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Abstract

In this thesis, a pose estimation system for drill pipe-ends has been made. The system
utilizes 6 sensor nodes containing a Kinect v2 RGB-D camera in addition to a Jetson TX2
computer. Pipe detection is done on 2D images from each camera using Tiny-YOLOv3.
A pair of point clouds for the box-end and pin-end are made based on these detections, in
addition to the depth map which the Kinect provides. Further segmentation is done, and
pose estimation using ICP is performed.
When the pipes are placed on the ground and placed vertical at a minimum distance of
5.5m away from the sensors, the system achieves a mean positional accuracy of ≈ 2.6cm,
≈ 2.0cm and ≈ 6.5cm. Further, the mean rotational deviation is ≈ 0.8◦, ≈ 3.5◦ around
the x- and y-axis.
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1 Introduction

In this thesis, a pose estimation system for drill pipes is presented. This chapter will
introduce the reader to the current state of pipe handling on offshore drilling ships, as
well as present an area of improvement. Following, the requirements and limitations of
the system, in addition to the report structure is shown.

1.1 Background and Motivation

(a) Traditional roughneck connect-
ing the box-end(lower part of the
pipe joint) and the pin-end(upper
part of the pipe joint).
Source: Image from [16]

(b) Iron roughneck, used for con-
necting/disconnecting drill pipes
Source: Image from [17]

Figure 1: Traditional rough-
neck and iron roughneck

Computer vision is an important part in many fully auto-
mated systems. This may be pose estimation for objects
that are to be manipulated by a robot, visual inspection
of products during production, and localization of a mo-
bile robot in a scene.
As with many other industries, the oil sector aims to
automate its processes to increase the efficiency. This
is also the case for offshore drilling, where most of the
drilling process is automated. On modern drilling ships,
the drilling and storage/handling of the pipes are done by
large machinery, in an almost fully automated process.
The pipes are stored in large vertical stores and trans-
ported by a catwalk, a large horizontal machine shuttling
the pipes to and from the storage(can be seen on Fig. 2).
The Hydraracker is responsible for handling the pipe be-
tween the catwalk and pipe assembly/disassembly.
On Fig. 2, such a process is shown, although in disassem-
bly mode. The Hydraracker lifts the pipe segment after
an iron roughneck(see Fig. 1b) has detached it from the
string, and lays it down onto the catwalk which trans-
ports it to an storage.
However, there are still some parts of the process that
requires manual input from the workers. Currently, the
worker has to confirm the position of the pipe before
the HydraRacker picks it up. Similarly, when a pipe
section is ready to be attached/detached to/from the
drill string, the worker has to confirm the position of the
pipes before the iron roughneck proceeds with connect-
ing/disconnecting.

There is a desire to remove this manual position ver-
ification from the loop, and have a computer vision sys-
tem to accurately estimate the pipe pose, for handling
and assembly/disassembly of the pipe string.
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Figure 2: Hydraracker(large vertical machine) placing the pipe segment onto the catwalk
after being disconnected from the drill string by an iron roughneck. Source: Image from
[1].

1.2 Problem Statement and Limitations

The objective of this thesis is to create a ROS node for automatic detection and pose
estimation of the pipe-ends(see Fig. 1a for the pipe-ends), bypassing the need for visual
confirmation of an operator. The master thesis problem statement are as follows:

1. Evaluate different detection techniques.

2. Create a ROS node that locates and publishes the pose of the pipe-ends at a medium
distance.

3. Demonstrate the system in the Mechatronics Innovation Lab(MIL).

Additional requirements of the system is to use a sensor node network. A total of six
sensor nodes are provided, where each node contains a Jetson TX2 computer in addition
to a Kinectv2 RGB-D camera. A proof of concept system is to made with pose estimation
of stationary pipe-ends.
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1.3 Structure of the Report

• In Chapter 2, different state-of-the-art machine learning and model estimator algo-
rithms are presented. Further, theory behind the algorithms and techniques used in
the system is explained. This includes basic communication between the cameras
and machines using ROS, machine learning detectors using YOLOv3, point cloud
creation and alignment using RANSAC and ICP.

• Chapter 3 shows the implementation of the system. Here different aspects of the
system are presented which includes: lab-setup, communication between the cameras
and computers, the YOLOv3 object detector, point cloud creation, segmentation and
pose estimation using ICP.

• Chapter 4 presents the experimental results of the pose estimator and the object
detector in two different test scenarios.

• In Chapter 5, there is a discussion regarding the accuracy of the pose estimation,
system speed, and shortcomings of the system.

• In Chapter 6, a conclusion of the project is held, along with different proposals that
improve the system’s speed and robustness.
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2 Background Theory

In this chapter a theoretical background for the techniques used in this thesis is presented.
A fundamental overview of ROS is first shown, followed by machine learning with convo-
lutional neural network and YOLO, at last point cloud construction and pose estimation
techniques are presented.

2.1 Robot Operating System

Robot operating system(ROS) is framework for writing robot software across different
robotic platforms. Due to varying tasks and environments, the task of making general-
purpose software is hard. ROS aims to solve this and to make collaboration between
different robotic disciplines easier. This section will not delve deep into everything ROS
encompasses, but will focus on the parts used in this thesis.

2.1.1 Nodes and Master

Every robotic system using ROS contains something called nodes. A node is a fundamental
building block of ROS and multiple nodes build up the ROS network. Every node contains
some code to perform a task of the user’s desire. The nodes can communicate with each
other by sending/receiving messages to another node. [18]
However, in order for the nodes to receive or send messages, a master is required. The
master has to register the publishing(sending) and subscribing(receiving) nodes in addition
to the message type. Once the nodes are registered with the master, the information
transfer can happen. [19]

Figure 3: Interaction between master and nodes in message transfers.
Source: Image from [2]

2.1.2 Messages and Topics

A ROS message is a data structure that contains the information to be exchanged between
the different nodes. Messages can be user-defined, or pre-defined, obtained from one of the
many message libraries which exists. In ROS, sending and receiving messages are done
by publishing the message on named buses called topics. The publishing node notifies
the master that a message is to be published onto a topic. The receiving node then gets
notified by the master that a message on the topic is ready to be subscribed, in which case
the node will subscribe to the topic and receive the message. [20][21]
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2.1.3 Publishing

After the publishing node notifies the master, it connects both the sending and receiving
nodes and creates a peer-to-peer connection. A publishing queue has to be specified in
order for the node to publish. When the publishing node is sending messages to a topic, the
messages are put into a publisher queue, and is then sent to the subscriber for processing.
If the publishing node is sending faster than the subscribing node is able to receive, the
publisher will drop the oldest messages in the queue, in a FIFO(first in first out) manner.
[22]

2.1.4 Subscribing and Synchronization

Subscribing in ROS is done through a callback function and a spinner. A spinner will call
all the callbacks contained in a callback queue, which in this case is a queue of incoming
messages. The callback function is the message handler and is attached to the subscriber.
The callback function is called each time the spinner spins, and receives the incoming
messages in addition to performing tasks set by the user. When subscribing to multiple
topics, a callback function has to be created for each of the topics. Unfortunately, this is
impractical and can be solved by using a synchronizer to create a common callback function
for all the subscribers. Depending on the data used in the system, a synchronization
policy has to be chosen. The messages may contain a timestamp that indicates when it
was published, and this is used when choosing the synchronization type. In ROS there are
two types of synchronization policy, ExactTime and ApproximateTime. The first policy
requires the messages to have equal timestamps and is useful for systems that requires
synchronized data from multiple sensors. The latter policy allow for a small deviation in
timestamp value when receiving the messages.[23]

2.1.5 Spinners

The function of a spinner in ROS is to call the callback function. The spinner can be
considered as a loop and will continuously call for the callback function. In ROS there are
multiple spinners depending on the system requirement. The simplest spinner is a single
threaded process, which means everything in the program has to be run inside the callback
function on a single thread. For more demanding systems, a single thread is not sufficient.
Therefore, ROS provides a solution for multi-threaded applications. One of these methods
is something called an Asynchronous Spinner. This method allows for the use of multiple
threads, where a single thread is reserved for the callback function. [24]
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2.2 Machine Learning

Machine learning is an emerging tool for various disciplines, and especially computer
vision. This section will focus on some of the fundamentals in machine learning followed
by general Convolutional Neural Network using images. Further, different state-of-the-
art machine learning networks for point clouds and 2D images are presented. Lastly, a
detailed explanation of YOLOv3 will be held.

2.2.1 Basics

Machine learning revolves around estimating a function that predicts based on the input
data. This fundamental predictive function can be estimated fairly well, although there
will always be an error due to all the variables our data-set cannot capture. The procedure
of mapping the input to the output is as follows,

Y = f(x) + ε (1)

where,
Y is the prediction.
f is the predictive funtion.
x is the input data.
ε is the irreducible error.

Although the prediction process always has an error due to the limited span of training
data, there is a lot to gain by improving the function estimation based on the available
data. [25]
All neural networks are built up by artificial neurons. An artificial neuron is a mathemat-
ical model based on a biological neuron. The biological neuron will not be explained here,
but the mathematical model describing an artificial neuron is as follows:

yk = ϕ

m∑
i=1

wixi (2)

Where,
wi is the weight.
xi is the input signal.
ϕ is the activation function.

w1

w2

w3

+

+

+

ϕ

x1

x2

x3

yk

Figure 4: Artificial neuron.

Although this particular neuron shown in Fig. 4 only has three inputs, the number of
inputs can vary. [26]
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After the inputs are multiplied with their respective weights and summed up, the output is
passed to an activation function. There are several different types of activation functions:
linear, step, rectifier as well as nonlinear functions. The linear activation function is just
equal to unity and is not suitable for complex tasks using data types such as images and
audio due to the non-linear nature of these data types.
The step function is useful in binary classification due to its two values: 0, 1. If the input
value is over a threshold, the output value is 1, and 0 if it is under. However this activation
function limits the classification down to two classes. In addition, the step function as well
as the linear type can not be used with backpropagation, an important learning technique
in machine learning, which makes these activation functions impractical.
The rectified linear unit(ReLu) is the most common activation function used in modern
neural networks. Because of its non-linearity, it is better fitted for image detection and
other complex tasks. The function is R(x) = max(0, x), if x < 0 ⇒ R(x) = 0 and if
x > 0⇒ R(x) = 0.
One important property of this function is that it avoids the vanishing gradient problem.
[27]

A simple neural network can be a collection of neurons placed in different layers called
fully connected layers(FCL). Each neuron in the layer are connected to the neurons in
the preceding and succeeding layer. In Fig. 5 it is shown a network with an input and
output layer, in addition to a single hidden layer. Often there are multiple hidden layers
in the network. The data is fed into the input layer, while the output layer presents the
predictions. [28]

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer

Input
layer

Output
layer

Figure 5: Fully connected layers.
Source: Image from [3]

When the computer estimates the predictive function, it uses a loss function to determine
its performance. Gradient descent is then used to reduce the error and improving the
predictive model. When optimizing with gradient descent, partial derivatives for all the
layers are calculated by backpropagation which gives the direction to the loss function’s
nearest local minimum. The weights are then updated and the loss is found yet again.
This is continued until the network is trained, hopefully giving good predictions.
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2.2.2 Convolutional Neural Network

Figure 6: Convolutional Neural Network.
Source: Adapted from [4]

Convolutional neural network(CNN) is a powerful and versatile tool used in many different
fields, however this section will focus on CNNs in context of image classification and
localization. In short, the network extracts features in an image by using convolution
and passes these feature maps to a classifier, which often is built up by a series of fully
connected layers(FCL). The classifier learns the features of the objects of interest in the
image, and does the classification and localization during inference. In Fig. 6 a typical
CNN is shown, with several convolutional layers followed by a set of fully connected layers.

