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PREFACE  
 

This thesis is the culmination of a five-year long economics study at the university in Agder. In our 

studies, both of us have always opted for the more number-oriented electives. The choice of 

financial economics as our specialization in the master program was therefore a natural one. We 

are however not typical student straight out of high school. Farnoosh has a bachelor’s degree in 

physics and Gry has a bachelor’s degree in both graphics and game design.  

 

Visibility graphs is therefore a topic that suited us both, but in very different ways. Graph and 

network theory are both closely interlinked with physics and the ability to visually explore graphs 

enhance the understanding of its properties. This has resulted in a thesis with a different 

approach and appearance compared to other studies in this subject. We have often opted to use 

visual representations as an alternative to tables. 

Another motivating factor was the fact that this topic was completely new. We both enjoy the 

accumulation of knowledge and appreciate a challenge. Looking back to January, it is almost 

unbelievable that we did not know the basics of the topic in which we now have written a master 

thesis.   

 

We express our gratitude to our supervisor, Jochen Jungeilges, for challenging us with this topic, 

believing that we were up to this task, and having the nerve of letting the thesis evolve naturally 

as our understanding of the topic grew.  We would not have been able to arrive at our final results 

without his input and guidance. In addition, he supplied us with the R-script which generate a 

time-series’ adjacency matrix based on the horizontal visibility algorithm. We extended this script 

to include the visibility graph algorithm as well, and it was essential script in our work. 

 

We also wish to express our gratitude towards our families who, in the last five months, have 

been both understanding and forgiving when we embarked on, and finished, this rather all-

consuming task.   
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ABSTRACT 
 

We have recorded the network properties of stochastic processes’ white noise, 𝑀𝐴(1), 𝐴𝑅(1) 

and 𝐴𝑅𝑀𝐴(1,1) by means of visibility- and horizontal visibility algorithms. The sample series of 

the stochastic processes were artificially generated and used in simulations with multiple 

repetitions. We examined six global network properties: mean degree, normalized degree 

centrality, degree distribution, transitivity, assortativity and average geodesic path to discover 

how they reflect the structure of the series. These properties were also used to disclose change 

in behavior due to variation in the series length. Our contribution to the literature is a thorough 

recording of basic stochastic processes’ network statistics, and the interpretation of these related 

to time-series. To our knowledge, this is the first time a documentation of this magnitude has 

been attempted. The thesis result will disclose that the combined network statistics mentioned 

above are able to recognize a Gaussian white noise process, both by visibility- and horizontal 

visibility graphs. It is, in addition, possible to distinguish between the processes different 

autocorrelation coefficients by means of the visibility graph. 
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1 INTRODUCTION  

The accumulation of data gathered in the form of time-series have grown exponentially in the 

latest decade. With internet of things and smart speakers listening in on conversations in almost 

every households, the amount of data collected appear limitless. But the value of this data does 

not lie in its sheer volume, it’s in what it can communicate about behaviors, trends, relationships 

and dependencies. The traditional and often preferred method of studying time-series is by the 

means of time-series analysis. Time-series analysis maps the change of a variable over time and 

determines the relationship between variables. 

 

Analyzing real-life time-series, however, may be problematic with this kind of analysis. They often 

violate stationarity, which is an important assumption in time-series analysis. A series is stationary 

when it has a constant variance and mean over time, a trait that seldom appear naturally. The 

problem with stationarity is an old one, and it has been proven that using time-series analysis on 

non-stationary series can give spurious results. The common solution to the reoccurring 

stationarity problem is to transform the data until the series is stationary and then perform the 

analysis. The issue with these transformations is that the result from the analysis are of the 

transformed data, not the data which we were intending to study. The task of relating the results 

of the analysis to the actual process under scrutiny can be challenging. 

 

In recent years the idea of converting time-series to networks, bypassing the whole problem with 

stationarity altogether, has bloomed. This is achieved by mapping a time-series into a graph by 

an algorithm. Before we move further on, we need to clarify the use of the word graph. This is 

often used as a common descriptor for any graphical representation of a dataset. In this context 

though, we are discussing the mathematical graph. In his introductory book on graph theory 

Wilson (2010, p. 8) describe a graph in exactly the same way as Newman (2010, p. 10) describes 

a network in his introduction to networks. A network (and a graph) is a visualization of 

relationships through dots (referred to as nodes) connected by lines (called edges). Thus, the term 

graph and network are interchangeable in this text. 

 

This mapping of time-series will also result in some information loss, but it will keep most of the 

time-series’ original properties. The loss will therefore be less than the one faced when 

transforming to achieve stationarity. The theory of complex networks is well-developed and have 

the potential to provides as much information as a time-series analysis. One of the main focus in 

this active field of science is the expectation that structural properties of the underlying data 

generating process allows for discrimination between different types of processes.  

 

When we were familiarizing ourselves with this topic, we were surprised by the lack of interest in 

the basic network properties of the stochastic processes. Most articles focused on one 

measurement, typically the cumulative degree distribution, and tried to find characteristics which 

separates stochastic processes from chaos. And we were wondering: how are they supposed to 

find differences with no clear idea about the baseline? Namely the network behavior of the 

stochastic processes. We chose to start at the other end of the chase of finding a method to 

identity chaos, by investigating and documenting the network behavior of stochastic processes. 
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Our intention with this exploratory exercise is to generate some benchmarks from which it would 

eventually be possible to differentiate between processes. 

 

There are multiple methods which can transform a time-series into a network. We chose to use 

the visibility algorithm and the horizontal visibility algorithm.  The conversion involves the use of 

the visibility criterion which determine the connections based on the time-series different 

realizations. The horizontal visibility graph is a subgraph of the visibility graph and has a stricter 

visibility criterion. The mapping itself is achieved by an algorithm which generates an adjacency 

matrix. This matrix records the connection, edges, between each pair of nodes. The number of 

edges connected to a node is denoted as the node’s degree.  

 

The visibility- and horizontal visibility graphs are linked directly to the time domain and this makes 

it possible to identify which time-series properties the different network statistics are related to. 

These algorithms also result in fast conversion which is a factor when dealing with larger sample 

sizes.  

 

As graph theory offers a vast number of measurements, we chose to narrow this down to the 

global measurements with less of a social network orientation. The chosen statistics were mean 

degree, normalized degree centrality, the properties of degree distribution, transitivity, 

assortativity and averages shortest paths length. All statistics where calculated for both visibility 

graph and its subgraph. 

 

Our focus in this study is different from what has been done previously as we decided to study 

four different types of stochastic processes. The stochastic processes used are Gaussian white 

noise, autoregressive (𝐴𝑅), moving average (𝑀𝐴) and a combination of both autoregressive and 

moving average, an 𝐴𝑅𝑀𝐴, processes, the last three are of order one.  

 

To narrow the scope of our work we chose two research questions. Firstly, to explore how our 

elected global network statistics behave with different sample lengths, if the network is 

generated from a Gaussian white noise process. By recording these behaviors, we hope to 

generate a baseline from which, it would be possible to recognize a white noise process, 

independent of the time-series’ stationarity. Secondly, to identify how a change in 

autocorrelation coefficients of 𝐴𝑅(1), 𝑀𝐴(1) and 𝐴𝑅𝑀𝐴(1,1)  represent itself in the 

corresponding networks properties. This will be done with white noise as a benchmark using 

results and the insights from the first analysis to enhance the latter. Our purpose of this study is 

to be able to distinguish between these three processes by means of their network statistics, 

again independent of stationarity.  

 

All time-series in this thesis are artificially generated in the free software 𝑅, and no real-life time-

series was used. Our research strategy involves numerical experiments. A basic experimental run 

takes the following form: a sample series from a known 𝐴𝑅𝑀𝐴 type data generating processes is 

represented as a network. Such a representation is achieved via a transformation of the 

respective sample series. The resulting network structure is then captured and summarized the 

selected network statistics. Thereby an element in the 𝐴𝑅𝑀𝐴 family (a specific stochastic 

process) is associated with a point in the space of network characteristics. By replicating such a 
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basic run many times, we hope to identify the network properties of the underlying stochastic 

process in a reliable fashion. For this approach to be viable, the algorithm facilitating the 

transformation from the sample series into a network has to be both intuitive and fast. We also 

created a reference set consisting of typical realizations from the different processes. These were 

constructed such that each series had the same error term and network layout, thus the only 

difference was the data generating process’. This made it possible to visually compare the graphs 

and was used to enhance our understanding of the pattern revealed in the multiple repetition 

simulations. By fixing the graphs layout we lose the ability to visually recognize communities, 

especially with large sample sizes. Communities are groups of well-connected nodes which are 

linked to external nodes by a few of its interconnected nodes. This was a sacrifice we were willing 

to make as we have minimal use of communities in our thesis.  

 

This study will describe and interpret the network behaviors of selected stochastic processes’ in 

an extensive matter. The behavior can be used to identify stochastic processes, permitting the 

development of tests and tools. Such a comprehensive analysis has not, to our knowledge, been 

attempted before and may be the starting point to a different approach toward distinguishing 

amongst different types of data generating processes. 

 

The structure of the sections is organized as follows: the next section is a summary of the 

evolution and use of networks with focus on time-series based networks. The development of 

visibility- and horizontal visibility graphs will be emphasized. Next in section three, we will present 

the stochastic processes studied, followed by a description of our simulation strategy with 

selected results. Section four describes the mapping of time series as visibility- and horizontal 

visibility graphs. It also presents the network statistics with examples. Next, in section five we 

finally present and interpret our findings both individual and compared to each other. The final 

sections include a discussion, section six, followed by a conclusion in section seven.   
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2 EVOLUTION AND APPLICATION OF TIME-SERIE-BASED NETWORKS 

The idea of visually presenting relationships through the means of a graph is not new. It was used 

in games in ancient Egypt, to visualized family trees in the middle ages and as a categorization 

tool in medieval literature. Even though this visualization method had been readily available for 

thousands of years, the father of graph theory (the study of connection between things), Leonard 

Euler, did not actually use this in his 1736 papers. It did not take long however before his 

colleagues, like Vandermonde, Listing and Hamilton, used graph drawing in combination with 

graph theory with great success (Kruja, Marks, Blair, & Waters, 2002).  

 

Graph theory is now an established branch of mathematics. But the idea of being able to 

characterize a time-series’ underlying process by the transformation to a complex network, 

however, is new. It has only been around for about a decade. The possibility of using graph theory 

to analyze data with problematic properties regarding to regular time-series analysis, makes this 

notion widely attractive. It is still considered very much as an active field of science where most 

of the efforts are focused on the use of complex networks to distinguish between a stochastic 

process and a chaotic system. 

 

As mentioned above, we try to understand the network properties associated with linear 

stochastic processes (with white noise as a special case). The visibility graph and its subgraph are 

our preferred methods of converting time-series to networks. The cleverly named visibility 

algorithm generates a graph where the nodes are the value of each of the time-series data points 

(realizations). The connections (edges) depend on the angle of a line between each node as well 

as the value of nodes in between. If the time-series is plotted as a bar plot, the connection 

criterion states simply that if the columns can see each other, they are considered to be linked. 

This algorithm converts a time-series directly from the time domain resulting into a network that 

inherits the time-series structure and is unaffected by rescaling and transformations (Lacasa, 

Luque, Ballesteros, Luque, & Nuño, 2008).  Another property of the visibility graph discovered by 

Lacasa, Luque, Luque, and Nuño (2009) was the dependency between the degree distribution and 

the Hurst parameter. This is in many cases used to differentiate stochastic processes from chaos. 

They then proposed the possibility of estimating the Hurst exponent by the means of visibility 

graphs and thereby be able to distinguish chaos from noise. Li et al. (2016) extended this theory 

to short time-series by concluding that the Hurst exponent can be estimated by combining the 

visibility graph with maximum likelihood equation and the KS statistics. 

 

The horizontal visibility algorithm has stricter demands for when the nodes are connected. Thus, 

creates a simple and analytically solvable subgraph of the visibility algorithm. Networks generated 

by the horizontal visibility algorithm are also unaffected by rescaling and transformations. 

Likewise, it is showed that, independent of  the probability distribution of the time-series, the 

degree distribution will have the same exponential functional form (Luque, Lacasa, Ballesteros, & 

Luque, 2009). There have also been suggested, as with the visibility graph, that the exponential 

degree distribution frontier can be used to distinguish between correlation stochastic, 

uncorrelated stochastic and chaotic processes. This is done by considering the exponential degree 

distribution as 𝑃(𝑘)~𝑒−𝜆𝑘, where 𝑘 is corresponding to the node degree and 𝜆 is a positive 

parameter used for characterizing the process (Lacasa & Toral, 2010; Luque et al., 2009). Ravetti, 
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Carpi, Gonçalves, Frery, and Rosso (2014) discovered that for a white noise process, 𝜆 is computed 

to be equal to ln (
3

2
), which will be more for correlated stochastic processes and less for chaotic 

series. But they also discouraged the use of the exponential degree distribution as a general rule 

for distinguish between processes, because they identified several cases where this hypothesis 

did not hold. The use of this scaling factor as a method to distinguish stochastic from chaotic 

dynamics where further advised against both in visibility and horizontal visibility graphs by Zhang, 

Zou, Zhou, Gao, and Guan (2017). They stated that this could not be treated as a general law for 

separating these dynamics, so the hunt for such a law, and the discovery of these graphs 

properties continues.  

 

We mentioned earlier that there is a lack of publications which documented the network statistics 

of different stochastic processes. There are however a few who have embarked on this task. 

When Luque et al. (2009) presented  the horizontal visibility graph they also showed exact results 

for random time series in three different network statistics. Four network properties of 

autoregressive process of both first and second orders with time delay was studied by Zhang et 

al. (2017) . The generalized autoregressive conditional heteroscedasticity process, GARCH, was 

studied in a similar way by Segberg and Skoglund (2017) where they documented five different 

network statistics.  

 

The method of using graphs to analyze time-series are still very much in development, but 

visibility and horizontal visibility have already been successfully applied in multiple studies. 

Zhuang, Small, and Feng (2014) discovered that the node degree reflected historical incidents 

which affected time-series from the developed financial markets. The series cycles were also 

linked to the graph’s communities in which the density corresponded to the significance of the 

cycles. This was also the case in the analysis of natural gas price in North America. They discovered 

that large degree nodes which were linked with significant events and communities reflected the 

time-series’ cycles (Sun, Wang, & Gao, 2016). 

 

Yang, Qu, and Chang (2015) discovered that they could use visibility graphs to investigate the 

relationship among parties in financing. It was shown that this result matches the current 

situation and the default tendencies among the parties. They thereby proved that the network 

analysis will provide the same results as traditional analysis.  

 

An interesting study linking the coal price index and coal mining accident successfully generated 

a warning for coal miners. This was based on economic indices by the use of a directed and 

weighted network (Huang et al., 2016). Yu (2013) used the visiblity graph to analyse the gold price 

time-series which revealed that the time-series was indeed a long-range dependent fractial 

series. 

 

Even though this text focuses on the visibility- and the horizontal visibility graphs, there are a 

plethora of alternative transformation methods in the literature. The parametric natural visibility 

graph is another subgraph of the visibility graph where the additional parameter view angle is 

introduced, examining other dynamic properties than the original visibility graph (Bezsudnov & 

Snarskii, 2014). 
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Zhang and Small (2006) created a complex undirected cycle network from pseudo periodic time-

series which were able to distinguish differences in the time-series’ properties. The networks 

nodes corresponded to a cycle in the time-series and were connected with similar cycles. A phase 

space-based algorithm was used by Xu, Zhang, and Small (2008) to sort chaotic and random noise 

into different super families, thus being able to identify and differentiate these.  Another methods 

which use a recurrence matrix instead of the traditional adjacency matrix were purposed by 

Marwan, Donges, Zou, Donner, and Kurths (2009). The recurrence matrix is generated from the 

recurrences in phase space and the resulting graph showed potential for detecting dynamic 

transitions. The authors also discovered that in an unweighted and undirected network the 

adjacency and the recurrence matrix coincide. Network created using the recurrence matrix also 

shows the relationship between the topological properties of the network and its underlying 

dynamic systems (Donner, Zou, Donges, Marwan, & Kurths, 2010). This method is not derived 

directly from the time domain though, it can be a challenge to interpret. 

 

It has also been shown that the transformation of a time-series to a network can be reversed 

opening the possibility of not just using network theory on time-series, but also using time-series 

analysis on networks. Such a reversibility would only be possible if the transformed network 

inherits characteristics from the time-series it is generated from (Campanharo, Sirer, Malmgren, 

Ramos, & Amaral, 2011).  
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3 STOCHASTIC PROSESSES AND THEIR SIMULATIONS 

We mentioned in the introduction that we narrowed our exploration of linear stochastic 

processes to, 𝐴𝑅(1), 𝑀𝐴(1) and 𝐴𝑅𝑀𝐴(1,1) with the addition of the special case a white noise. 

One might claim that these are the obvious start in the effort to determine the network properties 

of stochastic processes.  

3.1 White noise process 

White noise is a homoscedastic, stationary process of random variables with no visible structure 

and has the following properties: 

 

𝐸(𝑦𝑡) = 𝜇          (1) 
 

  𝑉𝐴𝑅(𝑦𝑡) = 𝜎2          (2) 
 

  𝛾𝑡−𝑟 =  {
𝜎2 𝑖𝑓        𝑡 = 𝑟
0    𝑖𝑓        𝑡 ≠ 𝑟

       (3) 

 

Where 𝛾 denotes the autocovariance parameter. The process has a constant mean and variance 

and zero covariance between observations of different lags and is identified as an uncorrelated 

process. An uncorrelated process has no autocorrelation between different observations, and it 

makes the process unpredictable. 

 

We will use the Gaussian white noise process in our thesis. It is generated from a Gaussian 

distributed random variable and creates an identically distributed zero white noise process. This 

is a normally distributed process with a zero mean and a density function defined as:  

  

                𝑓(𝑦) =
1

√2𝜋
 𝑒

−(𝑦−𝜇)2

2𝜎2⁄
        (4) 

 

A typical plot display of a realization from a Gaussian white noise process will show perfect 

fluctuation of observations around a constant mean of zero, as is shown in the figure below. This 

mean reversion property could be used to determine the stationarity of the process. Even though 

the observations fluctuate in the range from plus to minus three, the variance throughout the 

series is constant and equal to one. The correlogram in the figure is depicting the realizations’ 

auto correlation parameter. It shows zero autocorrelation parameters for all the lags except the 

lag of zero as expected. Lag zero will always be one because it shows the autocorrelation 

parameter of a value with itself. The value from all other lags lies in the Bartlett’s band which 

means their results are insignificant (Brooks, 2008, p. 209).  

Line chart to the left, correlogram to the right of a typical realization with a sample size of 500  

The blue line in the correlogram indicates the Bartlett’s band.  

Figure 1: Typical realization of Gaussian white noise process 
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3.2 Moving average process 

A moving average, (𝑀𝐴) process can be defined as a linear combination of white noise processes 

and a process of order 𝑞, 𝑀𝐴(𝑞), is written as: 

 

                    𝑦𝑡= 𝜇 + 𝜃(𝐿)𝑢𝑡        (5) 

 

which is expressing the dependence of the variable 𝑦𝑡 on the current and previous values of a 

white noise term. The white noise terms are indicating the shocks in the process where:  

 

                   𝜃(𝐿) = 1 + 𝜃1𝐿 −  𝜃2𝐿2 + ⋯ + 𝜃𝑞𝐿𝑞      (6) 

 

The order of 𝑞 is the number of lags of the white noise terms that impacts the value of the 𝑦𝑡.  

 

A moving average process is a stationary process, where the autocovariance and autocorrelation 

for the lags larger than 𝑞 are zero. The strengths of shocks effects are constructed by the 

autocorrelation function. An autocorrelation function is defined as 𝜏𝑠 =  
𝛾𝑠

𝛾0
  where  𝛾𝑠 is the 

autocovariance at lag 𝑠, and 𝛾0 is interpreted as the autocovariance at lag zero (Brooks, 2008, pp. 

211-214).  

 

According to Verbeek (2004, p. 259) the length of the memory of the process could also be 

constructed by the autocorrelation function. The value of the autocorrelation for lags greater 

than 𝑞 is zero, and this implies that there will only be significant effect from shocks of current and 

past 𝑞  periods on the value of 𝑦𝑡. For instant, for an 𝑀𝐴(1) there will be only significance effect 

of shocks at time 𝑡 and 𝑡 − 1. This is illustrated in the figure below where we have presented a 

realization of a 𝑀𝐴(1) process. The correlogram displays that the dependent variable does not 

only get effect from shocks of the current period, but also the shock of the previous period. This 

is consistent with the definition of an 𝑀𝐴(𝑞) process.  

 

We limit the exploration of this thesis to a moving average process of order one, 𝑀𝐴(1). When 

we manipulate the process’ autocorrelation coefficient, we are adjusting the previous value of 

white noises’ effect on the current value. 

Line chart to the left, correlogram to the right of a typical realization with a sample size of 500  

The blue line in the correlogram indicates the Bartlett’s band. The vertical line outside the bend at tick one indicates 

that the moving average process is at order one.  

 

  

Figure 2: Typical realization of a moving average process of order one 



9 

 

3.3 Autoregressive process 

A stochastic autoregressive process, (𝐴𝑅) is defined as a process where the current value of the 

variable 𝑦 depends on its’ previous values and a stochastic error term, 𝑢𝑡. An autoregressive 

process of order 𝑝, 𝐴𝑅(𝑝) , is written as: 

 

               𝜑(𝐿)𝑦𝑡= 𝜇 + 𝑢𝑡        (7) 

Where, 

                𝜑(𝐿) = 1 − 𝜑1𝐿 −  𝜑2𝐿2 − ⋯ − 𝜑𝑝𝐿𝑝     (8) 

 

and 𝑝 is the number of the lags. The expected value of the 𝑦𝑡 is expressed as the constant term 

𝜇, and  𝑢𝑡 which is an unpredictable component expressing a white noise process.  

 

An autoregressive process indicates that the current value of an observation is correlated with its 

previous values. The correlation between the current value of an observation and a given lag 

could be measured by the partial autocorrelation parameter as well as the autocorrelation 

parameter. The only difference is that the partial autocorrelation function is removing the effects 

from the intermediate lags while measuring the autocorrelation parameters, while the 

autocorrelation function is considering the intermediate effects too. The correlations between 

the current observation and it lags up to 𝑝 are significantly non-zero, while for lags larger than 𝑝, 

there will be no significant correlations. This could be shown by the partial autocorrelation 

function, where there is non-zero partial autocorrelation parameter up to lag 𝑝, and zero 

thereafter. Unlike the partial autocorrelation function, the autocorrelation function of an 

autoregressive process will show an exponential decay as lags get larger, it will not cut off to zero 

for lags larger than 𝑝. A moving average process will show similar pattern in  the partial 

autocorrelation function (Brooks, 2008, pp. 215-225). How fast the autocorrelation parameters 

of an 𝐴𝑅(𝑝) decrease in an autoregressive process is dependent on the correlation parameter 𝜑. 

A large 𝜑 means that, it takes longer for the series to get back to its mean after a shock is 

appearing (Verbeek, 2004, p. 260). 

 

Stationarity is a desired property of an autoregressive process. According to Verbeek (2004, p. 

258), a process is defined as a strictly stationary process, if any changes of the time origin do not 

affect the properties of the process. This implies that the distribution of the process stays 

unchanged. While a weakly stationary process, also called a covariance stationary process, is 

referred to a process where its mean, variance and covariance are not dependent on time. The 

world’s decomposition theorem states that any stationary process where |𝜑| < 1, could be 

expressed as combination of a deterministic and a stochastic part. Based on this theorem, a 

stationary autoregressive process of order 𝑝 with a mean of zero, could be represented as an 

infinite order moving average model. 

 

The mentioned relationship between the correlation parameter of an 𝐴𝑅(𝑝) and the decrease of 

its autocorrelation parameters is shown in the illustration below of simulated 𝐴𝑅(1) process’, 

their autocorrelation functions and partial autocorrelation functions. The plotted data shows 

more mean reverting property for the correlation parameter of 0.3 (left) than for 𝜑 = 0.8 (right). 

On the other hand, the autocorrelation function of the parameter of 𝜑 = 0.8 decreases 

smoother. Which argues that a larger parameter leads to higher dependencies and makes the 
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process less mean reverting. This is because it takes a while for the autocorrelation function to 

converge zero. Partial autocorrelation parameters converge to zero for lags larger than 𝑝. This is 

what is shown in our example and as illustrated, no matter what parameter an 𝐴𝑅(1) process 

have, the partial autocorrelation parameters for lags larger than one, lie inside the Bartlett’s band 

and are therefore not significant. 

 

Our explorations are limited to a stationary autocorrelated process of order one, 𝐴𝑅(1). When 

we manipulate the process’ autocorrelation coefficient we are adjusting the previous values 

effect on the current value. We keep the value of the autocorrelation coefficient in an interval 

between plus and minus one to ensure stationarity.  

 
                          

From top to bottom: line chart, correlogram of the auto correlation function and correlogram of the partial auto 

correlation function. 

 Autocorrelation parameter equal to 0.3 to the left and 0.8 to the right of a typical realization with a sample size of 

500.  

The blue line in the correlograms indicates the Bartlett’s band. The vertical line outside the bend at tick one in the 

partial autocorrelation indicates that the autoregressive process is at order one.   

  

Figure 3: Typical realization of an autoregressive process of order one 
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3.4 Autoregressive moving average process 

An autoregressive moving average process, (𝐴𝑅𝑀𝐴)  is where the current value of series 𝑦 

depends not only on its previous values but also on the current and previous values of the shocks 

in the system. It means that a combination of an autoregressive process of order 𝑝 and a moving 

average process of order 𝑞 results in an 𝐴𝑅𝑀𝐴 process of order 𝑝 and 𝑞, 𝐴𝑅𝑀𝐴(𝑝, 𝑞).  

