 0.0814

Total 29 39.1852

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept -0.4985 0.4449 -1.1205 0.2720 -1.4098 0.4128 -1.4098 0.4128

ln(N) 1.3265 0.0623 21.2974 0.0000 1.1989 1.4541 1.1989 1.4541

82

Average shortest path length (HVG)

Lower boundary: 𝐴𝑆𝑃𝐿 = −1.9 + 1.28 𝑙𝑛(𝑁)

Upper boundary: 𝐴𝑆𝑃𝐿 = 0.22 + 1.31 𝑙𝑛(𝑁)

Regression Statistics

Multiple R 0.9954

R Square 0.9909

Adjusted R Square 0.9906

Standard Error 0.1066

Observations 30

ANOVA

df SS MS F Significance F

Regression 1 34.6042 34.6042 3046.1287 0.0000

Residual 28 0.3181 0.0114

Total 29 34.9223

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept -1.8815 0.1662 -11.3180 0.0000 -2.2220 -1.5409 -2.2220 -1.5409

ln(N) 1.2845 0.0233 55.1917 0.0000 1.2368 1.3321 1.2368 1.3321

Regression Statistics

Multiple R 0.9726

R Square 0.9460

Adjusted R Square 0.9441

Standard Error 0.2702

Observations 30

ANOVA

df SS MS F Significance F

Regression 1 35.7980 35.7980 490.4540 0.0000

Residual 28 2.0437 0.0730

Total 29 37.8417

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept 0.2167 0.4214 0.5142 0.6111 -0.6464 1.0798 -0.6464 1.0798

ln(N) 1.3064 0.0590 22.1462 0.0000 1.1856 1.4273 1.1856 1.4273

83

Assortativity (VG):

Lower boundary: 𝐴𝑆𝑆 = −0.26 + 0.045 𝑙𝑛(𝑁)

Upper boundary: 𝐴𝑆𝑆 = 0.086 + 0.005 𝑙𝑛(𝑁)

Regression Statistics

Multiple R 0.9687

R Square 0.9384

Adjusted R Square 0.9362

Standard Error 0.0099

Observations 30

ANOVA

df SS MS F Significance F

Regression 1 0.0415 0.0415 426.4266 0.0000

Residual 28 0.0027 0.0001

Total 29 0.0442

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept -0.2620 0.0154 -17.0381 0.0000 -0.2935 -0.2305 -0.2935 -0.2305

ln(N) 0.0445 0.0022 20.6501 0.0000 0.0400 0.0489 0.0400 0.0489

Regression Statistics

Multiple R 0.5573

R Square 0.3105

Adjusted R Square 0.2859

Standard Error 0.0067

Observations 30

ANOVA

df SS MS F Significance F

Regression 1 0.0006 0.0006 12.6110 0.0014

Residual 28 0.0013 0.0000

Total 29 0.0018

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept 0.0855 0.0105 8.1519 0.0000 0.0640 0.1069 0.0640 0.1069

ln(N) 0.0052 0.0015 3.5512 0.0014 0.0022 0.0082 0.0022 0.0082

84

Assortativity (HVG)

Lower boundary: 𝐴𝑆𝑆 = −0.25 + 0.052 𝑙𝑛(𝑁)

Upper boundary: 𝐴𝑆𝑆 = 0.13 + 0.01 𝑙𝑛(𝑁)

Regression Statistics

Multiple R 0.9753

R Square 0.9513

Adjusted R Square 0.9495

Standard Error 0.0102

Observations 30

ANOVA

df SS MS F Significance F

Regression 1 0.0569 0.0569 546.6081 0.0000

Residual 28 0.0029 0.0001

Total 29 0.0598

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept -0.2492 0.0159 -15.6673 0.0000 -0.2818 -0.2166 -0.2818 -0.2166

ln(N) 0.0521 0.0022 23.3797 0.0000 0.0475 0.0566 0.0475 0.0566

Regression Statistics

Multiple R 0.72212138

R Square 0.52145929

Adjusted R Square 0.50436855

Standard Error 0.00796364

Observations 30

ANOVA

df SS MS F Significance F

Regression 1 0.00193501 0.00193501 30.5112185 6.6418E-06

Residual 28 0.00177575 6.342E-05

Total 29 0.00371076

CoefficientsStandard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept 0.12812089 0.01242066 10.3151415 4.8306E-11 0.10267832 0.15356347 0.10267832 0.15356347

ln(N) 0.00960508 0.00173889 5.52369609 6.6418E-06 0.00604313 0.01316702 0.00604313 0.01316702

85

Mean degree (VG)

Lower boundary: 𝐷 = 3.84 + 0.106 𝑙𝑛(𝑁)

Upper boundary: 𝐷 = 4.799 − 0.004 𝑙𝑛(𝑁)

(not an adequate result!)

Regression Statistics

Multiple R 0.944

R Square 0.891

Adjusted R Square 0.887

Standard Error 0.032

Observations 30

ANOVA

df SS MS F Significance F

Regression 1 0.237296 0.237296 229.753731 0.000000

Residual 28 0.028919 0.001033

Total 29 0.266215

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept 3.844 0.0501 76.6837 0.0000 3.7410 3.9464 3.7410 3.9464

ln(N) 0.106 0.0070 15.1576 0.0000 0.0920 0.1207 0.0920 0.1207

Regression Statistics

Multiple R 0.181

R Square 0.033

Adjusted R Square -0.002

Standard Error 0.019

Observations 30

ANOVA

df SS MS F Significance F

Regression 1 0.000 0.000 0.947 0.339

Residual 28 0.010 0.000

Total 29 0.010

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept 4.799 0.030 161.583 0.000 4.738 4.859 4.738 4.859

ln(N) -0.004 0.004 -0.973 0.339 -0.013 0.004 -0.013 0.004

86

Mean degree (HVG):

Lower boundary: 𝐷 = 3.45 + 0.07𝑙𝑛(𝑁)

Upper boundary: 𝐷 = 3.81 + 0.025 𝑙𝑛(𝑁)

Regression Statistics

Multiple R 0.9261

R Square 0.8576

Adjusted R Square 0.8525

Standard Error 0.0246

Observations 30

ANOVA

df SS MS F Significance F

Regression 1 0.1018 0.1018 168.6236 0.0000

Residual 28 0.0169 0.0006

Total 29 0.1187

CoefficientsStandard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept 3.4486 0.0383 89.9958 0.0000 3.3701 3.5271 3.3701 3.5271

ln(N) 0.0697 0.0054 12.9855 0.0000 0.0587 0.0807 0.0587 0.0807

Regression Statistics

Multiple R 0.9024

R Square 0.8144

Adjusted R Square 0.8078

Standard Error 0.0101

Observations 30

ANOVA

df SS MS F Significance F

Regression 1 0.0126 0.0126 122.8636 0.0000

Residual 28 0.0029 0.0001

Total 29 0.0154

CoefficientsStandard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept 3.8074 0.0158 241.4957 0.0000 3.7751 3.8397 3.7751 3.8397

ln(N) 0.0245 0.0022 11.0844 0.0000 0.0199 0.0290 0.0199 0.0290

87

Transitivity (VG):

Lower boundary: 𝐿𝑛(𝑇𝑅𝐴) = −0.93 − 0.0006 𝑙𝑛(𝑁)

(not an adequate result)

Upper boundary: 𝐿𝑛(𝑇𝑅𝐴) = −0.59 − 0.04 𝑙𝑛(𝑁)

Regression Statistics

Multiple R 0.0766

R Square 0.0059

Adjusted R Square -0.0296

Standard Error 0.0065

Observations 30

ANOVA

df SS MS F Significance F

Regression 1 0.0000 0.0000 0.1652 0.6875

Residual 28 0.0012 0.0000

Total 29 0.0012

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept -0.9260 0.0102 -91.1155 0.0000 -0.9468 -0.9052 -0.9468 -0.9052

ln(N) -0.0006 0.0014 -0.4065 0.6875 -0.0035 0.0023 -0.0035 0.0023

Regression Statistics

Multiple R 0.9600

R Square 0.9216

Adjusted R Square 0.9188

Standard Error 0.0097

Observations 30

ANOVA

df SS MS F Significance F

Regression 1 0.0308 0.0308 329.0316 0.0000

Residual 28 0.0026 0.0001

Total 29 0.0334

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept -0.5929 0.0151 -39.2818 0.0000 -0.6238 -0.5619 -0.6238 -0.5619

ln(N) -0.0383 0.0021 -18.1392 0.0000 -0.0427 -0.0340 -0.0427 -0.0340

88

Transitivity (HVG):

Lower boundary: 𝐿𝑛(𝑇𝑅𝐴) = −1.09 − 0.002 𝑙𝑛(𝑁)

(not an adequate result)

Upper boundary: 𝐿𝑛(𝑇𝑅𝐴) = −0.82 − 0.034 𝑙𝑛(𝑁)

Regression Statistics

Multiple R 0.4409

R Square 0.1944

Adjusted R Square 0.1656

Standard Error 0.0037

Observations 30

ANOVA

df SS MS F Significance F

Regression 1 0.0001 0.0001 6.7573 0.0147

Residual 28 0.0004 0.0000

Total 29 0.0005

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept -1.0894 0.0057 -191.0905 0.0000 -1.1011 -1.0778 -1.1011 -1.0778

ln(N) -0.0021 0.0008 -2.5995 0.0147 -0.0037 -0.0004 -0.0037 -0.0004

Regression Statistics

Multiple R 0.9496

R Square 0.9018

Adjusted R Square 0.8983

Standard Error 0.0096

Observations 30

ANOVA

df SS MS F Significance F

Regression 1 0.0235 0.0235 257.1999 0.0000

Residual 28 0.0026 0.0001

Total 29 0.0261

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept -0.8168 0.0149 -54.7772 0.0000 -0.8474 -0.7863 -0.8474 -0.7863

ln(N) -0.0335 0.0021 -16.0375 0.0000 -0.0378 -0.0292 -0.0378 -0.0292

89

Normalized degree centrality (VG)

Lower boundary: 𝐿𝑛(𝐷𝐶) = 0.6 − 0.72 𝑙𝑛(𝑁)

Upper boundary: 𝐿𝑛(𝐷𝐶) = 1.97 − 0.82 𝑙𝑛(𝑁)