Convolutional layer
In the convolutional layer, filters are applied to each image. The filter can be thought of as
a neuron. It is multiplying its weights with a spatial area of the input image, followed by
summation and added non-linearities with an activation function, similarly to the neuron
explained in Sec. 2.2.1. [29]
This filter can either be a convolution or a correlation filter. Contrary to the name, most
CNNs uses correlation instead of convolution, although both give the same result in the
end. In image correlation, each element of the filter is multiplied with the corresponding
element of the image and summed up. This operation does not work at the edges of the
image, due to the filter has to cover the image with all its elements. This results in a
reduction of dimensions.

Figure 7: Filtering an image using correlation.
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Fig. 7 illustrates image correlation on a simplified image(black and white pixels) with one
depth channel and a filter. In the case of RGB pictures, the filter and image has three
depth channels, making the image and filter of dimension 6x6x3 and 3x3x3. It should
be noted that by filtering in this way, the dimension reduction leads to loss of valuable
information in the picture. Therefore, in a lot of CNNs, padding is applied to the image
beforehand. Padding increases the dimensions of the original image equal the dimensions
removed by the filter. This results in a filtered image of the same size as the original
image, and all the information is preserved.
The convolutional layers utilizes these techniques in order to extract features from the
images. In practice multiple learnable filters are applied to each image which in turn
creates multiple feature maps. After several convolutional and subsampling layers, the
feature maps become more numerous and smaller as can be seen in Fig. 6. At first, the
filters capture low level features such as edges and orientation of those edges. The deeper
the convolutional layers are, the more high level features are captured such as a human
face, bird etc. [29]

After each filtering operation, an activation function and batch normalization are applied.
Batch normalization is used in order to help against internal covariance shift, a problem
that makes it harder to train the network. Internal covariance shift is a problem due
to the distribution of the current layers’ input data changes when the parameters of the
previous layer are updated. The algorithm works by calculating the mean and variance of
the batch, then normalize it and at last the data is scaled and shifted. [30]

Subsampling
In the subsampling step, the feature maps coming from the convolutional layer are down-
sampled, which creates images with lower spatial dimensions. This greatly reduces the
computational cost, while retaining the most important features of the incoming feature
maps. By making the features more abstract, this layer also helps against overfitting, a
problem when the network is too specialized on the training images and in turn performs
poorly on general pictures. [31]

Figure 8: Max pooling.
Source: Image by Aphex34[5]
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There are several pooling types, the most common is max pooling which is shown in Fig.
8. In max pooling, a fixed size region is sliding over the feature map, choosing the the
element with the highest value. In this case the max pooling layer has a stride of two,
which means the pooling region steps two elements for each iteration.[29]
Some CNNs abandons the use of pooling altogether, and instead opt for convolutional
filters with strides higher than one. This is due to networks that uses convolution for
downsampling, can at times match and even outperform networks using pooling[32].

Fully connected layer and loss layer
After several layers of convolution and subsampling, the extracted features of the original
image is in a vector form, and is then passed into the fully connected layers(FCL). The
fully connected layers consists of multiple layers of neurons, where each neuron in the layer
is connected to the activations from the previous neurons, in additions to the neurons in
the next layers. [28]
In the fully connected layer, the previous extracted features are used to learn during
training, as well as classification during inference.
After the FCL, there is normally a loss layer that determines how the system penalizes
error. This layer depends on what the system is predicting. In the case of images with
multiple classes, sigmoid cross-entropy is used[33].
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2.2.3 State-of-the-Art

Use of deep learning in computer vision has increased greatly in the last decade. Although
deep learning through functioning convolutional neural networks(CNN) has existed since
the 90s, it has been restricted by the lack of computing power. With the growth of
computing power through faster CPUs and emergence of GPUs, the use of neural networks
has become viable[34]. Especially in computer vision(CV), the use of CNNs on 2D images
has become a tool that surpasses traditionally hand-crafted CV systems in performance.
In addition, new network architectures designed for 3D data has emerged in the recent
years. This section presents different state of the art deep learning networks, which utilizes
2D images or 3D data for object detection.

YOLO(You only look once)[6] is a fairly new CNN which at the time of paper release
was state of the art for object detection on 2D images. The network uses a single convo-
lutional neural network to predict bounding boxes and class probabilities. Through the
improved versions YOLOv2[35] and YOLOv3[10] it has further improved its performance
and the latest version is lagging a bit behind in term of accuracy compared to other state-
of-the-art CNNs such as RetinaNet, but at significantly higher processing speed[10]. First
the image is divided into a SxS grid(see Fig. 9), where each grid cell is checked for an
object. If a grid cell contains an object, then an anchor box is associated with the object.
Objects may span over multiple grid cells, which may result in multiple boxes associated
with the same object. Threshhold for class prediction is then used to remove any detected
objects with low confidence. To solve the issue with multiple bounding boxes for the same
object, non-max suppression is used. The box with highest object detection confidence is
chosen, and boxes with high Intersection over Union(IoU) with the chosen box is removed.
Everything is done with one execution of the convolutional network, which makes it fast.

Figure 9: YOLO
Source: Image from [6]
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YOLO is mostly used for object detection on 2D images alone, but paired with a depth
sensor like Kinect, further information can be extracted from the detected object. An
example is the use of YOLO and Kinect to detect robots in RoboCub MSL[36]. YOLO
is used to detect the robots from Kinects RGB images, and the robots bounding box
parameters are used to extract depth data in the region of the bounding box.

Another approach to object detection with 3D data is to utilize point cloud in machine
learning. Machine learning with point clouds is a technique which has emerged recently,
mainly due to research into autonomic vehicles with LiDARs.
This approach presents some new challenges: Point clouds do not have the advantage of
the spatial relationship which the pixels have on 2D images. In contrast a point in a point
cloud can exist at any location, and its positional data is encoded explicitly along other
information. [37]

Some methods convert the point clouds to a voxel grid to solve these issues. One
network that does this is VoxelNet[7]. This network utilizes LiDAR with around 100 000
points. As seen in Fig. 10, the point cloud is sent to a Feature Learning Network(FLN).
Due to memory/processing issues of a point cloud of this size, the network samples points
at random. This does not only reduce the required computational power, but also removes
any potential bias because of the variable density of points in the point cloud. The sampled
point cloud is then sent to a voxel feature encoder(VFE) which extracts and combines
point-wise features and local aggregated features. Voxel-wise feature tensor is extracted
through a fully connected layer and max pooling. After the FLN, convolutional middle
layers extracts high level features by using 3D convolution. A region proposal network
then outputs a regression map for 3D bounding boxes and a probability map containing
the probability scores for the different classes.

Figure 10: VoxelNet architecture
Source: Image from [7]

One end-to-end network utilizing point cloud is PointNet[38] and its successor
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PointNet++[39]. Because of the unordered structure of point clouds, the network has to
learn unique features while being invariant to permutations of the point cloud. To solve
this, PointNet is using a symmetric function.

f(x1, . . . , xn) = γ � g(h(x1), . . . , h(xn)) (3)

where f is a symmetric function which transforms the points [x1, xn] to a k-dimensional
vector(k being the number of object classes), containing the scores for classification. h is a
multilayer perceptron(MLP), which consists of multiple FCLs that maps the input points
into a latent space. g a symmetric function, in this case a max pooling function which
aggregates the learned features into a global feature vector. This vector is then passed
to γ(another MLP), and at last the predicted class score is outputted. As the feature
learning should be invariant to geometric transformation, PointNet uses something called
T-net. T-net transforms the input point cloud into fixed, canonical form which makes the
network robust to small variations of the input cloud.

Figure 11: Frustum PointNets approach to object detection and segmentation.
Source: Image from [8]

Frustum PointNets[8] is a further extension of PointNet. As seen on Fig. 11 it uses
a CNN on 2D images to detect and create a bounding box of an object. From the 2D
bounding box it then creates a corresponding 3D frustum. The 3D frustum contains the
point cloud data, which is fed to PointNet which performs the detection. PointNet then
returns an oriented amodal 3D bounding box around the object. The network is also
capable of doing semantic segmentation, where each of the points belonging to the object
are grouped together. It does both operations in one go in contrast to a more conventional
sliding window approach, which makes Frustum PointNets fast.
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2.2.4 YOLOv3

Figure 12: Grid cells(black) and anchor boxes(red).
Source: Adapted from [9]

Several of the 3D machine learning networks mentioned in the previous section requires
powerful hardware to run. These networks are made for LiDARs or in the case of PointNet,
smaller point clouds. Because the point cloud density of the Kinects are significantly higher
than the mentioned point cloud sources, it was decided to go for YOLOv3, and combine
this detection with more traditional point cloud algorithms. This network is fast, making
it possible to run on the Jetson computers used in this thesis.

Object detection is done using grid cells, where each grid cell can detect a number
of objects. The grid cell containing the object’s center, is responsible for prediction. In
addition, YOLOv3 uses something called anchor boxes. The anchor boxes is of predefined
aspect ratio, and is optimized by using K-means clustering. The fixed aspect ratio of the
anchor boxes makes predictions faster, relative to YOLOv1 where the aspect ratio among
other parameters had to be optimized. To match the bounding box with the object, the
offset from the anchor box to the objects center is precisely calculated and corrected, as
well as scaled in order to match the object. The anchor box with the highest intersection
over union(IOU) with the object is chosen. However, objects larger or smaller than the
anchor boxes will remain undetected. Moreover, the network cannot handle cases when
there are multiple objects assigned to the same anchor box. The network solves this by
applying the same approach on three different scales. YOLOv3 uses grid resolution of
13x13, 26x26 and 52x52. A somewhat simplified version of the grid cells and anchor boxes
can be seen on Fig. 12. The predictions on the three feature maps are then merged
together in a Feature Pyramid Network(FPN) fashion. [10][40]
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Figure 13: Darknet-53.
Source: Image from [10]

Feature extractor
YOLOv3 utilizes the feature extractor Darknet-
53, which can be seen in Fig. 13. Instead
of max pooling, the network uses a filter with
a stride of two, in order to reduce the im-
age size by half. YOLOv3 also utilizes some-
thing called residuals. Residual networks work
by feed-forwarding the output from the previ-
ous layer and add this to the output of the
current layer. The more layers added to a
neural network, the more accurate it tends to
be. However, previously very deep neural net-
works were limited due to the vanishing gra-
dient problem. Residuals resolves this prob-
lem, allowing for deeper neural networks in ad-
dition to reducing the required computational
power[41].