 

As an 𝐴𝑅𝑀𝐴(𝑝, 𝑞)  process is a combination of an 𝑀𝐴(𝑞)  and 𝐴𝑅(𝑝) , it gets the characteristics 

of both processes. As discussed, the autocorrelation function of an 𝑀𝐴(𝑞) cuts off to zero for lags 

larger than 𝑞, while it decreased geometrically for an 𝐴𝑅(𝑝). And the partial autocorrelation 

function of an 𝐴𝑅(𝑝) cuts off to zero for lags larger than 𝑝,while it declines geometrically for an 

𝑀𝐴(𝑞). Therefore, both the autocorrelation function and partial autocorrelation function of an 

𝐴𝑅𝑀𝐴(𝑝, 𝑞) will decline geometrically as lags increases. The autocorrelation function of an 

𝐴𝑅𝑀𝐴(𝑝, 𝑞) will show a combination characteristics of both a moving average and an 

autoregressive process for the first 𝑞 lags, but its characteristics will be identical to an 𝐴𝑅(𝑝) for 

lags larger than 𝑞 (Brooks, 2008, pp. 223-224). Which means the autocorrelation parameters for 

lags larger than 𝑞 are identically equal to those of an 𝐴𝑅(𝑝). The same could be said about the 

partial autocorrelation function. The partial autocorrelation parameters for lags larger than 𝑝, are 

equal to those of an 𝑀𝐴(𝑞).  

 

A stationary autoregressive process of order 𝑝 could be written as an 𝑀𝐴(∞). On the other hand, 

an  𝑀𝐴(𝑞) could be written as an infinite order of autoregressive processes, 𝐴𝑅(∞), if the moving 

average process is invertible, or with another word has unit roots. Verbeek indicates that if the 

conditions of invertibility and stationarity of a moving average and an autoregressive process is 

fulfilled, then it will be only “a matter of parsimony” choosing an 𝑀𝐴(𝑞), 𝐴𝑅(𝑝) or an 

𝐴𝑅𝑀𝐴(𝑝, 𝑞) process. Which means that one could choose a process which is more convenient 

with the purpose of study. If there is a matter of prediction, it will be more suitable to choose an 

autoregressive process. While for determining the variances and covariances in a series, it will be 

more convenient to choose a moving average process (Verbeek, 2004, p. 263). 

 

The data generated for an 𝐴𝑅𝑀𝐴(1,1) process shows different behaviors between a highly 

positive parameter and a lower one as shown in the illustration on the next page. The difference 

is because of the autoregressive part of the process, since it has been shown that the behaviors 

in a moving average process is the same for different parameters. Both the autocorrelation and 

the partial autocorrelation functions shows a combination behavior of the both processes as has 

been explained further above. For instant, the autocorrelation parameters defined by the first 

two lags of the autocorrelation function are defining both processes, while the rest are identical 

with an 𝐴𝑅(𝑝). The same holds for the partial autocorrelation function. The first partial 

autocorrelation parameter is defined for both processes, and the rest are identical for an 𝑀𝐴(𝑞). 

 

When we explored the properties of an 𝐴𝑅𝑀𝐴 process we limited it to order one of both 𝑀𝐴 and 

𝐴𝑅 processes. In addition, we choose to fix the autocorrelation coefficient of the moving average 

process. The effect from previous shocks are therefore constant in these experiments. The 

autocorrelation coefficient of the autoregressive process was adjusted as described above. 
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From top to bottom: line chart, correlogram of the auto correlation function and correlogram of the partial auto 

correlation function. Sample size of 500. 

Correlation parameter equal to 0.3 for both AR(1) and MA(1) to the left and 0.8 for both AR(1) and MA(1) to the 

right.  

The blue line in the correlograms indicates the Bartlett’s band. 

 

 

  

Figure 4: Typical realization of an autoregressive moving average process 
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3.5 Simulation of sample series of stochastic processes  

We need to generate artificial sample series by means of the mentioned stochastic processes to 

be able to explore their network properties and we used the programming tool 𝑅 for this purpose 

(our programming codes are added to the appendix).  

 

Our simulation strategy involved both an example run and a data run. The data run had 100 

replications of each parameter summarizing the result in a boxplot diagram. This run used the 

random number generator which produces a different data series each time, ensuring the 

estimations validity. The example run does not have any replications, but results in outputs 

regarded as a “typical” realization of the different sample series. This run has a set seed values 

which ensures that the errors are identical in each case. This guarantees that the only change will 

be due to the data generating process. The example run has a set sample size at 1000 datapoints. 

All graph plots will be forced into the same graph-layout making it possible to detect how the 

edge pattern change in the different stochastic processes. The data run will be used to examine 

the general network properties while the example run will be used to visually display a 

representation of each type and their differences.  

White noise  

The simulations consist of a series of random numbers generated by a process using a Gaussian 

distribution, as described above, with a mean of zero and a standard deviation of one. The sample 

size, or length, of the series are varied from 100 to 3000 and is regarded as the simulation’s 

parameter. 

 

The descriptive statistics and line chart from the example realization are presented below. This, 

as in all the different simulations, will be the data used throughout the thesis as examples of a 

typical realization. The values of the mean and the standard deviation are close to the zero and 

one, and the line chart displays the expected mean reversion property.  

  
 
Mean Std Max Min 

WN -0.09 1.01 2.79 -3.30 

 

Table 1: Descriptive statistics of the example 

realization of white noise 

     

 

 

 

 

 

 

  

Figure 5: Line chart of the example realization of white noise 
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Moving average process of order one 

The simulations consist of series generated by an 𝑀𝐴(1) process, as described above, where the 

autocorrelation coefficient is varied from −0.9 to 0.9. Length of the sample series is kept constant 

at 1000 data points. 

 

The descriptive statistics and line chart from selected parameters from the example realizations 

are presented below. From the descriptive statistics we can see that the 𝑀𝐴(1) with the 

parameter of zero is indeed equal to the statistics of white noise in table 1. This is expected when 

the previous error terms effect is nulled out and we are using the same current error terms in all 

example simulations. Another notable observation evident in both the statistics and in the line 

charts, is that the 𝑀𝐴(1)′𝑠 with a negative autocorrelation coefficient have values and traits 

closer to white noise than 𝑀𝐴(1)′𝑠 with positive parameters, especially when examining the 

higher values. Complete presentation of all the example line charts can be found in the appendix.  

 
 
Mean Std Max Min 

-0.9 -0.01 1.36 4.30 -3.93 

-0.8 -0.02 1.30 4.05 -3.73 

-0.7 -0.03 1.24 3.81 -3.63 

-0.6 -0.04 1.18 3.56 -3.58 

-0.5 -0.05 1.13 3.31 -3.54 

-0.4 -0.06 1.09 3.09 -3.49 

-0.3 -0.07 1.06 2.97 -3.44 

-0.2 -0.07 1.03 2.85 -3.39 

-0.1 -0.08 1.02 2.73 -3.34 

0 -0.09 1.01 2.79 -3.30 

0.1 -0.10 1.02 2.91 -3.25 

0.2 -0.11 1.03 3.03 -3.20 

0.3 -0.12 1.05 3.15 -3.15 

0.4 -0.13 1.09 3.26 -3.20 

0.5 -0.14 1.13 3.38 -3.33 

0.6 -0.15 1.18 3.50 -3.46 

0.7 -0.16 1.23 3.62 -3.59 

0.8 -0.17 1.29 3.77 -3.73 

0.9 -0.18 1.36 3.94 -3.92 

 

Table 2: Descriptive statistics of the example 

realization of 𝑀𝐴(1) 

 

 

  

Figure 6: Line chart of the example realization of 𝑀𝐴(1) 

Autocorrelation coefficients from the top: -0.9, 0.1 & 0.9  
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Autoregressive process of order one 

The simulations consist of series generated by an autoregressive process of order one, as 

described above, where the parameters are varied from −0.9 to 0.9. Sample size is kept constant 

at 1000 data points.  

 

The descriptive statistics and line chart from selected autocorrelation coefficient from the 

example realization are presented below. In addition to the mentioned control where the zero 

parameter statistics is equal to the white noises, we can observe that, contradictory to the 

observations of the 𝑀𝐴(1), changes in the 𝐴𝑅(1)’𝑠 autocorrelation coefficient results in the 

generation of vastly different sample series. The difference between the 𝐴𝑅(1) and white noise 

is palpable both when the parameter is large in both the positive and the negative end of the 

scale. Complete presentation of all the example line charts can be found in the appendix.  

 
 
Mean Std Max Min 

-0.9 -0.04 2.11 6.60 -6.63 

-0.8 -0.05 1.60 4.66 -4.98 

-0.7 -0.05 1.37 3.86 -4.35 

-0.6 -0.05 1.24 3.39 -4.00 

-0.5 -0.06 1.15 3.21 -3.61 

-0.4 -0.06 1.10 3.07 -3.47 

-0.3 -0.07 1.06 2.97 -3.43 

-0.2 -0.07 1.03 2.86 -3.39 

-0.1 -0.08 1.02 2.73 -3.34 

0 -0.09 1.01 2.79 -3.30 

0.1 -0.10 1.02 2.90 -3.25 

0.2 -0.11 1.03 2.98 -3.22 

0.3 -0.13 1.06 3.03 -3.21 

0.4 -0.15 1.10 3.28 -3.25 

0.5 -0.18 1.16 3.57 -3.53 

0.6 -0.22 1.27 3.91 -4.05 

0.7 -0.29 1.43 4.29 -4.70 

0.8 -0.42 1.73 4.79 -5.36 

0.9 -0.82 2.45 7.01 -5.94 

 

Table 3: Descriptive statistics of the example 

realization of 𝐴𝑅(1) 

 

 

Autocorrelation coefficients from the top: -0.9, 0.1 & 0.9  

Figure 7: Line chart of the example realization of 𝐴𝑅(1) 
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Autoregressive moving average process  

The simulations consist of sample series generated by an 𝐴𝑅𝑀𝐴(1,1) process as described above. 

The autocorrelation coefficient for the 𝑀𝐴(1) process is fixed at 0.1 and the autocorrelation 

coefficient for the 𝐴𝑅(1) process varies from −0.9 to 0.9. Sample sample size is kept constant at 

1000 data points.  

 

The descriptive statistics and line chart from selected autocorrelation coefficient from the 

example realization are presented below. The realization from the 𝐴𝑅𝑀𝐴(1,1) process is very 

similar to the 𝐴𝑅(1) process, but the presence of the 𝑀𝐴(1) can be detected when examining 

the descriptive statistics. As we see, the 𝐴𝑅𝑀𝐴(1,1)s values in the summary statistics not equal 

to white noise when the autocorrelation coefficient of the 𝐴𝑅(1) is zero. Which is natural since 

the autocorrelation coefficient of the 𝑀𝐴(1) process is constant. Complete presentation of all 

the example line charts can be found in the appendix.  

 
 
Mean Std Max Min 

-0.9 -0.05 1.93 5.93 -6.03 

-0.8 -0.05 1.48 4.19 -4.51 

-0.7 -0.05 1.28 3.57 -4.07 

-0.6 -0.06 1.17 3.27 -3.72 

-0.5 -0.06 1.10 3.05 -3.47 

-0.4 -0.07 1.06 2.95 -3.43 

-0.3 -0.08 1.03 2.85 -3.39 

-0.2 -0.08 1.02 2.73 -3.34 

-0.1 -0.09 1.01 2.79 -3.30 

0 -0.10 1.02 2.91 -3.25 

0.1 -0.11 1.03 3.00 -3.21 

0.2 -0.12 1.05 3.07 -3.18 

0.3 -0.14 1.09 3.22 -3.18 

0.4 -0.17 1.15 3.49 -3.36 

0.5 -0.20 1.23 3.80 -3.79 

0.6 -0.24 1.34 4.16 -4.35 

0.7 -0.31 1.53 4.56 -5.05 

0.8 -0.46 1.87 5.23 -5.75 

0.9 -0.90 2.68 7.69 -6.42 

 

Table 4: Descriptive statistics of the example 

realization of 𝐴𝑅𝑀𝐴(1,1) 

  

Figure 8: Line chart of the example realization of 𝐴𝑅𝑀𝐴(1,1) 

Autocorrelation coefficients from the top: 

𝐴𝑅(1): -0.9 & 𝑀𝐴(1): 0.1  

𝐴𝑅(1): 0.1 & 𝑀𝐴(1): 0.1 

𝐴𝑅(1): 0.9 & 𝑀𝐴(1): 0.1 
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4 CREATION AND ANALYSIS OF VISIBILITY GRAPHS  

4.1 Visibility graph 

The visibility graph algorithm was, as mentioned earlier, proposed by Lacasa et al. (2008) as a 

mapping between time-series and network graph. Their study shows that several properties of 

the time-series will be transformed to the generated network, and these could in turn be used to 

analyze some of time-series properties. The visibility algorithm creates a node for each measure 

in the time-series such that the number of nodes in the network always will be equal to the length 

of the original series. These nodes are connected, they share an edge, if they “see” each other. 

To determine this Lacasa et al. established a geometric criterion called the visibility criteria. The 

criteria proposed that two arbitrary values (𝑡𝑎 ,  𝑦𝑎) and (𝑡𝑏 , 𝑦𝑏) are considered as connected, if 

and only if, there are no intermediate data values like (𝑡𝑐 , 𝑦𝑐) that is deviating from visibility 

criteria below: 

 

𝑦𝑐 <  𝑦𝑏 + (𝑦𝑎 − 𝑦𝑏)
𝑡𝑏−𝑡𝑐

𝑡𝑏−𝑡𝑎
                            (9)                                                    

 

Thus, the visibility only exists if the connection-line of visibility between any two nodes does not 

cross the intermediate nodes’ connection-line. In other words, if the steepness of the connection-

line between two nodes is less than the steepness of intermediate nodes connection-lines with 

one of the nodes in question, it will fulfil the visibility criteria. The resulting network can be 

represented mathematically as an adjacency matrix. The matrix is constructed by mapping the 

connections between each pair of the nodes and is either binary or weighted. Each elements of 

the binary adjacency matrix’ input is either zero or one and is constructed such that 

 

                       𝐴𝑖𝑗 =  {
1
0

     𝑖𝑓 𝑛𝑜𝑑𝑒𝑠 𝑖 𝑎𝑛𝑑 𝑗 𝑎𝑟𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 
𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑛𝑜 𝑐𝑜𝑛𝑒𝑛𝑐𝑡𝑖𝑜𝑛 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑛𝑜𝑑𝑒𝑠 𝑖 𝑎𝑛𝑑 𝑗

          (10) 

 

Newman (2010, p. 111) pointed out that, if there are no self-edges in the network, the nodes are 

not connected to themselves, the diagonal elements of the adjacency matrix will be zero.  

 

When using a binary adjacency matrix some of the time-series information, as its structural 

properties, will be lost. Therefore, this mapping is considered as irreversible – the constructed 

network cannot be converted back to a time-series and still have the same structural properties. 

The weighted adjacency matrix’ input can take on any value but are usually positive. This is an 

additional set of information from the time-series received by the network expressing the 

strength of the connections in a network. Lacasa et al. (2008) suggested using the slope of visibility 

lines as weights, thus making the visibility graph reversible. The purpose of this paper is to 

examine properties of different processes; thus, we will use binary adjacency matrix, disregarding 

any information lost in the mapping.   

 

Lacasa et al. (2008) presented three properties of the visibility graphs in their study. The first 

property is that every node in the visibility graph is at least connected to its nearest neighbor(s), 

thus there will never be loose nodes (unconnected nodes) in the graph. All of the nodes will be 

connected to each other either directly or via the intermediate node. The second property is that 

the edges are defined as undirected. Based on this property there will be no difference between 
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the in-coming and out-going edges to a node. When the connections in a visibility graph are 

undirected the network will have a symmetric adjacency matrix with 𝑛2 elements, where 𝑛 is the 

number of the nodes in a network (Newman, 2010, pp. 110-113). And the last property is that, 

there will be no difference in the visibility graphs if the horizontal or vertical axes are rescaled or 

time-series is translated.  

 

The transformation from time-series to visibility graph is rather straight forward and is explained 

with the help of a small example located on the next page. Time-series are usually presented as 

line charts as in figure 𝑎. To visually demonstrate which realizations that fulfil the visibility 

criterion we need to convert this chart to a bar plot, 𝑏, and then adjust the bar plot such that all 

realizations are positive, 𝑐. This transformation is totally unproblematic since visibility graphs are 

scale free. The adjusted bar plot can then be used to examine the realizations visibility of each 

other. The connection exists when we can draw a connection-line from a column to another 

without it crossing a third column. If the value of realization 2 (orange) was a little higher for 

example, it would break the visibility line between the nodes 1 (red) and 3 (yellow) and they 

would no longer be connected. By examining realization 5 (green) we also observe how the 

steepness of the visibility-lines change: the realizations are connected if the steepness of the 

connection-line is less than the steepness of connection-lines linking intermediate realizations to 

that same node. Figure 𝑑 is a cleaner visualization of the connections shown in 𝑐. The straight-

line show that all realizations are connected to their immediate neighbor(s). Some realizations 

have additional connections represented as the curves below and above the straight line. These 

connections are then transferred to the adjacency matrix, figure 𝑒, who, as explained earlier, is a 

binary matrix where connections have a value of 1. The diagonal (grey) consists only of zeros 

because no node is connected to itself. The values directly before and after the diagonal is one, 

which is a result of all the realizations being connected to its immediate neighbor. Additional 

connections will be marked as one in the matrix, and since there is no direction, the matrix is 

symmetric. Realization 10 (pink) is at the end of our series, thus it does only have one neighbor, 

9 (purple), and this connection is represented in the adjacency matrix 𝐴9,10 and 𝐴10,9. In addition, 

realization 10 have a connection to realization 5 at 𝐴5,10 and 𝐴10,5. The other values in both 

column and row 10 is equal to zero – no other connections. Finally, from the adjacency matrix we 

can create the finished visibility network in figure 𝑓. Each realization is represented as a node, 

and each connection converted to an edge. Note that all six images in the illustration represent 

the same information about the data set:  how the value of the realizations relate to each other.   
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The illustration consists of six images: from the top left:  
a) Line chart displaying the 10 first realizations of an 𝐴𝑅(2)  

b) Bar plot of the data in a   

c) Adjusted bar plot of the data in a where there is an added constant equal to lowest realization in the 

sample series 

Connection-lines illustrate which pair of realizations fulfills the visibility criterion  

d) Alternative illustration of how the realizations are connected. 

e) The adjacency matrix 

f) The visibility graph  

 

The illustrations are color-coded where each realization is assigned a color; this color will follow the realization on 

its transformation from a value in a series to a node in the network. As an example: the first observation in the 

time-series, which color is red, corresponds to the red column in the box plots, the red column & row in the 

adjacency matrix and the red node in the network. 

The color-code is also consistent in both the example for visibility graph, and horizontal visibility graph 

 

 

Figure 9: From time-series to visibility graph - a small example 

a) b) 

d) c) 

e) f) 
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4.2  Horizontal visibility graph  

A modification of the visibility algorithm called the horizontal visibility algorithm where proposed 

by Luque et al. (2009). This algorithm is generating the horizontal visibility graph, a subgraph of 

the visibility graph, which also can be used as a tool to distinguish chaotic series from random 

ones. The horizontal visibility algorithm requires a horizontal visibility line connecting two nodes 

without any intersection by intermediate nodes.  

 

  𝑥𝑖 , 𝑥𝑗 > 𝑥𝑛    ∀𝑛 ,   𝑖 < 𝑛 < 𝑗             (11) 

 

The two nodes 𝑥𝑖  and 𝑥𝑗, are considered as connected in a horizontal visibility graph, if and only 

if they both are higher than any other nodes standing in between them. Lacasa et al. (2009) 

defined the horizontal visibility algorithm as both reversible and irreversible. As mentioned, a 

visibility graph is determined by the adjacency matrix, which could be either a binary or weighted 

matrix. The horizontal visibility graph could easily be made reversible by using the differences in 

values as weights in the adjacency matrix. 

 

The horizontal visibility graph has some additional properties in regard to the visibility graph. 

Firstly, the horizontal visibility algorithm can generate both directed and undirected graphs. In a 

directed graph the edges have direction and therefore one should distinguish between the in-

coming and out-going edge connected to each node. The directionality of the edges makes, as 

mentioned above, an asymmetric adjacency matrix. Secondly, the visibility criterion in the 

horizontal visibility graph is more restrictive than the general visibility criteria. This results in a 

graph with few connections which makes the horizontal visibility algorithm faster and the 

resulting graph easier to analyze (Luque et al., 2009). 

 

The transformation from time-series to horizontal visibility graph is even more straight forward 

than the visibility graph and is also explained with the help of a small example located on the next 

page. The data set in the example are the same as in the previous, thus we can compare the two 

networks and note their differences. Figures 𝑎, 𝑏 as well as the adjustments in 𝑐 have been 

explained above. The connection between two realizations in figure 𝑐 exist if we can draw a 

horizontal connection-line from a column to another without it crossing a third column.  If the 

value of realization 7 (light blue) had a larger value than the realization of 8 (dark blue) for 

example, it would break the horizontal visibility line between 8 and 5 (green) and they would no 

longer be connected. A cleaner representation of the connections can be observed in figure 𝑑, 

which is explained above. Here it’s easy to observe that the horizontal visibility algorithm 

generates fewer connections than the visibility graphs in the previous example. Both connection 

between 1&3 and 7&9 in the visibility graph doesn’t exists in the horizontal visibility graph. By 

this algorithm the values of realization 2 and 8 are large enough to prevent visibility. Connections 

will also in the case of horizontal visibility graph be transferred to an adjacency matrix, figure 𝑒. 

As in the previous example and have the same properties but, as discussed, fewer values of 1. 

The final result, the horizontal visibility network in figure 𝑓 is generated from the adjacency 

matrix. It has several similarities with the visibility graph, as is expected since it’s a subgraph, and 

the differences are the two missing connections we already mentioned between 1&3 and 7&9.    
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The illustration consists of six images: from the top left:  
a) Line chart displaying the 10 first realizations of an 𝐴𝑅(2)  

b) Bar plot of the data in a   

c) Adjusted bar plot of the data in a where there is an added constant equal to lowest realization in the 

sample series  

Connection-lines illustrate which pair of realizations fulfils the visibility criterion  

d) Alternative illustration of how the realizations are connected. 

e) The adjacency matrix 

f) The horizontal visibility graph 

  

The illustrations are color-coded where each realization is assigned a color; this color will follow the realization on its 

transformation from a value in a series to a node in the network. As an example:  the first observation in the time-

series, which color is red, corresponds to the red column in the box plots, the red column & row in the adjacency 

matrix and the red node in the network. 

The color-code is also consistent in both the example for visibility graph, and horizontal visibility graph  

Figure 10: From time-series to horizontal visibility grap - a small example 

a) b) 

d) c) 

e) f) 
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4.3 Network statistics 

There are several different network metrics and measurements. In this thesis we are running 

multiple simulations of time-series with a high number of observations. With this type of data 

sets, looking at local values for each and every node would not be a sound strategy. We have 

therefore chosen to focus on some of the common global network measurements which provide 

important information about the properties of the networks. Global network properties are 

either describing the network as a whole or are a calculated mean value from its local values.   

Degree 

Newman (2010, p. 133) defined the degree of a node as the total number of its connected edges. 

An edge is what we earlier mentioned as the connection-line between vertices. In our examples 

above, the first node (red) have a degree of two in the visibility graph, but only a degree of one 

in the horizontal visibility graph. 

 

The number of degrees is dependent on whether the network is directed or undirected. The edges 

in an undirected network have no orientation. Therefore, there will be no difference between the 

incoming and outgoing edges to a node. Considering the adjacency matrix of an undirected 

network, 𝐴𝑖𝑗, the nodes degree could be written as: 

 

𝑘i= ∑ 𝐴𝑛
𝑖=1 ij         (12) 

 

In a directed network on the other hand there is two degrees to be considered for each node, the 

in-degree and out-degree. The in-degree of a node is computed as the number of the nodes that 

are pointing to the node in question. The out-degree is computed as the number of other nodes 

the node in question is pointing to. Considering the adjacency matrix of a directed network, the 

incoming degree and the outgoing degree could be computed as:  

  

𝑘i
in= ∑ 𝐴𝑛

𝑖=1 ij            (13) 

 

𝑘j
out= ∑ 𝐴𝑛

𝑖=1 ij          (14) 

 

In our experience, a nodes degree in a time-series correspond to the extremeness of the value in 

the original time-series, relative to the values in its immediate vicinity. As in our examples above, 

node five has a degree of seven in both visibility and horizontal visibility graphs. By examining 

observations connected to node five, we discover that the closest are significantly lower in value. 

This is more of a general rule in visibility graph than with the horizontal visibility graph, where the 

effect will be lessened by the horizontal visibility criterion.  

 

We are not the first to make this observation. In their article examining the financial market by 

the means of visibility graphs Zhuang stated  that “The measure of degree allows us to find those 

important incidents that influence market integration, for example the 2008 financial crisis” 

(Zhuang et al., 2014).  
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Mean degree 

A node degree is calculated for each individual node and is as such a local network statistic. Since 

our paper is built on the global statistics measures of a network, we are going to use the mean of 

the nodes’ degrees instead of the degrees of each individual node in the network. The arithmetic 

mean of the nodes degrees in an undirected network is defined as 

 

  𝑐 = 
1

𝑛
 ∑ 𝑘𝑛

𝑖=1 I         (15) 

 

And measures for the mean degree in a directed network, the mean in-degree and mean out-

degree, are constructed as  

 

  𝑐𝑖𝑛= 
1

𝑛
 ∑ 𝑘𝑛

𝑖=1 i
in

            (16) 
 

𝑐𝑜𝑢𝑡 =  
1

𝑛
 ∑ 𝑘𝑛

𝑖=1 j
out        (17) 

 

The mean degree in our examples, which are undirected networks, are respectively 3.2 for the 

visibility graph and 2.8 for the horizontal visibility graph, illustrating the properties of fewer 

degrees in the horizontal visibility graph.  