Regression Statistics

Multiple R 0.9947

R Square 0.9894

Adjusted R Square 0.9890

Standard Error 0.0650

Observations 30

ANOVA

df SS MS F Significance F

Regression 1 11.0151 11.0151 2603.5569 0.0000

Residual 28 0.1185 0.0042

Total 29 11.1336

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept 0.6014 0.1014 5.9277 0.0000 0.3936 0.8092 0.3936 0.8092

ln(N) -0.7247 0.0142 -51.0251 0.0000 -0.7538 -0.6956 -0.7538 -0.6956

Regression Statistics

Multiple R 0.9954

R Square 0.9908

Adjusted R Square 0.9904

Standard Error 0.0685

Observations 30

ANOVA

df SS MS F Significance F

Regression 1 14.1129 14.1129 3004.0655 0.0000

Residual 28 0.1315 0.0047

Total 29 14.2445

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept 1.9735 0.1069 18.4606 0.0000 1.7545 2.1925 1.7545 2.1925

ln(N) -0.8203 0.0150 -54.8094 0.0000 -0.8509 -0.7896 -0.8509 -0.7896

90

Normalized degree centrality (HVG)

Lower boundary: 𝐿𝑛(𝐷𝐶) = 0.37 − 0.72 𝑙𝑛(𝑁)

Upper boundary: 𝐿𝑛(𝐷𝐶) = 1.89 − 0.84 𝑙𝑛(𝑁)

Regression Statistics

Multiple R 0.9952

R Square 0.9904

Adjusted R Square 0.9900

Standard Error 0.0616

Observations 30

ANOVA

df SS MS F Significance F

Regression 1 10.9607 10.9607 2885.6824 0.0000

Residual 28 0.1064 0.0038

Total 29 11.0670

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept 0.3730 0.0961 3.8802 0.0006 0.1761 0.5699 0.1761 0.5699

ln(N) -0.7229 0.0135 -53.7185 0.0000 -0.7505 -0.6953 -0.7505 -0.6953

Regression Statistics

Multiple R 0.9935

R Square 0.9871

Adjusted R Square 0.9867

Standard Error 0.0832

Observations 30

ANOVA

df SS MS F Significance F

Regression 1 14.8655 14.8655 2145.6388 0.0000

Residual 28 0.1940 0.0069

Total 29 15.0594

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept 1.8911 0.1298 14.5670 0.0000 1.6252 2.1570 1.6252 2.1570

ln(N) -0.8419 0.0182 -46.3210 0.0000 -0.8791 -0.8046 -0.8791 -0.8046

91

H: R- code

White noise process – different sample sizes

rm(list = ls(all=TRUE))

 setwd(dirname(rstudioapi::getActiveDocumentContext()$path))

 dev.off()

 library(igraph)

 source("VG_HVG.r")

 #__

 # Generate data,transform to network & calculate statistics

 #--

 # Variables & storage:

 size=seq(100,3000,by=100)

 sim_num=100

 name_WN=c("White noice")

 name_data=c(paste("WN",size))

 name_sim=c(paste("sim",seq(1,sim_num,1)))

 name_nstat=c("VG: Average geodistic path","HVG: Average geodistic path",

 "VG: Assortativity","HVG: Assortativity",

 "VG: Transitivity","HVG: Transitivity",

 "VG: Mean degree","HVG: Mean degree",

 "VG: Degree centrality","HVG: Degree centrality",

 "VG: PL p-value", "HVG: PL p-value")

 name_dstat=c("Mean","Standard deviation","Maximum","Minimum")

 col_rainbow=rainbow(2*length(size))

 col_VG=col_rainbow[-(1:length(size))]

 col_HVG=rev(col_rainbow)

 col_HVG=col_HVG[-(1:length(size))]

 col_HVG=rev(col_HVG)

 col_graph=c("grey80","dodgerblue4","grey80")

 DATA_WN=vector("list",length(size))

 DSTAT_WN=vector("list",length(size))

 NSTAT_WN=vector("list",length(size))

 for (j in 1:length(size)) {

 #--

 # Generate White noice

 data_WN=vector()

 dstat_WN=matrix(nrow = sim_num,ncol = length(name_dstat))

 colnames(dstat_WN)=name_dstat

 rownames(dstat_WN)=name_sim

 nstat_WN=matrix(ncol = length(name_nstat),nrow = sim_num)

 colnames(nstat_WN)=name_nstat

 rownames(nstat_WN)=name_sim

 for (i in 1:sim_num) {

 #...

 # Generate data:

 wn=rnorm(size[j],mean=0,sd=1)

92

 wn=as.vector(wn)

 data_WN=cbind(data_WN,wn)

 dstat_WN[i,1]=mean(wn)

 dstat_WN[i,2]=sd(wn)

 dstat_WN[i,3]=max(wn)

 dstat_WN[i,4]=min(wn)

 #...

 # Generate network:

 imatVG_WN=visi(wn)

 imatHVG_WN=visiH(wn)

 netVG_WN=graph_from_adjacency_matrix(imatVG_WN)

 netHVG_WN=graph_from_adjacency_matrix(imatHVG_WN)

 #...

 # Calculate network statistics:

 degDisVG_WN=vector()

 degDisHVG_WN=vector()

 #...

 # Average geodistic path:

 nstat_WN[i,1]=mean_distance(netVG_WN, directed = FALSE, unconnected =

FALSE)

 nstat_WN[i,2]=mean_distance(netHVG_WN, directed = FALSE, unconnected =

FALSE)

 #...

 # Assortativity:

 nstat_WN[i,3]=assortativity.degree(netVG_WN, directed=FALSE)

 nstat_WN[i,4]=assortativity.degree(netHVG_WN, directed=FALSE)

 #...

 # Global transitivity:

 nstat_WN[i,5]=transitivity(netVG_WN, type="global", vids = NULL,

 weights = NULL, isolates = "zero")

 nstat_WN[i,6]=transitivity(netHVG_WN, type="global", vids = NULL,

 weights = NULL, isolates = "zero")

 #...

 # Mean degree:

 degVG=degree(netVG_WN,v=V(netVG_WN),mode = "in") # change mode

betweeen: "in","out","all","total"

 nstat_WN[i,7]=mean(degVG)

 degHVG=degree(netHVG_WN,v=V(netHVG_WN),mode = "in") # change mode

betweeen: "in","out","all","total"

 nstat_WN[i,8]=mean(degHVG)

 #...

 # Cumulative degree distribution:

 degDisVG_WN=degree.distribution(netVG_WN, cumulative = TRUE, mode="in"

)

 degDisHVG_WN=degree.distribution(netHVG_WN, cumulative = TRUE,

mode="in")

 #...

 # Degreee centrality

 VG_centDeg=centr_degree(netVG_WN, mode = "in", loops = FALSE,

normalized = TRUE)

 nstat_WN[i,9]=VG_centDeg[[2]]

 HVG_centDeg=centr_degree(netHVG_WN, mode = "in", loops = FALSE,

normalized = TRUE)

 nstat_WN[i,10]=HVG_centDeg[[2]]

 #...

 # Test for Power Law distribution:

93

 VG_PowLaw=fit_power_law(degDisVG_WN, xmin=NULL, force.continuous =

TRUE)

 nstat_WN[i,11]=VG_PowLaw[[6]]

 HVG_PowLaw=fit_power_law(degDisHVG_WN, xmin=NULL, force.continuous =

TRUE)

 nstat_WN[i,12]=HVG_PowLaw[[6]]

 }

 colnames(data_WN)=name_sim

 DATA_WN[[j]]=data_WN

 DSTAT_WN[[j]]=dstat_WN

 NSTAT_WN[[j]]=nstat_WN

 write.table(data_WN, file=paste("WN_Data",j,".txt"), col.names=TRUE)

 write.table(dstat_WN,file =paste("WN_Descriptive stat",j,".txt"),

col.names = TRUE)

 write.table(nstat_WN, file=paste("WN_Network stat",j,".txt"),col.names =

TRUE)

 }

#__

Generate visualization:

statistics as boxplot and quartiles as line-chars

#--

name_quartiles=c("lower q","median","upper q")

quartiles=vector("list",length(name_nstat))

SSR=matrix(nrow=length(name_nstat),ncol =length(name_quartiles))

colnames(SSR)=name_quartiles

rownames(SSR)=name_nstat

for (i in 1:length(name_nstat)) {

 input=matrix(ncol=length(size),nrow = sim_num)

 med_quantile=matrix(nrow=5,ncol=length(size))

 colnames(input)=c(paste(name_nstat[i],"size:",size))

 for (j in 1:length(size)) {

 stat=NSTAT_WN[[j]]

 input[,j]=stat[,i]

 med=quantile(input[,j])

 med_quantile[,j]=med

 }

 write.table(input,file=paste("WN_Network stat

collected",i,".txt"),col.names = TRUE)

 png(file=paste("WN_Boxplot",i,".png"),width = 1200,res = 72)

 boxplot(input, main=name_nstat[i], xlab="Size", xaxt="n",col=col_VG)

 axis(1,at=1:length(size),labels = size)

 dev.off()

 png(file=paste("WN_Boxplot2",i,".png"),width = 1200,res = 72)

 boxplot(input, main=name_nstat[i], xlab="Size", xaxt="n",col=col_HVG)

 axis(1,at=1:length(size),labels = size)

 dev.off()

 med_quantile=t(med_quantile)

 write.table(med_quantile, file=paste("Quantiles",i,".txt"))

 med_quantile=med_quantile[,-c(1,5)]

 colnames(med_quantile)=name_quartiles

 png(file=paste("WN_Graph",i,".png"),width = 1200,res = 72)

 matplot(med_quantile, type="l", col=col_graph, main=name_nstat[i],

 xlab="Size", ylab="",xaxt="n", lwd=2, lty=1)

94

 polygon(c((seq(1,length(size))),rev(seq(1,length(size)))),

 c(med_quantile[,3],rev(med_quantile[,2])),

 col="grey98",border=NA)

 polygon(c((seq(1,length(size))),rev(seq(1,length(size)))),

 c(med_quantile[,2],rev(med_quantile[,1])),

 col = "grey98",border=NA)

 par(new=TRUE)

 matplot(med_quantile, type="l", col=col_graph,

 xlab="", ylab="",xaxt="n", lwd=c(1,2,1), lty=1)

 axis(1,at=1:length(size),labels = size)

 par(new=FALSE)

 dev.off()

}

save.image(file="WN_workspace.RData")

95

𝑴𝑨(𝟏), 𝑨𝑹(𝟏) and 𝑨𝑹𝑴𝑨(𝟏, 𝟏) prosesses – change in autocorrelation coefficient(s)

White noise used as benchmark

rm(list = ls(all=TRUE))

setwd(dirname(rstudioapi::getActiveDocumentContext()$path))

library(igraph)

library(viridis)

source("VG_HVG.r")

#__

Generate data,transform to network & calculate statistics

#--

Variables:

size=1000

sim_num=1

p=1

q=1

coef_p=seq(-0.9,0.9,by=0.1)

coef_q_one=seq(-0.9,0.9,0.1) # change in MA coefficient when running

coef_q=0.1 # constant MA coefficient when running multipe simulations

name_AR=paste("AR(1), c =",coef_p)

name_MA=paste("MA(1), c =",coef_q)

name_MA_one=paste("MA(1), c =",coef_q_one)

name_ARMA=paste("ARMA, c_p =",coef_p,", c_q=",coef_q)

name_WN=c("White noice")

name_nstat=c("VG: Average geodistic path","HVG: Average geodistic path",

 "VG: Assortativity","HVG: Assortativity",

 "VG: Transitivity","HVG: Transitivity",

 "VG: Mean degree","HVG: Mean degree",

 "VG: Degree centrality","HVG: Degree centrality",

 "VG: PL p-value", "HVG: PL p-value")

name_cstat=c("Deg","Close","Betw","Hub")

name_dstat=c("Mean","Standard deviation","Maximum","Minimum")

col_boxP_WN="grey50"

col_boxP_MA="grey80"

col_MA= topo.colors((length(coef_q_one))*2)

col_AR=viridis((length(coef_p))*2)

col_ARMA=plasma((length(coef_p))*2)

color_VG_MA=col_MA

color_HVG_MA=col_MA[-(1:19)]

color_VG_AR=col_AR

color_HVG_AR=col_AR[-(1:19)]

color_VG_ARMA=col_ARMA

color_HVG_ARMA=col_ARMA[-(1:19)]

if(sim_num<=1){

 seed=runif(1,101,199)

 #--

 # White noice - reference

 #...