Feature Pyramid Network
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Figure 14: YOLOv3 algorithm.
Source: Adapted from [11][9]

YOLOv3 utilizes something called Feature Pyramid Network(FPN)[11] where the feature
maps in the convolutional layers are extracted on different levels and merged to get good
predictions of small and big objects. While larger objects are retained deep in the con-
volutional layers, the smaller objects vanish. Therefore predicting on multiple scales are
beneficial for good detection of small and large objects. YOLOv3 takes feature maps at
different levels of the feature extractor, passes it through additional convolutional layers
and outputs the prediction based on grid network as illustrated on Fig. 14. On each
feature level, the predictions at each grid cell uses three anchor boxes, making nine the
total number of different anchor boxes used in Yolov3. The feature maps from deep in
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the feature extractor are also upsampled and concatenated to the feature maps extracted
from more shallow layers. This is to be able to detect smaller objects, as these features
vanish during downsampling. The predictions is then outputted from the three different
scales as a 3D-tensor containing the objectness, bounding boxes and classes for each grid
cell. [40]

Prediction 3D tensor:
N ×N × (A · (b+ P + C)) (4)

Where,
N is the grid resolution.
A is the number of anchor boxes.
b = 4, is the bounding box parameters: x and y position, width and height.
P = 1, is the objectness score.
C is the number of classes.

Tiny-Yolov3, the version used in this thesis, is a faster variant of the algorithm explained.
It has its feature extractor trimmed down, having less layers. This version only predicts
on two different scales, abandoning the layer responsible for detecting the smallest objects
in favour of being faster.
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2.3 Point Cloud

This section starts by presenting several model estimators that was considered in this
thesis. In addition, the theory behind various different techniques ranging from point
cloud construction to filtering, object detection and alignment is explained.

2.3.1 State-of-the-Art

RANSAC(Random Sample Consensus) is an algorithm to estimate parameters of a math-
ematical model[42]. The method is iterative, where model hypotheses are generated, and
each hypothesis is then going through a verification process to check if the model is good.
First m random points are selected from the input data, where m is the minimum amount
of data points required for the model estimation, and the model parameters are computed
based on the these points. Then the whole point space is considered, where the each point
is checked against the model. If the point is within a set distance threshold it is consid-
ered an inlier, if the point is outside this threshold, it is an outlier. The threshold value is
dependent on the application and dataset, however the number of required iterations, k,
can be determined.

k =
log(1− p)
log(1− wm)

(5)

p is the probability of choosing an inlier when choosing a point. w is the inlier to total
point data ratio. The number of iteration is required to get below the threshold (1 − p),
that is, the probability of getting a sample with at least one outlier.

Further development has been done in order to improve computational speed, which
is mainly done in two ways, either improve the generation of hypotheses or improve the
model verification. Randomized RANSAC[43] is a method which does the latter. R-
RANSAC does a preliminary test of the hypothesis, in order to disregard bad hypotheses
early. By randomly selecting a small subset of the point cloud and test these against the
hypothesis, bad hypotheses can be disregarded with high confidence. This improves the
computational speed as the algorithm avoids the full model verification of hypotheses that
are unlikely to give a good solution.
Progressive Sample Consensus (PROSAC)[44] is an algorithm which aims to improve the
generation of hypothesis. Instead of picking points at random, the hypothesis generation
is instead based on points with higher similarities. First the points are grouped based on
similarity, then the largest of these groups are used to generate hypothesis.
The previously mentioned RANSAC-based algorithms do not have an upper time limit.
Adaptive Real-Time Random Sample Consensus(ARRSAC)[45] aim to solve this problem.
Due to an upper time limit when running in real time, there has to be a limit for the amount
of hypotheses generated. The algorithm is generating different hypotheses and evaluates
them on a subset of data points. The bad hypotheses are thrown away after evaluation,
and good hypothesis provides an inlier ratio. When calculating the inlier ratio on a subset
of the original data-set, the inlier ratio may not be correct. Therefore the algorithm allows
for hypothesis generation in the evaluation stage. The good hypotheses are then further
evaluated, returning the model.
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A promising approach to pose estimation with point clouds is the algorithm proposed in
[46]. The algorithm uses something called point pair features. A point pair feature(PPF)
describes the relative position and orientation for two points. A set of reference points in
the scene are selected, then the rest of the points in the scene are matched up to these
reference points to create point pair features. Point pair features are not discriminative
enough to detect planar and self-symmetric object, therefore [46] incorporates the color
vectors of the two points into the PPF, resulting in color point pair feature(CPPF). This
algorithm calculates all the possible CPPFs of the model. Then the set is stored in a hash
table, and corresponding keys for the hash table are created. The data is then passed to
a voting function where CPPFs of the model are compared to the scene point cloud, and
if there is a match it computes a set of votes. These votes are then used to calculate the
pose of the object.

2.3.2 Time-of-flight Depth Sensors and Kinect v2

RGB-D cameras provides depth measurement in real-time at a low budget, although only
in close range. The specified operating range of Kinect v2 is 0.5m-4.5m[47]. Kinect v2
is a RGB-D camera which uses a technique called time-of-flight(ToF) to create a range
image. A ToF sensor measures the time taken from emitting of light until it returns to
the camera. In the case of the Kinect v2 it uses an infrared emitter and a sensor to
detect the IR-light. The Kinect v2 uses a ToF technique called amplitude modulated
continuous wave ToF(AMCW-ToF). The scene is continuously illuminated by a periodic
intensity modulated infrared light. The sensor then measures the incoming light and senses
a phase-shift depending on the distance the light has travelled[48].

18



2.3.3 Point Cloud Construction

Because the intrinsic matrix is needed when creating the point cloud, a short explanation
describing the camera matrix, will he held. However, since camera calibration is outside
the scope of this thesis, the calibration process is left out.

Pinhole Model

Figure 15: Pinhole camera model.
Source: Image from [12]

The most common camera model is the pinhole camera. As illustrated on Fig. 15, the
model assumes the light from a 3D scene is projected through a single point, or pin-
hole, onto the 2D plane, otherwise called the image plane. The mapping from 3D world
coordinates to 2D pixel coordinates can be represented as a 3× 4 matrix.

P = K
[
R T

]
=

fx s cx
0 fy cy
0 0 1

r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3


Where,

cx [pixels], principal offset in x direction
cy [pixels], principal offset in y direction
fx [pixels], pixel focal length in x direction
fy [pixels], pixel focal length in y direction
s [-], skew coefficient

The rotational matrix, R and translation vector, T describes the point’s rigid transforma-
tion from the 3D world frame to the 3D camera frame[49].
The intrinsic camera matrix projects the point from the camera frame into 2D pixel co-
ordinates. The principal offset describes the image center. It is a point on the image
plane that is formed by a perpendicular line on the image plane that intersects through
the pinhole. The focal length, F can be explained as the distance in world units between
the pinhole and image plane. Often this is divided into two components fx = F/px and
fy = F/py, where each describes its relation between the focal length and physical pixel
width/height respectively. Ideally fx = fy, meaning the pixels are perfectly squared, in
practice this is not the case which results in distorted images. [50]
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In fact, the camera matrix P , maps the world to an undistorted image[51]. Therefore, in
addition to the camera matrix, finding the distortion coefficients that remove distortion
effects such as pincushion/barrel are essential to get a good image.

Depth Map to Point Cloud
With a calibrated sensor, the point cloud can be made. This is a simple mapping procedure
from the depth space to world space. This can be done with look-up tables as shown in [52],
where a mapping value for each pixel in the depth image is made. The calculation shown
below, can be done during run-time, but calculating a look-up table at the beginning saves
this computation, making the program more effective.

u = (ui − cx) · fx (6)

v = (vi − cy) · fy (7)

Where,
u is the look-up value in the x direction of the image.
v is the look-up value in the y direction of the image.
ui and vi are in the range of [0, width] and [0, height] respectively.

Finally the 3D points are made by using the depth map and the generated look-up tables,
to create all the points corresponding to the depth map elements.

x = u · d (8)

y = v · d (9)

z = d (10)

Where,
d, is the depth value from the depth map.
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2.3.4 Statistical Outlier Removal

Measurements from a ToF depth sensor are not perfect and there are several different
sources of errors. For example, darker objects are more inaccurate at greater distances,
resulting in depth values have larger variance and offset. The sensors are also vulnerable
to multiple light returns from the scene to a single pixel on the sensor, giving an erroneous
depth value. [53]
Because of these error sources among others, the point cloud become noisy. Such noise
can be seen in Fig. 16. Therefore filtering is essential to get a clean point cloud to work
with. A statistical outlier filter is a useful tool to remove these unwanted points. The
following paragraphs will present a filter proposed in [13].

Figure 16: Noise filtering by statistical outlier rejection
Source: Image from [13]

The algorithm works by dividing the point clouds into several subsets. In each subset a
point is chosen, and the mean distance µ from the point to its K neighbouring points is
calculated. The algorithm assumes a Gaussian distribution and calculates the standard
deviation, σ, as well.

It then iterates through each point again and checks if the neighbouring point is within a
desired distance threshold, t, and rejects the points outside this threshold. The standard
deviation multiplier α is set based upon the quality of the point cloud. On a rough and
irregular point cloud, the standard deviation is high, therefore the point cloud may benefit
by setting the standard deviation multiplier low. The standard deviation of an accurate
and smooth point cloud is low, in that case the multiplier should not be set too low, as
this will remove desired points.

t = µ± ασ (11)

Where,
µ is the mean distance value between the chosen point and its K nearest neighbors.
α is the standard deviation multiplier.
σ is the calculated standard deviation of the distance from the chosen point.
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2.3.5 Iterative Closest Point

Iterative closest point(ICP) is an algorithm used to align two point clouds. It is an impor-
tant tool when reconstructing scenes, or pose estimating an object. Multiple algorithms
have been developed to solve this problem: an iterative algorithm is described in [54], a
non-iterative version based on quaternions[55]. However the algorithm used in this thesis
is a version based on Singular value decomposition(SVD). In the case of many point corre-
spondences, it is shown in [56] that SVD achieves faster computation speed in comparison
to the other methods.

The main goal of the mentioned algorithms is to find a translation vector, t, and rotation
matrix, R, to minimize the sum of the squared distance error between the two clouds. The
error formula is as follows:

E(R, t) =
1

Np

Np∑
i=1

||xi −Rpi − t||2 (12)

where,
xi and pi is the corresponding model and measured data points.
Np is the number of points contained in the model.
R is the rotation matrix.
t is the translation vector.

Finding the right point correspondences in the measured and model point sets are challeng-
ing, and will not be explained here. It is therefore assumed that the point correspondences
are already found.