Cumulative degree distribution 

The probability that a node in a network has degree 𝑘 is referred to as the degree distribution 

𝑝(𝑘). It measures the fraction of the nodes having a given degree, 𝑘, and gives the frequency 

distribution of the node degrees in the network. The distribution has a tail of high degree nodes, 

which means that the fraction of the nodes having a small degree is higher than the fraction of 

having a higher degree in a network. Thus, the distribution of the node degrees is considered to 

be right-skewed. The degree distribution can be computed for both directed and undirected 

networks (Newman, 2010, pp. 243-246).  

 

One of the interesting features of a degree distribution is whether it is power law distributed or 

not. According to E. J. Newman (2004), a quantity is considered to be power laws if the probability 

of having a given value like 𝑘 differs inversely as a power of that value. Thus, a power law degree 

distribution is constructed as 𝑝𝑘 = 𝐶𝑘−𝛼. 𝛼 is the scaling parameter with the range 2 < 𝛼 < 3 

and 𝐶 is a fixed constant used while dealing with a normalized degree distribution. A power law 

distribution could be visualized by a histogram of the degree distribution as well as by 

constructing its cumulative degree function. The cumulative distribution function measures the 

fraction of nodes having a degree greater or equal to 𝑘, 𝑃(𝐾 ≥ 𝑘) (Newman, 2010, pp. 247-256). 

According to Newman if a degree distribution is power laws with a scaling parameter of 𝛼, then 

its cumulative distribution function will also follow a power law distribution with a scaling 

parameter of  𝛼 − 1.  

 

Networks with degree distributions following a power law distribution are called scale-free 

networks (Newman, 2010, p. 249). Barabási and Albert (1999) proposed the scale-free networks, 

the networks where their local connectivity distributions are free of scale, and where the 

possibility of a new node, 𝐴 , entering the network joining an existence node, 𝐵, is dependent of 

the degree of node 𝐵. A scale-free network in contrast to a random network contains some high 
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degree nodes as well as nodes with lower number of connections (Barabási & Bonabeau, 2003). 

A new node added to the system will have high tendency to join a high degree node rather than 

a node with a lower number of connections, which is referred to as the rich get richer (Barabási 

& Albert, 1999). 

 

To identify whether a given data set follows a power law distribution we use a goodness-of-fit 

test. The test hypothesis is constructed as: 

 

𝐻0 : 𝑝(𝑘)  ≈ 𝑘−𝛼      𝑡ℎ𝑒 𝑑𝑎𝑡𝑎 𝑠𝑒𝑡 𝑖𝑠 𝑑𝑟𝑎𝑤𝑛 𝑓𝑟𝑜𝑚 𝑎 𝑝𝑜𝑤𝑒𝑟 𝑙𝑎𝑤 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛  (18) 

 

𝐻1: 𝑝(𝑘) ≉ 𝑘−𝛼        𝑡ℎ𝑒 𝑑𝑎𝑡𝑎 𝑠𝑒𝑡 𝑖𝑠 𝑛𝑜𝑡 𝑑𝑟𝑎𝑤𝑛 𝑓𝑟𝑜𝑚 𝑎 𝑝𝑜𝑤𝑒𝑟 𝑙𝑎𝑤 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛  (19) 

 

The hypothesis  is tested based on the distance between the distribution of the given data set 

and the hypothesized model, which is assumed to a power law distributed model, and the 

Kolmogorov-Smirnov or so-called KS statistic is used as a measure of the maximum value of the 

absolute distance between those two models. The KS test statistic is constructed as: 

 

                 𝐷 = max
𝑥≥𝑥𝑚𝑖𝑛

|𝑆(𝑥) − 𝑃(𝑥)|       (20) 

 

where 𝑆(𝑥) is defining the cumulative distribution function of the given data, and 𝑃(𝑥) is 

expressing the cumulative degree distribution of the power law distributed fitted model (Clauset, 

Shalizi, & Newman, 2009).  

 

According to Clauset et al. (2009), this distance has to be compared to a comparable synthetic 

distance. The synthetic distance is calculated from the distance between the empirical data set 

and a synthetic data set, which is similar to the empirical data below 𝑥𝑚𝑖𝑛, and is power laws 

thereafter. The p-value of the test is defining the probability of the synthetic distance being larger 

than the empirical distance between the original data set and the power law distributed fitted 

model. The conclusion of the test could be drawn from comparing the p-value and the considered 

significance level of the test. If the p-value is less or equal to the significance level, the conclusion 

will be to reject the null hypothesis and that the empirical data set is not following a power law 

distribution. Otherwise, we fail to reject the null hypothesis and the evidence will be supporting 

that the empirical data set is following a power law distribution.  

 

The tests p-value in our examples are 0.4 in the visibility graph and 0.16 in the horizontal visibility 

graph. Both values are larger than the significance level of 5%, giving evidence for the null 

hypothesis and we fail to reject this. Both cumulative degree distributions follow a power law 

distribution (are power laws) and our network examples are scale free. 

Normalized degree centrality  

Centrality is a network property which is used to measure how influential a node or a network is. 

There are different types of network centrality, some of them are focusing on the centrality of a 

given node and some on the centrality of a network as a whole. One of these measurements is 

degree centrality. This is a local measure and is using the degree of a node as a representation of 
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the node’s influence. A high degree node is considered to be more central, thus more influential, 

than a node with lower degree.  The local measurement is converted to a global one by: 

 

𝐶(𝐺) = ∑ (max
𝑤

𝑐𝑤 − 𝑐𝑣)𝑣         (21) 

 

Where 𝑐𝑣 is the local degree centrality and 𝑐𝑤 is the local theoretical max. The global degree 

centrality is normalized by dividing the value by the global theoretical max. This is the highest 

centrality score possible attained by a network with the same number of nodes (Csardi, 2019).  

Our examples above have a normalized degree centrality of 0.47 for the visibility graph 

and 0.52 in the horizontal visibility graph.  Both graphs have a global theoretical max of 81. In 

these small examples we can easily see that there is one node, node five, which has a far larger 

node degree than the rest. This very central node has seven edges in both graphs. If we then look 

at mean degree in both cases, we realize that the difference between the degrees of the most 

central node and the mean degree are less in the visibility graph than in the horizontal visibility 

graph. This in return explain why the visibility graphs degree centrality is less than the horizontal 

visibility graphs – a network is less central when the nodes have more or less the same number 

of edges which in a time-series relates to few extreme values. In a more general sense, the 

measurement of normalized degree centrality can be used to determine if there are extreme 

values in a time-series. 

Transitivity 

Considering two nodes 𝐴 and 𝐵 which both are connected to node 𝐶. Newman (2003) is defining 

the transitivity as the mean probability that nodes 𝐴 and 𝐵 are themselves connected. In other 

words, transitivity is the probability that two randomly chosen nodes, which both are connected 

with a third node, themselves are connected thus creating a triple. The transitivity of an 

undirected network can be defined as the fraction of closed paths of length two in the network 

(Newman, 2010, p. 201).  

 

Transitivity have both a local and a global measurement. The global transitivity of a network is 

constructed as: 

 

𝐶 =  
(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑜𝑠𝑒𝑑 𝑝𝑎𝑡ℎ𝑠 𝑜𝑓 𝑙𝑒𝑛𝑔𝑡ℎ 𝑡𝑤𝑜)

(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑡ℎ𝑠 𝑜𝑓 𝑙𝑒𝑛𝑔𝑡ℎ 𝑡𝑤𝑜)
     (22) 

 

Where 𝐶 will be a parameter between 0 and one. 𝐶 = 1 shows the existence of perfect transitivity 

and 𝐶 = 0 refers to cases where there are no triples in the network. Existence of perfect 

transitivity requires all nodes being connected to each other. Since the probability of having a 

perfect transitivity is so small, it is considered to be a useless concept in network. Perfect 

transitivity, a clustering parameter of zero is also highly unlikely. Therefore, a partial transitivity 

is considered to be a “very useful” concept in network.  
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Local transitivity is defined for a single node. It controls the flows between the nodes’ neighbors 

and is assumed to be strongly correlated with the between-ness centrality of a network, a 

measurement of how influential a given node is. 

 

𝑐 =  
(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑖𝑟𝑠 𝑜𝑓 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝑜𝑓 𝑖 𝑡ℎ𝑎𝑡 𝑎𝑟𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑)

(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑖𝑟𝑠 𝑜𝑓 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝑜𝑓 𝑖)
    (23) 

 

Newman (2010, pp. 203 - 204) expressed that small groups of nodes are expected to have a higher 

local clustering parameter. It is because of the existence of a smaller number of pairs of neighbors 

for each node in a small group, which makes the denominator of the equation above small. On 

the other hand, there will be more pairs of neighbors for nodes in a large group which makes the 

denominator large and the local transitivity small. It means the local transitivity is negatively 

dependent of nodes’ degree in a network (Lacasa & Toral, 2010; Ravetti et al., 2014). 

 

The transitivity values in out examples are 0.51 (visibility graph), and 0.41 (horizontal visibility 

graph). Two nodes, both connected to a third have a 51% chance of themselves being connected 

in the visibility graph and a 41% chance in the horizontal visibility graph. If we examine the 

examples, we do discover that the number of triples is larger in the visibility graph.  

  

Transitivity levels in the horizontal visibility graph are particularly interesting because it indicates 

that two nodes are separated by one or more intermediate nodes with a lower value. A typical 

case will be the relationship between node three, four and five in the example. These three nodes 

are parts of a triple, and if we examine the line chart, we see that the values of three and five are 

larger than two. When the transitivity value is large it indicates that the original time-series often 

have dips in the value followed by a correction. In financial time-series this can be used to indicate 

investment opportunities. This interpretation cannot be extended to the visibility graph because 

this algorithm allows for connection through angles, this allows for multiple events that can 

produce triplets. 

Assortativity 

Assortativity or homophily is measuring the tendency of the nodes being connected with nodes 

of the same pattern. According to Newman (2010, pp. 221 - 222), a network is considered to be 

assortative, or have assortative mixing, if there is a significant number of connections between 

nodes of similar patterns. The meaning of the term similar pattern is dependent on type of 

network. For example, in a social network, nodes could be representing peoples which could be 

classified based on their gender, languages, ethnicity and any other characteristics which could 

also be a “scalar quantity” like age or income. So, if a significant fraction of the people being 

connected with whom they are sharing similar characteristics, the network is considered to have 

assortative mixing. On the other hand, we could have disassortative mixing in a network when 

most of the connections are between the dissimilar nodes.  

 

Newman (2002) is introducing assortative mixing by degree as the tendency of high degree nodes 

being connected to other nodes of high degree and visa verse. Therefore, in an assortative mixing 

by degree network, the most influential nodes will be connected together and become even more 

important, and this core of high degree nodes will be surrounded by lower degree node. On the 

other hand, in the disassortative mixing by degree networks, the high degree nodes prefer to 



27 

 

connect to the lower degree nodes and so there will be no clumps in the network. Newman (2010, 

p. 230) is assuming that networks with disassortative mixing will have a “star-like” feature and 

are more uniform. Newman (2002) showed that removal of high degree nodes of disassortative 

mixing networks will differentiate them more than when the network is assortative mixing. it also 

showed that many of the social networks tend to be assortative mixing while technological and 

biological networks are disassortative. 

 

The assortativity by degree is constructed as: 

 

 𝑟 =
∑ (𝐴𝑖𝑗𝑖𝑗 − 

𝑘𝑖𝑘𝑗

2𝑚
) 𝑘𝑖𝑘𝑗

∑ (𝑘𝑖𝑗𝑖𝑗 𝛿𝑖𝑗− 
𝑘𝑖𝑘𝑗

2𝑚
) 𝑘𝑖𝑘𝑗

        (24) 

 

where 𝑟 is called the assortativity parameter and is the Pearson correlation parameter between 

degrees of connected nodes. 𝐴𝑖𝑗  in the equation above is a given element of the adjacency matrix, 

which will be one when nodes 𝑖 and 𝑗 are connected and zero otherwise. 𝑘𝑖 and 𝑘𝑗 are the degrees 

of two random nodes, 𝑖 and 𝑗, and 𝛿𝑖𝑗  is the Kronecker delta which is considered to be one if 

connected nodes are similar and in the same class, 𝑖 = 𝑗 and zero otherwise. An assortative mix 

of zero is defined for random graphs, where there is randomness in placing the edges between 

the nodes (Newman, 2002).      

 

In our examples the visibility graph has as assortativity of −0.32, and the horizontal visibility 

graph of −0.28. Both are negative, have disassortative mixing, indicating that the nodes which 

are connected have different degree. The probability of a node being connected with another 

node with a different degree is larger in the visibility graph than in the horizontal visibility graph. 

By examining the examples, we can see that the visibility graphs nodes have a larger variation in 

degrees than the horizontal visibility graph does. Assortativity can be used to identify cycles in 

the original time-series. If we take the values five to nine in our example and repeat this pattern, 

we have a cyclic series. The repeated value five will always be connected and they will have the 

same high number of degrees creating clumps as described by Newman and a high positive 

assortative mix.   

Geodesic path 

The geodesic path or the average shortest-path length, is the shortest path from one node to 

another (Newman, 2003). A path is defined as a route connecting two given nodes passing 

through other nodes standing between them. The length of the geodesic path will be computed 

either from the number of the edges passing from a node to another or from the number of the 

nodes standing in between those two give nodes. Mao and Zhang (2013) implies that there is at 

least one path connecting any two nodes in a network, which is consistent by the property of a 

visibility graph being connected. But there could be more than one geodesic path between any 

two nodes (Newman, 2002).      

                             

Mao and Zhang (2013) define the average shortest-path length of a given graph 𝐺 as the average 

number of edges in the shortest paths between all possible pairs of nodes, which could be 

constructed for both directed and undirected graphs.  
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The average shortest-path length of an undirected graph is defined as: 

 

                        𝐴𝑆𝑃𝐿𝐺 =  
∑ 𝑑𝑖𝑠𝑡(𝑣𝑖,𝑣𝑗)𝑁

𝑖,𝑗

∑ 𝑁(𝑁−1)𝑁
𝑖,𝑗

        (25) 

 

where 𝑑𝑖𝑠𝑡(𝑣𝑖, 𝑣𝑗) is the value of the shortest-path length between all possible pairs of nodes, 

and the 𝑁(𝑁 − 1) indicates the number of paths in graph. Newman (2010, p. 139) implies the 

geodesic paths are self-avoiding and do not intersect themselves, which also indicates that there 

will not be geodesic path between a node and itself. Therefore if 𝑣𝑖 = 𝑣𝑗, so 𝑑𝑖𝑠𝑡(𝑣𝑖, 𝑣𝑗) = 0.  

 

The shortest path can easily be visualized in our examples. In the visibility graph, the shortest path 

between one and eight are trough the nodes three and five which have a path length of three. 

This is not the only path from one to eight however, we can create multiple paths maybe with a 

detour around two and seven, but we cannot find one that is shorter than three. The average 

shortest path here is 1.87 which indicates that the path length between any node in the network 

is less than two. In the horizontal visibility graph, the shortest path between one and eight are 

through nodes two, three and five and have a length of four. This path is longer because the 

horizontal visibility algorithm generates graphs with fewer degrees, thus the path must be longer. 

The average shortest path is 2.07 which is naturally larger than value in the visibility graph. 

Average shortest path depends both on a networks number of degrees and their centrality.  
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5 DISCOVERIES 

5.1 Variations in network properties due to change in length of the sample series 

When working with global network statistics, it is easy to assume that some of these may depend 

on the original time-series’ length. Does average geodesic path for example get exponentially 

larger with sample size?  What about the other network statistics? To gain further insight on how 

sample size effects the networks properties we decided to record this relationship in series 

generated from the white noise process. White noise process was the obvious choice because of 

its lack of parameters. We are also using white noise as a benchmark in our further investigation, 

and the thorough recording of its network properties will enhance the interpretation of our 

results.    
 

Visibility graph on the left (dark grey) and horizontal visibility graph (light grey) on the right 

 

An example of how a time-series generated from a white noise process can present itself as a 

network is illustrated above. These networks are generated from the typical realizations which 

we presented earlier in the text, and this will be the case for every network example throughout. 

The additional typical realizations and their corresponding networks can be found in the 

appendix. 

  

The visibility graph (on the left) and the horizontal visibility graph (on the right) both have a length 

of 1000 observations and have as mentioned earlier been forced in the same layout. This makes 

it difficult to immediately spot the difference between these two. But, as in every five-error game, 

the differences are there if you only have the patience and look close enough. In this illustration 

one of the discrepancies can be located at the far-right side where the visibility graph has three 

visible edges, but the horizontal visibility graph only has two. The reason why we choose to force 

an identical layout on every graph is because it will make it possible to study the changes in how 

the nodes are connected dependent on the underlying generating process. 

Figure 11: Network from an example realization of the white noise process 
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We can observe that these graphs have small clusters, communities, connected in a 

counterclockwise fashion with very few edges crossing into the center. This is what we would 

expect in a graph generated form a time-series with regular fluctuations around a center value.     

 

To map the relationship between sample size and the different properties of the network, we 

generated white noise series of different length. Starting with a length of 100 and ending 

at 3000 by an interval of 100. We used 100 simulations of each sample size. The results are 

presented on the next page, visibility graph on the left and horizontal visibility graph on the right. 

We can clearly see that in all cases, except one, sample size has large impact when it is small, but 

the effect is diminishing with the increase in length of the sample. We also note that the spread 

within each simulation tend to reduce as the sample size increases. In addition, we observe that 

the properties behave very similarly in both types of graphs. Mean degree, normalized degree 

centrality, transitivity and assortativity all show signs of converging toward a value as the sample 

size increases. In the case of mean degree, the visibility graph has a larger spread then the 

horizontal visibility graph which is a result of the latter’s more restrictive visibility criterion. A 

natural result when mean degree stabilizes with sample size, is that the normalized degree 

centrality will converge toward zero. The theoretical maximum value used when normalizing the 

degree centrality will increase with the length of the sample. As the measurement of degree 

centrality is partly dependent on degree, its value will mirror the behavior of mean degree. Since 

any number divided on an increasingly large number will converge toward zero, the normalized 

degree centrality will converge to zero as a result of the increasing sample length. The local value 

of transitivity is negatively dependent on the local degree, and the opposite behavior in the two 

respective global measurements where expected. When this indeed was the case in our 

experiment, it affirmed our theory that the relationship also extends to the global measurements.  

 

One of the measurements which does not clearly converge toward a value is, as we prophesied 

earlier, the average geodesic path. But even this measurement does level out such that changes 

due to an expanding sample size decrease. We are not the first to discover this however as Sun 

et al. (2016) states in their article:  

 “We studied the change of the average shortest path length with the increase of 

the number of nodes in visibility graph network. L is the average shortest path 

length, N is the number of nodes. If there is linear relationship between L and 

logarithm of N, then we have L = a + b ln N …” (Sun et al., 2016) 

We do however show that this also is the case for the horizontal visibility graph. This is the only 

measurement where the spread doesn’t reduce as samples increase. 

 

The one network property which clearly differentiate itself from the others in this explorative 

exercise is the p-values from the test regarding power law distribution. This value is significant for 

all sample sizes and for both graphs leading us to theorize that networks generated from a white 

noise process always have a degree distribution which is following power law distribution, thus 

always are scale free. 
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From the top to bottom, visibility graph (VG) on the left side, horizontal visibility graph (HVG) on the right: 

a) Mean degree, VG 

b) P-value, H0 : cumulative degree 

distribution follows power law, VG 

c) Normalized degree centrality, VG 

d) Transitivity, VG 

e) Assortativity, VG 

f) Average geodesic path, VG 

g) Mean degree, HVG 

h) P-value, H0 : cumulative degree 

distribution follows power law, HVG 

i) Normalized degree centrality, HVG 

j) Transitivity, HVG 

k) Assortativity, HVG 

l) Average geodesic path, HVG

 

there are 100 simulation for each sample series length, ranging from 100 to 3000 by an interval of 100 

Figure 12: Change in network properties due to the length of sample series  

a) g) 

b) h) 

i) c) 

d) j) 

e) k) 

f) l) 
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5.2 Identifying white noise processes through network statistic  

Each of our recorded relationships, except geodesic path and p-values for power laws test, have 

a reduction in spread as sample size increases. The relationships can in addition, except the p-

values, be nicely fitted to different functions. The recorded p-values are always relevant for all 

tested sample sizes and do not show any signs of a trend, thus we can assume that this will always 

be the case with a white noise process.  

 

With these characteristics, we propose that it is possible to use network properties to identify 

white noise series regardless of its stationarity status. This may be achieved both with the visibility 

graph and the horizontal visibility graph. The horizontal visibility graph is often much preferred 

because it is fast, easy and analytically solvable. In our results this sub graph actually has a smaller 

spread, thus will be our recommended algorithm for this identification method. 

 

We suggest a six-part test where the test object must fulfill all six criteria to be identified as a 

white noise process. First of all, the series must have a degree distribution that is power laws. 

Then its values for mean degree, normalized degree centrality, transitivity, assortativity and 

average geodesic path must fit within a confidence interval given by the length of the series.  

  

We choose to use the upper- and lower boundaries as our confidence interval since it accurately 

reflects the observed changes in spread. For example, a 5% confidence interval would in most 

cases be far too narrow at small sample sizes and far too wide at the larger ones.  

 

We find the fitted functions for both upper and lower bounds of the statistics by examining two 

different relation possibilities. At first, we consider the possible significant dependencies of each 

of the statistics on the logarithm of the sample size. Then we examined whether there is a 

significant relationship between the logarithm of the statistics and the logarithm of the sample 

size. These two options could be examined for all of the statistics with exception of assortativity. 

Assortativity is measured on a scale from −1 to +1 and the natural logarithm of minus values, as 

well as zero, do not exist. Sun et al. (2016) inspired this approach with their proposal of a linear 

relationship between the average shortest path length and logarithm of the series’ length. 

 

We examined the adequacy of the relationships in both options by the use of a linear regression 

and a partial two-sides Student’s t-test of its parameters. The null hypothesis under a Student’s 

t-test is identifying the non-significance of the parameter; that there is no significant relationship 

between the dependent and independent variables. The alternative hypothesis is assuming a 

significantly non-zero parameter, indicating an adequate relationship. The test statistics is 

defined as 𝑡 =
𝛽̂

𝑠𝑒𝛽̂
, where 𝛽̂ is the estimated value of the regression parameter, and 𝑠𝑒𝛽̂ is the 

estimated OLS standard error of 𝛽. Under the null hypothesis the test statistic will follow a 

Student’s t-distribution with 𝑛 − 1 degrees of freedom, ( 𝑛 equal to the number of the 

observations).  

 

If the probability that the test statistic is larger than its ‘empirical value, 𝑝(𝑡 > 𝑡𝑒𝑚𝑝), is less than 

the chosen significance level, the test will provide significant evidence for the alternative 
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hypothesis. This indicates that the relationship between the dependent and independent 

variables is valid and significant (Hill, Griffiths, & Lim, 2011, pp. 95-113).  

 

We used a 5% significance level in our tests. The results indicated mostly a significant relationship 

both between the statistics and logarithm of the sample size and between logarithm of the 

statistics and logarithm of the sample size. While in some cases, there are no significant 

relationships between either form of the statistics mentioned above and the logarithm of the 

sample’s length. This is the case for transitivity’s lower bounds of both graphs and for mean 

degree’s upper bound of the visibility graph. To be able to create these boundaries we 

investigated the statistics of the other quartiles, establishing that they all had a similar shape. We 

fitted the best fitting function from the other quartiles to the problematic bound, which resulted 

in a non-significant relationship when tested. These bounds are therefore not valid and further 

study is required. 

 

We choose the best fitting function for the statistics with adequate relationship by the use of 

adjusted R-squared. The chosen fitted functions is the one with the highest adjusted R-squared. 

The resulting functions plotted with our realizations are displayed below and the regression 

analysis are available in the appendix.  
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From the top to bottom, visibility graph (VG) on the left side, horizontal visibility graph (HVG) on the right: 

 

a) Mean degree, VG 

b) Normalized degree centrality, VG 

c) Transitivity, VG 

d) Assortativity, VG 

e) Average geodesic path, VG 

f) Mean degree, HVG 

g) Normalized degree centrality, HVG 

h) Transitivity, HVG 

i) Assortativity, HVG 

j) Average geodesic path, HVG

 

Upper and lower boundaries marked with grey lines, while median is plotted as a red line. The results from our 

simulations are plotted as dots. There are 100 simulated realization. 

The length of the sample series ranging from 100 to 3000 by an interval of 100. 

 

 

Figure 13:  Change in network properties due to length of sample series, fitted to functions 

a) 

b) 

c) 

d) 

e) j) 

i) 

h) 

g) 

f) 
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On the basis of the results above we propose a six-part test which can determine if a time-series’ 

data generating process is Gaussian white noise. The hypothesis will be constructed as follows: 

 

𝐻0 : 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎 𝑠𝑒𝑡 𝑖𝑠 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑓𝑟𝑜𝑚 𝑎 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑤ℎ𝑖𝑡𝑒 𝑛𝑜𝑖𝑠𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠   (26) 
 

𝐻1 : 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎 𝑠𝑒𝑡 𝑖𝑠 𝑛𝑜𝑡 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑓𝑟𝑜𝑚 𝑎 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑤ℎ𝑖𝑡𝑒 𝑛𝑜𝑖𝑠𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠  (27) 

 

where the criteria to reject the null hypothesis will consist of six sub-tests. All six sub-tests have 

to fail to reject the null – all the networks statistics needs to be within our confidence bands. 