 # Generate & display data:

 #

 data_WN=vector()

 set.seed(seed)

96

 wn=rnorm(size,mean=0,sd=1)

 wn=as.vector(wn)

 data_WN=wn

 write.table(data_WN,file = "data_WN.txt")

 dstat_WN=vector(length = length(name_dstat))

 names(dstat_WN)=name_dstat

 dstat_WN[1]=mean(wn)

 dstat_WN[2]=sd(wn)

 dstat_WN[3]=max(wn)

 dstat_WN[4]=min(wn)

 write.table(dstat_WN, file = "dstat_WN.txt")

 png(file=paste("WN","Graph",".png"), width=1200,res =72)

 plot(data_WN, type = "l",col="grey10",main=name_WN,ylab = "",xlab = "")

 abline(h=0,col="grey90")

 dev.off()

 adj=min(data_WN)

 adj_WN=data_WN-adj

 png(file=paste("WN","adjBarplot",".png"),width=1200,res=72)

 barplot(adj_WN, main = "Adjusted barplot: WN", col = "black",

 names.arg = c(seq(1,size)))

 dev.off()

 png(file=paste("WN","Auto correlation

function",".png"),width=1200,res=72)

 acf(data_WN)

 dev.off()

 png(file=paste("WN","Partial auto correlation",".png"),width=1200,res=72)

 pacf(data_WN)

 dev.off()

 #...

 # Generate & display network:

 #

 imatVG_WN=visi(data_WN)

 imatHVG_WN=visiH(data_WN)

 netVG_WN=graph_from_adjacency_matrix(imatVG_WN)

 netHVG_WN=graph_from_adjacency_matrix(imatHVG_WN)

 png(file=paste("WN","VG",".png"),width = 1200,height = 1200,res=72)

 Q=qgraph(imatVG_WN, color="grey30", edge.color="grey70", vsize=2,

esize=1, labels=FALSE,

 border.color=c(rep("white",size)))

 title("Visibility graph: WN",line=3)

 dev.off()

 png(file=paste("WN","HVG",".png"),width = 1200,height = 1200,res=72)

 qgraph(imatHVG_WN,layout=Q$layout,color="grey60" ,edge.color="grey70",

vsize=2, esize=1, labels=FALSE,

 border.color=c(rep("white",size)))

 title("Horizontal visibility graph : WN", line=3)

 dev.off()

 png(file=paste("WN","Degree frequency VG",".png"), height=1200,res=72)

 degree_function(imatVG_WN,2)

 dev.off()

 png(file=paste("WN","Degree frequency HVG",".png"), height=1200,res=72)

 degree_function(imatHVG_WN,2)

 dev.off()

 #...

 # Calculate network statistics:

 #

 nstat_WN=vector(length = length(name_nstat))

97

 names(nstat_WN)=name_nstat

 cstatVG_WN=matrix(nrow=size, ncol =length(name_cstat))

 colnames(cstatVG_WN)=name_cstat

 cstatHVG_WN=matrix(nrow=size,ncol = length(name_cstat))

 colnames(cstatHVG_WN)=name_cstat

 #...

 # Average geodistic path:

 nstat_WN[1]=mean_distance(netVG_WN, directed = FALSE, unconnected =

FALSE)

 nstat_WN[2]=mean_distance(netHVG_WN, directed = FALSE, unconnected =

FALSE)

 #...

 # Assortativity:

 nstat_WN[3]=assortativity.degree(netVG_WN, directed=FALSE)

 nstat_WN[2]=mean_distance(netHVG_WN, directed = FALSE, unconnected =

FALSE)

 #...

 # Assortativity:

 nstat_WN[3]=assortativity.degree(netVG_WN, directed=FALSE)

 nstat_WN[4]=assortativity.degree(netHVG_WN, directed=FALSE)

 #...

 # Global transitivity:

 nstat_WN[5]=transitivity(netVG_WN, type="global", vids = NULL,

 weights = NULL, isolates = "zero")

 nstat_WN[6]=transitivity(netHVG_WN, type="global", vids = NULL,

 weights = NULL, isolates = "zero")

 #...

 # Mean degree:

 degVG=degree(netVG_WN,v=V(netVG_WN),mode = "in")

 nstat_WN[7]=mean(degVG)

 degHVG=degree(netHVG_WN,v=V(netHVG_WN),mode = "in")

 nstat_WN[8]=mean(degHVG)

 #...

 # Cumulative degree distribution:

 degDisVG_WN=degree.distribution(netVG_WN, cumulative = TRUE, mode="in")

 degDisHVG_WN=degree.distribution(netHVG_WN, cumulative = TRUE, mode="in"

)

 #...

 # Degreee centrality

 VG_centDeg=centr_degree(netVG_WN, mode = "in", loops = FALSE, normalized

= TRUE)

 nstat_WN[9]=VG_centDeg[[2]]

 HVG_centDeg=centr_degree(netHVG_WN, mode = "in", loops = FALSE,

normalized = TRUE)

 nstat_WN[10]=HVG_centDeg[[2]]

 #...

 # Test for Power Law distribution:

 VG_PowLaw=fit_power_law(degDisVG_WN, xmin=NULL, force.continuous = TRUE)

 nstat_WN[11]=VG_PowLaw[[6]]

 HVG_PowLaw=fit_power_law(degDisHVG_WN, xmin=NULL, force.continuous =

TRUE)

 nstat_WN[12]=HVG_PowLaw[[6]]

 #...

 # Centrality: degree, closeness, betweenness & hub

 par(mfrow=c(4,2))

 cent_VG=centrality(netVG_WN)

 cstatVG_WN[,1]=cent_VG[[2]]

98

 cstatVG_WN[,2]=cent_VG[[3]]

 cstatVG_WN[,3]=cent_VG[[4]]

 hub_vg=hub.score(netVG_WN,scale = TRUE,weights = NULL)

 cstatVG_WN[,4]=hub_vg[[1]]

 cent_HVG=centrality(netHVG_WN)

 cstatHVG_WN[,1]=cent_HVG[[2]]

 cstatHVG_WN[,2]=cent_HVG[[3]]

 cstatHVG_WN[,3]=cent_HVG[[4]]

 hub_hvg=hub.score(netHVG_WN,scale = TRUE,weights = NULL)

 cstatHVG_WN[,4]=hub_hvg[[1]]

 #...

 # Share of geodesics having a given length

 spathVG=cent_VG[7]

 geodshare_VG=table(spathVG)

 png(file=paste("WN","VG-Geodistics",".png"),width=1200,res=72)

 col_bar=colorRampPalette (c(col_boxP_WN,"white"))

 col_barVG=col_bar(length(geodshare_VG))

 barplot(geodshare_VG, col = col_barVG, ylab="Number of geodistics",xlab =

"Geodistic distance",

 main="VG: Share of geodistics having a given length, WN")

 dev.off()

 spathHVG=cent_HVG[7]

 geodshare_HVG=table(spathHVG)

 png(file=paste("WN","HVG - Geodistics",".png"),width=1200,res=72)

 col_bar=colorRampPalette (c(col_boxP_WN,"white"))

 col_barHVG=col_bar(length(geodshare_HVG))

 col_barHVG=paste(col_barHVG,"50",sep="")

 barplot(geodshare_HVG, col =col_barHVG, ylab="Number of geodistics",xlab

= "Geodistic distance",

 main="HVG: Share of geodistics having a given length, WN")

 dev.off()

 write.table(nstat_WN, file = "nstat_WN.txt", col.names = TRUE)

 write.table(cstatVG_WN, file = "cstat_WN_VG.txt", col.names = TRUE)

 write.table(cstatHVG_WN, file = "cstat_WN_HVG.txt", col.names = TRUE)

 #--

 # MAs:

 #...

 # Generate & display data:

 #

 data_MA=vector()

 nstat_MA=matrix(nrow=length(coef_q_one),ncol=length(name_nstat))

 colnames(nstat_MA)=name_nstat

 rownames(nstat_MA)=name_MA_one

 dstat_MA=matrix(nrow=length(coef_q_one),ncol = length(name_dstat))

 colnames(dstat_MA)=name_dstat

 rownames(dstat_MA)=name_MA_one

 cstatVG_MA=matrix(nrow=size, ncol =length(name_cstat))

 colnames(cstatVG_MA)=name_cstat

 cstatHVG_MA=matrix(nrow=size,ncol = length(name_cstat))

 colnames(cstatHVG_MA)=name_cstat

 for (i in 1:length(coef_q_one)) {

 #...

 # Generate & display data:

99

 set.seed(seed)

 ma=arima.sim(n=size, model=list(ma=coef_q_one[i]))

 ma=as.vector(ma)

 data_MA=cbind(data_MA,ma)

 dstat_MA[i,1]=mean(ma)

 dstat_MA[i,2]=sd(ma)

 dstat_MA[i,3]=max(ma)

 dstat_MA[i,4]=min(ma)

 png(file=paste(name_MA_one[i],"- Graph.png"), width = 1200,res = 72)

 plot(ma, type = "l",col="grey10", main=name_MA_one[i],ylab = "",xlab =

"")

 abline(h=0,col="grey90")

 dev.off()

 adj=min(ma)

 adj_MA=ma-adj

 png(file=paste(name_MA_one[i],"- adjBarplot.png"), width = 1200,res =

72)

 barplot(adj_MA, main = paste("Adjusted barplot:",name_MA_one[i]), col =

"black",

 names.arg = c(seq(1,size)))

 dev.off()

 png(file=paste(name_MA_one[i],"- Auto correlation function.png"), width

= 1200,res = 72)

 acf(ma)

 dev.off()

 png(file=paste(name_MA_one[i],"- Partial auto correlation

function.png"), width = 1200,res = 72)

 pacf(ma)

 dev.off()

 #...