Before finding the transformation, the point sets are centered together. The center of mass
for both the model and measured data are:

µx =
1

Nx

Nx∑
i=1

xi µp =
1

Np

Np∑
i=1

pi (13)

where,
µx, µp are the center of mass for the measured and model point sets.
Nx, Np are the number of points contained in the measured and model point sets.

The center of mass are then subtracted from the measured point set X and model point
set P :

(P − µp) = P ′ (14)

(X − µx) = X ′ (15)

The matching rotation around the point sets’ center is found by using Singular value
decomposition(SVD) on the matrix formed by the matrix product of P ′ and X ′.

W = P ′X ′T (16)

SVD is used to factorize the matrix W into the matrices U, Σ, and V:

W = UΣV T (17)
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As shown in [56], the rotation matrix that gives the least error is as follows.

R = UV T (18)

According to [54] the optimal translation vector is

t = µx −Rµp (19)

After finding the most optimal rotation matrix and translation vector, the model cloud is
then transformed. If desired, this process can be repeated a set number of times until the
minimum least squares error is found.
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2.3.6 Standard RANSAC

Figure 17: RANSAC model estimation in noisy point clouds.
Source: Image from [14]

RANSAC is a versatile tool used for alignment and recognition of primitive shapes. Point
clouds from many modern day sensors are often riddled with noisy points called outliers.
These points will negatively affect the algorithms using least squares regression as op-
timization technique. Instead of using a least squares loss function, it bases its model
proposals on points that are within a certain threshold, i.e. inliers, and the model with
the most inliers is kept.

The standard RANSAC algorithm proposed by Fischler and Bolles[42] is essentially a two
step process:

1. From the point set, choose a number of points randomly and create a model/hypothesis
based on these points. The number of points are based on the minimum amount of
points required to determine the models parameters.

2. Check the hypothesis against the whole point set. Count the points within a set
threshold.

This process is repeated a fixed amount of times, returning the model with the highest
inlier ratio. As shown in Fig. 17 the algorithm can be used to estimate lines, in highly
noisy data. More useful though, is the ability to segment other primitive shapes such as
planes, cylinders, spheres and more.
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2.3.7 Prerejective RANSAC with Feature Descriptors

This section will describe a prerejective RANSAC algorithm that uses Fast Point Fea-
ture Histograms(FPFH) descriptors to match the corresponding features of the scene and
model. This version is significant faster than the standard RANSAC algorithm, and there-
fore more suitable for real-time application.

Feature Descriptors

(a) PFH
Source: Image from [15]

(b) Source: Image from [57]

Figure 18: Left: Spherical point neighborhood. Right: Relationship between two points.

Point Feature Histograms(PFH) represents the relationship between a number of points,
giving a pose invariant description of the underlying surface. It is based on geometric
properties between a point p and neighbour points k, that are contained within a sphere.
This spherical neighbourhood can be seen in Fig. 18a. The properties are precomputed
surface normals and position of the points. For each point pair combination in the sphere,
the angle difference between the normals of the points are calculated, as illustrated on
Fig. 18b. The angles are combined with the distance between the two points, d, forming
a quadruplet which is then fed into a histogram.[58]

α = v · nt

φ = u · pt − ps
d

θ = tan−1
w · nt
u · nt

Where,
ns and nt are the normal vectors of the points ps and pt respectively.
d, is the distance between the two points.
u, w and v are the coordinate frame based on ps.

Figure 19: FPFH
Source: Image from [15]

Unfortunately, because the relationship between every
point pair is calculated, PFH is not suitable for real-time
applications. Fast Point Feature Histogram(FPFH) is a
solution that runs in real-time while retaining most of
the discriminatory capability of PFH. Instead of calcu-
lating the relationship between every point in the neigh-
borhood, only the relationship between the point and its
closest neighbors are calculated(see Fig. 19). In addi-
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tion, FPFH discards the distance parameter, as it was found that it did not enhance the
algorithm’s robustness. [15]

The algorithm is a two step process:

1. Calculate the geometric relationship between the main point pq and its neighbors,
pk(though not between the neighbors), resulting in a Simplified Point Feature His-
togram(SPFH).

2. For each of the main point’s neighbors, pk, calculate the SPFH for its own neighbors.
Then the resulting histogram is a sum of the main point’s SPFH and a weighted
sum of the neighbors’ SPFH.

FPFH(p) = SPF (p) +
1

k

k∑
i=1

1

ωk
· SPF (pk) (20)

Where,
p, is the main point.
k, is the number of neighboring points.
ωk, weight based on the distance between p and pk.

Prerejective RANSAC
The RANSAC algorithm presented is based on [59]. This version improves a common
RANSAC algorithm by introducing a prerejective step where the feature correspondences
are compared, and rejected if they are too dissimilar. The algorithm can use other 3D
feature descriptors, but in this case FPFH descriptors was chosen due to its real-time
capability.
The algorithm works as follows:

1. Find n > 3 random points in the model and the corresponding points in the scene
by using feature descriptor matching.

2. Calculate the dissimilarity vector, δ. If ||δ|| < tpoly continue, if not, go to step 1.

3. Estimate a hypothesis transformation matrix, T̂ , based on the n sampled point
correspondences.

4. Transform the model cloud with the estimated matrix.

5. From the transformed model, find the amount of inliers at a set Euclidean distance
threshold. If the inliers are less than a set limit, go to step 1.

6. Re-estimate a hypothesis based on the inlier point correspondences.

7. Check the least squares distance error between the corresponding points of model
and scene. If it is the lowest so far, keep the transformation matrix.

Step 2 uses the fact that during rigid transformation the lengths between every pair of
points are preserved. The algorithm calculates the edge lengths between each point in
the model, dp,i = ||pi+1modn − pi|| and similarly for the scene, pi, qi ∈ {1, ...n}. Then the
corresponding edge lengths are compared and put in a dissimilarity vector, δ. If ||δ|| < tpoly
then the correspondences are accepted.

δ =

[
|dp,1 − dq,1|

max(dp,1, dq,1)
...
|dp,n − dq,n|

max(dp,n, dq,n)

]
(21)
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Where
dp and dq are the polygon edge lengths.

Ideally, ||δ|| = 0 if there is a perfect match between the model and the corresponding area
in the scene. This may be the case if the two point clouds are artificially generated by
computers. In practice, the clouds contain inaccuracies because of the sensors, resulting
in edge differences of the corresponding edges. Therefore a threshold, tpoly, has to be set,
and the more inaccurate the point cloud is, the higher the threshold.
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2.4 Rigid Transformation

The rigid transformation matrix describes the change in orientation and position of an
object. In addition, it preserves the geometric properties, meaning the shape of the object
is preserved during transformation. It consists of two parts, a rotation matrix and a
translation vector. In the case of 3D space, the rotational matrix is of the dimension 3x3
and consists of the elements R11 to R33 which can be seen in eq. 22. The translation
movement is described by the row vector and in the case of 3D, contains the elements Tx,
Ty and Tz.

A =


R11 R12 R13 Tx
R21 R22 R23 Ty
R31 R32 R33 Tz
0 0 0 1

 (22)

The translation parameters can be easily read from the transformation matrix, however
finding the Euler angles from the matrix, is slightly more difficult. It should be noted that
working with euler angles in a system is not preferable due to no unique solutions, but
because of the intuitive nature of these angles it can be in some cases preferred.

Rotation
The rotation matrix in 3D space is a combination of rotations around the x, y and z axes.

Rx =

1 0 0
0 cos(θx) −sin(θx)
0 sin(θx) cos(θx)

 Ry =

 cos(θy) 0 sin(θy)
0 1 0

−sin(θy) 0 cos(θy)

 Rz =

cos(θz) −sin(θz) 0
sin(θz) cos(θz) 0

0 0 1


A standard way of expressing the total rotation matrix is in the following order.

R = Rz(θz)Ry(θy)Rx(θx) (23)

The order of these matrices does matter, and reordering will change the output orientation.
In this case, if read from right to left, the rotation is in the order x-y-z around a fixed
coordinate system. When multiplied together, the resulting rotation matrix becomes:

R =

R11 R12 R13

R21 R22 R23

R31 R32 R33


=

cos(θy)cos(θz) sin(θx)sin(θy)cos(θz)− cos(θx)sin(θz) cos(θx)sin(θy)cos(θz) + sin(θx)sin(θz)
cos(θy)sin(θz) sin(θx)sin(θy)sin(θz) + cos(θx)cos(θz) cos(θx)sin(θy)sin(θz)− sin(θx)cos(θz)
−sin(θy) sin(θx)cos(θy) cos(θx)cos(θy)


From this matrix the Euler angles can be found. Looking at element R31 the angle θy can
be derived as shown:

R31 = −sin(θy) (24)

Unfortunately, there are two solutions which satisfies eq. 24. This results in two valid sets
of euler angles.

θy1 = −sin(R31)

θy2 = π − θy1 = π + sin(R31)
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The rotation around the x-axis:

R32

R33
=
sin(θx)cos(θy)

cos(θx)cos(θy)
= tan(θx)⇒ θx = tan−1

R32

R33
= atan2(R32, R33) (25)

In many programming languages, the function atan2(y,x) is used. It takes into account
both signs of the arguments in order to determine which quadrant the results lies in.
Lastly, the rotation around z-axis is as follows:

R21

R11
= tan(θz)⇒ θz = tan−1

R21

R11
= atan2(R21, R11) (26)

These equations work if θy 6= ±π
2 . If θy = ±π

2 , then cos(θ) = 0. This results in the
elements R11, R21, R32 and R33 will all be zero. Therefore other elements in the rotation
matrix has to be chosen in order to find θx and θy.

In the case of θy = π
2 , θx and θz can be found by using the matrix elements R12, R13, R22

and R23.

R12 = sxsycz − cxsz
R13 = cxsycz + sxsz

R22 = sxsysz + cxcz

R23 = cxsysz − sxcz

θy=
π
2====⇒

R12 = sxcz − cxsz = sin(θx − θz)
R13 = cxcz + sxsz = cos(θx − θz)
R22 = sxsz + cxcz = cos(θx − θz) = R13

R23 = cxsz − sxcz = −sin(θx − θz) = −R12

Unfortunately, this gives us an equation with no unique solutions for θx and θz.

R12

R13
=
sin(θx − θz)
cos(θx − θz)

= tan(θx − θz) =⇒ θx = θz + atan2(R12, R13) (27)

Therefore either of the two angles, can be arbitrarily chosen in order to find the other
angle. In the case of θy = −π

2 , the two angles can be found in a similar fashion[60]:

R12 = sxsycz − cxsz
R13 = cxsycz + sxsz

R22 = sxsysz + cxcz

R23 = cxsysz − sxcz

θy=−π2=====⇒

R12 = −sxcz − cxsz = −sin(θx + θz)

R13 = −cxcz + sxsz = −cos(θx + θz)

R22 = −sxsz + cxcz = cos(θx + θz) = −R13

R23 = −cxsz − sxcz = −sin(θx + θz) = R12

R12

R13
= tan(θx + θz) =⇒ θx = atan2(R12, R13)− θz (28)
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3 Implementation

This section will present how the system was implemented. First, a system utilizing a
single Kinect is shown, then a system containg a network of six sensor nodes. For the
source code, visit my Github repositories [61] for the pose estimator node, [62] for the
ROS YOLO detector and [63] for the annotation tools used for YOLO. The system is
based on libfreenect2[64], to retrieve data from the Kinects. In addition, iai kinect2 [52]
was used in order to get the data into an ROS environment. The system utilizes the point
cloud library(PCL) implementations of point cloud algorithms such as ICP, RANSAC and
statistical outlier filter among others.