 

1. 𝐻0 ∶  𝑝 − 𝑣𝑎𝑙𝑢𝑒 > 0,05 

𝐻1 ∶  𝑝 − 𝑣𝑎𝑙𝑢𝑒 ≤ 0,05 

2. 𝐻0 ∶  𝑦𝑙 ≤ 𝑦𝑎𝑠𝑠𝑜𝑟𝑡𝑎𝑡𝑖𝑣𝑖𝑡𝑦 ≤ 𝑦𝑢 

𝐻1 ∶    𝑦𝑎𝑠𝑠𝑜𝑟𝑡𝑎𝑡𝑖𝑣𝑖𝑡𝑦 < 𝑦𝑙  𝑜𝑟 𝑦𝑎𝑠𝑠𝑜𝑟𝑡𝑎𝑡𝑖𝑣𝑖𝑡𝑦 > 𝑦𝑢 

3. 𝐻0 ∶  𝑦𝑙 ≤ 𝑦𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑔𝑒𝑜𝑑𝑒𝑠𝑖𝑐 𝑝𝑎𝑡ℎ ≤ 𝑦𝑢 

𝐻1 ∶   𝑦𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑔𝑒𝑜𝑑𝑒𝑠𝑖𝑐 𝑝𝑎𝑡ℎ < 𝑦𝑙  𝑜𝑟  𝑦𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑔𝑒𝑜𝑑𝑒𝑠𝑖𝑐 𝑝𝑎𝑡ℎ > 𝑦𝑢 

4. 𝐻0 ∶  𝑦𝑙 ≤ 𝑦𝑑𝑒𝑔𝑟𝑒𝑒 𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 ≤ 𝑦𝑢 

𝐻1 ∶   𝑦𝑑𝑒𝑔𝑟𝑒𝑒 𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 < 𝑦𝑙  𝑜𝑟 𝑦𝑑𝑒𝑔𝑟𝑒𝑒 𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 > 𝑦𝑢 

5. 𝐻0 ∶  𝑦𝑙 ≤ 𝑦𝑚𝑒𝑎𝑛 𝑑𝑒𝑔𝑟𝑒𝑒 ≤ 𝑦𝑢 

𝐻1 ∶  𝑦𝑚𝑒𝑎𝑛 𝑑𝑒𝑔𝑟𝑒𝑒 <  𝑦𝑙  𝑜𝑟 𝑦𝑚𝑒𝑎𝑛 𝑑𝑒𝑔𝑟𝑒𝑒 > 𝑦𝑢 

6. 𝐻0 ∶  𝑦𝑙 ≤ 𝑦𝑡𝑟𝑎𝑛𝑠𝑖𝑣𝑖𝑡𝑦 ≤ 𝑦𝑢 

𝐻1 ∶   𝑦𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 < 𝑦𝑙  𝑜𝑟 𝑦𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 > 𝑦𝑢 

 

The functions for the different values for upper and lower bound are presented in the table below. 

 

Network statistic Boundary Visibility graph Horizontal visibility graph 

Assortativity Upper 𝑦𝑢  =  0.0052 ∗ 𝑙𝑛(𝑥)  +  0.0855 𝑦𝑢 =  0.0096𝑙𝑛(𝑥)  +  0.1281 

 Lower  𝑦𝑙  =  0.0445 ∗ 𝑙𝑛(𝑥)  −  0.262 𝑦𝑙 = 0.0521 ∗ 𝑙𝑛(𝑥)  −  0.2492 

Geodesic path Upper 𝑦𝑢  =  1.3265𝑙𝑛(𝑥)  −  0.4985 𝑦𝑢  =  1.3064 ∗ 𝑙𝑛(𝑥)  +  0.2167 

 Lower 𝑦𝑙  =  1.2586𝑙𝑛(𝑥)  −  2.2446 𝑦𝑙  =  1.2845 ∗ 𝑙𝑛(𝑥)  −  1.8815 

Degree centrality Upper 𝑦𝑢  =   7.1956 ∗ 𝑥−0.82 𝑦𝑢  =  6.6267 ∗ 𝑥−0.842 

 Lower 𝑦𝑙  =  1.8246 ∗ 𝑥−0.725 𝑦𝑙  =  1.452 ∗ 𝑥−0.723 

Mean degree Upper 𝑦𝑢  =  −0.004 ∗ 𝑙𝑛(𝑥)  +  4.7987 𝑦𝑢  =  0.0245𝑙𝑛 ∗ (𝑥)  +  3.8074 

 Lower 𝑦𝑙  =  0.1064 ∗ 𝑙𝑛(𝑥)  +  3.8437 𝑦𝑙  =  0.0697𝑙𝑛 ∗ (𝑥)  +  3.4486 

Transitivity Upper 𝑦𝑢  =   0.5527 ∗ 𝑥−0.038 𝑦𝑢  =  0.4418 ∗ 𝑥−0.033 

 Lower 𝑦𝑙  =  0.3961 ∗ 𝑥−6𝐸−04 𝑦𝑙  =  0.3364 ∗ 𝑥−0.002 

Table 5: Test for Gaussian white noise - upper and lower boundaries 

 

The test is performed on a time-series by first transforming it to either a visibility- or horizontal 

visibility graphs. Then the mentioned statistics must be calculated. The boundaries for each 

statistic are found by using the length of the time-series. Then the statistics can be compared to 

the boundaries. If the statistics fits within all of the boundaries – we fail to reject the null and the 

time-series generating process is a Gaussian white noise.   
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5.3 Variation in network properties due to change in autocorrelation coefficient 

A change in autocorrelation coefficient(s) of an 𝐴𝑅(1), 𝑀𝐴(1) or 𝐴𝑅𝑀𝐴(1,1) implies different 

statistical properties of the sample series. We demonstrated this in our description of stochastic 

processes, and it can be further examined in the appendix. We will study how the value of the 

(true but unknown) parameter of the stochastic process would be reflected in the properties of 

the associated network. 

 

In the exploration on how a stochastic processes’ autocorrelation coefficient influences the 

visibility- and the horizontal visibility graph, we examined changes in the visual representations 

of the time-series as a network as well as the network statistics. This was achieved as mentioned 

earlier with a data run and an example run, both runs had a sample size of 1000. The value of the 

parameter is varied from −0.9 to 0.9 by an interval of 0.1. In the examination of the 

𝐴𝑅𝑀𝐴(1,1) process, the autocorrelation coefficient of the moving average process was fixed at 

0.1, and the autocorrelation coefficient of the autoregressive process was varied as described 

above.   

 

The data run had 100 simulations for each parameter, and the example run used a set seed and 

a forced layout on all network realizations. White noise is included in both runs as a benchmark. 

When the autocorrelation coefficients of an 𝐴𝑅(1) and 𝑀𝐴(1) are equal to zero their values 

should coincide with the results from a white noise process. This will not be the case with the 

𝐴𝑅𝑀𝐴(1,1)  because of the effects from the fixed autocorrelation coefficient of the 𝑀𝐴(1). 

 𝑴𝑨(𝟏) 

The visual network representations of time-series generated from a moving average process of 

order one is illustrated below, with visibility graph to the left and horizontal visibility graph to the 

right. We have included the parameters −0.9, 0.1 and 0.9, top to bottom, to present the 

extremes, but network representations of all parameters are available in the appendix.   

 

Again, it is difficult to find the differences between the visibility- and the horizontal visibility 

graphs, but the differences are always present. What is quite noticeable however is that there 

are many differences observed in the graphs generated by processes of different autocorrelation 

coefficients. The edges do clearly not form the same pattern, and the number of visible edges 

seems to increase with the value of the parameter. When we inspect the line plot of the same 

series presented in an earlier section (also available in the appendix) we do detect subtle 

differences in the series which are reflected in the generated networks.  

 

Neither of the networks share edge-pattern with the network created from a white noise process, 

illustrated in the previous section. But when we take a closer look at the network generated from 

an 𝑀𝐴(1) process with a parameter of zero in the appendix, we do find the similarity which we 

would expect in the edge-patterns. This similarity arises purely because we use the same set of 

errors in all our example simulations and should not be considered as a common rule.    
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Figures are placed on the previous page, from top to bottom:  

a) Visibility graph – -0.9 

b) Visibility graph – 0.1 

c) Visibility graph – 0.9 

d) Horizontal visibility graph – -0.9 

e) Horizontal visibility graph – 0.1 

f) Horizontal visibility graph – 0.9 

 

The networks are color-coded: the network and the box in the boxplot representing the same process and parameter 

share a color. The numbers relate to the process’s autocorrelation coefficient 

 

The outcomes from our explorations with multiple simulations are presented below. White noise 

is used as a benchmark and its result is placed to the left of the plot and colored grey. The plot 

then continues with results from an 𝑀𝐴(1). Starting with an autocorrelation coefficient of −0.9 

followed by increasingly larger parameters until a parameter of 0.9. 

 

We can see that the different parameters do have an effect on the network statistics. In this case, 

in opposite of the study by sample size in the previous section, the results from the visibility graph 

are often notably different from the results from its subgraph. Another initial observation consists 

of how similar the results from a white noise and an 𝑀𝐴(1) with the autocorrelation coefficient 

of zero are. Most of the outputs only tend to differentiate from white noise when the 

autocorrelation coefficient is large and positive.    

 

Both visibility- and horizontal visibility graphs are inclined to have a low normalized degree 

centralization. The visibility graphs’ values are similar to white noise as long as the autocorrelation 

coefficients are negative and then decrease as the value of the parameters increase. While in the 

horizontal visibility graphs values are larger than white noise for negative parameters and smaller 

for positive. The values for the visibility graph are higher than the ones for the horizontal visibility 

graph as we expected. When we take a closer look at the example network above, we do see that 

there are fewer edges across the center when the autocorrelation coefficients are high, indicating 

less degree centrality. Low degree centrality indicates few extreme values in the series, and we 

can confirm that this is the case by examining the example line chart presented previously, which 

are also available in the appendix. An 𝑀𝐴(1) process with a high negative autocorrelation 

coefficient have more extreme values than this process with a high positive parameter. The 

extreme values are easier to detect by the horizontal visibility algorithm, which is why degree 

centrality is higher than white noise for negative parameters in this case. This is not reflected in 

the results from the visibility graph.    

 

The opposite is the case of assortativity, where the horizontal visibility graphs’ values are similar 

to white noise for negative autocorrelation coefficients and then increase as the parameter 

increases. The visibility graph values are u shaped with values higher than white noise at either 

end of the parameters scale. All results are positive thus indicating assortative mixing. The values 

of horizontal visibility graph are higher than the ones for the visibility graph as expected. There is 

a 22% chance that nodes in the horizontal visibility graph generated from a process with very 

high positive autocorrelation coefficient are connected with nodes of the same degree. This 

indicates that a large number of nodes share a similar degree, which suggest that there is 

Figure 14: Selected network from example realization of 𝑀𝐴(1) 
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something like a repeating pattern in this series. We cannot however confirm this by examining 

the line plot or the network realizations.    

   

The p-values are all significant, even though the values are declining with larger parameters they 

are still above the 5% significance level. Thus, every tested autocorrelation coefficient result in a 

network which is power laws.  

 

The results regarding transitivity take a form quite different from the rest with an s-shape both in 

visibility- and horizontal visibility graphs. The outcomes from the negative autocorrelation 

coefficients are closer to the white noise than the positive in both cases. By examining the 

horizontal visibility graph for large positive parameters, there is a 37.5% chance that two 

realizations in the original series are separated by one, or more, realizations of lower value. This 

is an increase of ca 5% from the values for a large negative autocorrelation coefficient and are 

supported by the associated line plots. The values from the visibility graph are higher than ones 

from the horizontal visibility graph which is expected due to the differences in their algorithms.   

 

The exploration of mean degree resulted in a very different pattern in the results from the 

visibility- and horizontal visibility graphs. The visibility graph has an s-shape while the horizontal 

visibility graph is displaying results very similar to white noise. This result is expected due to the 

differences in their algorithms. As we expected all the values from the horizontal visibility graph 

are lower than the minimum of the results from the visibility graph. If we examine the different 

line plots, we discover that they differ mainly the frequency of which the values change and the 

presence of extreme values. This will not affect the results from the horizontal visibility graph 

since the algorithm do not allow for angles and all the frequencies are rather high. We suggest 

that mean degree from a horizontal visibility graph created from a series with high frequency will 

have similar results as white noise. As the frequency decrease, the value of mean degree will also 

be reduced. The frequency affects the results from the visibility graph differently because of its 

algorithm. A high frequency series will result in more visibility lines crossing each other, which is 

denying visibility, and thus the resulting mean degree will be lower than white noise. A lower 

frequency will allow for more visibility thus the mean degree will be higher than white noise.  

 

The average geodesic paths are both increasing with the value of the autocorrelation coefficient, 

which may seem like an error, especially in the case of the visibility graph, where the mean degree 

also is increasing with the parameter. This however is also connected to the degree centrality, 

which is declining with the parameter. The increase in mean degree cannot compensate for the 

lack of centrality, thus the result in both graphs are expected.  
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a) b) g) h) 

c) d) i) j) 

e) f) k) l) 
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The figures are placed on the previous page: from the top to bottom, visibility graph on the left side, horizontal 

visibility graph on the right: 

a) Mean degree, VG 

 

b) Mean degree, HVG 

 

c) Normalized degree centrality, VG  

d) Normalized degree centrality, HVG 

e) Assortativity, VG 

f) Assortativity, HVG 

g) P-value, H0 : cumulative degree 

distribution follows power law, VG  

h) P-value, H0 : cumulative degree 

distribution follows power law, HVG 

i) Transitivity, VG  

j) Transitivity, HVG 

k) Average geodesic path, VG 

l) Average geodesic path, HVG 

 
There are 100 simulation for each process with different autocorrelation coefficient, ranging from -0.9 to 0.9  by an 

interval of 0.1. 

The sample size of the series is 1000. The first box plot in the box plot (grey) is the benchmark value of white noise 

  

 𝑨𝑹(𝟏) 

As with the moving average process we have included chosen networks with the autocorrelation 

coefficients of −0.9, 0.1 and 0.9 below. The full presentations of these can also be found in the 

appendix. Because the edge pattern is very different from white noise, it may be easier to find 

differences between the visibility- and the horizontal visibility graphs in this display, but they are 

still subtle.  

 

The differences between the networks generated by processes with different parameters 

however are anything but subtle. In both the extreme autocorrelation coefficients there are no 

edges crossing the center of the network, but the number of visible edges increases quite a bit in 

both. The line plot of the same series is vastly different which is reflected in the large variance in 

edge-pattern. By comparing the 𝑀𝐴(1) networks with the 𝐴𝑅(1)s, we realize that if both have 

an autocorrelation coefficient of 0,1, their edge-patterns will be very similar.  As in the case with 

the 𝑀𝐴(1), the 𝐴𝑅(1) with an autocorrelation coefficient of zero (located in the appendix) has 

an edge-pattern very similar to white noise.  

 

The outcome of our multiple simulation exploration is presented at page 51, using the same 

layout as in 𝑀𝐴(1), and it is apparent that the value of autocorrelation coefficients changes the 

network statistics. In addition, we can see that the changes are different from the ones in the 

case of 𝑀𝐴(1). This is of course expected since they are totally different data generating 

processes, which is apparent the line plots, especially with extreme values of the autocorrelation 

coefficient.  

 

The shapes of the visibility- and the horizontal visibility graphs are often similar, with either a 

concave or a convex shape where the zero parameter marks either maximum or minimum. If the 

network is constructed from an 𝐴𝑅(1) with an autocorrelation coefficient of zero, the value of all 

of the statistics will be similar to the benchmark white noise in both graphs. 

 

Figure 15: Change in network properties due to autocorrelation coefficient, 𝑀𝐴(1) 
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Figures are placed on the previous page, from top to bottom:  

a) Visibility graph –  -0.9 

b) Visibility graph –   0.1 

c) Visibility graph –  0.9 

d) Horizontal visibility graph –  -0.9 

e) Horizontal visibility graph –   0.1 

f) Horizontal visibility graph –  0.9 

 

The numbers relate to the process’s autocorrelation coefficientThe networks are color-coded: the network and the box 

in the boxplot representing the same process and parameter share a color. 

 

Visibility- and horizontal visibility graphs both have low normalized degree centralization with a 

maximum value equal to white noise. This coincides with our discoveries when we examined the 

networks commenting on the lack of edges through its center. The horizontal visibility graphs 

values are lower than the values from the visibility graphs which is expected as it has fewer edges. 

In addition, we observe that the large positive autocorrelation coefficient effects the horizontal 

visibility graph more than the visibility graph. The extreme values of the autocorrelation 

coefficient in an 𝐴𝑅(1) generate vastly different series. Where the large negative values have a 

high frequency with distinct sections of different amplitude, while the large positive values tend 

to wander similarly to a random walk. Both of these are resulting in fewer extreme values as 

reflected in the values of the degree centralization.  

 

Both associativity and the p-values share a concave form with degree centrality.  The p-values are 

significant for both graphs and indicating power laws for all autocorrelation coefficients. The 

results regarding assortativity are very close to zero in both cases, where the extreme high 

parameters actually indicate disassortative mixing. The values of the horizontal visibility graph 

are as expected due to its algorithm, larger than the visibility graphs values. Low assortativity 

suggest that there are no cycles in the series, which is confirmed by examining the line chars. 

 

The visibility graphs’ transitivity results have a similar shape as the results from our 𝑀𝐴(1) 

experiment, but the s-shape is less distinct in this case. But the horizontal visibility graph has a 

different shape. The changing amplitude with high negative autocorrelation coefficients results 

in a higher transitivity for the horizontal visibility than for a high frequency series with constant 

amplitude. The reason is because it is more likely that two realizations are separated by one, or 

more realizations, of a lower value in the case with different amplitudes. The probability of having 

triples is even higher when the autocorrelation coefficient of the series is high. This series may be 

described as “hills and valleys” which is the perfect environment for generating triples by the 

horizontal visibility algorithm.    

 

When we examine the results of mean degree we realize that the shape of both boxplots are 

different from the results for 𝑀𝐴(1). The visibility graph has an increasing number of degrees as 

the autocorrelation coefficient increases, while the horizontal visibility graph has a concave shape 

where the effect of a high parameter is larger than the effect of a lower one. The change in 

amplitude in the lower value parameter, and the reduction in frequency in the higher amplitudes, 

both impacts the results as we discussed in the previous section. As in the results from the 𝑀𝐴(1), 

the result of average geodesic path is a direct consequence of the degree centrality, which here 

has a convex shape. The relationship is negatively correlated; thus, the convex shape of the 

average geodesic paths is as expected.      

Figure 16: Selected network from example realization of 𝐴𝑅(1) 
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a) b) g) h) 
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e) f) k) l) 
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The figure is placed on the previous page: from the top to bottom, visibility graph on the left side, horizontal 

visibility graph on the right: 

a) Mean degree, VG 

 

b) Mean degree, HVG 

 

c) Normalized degree centrality, VG  

d) Normalized degree centrality, HVG 

e) Assortativity, VG 

f) Assortativity, HVG 

g) P-value, H0 : cumulative degree 

distribution follows power law, VG  

h) P-value, H0 : cumulative degree 

distribution follows power law, HVG 

i) Transitivity, VG  

j) Transitivity, HVG 

k) Average geodesic path, VG 

l) Average geodesic path, HVG 

 

There are 100 simulation for each autocorrelation coefficient, ranging from -0.9 to 0.9 by an interval of 0.1. 

The sample size of the series is 1000. The first box plot in the box plot (grey) is the benchmark value of white noise 

 

𝑨𝑹𝑴𝑨(𝟏, 𝟏) 

To explore the changes that the autocorrelation coefficients of both 𝐴𝑅(1) and 𝑀𝐴(1) implies 

on the network statistics together, we added 𝐴𝑅𝑀𝐴(1,1) to our experiments. We chose to vary 

the autocorrelation coefficient of 𝐴𝑅(1) and keep the 𝑀𝐴(1)s autocorrelation coefficient fixed 

at 0.1. The resulting boxplots have, in addition to the box representing white noise, another grey 

box which represents the values from the 𝑀𝐴(1) with an autocorrelation coefficient of 0.1. 

 

When we compare the network realizations from the 𝐴𝑅𝑀𝐴(1,1) we immediately realize that 

they share a lot of the edge patterns from 𝐴𝑅(1). One notable difference is that the edge straight 

across the center of the graph of 𝐴𝑅(1) with an autocorrelation coefficient of 0.1 not is present 

in the case of 𝐴𝑅𝑀𝐴(1,1) with the same parameter. 

 

From the experiment with multiple simulations the similarities with the 𝐴𝑅(1) continues, 

outcome presented at page 54. The only observable change made by 𝑀𝐴(1) is that it increases 

the effect that the large positive parameters have on the normalized degree centrality. We did 

observe that one of the edges in the center of both networks was indeed missing for 

𝐴𝑅𝑀𝐴(1,1) realizations and a decrease in degree centralization was therefore expected. As a 

consequence of this, the results from average geodesic path are also different for 𝐴𝑅(1) with an 

even steeper increase of length with large positive autocorrelation coefficient. 

 

 

 
Figures are placed on the previous  page, from top to bottom:  

a) Visibility graph – -0.9 

b) Visibility graph – 0.1 

c) Visibility graph – 0.9 

d) Horizontal visibility graph – -0.9 

e) Horizontal visibility graph – 0.1 

f) Horizontal visibility graph – 0.9 

 

The numbers relate to the process’s autocorrelation coefficient 

The networks are color-coded: the network and the box in the boxplot representing the same process and 

parameter share a color. 

          Figure 18: Selected network from example realization of 𝐴𝑅𝑀𝐴(1,1) 

Figure 17: Change in network properties due to autocorrelation coefficient, 𝐴𝑅(1) 
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a) b) g) h) 

c) d) i) j) 

e) f) k) l) 
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The figure is placed on the previous page: from the top to bottom, visibility graph on the left side, horizontal 

visibility graph on the right: 

m) Mean degree, VG 

 

n) Mean degree, HVG 

 

o) Normalized degree centrality, VG  

p) Normalized degree centrality, HVG 

q) Assortativity, VG 

r) Assortativity, HVG 

s) P-value, H0 : cumulative degree 

distribution follows power law, VG  

t) P-value, H0 : cumulative degree 

distribution follows power law, HVG 

u) Transitivity, VG  

v) Transitivity, HVG 

w) Average geodesic path, VG 

x) Average geodesic path, HVG 

 
There are 100 simulation for each parameter, ranging from -0.9 to 0.9 by an interval of 0.1. 

The sample size of the series is 1000. The first box plot in the box plot (grey) is the benchmark value of white noise 

 

5.4 Estimation of parameters on the basis of network statistics  

Some of our results from the visibility graphs presented above have properties that can be used 

to distinguish between time-series parameters without any need to determine stationarity status. 

Both measures of mean degree and transitivity generates unique values for each parameter. 

Therefore, it is possible to compare these results to the statistics for any time-series generated 

from an 𝑀𝐴(1), 𝐴𝑅(1) or 𝐴𝑅𝑀𝐴(1,1) and identify its parameter. This is only the cases for 

visibility graph though, as the values in its subgraph do not share this property. 

 

 As in the previous case we used the upper and lower quartile to create the upper and lower band 

of our confidence interval. We chose in this case to use some of the self-starting functions in 𝑅 

because of the special properties our result exhibited.   

 

The S-shape in the transitivity results was fitted to the Boltzmann model.  

 

𝑦 = 𝑐 +
𝑑−𝑐

1+𝑒𝑏∗(𝑥−𝑒)        (28) 

 

Which is described as an asymptotic five-parameter logistic model. The resulting parameter for 

each of the boundaries is presented below, as is the display of the fitted functions with our 

realizations. 

 

 

 

 

 

 

 

 

 
MA(1) 

 
AR(1) 

 
ARMA(1,1) 

 

Boltz. Upper Lower Upper  Lower Upper Lower 

b -3.464 -3.710 2.506 -2.421 -2.412 -2.337 

c 0.396 0.372 0.373 0.358 0.378 0.355 

d 0.489 0.458 0.484 0.472 0.504 0.479 

e 0.297 0.295 0.032 0.302 0.171 0.211 

Table 6: Parameters used in the classification of autocorrelation coefficient – transitivity 

Figure 19: Change in network properties due to autocorrelation coefficient, 𝐴𝑅𝑀𝐴(1) 
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From left to right: 𝑀𝐴(1), 𝐴𝑅(1), 𝐴𝑅𝑀𝐴(1,1) and a comparison with the reference value of white noise  

The value of white noise is equal to the median of white noise for sample size 1000 from the previous experiment with 

sample size 

 

Mean degree result had two distinctive shapes. The S-shape was fitted to the Boltzmann model 

(28) the concave shapes was fitted to the Asymptotic regression model:  

 

𝑦 = 𝐴𝑠𝑦𝑚 + (𝑅0 − 𝐴𝑠𝑦𝑚) ∗ 𝑒(−𝑒𝑙𝑟𝑐∗𝑥)     (29) 

 

The resulting parameter for each of the boundaries is presented below, as is the display of the 

fitted functions with our realizations. 

 

 
 

MA 
  

AR(1,1) 
 

ARMA(1,1) 
 

Boltz  Upper Lower Asymp. Upper Lower Upper  Lower 

b -3.736 -4.153 Asym 5.374 4.970 5.377 5.002 

c 4.630 4.504 R0 4.785 4.614 4.814 4.629 

d 4.988 4.815 lrc -0.745 -0.330 -0.642 -0.380 

e 0.045 0.182 
     

Table 7: Parameters used in the classification of autocorrelation coefficient - mean degree 

Figure 20: Relationship between transitivity and autocorrelation coefficient fitted to functions 
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From left to right: 𝑀𝐴(1), 𝐴𝑅(1), 𝐴𝑅𝑀𝐴(1,1) and a comparison with the reference value of white noise. 

The value of white noise  is equal to the median of white noise for sample size 1000 from the previous experiment with 

sample size  

 

We were tempted to suggest the use of this results in a test similar to our six-part white noise 

test, as a three-part test where the parameters was p-value, transitivity and mean degree. The 

principle would be the same, the tested series values have to lay within the upper and lower 

bands to be identified as either an 𝐴𝑅(1), 𝑀𝐴(1) or 𝐴𝑅𝑀𝐴(1,1) with a determined parameter. 