 # Generate & display network:

 imatVG_MA=visi(ma)

 imatHVG_MA=visiH(ma)

 netVG_MA=graph_from_adjacency_matrix(imatVG_MA)

 netHVG_MA=graph_from_adjacency_matrix(imatHVG_MA)

 png(file=paste(name_MA_one[i],"- VG.png"),width = 1200,height =

1200,res=72)

 qgraph(imatVG_MA,layout=Q$layout,color=color_VG_MA[i],

edge.color="grey70", vsize=2, esize=1, labels=FALSE,

 border.color=c(rep("white",size)))

 title(paste("Visibility graph:", name_MA_one[i]),line = 3)

 dev.off()

 png(file=paste(name_MA_one[i],"- HVG.png"),width = 1200,height =

1200,res=72)

 qgraph(imatHVG_MA,layout=Q$layout,color=color_HVG_MA[i],

edge.color="grey70", vsize=2, esize=1, labels=FALSE,

 border.color=c(rep("white",size)))

 title(paste("Horizontal visibility graph:", name_MA_one[i]),line = 3)

 dev.off()

 png(file=paste(name_MA_one[i],"- Degree frequency VG.png"),

height=1200,res=72)

 degree_function(imatVG_MA,2)

 dev.off()

100

 png(file=paste(name_MA_one[i],"- Degree frequency HVG.png"),

height=1200,res=72)

 degree_function(imatHVG_MA,2)

 dev.off()

 #...

 # Calculate network statistics:

 #...

 # Average geodistic path:

 nstat_MA[i,1]=mean_distance(netVG_MA, directed = FALSE, unconnected =

FALSE)

 nstat_MA[i,2]=mean_distance(netHVG_MA, directed = FALSE, unconnected =

FALSE)

 #...

 # Assortativity:

 nstat_MA[i,3]=assortativity.degree(netVG_MA, directed=FALSE)

 nstat_MA[i,4]=assortativity.degree(netHVG_MA, directed=FALSE)

 #...

 # Global transitivity:

 nstat_MA[i,5]=transitivity(netVG_MA, type="global", vids = NULL,

 weights = NULL, isolates = "zero")

 nstat_MA[i,6]=transitivity(netHVG_MA, type="global", vids = NULL,

 weights = NULL, isolates = "zero")

 #...

 # Mean degree:

 degVG=degree(netVG_MA,v=V(netVG_MA),mode = "in") # change mode

betweeen: "in","out","all","total"

 nstat_MA[i,7]=mean(degVG)

 degHVG=degree(netHVG_MA,v=V(netHVG_MA),mode = "in") # change mode

betweeen: "in","out","all","total"

 nstat_MA[i,8]=mean(degHVG)

 #...

 # Cumulative degree distribution:

 degDisVG=degree.distribution(netVG_MA, cumulative = TRUE, mode="in")

 degDisHVG=degree.distribution(netHVG_MA, cumulative = TRUE, mode="in")

 #...

 # Degreee centrality

 VG_centDeg=centr_degree(netVG_MA, mode = "in", loops = FALSE,

normalized = TRUE)

 nstat_MA[i,9]=VG_centDeg[[2]]

 HVG_centDeg=centr_degree(netHVG_MA, mode = "in", loops = FALSE,

normalized = TRUE)

 nstat_MA[i,10]=HVG_centDeg[[2]]

 #...

 # Test for Power Law distribution:

 VG_PowLaw=fit_power_law(degDisVG, xmin=NULL, force.continuous = TRUE)

 nstat_MA[i,11]=VG_PowLaw[[6]]

 HVG_PowLaw=fit_power_law(degDisHVG, xmin=NULL, force.continuous = TRUE)

 nstat_MA[i,12]=HVG_PowLaw[[6]]

 #...

 # Centrality: degree, closeness, betweenness & hub

 cent_VG=centrality(netVG_MA)

 cstatVG_MA[,1]=cent_VG[[2]]

 cstatVG_MA[,2]=cent_VG[[3]]

 cstatVG_MA[,3]=cent_VG[[4]]

 hub_vg=hub.score(netVG_MA,scale = TRUE,weights = NULL)

 cstatVG_MA[,4]=hub_vg[[1]]

101

 for (k in 1:4) {

 pl=cbind(cstatVG_MA[,k],cstatVG_WN[,k])

 matplot(pl, type = "l", col =c(colrs2[k],"grey60"),

ylab="Value",xlab="Node",

 main=paste("VG: Centrality,", name_cstat[k],"MA+WN, c

=",coef_q[i]))

 }

 cent_HVG=centrality(netHVG_MA)

 cstatHVG_MA[,1]=cent_HVG[[2]]

 cstatHVG_MA[,2]=cent_HVG[[3]]

 cstatHVG_MA[,3]=cent_HVG[[4]]

 hub_hvg=hub.score(netHVG_MA,scale = TRUE,weights = NULL)

 cstatHVG_MA[,4]=hub_hvg[[1]]

 for (k in 1:4) {

 pl=cbind(cstatHVG_MA[,k],cstatHVG_WN[,k])

 matplot(pl, type = "l", col =c(colrs2[4+k],"grey60"),

ylab="Value",xlab="node" ,

 main=paste("HVG: Centrality,", name_cstat[k],"MA+WN, c

=",coef_q[i]))

 }

 #...

 # Share of geodesics having a given length

 spathVG=cent_VG[7]

 geodshare_VG=table(spathVG)

 col_bar=colorRampPalette (c(color_VG_MA[i],"white"))

 col_barVG=col_bar(length(geodshare_VG))

 png(file=paste(name_MA_one[i],"- VG-Geodestic.png"),width=1200,res=72)

 barplot(geodshare_VG, col = col_barVG, ylab="Number of geodistics",xlab

= "Geodistic distance",

 main=paste("VG: Share of geodistics having a given length,

MA(1), c =",coef_q_one[i]))

 dev.off()

 spathHVG=cent_HVG[7]

 geodshare_HVG=table(spathHVG)

 col_bar=colorRampPalette (c(color_HVG_MA[i],"white"))

 col_barHVG=col_bar(length(geodshare_HVG))

 png(file=paste(name_MA_one[i],"- HVG -

Geodistics.png"),width=1200,res=72)

 barplot(geodshare_HVG, col =col_barHVG, ylab="Number of

geodistics",xlab = "Geodistic distance",

 main=paste("HVG: Share of geodistics having a given length,

MA(1), c =",coef_q_one[i]))

 dev.off()

 }

 colnames(data_MA)=name_MA_one

 write.table(data_MA,file="data_MA.txt")

 write.table(dstat_MA,file="dstat_MA.txt")

 write.table(nstat_MA, file = "nstat_MA.txt", col.names = TRUE)

 write.table(cstatVG_MA, file = "cstat_MA_VG.txt", col.names = TRUE)

 write.table(cstatHVG_MA, file = "cstat_MA_HVG.txt", col.names = TRUE)

 #--

 # ARs with different coefficient:

 data_AR=vector()

102

 nstat_AR=matrix(nrow=length(coef_p),ncol=length(name_nstat))

 colnames(nstat_AR)=name_nstat

 rownames(nstat_AR)=name_AR

 dstat_AR=matrix(nrow=length(coef_p),ncol = length(name_dstat))

 colnames(dstat_AR)=name_dstat

 rownames(dstat_AR)=name_AR

 cstatVG_AR=matrix(nrow=size, ncol =length(name_cstat))

 colnames(cstatVG_AR)=name_cstat

 cstatHVG_AR=matrix(nrow=size,ncol = length(name_cstat))

 colnames(cstatHVG_AR)=name_cstat

 for (i in 1:length(coef_p)) {

 #...

 # Generate & display data:

 set.seed(seed)

 ar=arima.sim(n=size, model=list(ar=coef_p[i]))

 ar=as.vector(ar)

 data_AR=cbind(data_AR,ar)

 dstat_AR[i,1]=mean(ar)

 dstat_AR[i,2]=sd(ar)

 dstat_AR[i,3]=max(ar)

 dstat_AR[i,4]=min(ar)

 png(file=paste(name_AR[i],"Graph",".png"), width=1200,res =72)

 plot(ar, type = "l",col="grey10", main=name_AR[i],ylab = "",xlab = "")

 abline(h=0,col="grey90")

 dev.off()

 adj=min(ar)

 adj_AR=ar-adj

 png(file=paste(name_AR[i],"adjBarplot",".png"), width=1200,res =72)

 barplot(adj_AR, main = paste("Adjusted barplot:",name_AR[i]), col

="black",

 names.arg = c(seq(1,size)))

 dev.off()

 png(file=paste(name_AR[i],"Auto correlation function",".png"),

width=1200,res =72)

 acf(ar)

 dev.off()

 png(file=paste(name_AR[i],"Patrial auto correlation function",".png"),

width=1200,res =72)

 pacf(ar)

 dev.off()

 #...

 # Generate & display network:

 imatVG_AR=visi(ar)

 imatHVG_AR=visiH(ar)

 netVG_AR=graph_from_adjacency_matrix(imatVG_AR)

 netHVG_AR=graph_from_adjacency_matrix(imatHVG_AR)

 png(file=paste(name_AR[i],"VG",".png"),width = 1200,height =

1200,res=72)

 qgraph(imatVG_AR, layout=Q$layout,color=color_VG_AR[i],

edge.color="grey70", vsize=2, esize=1, labels=FALSE,

 border.color=c(rep("white",size)))

 title(paste("Visibility graph:", name_AR[i]),line = 3)

103

 dev.off()

 png(file=paste(name_AR[i],"HVG",".png"),width = 1200,height =

1200,res=72)

 qgraph(imatHVG_AR, layout=Q$layout, color=color_HVG_AR[i],

edge.color="grey70", vsize=2, esize=1, labels=FALSE,

 border.color=c(rep("white",size)))

 title(paste("Horizontal visibility graph",name_AR[i]),line=3)

 dev.off()

 png(file=paste(name_AR[i],"Degree frequency VG",".png"),

height=1200,res=72)

 degree_function(imatVG_AR,2)

 dev.off()

 png(file=paste(name_AR[i],"Degree frequency HVG",".png"),

height=1200,res=72)

 degree_function(imatHVG_AR,2)

 dev.off()

 #...