3.1 System Overview

Figure 20: Camera network diagram

The Kinect network system works as follows:

1. Data from Kinect is captured using iai kinect2, which publishes the data on multiple
topics.

2. QHD image, SD depth map, and intrinsic parameters are retrieved from iai kinect2,
and sent to YOLO ROS. QHD image is used by the Tiny-YOLOv3 detector, which
outputs the bounding box coordinates in its own topic, as well as passing on the
depth map and intrinsic parameters.

3. The pose estimator node fetches the topics from Jetson, creating point clouds based
on the depth map, intrinsic parameters and bounding boxes. These point clouds are
then fused together based on the pose of the different Kinects, creating a complete
point cloud for the box-end and pin-end in the world coordinate system.

4. The two point clouds are sent to a custom made class that segment and filter the
clouds.

5. In the same class, the models are aligned with the two point clouds in order to get
the pose.

The system with one camera works similar, except the camera is connected directly to
computer, using iai kinect2 and a YOLO node(although a different implementation) to
get the detection data.
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3.2 Lab Setup

The Industrial Robotics Lab(IRL) at the University of Agder, seen in Fig. 21, was used
as a testing ground. It is equipped with six sensor nodes placed on the walls around
5 meters above the floor. The working area of the sensors is approximately 10x10x4m.
The sensor node setup is imitating industrial sites one can find on offshore drilling ships,
among others. Each sensor node contains a Jetson TX2 computer and a Kinect v2 RGB-D
camera placed in a waterproof box. The information each sensor node provides is sent by
Gigabit Ethernet to a central computer. [65]

Figure 21: The Industrial Robotics Lab. Three of six sensor nodes shown in blue.

The PC running the pose estimator ROS node in this setup is equipped with an Intel i5-
8300h CPU, a Nvidia GTX 1050 Ti(mobile) GPU and 8 GB of RAM. The sensor network
was calibrated prior to this thesis, therefore no calibration is presented in this paper. The
calibration procedure achieved an accuracy with an average euclidean distance error of
3cm at up to 9.45m. For more information on this procedure see [65].

In addition to the IRL, a set of truncated pipe-ends(see Fig. 22) were provided to do
the testing. Ideally it would be interesting to create the system with pipes of full length,
but each pipe segment is ≈ 6m at minimum, making it impractical. In practice, the
texture and colour of the pipes is a combination of steel, mud and rust. However these
are painted black, but was later changed to a lighter colour as is explained in Sec. 3.4.1.

31



Figure 22: The Pin-end and Box-end.
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3.3 Single Camera

(a) Box-end, roughly 2 m away from camera. (b) Box-end, under 1m away from the cam-
era.

Figure 23: Box-end pipe cloud.

Originally, the main idea in this thesis was to mount a single Kinect camera on the iron
roughneck. In this configuration the camera is close to the pipes which results in high
resolution, capturing the features of the pipes. This can be seen on Fig. 23, where the
point cloud closest to the camera is the most detailed. In addition, the point cloud is less
affected by noise. The system uses Tiny-YOLOv3 to detect the pipes and make cutouts
in the point clouds. This will be explained further in Sec. 3.4. From this cutout point
cloud, a full segmentation was obtained by using a standard version of RANSAC to remove
planes and extract cylinders in order to remove the leftover unwanted points.
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Figure 24: ICP alignment with
model(purple) and scene(blue), us-
ing a single camera.

When using a single camera the point cloud of the
pipe is incomplete. This affects what kind of align-
ment technique can be used. There was an attempt
to use two different techniques, a prerejective version
of RANSAC and ICP. When using ICP, the model
is incorrectly aligned to the scene cloud, as can be
seen on Fig. 24. The model’s orientation follows the
pipe cloud pretty well, however the vertical center
of the pipes are not aligned properly, resulting in an
offset. Therefore ICP was found to be unsuitable
for pose alignment in a single camera setup.

Another approach for pose alignment was tried as
well, where a prerejective RANSAC algorithm[59]
was used. As seen in Fig. 25a, the algorithm per-
formed better. The scene’s and the model’s verti-
cal center are aligned properly. However due to the
random nature of RANSAC, this method resulted in
unreliable pose estimating. In some cases the algo-
rithm would estimate the model to be upside down
compared to the scene cloud, other times the orien-
tation was incorrect as can be seen on Fig. 25b. In
addition, the run-time of the RANSAC algorithm
implemented in PCL was slow and fluctuating. Be-

cause of these problems, the RANSAC algorithm for pose estimating was abandoned as
well. It should been mentioned that the parameters used when testing may have been
suboptimal. Some of the unreliability issues can be prevented by reducing the prerejec-
tion of the algorithm. However, this results in a significant increase of computing time
with minimal improvement to alignment.

(a) Proper alignment (b) Misalignment

Figure 25: Alignment using RANSAC.
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3.4 Kinect Network

Although the thesis requires a sensor node network, it was decided to attempt the single
camera system due to a simple and less costly system. However, because of the unreliability
of the pose estimation explained in 3.3 and the project requirements, it was decided to
adapt the system. While a single camera mounted close to the object may capture the
features of the object better, a network of cameras will capture the overall shape of the
object better, hopefully improve the pose estimation.

3.4.1 IR Camera Limitation

Unfortunately, having cameras at a distance results in a lower resolution of points describ-
ing the pipes, in addition to the lower depth accuracy. Even worse, the dark colouring of
the pipes makes the details deteriorate more with larger distances. The IR light emitted
from the IR camera is absorbed by the pipes and the quality of the point cloud is therefore
reduced. Shown in Fig. 26 is the pipe connection, at roughly the distance of 6 meters.
Looking at the point cloud in Fig. 26a, it is hard to recognize the pipe connection. In the
mentioned figure the pipe is stained with dried dirt that gives it a lighter colour, which in
turn gives better point clouds. However the problem is worse if the colour is dark rusty,
or black. This case is shown in Fig. 27a, where very little of the details gets captured on
the depth map, and in turn in the point cloud.

(a) (b)

Figure 26: Pipe-connection, around 6 m away from camera.

35



(a)
(b)

Figure 27: Pipe-connection, around 6 m away from camera.

This is a fundamental problem when trying to pose estimate based on point clouds on
larger distances. As this thesis is focusing on developing a pose estimating system based
on point clouds, the camera limitation is circumvented by painting the pipes in yellow.

Figure 28: Repainted pipe-ends.
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3.4.2 YOLO Object Detector

The system utilizes the YOLO implementation in ROS by Marko Bjelonic[66]. The only
modification of the code is change of input topics and changing the network weights to a
version that detects box-end and pin-ends. The network utilizes QHD(960x540 resolution)
images, which are downsampled from the Kinect’s HD camera. Libfreenect and iai kinect2
provides SD images as well, which gives faster run-time at the cost of accuracy. However,
the provided SD image is created by merging the depth-map pixels with the corresponding
RGB pixels that results in a noisy picture. Therefore it was chosen to use pure QHD RGB
images for the detector, where the details are better captured. The training images for the
object detector were captured by using the Kinects connected to each Jetson computer.
The captured pictures were then annotated using a self-developed tool.
The annotation tool outputs the annotated data in VOC dataset style, although it can
convert the annotation files into the format YOLO uses. There are also implemented
some simple data augmentation techniques: translation, scaling, and horizontal mirror-
ing/flipping(flip around the vertical axis). The scaling occurs in both x and y direction,
although it is not as visible on Fig. 29c. The blue rectangles shown in the images are for
illustrative purposes, and do not appear on the images used for training.

(a) The original annotated image. (b) Translated image.

(c) Scaled image. (d) Mirrored/flipped image.

Figure 29: Annotated images.

Due to the limited computing power of the Jetson TX2, it was chosen to use the YOLOv3-
tiny version. This variant of YOLO requires less powerful hardware than the regular
YOLOv3 version, although with less accuracy. To train the network, the implementation
by AlexeyAB[67] was adopted. To reduce training time, transfer learning was utilized
by utilizing pre-trained weights as a starting point for training. These are weights that
are trained on many classes from different datasets, where some om these learned low-
/mid-level features might be useful for recognizing the pipes. This significantly reduces
the training time when training for the classes utilized in this thesis. In addition the
implementation uses standard anchor sizes for Tiny-Yolov3, i.e. two sets of 3 anchor
boxes for detection on two feature maps.
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In the case of multiple detections of the same pipe-end class(see 40d and 40e), a function
was implemented that discounts the detection with the lowest confidence. This limits the
detector system to only a single set of pipe-ends.

The object detector is then implemented on each Jetson computer. To start the object
detectors from a local PC, a ROS-launch file was created which communicates with the
Jetsons over the network using the SSH protocol. The run-time speed of the detectors are
roughly 13-14 FPS, which is fast relative to the rest of the system.
This detector is trained on fairly stable lighting condition. The ceiling lamps provide
constant illumination, and only light coming through the outer windows affects the light-
ing. However on a drilling platform, the light will greatly vary. These are conditions the
detector has to be trained for, as well as using unpainted pipes. In addition, the combina-
tion of bad lighting and the darker color of the actual drilling pipes will likely affect the
performance of the detector.

3.4.3 Point Cloud Fusion

After the pipe detection, the information is sent to a master computer for point cloud
creation and pose estimate. Each Jetson publishes the topics containing the bounding
box coordinates from the object detector, as well as the corresponding depth-map and
intrinsic camera parameters. In order to receive this information, the subscriber utilized
an approximate synchronizing policy because of the asynchronous publishing between the
different Jetson computers. This asynchronous data transportation results in erroneous
point clouds when the pipes are moving. However, the Jetsons publish at a rate of ≈
14FPS, which means the pipes has to move fast for this to be a problem. In addition,
due to pose estimation on moving pipes is not a requirement, it was chosen to continue
with this. To speed up the system a bit, an asynchronous spinner was used to handle the
callback function on a separate processor thread.
Based on the depth map, intrinsic parameters and bounding boxes, two cut-out point
clouds are created containing the pin-end and box-end as can be seen on Fig. 30. It
should be noted that the point cloud in Fig. 30b is transformed to the world frame, which
is not the case when the cut-out is performed.

(a) Detected objects. (b) Point cloud of box(green) and pin(red).