When we realized how close these values are of each other however, we knew that they were in 

practice inseparable by the means of these results alone. We propose therefore this as a 

classification tool where we can determine the parameter of any 𝑀𝐴(1), 𝐴𝑅(1) or 𝐴𝑅𝑀𝐴(1,1), 

but it cannot distinguish between these.    

 

 

 

  

Figure 21: Relationship between mean degree and autocorrelation coefficient fitted to functions 
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6 DISCUSSION 

During our exploration we made two significant discoveries. First of all, we revealed a significant 

relationship between white noises’ network statistics and the length of sample size. Some of 

these relationships were already established as previously mentioned by Luque et al. (2009). They 

stated that a horizontal visibility graph will have a mean degree of four for large sample sizes 

which is reflected in our results as well. The degree distribution in our results were always power 

laws, consistent with the finding of Luque et al. Another result which was consistent with Luque’s 

findings was the relationship between the average shortest path length and logarithm of sample 

size for graphs generated from the horizontal visibility algorithm. This relationship was extended 

to the visibility graph by Sun et al. (2016)   

 

We discovered however that every relationship is valid for both visibility- and horizontal visibility 

graph. This was revealed by the simulations for white noise of different sample sized up to a 

sample size of 3000.  Our results were used to fit functions which could in theory predict the 

further development with larger sample sizes. As mentioned above we were unable to fit 

functions to some of our boundaries. The values were to erratic and we needed to run the 

simulations multiple times to gain a better understanding on how these behave. We also noticed 

problems with the functions that we have fitted, even those with a very large goodness of fit 

measurements. When we extend the sample size, the boundaries do not behave as we would 

expect, some of them even change from upper to lower bounds. This indicates that our functions 

do not capture the true nature of our data and the topic should be revisited. Despite of these we 

could purpose a test from which a white noise series could be identified for series with a sample 

size up to 3000. This test could be applied for both stationary and non-stationary time-series.  

 

Secondly, we documented the change in network statistics due to alterations in the auto 

correlation functions of 𝐴𝑅(1), 𝑀𝐴(1) and 𝐴𝑅𝑀𝐴(1). In this case though, we could not 

distinguish between those three processes from the output, the results were to similar. What we 

did realize was that we could use the relationships between the parameters of the studied 

processes and two of the network statistics, mean degree and transitivity, to determine the 

parameters of the mentioned processes. Thus, creating a tool for identifying the parameter of an 

𝐴𝑅(1), 𝑀𝐴(1) or 𝐴𝑅𝑀𝐴(1,1) which is independent of the original time-series stationarity status.  

 

A  similar result as ours was discovered by Segberg and Skoglund (2017) in their exploration of 

𝐺𝐴𝑅𝐶𝐻. They were able to distinguish between 𝐺𝐴𝑅𝐶𝐻 parameters on the basis of average 

shortest path length and mean degree. These relationships only hold for the networks generated 

by the visibility graph algorithm. Zhang et al. (2017) are as far as we know the only ones who have 

explored the network statistics’ behavior of the auto regressive processes of orders one and two. 

They however used a different approach and considered the effect from re-sampling time delay. 

Their findings are therefore not comparable to ours due to our use of a fixed sample size 

 

Our results were obtained by the use of a fixed sample size of 1000 and we cannot speculate in 

how these relationships would change due to changes in the length of the time-series.    
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All of our data have been artificially generated in 𝑅, which may not be completely reliable to 

generate the desired series for our investigations. We did not however have any surprising results 

which may have been caused by errors in the generation of data. Since we are novices in the field 

of network theory, we may have missed such realizations. Every simulation has been performed 

with 100 repetitions of each variable, and this might not be enough to gain valid results. As we 

can see in our different boxplots, the values of white noise and a process with zero auto 

correlation coefficient are close, but not identical. This difference is insignificant though, taking 

the samples nature into consideration. 

 

Although there are plenty of issues, but we believe that our findings are a contribution towards 

the identification of stochastic processes through networks.  

 

We encourage the further development and testing of our work. Our discoveries should be tested 

against real data to enhance their validity before further use. We also suggest investigating the 

relationship between sample size and network properties for the auto regressive and moving 

average processes in addition to their combination, of different auto correlation coefficients.   
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7 CONCLUSION 

We have discovered a test which can determine a white noise process in addition to a 

classification tool which can determine the parameter of moving average-, autoregressive- and 

autoregressive moving average processes. Neither of them is dependent on the series 

stationarity. In addition, we gained insight into how a networks statistic rely back to its original 

time-series, thus aiding the interpretation of different network properties when used with time-

series.  

 

We realize that the use of our findings may be limited, they are un-tested and have specific 

sample size requirements, but we do look at this as a first step towards recording stochastic 

series.  We encourage the continuation of our work by testing our purposed tool and explore the 

sample size effect further both in white noise but also in the other processes examined in this 

thesis.    
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APPENDICES 

 

A: Line plot of realizations generated by an 𝑀𝐴(1) with different parameters 

B: Line plot of realizations generate by an 𝐴𝑅(1) with different parameters 

C: Line plot of realizations generated by an 𝐴𝑅𝑀𝐴(1,1) with different parameters for AR* 

D: Graph of realizations generated by an 𝑀𝐴(1) with different parameters 

E: Graph of realizations generate by an 𝐴𝑅(1) with different parameters 

F: Graph of realizations generated by an 𝐴𝑅𝑀𝐴(1,1) with different parameters for AR* 

G: OLS regression analysis 

H: R-code 

I: Reflection notes 
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A: Line plot of realizations generate by an 𝑴𝑨(𝟏) with different parameters 

The processes’ autocorrelation coefficient is shortened to “coef” in the table 

Coef=0: 

 
Coef=-0.1: 

 

Coef=0,1: 

 
Coef=-0.2: 

 

Coef= 0.2: 

 
Coef=-0.3: 

 

Coef= 0.3: 

 
Coef=-0.4: 

 

Coef= 0.4: 

 

Coef=-0.5: 

 

Coef= 0.5: 

 
Coef=-0.6: 

 

Coef= 0.6: 

 
Coef=-0.7: 

 

Coef= 0.7: 

 
Coef=-0.8: 

 

Coef= 0.8: 

 
Coef=-0.9: 

 

Coef= 0.9: 
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B: Line plot of realizations generate by an 𝑨𝑹(𝟏) with different parameters: 

The processes’ autocorrelation coefficient is shortened to “coef” in the table 

Coef=0: 

 
Coef=-0.1: 

 

Coef= 0.1: 

 
Coef=-0.2: 

 

Coef= 0.2: 

 
Coef=-0.3: 

 

Coef= 0.3: 

 
Coef=-0.4: 

 

Coef= 0.4: 

 
Coef=-0.5: 

 

Coef= 0.5: 

 
Coef=-0.6: 

 

Coef= 0.6: 

 
Coef=-0.7: 

 

Coef= 0.7: 

 
Coef=-0,8: 

 

Coef= 0.8: 

 
Coef=-0.9: 

 

Coef=0.9: 
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C: Line plot of realizations generate by an 𝑨𝑹𝑴𝑨(𝟏, 𝟏)with different parameters for 𝑨𝑹 ∗ 

The processes’ autocorrelation coefficient is shortened to “coef” in the table 

*Autocorrelation coefficient of 𝑀𝐴(1) is constant and set at 0.1 

Coef=0: 

 
Coef=-0.1: 

 

Coef= 0.1: 

 
Coef=-0.2: 

 

Coef= 0.2: 

 
Coef=-0.3: 

 

Coef= 0.3: 

 
Coef=-0.4: 

 

Coef= 0.4: 

 
Coef=-0.5: 

 

Coef= 0.5: 

 
Coef=-0.6: 

 

Coef= 0.6: 

 
Coef=-0.7: 

 

Coef= 0.7: 

 
Coef=-0.8: 

 

Coef= 0.8: 

 
Coef=-0.9: 

 

Coef=0.9: 
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D: Graphs of realizations generated by an 𝑴𝑨(𝟏) with different parameters 

The processes’ autocorrelation coefficient is shortened to “coef” in the table 

 
 Visibility graph Horizontal visibility graph 

 

 

Coef=-0.9: 

  

 

Coef=-0.8: 

  

 

Coef=-0.7: 
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 Visibility graph Horizontal visibility graph 

 

 

Coef=-0.6: 

  

 

Coef=-0.5:: 

  

 

Coef=-0.4: 
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 Visibility graph Horizontal visibility graph 

 

 

Coef=-0.3: 

  

 

Coef=-0.2: 

  

 

Coef=-0.1: 
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 Visibility graph Horizontal visibility graph 

 

 

Coef=0: 

  

 

Coef= 0.1: 

  

 

Coef= 0.2: 
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 Visibility graph Horizontal visibility graph 

 

 

Coef= 0.3: 

  

 

Coef= 0.4: 

  

 

Coef= 0.5: 
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 Visibility graph Horizontal visibility graph 

 

 

Coef= 0.6: 

  

 

Coef= 0.7: 

  

 

Coef= 0.8: 
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 Visibility graph Horizontal visibility graph 

 

 

Coef= 0.9: 
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E: Graphs of realizations generate by an 𝑨𝑹(𝟏) with different parameters  

The processes’ autocorrelation coefficient is shortened to “coef” in the table 

 
 Visibility graph Horizontal visibility graph 

 

Coef=-0.9: 

  
Coef=-0.8: 

  
Coef=-0.7: 
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 Visibility graph Horizontal visibility graph 

 

Coef=-0.6: 

  
Coef=-0.5:: 

  
Coef=-0.4: 
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 Visibility graph Horizontal visibility graph 

 

Coef=-0.3: 

  
Coef=-0.2: 

  
Coef=-0.1: 
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 Visibility graph Horizontal visibility graph 

 

Coef=0: 

  
Coef= 0.1: 

  
Coef= 0.2: 
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 Visibility graph Horizontal visibility graph 

 

Coef= 0.3: 

  
Coef= 0.4: 

  
Coef= 0.5: 
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 Visibility graph Horizontal visibility graph 

 

Coef= 0.6: 

  
Coef= 0.7: 

  
Coef= 0.8: 
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 Visibility graph Horizontal visibility graph 

 

Coef= 0.9: 
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F: : Line plot of realizations generate by an 𝑨𝑹𝑴𝑨(𝟏, 𝟏) with different parameters for 𝑨𝑹 ∗ 

The processes’ autocorrelation coefficient is shortened to “coef” in the table 

 
 Visibility graph 

 

 Horizontal visibility graph 

Coef=-0.9: 

 

 

 
Coef=-0.8: 

 

 

 
Coef=-0.7: 
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 Visibility graph 

 

 Horizontal visibility graph 

Coef=-0.6: 

 

 

 
Coef=-0.5: 

 

 

 
Coef=-0.4: 
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 Visibility graph 

 

 Horizontal visibility graph 

Coef=-0.3: 

 

 

 
Coef=-0.2: 

 

 

 
Coef=-0.1: 
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 Visibility graph 

 

 Horizontal visibility graph 

Coef=0: 

 

 

 
Coef= 0.1: 

 

 

 
Coef= 0.2: 
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 Visibility graph 

 

 Horizontal visibility graph 

Coef= 0.3: 

 

 

 
Coef= 0.4: 

 

 

 
Coef= 0.5: 
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 Visibility graph 

 

 Horizontal visibility graph 

Coef= 0.6: 

 

 

 
Coef= 0.7: 

 

 

 
Coef= 0.8: 
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 Visibility graph 

 

 Horizontal visibility graph 

Coef= 0.9: 

 

 

 
 

*Autocorrelation coefficient for 𝑀𝐴(1) is constant and set at 0.1 
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G: OLS regression analysis 

Statistics of both visibility- and horizontal visibility graphs converted from a white noise process 

Average shortest path length – Visibility graph:  

 
Lower boundary:  𝐴𝑆𝑃𝐿 =  −2.24 +  1.26 𝑙𝑛(𝑁) 

 

 
 

Upper boundary: 𝐴𝑆𝑃𝐿 =  −0.5 +  1.33 𝑙𝑛(𝑁) 

 

 
 
 
  

Regression Statistics

Multiple R 0.9955

R Square 0.9911

Adjusted R Square 0.9908

Standard Error 0.1033

Observations 30

ANOVA

df SS MS F Significance F

Regression 1 33.2258 33.2258 3112.7769 0.0000

Residual 28 0.2989 0.0107

Total 29 33.5247

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept -2.2446 0.1611 -13.9298 0.0000 -2.5747 -1.9145 -2.5747 -1.9145

ln(N) 1.2586 0.0226 55.7923 0.0000 1.2124 1.3048 1.2124 1.3048

Regression Statistics

Multiple R 0.9705

R Square 0.9419

Adjusted R Square 0.9398

Standard Error 0.2853

Observations 30

ANOVA

df SS MS F Significance F

Regression 1 36.9069 36.9069 453.5774 0.0000

Residual 28 2.2783 0.0814

Total 29 39.1852

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept -0.4985 0.4449 -1.1205 0.2720 -1.4098 0.4128 -1.4098 0.4128

ln(N) 1.3265 0.0623 21.2974 0.0000 1.1989 1.4541 1.1989 1.4541
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Average shortest path length (HVG) 

 
Lower boundary: 𝐴𝑆𝑃𝐿 =  −1.9 +  1.28 𝑙𝑛(𝑁) 

 

 
 

Upper boundary: 𝐴𝑆𝑃𝐿 =  0.22 +  1.31 𝑙𝑛(𝑁) 

 

 
 
 
 
 
  

Regression Statistics

Multiple R 0.9954

R Square 0.9909

Adjusted R Square 0.9906

Standard Error 0.1066

Observations 30

ANOVA

df SS MS F Significance F

Regression 1 34.6042 34.6042 3046.1287 0.0000

Residual 28 0.3181 0.0114

Total 29 34.9223

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept -1.8815 0.1662 -11.3180 0.0000 -2.2220 -1.5409 -2.2220 -1.5409

ln(N) 1.2845 0.0233 55.1917 0.0000 1.2368 1.3321 1.2368 1.3321

Regression Statistics

Multiple R 0.9726

R Square 0.9460

Adjusted R Square 0.9441

Standard Error 0.2702

Observations 30

ANOVA

df SS MS F Significance F

Regression 1 35.7980 35.7980 490.4540 0.0000

Residual 28 2.0437 0.0730

Total 29 37.8417

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept 0.2167 0.4214 0.5142 0.6111 -0.6464 1.0798 -0.6464 1.0798

ln(N) 1.3064 0.0590 22.1462 0.0000 1.1856 1.4273 1.1856 1.4273
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Assortativity (VG): 

 
Lower boundary: 𝐴𝑆𝑆 =  −0.26 +  0.045 𝑙𝑛(𝑁) 

 

 
 

Upper boundary: 𝐴𝑆𝑆 =  0.086 +  0.005 𝑙𝑛(𝑁) 

 

 
 
 
 
 
 
 
 
  

Regression Statistics

Multiple R 0.9687

R Square 0.9384

Adjusted R Square 0.9362

Standard Error 0.0099

Observations 30

ANOVA

df SS MS F Significance F

Regression 1 0.0415 0.0415 426.4266 0.0000

Residual 28 0.0027 0.0001

Total 29 0.0442

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept -0.2620 0.0154 -17.0381 0.0000 -0.2935 -0.2305 -0.2935 -0.2305

ln(N) 0.0445 0.0022 20.6501 0.0000 0.0400 0.0489 0.0400 0.0489

Regression Statistics

Multiple R 0.5573

R Square 0.3105

Adjusted R Square 0.2859

Standard Error 0.0067

Observations 30

ANOVA

df SS MS F Significance F

Regression 1 0.0006 0.0006 12.6110 0.0014

Residual 28 0.0013 0.0000

Total 29 0.0018

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept 0.0855 0.0105 8.1519 0.0000 0.0640 0.1069 0.0640 0.1069

ln(N) 0.0052 0.0015 3.5512 0.0014 0.0022 0.0082 0.0022 0.0082
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Assortativity (HVG) 

 
Lower boundary: 𝐴𝑆𝑆 =  −0.25 +  0.052 𝑙𝑛(𝑁) 

 

 
 

Upper boundary: 𝐴𝑆𝑆 =  0.13 +  0.01 𝑙𝑛(𝑁) 

 

 
 
 
 
 
 
 
 
 
 
  

Regression Statistics

Multiple R 0.9753

R Square 0.9513

Adjusted R Square 0.9495

Standard Error 0.0102

Observations 30

ANOVA

df SS MS F Significance F

Regression 1 0.0569 0.0569 546.6081 0.0000

Residual 28 0.0029 0.0001

Total 29 0.0598

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept -0.2492 0.0159 -15.6673 0.0000 -0.2818 -0.2166 -0.2818 -0.2166

ln(N) 0.0521 0.0022 23.3797 0.0000 0.0475 0.0566 0.0475 0.0566

Regression Statistics

Multiple R 0.72212138

R Square 0.52145929

Adjusted R Square 0.50436855

Standard Error 0.00796364

Observations 30

ANOVA

df SS MS F Significance F

Regression 1 0.00193501 0.00193501 30.5112185 6.6418E-06

Residual 28 0.00177575 6.342E-05

Total 29 0.00371076

CoefficientsStandard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept 0.12812089 0.01242066 10.3151415 4.8306E-11 0.10267832 0.15356347 0.10267832 0.15356347

ln(N) 0.00960508 0.00173889 5.52369609 6.6418E-06 0.00604313 0.01316702 0.00604313 0.01316702



85 

 

Mean degree (VG) 

 
Lower boundary: 𝐷 =  3.84 +  0.106 𝑙𝑛(𝑁) 

 

 
 

Upper boundary: 𝐷 = 4.799 − 0.004 𝑙𝑛(𝑁) 

(not an adequate result!) 

 

 
 
 
 
 
 
 
 
 
  

Regression Statistics

Multiple R 0.944

R Square 0.891

Adjusted R Square 0.887

Standard Error 0.032

Observations 30

ANOVA

df SS MS F Significance F

Regression 1 0.237296 0.237296 229.753731 0.000000

Residual 28 0.028919 0.001033

Total 29 0.266215

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept 3.844 0.0501 76.6837 0.0000 3.7410 3.9464 3.7410 3.9464

ln(N) 0.106 0.0070 15.1576 0.0000 0.0920 0.1207 0.0920 0.1207

Regression Statistics

Multiple R 0.181

R Square 0.033

Adjusted R Square -0.002

Standard Error 0.019

Observations 30

ANOVA

df SS MS F Significance F

Regression 1 0.000 0.000 0.947 0.339

Residual 28 0.010 0.000

Total 29 0.010

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept 4.799 0.030 161.583 0.000 4.738 4.859 4.738 4.859

ln(N) -0.004 0.004 -0.973 0.339 -0.013 0.004 -0.013 0.004
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Mean degree (HVG): 

 
Lower boundary: 𝐷 =  3.45 +  0.07𝑙𝑛(𝑁) 

 

 
 

 

Upper boundary: 𝐷 = 3.81 + 0.025 𝑙𝑛(𝑁) 

 

 
 
 
 
 
 
  

Regression Statistics

Multiple R 0.9261

R Square 0.8576

Adjusted R Square 0.8525

Standard Error 0.0246

Observations 30

ANOVA

df SS MS F Significance F

Regression 1 0.1018 0.1018 168.6236 0.0000

Residual 28 0.0169 0.0006

Total 29 0.1187

CoefficientsStandard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept 3.4486 0.0383 89.9958 0.0000 3.3701 3.5271 3.3701 3.5271

ln(N) 0.0697 0.0054 12.9855 0.0000 0.0587 0.0807 0.0587 0.0807

Regression Statistics

Multiple R 0.9024

R Square 0.8144

Adjusted R Square 0.8078

Standard Error 0.0101

Observations 30

ANOVA

df SS MS F Significance F

Regression 1 0.0126 0.0126 122.8636 0.0000

Residual 28 0.0029 0.0001

Total 29 0.0154

CoefficientsStandard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept 3.8074 0.0158 241.4957 0.0000 3.7751 3.8397 3.7751 3.8397

ln(N) 0.0245 0.0022 11.0844 0.0000 0.0199 0.0290 0.0199 0.0290
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Transitivity (VG): 

 

Lower boundary: 𝐿𝑛(𝑇𝑅𝐴) =  −0.93 −  0.0006 𝑙𝑛(𝑁) 

(not an adequate result) 

 

 
 

 

Upper boundary: 𝐿𝑛(𝑇𝑅𝐴) = −0.59 − 0.04 𝑙𝑛(𝑁) 

 

 
 
 
 
 
 
 
 
 
  

Regression Statistics

Multiple R 0.0766

R Square 0.0059

Adjusted R Square -0.0296

Standard Error 0.0065

Observations 30

ANOVA

df SS MS F Significance F

Regression 1 0.0000 0.0000 0.1652 0.6875

Residual 28 0.0012 0.0000

Total 29 0.0012

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept -0.9260 0.0102 -91.1155 0.0000 -0.9468 -0.9052 -0.9468 -0.9052

ln(N) -0.0006 0.0014 -0.4065 0.6875 -0.0035 0.0023 -0.0035 0.0023

Regression Statistics

Multiple R 0.9600

R Square 0.9216

Adjusted R Square 0.9188

Standard Error 0.0097

Observations 30

ANOVA

df SS MS F Significance F

Regression 1 0.0308 0.0308 329.0316 0.0000

Residual 28 0.0026 0.0001

Total 29 0.0334

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept -0.5929 0.0151 -39.2818 0.0000 -0.6238 -0.5619 -0.6238 -0.5619

ln(N) -0.0383 0.0021 -18.1392 0.0000 -0.0427 -0.0340 -0.0427 -0.0340
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Transitivity (HVG): 

 
Lower boundary: 𝐿𝑛(𝑇𝑅𝐴) =  −1.09 −  0.002 𝑙𝑛(𝑁) 

(not an adequate result) 

 

 
 

Upper boundary: 𝐿𝑛(𝑇𝑅𝐴) = −0.82 − 0.034 𝑙𝑛(𝑁) 

 

 
 
 
 
 
 
 
 
 
  

Regression Statistics

Multiple R 0.4409

R Square 0.1944

Adjusted R Square 0.1656

Standard Error 0.0037

Observations 30

ANOVA

df SS MS F Significance F

Regression 1 0.0001 0.0001 6.7573 0.0147

Residual 28 0.0004 0.0000

Total 29 0.0005

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept -1.0894 0.0057 -191.0905 0.0000 -1.1011 -1.0778 -1.1011 -1.0778

ln(N) -0.0021 0.0008 -2.5995 0.0147 -0.0037 -0.0004 -0.0037 -0.0004

Regression Statistics

Multiple R 0.9496

R Square 0.9018

Adjusted R Square 0.8983

Standard Error 0.0096

Observations 30

ANOVA

df SS MS F Significance F

Regression 1 0.0235 0.0235 257.1999 0.0000

Residual 28 0.0026 0.0001

Total 29 0.0261

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept -0.8168 0.0149 -54.7772 0.0000 -0.8474 -0.7863 -0.8474 -0.7863

ln(N) -0.0335 0.0021 -16.0375 0.0000 -0.0378 -0.0292 -0.0378 -0.0292
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Normalized degree centrality (VG) 

 
Lower boundary: 𝐿𝑛(𝐷𝐶) =  0.6 −  0.72 𝑙𝑛(𝑁) 

 

 
 

Upper boundary: 𝐿𝑛(𝐷𝐶) =  1.97 −  0.82 𝑙𝑛(𝑁) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
  

Regression Statistics

Multiple R 0.9947

R Square 0.9894

Adjusted R Square 0.9890

Standard Error 0.0650

Observations 30

ANOVA

df SS MS F Significance F

Regression 1 11.0151 11.0151 2603.5569 0.0000

Residual 28 0.1185 0.0042

Total 29 11.1336

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept 0.6014 0.1014 5.9277 0.0000 0.3936 0.8092 0.3936 0.8092

ln(N) -0.7247 0.0142 -51.0251 0.0000 -0.7538 -0.6956 -0.7538 -0.6956

Regression Statistics

Multiple R 0.9954

R Square 0.9908

Adjusted R Square 0.9904

Standard Error 0.0685

Observations 30

ANOVA

df SS MS F Significance F

Regression 1 14.1129 14.1129 3004.0655 0.0000

Residual 28 0.1315 0.0047

Total 29 14.2445

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept 1.9735 0.1069 18.4606 0.0000 1.7545 2.1925 1.7545 2.1925

ln(N) -0.8203 0.0150 -54.8094 0.0000 -0.8509 -0.7896 -0.8509 -0.7896
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Normalized degree centrality (HVG) 

 
Lower boundary: 𝐿𝑛(𝐷𝐶) =  0.37 −  0.72 𝑙𝑛(𝑁) 

 

 
 

Upper boundary: 𝐿𝑛(𝐷𝐶) =  1.89 −  0.84 𝑙𝑛(𝑁) 

 

 
 

 

 

 

 

  

 

 

 

 

 

  

Regression Statistics

Multiple R 0.9952

R Square 0.9904

Adjusted R Square 0.9900

Standard Error 0.0616

Observations 30

ANOVA

df SS MS F Significance F

Regression 1 10.9607 10.9607 2885.6824 0.0000

Residual 28 0.1064 0.0038

Total 29 11.0670

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept 0.3730 0.0961 3.8802 0.0006 0.1761 0.5699 0.1761 0.5699

ln(N) -0.7229 0.0135 -53.7185 0.0000 -0.7505 -0.6953 -0.7505 -0.6953

Regression Statistics

Multiple R 0.9935

R Square 0.9871

Adjusted R Square 0.9867

Standard Error 0.0832

Observations 30

ANOVA

df SS MS F Significance F

Regression 1 14.8655 14.8655 2145.6388 0.0000

Residual 28 0.1940 0.0069

Total 29 15.0594

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept 1.8911 0.1298 14.5670 0.0000 1.6252 2.1570 1.6252 2.1570

ln(N) -0.8419 0.0182 -46.3210 0.0000 -0.8791 -0.8046 -0.8791 -0.8046
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H: R- code 

White noise process – different sample sizes 

 
rm(list = ls(all=TRUE) ) 

 setwd(dirname(rstudioapi::getActiveDocumentContext()$path)) 

 dev.off() 

  

 library(igraph) 

 source("VG_HVG.r") 

  

 #______________________________________________________________________ 

 # Generate data,transform to network & calculate statistics 

 #------------------------------------------------------------------ 

 # Variables & storage: 

  

 size=seq(100,3000,by=100)     

 sim_num=100 

  

 name_WN=c("White noice") 

 name_data=c(paste("WN",size)) 

 name_sim=c(paste("sim",seq(1,sim_num,1))) 

 name_nstat=c("VG: Average geodistic path","HVG: Average geodistic path", 

              "VG: Assortativity","HVG: Assortativity", 

              "VG: Transitivity","HVG: Transitivity", 

              "VG: Mean degree","HVG: Mean degree", 

              "VG: Degree centrality","HVG: Degree centrality", 

              "VG: PL p-value", "HVG: PL p-value") 

 name_dstat=c("Mean","Standard deviation","Maximum","Minimum") 

  

 

 col_rainbow=rainbow(2*length(size)) 

 col_VG=col_rainbow[-(1:length(size))] 

 col_HVG=rev(col_rainbow) 

 col_HVG=col_HVG[-(1:length(size))] 

 col_HVG=rev(col_HVG) 

 col_graph=c("grey80","dodgerblue4","grey80") 

  

  

 DATA_WN=vector("list",length(size)) 

 DSTAT_WN=vector("list",length(size)) 

 NSTAT_WN=vector("list",length(size)) 

  

 for (j in 1:length(size)) { 

   #------------------------------------------------------------------ 

   # Generate White noice  

   data_WN=vector() 

    

   dstat_WN=matrix(nrow = sim_num,ncol = length(name_dstat)) 

   colnames(dstat_WN)=name_dstat 

   rownames(dstat_WN)=name_sim 

    

   nstat_WN=matrix(ncol = length(name_nstat),nrow = sim_num) 

   colnames(nstat_WN)=name_nstat 

   rownames(nstat_WN)=name_sim 

    

   for (i in 1:sim_num) { 

     #....................................................... 