 # Calculate network statistics:

 #...

 # Average geodistic path:

 nstat_AR[i,1]=mean_distance(netVG_AR, directed = FALSE, unconnected =

FALSE)

 nstat_AR[i,2]=mean_distance(netHVG_AR, directed = FALSE, unconnected =

FALSE)

 #...

 # Assortativity:

 nstat_AR[i,3]=assortativity.degree(netVG_AR, directed=FALSE)

 nstat_AR[i,4]=assortativity.degree(netHVG_AR, directed=FALSE)

 #...

 # Global transitivity:

 nstat_AR[i,5]=transitivity(netVG_AR, type="global", vids = NULL,

 weights = NULL, isolates = "zero")

 nstat_AR[i,6]=transitivity(netHVG_AR, type="global", vids = NULL,

 weights = NULL, isolates = "zero")

 #...

 # Mean degree:

 degVG=degree(netVG_AR,v=V(netVG_AR),mode = "in")

 nstat_AR[i,7]=mean(degVG)

 degHVG=degree(netHVG_AR,v=V(netHVG_AR),mode = "in")

 nstat_AR[i,8]=mean(degHVG)

 #...

 # Cumulative degree distribution:

 degDisVG=degree.distribution(netVG_AR, cumulative = TRUE, mode="in")

 degDisHVG=degree.distribution(netHVG_AR, cumulative = TRUE, mode="in")

 #...

 # Degreee centrality

 VG_centDeg=centr_degree(netVG_AR, mode = "in", loops = FALSE,

normalized = TRUE)

 nstat_AR[i,9]=VG_centDeg[[2]]

 HVG_centDeg=centr_degree(netHVG_AR, mode = "in", loops = FALSE,

normalized = TRUE)

 nstat_AR[i,10]=HVG_centDeg[[2]]

 #...

 # Test for Power Law distribution:

 VG_PowLaw=fit_power_law(degDisVG, xmin=NULL, force.continuous = TRUE)

 nstat_AR[i,11]=VG_PowLaw[[6]]

104

 HVG_PowLaw=fit_power_law(degDisHVG, xmin=NULL, force.continuous = TRUE)

 nstat_AR[i,12]=HVG_PowLaw[[6]]

 #...

 # Centrality: degree, closeness, betweenness & hub

 par(mfrow=c(2,2))

 cent_VG=centrality(netVG_AR)

 cstatVG_AR[,1]=cent_VG[[2]]

 cstatVG_AR[,2]=cent_VG[[3]]

 cstatVG_AR[,3]=cent_VG[[4]]

 hub_vg=hub.score(netVG_AR,scale = TRUE,weights = NULL)

 cstatVG_AR[,4]=hub_vg[[1]]

 for (k in 1:4) {

 pl=cbind(cstatVG_AR[,k],cstatVG_WN[,k])

 matplot(pl, type = "l", col =c(colrs2[k],"grey60"),

ylab="Value",xlab="Node",

 main=paste("VG: Centrality,", name_cstat[k],"AR+WN, c

=",coef_p[i]))

 }

 cent_HVG=centrality(netHVG_AR)

 cstatHVG_AR[,1]=cent_HVG[[2]]

 cstatHVG_AR[,2]=cent_HVG[[3]]

 cstatHVG_AR[,3]=cent_HVG[[4]]

 hub_hvg=hub.score(netHVG_AR,scale = TRUE,weights = NULL)

 cstatHVG_AR[,4]=hub_hvg[[1]]

 for (k in 1:4) {

 pl=cbind(cstatHVG_AR[,k],cstatHVG_WN[,k])

 matplot(pl, type = "l", col =c(colrs2[4+k],"grey60"),

ylab="Value",xlab="node" ,

 main=paste("HVG: Centrality,", name_cstat[k],"AR+WN, c

=",coef_p[i]))

 }

 #...

 # Share of geodesics having a given length

 par(mfrow=c(2,1))

 spathVG=cent_VG[7]

 geodshare_VG=table(spathVG)

 col_bar=colorRampPalette (c(color_VG_AR[i],"white"))

 col_barVG=col_bar(length(geodshare_VG))

 png(file=paste(name_AR[i],"VG-Geodistics",".png"),width=1200,res=72)

 barplot(geodshare_VG, col = col_barVG, ylab="Number of geodistics",xlab

= "Geodistic distance",

 main=paste("VG: Share of geodistics having a given length,

AR(1), c=",coef_p[i]))

 dev.off()

 spathHVG=cent_HVG[7]

 geodshare_HVG=table(spathHVG)

 col_bar=colorRampPalette (c(color_HVG_AR[i],"white"))

 col_barVG=col_bar(length(geodshare_HVG))

 png(file=paste(name_AR[i],"HVG-Geodistics",".png"),width=1200,res=72)

 barplot(geodshare_HVG, col = col_barHVG, ylab="Number of

geodistics",xlab = "Geodistic distance",

 main=paste("HVG: Share of geodistics having a given length,

AR(1), c=",coef_p[i]))

 dev.off()

 }

 colnames(data_AR)=name_AR

 write.table(data_AR,file="data_AR.txt")

 write.table(dstat_AR,file="dstat_AR.txt")

105

 write.table(nstat_AR, file = "nstat_AR.txt", col.names = TRUE)

 write.table(cstatVG_AR, file="cstat_AR_VG.txt",col.names=TRUE)

 write.table(cstatHVG_AR, file="cstat_AR_HVG.txt",col.names=TRUE)

 #--

 # ARMAs with different p coefficient and constant q

 data_ARMA=vector()

 nstat_ARMA=matrix(nrow=length(coef_p),ncol=length(name_nstat))

 colnames(nstat_ARMA)=name_nstat

 rownames(nstat_ARMA)=name_ARMA

 dstat_ARMA=matrix(nrow=length(coef_p),ncol = length(name_dstat))

 colnames(dstat_ARMA)=name_dstat

 rownames(dstat_ARMA)=name_ARMA

 cstatVG_ARMA=matrix(nrow=size, ncol =length(name_cstat))

 colnames(cstatVG_ARMA)=name_cstat

 cstatHVG_ARMA=matrix(nrow=size,ncol = length(name_cstat))

 colnames(cstatHVG_ARMA)=name_cstat

 for (i in 1:length(coef_p)) {

 #...

 # Generate & display data:

 set.seed(seed)

 arma=arima.sim(n=size, model=list(ar=coef_p[i],ma=coef_q))

 arma=as.vector(arma)

 data_ARMA=cbind(data_ARMA,arma)

 dstat_ARMA[i,1]=mean(arma)

 dstat_ARMA[i,2]=sd(arma)

 dstat_ARMA[i,3]=max(arma)

 dstat_ARMA[i,4]=min(arma)

 png(file=paste(name_ARMA[i],"Graph",".png"), width=1200,res =72)

 plot(arma, type = "l",col="grey10", main=name_ARMA[i],ylab = "",xlab =

"")

 abline(h=0,col="grey80")

 dev.off()

 adj=min(arma)

 adj_ARMA=arma-adj

 png(file=paste(name_ARMA[i],"adjBarplot",".png"), width=1200,res =72)

 barplot(adj_ARMA, main = paste("Adjusted barplot:",name_ARMA[i]), col =

"black",

 names.arg = c(seq(1,size)))

 dev.off()

 png(file=paste(name_ARMA[i],"Auto correlation function",".png"),

width=1200,res =72)

 acf(arma)

 dev.off()

 png(file=paste(name_ARMA[i],"Partial auto correlation

function",".png"), width=1200,res =72)

 pacf(arma)

 dev.off()

 #...

 # Generate & display network:

 imatVG_ARMA=visi(arma)

 imatHVG_ARMA=visiH(arma)

 netVG_ARMA=graph_from_adjacency_matrix(imatVG_ARMA)

106

 netHVG_ARMA=graph_from_adjacency_matrix(imatHVG_ARMA)

 png(file=paste(name_ARMA[i],"VG",".png"),width = 1200,height =

1200,res=72)

 qgraph(imatVG_ARMA, layout=Q$layout,color=color_VG_ARMA[i],

edge.color="grey70", vsize=2, esize=1, labels=FALSE,

 border.color=c(rep("white",size)))

 title(paste("Visibility graph:", name_ARMA[i]),line = 3)

 dev.off()

 png(file=paste(name_ARMA[i],"HVG",".png"),width = 1200,height =

1200,res=72)

 qgraph(imatHVG_ARMA, layout=Q$layout, color=color_HVG_ARMA[i],

edge.color="grey70", vsize=2, esize=1, labels=FALSE,

 border.color=c(rep("white",size)))

 title(paste("Horizontal visibility graph",name_ARMA[i]),line=3)

 dev.off()

 png(file=paste(name_ARMA[i],"Degree frequency VG",".png"),

height=1200,res=72)

 degree_function(imatVG_ARMA,2)

 dev.off()

 png(file=paste(name_ARMA[i],"Degree frequency HVG",".png"),

height=1200,res=72)

 degree_function(imatHVG_ARMA,2)

 dev.off()

 #...

 # Calculate network statistics:

 #...

 # Average geodistic path:

 nstat_ARMA[i,1]=mean_distance(netVG_ARMA, directed = FALSE, unconnected

= FALSE)

 nstat_ARMA[i,2]=mean_distance(netHVG_ARMA, directed = FALSE,

unconnected = FALSE)

 #...

 # Assortativity:

 nstat_ARMA[i,3]=assortativity.degree(netVG_ARMA, directed=FALSE)

 nstat_ARMA[i,4]=assortativity.degree(netHVG_ARMA, directed=FALSE)

 #...

 # Global transitivity:

 nstat_ARMA[i,5]=transitivity(netVG_ARMA, type="global", vids = NULL,

 weights = NULL, isolates = "zero")

 nstat_ARMA[i,6]=transitivity(netHVG_ARMA, type="global", vids = NULL,

 weights = NULL, isolates = "zero")

 #...

 # Mean degree:

 degVG=degree(netVG_ARMA,v=V(netVG_ARMA),mode = "in") # change mode

betweeen: "in","out","all","total"

 nstat_ARMA[i,7]=mean(degVG)

 degHVG=degree(netHVG_ARMA,v=V(netHVG_ARMA),mode = "in") # change mode

betweeen: "in","out","all","total"

 nstat_ARMA[i,8]=mean(degHVG)

 #...

 # Cumulative degree distribution:

 degDisVG=degree.distribution(netVG_ARMA, cumulative = TRUE, mode="in")

 degDisHVG=degree.distribution(netHVG_ARMA, cumulative = TRUE, mode="in"

)

 #...