Figure 30: The corresponding QHD image and point cloud from Jetson3
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Figure 31: Point cloud cut-out of pin-end(red) and box-end(green) from the different
cameras. Where the white points are the full view of the camera.

Because the bounding box coordinates are in the QHD frame, the coordinates have to be
converted to the depth-map frame. This is a registration problem, finding the correspond-
ing RGB pixel coordinate and depth-map pixel coordinate. Since this system is a proof
of concept, finding exact RGB and depth-map pixel correspondences were not prioritized.
In this case the corresponding bounding box between the RGB image and depth-map was
found empirically, ensuring the bounding box of the depth-map covers each pipe. This was
done by roughly finding the x-valued pixel on RGB that corresponds to the zero valued
pixel on the depth map.

Due to the RGB camera having a wider field of view than the depth map, objects
detected on the far sides has to be rejected. The depth map also has a higher field of view
than the RGB, making the area limited by the RGB height and IR width, the effective
usable area. The rough cut-out, will affect the segmentation negatively as will be described
later.

Since the point cloud from each camera is created in its own locale frame, the different
point clouds have to be transformed. The parameters for the different transformation
matrices was given. On Fig. 32 this transformation can be seen.
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(a) Point clouds from the different cameras
in a common camera frame.

(b) Point clouds transformed into the global
frame.

Figure 32: Transforming the point clouds to the global frame.

After transforming the point clouds to a global frame, they were combined. Even though
the camera network gives a more complete point cloud of the scene, the resolution provided
by the Kinect is good enough to capture the shape of the small pipes. In order to get
a better point cloud to work with, multiple layers of point clouds are appended to each
other. On Fig. 33a there is only one layer, but on Fig. 33b five layers have been joined
together. This creates a better point cloud to work with, capturing the pipe shape better
although the fine details are still left out.

(a) Pin-end and box-end using one point
cloud layer

(b) Pin-end and box-end using five point
cloud layers

Figure 33: Point cloud of pipe-ends using concatenated layers.

3.4.4 Pipe Segmentation

Before pose estimation, it is important to separate the pipe points in order to make the
pipe alignment more efficient. Two methods were evaluated, the first method uses a square
around the pipe to exclude all points outside. The other method is segmenting the pipe
by using RANSAC to recognize primitive shapes, which are then excluded or retained.

The first method assumes the pipes are placed on the ground, in a vertical/angled orienta-
tion. The aim is to find a square that is parallel to the ground and is centered around the
pipes. To calculate the square’s position, the x and y coordinate of pipe-cloud’s center has
to be calculated. This is done by excluding every point outside the height range of 0.45m
to 1.5m and the rest points are used for calculating x and y position of the pipe. In this
case the square used for excluding the unnecessary points is of the dimension 0.20x0.20m,
a little wider than the pipes’ diameter. This is not a good method for segmenting the
pipe cloud, and will not work if there are other objects close to the pipe in the said height
range. In that case, the square will most likely be placed outside the pipe and exclude the
pipe itself. One option to solve this is to improve the cut-out of pin-end and box-end to
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only cover the pipe-ends when creating the point cloud. Although, if the perfect cut-outs
contain any obstructions close to the pipes, this method will not work.

Figure 34: Segmented and filtered box-end(blue) and pin-end(blue), using a square exclu-
sion method.

The second method was aimed to solve the aforementioned problems of the square exclu-
sion approach. The idea is to use RANSAC to find planes, and then exclude the points
found in these plane. Unfortunately, because of the inaccurate points, removal of planes
leaves behind a substantial amount of scarce points. To solve this, a statistical outlier
removal filter was applied. This will remove the remaining points, as well as refine the
pipe clouds. Due to the wide spread of points, the standard deviation is high. Therefore
the standard deviation multiplier α was set to a value of α = 0.6.
Planes are not the only obstacles in the scene, therefore this operation is followed by uti-
lizing RANSAC to find cylinders, and keep these points. The reason being that the pipes
have a cylindrical geometry. Sadly this approach did not perform much better. Because of
the inaccurate point cloud, RANSAC struggles to recognize cylinders correctly. As can be
seen on Fig. 35a, the algorithm removes the ground plane, but the cylinder segmentation
is incorrect if there are any larger objects close to the pipes. This method is also slower
than the other approach. Although it is not a big improvement in avoiding obstacles, it
solves the ground placement limitation.

(a) Segmented points(blue). (b) Corresponding image.

Figure 35: RANSAC segmentation
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Even though the RANSAC segmentation works slightly better, it was chosen to proceed
with the square exclusion method. Due to the fact that the latter preserves most of the
pipe points, and will work better with the ICP algorithm as well.

3.4.5 Pose Estimation

With the pipe fully segmented, it is ready to be used for pose estimation. The models
are created in Solidworks, based upon roughly measured dimensions of the pin-end and
box-end.

(a) Box-end CAD model (b) Pin-end CAD model

Figure 36: Solidworks models.

The CAD models then had to be converted to point clouds. This was done by using
CloudCompare to create uniform distributed point clouds of the models.

(a) Models(purple) loaded at origin before
ICP alignment.

(b) Models(purple) aligned with the seg-
mented point clouds using ICP.

Figure 37: Model alignment using ICP.

The models are then loaded into the program at the origin as can be seen on Fig. 37a.
Before running the ICP algorithm, the models are pre-aligned with their respective point
cloud. This is done by calculating the average x, y and z value of the segmented pin-
end and box-end point cloud, and then use the corresponding transformation matrix to
translate the models to these position. The prealignment is done if the models are more
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than a set distance away from the segmented clouds. Afterwards, ICP is used to properly
align the models with the clouds. Maximum iterations were set to 200, and during each
program cycle, the ICP algorithm was applied 10 times in order to get a good fit.

3.5 Test Procedure

To test the system’s performance a set of ground truths were measured, and the pipe-ends
were places at these coordinates. The coordinate systems seen in Fig. 38, is set to match
the global coordinate system, meaning when the pipes are in a vertical position, the pipe
rotations in x and y are zero.

0.23m

z

yx

(a)

0.327m

z

y
x

(b)

Figure 38: Pipe-ends’ coordinate system.

For the box-end, the position was chosen to be above the neck, through the longitudinal
center of the pipe. Similarly, the end of the neck was chosen for the pin-end as well. These
positions were chosen because they tend to be constant for the pipes. Due to wear, the
pipes has to be grinded and re-threaded which results in varying length of the pipe-ends.
The positions given in the following plots is therefore referring to these positions.

Two cases are considered, vertical and angled. The system was left to run for ≈ 15min
to get multiple estimations, capturing 109 data samples for the vertical case and 95 samples
for the angled case. The orientation data was captured by converting the resulting rotation
matrix to Euler angles. Due to the master computer’s RAM limitation, it was chosen to
use three concatenated layers of point clouds in the following results. It was also found
that increasing the layers beyond three, did not increase the accuracy of the estimation in
any significant way.
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4 Results

4.1 Case 1: Vertical

Figure 39: Models(purple) aligned with the segmented points(blue). Points made bigger
for illustrative purposes.

x[m] y[m] z[m] θx[deg] θy[deg] θz[deg]

Box-end 4.694 5.3 0.23 0 0 0
Pin-end 4.694 6.8 0.327 0 0 0

Table 1: Ground truth pose.

Box-end

Position µ [m] Position σ [mm] Rotation µ[deg] Rotation σ[deg]

x-axis 4.720 2.1 -4.55 1.31
y-axis 5.320 2.2 -1.50 1.59
z-axis 0.295 3.6 31.2 11.33

Table 2: Mean µ and standard deviation σ values for position and rotation.

Pin-end

Position µ [m] Position σ [mm] Rotation µ[deg] Rotation σ[deg]

x-axis 4.733 4.5 0.80 0.93
y-axis 6.824 4.4 3.52 0.99
z-axis 0.393 6.8 20.89 5.26

Table 3: Mean µ and standard deviation σ values for position and rotation.
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(a) Jetson1 detected objects. (b) Jetson2 detected objects.

(c) Jetson3 detected objects. (d) Jetson4 detected objects.

(e) Jetson5 detected objects. (f) Jetson6 detected objects.

Figure 40: YOLO detections
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(a) (b)

Figure 41: Pipe positions.

-0.005 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

x[m]

0

0.005

0.01

0.015

0.02

0.025

0.03

y
[m

]

Box-end Position Deviation

Estimated

Ground truth

(a)

-0.04 -0.02 0 0.02 0.04 0.06 0.08

y[m]

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

z
[m

]

Box-end Position Deviation

Estimated

Ground truth

(b)

0 0.01 0.02 0.03 0.04 0.05 0.06

x[m]

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

y
[m

]

Pin-end Position Deviation

Estimated

Ground truth

(c)

-0.04 -0.02 0 0.02 0.04 0.06 0.08

y[m]

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

z
[m

]

Pin-end Position Deviation

Estimated

Ground truth

(d)

Figure 42: Estimated position error.

46



(a) Box-end orientation. (b) Pin-end orientation.

Figure 43: Pipe orientation relative to ground truth.
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Figure 44: Estimated pipe orientation error.
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4.2 Case 2: Angled

Due to practical reasons, only the box-end was tested in an angled orientation.

Figure 45: The box-end model(purple) aligned with the segmented point cloud(blue).
Points made bigger for illustrative purposes.

x[m] y[m] z[m] θx[deg] θy[deg] θz[deg]

Box-end 4.694 5.3 0.31 0 ≈ -30.6 0

Table 4: Ground truth pose.

Box-end

Position µ [m] Position σ [mm] Rotation µ[deg] Rotation σ[deg]

x-axis 4.643 4.7 -1.21 5.73
y-axis 5.321 6.4 -25.51 1.29
z-axis 0.358 3.8 2.06 6.09

Table 5: Mean µ and standard deviation σ values for position and rotation.
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(a) Jetson1 detected objects. (b) Jetson2 detected objects.

(c) Jetson3 detected objects. (d) Jetson4 detected objects.

(e) Jetson5 detected objects. (f) Jetson6 detected objects.

Figure 46: YOLO detections.
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Figure 47: Box-end position.

(a) (b)

Figure 48: Box-end estimated orientation and ground truth.
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Figure 49: Estimated box-end position error.

-10 -5 0 5 10

x[deg]

-6

-4

-2

0

2

4

6

8

10

12

14

y
[d

e
g

]

Box-end Rotation Deviation

Estimated

Ground truth

(a)

-15 -10 -5 0 5 10 15 20

y[deg]

-15

-10

-5

0

5

10

15

z
[d

e
g

]

Box-end Rotation Deviation

Estimated

Ground truth

(b)

Figure 50: Estimated box-end orientation error.