     # Generate data: 

     wn=rnorm(size[j],mean=0,sd=1) 
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     wn=as.vector(wn) 

     data_WN=cbind(data_WN,wn) 

      

     dstat_WN[i,1]=mean(wn) 

     dstat_WN[i,2]=sd(wn) 

     dstat_WN[i,3]=max(wn) 

     dstat_WN[i,4]=min(wn) 

      

     #....................................................... 

     # Generate network: 

     imatVG_WN=visi(wn) 

     imatHVG_WN=visiH(wn) 

     netVG_WN=graph_from_adjacency_matrix(imatVG_WN) 

     netHVG_WN=graph_from_adjacency_matrix(imatHVG_WN) 

     #....................................................... 

     # Calculate network statistics: 

     degDisVG_WN=vector() 

     degDisHVG_WN=vector() 

     #............................................................. 

     # Average geodistic path: 

     nstat_WN[i,1]=mean_distance(netVG_WN, directed = FALSE, unconnected = 

FALSE) 

     nstat_WN[i,2]=mean_distance(netHVG_WN, directed = FALSE, unconnected = 

FALSE) 

     #............................................................. 

     # Assortativity: 

     nstat_WN[i,3]=assortativity.degree(netVG_WN, directed=FALSE) 

     nstat_WN[i,4]=assortativity.degree(netHVG_WN, directed=FALSE) 

     #............................................................. 

     # Global transitivity: 

     nstat_WN[i,5]=transitivity(netVG_WN, type="global", vids = NULL, 

                                weights = NULL, isolates = "zero" ) 

     nstat_WN[i,6]=transitivity(netHVG_WN, type="global", vids = NULL, 

                                weights = NULL, isolates = "zero" ) 

     #............................................................. 

     # Mean degree: 

     degVG=degree(netVG_WN,v=V(netVG_WN),mode = "in") # change mode 

betweeen: "in","out","all","total" 

     nstat_WN[i,7]=mean(degVG) 

      

     degHVG=degree(netHVG_WN,v=V(netHVG_WN),mode = "in") # change mode 

betweeen: "in","out","all","total" 

     nstat_WN[i,8]=mean(degHVG) 

     #............................................................. 

     # Cumulative degree distribution: 

     degDisVG_WN=degree.distribution(netVG_WN, cumulative = TRUE, mode="in" 

) 

     degDisHVG_WN=degree.distribution(netHVG_WN, cumulative = TRUE, 

mode="in" ) 

     #............................................................. 

     # Degreee centrality 

     VG_centDeg=centr_degree(netVG_WN, mode = "in", loops = FALSE, 

normalized = TRUE) 

     nstat_WN[i,9]=VG_centDeg[[2]] 

      

     HVG_centDeg=centr_degree(netHVG_WN, mode = "in", loops = FALSE, 

normalized = TRUE) 

     nstat_WN[i,10]=HVG_centDeg[[2]] 

     #............................................................. 

     # Test for Power Law distribution: 
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     VG_PowLaw=fit_power_law(degDisVG_WN, xmin=NULL, force.continuous = 

TRUE) 

     nstat_WN[i,11]=VG_PowLaw[[6]] 

      

     HVG_PowLaw=fit_power_law(degDisHVG_WN, xmin=NULL, force.continuous = 

TRUE) 

     nstat_WN[i,12]=HVG_PowLaw[[6]] 

   } 

    

   colnames(data_WN)=name_sim 

   DATA_WN[[j]]=data_WN 

   DSTAT_WN[[j]]=dstat_WN 

   NSTAT_WN[[j]]=nstat_WN 

    

   write.table(data_WN, file=paste("WN_Data",j,".txt"), col.names=TRUE) 

   write.table(dstat_WN,file =paste( "WN_Descriptive stat",j,".txt"), 

col.names = TRUE) 

   write.table(nstat_WN, file=paste("WN_Network stat",j,".txt"),col.names = 

TRUE) 

 } 

   

#______________________________________________________________________ 

# Generate visualization:  

# statistics as boxplot and quartiles as line-chars 

#------------------------------------------------------------------ 

  

name_quartiles=c("lower q","median","upper q") 

quartiles=vector("list",length(name_nstat)) 

SSR=matrix(nrow=length(name_nstat),ncol =length(name_quartiles)) 

colnames(SSR)=name_quartiles 

rownames(SSR)=name_nstat 

 

for (i in 1:length(name_nstat)) { 

  input=matrix(ncol=length(size),nrow = sim_num) 

  med_quantile=matrix(nrow=5,ncol=length(size)) 

  colnames(input)=c(paste(name_nstat[i],"size:",size)) 

  for (j in 1:length(size)) { 

    stat=NSTAT_WN[[j]] 

    input[,j]=stat[,i] 

    med=quantile(input[,j]) 

    med_quantile[,j]=med 

  } 

  write.table(input,file=paste("WN_Network stat 

collected",i,".txt"),col.names = TRUE) 

  png(file=paste("WN_Boxplot",i,".png"),width = 1200,res = 72) 

  boxplot(input, main=name_nstat[i], xlab="Size", xaxt="n",col=col_VG) 

  axis(1,at=1:length(size),labels = size) 

  dev.off() 

  png(file=paste("WN_Boxplot2",i,".png"),width = 1200,res = 72) 

  boxplot(input, main=name_nstat[i], xlab="Size", xaxt="n",col=col_HVG) 

  axis(1,at=1:length(size),labels = size) 

  dev.off() 

 

  med_quantile=t(med_quantile) 

  write.table(med_quantile, file=paste("Quantiles",i,".txt")) 

  med_quantile=med_quantile[,-c(1,5)] 

  colnames(med_quantile)=name_quartiles 

   

  png(file=paste("WN_Graph",i,".png"),width = 1200,res = 72) 

  matplot(med_quantile, type="l", col=col_graph, main=name_nstat[i], 

          xlab="Size", ylab="",xaxt="n", lwd=2, lty=1) 
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  polygon(c((seq(1,length(size))),rev(seq(1,length(size)))), 

          c(med_quantile[,3],rev(med_quantile[,2])), 

          col="grey98",border=NA) 

  polygon(c((seq(1,length(size))),rev(seq(1,length(size)))), 

          c(med_quantile[,2],rev(med_quantile[,1])), 

          col = "grey98",border=NA) 

  par(new=TRUE) 

  matplot(med_quantile, type="l", col=col_graph, 

          xlab="", ylab="",xaxt="n", lwd=c(1,2,1), lty=1) 

  axis(1,at=1:length(size),labels = size) 

  par(new=FALSE) 

  dev.off() 

 

} 

save.image(file="WN_workspace.RData") 
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𝑴𝑨(𝟏), 𝑨𝑹(𝟏) and 𝑨𝑹𝑴𝑨(𝟏, 𝟏) prosesses – change in autocorrelation coefficient(s) 

White noise used as benchmark 

 
rm(list = ls(all=TRUE) ) 

setwd(dirname(rstudioapi::getActiveDocumentContext()$path)) 

 

 

library(igraph) 

library(viridis) 

source("VG_HVG.r") 

 

#______________________________________________________________________ 

# Generate data,transform to network & calculate statistics 

#------------------------------------------------------------------ 

# Variables: 

size=1000 

sim_num=1 

p=1        

q=1       

coef_p=seq(-0.9,0.9,by=0.1) 

coef_q_one=seq(-0.9,0.9,0.1) # change in MA coefficient when running 

coef_q=0.1  # constant MA coefficient when running multipe simulations  

 

name_AR=paste("AR(1), c =",coef_p) 

name_MA=paste("MA(1), c =",coef_q) 

name_MA_one=paste("MA(1), c =",coef_q_one) 

name_ARMA=paste("ARMA, c_p =",coef_p,", c_q=",coef_q) 

name_WN=c("White noice") 

name_nstat=c("VG: Average geodistic path","HVG: Average geodistic path", 

             "VG: Assortativity","HVG: Assortativity", 

             "VG: Transitivity","HVG: Transitivity", 

             "VG: Mean degree","HVG: Mean degree", 

             "VG: Degree centrality","HVG: Degree centrality", 

             "VG: PL p-value", "HVG: PL p-value") 

name_cstat=c("Deg","Close","Betw","Hub") 

name_dstat=c("Mean","Standard deviation","Maximum","Minimum") 

 

col_boxP_WN="grey50" 

col_boxP_MA="grey80" 

col_MA= topo.colors((length(coef_q_one))*2) 

col_AR=viridis((length(coef_p))*2) 

col_ARMA=plasma((length(coef_p))*2) 

color_VG_MA=col_MA 

color_HVG_MA=col_MA[-(1:19)] 

color_VG_AR=col_AR 

color_HVG_AR=col_AR[-(1:19)] 

color_VG_ARMA=col_ARMA 

color_HVG_ARMA=col_ARMA[-(1:19)] 

 

if(sim_num<=1){ 

   

  seed=runif(1,101,199) 

   

  #------------------------------------------------------------------ 

  # White noice - reference 

  #....................................................... 

  # Generate & display data: 

  # 

  data_WN=vector() 

  set.seed(seed) 
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  wn=rnorm(size,mean=0,sd=1) 

  wn=as.vector(wn) 

  data_WN=wn 

  write.table(data_WN,file = "data_WN.txt") 

   

  dstat_WN=vector(length = length(name_dstat)) 

  names(dstat_WN)=name_dstat 

  dstat_WN[1]=mean(wn) 

  dstat_WN[2]=sd(wn) 

  dstat_WN[3]=max(wn) 

  dstat_WN[4]=min(wn) 

  write.table(dstat_WN, file = "dstat_WN.txt") 

   

  png(file=paste("WN","Graph",".png"), width=1200,res =72 ) 

  plot(data_WN, type = "l",col="grey10",main=name_WN,ylab = "",xlab = "") 

  abline(h=0,col="grey90") 

  dev.off() 

   

  adj=min(data_WN) 

  adj_WN=data_WN-adj 

  png(file=paste("WN","adjBarplot",".png"),width=1200,res=72) 

  barplot(adj_WN, main = "Adjusted barplot: WN", col = "black", 

          names.arg = c(seq(1,size))) 

  dev.off() 

  png(file=paste("WN","Auto correlation 

function",".png"),width=1200,res=72) 

  acf(data_WN) 

  dev.off() 

  png(file=paste("WN","Partial auto correlation",".png"),width=1200,res=72) 

  pacf(data_WN) 

  dev.off() 

  #....................................................... 

  # Generate & display network: 

  # 

  imatVG_WN=visi(data_WN) 

  imatHVG_WN=visiH(data_WN) 

  netVG_WN=graph_from_adjacency_matrix(imatVG_WN) 

  netHVG_WN=graph_from_adjacency_matrix(imatHVG_WN) 

  png(file=paste("WN","VG",".png"),width = 1200,height = 1200,res=72) 

  Q=qgraph(imatVG_WN, color="grey30", edge.color="grey70", vsize=2, 

esize=1, labels=FALSE, 

           border.color=c(rep("white",size))) 

  title("Visibility graph: WN",line=3) 

  dev.off() 

  png(file=paste("WN","HVG",".png"),width = 1200,height = 1200,res=72) 

  qgraph(imatHVG_WN,layout=Q$layout,color="grey60" ,edge.color="grey70", 

vsize=2, esize=1, labels=FALSE, 

         border.color=c(rep("white",size))) 

  title("Horizontal visibility graph : WN", line=3) 

  dev.off() 

   

  png(file=paste("WN","Degree frequency VG",".png"), height=1200,res=72) 

  degree_function(imatVG_WN,2) 

  dev.off() 

  png(file=paste("WN","Degree frequency HVG",".png"), height=1200,res=72) 

  degree_function(imatHVG_WN,2) 

  dev.off() 

  #....................................................... 

  # Calculate network statistics: 

  # 

  nstat_WN=vector(length = length(name_nstat)) 
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  names(nstat_WN)=name_nstat 

   

  cstatVG_WN=matrix(nrow=size, ncol =length(name_cstat)) 

  colnames(cstatVG_WN)=name_cstat 

  cstatHVG_WN=matrix(nrow=size,ncol = length(name_cstat)) 

  colnames(cstatHVG_WN)=name_cstat 

  #............................................................. 

  # Average geodistic path: 

  nstat_WN[1]=mean_distance(netVG_WN, directed = FALSE, unconnected = 

FALSE) 

  nstat_WN[2]=mean_distance(netHVG_WN, directed = FALSE, unconnected = 

FALSE) 

  #............................................................. 

  # Assortativity: 

  nstat_WN[3]=assortativity.degree(netVG_WN, directed=FALSE) 

  nstat_WN[2]=mean_distance(netHVG_WN, directed = FALSE, unconnected = 

FALSE) 

  #............................................................. 

  # Assortativity: 

  nstat_WN[3]=assortativity.degree(netVG_WN, directed=FALSE) 

  nstat_WN[4]=assortativity.degree(netHVG_WN, directed=FALSE) 

  #............................................................. 

  # Global transitivity: 

  nstat_WN[5]=transitivity(netVG_WN, type="global", vids = NULL, 

                           weights = NULL, isolates = "zero" ) 

  nstat_WN[6]=transitivity(netHVG_WN, type="global", vids = NULL, 

                           weights = NULL, isolates = "zero" ) 

  #............................................................. 

  # Mean degree: 

  degVG=degree(netVG_WN,v=V(netVG_WN),mode = "in")  

  nstat_WN[7]=mean(degVG) 

   

  degHVG=degree(netHVG_WN,v=V(netHVG_WN),mode = "in") 

  nstat_WN[8]=mean(degHVG) 

  #............................................................. 

  # Cumulative degree distribution: 

  degDisVG_WN=degree.distribution(netVG_WN, cumulative = TRUE, mode="in" ) 

  degDisHVG_WN=degree.distribution(netHVG_WN, cumulative = TRUE, mode="in" 

) 

  #............................................................. 

  # Degreee centrality 

  VG_centDeg=centr_degree(netVG_WN, mode = "in", loops = FALSE, normalized 

= TRUE) 

  nstat_WN[9]=VG_centDeg[[2]] 

   

  HVG_centDeg=centr_degree(netHVG_WN, mode = "in", loops = FALSE, 

normalized = TRUE) 

  nstat_WN[10]=HVG_centDeg[[2]] 

  #............................................................. 

  # Test for Power Law distribution: 

  VG_PowLaw=fit_power_law(degDisVG_WN, xmin=NULL, force.continuous = TRUE) 

  nstat_WN[11]=VG_PowLaw[[6]] 

   

  HVG_PowLaw=fit_power_law(degDisHVG_WN, xmin=NULL, force.continuous = 

TRUE) 

  nstat_WN[12]=HVG_PowLaw[[6]] 

  #............................................................. 

  # Centrality: degree, closeness, betweenness & hub 

  par(mfrow=c(4,2)) 

  cent_VG=centrality(netVG_WN) 

  cstatVG_WN[,1]=cent_VG[[2]] 
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  cstatVG_WN[,2]=cent_VG[[3]] 

  cstatVG_WN[,3]=cent_VG[[4]] 

  hub_vg=hub.score(netVG_WN,scale = TRUE,weights = NULL) 

  cstatVG_WN[,4]=hub_vg[[1]] 

   

  cent_HVG=centrality(netHVG_WN) 

  cstatHVG_WN[,1]=cent_HVG[[2]] 

  cstatHVG_WN[,2]=cent_HVG[[3]] 

  cstatHVG_WN[,3]=cent_HVG[[4]] 

  hub_hvg=hub.score(netHVG_WN,scale = TRUE,weights = NULL) 

  cstatHVG_WN[,4]=hub_hvg[[1]] 

   

  #............................................................. 

  # Share of geodesics having a given length 

  spathVG=cent_VG[7] 

  geodshare_VG=table(spathVG) 

  png(file=paste("WN","VG-Geodistics",".png"),width=1200,res=72) 

  col_bar=colorRampPalette (c(col_boxP_WN,"white")) 

  col_barVG=col_bar(length(geodshare_VG)) 

  barplot(geodshare_VG, col = col_barVG, ylab="Number of geodistics",xlab = 

"Geodistic distance", 

          main="VG: Share of geodistics having a given length, WN") 

  dev.off() 

   

  spathHVG=cent_HVG[7] 

  geodshare_HVG=table(spathHVG) 

  png(file=paste("WN","HVG - Geodistics",".png"),width=1200,res=72) 

  col_bar=colorRampPalette (c(col_boxP_WN,"white")) 

  col_barHVG=col_bar(length(geodshare_HVG)) 

  col_barHVG=paste(col_barHVG,"50",sep="") 

  barplot(geodshare_HVG, col =col_barHVG, ylab="Number of geodistics",xlab 

= "Geodistic distance", 

          main="HVG: Share of geodistics having a given length, WN") 

  dev.off() 

   

  write.table(nstat_WN, file = "nstat_WN.txt", col.names = TRUE) 

  write.table(cstatVG_WN, file = "cstat_WN_VG.txt", col.names = TRUE) 

  write.table(cstatHVG_WN, file = "cstat_WN_HVG.txt", col.names = TRUE) 

  #------------------------------------------------------------------ 

  # MAs: 

  #....................................................... 

  # Generate & display data: 

  # 

  data_MA=vector() 

   

  nstat_MA=matrix(nrow=length(coef_q_one),ncol=length(name_nstat)) 

  colnames(nstat_MA)=name_nstat 

  rownames(nstat_MA)=name_MA_one 

   

  dstat_MA=matrix(nrow=length(coef_q_one),ncol = length(name_dstat)) 

  colnames(dstat_MA)=name_dstat 

  rownames(dstat_MA)=name_MA_one 

   

  cstatVG_MA=matrix(nrow=size, ncol =length(name_cstat)) 

  colnames(cstatVG_MA)=name_cstat 

  cstatHVG_MA=matrix(nrow=size,ncol = length(name_cstat)) 

  colnames(cstatHVG_MA)=name_cstat 

   

  for (i in 1:length(coef_q_one)) { 

    #....................................................... 

    # Generate & display data: 
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    set.seed(seed) 

    ma=arima.sim(n=size, model=list(ma=coef_q_one[i])) 

    ma=as.vector(ma) 

    data_MA=cbind(data_MA,ma) 

     

    dstat_MA[i,1]=mean(ma) 

    dstat_MA[i,2]=sd(ma) 

    dstat_MA[i,3]=max(ma) 

    dstat_MA[i,4]=min(ma) 

     

    png(file=paste(name_MA_one[i],"- Graph.png"), width = 1200,res = 72) 

    plot(ma, type = "l",col="grey10", main=name_MA_one[i],ylab = "",xlab = 

"") 

    abline(h=0,col="grey90") 

    dev.off() 

     

    adj=min(ma) 

    adj_MA=ma-adj 

    png(file=paste(name_MA_one[i],"- adjBarplot.png"), width = 1200,res = 

72) 

    barplot(adj_MA, main = paste("Adjusted barplot:",name_MA_one[i]), col = 

"black", 

            names.arg = c(seq(1,size))) 

    dev.off() 

     

    png(file=paste(name_MA_one[i],"- Auto correlation function.png"), width 

= 1200,res = 72) 

    acf(ma) 

    dev.off() 

     

    png(file=paste(name_MA_one[i],"- Partial auto correlation 

function.png"), width = 1200,res = 72) 

    pacf(ma) 

    dev.off() 

    #....................................................... 

    # Generate & display network: 

    imatVG_MA=visi(ma) 

    imatHVG_MA=visiH(ma) 

    netVG_MA=graph_from_adjacency_matrix(imatVG_MA) 

    netHVG_MA=graph_from_adjacency_matrix(imatHVG_MA) 

     

    png(file=paste(name_MA_one[i],"- VG.png"),width = 1200,height = 

1200,res=72) 

    qgraph(imatVG_MA,layout=Q$layout,color=color_VG_MA[i], 

edge.color="grey70", vsize=2, esize=1, labels=FALSE, 

           border.color=c(rep("white",size))) 

    title(paste("Visibility graph:", name_MA_one[i]),line = 3) 

    dev.off() 

     

    png(file=paste(name_MA_one[i],"- HVG.png"),width = 1200,height = 

1200,res=72) 

    qgraph(imatHVG_MA,layout=Q$layout,color=color_HVG_MA[i], 

edge.color="grey70", vsize=2, esize=1, labels=FALSE, 

           border.color=c(rep("white",size))) 

    title(paste("Horizontal visibility graph:", name_MA_one[i]),line = 3) 

    dev.off() 

     

    png(file=paste(name_MA_one[i],"- Degree frequency VG.png"), 

height=1200,res=72) 

    degree_function(imatVG_MA,2) 

    dev.off() 
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    png(file=paste(name_MA_one[i],"- Degree frequency HVG.png"), 

height=1200,res=72) 

    degree_function(imatHVG_MA,2) 

    dev.off() 

    #....................................................... 

    # Calculate network statistics: 

    #............................................................. 

    # Average geodistic path: 

    nstat_MA[i,1]=mean_distance(netVG_MA, directed = FALSE, unconnected = 

FALSE) 

    nstat_MA[i,2]=mean_distance(netHVG_MA, directed = FALSE, unconnected = 

FALSE) 

    #............................................................. 

    # Assortativity: 

    nstat_MA[i,3]=assortativity.degree(netVG_MA, directed=FALSE) 

    nstat_MA[i,4]=assortativity.degree(netHVG_MA, directed=FALSE) 

    #............................................................. 

    # Global transitivity: 

    nstat_MA[i,5]=transitivity(netVG_MA, type="global", vids = NULL, 

                               weights = NULL, isolates = "zero" ) 

    nstat_MA[i,6]=transitivity(netHVG_MA, type="global", vids = NULL, 

                               weights = NULL, isolates = "zero" ) 

    #............................................................. 

    # Mean degree: 

    degVG=degree(netVG_MA,v=V(netVG_MA),mode = "in") # change mode 

betweeen: "in","out","all","total" 

    nstat_MA[i,7]=mean(degVG) 

     

    degHVG=degree(netHVG_MA,v=V(netHVG_MA),mode = "in") # change mode 

betweeen: "in","out","all","total" 

    nstat_MA[i,8]=mean(degHVG) 

    #............................................................. 

    # Cumulative degree distribution: 

    degDisVG=degree.distribution(netVG_MA, cumulative = TRUE, mode="in" ) 

    degDisHVG=degree.distribution(netHVG_MA, cumulative = TRUE, mode="in" ) 

    #............................................................. 

    # Degreee centrality 

    VG_centDeg=centr_degree(netVG_MA, mode = "in", loops = FALSE, 

normalized = TRUE) 

    nstat_MA[i,9]=VG_centDeg[[2]] 

     

    HVG_centDeg=centr_degree(netHVG_MA, mode = "in", loops = FALSE, 

normalized = TRUE) 

    nstat_MA[i,10]=HVG_centDeg[[2]] 

    #............................................................. 

    # Test for Power Law distribution: 

    VG_PowLaw=fit_power_law(degDisVG, xmin=NULL, force.continuous = TRUE) 

    nstat_MA[i,11]=VG_PowLaw[[6]] 

     

    HVG_PowLaw=fit_power_law(degDisHVG, xmin=NULL, force.continuous = TRUE) 

    nstat_MA[i,12]=HVG_PowLaw[[6]] 

     

    #............................................................. 