 # Degreee centrality

107

 VG_centDeg=centr_degree(netVG_ARMA, mode = "in", loops = FALSE,

normalized = TRUE)

 nstat_ARMA[i,9]=VG_centDeg[[2]]

 HVG_centDeg=centr_degree(netHVG_ARMA, mode = "in", loops = FALSE,

normalized = TRUE)

 nstat_ARMA[i,10]=HVG_centDeg[[2]]

 #...

 # Test for Power Law distribution:

 VG_PowLaw=fit_power_law(degDisVG, xmin=NULL, force.continuous = TRUE)

 nstat_ARMA[i,11]=VG_PowLaw[[6]]

 HVG_PowLaw=fit_power_law(degDisHVG, xmin=NULL, force.continuous = TRUE)

 nstat_ARMA[i,12]=HVG_PowLaw[[6]]

 #...

 # Centrality: degree, closeness, betweenness & hub

 cent_VG=centrality(netVG_ARMA)

 cstatVG_ARMA[,1]=cent_VG[[2]]

 cstatVG_ARMA[,2]=cent_VG[[3]]

 cstatVG_ARMA[,3]=cent_VG[[4]]

 hub_vg=hub.score(netVG_ARMA,scale = TRUE,weights = NULL)

 cstatVG_ARMA[,4]=hub_vg[[1]]

 for (k in 1:4) {

 pl=cbind(cstatVG_ARMA[,k],cstatVG_WN[,k])

 matplot(pl, type = "l", col =c(colrs2[k],"grey60"),

ylab="Value",xlab="Node",

 main=paste("VG: Centrality,", name_cstat[k],"ARMA+WN, p_c

=",coef_p[i]))

 }

 cent_HVG=centrality(netHVG_ARMA)

 cstatHVG_ARMA[,1]=cent_HVG[[2]]

 cstatHVG_ARMA[,2]=cent_HVG[[3]]

 cstatHVG_ARMA[,3]=cent_HVG[[4]]

 hub_hvg=hub.score(netHVG_ARMA,scale = TRUE,weights = NULL)

 cstatHVG_ARMA[,4]=hub_hvg[[1]]

 for (k in 1:4) {

 pl=cbind(cstatHVG_ARMA[,k],cstatHVG_WN[,k])

 matplot(pl, type = "l", col =c(colrs2[4+k],"grey60"),

ylab="Value",xlab="node" ,

 main=paste("HVG: Centrality,", name_cstat[k],"ARMA+WN, c_p

=",coef_p[i]))

 }

 #...

 # Share of geodesics having a given length

 spathVG=cent_VG[7]

 geodshare_VG=table(spathVG)

 col_bar=colorRampPalette (c(color_VG_ARMA[i],"white"))

 col_barVG=col_bar(length(geodshare_VG))

 png(file=paste(name_ARMA[i],"VG-Geodistics",".png"),width=1200,res=72)

 barplot(geodshare_VG, col = col_barVG, ylab="Number of geodistics",xlab

= "Geodistic distance",

 main=paste("VG: Share of geodistics having a given length,

ARMA(1), c_p=",coef_p[i]))

 dev.off()

 spathHVG=cent_HVG[7]

 geodshare_HVG=table(spathHVG)

 col_bar=colorRampPalette (c(color_HVG_ARMA[i],"white"))

 col_barVG=col_bar(length(geodshare_VG))

108

 png(file=paste(name_ARMA[i],"HVG-Geodistics",".png"),width=1200,res=72)

 barplot(geodshare_HVG, col = col_barHVG, ylab="Number of

geodistics",xlab = "Geodistic distance",

 main=paste("HVG: Share of geodistics having a given length,

ARMA(1), c_p=",coef_p[i]))

 dev.off()

 }

 colnames(data_ARMA)=name_ARMA

 write.table(data_ARMA,file="data_ARMA.txt")

 write.table(dstat_ARMA,file="dstat_ARMA.txt")

 write.table(nstat_ARMA, file = "nstat_ARMA.txt", col.names = TRUE)

 write.table(cstatVG_ARMA, file="cstat_ARMA_VG.txt",col.names=TRUE)

 write.table(cstatHVG_ARMA, file="cstat_ARMA_HVG.txt",col.names=TRUE)

}else{

 #--

 # White noice - reference

 data_WN=vector()

 dstat_WN=matrix(nrow = sim_num,ncol = length(name_dstat))

 colnames(dstat_WN)=name_dstat

 nstat_WN=matrix(ncol = length(name_nstat),nrow = sim_num)

 colnames(nstat_WN)=name_nstat

 for (i in 1:sim_num) {

 #...

 # Generate data:

 wn=rnorm(size,mean=0,sd=1)

 wn=as.vector(wn)

 data_WN=cbind(data_WN,wn)

 dstat_WN[i,1]=mean(wn)

 dstat_WN[i,2]=sd(wn)

 dstat_WN[i,3]=max(wn)

 dstat_WN[i,4]=min(wn)

 #...

 # Generate network:

 imatVG_WN=visi(wn)

 imatHVG_WN=visiH(wn)

 netVG_WN=graph_from_adjacency_matrix(imatVG_WN)

 netHVG_WN=graph_from_adjacency_matrix(imatHVG_WN)

 #...

 # Calculate network statistics:

 #...

 # Average geodistic path:

 nstat_WN[i,1]=mean_distance(netVG_WN, directed = FALSE, unconnected =

FALSE)

 nstat_WN[i,2]=mean_distance(netHVG_WN, directed = FALSE, unconnected =

FALSE)

 #...

 # Assortativity:

 nstat_WN[i,3]=assortativity.degree(netVG_WN, directed=FALSE)

 nstat_WN[i,4]=assortativity.degree(netHVG_WN, directed=FALSE)

 #...

 # Global transitivity:

 nstat_WN[i,5]=transitivity(netVG_WN, type="global", vids = NULL,

 weights = NULL, isolates = "zero")

 nstat_WN[i,6]=transitivity(netHVG_WN, type="global", vids = NULL,

 weights = NULL, isolates = "zero")

109

 #...

 # Mean degree:

 degVG=degree(netVG_WN,v=V(netVG_WN),mode = "in")

 nstat_WN[i,7]=mean(degVG)

 degHVG=degree(netHVG_WN,v=V(netHVG_WN),mode = "in")

 nstat_WN[i,8]=mean(degHVG)

 #...

 # Cumulative degree distribution:

 degDisVG_WN=degree.distribution(netVG_WN, cumulative = TRUE, mode="in"

)

 degDisHVG_WN=degree.distribution(netHVG_WN, cumulative = TRUE,

mode="in")

 #...

 # Degreee centrality

 VG_centDeg=centr_degree(netVG_WN, mode = "in", loops = FALSE,

normalized = TRUE)

 nstat_WN[i,9]=VG_centDeg[[2]]

 HVG_centDeg=centr_degree(netHVG_WN, mode = "in", loops = FALSE,

normalized = TRUE)

 nstat_WN[i,10]=HVG_centDeg[[2]]

 #...

 # Test for Power Law distribution:

 VG_PowLaw=fit_power_law(degDisVG_WN, xmin=NULL, force.continuous =

TRUE)

 nstat_WN[i,11]=VG_PowLaw[[6]]

 HVG_PowLaw=fit_power_law(degDisHVG_WN, xmin=NULL, force.continuous =

TRUE)

 nstat_WN[i,12]=HVG_PowLaw[[6]]

 }

 write.table(data_WN, file="SIM data_WN.txt", col.names=TRUE)

 write.table(dstat_WN,file = "SIM dstat_WN.txt", col.names = TRUE)

 write.table(nstat_WN, file="SIM nstat_WN.txt",col.names = TRUE)

 #--

 # MA

 data_MA=vector()

 dstat_MA=matrix(nrow = sim_num,ncol = length(name_dstat))

 colnames(dstat_MA)=name_dstat

 nstat_MA=matrix(ncol = length(name_nstat),nrow = sim_num)

 colnames(nstat_MA)=name_nstat

 for (i in 1:sim_num) {

 #...

 # Generate data:

 ma=arima.sim(n=size, model=list(ma=coef_q))

 ma=as.vector(ma)

 data_MA=cbind(data_MA,ma)

 dstat_MA[i,1]=mean(ma)

 dstat_MA[i,2]=sd(ma)

 dstat_MA[i,3]=max(ma)

 dstat_MA[i,4]=min(ma)

 #...

 # Generate network:

 imatVG_MA=visi(ma)

 imatHVG_MA=visiH(ma)

110

 netVG_MA=graph_from_adjacency_matrix(imatVG_MA)

 netHVG_MA=graph_from_adjacency_matrix(imatHVG_MA)

 #...

 # Calculate network statistics:

 #...

 # Average geodistic path:

 nstat_MA[i,1]=mean_distance(netVG_MA, directed = FALSE, unconnected =

FALSE)

 nstat_MA[i,2]=mean_distance(netHVG_MA, directed = FALSE, unconnected =

FALSE)

 #...

 # Assortativity:

 nstat_MA[i,3]=assortativity.degree(netVG_MA, directed=FALSE)

 nstat_MA[i,4]=assortativity.degree(netHVG_MA, directed=FALSE)

 #...

 # Global transitivity:

 nstat_MA[i,5]=transitivity(netVG_MA, type="global", vids = NULL,

 weights = NULL, isolates = "zero")

 nstat_MA[i,6]=transitivity(netHVG_MA, type="global", vids = NULL,

 weights = NULL, isolates = "zero")

 #...

 # Mean degree:

 degVG=degree(netVG_MA,v=V(netVG_MA),mode = "in")

 nstat_MA[i,7]=mean(degVG)

 degHVG=degree(netHVG_MA,v=V(netHVG_MA),mode = "in")

 nstat_MA[i,8]=mean(degHVG)

 #...

 # Cumulative degree distribution:

 degDisVG_MA=degree.distribution(netVG_MA, cumulative = TRUE, mode="in"

)

 degDisHVG_MA=degree.distribution(netHVG_MA, cumulative = TRUE,

mode="in")

 #...

 # Degreee centrality

 VG_centDeg=centr_degree(netVG_MA, mode = "in", loops = FALSE,

normalized = TRUE)

 nstat_MA[i,9]=VG_centDeg[[2]]

 HVG_centDeg=centr_degree(netHVG_MA, mode = "in", loops = FALSE,

normalized = TRUE)

 nstat_MA[i,10]=HVG_centDeg[[2]]

 #...