51



5 Discussion

5.1 Detector Performance

Fig. 40 and 46 gives an indication of the detector performance. The box-end is detected
fairly well, but it struggles to detect the pin-end correctly. Unfortunately, the truncated
pin-end is fairly similar to the box-end when in a vertical position at these viewpoints. In
addition, due to Tiny-YOLOv3 not having the third feature map to do predictions on, the
detector is likely to struggle because of the pipe-ends’ small size.
As can be seen in the mentioned figures, the detector sometimes detects the box-end as a
pin-end. To deal with this, a fail-safe feature was implemented to only accept the detection
with the highest confidence if multiple pin-/box-ends are detected. Although, this will not
work in the cases where the erroneous detection has the highest confidence. Fortunately
this did not happen in the experiments, but it is something to consider. If this happens,
some of the box-end would appear in the pin-end cloud, resulting in a segmentation and
model alignment that would fail.

The detector only works reasonably well in vertical/angled cases, but performs poorly
when the pipes are position horizontally on the ground. There was an attempt to train
the network for this, however the detector did not perform well in this case, and experi-
mentation in this case was therefore omitted. In addition, this re-training of the network
reduced the performance, making detection on pipes in vertical position as seen on Fig.
40 perform worse. One reason for this performance reduction may be due to the visual
similarities of the pipes when one of the them are upside down. This is the case when the
pipes are laying horizontally on the ground as the pipe appear inverted for some cameras.
To reduce the similarities of the box-end and pin-ends, training with whole pipes and not
the truncated pipes used in this thesis, should be performed.

Another source of error that should be noted, is the annotation process. When an-
notating hundreds of training images, there is a chance of wrongly annotate the different
classes, e.g. annotate the box-end as a pipe-end and vice versa. Unfortunately, training
on wrongly annotated images decreases the detection accuracy significantly.

The detector would also perform better if there was more training data. There were
roughly 500 original images used for training, although with some data augmentation this
was increased to 900. When compared with classes in other datasets, e.g the Pascal’s
VOC datasets, which contains thousands of images per class, the amount of training data
for the pipe-ends are low. Although these datasets have significant more variation in the
class objects themselves in addition to the background, than the two classes used in this
thesis, there is room for improvement by increasing the training data.

During the thesis, multiple weights were used. Initially the detectors were trained for
the pipes placed vertical on the ground. However, there was a desire to train the detector
for angled and horizontal pipes. The detector were augmented with data from these
latter cases, which somewhat helped the angled cases, although it reduced the detector’s
performance in vertical cases. Therefore it was chosen to use the best performing weights
in the vertical case as seen on Fig. 40. While the best performing detector weights were
used in the angled case, as seen in Fig. 46. This explains the missing detection of the
pin-end in Fig. 46f. It was chosen to use different weights in order to see how well the
pose estimation performs with a functional detector.
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5.2 Sensors

Due to the limitation of the depth sensors, the accuracy of the system is reduced. Even
with the repainted pipes, the corresponding point clouds are not satisfyingly captured.
The closest sensor is roughly 5.5m away from the pipe, but other sensors are at a distance
of up to 7m. This variable distance from the pipe to the different sensors will also affect
the shape of the resulting point cloud. As can be seen on Fig. 34, there are no continuous
surface describing the pipes, but rather resembles two warped solid cylinders. In practice,
the current system would not work due to the poor accuracy when using pipes with normal
appearance. To solve this a better depth sensor is required.

5.3 Segmentation

The current segmentation procedure is maybe the biggest challenge when it comes to
system robustness. Because the point cloud cut-out is done very roughly, it brings a lot of
unwanted points into the clouds. Even though the square exclusion method is capable of
segmenting the pipes standing on the ground with no obstructions, it is not designed for
industrial application. On offshore drilling ships, the only case when the pipe is vertical
on the ground, is when the box-end is coming through the platform, either going up or
down through the oil-well. Otherwise, the pipes are laying on the catwalk or positioned
vertically in the air when handled by the Hydraracker. For the latter cases, the square
exclusion system will fail.

Segmentation using RANSAC was attempted to solve the robustness against obstruc-
tion problem, in addition to remove the ground placement limitation. Sadly, RANSAC
struggles to estimate anything more than planes, when working with the inaccurate and
noisy cloud. This could be solved by replacing the existing depth cameras with more
accurate ones. In addition, experimentation with other RANSAC algorithms as described
under Sec. 2.3.1, could give better segmentation. Although it is a significant obstacle in
obtaining a robust system, a lot could be gained by improving the point cloud cut-out.

5.4 Pose Estimation

The pose estimation works fairly well when the segmentation is done properly. Looking
at the Figs. 42a-42d, there is a bias on all positions. For the box-end, the mean positional
error is xBox,posDev ≈ 2.6cm, yBox,posDev ≈ 2.0cm and zBox,posDev ≈ 6.5cm respectively,
with relative little spread. Most of the detectors were able to capture the box-end, which
can be seen on Fig. 40, resulting in a good point cloud. The accuracy in x and y is
generally good, however the error in z tend to have a larger bias.
In the case of the pin-end, the mean positional deviation is xPin,posDev ≈ 3.9cm, yPin,posDev ≈
2.4cm and zPin,posDev ≈ 6.6cm, with more spread than the box-end.

Some of this bias can be explained by wrongly measured ground truth coordinates.
Due to practical reasons, it was hard to match the pipes to the measured coordinates
correctly. A more significant error may be due to an incomplete point cloud. As shown
in Fig. 24, the model centers itself around the incomplete point cloud. Although in the
mentioned figure, the point cloud is worse in terms of the overall shape when compared
to the point cloud of multiple cameras. However, if not the pipe is captured uniformly
around the symmetric axis z, the model alignment will be biased one way or the other. In
the case of box-end, this could explain the larger mean error for x when compared with y.
As seen in Fig. 40d, the detector could not locate the box-end, resulting in a point cloud
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missing the details from this viewpoint. Similarly, this could be the case for the pin-end.
Looking at the results in Fig. 42c and 42d there is a larger bias in comparison to the
box-end. Some of this bias can be explained by a limited amount of detectors were able
to capture the pin-end, as can be seen in Fig. 40.

As seen in Fig. 42b and 42d the bias in z for both the pipe-ends are larger when
compared with x and y. The ICP algorithm struggles to align the models correctly due to
the sensor inaccuracy, in addition to few points describing the pipe along its longitudinal
axis. This is because the pipes’ z-axes are not parallel with the sensors. It should be noted
that this affects the x and y positioning as well, but the alignment in z axis is especially
affected.
In the case of the pipe-end the threaded section is especially noisy. Looking at Fig. 28,
the threads are not fully painted. What the figure does not show is the lack of paint on
the other side. This leads to fewer and inaccurate points describing these threads, which
can be seen on the pin-end cloud in Fig. 39. This results in a segmented pin-end cloud
that is shifted above the ground, and in turn an increased positional deviation in z.

When it comes to orientation, the estimation is decent. Looking at the Figs. 44a-44d,
the mean rotational deviation in x and y for the box-end/pin-end is xBox,rotDev ≈ −4.5◦,
yBox,rotDev ≈ −1.5◦ and xPin,rotDev ≈ 0.8◦, yPin,rotDev ≈ 3.5◦. The rotation around z is
much worse, with a mean deviation of zBox,rotDev ≈ 31.2◦ and zPin,rotDev ≈ 21◦. However,
due to it being a symmetrical axis, it is not relevant in this case. During alignment, ICP
tend to rotate in the models around z, and the z deviation seen on Fig.44b and 44d may
be an accumulative error that increases as the program is running.
Probably due to the sensors’ inaccuracy, the pipe surface is warping at each iteration.
This results in “wiggling”, where the models have a slight variation in rotation around x
and y-axis. In addition, the varying distance from the sensors to the pipes will give the
pipe cloud different warping of the pipes’ surface. This could explain why the orientation
has the mentioned bias.

The system performs fairly well in the angled case as well, with a mean positional
error of xBox,posDev ≈ −5.1cm, yBox,posDev ≈ 2.1cm and zBox,posDev ≈ 4.8cm. Because
measuring the ground truth being slightly harder, the measurement is likely to be more
erroneous than the vertical case. When compared with the results in the vertical case,
the positional error in x is standing out. Some of this bias can be explained by the
detector in Fig. 46d is not able to locate the box-end, leading to a non-complete point
cloud. In addition, because of problems locating the exact center of the pipe when the
measuring ground truth value for x, it is likely to be incorrect. However, all the detectors
are capturing the sides of the pipe, resulting in a small deviation for y. In addition, the
positional error in z is performing better than the vertical case. This is due to the box-end
is positioned almost parallel for some of the sensors, giving a better point resolution at the
neck and a better alignment with the box-end’s longitudinal axis. It should be noted that
the variance is larger than in the vertical case, this is probably a result of the underside
not being detected, in addition to the square exclusion method somewhat concatenates
the cloud.
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When it comes to the box-end orientation in the angled case, the mean rotational errors
are xBox,rotDev ≈ −1.21◦, yBox,rotDev ≈ 5.09◦ and zBox,rotDev ≈ 2.06◦, performing similar
to vertical case when it comes to mean deviation. Looking at Fig. 50a, the rotational
variance around the x-axis is significantly larger than the y-axis. Again, due to the sensor’s
inaccuracy, the point cloud surface appears scaled and warped when compared with the
model, this may give room for “wiggling”. From Fig. 48a, 48b and 50b, the rotation
around z is still present, although smaller when compared with the vertical case.

It should be noted that the ICP algorithm requires a good prealignment for the pose
estimation to work. This is especially the case when working with a noisy point cloud,
such as the ones used in this thesis. This can be seen in Fig. 51 in Appx. A, where the
box-end model has a suboptimal prealignment.

5.5 Runtime Speed

The program cannot be considered a real-time system. Although Tiny-YOLOv3 runs
fast on Jetson at ≈ 14FPS, the rest of the system is slow. Depending on the amount
of concatenated layers, the point cloud construction period is long. For three layers, as
used in the results, the time building the clouds are 5 − 6s. The segmentation and pose
estimation uses ≈ 5s each cycle, although this can be reduced. For a good fit, ICP is run
multiple times to guarantee a satisfying alignment. This is redundant if the prealignment
is good, but is important in the cases where the model and pipe cloud has a significant
deviance in orientation and position after prealignment.
In industrial application, the hardware is likely to be more powerful than the one used in
this thesis(see Sec. 3.2 for hardware), increasing the runtime speed. However, there is a
lot to be gained by improving the performance of the program itself. In Sec. 6.1, several
improvements are proposed, which should make the program run faster.
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6 Conclusion

In this thesis, various different techniques for object detection, segmentation and alignment
has been evaluated. An overview of ROS and point clouds creation are provided. In
addition, a basic presentation of machine learning with CNNs has been held, along with
a deeper explanation of the machine learning network YOLOv3. Furthermore, different
model estimators and pose estimating algorithms for point clouds, such as ICP and various
RANSAC versions are presented.