    # Centrality: degree, closeness, betweenness & hub 

    cent_VG=centrality(netVG_MA) 

    cstatVG_MA[,1]=cent_VG[[2]] 

    cstatVG_MA[,2]=cent_VG[[3]] 

    cstatVG_MA[,3]=cent_VG[[4]] 

    hub_vg=hub.score(netVG_MA,scale = TRUE,weights = NULL) 

    cstatVG_MA[,4]=hub_vg[[1]] 
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    for (k in 1:4) { 

      pl=cbind(cstatVG_MA[,k],cstatVG_WN[,k]) 

      matplot(pl, type = "l", col =c(colrs2[k],"grey60"), 

ylab="Value",xlab="Node", 

              main=paste("VG: Centrality,", name_cstat[k],"MA+WN, c 

=",coef_q[i])) 

    } 

     

    cent_HVG=centrality(netHVG_MA) 

    cstatHVG_MA[,1]=cent_HVG[[2]] 

    cstatHVG_MA[,2]=cent_HVG[[3]] 

    cstatHVG_MA[,3]=cent_HVG[[4]] 

    hub_hvg=hub.score(netHVG_MA,scale = TRUE,weights = NULL) 

    cstatHVG_MA[,4]=hub_hvg[[1]] 

    for (k in 1:4) { 

      pl=cbind(cstatHVG_MA[,k],cstatHVG_WN[,k]) 

      matplot(pl, type = "l", col =c(colrs2[4+k],"grey60"), 

ylab="Value",xlab="node" , 

              main=paste("HVG: Centrality,", name_cstat[k],"MA+WN, c 

=",coef_q[i])) 

    } 

     

    #............................................................. 

    # Share of geodesics having a given length 

    spathVG=cent_VG[7] 

    geodshare_VG=table(spathVG) 

    col_bar=colorRampPalette (c(color_VG_MA[i],"white")) 

    col_barVG=col_bar(length(geodshare_VG)) 

    png(file=paste(name_MA_one[i],"- VG-Geodestic.png"),width=1200,res=72) 

    barplot(geodshare_VG, col = col_barVG, ylab="Number of geodistics",xlab 

= "Geodistic distance", 

            main=paste("VG: Share of geodistics having a given length, 

MA(1), c =",coef_q_one[i])) 

    dev.off() 

     

    spathHVG=cent_HVG[7] 

    geodshare_HVG=table(spathHVG) 

    col_bar=colorRampPalette (c(color_HVG_MA[i],"white")) 

    col_barHVG=col_bar(length(geodshare_HVG)) 

    png(file=paste(name_MA_one[i],"- HVG - 

Geodistics.png"),width=1200,res=72) 

    barplot(geodshare_HVG, col =col_barHVG, ylab="Number of 

geodistics",xlab = "Geodistic distance", 

            main=paste("HVG: Share of geodistics having a given length, 

MA(1), c =",coef_q_one[i])) 

    dev.off() 

  } 

  colnames(data_MA)=name_MA_one 

   

  write.table(data_MA,file="data_MA.txt") 

  write.table(dstat_MA,file="dstat_MA.txt") 

  write.table(nstat_MA, file = "nstat_MA.txt", col.names = TRUE) 

  write.table(cstatVG_MA, file = "cstat_MA_VG.txt", col.names = TRUE) 

  write.table(cstatHVG_MA, file = "cstat_MA_HVG.txt", col.names = TRUE) 

   

   

  #------------------------------------------------------------------ 

  # ARs with different coefficient: 

   

  data_AR=vector() 
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  nstat_AR=matrix(nrow=length(coef_p),ncol=length(name_nstat)) 

  colnames(nstat_AR)=name_nstat 

  rownames(nstat_AR)=name_AR 

   

  dstat_AR=matrix(nrow=length(coef_p),ncol = length(name_dstat)) 

  colnames(dstat_AR)=name_dstat 

  rownames(dstat_AR)=name_AR 

   

  cstatVG_AR=matrix(nrow=size, ncol =length(name_cstat)) 

  colnames(cstatVG_AR)=name_cstat 

  cstatHVG_AR=matrix(nrow=size,ncol = length(name_cstat)) 

  colnames(cstatHVG_AR)=name_cstat 

   

  for (i in 1:length(coef_p)) { 

    #....................................................... 

    # Generate & display data: 

    set.seed(seed) 

    ar=arima.sim(n=size, model=list(ar=coef_p[i])) 

    ar=as.vector(ar) 

    data_AR=cbind(data_AR,ar) 

     

    dstat_AR[i,1]=mean(ar) 

    dstat_AR[i,2]=sd(ar) 

    dstat_AR[i,3]=max(ar) 

    dstat_AR[i,4]=min(ar) 

     

    png(file=paste(name_AR[i],"Graph",".png"), width=1200,res =72 ) 

    plot(ar, type = "l",col="grey10", main=name_AR[i],ylab = "",xlab = "") 

    abline(h=0,col="grey90") 

    dev.off() 

     

    adj=min(ar) 

    adj_AR=ar-adj 

    png(file=paste(name_AR[i],"adjBarplot",".png"), width=1200,res =72 ) 

    barplot(adj_AR, main = paste("Adjusted barplot:",name_AR[i]), col 

="black", 

            names.arg = c(seq(1,size))) 

    dev.off() 

     

    png(file=paste(name_AR[i],"Auto correlation function",".png"), 

width=1200,res =72 ) 

    acf(ar) 

    dev.off() 

     

    png(file=paste(name_AR[i],"Patrial auto correlation function",".png"), 

width=1200,res =72 ) 

    pacf(ar) 

    dev.off() 

    #....................................................... 

    # Generate & display network: 

    imatVG_AR=visi(ar) 

    imatHVG_AR=visiH(ar) 

    netVG_AR=graph_from_adjacency_matrix(imatVG_AR) 

    netHVG_AR=graph_from_adjacency_matrix(imatHVG_AR) 

     

    png(file=paste(name_AR[i],"VG",".png"),width = 1200,height = 

1200,res=72) 

    qgraph(imatVG_AR, layout=Q$layout,color=color_VG_AR[i], 

edge.color="grey70", vsize=2, esize=1, labels=FALSE, 

           border.color=c(rep("white",size))) 

    title(paste("Visibility graph:", name_AR[i]),line = 3) 
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    dev.off() 

     

    png(file=paste(name_AR[i],"HVG",".png"),width = 1200,height = 

1200,res=72) 

    qgraph(imatHVG_AR, layout=Q$layout, color=color_HVG_AR[i], 

edge.color="grey70", vsize=2, esize=1, labels=FALSE, 

           border.color=c(rep("white",size))) 

    title(paste("Horizontal visibility graph",name_AR[i]),line=3) 

    dev.off() 

     

    png(file=paste(name_AR[i],"Degree frequency VG",".png"), 

height=1200,res=72) 

    degree_function(imatVG_AR,2) 

    dev.off() 

    png(file=paste(name_AR[i],"Degree frequency HVG",".png"), 

height=1200,res=72) 

    degree_function(imatHVG_AR,2) 

    dev.off() 

    #....................................................... 

    # Calculate network statistics: 

    #............................................................. 

    # Average geodistic path: 

    nstat_AR[i,1]=mean_distance(netVG_AR, directed = FALSE, unconnected = 

FALSE) 

    nstat_AR[i,2]=mean_distance(netHVG_AR, directed = FALSE, unconnected = 

FALSE) 

    #............................................................. 

    # Assortativity: 

    nstat_AR[i,3]=assortativity.degree(netVG_AR, directed=FALSE) 

    nstat_AR[i,4]=assortativity.degree(netHVG_AR, directed=FALSE) 

    #............................................................. 

    # Global transitivity: 

    nstat_AR[i,5]=transitivity(netVG_AR, type="global", vids = NULL, 

                               weights = NULL, isolates = "zero" ) 

    nstat_AR[i,6]=transitivity(netHVG_AR, type="global", vids = NULL, 

                               weights = NULL, isolates = "zero" ) 

    #............................................................. 

    # Mean degree: 

    degVG=degree(netVG_AR,v=V(netVG_AR),mode = "in")  

    nstat_AR[i,7]=mean(degVG) 

     

    degHVG=degree(netHVG_AR,v=V(netHVG_AR),mode = "in")  

    nstat_AR[i,8]=mean(degHVG) 

    #............................................................. 

    # Cumulative degree distribution: 

    degDisVG=degree.distribution(netVG_AR, cumulative = TRUE, mode="in" ) 

    degDisHVG=degree.distribution(netHVG_AR, cumulative = TRUE, mode="in" ) 

    #............................................................. 

    # Degreee centrality 

    VG_centDeg=centr_degree(netVG_AR, mode = "in", loops = FALSE, 

normalized = TRUE) 

    nstat_AR[i,9]=VG_centDeg[[2]] 

     

    HVG_centDeg=centr_degree(netHVG_AR, mode = "in", loops = FALSE, 

normalized = TRUE) 

    nstat_AR[i,10]=HVG_centDeg[[2]] 

    #............................................................. 

    # Test for Power Law distribution: 

    VG_PowLaw=fit_power_law(degDisVG, xmin=NULL, force.continuous = TRUE) 

    nstat_AR[i,11]=VG_PowLaw[[6]] 
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    HVG_PowLaw=fit_power_law(degDisHVG, xmin=NULL, force.continuous = TRUE) 

    nstat_AR[i,12]=HVG_PowLaw[[6]] 

    #............................................................. 

    # Centrality: degree, closeness, betweenness & hub 

    par(mfrow=c(2,2)) 

    cent_VG=centrality(netVG_AR) 

    cstatVG_AR[,1]=cent_VG[[2]] 

    cstatVG_AR[,2]=cent_VG[[3]] 

    cstatVG_AR[,3]=cent_VG[[4]] 

    hub_vg=hub.score(netVG_AR,scale = TRUE,weights = NULL) 

    cstatVG_AR[,4]=hub_vg[[1]] 

    for (k in 1:4) { 

      pl=cbind(cstatVG_AR[,k],cstatVG_WN[,k]) 

      matplot(pl, type = "l", col =c(colrs2[k],"grey60"), 

ylab="Value",xlab="Node", 

              main=paste("VG: Centrality,", name_cstat[k],"AR+WN, c 

=",coef_p[i])) 

    } 

     

    cent_HVG=centrality(netHVG_AR) 

    cstatHVG_AR[,1]=cent_HVG[[2]] 

    cstatHVG_AR[,2]=cent_HVG[[3]] 

    cstatHVG_AR[,3]=cent_HVG[[4]] 

    hub_hvg=hub.score(netHVG_AR,scale = TRUE,weights = NULL) 

    cstatHVG_AR[,4]=hub_hvg[[1]] 

    for (k in 1:4) { 

      pl=cbind(cstatHVG_AR[,k],cstatHVG_WN[,k]) 

      matplot(pl, type = "l", col =c(colrs2[4+k],"grey60"), 

ylab="Value",xlab="node" , 

              main=paste("HVG: Centrality,", name_cstat[k],"AR+WN, c 

=",coef_p[i])) 

    } 

    #............................................................. 

    # Share of geodesics having a given length 

    par(mfrow=c(2,1)) 

    spathVG=cent_VG[7] 

    geodshare_VG=table(spathVG) 

    col_bar=colorRampPalette (c(color_VG_AR[i],"white")) 

    col_barVG=col_bar(length(geodshare_VG)) 

    png(file=paste(name_AR[i],"VG-Geodistics",".png"),width=1200,res=72) 

    barplot(geodshare_VG, col = col_barVG, ylab="Number of geodistics",xlab 

= "Geodistic distance", 

            main=paste("VG: Share of geodistics having a given length, 

AR(1), c=",coef_p[i])) 

    dev.off() 

     

    spathHVG=cent_HVG[7] 

    geodshare_HVG=table(spathHVG) 

    col_bar=colorRampPalette (c(color_HVG_AR[i],"white")) 

    col_barVG=col_bar(length(geodshare_HVG)) 

    png(file=paste(name_AR[i],"HVG-Geodistics",".png"),width=1200,res=72) 

    barplot(geodshare_HVG, col = col_barHVG, ylab="Number of 

geodistics",xlab = "Geodistic distance", 

            main=paste("HVG: Share of geodistics having a given length, 

AR(1), c=",coef_p[i])) 

    dev.off() 

  } 

  colnames(data_AR)=name_AR 

   

  write.table(data_AR,file="data_AR.txt") 

  write.table(dstat_AR,file="dstat_AR.txt") 
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  write.table(nstat_AR, file = "nstat_AR.txt", col.names = TRUE) 

  write.table(cstatVG_AR, file="cstat_AR_VG.txt",col.names=TRUE) 

  write.table(cstatHVG_AR, file="cstat_AR_HVG.txt",col.names=TRUE) 

   

  #------------------------------------------------------------------ 

  # ARMAs with different p coefficient and constant q 

   

  data_ARMA=vector() 

   

  nstat_ARMA=matrix(nrow=length(coef_p),ncol=length(name_nstat)) 

  colnames(nstat_ARMA)=name_nstat 

  rownames(nstat_ARMA)=name_ARMA 

   

  dstat_ARMA=matrix(nrow=length(coef_p),ncol = length(name_dstat)) 

  colnames(dstat_ARMA)=name_dstat 

  rownames(dstat_ARMA)=name_ARMA 

   

  cstatVG_ARMA=matrix(nrow=size, ncol =length(name_cstat)) 

  colnames(cstatVG_ARMA)=name_cstat 

  cstatHVG_ARMA=matrix(nrow=size,ncol = length(name_cstat)) 

  colnames(cstatHVG_ARMA)=name_cstat 

   

  for (i in 1:length(coef_p)) { 

    #....................................................... 

    # Generate & display data: 

    set.seed(seed) 

    arma=arima.sim(n=size, model=list(ar=coef_p[i],ma=coef_q)) 

    arma=as.vector(arma) 

    data_ARMA=cbind(data_ARMA,arma) 

     

    dstat_ARMA[i,1]=mean(arma) 

    dstat_ARMA[i,2]=sd(arma) 

    dstat_ARMA[i,3]=max(arma) 

    dstat_ARMA[i,4]=min(arma) 

     

    png(file=paste(name_ARMA[i],"Graph",".png"), width=1200,res =72 ) 

    plot(arma, type = "l",col="grey10", main=name_ARMA[i],ylab = "",xlab = 

"") 

    abline(h=0,col="grey80") 

    dev.off() 

     

    adj=min(arma) 

    adj_ARMA=arma-adj 

    png(file=paste(name_ARMA[i],"adjBarplot",".png"), width=1200,res =72 ) 

    barplot(adj_ARMA, main = paste("Adjusted barplot:",name_ARMA[i]), col = 

"black", 

            names.arg = c(seq(1,size))) 

    dev.off() 

    png(file=paste(name_ARMA[i],"Auto correlation function",".png"), 

width=1200,res =72 ) 

    acf(arma) 

    dev.off() 

    png(file=paste(name_ARMA[i],"Partial auto correlation 

function",".png"), width=1200,res =72 ) 

    pacf(arma) 

    dev.off() 

    #....................................................... 

    # Generate & display network: 

    imatVG_ARMA=visi(arma) 

    imatHVG_ARMA=visiH(arma) 

    netVG_ARMA=graph_from_adjacency_matrix(imatVG_ARMA) 
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    netHVG_ARMA=graph_from_adjacency_matrix(imatHVG_ARMA) 

     

    png(file=paste(name_ARMA[i],"VG",".png"),width = 1200,height = 

1200,res=72) 

    qgraph(imatVG_ARMA, layout=Q$layout,color=color_VG_ARMA[i], 

edge.color="grey70", vsize=2, esize=1, labels=FALSE, 

           border.color=c(rep("white",size))) 

    title(paste("Visibility graph:", name_ARMA[i]),line = 3) 

    dev.off() 

     

    png(file=paste(name_ARMA[i],"HVG",".png"),width = 1200,height = 

1200,res=72) 

    qgraph(imatHVG_ARMA, layout=Q$layout, color=color_HVG_ARMA[i], 

edge.color="grey70", vsize=2, esize=1, labels=FALSE, 

           border.color=c(rep("white",size))) 

    title(paste("Horizontal visibility graph",name_ARMA[i]),line=3) 

    dev.off() 

     

    png(file=paste(name_ARMA[i],"Degree frequency VG",".png"), 

height=1200,res=72) 

    degree_function(imatVG_ARMA,2) 

    dev.off() 

    png(file=paste(name_ARMA[i],"Degree frequency HVG",".png"), 

height=1200,res=72) 

    degree_function(imatHVG_ARMA,2) 

    dev.off() 

    #....................................................... 

    # Calculate network statistics: 

    #............................................................. 

    # Average geodistic path: 

    nstat_ARMA[i,1]=mean_distance(netVG_ARMA, directed = FALSE, unconnected 

= FALSE) 

    nstat_ARMA[i,2]=mean_distance(netHVG_ARMA, directed = FALSE, 

unconnected = FALSE) 

    #............................................................. 

    # Assortativity: 

    nstat_ARMA[i,3]=assortativity.degree(netVG_ARMA, directed=FALSE) 

    nstat_ARMA[i,4]=assortativity.degree(netHVG_ARMA, directed=FALSE) 

    #............................................................. 

    # Global transitivity: 

    nstat_ARMA[i,5]=transitivity(netVG_ARMA, type="global", vids = NULL, 

                                 weights = NULL, isolates = "zero" ) 

    nstat_ARMA[i,6]=transitivity(netHVG_ARMA, type="global", vids = NULL, 

                                 weights = NULL, isolates = "zero" ) 

    #............................................................. 

    # Mean degree: 

    degVG=degree(netVG_ARMA,v=V(netVG_ARMA),mode = "in") # change mode 

betweeen: "in","out","all","total" 

    nstat_ARMA[i,7]=mean(degVG) 

     

    degHVG=degree(netHVG_ARMA,v=V(netHVG_ARMA),mode = "in") # change mode 

betweeen: "in","out","all","total" 

    nstat_ARMA[i,8]=mean(degHVG) 

    #............................................................. 

    # Cumulative degree distribution: 

    degDisVG=degree.distribution(netVG_ARMA, cumulative = TRUE, mode="in" ) 

    degDisHVG=degree.distribution(netHVG_ARMA, cumulative = TRUE, mode="in" 

) 

    #............................................................. 

    # Degreee centrality 
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    VG_centDeg=centr_degree(netVG_ARMA, mode = "in", loops = FALSE, 

normalized = TRUE) 

    nstat_ARMA[i,9]=VG_centDeg[[2]] 

     

    HVG_centDeg=centr_degree(netHVG_ARMA, mode = "in", loops = FALSE, 

normalized = TRUE) 

    nstat_ARMA[i,10]=HVG_centDeg[[2]] 

    #............................................................. 

    # Test for Power Law distribution: 

    VG_PowLaw=fit_power_law(degDisVG, xmin=NULL, force.continuous = TRUE) 

    nstat_ARMA[i,11]=VG_PowLaw[[6]] 

     

    HVG_PowLaw=fit_power_law(degDisHVG, xmin=NULL, force.continuous = TRUE) 

    nstat_ARMA[i,12]=HVG_PowLaw[[6]] 

    #............................................................. 

    # Centrality: degree, closeness, betweenness & hub 

    cent_VG=centrality(netVG_ARMA) 

    cstatVG_ARMA[,1]=cent_VG[[2]] 

    cstatVG_ARMA[,2]=cent_VG[[3]] 

    cstatVG_ARMA[,3]=cent_VG[[4]] 

    hub_vg=hub.score(netVG_ARMA,scale = TRUE,weights = NULL) 

    cstatVG_ARMA[,4]=hub_vg[[1]] 

    for (k in 1:4) { 

      pl=cbind(cstatVG_ARMA[,k],cstatVG_WN[,k]) 

      matplot(pl, type = "l", col =c(colrs2[k],"grey60"), 

ylab="Value",xlab="Node",  

              main=paste("VG: Centrality,", name_cstat[k],"ARMA+WN, p_c 

=",coef_p[i])) 

    } 

     

    cent_HVG=centrality(netHVG_ARMA) 

    cstatHVG_ARMA[,1]=cent_HVG[[2]] 

    cstatHVG_ARMA[,2]=cent_HVG[[3]] 

    cstatHVG_ARMA[,3]=cent_HVG[[4]] 

    hub_hvg=hub.score(netHVG_ARMA,scale = TRUE,weights = NULL) 

    cstatHVG_ARMA[,4]=hub_hvg[[1]] 

    for (k in 1:4) { 

      pl=cbind(cstatHVG_ARMA[,k],cstatHVG_WN[,k]) 

      matplot(pl, type = "l", col =c(colrs2[4+k],"grey60"), 

ylab="Value",xlab="node" , 

              main=paste("HVG: Centrality,", name_cstat[k],"ARMA+WN, c_p 

=",coef_p[i])) 

    } 

     

    #............................................................. 

    # Share of geodesics having a given length 

    spathVG=cent_VG[7] 

    geodshare_VG=table(spathVG) 

    col_bar=colorRampPalette (c(color_VG_ARMA[i],"white")) 

    col_barVG=col_bar(length(geodshare_VG)) 

    png(file=paste(name_ARMA[i],"VG-Geodistics",".png"),width=1200,res=72) 

    barplot(geodshare_VG, col = col_barVG, ylab="Number of geodistics",xlab 

= "Geodistic distance", 

            main=paste("VG: Share of geodistics having a given length, 

ARMA(1), c_p=",coef_p[i])) 

    dev.off() 

     

    spathHVG=cent_HVG[7] 

    geodshare_HVG=table(spathHVG) 

    col_bar=colorRampPalette (c(color_HVG_ARMA[i],"white")) 

    col_barVG=col_bar(length(geodshare_VG)) 
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    png(file=paste(name_ARMA[i],"HVG-Geodistics",".png"),width=1200,res=72) 

    barplot(geodshare_HVG, col = col_barHVG, ylab="Number of 

geodistics",xlab = "Geodistic distance", 

            main=paste("HVG: Share of geodistics having a given length, 

ARMA(1), c_p=",coef_p[i])) 

    dev.off() 

  } 

  colnames(data_ARMA)=name_ARMA 

   

  write.table(data_ARMA,file="data_ARMA.txt") 

  write.table(dstat_ARMA,file="dstat_ARMA.txt") 

  write.table(nstat_ARMA, file = "nstat_ARMA.txt", col.names = TRUE) 

  write.table(cstatVG_ARMA, file="cstat_ARMA_VG.txt",col.names=TRUE) 

  write.table(cstatHVG_ARMA, file="cstat_ARMA_HVG.txt",col.names=TRUE) 

   

}else{ 

  #------------------------------------------------------------------ 

  # White noice - reference 

  data_WN=vector() 

   

  dstat_WN=matrix(nrow = sim_num,ncol = length(name_dstat)) 

  colnames(dstat_WN)=name_dstat 

   

  nstat_WN=matrix(ncol = length(name_nstat),nrow = sim_num) 

  colnames(nstat_WN)=name_nstat 

   

  for (i in 1:sim_num) { 

    #....................................................... 

    # Generate data: 

    wn=rnorm(size,mean=0,sd=1) 

    wn=as.vector(wn) 

    data_WN=cbind(data_WN,wn) 

     

    dstat_WN[i,1]=mean(wn) 

    dstat_WN[i,2]=sd(wn) 

    dstat_WN[i,3]=max(wn) 

    dstat_WN[i,4]=min(wn) 

    #....................................................... 

    # Generate network: 

    imatVG_WN=visi(wn) 

    imatHVG_WN=visiH(wn) 

    netVG_WN=graph_from_adjacency_matrix(imatVG_WN) 

    netHVG_WN=graph_from_adjacency_matrix(imatHVG_WN) 

    #....................................................... 

    # Calculate network statistics: 

    #............................................................. 

    # Average geodistic path: 

    nstat_WN[i,1]=mean_distance(netVG_WN, directed = FALSE, unconnected = 

FALSE) 

    nstat_WN[i,2]=mean_distance(netHVG_WN, directed = FALSE, unconnected = 

FALSE) 

    #............................................................. 

    # Assortativity: 

    nstat_WN[i,3]=assortativity.degree(netVG_WN, directed=FALSE) 

    nstat_WN[i,4]=assortativity.degree(netHVG_WN, directed=FALSE) 

    #............................................................. 

    # Global transitivity: 

    nstat_WN[i,5]=transitivity(netVG_WN, type="global", vids = NULL, 

                               weights = NULL, isolates = "zero" ) 

    nstat_WN[i,6]=transitivity(netHVG_WN, type="global", vids = NULL, 

                               weights = NULL, isolates = "zero" ) 
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    #............................................................. 

    # Mean degree: 

    degVG=degree(netVG_WN,v=V(netVG_WN),mode = "in") 

    nstat_WN[i,7]=mean(degVG) 

     

    degHVG=degree(netHVG_WN,v=V(netHVG_WN),mode = "in")  

    nstat_WN[i,8]=mean(degHVG) 

    #............................................................. 

    # Cumulative degree distribution: 

    degDisVG_WN=degree.distribution(netVG_WN, cumulative = TRUE, mode="in" 

) 

    degDisHVG_WN=degree.distribution(netHVG_WN, cumulative = TRUE, 

mode="in" ) 

    #............................................................. 

    # Degreee centrality 

    VG_centDeg=centr_degree(netVG_WN, mode = "in", loops = FALSE, 

normalized = TRUE) 

    nstat_WN[i,9]=VG_centDeg[[2]] 

     

    HVG_centDeg=centr_degree(netHVG_WN, mode = "in", loops = FALSE, 

normalized = TRUE) 

    nstat_WN[i,10]=HVG_centDeg[[2]] 

    #............................................................. 

    # Test for Power Law distribution: 

    VG_PowLaw=fit_power_law(degDisVG_WN, xmin=NULL, force.continuous = 

TRUE) 

    nstat_WN[i,11]=VG_PowLaw[[6]] 

     

    HVG_PowLaw=fit_power_law(degDisHVG_WN, xmin=NULL, force.continuous = 

TRUE) 

    nstat_WN[i,12]=HVG_PowLaw[[6]] 

  } 

   

  write.table(data_WN, file="SIM data_WN.txt", col.names=TRUE) 

  write.table(dstat_WN,file = "SIM dstat_WN.txt", col.names = TRUE) 

  write.table(nstat_WN, file="SIM nstat_WN.txt",col.names = TRUE) 

  #------------------------------------------------------------------ 

  # MA   

  data_MA=vector() 

   

  dstat_MA=matrix(nrow = sim_num,ncol = length(name_dstat)) 

  colnames(dstat_MA)=name_dstat 

   

  nstat_MA=matrix(ncol = length(name_nstat),nrow = sim_num) 

  colnames(nstat_MA)=name_nstat 

   

  for (i in 1:sim_num) { 

    #....................................................... 