 # Test for Power Law distribution:

 VG_PowLaw=fit_power_law(degDisVG_MA, xmin=NULL, force.continuous =

TRUE)

 nstat_MA[i,11]=VG_PowLaw[[6]]

 HVG_PowLaw=fit_power_law(degDisHVG_MA, xmin=NULL, force.continuous =

TRUE)

 nstat_MA[i,12]=HVG_PowLaw[[6]]

 }

 write.table(data_MA, file="SIM data_MA.txt", col.names=TRUE)

 write.table(dstat_MA,file = "SIM dstat_MA.txt", col.names = TRUE)

 write.table(nstat_MA, file="SIM nstat_MA.txt",col.names = TRUE)

 #--

 # ARs with different coefficient:

 nstat_AR=matrix(ncol=length(name_nstat),nrow=sim_num)

111

 colnames(nstat_AR)=name_nstat

 all_data_AR=vector("list",length(coef_p))

 all_dstat_AR=vector("list", length(coef_p))

 all_nstat_AR=vector("list",length(coef_p))

 for (j in 1:length(coef_p)) {

 data_AR=vector()

 dstat_AR=matrix(nrow = sim_num, ncol = length(name_dstat))

 colnames(dstat_AR)=name_dstat

 for (i in 1:sim_num) {

 #...

 # Generate & display data:

 ar=arima.sim(n=size, model=list(ar=coef_p[j]))

 ar=as.vector(ar)

 data_AR=cbind(data_AR,ar)

 dstat_AR[i,1]=mean(ar)

 dstat_AR[i,2]=sd(ar)

 dstat_AR[i,3]=max(ar)

 dstat_AR[i,4]=min(ar)

 #...

 # Generate network:

 imatVG_AR=visi(ar)

 imatHVG_AR=visiH(ar)

 netVG_AR=graph_from_adjacency_matrix(imatVG_AR)

 netHVG_AR=graph_from_adjacency_matrix(imatHVG_AR)

 #...

 # Calculate network statistics:

 #...

 # Average geodistic path:

 nstat_AR[i,1]=mean_distance(netVG_AR, directed = FALSE, unconnected =

FALSE)

 nstat_AR[i,2]=mean_distance(netHVG_AR, directed = FALSE, unconnected

= FALSE)

 #...

 # Assortativity:

 nstat_AR[i,3]=assortativity.degree(netVG_AR, directed=FALSE)

 nstat_AR[i,4]=assortativity.degree(netHVG_AR, directed=FALSE)

 #...

 # Global transitivity:

 nstat_AR[i,5]=transitivity(netVG_AR, type="global", vids = NULL,

 weights = NULL, isolates = "zero")

 nstat_AR[i,6]=transitivity(netHVG_AR, type="global", vids = NULL,

 weights = NULL, isolates = "zero")

 #...

 # Mean degree:

 degVG=degree(netVG_AR,v=V(netVG_AR),mode = "in")

 nstat_AR[i,7]=mean(degVG)

 degHVG=degree(netHVG_AR,v=V(netHVG_AR),mode = "in")

 nstat_AR[i,8]=mean(degHVG)

 #...

 # Cumulative degree distribution:

 degDisVG=degree.distribution(netVG_AR, cumulative = TRUE, mode="in")

 #degDisVG_AR[[i]]=degDisVG

 degDisHVG=degree.distribution(netHVG_AR, cumulative = TRUE, mode="in"

)

112

 #degDisHVG_AR[[i]]=degDisHVG

 #...

 # Degreee centrality

 VG_centDeg=centr_degree(netVG_AR, mode = "in", loops = FALSE,

normalized = TRUE)

 nstat_AR[i,9]=VG_centDeg[[2]]

 HVG_centDeg=centr_degree(netHVG_AR, mode = "in", loops = FALSE,

normalized = TRUE)

 nstat_AR[i,10]=HVG_centDeg[[2]]

 #...

 # Test for Power Law distribution:

 VG_PowLaw=fit_power_law(degDisVG, xmin=NULL, force.continuous = TRUE)

 nstat_AR[i,11]=VG_PowLaw[[6]]

 HVG_PowLaw=fit_power_law(degDisHVG, xmin=NULL, force.continuous =

TRUE)

 nstat_AR[i,12]=HVG_PowLaw[[6]]

 }

 write.table(data_AR, file=paste("SIM data",name_AR[j] , ".txt"),

col.names=TRUE)

 write.table(dstat_AR,file = paste("SIM dstat",name_AR[j] , ".txt"),

col.names = TRUE)

 write.table(nstat_AR, file=paste("SIM nstat",name_AR[j] ,

".txt"),col.names = TRUE)

 all_data_AR[[j]]=data_AR

 all_dstat_AR[[j]]=dstat_AR

 all_nstat_AR[[j]]=nstat_AR

 }

 #--

 # ARMAs with different coefficients:

 nstat_ARMA=matrix(ncol=length(name_nstat),nrow=sim_num)

 colnames(nstat_ARMA)=name_nstat

 all_data_ARMA=vector("list",length(coef_p))

 all_dstat_ARMA=vector("list", length(coef_p))

 all_nstat_ARMA=vector("list",length(coef_p))

 for (j in 1:length(coef_p)) {

 data_ARMA=vector()

 dstat_ARMA=matrix(nrow = sim_num, ncol = length(name_dstat))

 colnames(dstat_ARMA)=name_dstat

 for (i in 1:sim_num) {

 #...

 # Generate & display data:

 arma=arima.sim(n=size, model=list(ar=coef_p[j],ma=coef_q))

 arma=as.vector(arma)

 data_ARMA=cbind(data_ARMA,arma)

 dstat_ARMA[i,1]=mean(arma)

 dstat_ARMA[i,2]=sd(arma)

 dstat_ARMA[i,3]=max(arma)

 dstat_ARMA[i,4]=min(arma)

 #...

 # Generate network:

 imatVG_ARMA=visi(arma)

113

 imatHVG_ARMA=visiH(arma)

 netVG_ARMA=graph_from_adjacency_matrix(imatVG_ARMA)

 netHVG_ARMA=graph_from_adjacency_matrix(imatHVG_ARMA)

 #...

 # Calculate network statistics:

 #...

 # Average geodistic path:

 nstat_ARMA[i,1]=mean_distance(netVG_ARMA, directed = FALSE,

unconnected = FALSE)

 nstat_ARMA[i,2]=mean_distance(netHVG_ARMA, directed = FALSE,

unconnected = FALSE)

 #...

 # Assortativity:

 nstat_ARMA[i,3]=assortativity.degree(netVG_ARMA, directed=FALSE)

 nstat_ARMA[i,4]=assortativity.degree(netHVG_ARMA, directed=FALSE)

 #...

 # Global transitivity:

 nstat_ARMA[i,5]=transitivity(netVG_ARMA, type="global", vids = NULL,

 weights = NULL, isolates = "zero")

 nstat_ARMA[i,6]=transitivity(netHVG_ARMA, type="global", vids = NULL,

 weights = NULL, isolates = "zero")

 #...

 # Mean degree:

 degVG=degree(netVG_ARMA,v=V(netVG_ARMA),mode = "in")

 nstat_ARMA[i,7]=mean(degVG)

 degHVG=degree(netHVG_ARMA,v=V(netHVG_ARMA),mode = "in")

 nstat_ARMA[i,8]=mean(degHVG)

 #...

 # Cumulative degree distribution:

 degDisVG=degree.distribution(netVG_ARMA, cumulative = TRUE, mode="in"

)

 #degDisVG_ARMA[[i]]=degDisVG

 degDisHVG=degree.distribution(netHVG_ARMA, cumulative = TRUE,

mode="in")

 #degDisHVG_ARMA[[i]]=degDisHVG

 #...

 # Degreee centrality

 VG_centDeg=centr_degree(netVG_ARMA, mode = "in", loops = FALSE,

normalized = TRUE)

 nstat_ARMA[i,9]=VG_centDeg[[2]]

 HVG_centDeg=centr_degree(netHVG_ARMA, mode = "in", loops = FALSE,

normalized = TRUE)

 nstat_ARMA[i,10]=HVG_centDeg[[2]]

 #..

 # Test for Power Law distribution:

 VG_PowLaw=fit_power_law(degDisVG, xmin=NULL, force.continuous = TRUE)

 nstat_ARMA[i,11]=VG_PowLaw[[6]]

 HVG_PowLaw=fit_power_law(degDisHVG, xmin=NULL, force.continuous =

TRUE)

 nstat_ARMA[i,12]=HVG_PowLaw[[6]]

 }

 write.table(data_ARMA, file=paste("SIM data",name_ARMA[j] , ".txt"),

col.names=TRUE)

 write.table(dstat_ARMA,file = paste("SIM dstat",name_ARMA[j] , ".txt"),

col.names = TRUE)

 write.table(nstat_ARMA, file=paste("SIM nstat",name_ARMA[j] ,

".txt"),col.names = TRUE)

114

 all_data_ARMA[[j]]=data_ARMA

 all_dstat_ARMA[[j]]=dstat_ARMA

 all_nstat_ARMA[[j]]=nstat_ARMA

 }

 #--

 # Compare results form AR with White noice:

 name_quant=c("0%","25%","50%","75%","100%")

 name_display_AR=c("WN",coef_p)

 quant_AR=matrix(ncol=length(name_quant),nrow=length(name_display_AR))

 colnames(quant_AR)=name_quant

 rownames(quant_AR)=name_display_AR

 colBXP_VG=c("grey50", color_VG_AR)

 colBXP_HVG=c("grey50", color_HVG_AR)

 for (j in 1:length(name_nstat)) {

 box_AR=nstat_WN[,j]

 for (i in 1:length(coef_p)) {

 input=all_nstat_AR[[i]]

 box_AR=cbind(box_AR,input[,j])

 }

 for (k in 1:ncol(box_AR)) {

 qu=quantile(box_AR[,k])

 quant_AR[k,]=qu

 }

 colnames(box_AR)= name_display_AR

 png(file=paste("SIM boxplot AR VG",j,".png"),height =1200,res=72)

 boxplot(box_AR, main=paste("AR -",name_nstat[j]),col=colBXP_VG,

border="grey30")

 abline(v=1.5, col="grey70")

 dev.off()

 colnames(box_AR)= name_display_AR

 png(file=paste("SIM boxplot AR HVG",j,".png"),height =1200,res=72)

 boxplot(box_AR, main=paste("AR -",name_nstat[j]),col=colBXP_HVG,

border="grey30")

 abline(v=1.5, col="grey70")

 dev.off()

 colnames(box_AR)=paste(name_display_AR,name_nstat[j])

 write.table(box_AR,file=paste("Boxplot data AR",j,".txt"))

 write.table(quant_AR,file=paste("Quantiles_AR",j,".txt"))

 }

 #--

 # Compare results form ARMA with White noice and MA

 name_display_ARMA=c("WN","MA",coef_p)

 quant_ARMA=matrix(ncol=length(name_quant),nrow=length(name_display_ARMA))

 colnames(quant_ARMA)=name_quant

 rownames(quant_ARMA)=name_display_ARMA

 colBXP_VG=c("grey50","grey80", color_VG_ARMA)

 colBXP_HVG=c("grey50","grey80", color_HVG_ARMA)