Based on these techniques, a pose estimating system for stationary pipe-ends has been
made. The system utilizes a sensor node network where each node is equipped with a
Jetson TX2 computer combined with a Kinect v2 sensor. For communication between the
sensor nodes and the master computer, the framework ROS is used. Tiny-YOLOv3 are
implemented on each sensor node which performs pipe detection on 2D images provided by
the Kinect. Further, a pose estimating ROS node was created in C++. This node takes
the detections from the multiple sensor nodes and uses the depth map to create point
clouds cut-out of the pipes. These point cloud cut-outs from each sensor node are then
combined into two point clouds, one for each pipe. Further segmentation is done in order
to remove any unnecessary points, and lastly pose estimation using ICP is performed.

For the box-end, the pose estimator managed to achieve a small mean positional error
of ≈ 2.6cm, ≈ 2.0cm and ≈ 6.5cm for x,y and z respectively. The mean rotational
deviation is ≈ −4.5◦, ≈ −1.5◦ around the x- and y-axis. The pin-end is slightly worse
with a mean positional error of ≈ 3.9cm, ≈ 2.4cm and ≈ 6.6cm for x, y and z. The
estimated mean orientation error was found to be ≈ 0.8◦, ≈ 3.5◦ around the x- and y-axis.
The box-end was also tested in an angled case, where the pose estimator achieved a mean
positional error of ≈ −5.1cm, ≈ 2.1cm and ≈ 4.8cm for x, y and z. In this case the mean
rotational deviation was ≈ −1.21◦, ≈ 5.09◦ for x and y respectively. This proof of concept
is not fit for industrial use, but several changes are proposed which increases the speed
and accuracy.
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6.1 Further Work

Although the system functions in the testing environment used in this thesis, several
changes should be done in order to use it in industrial environments. This includes im-
proving the system speed, pose estimation accuracy and adapt the detector for industrial
sites.

First-most, an upgrade of the depth sensor would benefit the system’s accuracy, in
addition to increase segmentation methods such as RANSAC. An increased accuracy and
resolution of the depth map, will give better point clouds to do the pipe alignment with.
This should result in a significant improvement to pose estimation accuracy, with less
variance. Further, as the sensors improves, a transition to drill pipes with natural metallic
and rusty appearance should be possible.
It would be interesting to see how the system performs on newer RGB-D sensors such
as the new Kinect sensor, which at the time of writing are just around the corner. This
sensor provides higher resolution depth maps and better accuracy, properties which the
system would greatly benefit from.

In addition, further training of the detector has to done in order to get an unified
detector which performs well in different orientations and positions not used in this thesis.
If the system is to be used in industrial applications, training data has to be captured
from the site. Tiny-YOLOv3 can be replaced by other machine learning networks that are
more accurate. Because the detector is much faster than the rest of the system, sacrificing
some speed for better detections will improve the system’s accuracy without slowing the
system down in any significant way.

The segmentation should be improved by changing the current point cloud cut-out pro-
cedure. By constructing a correct mapping from QHD image to depth map coordinates,
the cut-out becomes significantly smaller, improving both the system speed and memory
usage. This will in turn help the segmentation as well, by removing a lot of unwanted
objects from the point cloud. Ideally, the improved cut-out will only provide the pipe-end
points, but in the case the detectors are trained for small obstructions, further segmenta-
tion has to be done. However, the reduced points will increase the segmentation speed.
In addition, more accurate sensors will make the use of algorithms such as RANSAC
more efficient. Further experimentation with other segmentation algorithms should also
be experimented with.

In order to improve the system speed, a modification to the point cloud creation is
needed. By moving the point cloud creation to the Jetson itself, the system becomes
faster. The process of creating the cut-out point cloud for each individual detector is fast,
therefore an idea is to let each Jetson do the cut-out, transform it to the global frame,
and at last transfer the point cloud over a ROS topic. In this configuration, the master
computer only has to fuse the point clouds together. This will also make the system
scalable, making it easy to add more sensor nodes to the system, covering larger areas,
in addition giving the point cloud more detail. Transferring point clouds over a network
may be demanding, but by improving the object cut-out, less unnecessary details in the
scene will be captured. Alternatively, a down-sampling filter could be applied in order to
reduce the object resolution.
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Further, an option is to expand the sensor network by attaching a camera to the iron
roughneck, similarly to the system explained earlier in this thesis. By enhancing the point
cloud with a sensor this close, the increased details will increase the system’s accuracy.
Although, this will only give a better resolution on one side of the pipe, the longitudinal
alignment will be better, similarly to what can be seen in Fig. 24.
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Appendix A Additional Figures

Figure 51: Misaligned box-end due to bad prealignment.
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1 INTRODUCTION

The offshore oil and gas industry is working on increasing
the autonomy of offshore operations and many drilling oper-
ations are already automated. Moving forward, knowledge
of vision technology and 3D mapping is crucial to increase
autonomy further.

In this assignment the detection of drill pipe is to be
investigated as a human operator is still needed to verify
the position of drill pipe to ensure correct handling. Drill
pipe is the major component of the drill string. It generally
constitutes 90-95% of the entire length of the drill string
which is the heavy seamless tubing used to rotate the bit
and circulate the drilling fluid when drilling for oil. The drill
pipe is a seamless pipe with threaded connections, known
as tooljoints (fig. 1). At one end of the pipe there is the
box, which has the female end of the connection. At the
other end of each length of drillpipe is the male end of
the connection known as the pin. The wall thickness and
therefore the outer diameter of the tooljoint must be larger
than the wall thickness of the main body of the drillpipe in
order to accommodate the threads of the connection. Hence
the tool joints are clearly visible in the drillstring.

2 PROBLEM DESCRIPTION

Today, it is difficult to know the actual position of drill pipe
without visual confirmation from a human operator. If all
pipes were the same length, it would be possible to estimate
where the ends are. However, as drill pipe may vary in length,
an operator is still present. The need of visual confirmation
is an obstacle preventing fully autonomous pipe handling
operations.

In fig. 2, an example of such operation is shown. The drill
pipe lies on a Pipe Catwalk (shuttle that transports pipe
horizontally) with the pipe extended to hand-over position.

• Joacim Dybedal and Geir Hovland is with SFI Offshore Mechatronics,
Department of Engineering Sciences, University of Agder.

• Baltasar Beferull-Lozano is with the WISENET lab, Department of
Information and Communication Technology, University of Agder.

Figure 1. Old fashion roughneck connecting drill pipe. Here he is
supporting the pin end tool joint to be placed in the box end of the
drill pipe below. (Image, Wikimedia commons.)

This position is visually acknowledged by the operator
before the HydraRacker (tall machine for transporting pipe
vertically) latch on to the tool joint to hoist the pipe to a
vertical position.

The purpose of this assignment is to create an automatic
detection of the the tool joint. This would allow the automatic
sequence to run continuously without the need for the
operator’s visual confirmation.
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Figure 2. Modern pipe handling using Multi Machine Control (MMC) from
NOV. The operator visually confirms the pipe hand-over position between
robots before resuming automatic sequence. See full video at go.nov.com.
(Image, NOV.)

The student(s) should have an interest in computer program-
ming, computer vision and/or machine learning and would
benefit from a basic knowledge of Linux (Ubuntu) and C++
programming. However, this is also an unique opportunity
to learn new skills that are very heavily in demand in the
industry today.

3 AVAILABLE RESOURCES

SFI Offshore Mechatronics has installed an Industrial
Robotics Lab (IRL) in the Mechatronics Innovation Lab (MIL),
including two rail-mounted ABB robots and one gantry-
mounted ABB robot (fig. 4). IRL is also equipped with six 3D
sensor nodes (fig. 3). The sensors map the environment in 3D
and can deliver data to other ROS nodes for processing.[1]

The following resources will be available for the student(s):

• Access to the Industrial Robotics Lab in MIL when
testing the software.

• Live 3D Sensor data from 6 sensor nodes (RGB, IR, Depth
images and Point Clouds). The data can be accessed
remotely from the student’s workplace.

• A tool joint to be detected by the sensors.

• If the software is based on GSP, the student(s) will have
access to expertise developed in the WISENET lab at
UiA.

Figure 3. One of the available sensor nodes using a Microsoft Kinect (V2),
Carnegie Robotics industrial stereo camera MultiSense S21, Velodyne
16 beam rotating LiDar VLP16 and the embedded computer NVIDIA
Jetson TX2.

Figure 4. The Industrial Robotics Lab in MIL is used as the example case
of an industrial environment. The lab consists of two rail-mounted ABB
IRB4400 robots, one ABB IRB2400 robot mounted on a GÜDEL gantry
and a processing facility.

2

23 av 70



Figure 5. The combined (accumulated) point clouds of 6 Kinect point
clouds.

4 PROJECT GOALS AND OUTCOMES

The student(s) should investigate different detection tech-
niques including, but not limited to, AI/Neural Network-
based detectors (e.g. YOLO, SSD), graph signal processing
(GSP) and more classical computer vision algorithms (using
e.g. OpenCV, Point Cloud Library, etc.).

Based on the selected techniques, the student(s) should
develop a software to detect and track drill pipe, based
on 3D sensor data captured in the robotic cell. Detecting
position of the box-end tool joint is especially important. The
software can use both color images, depth measurements or
a combination of both to accomplish this.

The software should be developed as a ROS (Robot Operating
System) node that subscribes to real-time sensor data and
publish pipe type, position and orientation (pose) for other
ROS enabled system to use. The pose should preferably be
found in less than one second.

The software should be demonstrated in IRL, MIL. This can
be done in collaboration with on-going robotic research such
that the robots may interact with the detected pipe.

Summarized, the following should be the outcome of the
project:

• Evaluation of detection techniques.

• Create a ROS node capable of quickly detecting and
publishing the tool joint pose.

• Industrial demonstration in MIL.

Further, if novelty of results and time allows it:

• Publish results in a conference paper.

• Classify different pipe types.
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Figure 6. Example of Graph Signal Processing

Graph Signal Processing can take advantage of signal
processing techniques (e.g. Graph Fourier Transform and
frequency domain filters) by structuring point clouds as
graphs. Toolboxes for GSP exists in e.g. Matlab (https:
//epfl-lts2.github.io/gspbox-html/) and Python (https://
pygsp.readthedocs.io/en/stable/).

YOLO (You Only Look Once) is a state-of-the-art, real-time
object detection system based on Darknet, an open source
neural network framework written in C and CUDA. Read
more: https://pjreddie.com/darknet/yolo/

The Robot Operating System (ROS, www.ros.org) is a set of
software libraries and tools for building robot applications.
It is a modular system where it is easy to create and use soft-
ware packages which communicate through a standardized
interface using ROS messages.

The Point Cloud Library (PCL, http://pointclouds.org/) is a
standalone, large scale, open project for 2D/3D image and
point cloud processing

OpenCV (Open Source Computer Vision Library, https://
opencv.org/) is an open source computer vision and machine
learning software library. OpenCV was built to provide a
common infrastructure for computer vision applications and
to accelerate the use of machine perception in the commercial
products.

NOV MMC video
https://go.nov.com/#now_showing/video/
4b1a0593edf9f92869073c5dd2ae566c

NOV MMC animation
https://go.nov.com/#now_showing/video/
6ccb705bd68f10715546ced0ea2cd29b
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