    # Generate data: 

    ma=arima.sim(n=size, model=list(ma=coef_q)) 

    ma=as.vector(ma) 

    data_MA=cbind(data_MA,ma) 

     

    dstat_MA[i,1]=mean(ma) 

    dstat_MA[i,2]=sd(ma) 

    dstat_MA[i,3]=max(ma) 

    dstat_MA[i,4]=min(ma) 

    #....................................................... 

    # Generate network: 

    imatVG_MA=visi(ma) 

    imatHVG_MA=visiH(ma) 
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    netVG_MA=graph_from_adjacency_matrix(imatVG_MA) 

    netHVG_MA=graph_from_adjacency_matrix(imatHVG_MA) 

    #....................................................... 

    # Calculate network statistics: 

    #............................................................. 

    # Average geodistic path: 

    nstat_MA[i,1]=mean_distance(netVG_MA, directed = FALSE, unconnected = 

FALSE) 

    nstat_MA[i,2]=mean_distance(netHVG_MA, directed = FALSE, unconnected = 

FALSE) 

    #............................................................. 

    # Assortativity: 

    nstat_MA[i,3]=assortativity.degree(netVG_MA, directed=FALSE) 

    nstat_MA[i,4]=assortativity.degree(netHVG_MA, directed=FALSE) 

    #............................................................. 

    # Global transitivity: 

    nstat_MA[i,5]=transitivity(netVG_MA, type="global", vids = NULL, 

                               weights = NULL, isolates = "zero" ) 

    nstat_MA[i,6]=transitivity(netHVG_MA, type="global", vids = NULL, 

                               weights = NULL, isolates = "zero" ) 

    #............................................................. 

    # Mean degree: 

    degVG=degree(netVG_MA,v=V(netVG_MA),mode = "in")  

    nstat_MA[i,7]=mean(degVG) 

     

    degHVG=degree(netHVG_MA,v=V(netHVG_MA),mode = "in") 

    nstat_MA[i,8]=mean(degHVG) 

    #............................................................. 

    # Cumulative degree distribution: 

    degDisVG_MA=degree.distribution(netVG_MA, cumulative = TRUE, mode="in" 

) 

    degDisHVG_MA=degree.distribution(netHVG_MA, cumulative = TRUE, 

mode="in" ) 

    #............................................................. 

    # Degreee centrality 

    VG_centDeg=centr_degree(netVG_MA, mode = "in", loops = FALSE, 

normalized = TRUE) 

    nstat_MA[i,9]=VG_centDeg[[2]] 

     

    HVG_centDeg=centr_degree(netHVG_MA, mode = "in", loops = FALSE, 

normalized = TRUE) 

    nstat_MA[i,10]=HVG_centDeg[[2]] 

    #............................................................. 

    # Test for Power Law distribution: 

    VG_PowLaw=fit_power_law(degDisVG_MA, xmin=NULL, force.continuous = 

TRUE) 

    nstat_MA[i,11]=VG_PowLaw[[6]] 

     

    HVG_PowLaw=fit_power_law(degDisHVG_MA, xmin=NULL, force.continuous = 

TRUE) 

    nstat_MA[i,12]=HVG_PowLaw[[6]] 

     

  } 

   

  write.table(data_MA, file="SIM data_MA.txt", col.names=TRUE) 

  write.table(dstat_MA,file = "SIM dstat_MA.txt", col.names = TRUE) 

  write.table(nstat_MA, file="SIM nstat_MA.txt",col.names = TRUE) 

  #------------------------------------------------------------------ 

  # ARs with different coefficient: 

   

  nstat_AR=matrix(ncol=length(name_nstat),nrow=sim_num) 
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  colnames(nstat_AR)=name_nstat 

  all_data_AR=vector("list",length(coef_p)) 

  all_dstat_AR=vector("list", length(coef_p)) 

  all_nstat_AR=vector("list",length(coef_p)) 

   

  for (j in 1:length(coef_p)) { 

    data_AR=vector() 

     

    dstat_AR=matrix(nrow = sim_num, ncol = length(name_dstat)) 

    colnames(dstat_AR)=name_dstat 

     

    for (i in 1:sim_num) { 

      #....................................................... 

      # Generate & display data: 

      ar=arima.sim(n=size, model=list(ar=coef_p[j])) 

      ar=as.vector(ar) 

      data_AR=cbind(data_AR,ar) 

       

      dstat_AR[i,1]=mean(ar) 

      dstat_AR[i,2]=sd(ar) 

      dstat_AR[i,3]=max(ar) 

      dstat_AR[i,4]=min(ar) 

       

      #....................................................... 

      # Generate network: 

      imatVG_AR=visi(ar) 

      imatHVG_AR=visiH(ar) 

      netVG_AR=graph_from_adjacency_matrix(imatVG_AR) 

      netHVG_AR=graph_from_adjacency_matrix(imatHVG_AR) 

      #....................................................... 

      # Calculate network statistics: 

      #............................................................. 

      # Average geodistic path: 

      nstat_AR[i,1]=mean_distance(netVG_AR, directed = FALSE, unconnected = 

FALSE) 

      nstat_AR[i,2]=mean_distance(netHVG_AR, directed = FALSE, unconnected 

= FALSE) 

      #............................................................. 

      # Assortativity: 

      nstat_AR[i,3]=assortativity.degree(netVG_AR, directed=FALSE) 

      nstat_AR[i,4]=assortativity.degree(netHVG_AR, directed=FALSE) 

      #............................................................. 

      # Global transitivity: 

      nstat_AR[i,5]=transitivity(netVG_AR, type="global", vids = NULL, 

                                 weights = NULL, isolates = "zero" ) 

      nstat_AR[i,6]=transitivity(netHVG_AR, type="global", vids = NULL, 

                                 weights = NULL, isolates = "zero" ) 

      #............................................................. 

      # Mean degree: 

      degVG=degree(netVG_AR,v=V(netVG_AR),mode = "in") 

      nstat_AR[i,7]=mean(degVG) 

       

      degHVG=degree(netHVG_AR,v=V(netHVG_AR),mode = "in")  

      nstat_AR[i,8]=mean(degHVG) 

      #............................................................. 

      # Cumulative degree distribution: 

      degDisVG=degree.distribution(netVG_AR, cumulative = TRUE, mode="in" ) 

      #degDisVG_AR[[i]]=degDisVG 

       

      degDisHVG=degree.distribution(netHVG_AR, cumulative = TRUE, mode="in" 

) 
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      #degDisHVG_AR[[i]]=degDisHVG 

      #............................................................. 

      # Degreee centrality 

      VG_centDeg=centr_degree(netVG_AR, mode = "in", loops = FALSE, 

normalized = TRUE) 

      nstat_AR[i,9]=VG_centDeg[[2]] 

       

      HVG_centDeg=centr_degree(netHVG_AR, mode = "in", loops = FALSE, 

normalized = TRUE) 

      nstat_AR[i,10]=HVG_centDeg[[2]] 

      #............................................................. 

      # Test for Power Law distribution: 

      VG_PowLaw=fit_power_law(degDisVG, xmin=NULL, force.continuous = TRUE) 

      nstat_AR[i,11]=VG_PowLaw[[6]] 

       

      HVG_PowLaw=fit_power_law(degDisHVG, xmin=NULL, force.continuous = 

TRUE) 

      nstat_AR[i,12]=HVG_PowLaw[[6]] 

    } 

    write.table(data_AR, file=paste("SIM data",name_AR[j] , ".txt"), 

col.names=TRUE) 

    write.table(dstat_AR,file = paste("SIM dstat",name_AR[j] , ".txt"), 

col.names = TRUE) 

    write.table(nstat_AR, file=paste("SIM nstat",name_AR[j] , 

".txt"),col.names = TRUE) 

     

    all_data_AR[[j]]=data_AR 

    all_dstat_AR[[j]]=dstat_AR 

    all_nstat_AR[[j]]=nstat_AR 

  } 

  #------------------------------------------------------------------ 

  # ARMAs with different coefficients: 

   

  nstat_ARMA=matrix(ncol=length(name_nstat),nrow=sim_num) 

  colnames(nstat_ARMA)=name_nstat 

  all_data_ARMA=vector("list",length(coef_p)) 

  all_dstat_ARMA=vector("list", length(coef_p)) 

  all_nstat_ARMA=vector("list",length(coef_p)) 

   

  for (j in 1:length(coef_p)) { 

    data_ARMA=vector() 

     

    dstat_ARMA=matrix(nrow = sim_num, ncol = length(name_dstat)) 

    colnames(dstat_ARMA)=name_dstat 

     

    for (i in 1:sim_num) { 

       

      #....................................................... 

      # Generate & display data: 

      arma=arima.sim(n=size, model=list(ar=coef_p[j],ma=coef_q)) 

      arma=as.vector(arma) 

      data_ARMA=cbind(data_ARMA,arma) 

       

      dstat_ARMA[i,1]=mean(arma) 

      dstat_ARMA[i,2]=sd(arma) 

      dstat_ARMA[i,3]=max(arma) 

      dstat_ARMA[i,4]=min(arma) 

       

      #....................................................... 

      # Generate network: 

      imatVG_ARMA=visi(arma) 
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      imatHVG_ARMA=visiH(arma) 

      netVG_ARMA=graph_from_adjacency_matrix(imatVG_ARMA) 

      netHVG_ARMA=graph_from_adjacency_matrix(imatHVG_ARMA) 

      #....................................................... 

      # Calculate network statistics: 

      #............................................................. 

      # Average geodistic path: 

      nstat_ARMA[i,1]=mean_distance(netVG_ARMA, directed = FALSE, 

unconnected = FALSE) 

      nstat_ARMA[i,2]=mean_distance(netHVG_ARMA, directed = FALSE, 

unconnected = FALSE) 

      #............................................................. 

      # Assortativity: 

      nstat_ARMA[i,3]=assortativity.degree(netVG_ARMA, directed=FALSE) 

      nstat_ARMA[i,4]=assortativity.degree(netHVG_ARMA, directed=FALSE) 

      #............................................................. 

      # Global transitivity: 

      nstat_ARMA[i,5]=transitivity(netVG_ARMA, type="global", vids = NULL, 

                                   weights = NULL, isolates = "zero" ) 

      nstat_ARMA[i,6]=transitivity(netHVG_ARMA, type="global", vids = NULL, 

                                   weights = NULL, isolates = "zero" ) 

      #............................................................. 

      # Mean degree: 

      degVG=degree(netVG_ARMA,v=V(netVG_ARMA),mode = "in")  

      nstat_ARMA[i,7]=mean(degVG) 

       

      degHVG=degree(netHVG_ARMA,v=V(netHVG_ARMA),mode = "in") 

      nstat_ARMA[i,8]=mean(degHVG) 

      #............................................................. 

      # Cumulative degree distribution: 

      degDisVG=degree.distribution(netVG_ARMA, cumulative = TRUE, mode="in" 

) 

      #degDisVG_ARMA[[i]]=degDisVG 

       

      degDisHVG=degree.distribution(netHVG_ARMA, cumulative = TRUE, 

mode="in" ) 

      #degDisHVG_ARMA[[i]]=degDisHVG 

      #............................................................. 

      # Degreee centrality 

      VG_centDeg=centr_degree(netVG_ARMA, mode = "in", loops = FALSE, 

normalized = TRUE) 

      nstat_ARMA[i,9]=VG_centDeg[[2]] 

       

      HVG_centDeg=centr_degree(netHVG_ARMA, mode = "in", loops = FALSE, 

normalized = TRUE) 

      nstat_ARMA[i,10]=HVG_centDeg[[2]] 

      #............................................................      

      # Test for Power Law distribution: 

      VG_PowLaw=fit_power_law(degDisVG, xmin=NULL, force.continuous = TRUE) 

      nstat_ARMA[i,11]=VG_PowLaw[[6]] 

       

      HVG_PowLaw=fit_power_law(degDisHVG, xmin=NULL, force.continuous = 

TRUE) 

      nstat_ARMA[i,12]=HVG_PowLaw[[6]] 

    } 

    write.table(data_ARMA, file=paste("SIM data",name_ARMA[j] , ".txt"), 

col.names=TRUE) 

    write.table(dstat_ARMA,file = paste("SIM dstat",name_ARMA[j] , ".txt"), 

col.names = TRUE) 

    write.table(nstat_ARMA, file=paste("SIM nstat",name_ARMA[j] , 

".txt"),col.names = TRUE) 



114 

 

     

     

    all_data_ARMA[[j]]=data_ARMA 

    all_dstat_ARMA[[j]]=dstat_ARMA 

    all_nstat_ARMA[[j]]=nstat_ARMA 

  } 

   

  #------------------------------------------------------------------ 

  # Compare results form AR with White noice:  

   

  name_quant=c("0%","25%","50%","75%","100%") 

  name_display_AR=c("WN",coef_p) 

   

  quant_AR=matrix(ncol=length(name_quant),nrow=length(name_display_AR)) 

  colnames(quant_AR)=name_quant 

  rownames(quant_AR)=name_display_AR 

   

  colBXP_VG=c("grey50", color_VG_AR) 

  colBXP_HVG=c("grey50", color_HVG_AR) 

   

  for (j in 1:length(name_nstat)) { 

    box_AR=nstat_WN[,j] 

    for (i in 1:length(coef_p)) { 

      input=all_nstat_AR[[i]] 

      box_AR=cbind(box_AR,input[,j]) 

    } 

    for (k in 1:ncol(box_AR)) { 

      qu=quantile(box_AR[,k]) 

      quant_AR[k,]=qu 

    } 

    colnames(box_AR)= name_display_AR 

    png(file=paste("SIM boxplot AR VG",j,".png"),height =1200,res=72) 

    boxplot(box_AR, main=paste("AR -",name_nstat[j]),col=colBXP_VG, 

border="grey30") 

    abline(v=1.5, col="grey70") 

    dev.off() 

     

    colnames(box_AR)= name_display_AR 

    png(file=paste("SIM boxplot AR HVG",j,".png"),height =1200,res=72) 

    boxplot(box_AR, main=paste("AR -",name_nstat[j]),col=colBXP_HVG, 

border="grey30") 

    abline(v=1.5, col="grey70") 

    dev.off() 

     

    colnames(box_AR)=paste(name_display_AR,name_nstat[j]) 

    write.table(box_AR,file=paste("Boxplot data AR",j,".txt")) 

    write.table(quant_AR,file=paste("Quantiles_AR",j,".txt")) 

     

  } 

   

  #------------------------------------------------------------------ 

  # Compare results form ARMA with White noice and MA 

   

  name_display_ARMA=c("WN","MA",coef_p) 

   

  quant_ARMA=matrix(ncol=length(name_quant),nrow=length(name_display_ARMA)) 

  colnames(quant_ARMA)=name_quant 

  rownames(quant_ARMA)=name_display_ARMA 

   

  colBXP_VG=c("grey50","grey80", color_VG_ARMA) 

  colBXP_HVG=c("grey50","grey80", color_HVG_ARMA) 
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  for (j in 1:length(name_nstat)) { 

    boxARMA=nstat_WN[,j] 

    boxARMA=cbind(boxARMA,nstat_MA[,j]) 

    for (i in 1:length(coef_p)) { 

      input=all_nstat_ARMA[[i]] 

      boxARMA=cbind(boxARMA,input[,j]) 

    } 

    for (k in 1:ncol(boxARMA)) { 

      qu=quantile(boxARMA[,k]) 

      quant_ARMA[k,]=qu 

    } 

    colnames(boxARMA)= name_display_ARMA 

    png(file=paste("SIM boxplot ARMA VG",j,".png"),height =1200,res=72) 

    boxplot(boxARMA, main=paste("ARMA -

",name_nstat[j]),col=colBXP_VG,border="grey20") 

    abline(v=1.5, col="grey70") 

    abline(v=2.5,col="grey80") 

    dev.off() 

     

    png(file=paste("SIM boxplot ARMA HVG",j,".png"),height =1200,res=72) 

    boxplot(boxARMA, main=paste("ARMA -

",name_nstat[j]),col=colBXP_HVG,border="grey20") 

    abline(v=1.5, col="grey70") 

    abline(v=2.5,col="grey80") 

    dev.off() 

     

    colnames(boxARMA)= paste(name_display_ARMA,name_nstat[j]) 

    write.table(boxARMA,file=paste("Boxplot data ARMA",j,".txt")) 

    write.table(quant_ARMA,file=paste("Quantiles_ARMA",j,".txt")) 

  } 

   

} 

 

 

save.image(file="ARMA.RData") 
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I: Reflection notes 

Farnoosh Farhangian 

The main focus of this thesis is about use of the complex network theory to analysis different 

stochastic processes. It is about using a better and more consistent tool for analyzing time series, 

even if they are of the problematic natures. A good example of series of the problematic nature 

is non stationary time series. These series are challenging to deal with if using normal analysis 

tools, and the results provided from them are not as reliable as the results from stationary series. 

While using network theory could provide us with reliable results for any series no matter of its 

stationarity status. The network theory is about converting timeseries into network. A network, 

which is also called as a graph is constructed from some nodes that are the realizations in the 

converted time series and edges which are the connected lines between nodes. The construction 

of the networks is determined by different algorithms, and we decided to focus on two mainly 

used algorithms, the visibility and horizontal visibility algorithms. These algorithms are results in 

to different graphs, visibility and horizontal visibility graphs, which a horizontal visibility graph is 

considered as a subgraph of the visibility graph. The visibility criterion supposes that two 

realizations are visible to each other if their values are higher than the value of the intermediate 

realizations, but the horizontal visibility algorithm is more restrictive and states that two 

realizations are considered to be connected, if they are horizontally visible to each other without 

being intersected by any intermediate realizations.  

 

We wanted to study the behavior of different stochastic process under some specific 

circumstances. For this purpose, we used hundreds of simulations of stochastic processes as 

Gaussian white noise, autoregressive of order one, moving average of order one and a 

combination of two latest ones, an 𝐴𝑅𝑀𝐴(1,1). We tried to find a pattern that could help us to 

identify different processes only by studying their networks’ properties. We decided to focus on 

some of the global properties of a network as its’ mean degree, degree centrality, average 

shortest path length, the correlation coefficient between degrees of the nodes, assortativity and 

the probability of having triples, transitivity. First, we studied a Gaussian white noise process and 

its networks’ statistics behaviors as the length of the sample size changes. The results provided 

us with enough information about most of the upper and lower boundaries of the statistics for 

each and every sample size. We were able to fit equations to those boundaries and propose a 

test for identifying a white noise process. Then we used white noise as the benchmark process 

and reviewed the network statistics of the other three processes as their parameters vary. We 

discovered similar results for both 𝐴𝑅(1), 𝑀𝐴(1) and 𝐴𝑅𝑀𝐴(1,1), thus we were not able to 

distinguish those series based on the behavior of their networks’ statistics. But, the results from 

two of statistics, transitivity and mean degree were interesting. We could actually identify the 

autocorrelation coefficients of those series by only knowing the length of their series and some 

of their networks properties as transitivity and mean degree. 

 

This thesis was both challenging and interesting to me. It was challenging since it was new and I 

did not know anything about it, and it was interesting since learning something new is always 

interesting and enjoyable. It was a good opportunity to use the previous knowledges both 

achieved in the last five years at University of Adger and also the prior to that. we need to thank 
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our supervisor for believing us and providing us with an interesting topic and also helping us in 

the whole way of creating this thesis.  

 

The network theory has been used to study different concepts in the world-wide. There are 

several areas which this theory is applied to which could be related to internationalization. One 

of these areas is finance. It could be used to analysis different financing time series, and as Yang 

et al. (2015) suggested, the visibility graph could be used in investigating the relationship among 

parties in financing. As mentioned previously in both the thesis and in this letter, nodes in a 

network are defining the realizations in the time series and most central nodes are reflecting most 

important realizations. In a financial timeseries, the most central nodes will be reflecting the most 

important historical events. This was implied by Zhuang et al. (2014), as well as that the market 

integration could be measured by use of the visibility algorithm. As we were further discussed in 

the chapter of “Evaluations and applications of time series-based network”, the network theory 

has been used to identify the dependency between coal price index and coal mining accident. On 

the other hand, our proposed test could be used to identify a white noise process. Since an 

efficient market will have the same nature as a white noise process, this test could be used to 

identify the efficient markets. Of course, that this test needs further investigations and must be 

tested on real life data before taking any conclusions.  

 

The graph theory is a new approach in analyzing time series even if they are of problematic nature 

and have some non-linear properties. This theory and the methods behind it could be considered 

as an innovation in the field of time series analysis. even if it needs more examine to find out its 

disadvantages as well as it advantages, still it will be innovative to apply it to understand different 

time series.    

 

It is not easy to relate this analysis tool to responsibility, since it is only a tool as like as the other 

tools available for analyzing time series. One could think about moral use of this tool and try to 

define what is meant by using an analyzing tool ethically. Maybe making advantages of the 

provided results and also timeseries properties captured by this analysis tool, is an irresponsible 

behavior. Something that could be related to any analysis tools. But the graph theory is an 

untested theory and needs further examining and it could not be used without considering its 

limitations and problems. So, it would be irresponsible to introduce it as a great analyzing tool, 

though been aware that it needs more investigation before taking any conclusions from.  

 

 

 

 

 

 

 

 

 

 

 

 



118 

 

Gry Nerjordet 

Our thesis is an exploratory exercise where we record the behavior time-series has as networks. 

The idea of analyzing time-series with the mature graph theory has become popular in the last 

decade since it doesn’t depend on a series stationarity. Stationarity is one of the main 

assumptions in time-series analysis, call for a constant mean and variance, properties which 

seldom is observed in real life data.  

 

We choose to focus on the stochastic processes white noise, autoregressive, moving average and 

autoregressive moving average, the latter three of order one. For our examination purposes 

where all four processes artificially generated in the free software R, no real-life time-series was 

used. The study was performed by running multiple repetitions of the same series with the intent 

of determine typical behaviors. We also created a reference set consisting of typical realizations 

from the different processes. These where constructed such that each series had the same error 

term and network layout, thus the only difference where the data generating processes and their 

parameters. The reference set was used to enhance our understanding of the pattern revealed in 

the multiple repetition simulations.  

 

There are multiple methods which can transform a time-series into a network. We chose to use 

the visibility algorithm and the horizontal visibility algorithm.  The conversion involves of the use 

of a visibility criterion which determine the connection, based on the time-series’ different 

measurements. The horizontal visibility graph is a subgraph of the visibility graph with a stricter 

visibility criterion. Since the graphs are linked directly to the time domain which makes it possible 

to identify which time-series properties the different network statistics relate to. These 

algorithms also result in fast conversion which was a factor when dealing with larger sizes. Since 

graph theory offer a vast number of measurements, we chose to narrow this down to the global 

measurement which not was very social network oriented. The chosen statistics were mean 

degree, normalized degree centrality, the properties of degree distribution, transitivity, 

assortativity and averages shortest paths length. All statistics where calculated for both visibility 

graph and its subgraph.  

 

Our study resulted in two findings. Firstly, we discovered that the relationship between white 

noise and the time-series length, and where able to fit the results to functions. As a result, we 

purposed a test which could identify white noise processes without the concern of stationarity. 

Secondly, we discovered that some of the network statistics, mean degree and transitivity had 

unique results for each of the correlation coefficient in 𝐴𝑅(1), 𝑀𝐴(1) and 𝐴𝑅𝑀𝐴)(1,1). 

Unfortunately, these where not distinguishable from each other, and we could not use our result 

to generate a test which identified the mentioned processes. Instead we developed a tool which 

could, without regarding stationarity, identify the processes correlation coefficient, but not the 

process it selves.    

 

None of the achievements mentioned above would be possible without the knowledge 

accumulated during my studies at the university of Agder. The foundation built by topics as 

Quantitative Financial Economics, Econometrics for Finance, Research Methods in Business and 

Advanced Econometrics for Finance. The practical introduction to R in Computational Finance and 

Portfolio Management. The presence of engaging lecturers and excellent supervisor. All three 
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have been crucial in the creation of this thesis. The ability to learn and to learn fast has also been 

important when working with this thesis as the world of graph theory was a completely new topic.    

 

As our thesis was an exploratory one, we have discovered tests and tools, the results are 

international by nature. There is no need to adapt this to accommodate other languages and 

cultures. The development of an alternative method to analyze time-series is by an international 

effort where multiple scientific communities contributes. Such a method may result in 

enterprises’ enhanced understanding of global market and thus result in their increased 

involvement, but this is just speculations. The analysis of time-series through networks is as a 

science in its infancy and must have years to grow and mature before it enters the enterprises 

board meetings as a convincing decision-making tool.    

 

We regard our thesis as a building block in the emerging development of an alternative to time-

series analysis and are therefore at the forefront of a complexly new way processing this kind of 

data. The properties we have discovered have not been documented before and can now be used 

into the development of this new and emerging field of science. Much of the development in 

improving on time-series analyses is done behind closed doors and will never be made available 

to the public. The reason being that the ability to correctly identify the underlying process of time-

series is a significant competitive advantage. The decision to deny the public contribution to an 

emerging science is a two-edged sword. On one hand the enterprise may have a short-lived 

competitive advantage which will surely evaporate when the competitors or the global scientific 

communities catches up. On the other side by sharing the development it may propel the method 

forward and making it more reliable, but its usage will immediately be known and used by 

competitors. The choice between the enterprise profits and to contribute in the development of 

a new analysis is not an obvious one and will never have an exact answer. We choose to share 

our findings and invite others to test, use and enhance our results. Another aspect of 

responsibility is on how an emerging alternative to time-series is used. Whit an MBA I am trusted 

to perform analysis, interpret and present the results to colleagues which don’t have the same 

expertise as myself. The use of a new and untested method, like time-series analysis through 

graph theory, and not informing about the contradictions and incompleteness currently residing 

in this analysis will be reckless.   

 

 