115

 for (j in 1:length(name_nstat)) {

 boxARMA=nstat_WN[,j]

 boxARMA=cbind(boxARMA,nstat_MA[,j])

 for (i in 1:length(coef_p)) {

 input=all_nstat_ARMA[[i]]

 boxARMA=cbind(boxARMA,input[,j])

 }

 for (k in 1:ncol(boxARMA)) {

 qu=quantile(boxARMA[,k])

 quant_ARMA[k,]=qu

 }

 colnames(boxARMA)= name_display_ARMA

 png(file=paste("SIM boxplot ARMA VG",j,".png"),height =1200,res=72)

 boxplot(boxARMA, main=paste("ARMA -

",name_nstat[j]),col=colBXP_VG,border="grey20")

 abline(v=1.5, col="grey70")

 abline(v=2.5,col="grey80")

 dev.off()

 png(file=paste("SIM boxplot ARMA HVG",j,".png"),height =1200,res=72)

 boxplot(boxARMA, main=paste("ARMA -

",name_nstat[j]),col=colBXP_HVG,border="grey20")

 abline(v=1.5, col="grey70")

 abline(v=2.5,col="grey80")

 dev.off()

 colnames(boxARMA)= paste(name_display_ARMA,name_nstat[j])

 write.table(boxARMA,file=paste("Boxplot data ARMA",j,".txt"))

 write.table(quant_ARMA,file=paste("Quantiles_ARMA",j,".txt"))

 }

}

save.image(file="ARMA.RData")

116

I: Reflection notes

Farnoosh Farhangian

The main focus of this thesis is about use of the complex network theory to analysis different

stochastic processes. It is about using a better and more consistent tool for analyzing time series,

even if they are of the problematic natures. A good example of series of the problematic nature

is non stationary time series. These series are challenging to deal with if using normal analysis

tools, and the results provided from them are not as reliable as the results from stationary series.

While using network theory could provide us with reliable results for any series no matter of its

stationarity status. The network theory is about converting timeseries into network. A network,

which is also called as a graph is constructed from some nodes that are the realizations in the

converted time series and edges which are the connected lines between nodes. The construction

of the networks is determined by different algorithms, and we decided to focus on two mainly

used algorithms, the visibility and horizontal visibility algorithms. These algorithms are results in

to different graphs, visibility and horizontal visibility graphs, which a horizontal visibility graph is

considered as a subgraph of the visibility graph. The visibility criterion supposes that two

realizations are visible to each other if their values are higher than the value of the intermediate

realizations, but the horizontal visibility algorithm is more restrictive and states that two

realizations are considered to be connected, if they are horizontally visible to each other without

being intersected by any intermediate realizations.

We wanted to study the behavior of different stochastic process under some specific

circumstances. For this purpose, we used hundreds of simulations of stochastic processes as

Gaussian white noise, autoregressive of order one, moving average of order one and a

combination of two latest ones, an 𝐴𝑅𝑀𝐴(1,1). We tried to find a pattern that could help us to

identify different processes only by studying their networks’ properties. We decided to focus on

some of the global properties of a network as its’ mean degree, degree centrality, average

shortest path length, the correlation coefficient between degrees of the nodes, assortativity and

the probability of having triples, transitivity. First, we studied a Gaussian white noise process and

its networks’ statistics behaviors as the length of the sample size changes. The results provided

us with enough information about most of the upper and lower boundaries of the statistics for

each and every sample size. We were able to fit equations to those boundaries and propose a

test for identifying a white noise process. Then we used white noise as the benchmark process

and reviewed the network statistics of the other three processes as their parameters vary. We

discovered similar results for both 𝐴𝑅(1), 𝑀𝐴(1) and 𝐴𝑅𝑀𝐴(1,1), thus we were not able to

distinguish those series based on the behavior of their networks’ statistics. But, the results from

two of statistics, transitivity and mean degree were interesting. We could actually identify the

autocorrelation coefficients of those series by only knowing the length of their series and some

of their networks properties as transitivity and mean degree.

This thesis was both challenging and interesting to me. It was challenging since it was new and I

did not know anything about it, and it was interesting since learning something new is always

interesting and enjoyable. It was a good opportunity to use the previous knowledges both

achieved in the last five years at University of Adger and also the prior to that. we need to thank

117

our supervisor for believing us and providing us with an interesting topic and also helping us in

the whole way of creating this thesis.

The network theory has been used to study different concepts in the world-wide. There are

several areas which this theory is applied to which could be related to internationalization. One

of these areas is finance. It could be used to analysis different financing time series, and as Yang

et al. (2015) suggested, the visibility graph could be used in investigating the relationship among

parties in financing. As mentioned previously in both the thesis and in this letter, nodes in a

network are defining the realizations in the time series and most central nodes are reflecting most

important realizations. In a financial timeseries, the most central nodes will be reflecting the most

important historical events. This was implied by Zhuang et al. (2014), as well as that the market

integration could be measured by use of the visibility algorithm. As we were further discussed in

the chapter of “Evaluations and applications of time series-based network”, the network theory

has been used to identify the dependency between coal price index and coal mining accident. On

the other hand, our proposed test could be used to identify a white noise process. Since an

efficient market will have the same nature as a white noise process, this test could be used to

identify the efficient markets. Of course, that this test needs further investigations and must be

tested on real life data before taking any conclusions.

The graph theory is a new approach in analyzing time series even if they are of problematic nature

and have some non-linear properties. This theory and the methods behind it could be considered

as an innovation in the field of time series analysis. even if it needs more examine to find out its

disadvantages as well as it advantages, still it will be innovative to apply it to understand different

time series.

It is not easy to relate this analysis tool to responsibility, since it is only a tool as like as the other

tools available for analyzing time series. One could think about moral use of this tool and try to

define what is meant by using an analyzing tool ethically. Maybe making advantages of the

provided results and also timeseries properties captured by this analysis tool, is an irresponsible

behavior. Something that could be related to any analysis tools. But the graph theory is an

untested theory and needs further examining and it could not be used without considering its

limitations and problems. So, it would be irresponsible to introduce it as a great analyzing tool,

though been aware that it needs more investigation before taking any conclusions from.

118

Gry Nerjordet

Our thesis is an exploratory exercise where we record the behavior time-series has as networks.

The idea of analyzing time-series with the mature graph theory has become popular in the last

decade since it doesn’t depend on a series stationarity. Stationarity is one of the main

assumptions in time-series analysis, call for a constant mean and variance, properties which

seldom is observed in real life data.

We choose to focus on the stochastic processes white noise, autoregressive, moving average and

autoregressive moving average, the latter three of order one. For our examination purposes

where all four processes artificially generated in the free software R, no real-life time-series was

used. The study was performed by running multiple repetitions of the same series with the intent

of determine typical behaviors. We also created a reference set consisting of typical realizations

from the different processes. These where constructed such that each series had the same error

term and network layout, thus the only difference where the data generating processes and their

parameters. The reference set was used to enhance our understanding of the pattern revealed in

the multiple repetition simulations.

There are multiple methods which can transform a time-series into a network. We chose to use

the visibility algorithm and the horizontal visibility algorithm. The conversion involves of the use

of a visibility criterion which determine the connection, based on the time-series’ different

measurements. The horizontal visibility graph is a subgraph of the visibility graph with a stricter

visibility criterion. Since the graphs are linked directly to the time domain which makes it possible

to identify which time-series properties the different network statistics relate to. These

algorithms also result in fast conversion which was a factor when dealing with larger sizes. Since

graph theory offer a vast number of measurements, we chose to narrow this down to the global

measurement which not was very social network oriented. The chosen statistics were mean

degree, normalized degree centrality, the properties of degree distribution, transitivity,

assortativity and averages shortest paths length. All statistics where calculated for both visibility

graph and its subgraph.

Our study resulted in two findings. Firstly, we discovered that the relationship between white

noise and the time-series length, and where able to fit the results to functions. As a result, we

purposed a test which could identify white noise processes without the concern of stationarity.

Secondly, we discovered that some of the network statistics, mean degree and transitivity had

unique results for each of the correlation coefficient in 𝐴𝑅(1), 𝑀𝐴(1) and 𝐴𝑅𝑀𝐴)(1,1).

Unfortunately, these where not distinguishable from each other, and we could not use our result

to generate a test which identified the mentioned processes. Instead we developed a tool which

could, without regarding stationarity, identify the processes correlation coefficient, but not the

process it selves.

None of the achievements mentioned above would be possible without the knowledge

accumulated during my studies at the university of Agder. The foundation built by topics as

Quantitative Financial Economics, Econometrics for Finance, Research Methods in Business and

Advanced Econometrics for Finance. The practical introduction to R in Computational Finance and

Portfolio Management. The presence of engaging lecturers and excellent supervisor. All three

119

have been crucial in the creation of this thesis. The ability to learn and to learn fast has also been

important when working with this thesis as the world of graph theory was a completely new topic.

As our thesis was an exploratory one, we have discovered tests and tools, the results are

international by nature. There is no need to adapt this to accommodate other languages and

cultures. The development of an alternative method to analyze time-series is by an international

effort where multiple scientific communities contributes. Such a method may result in

enterprises’ enhanced understanding of global market and thus result in their increased

involvement, but this is just speculations. The analysis of time-series through networks is as a

science in its infancy and must have years to grow and mature before it enters the enterprises

board meetings as a convincing decision-making tool.

We regard our thesis as a building block in the emerging development of an alternative to time-

series analysis and are therefore at the forefront of a complexly new way processing this kind of

data. The properties we have discovered have not been documented before and can now be used

into the development of this new and emerging field of science. Much of the development in

improving on time-series analyses is done behind closed doors and will never be made available

to the public. The reason being that the ability to correctly identify the underlying process of time-

series is a significant competitive advantage. The decision to deny the public contribution to an

emerging science is a two-edged sword. On one hand the enterprise may have a short-lived

competitive advantage which will surely evaporate when the competitors or the global scientific

communities catches up. On the other side by sharing the development it may propel the method

forward and making it more reliable, but its usage will immediately be known and used by

competitors. The choice between the enterprise profits and to contribute in the development of

a new analysis is not an obvious one and will never have an exact answer. We choose to share

our findings and invite others to test, use and enhance our results. Another aspect of

responsibility is on how an emerging alternative to time-series is used. Whit an MBA I am trusted

to perform analysis, interpret and present the results to colleagues which don’t have the same

expertise as myself. The use of a new and untested method, like time-series analysis through

graph theory, and not informing about the contradictions and incompleteness currently residing

in this analysis will be reckless.

