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Abstract

This Master’s thesis is carried out as a part of the Mechatronics Master’s program at University
of Agder. The thesis describes the development of an autonomous ground vehicle prototype for
moving containers, as well as presenting a state-of-the-art of the container industry.

First the theory utilized in the methodology of the thesis is presented. Then the method’s used
to gather the desired results is described. Lastly the results are presented and discussed, before
a conclusion is drawn.

The project follows the V -model methodology and started with the design of a system overview
and selection of suitable hardware and software. Robot Operating System (ROS) was used as
the main software in this thesis. The software was first tested as individual modules on the se-
lected hardware before implementation into larger sub-systems for integration testing. Finally,
all the sub-systems was combined into the complete system for the final testing.

A 1:14 scale RC truck was assembled and used as the base of the prototype. Remote access was
set up with a wireless hotspot to control the prototype with an external computer. The first step
to autonomous driving was to drive the prototype manually and develop the low-level control
for Ackermann steering. Secondly an indoor localization system based on ArUco tracking and
an extended Kalman filter was created to estimate the pose of the prototype. The low-level
control and localization was combined into the navigation stack in ROS. The ROS navigation
stack also includes a local and global path planner, in addition to a map for the prototype
to navigate in. Simultaneous localization and mapping (SLAM) was implemented to provide
mapping capabilities.

The path planning was tested with a point-to-point driving test width dynamic obstacle avoid-
ance. Finally, the full autonomous capabilities of the prototype was showcased by a demonstra-
tion program where the prototype was given a set of user defined waypoints. The prototype
proceed to drive through the waypoints in a continuous loop whilst being able to avoid several
dynamic obstacles.
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1. Introduction

1. Introduction

The demand for autonomous systems is ever increasing in the modern world. Autonomous
vehicles has become a reality and pave the way for future systems where computers take over
the art of driving, executing tasks and navigating.

1.1 Background

Shipping containers revolutionised the global movement of goods. The next revolution in con-
tainer handling is totally automated container ports and supply chain. Container ports are
an ideal place to implement an autonomous system. The operational area is limited to a fully
controlled environment, enabling installation of specialized infrastructure. Unlike autonomous
cars, the decision making can be implemented in layers extending from the automated machin-
ery all the way to the core software of the container terminal. The container terminals have safe
access control systems built in accordance with well-defined industrial safety standards which
again will enable the automated system to work parallel to humans in a safe manner.

The world biggest container port is the Yangshan Deep Water Port in Shanghai with an annual
Twenty-foot equivalent unit (TEU) of approximately 40 million [1]. One tenth of the port is
fully automated with a TEU of 4 million. In comparison the container port in Kristiansand,
Norway have an annual TEU of 50 000 [2].

Only 3% of the shipping terminals in the world was semi or fully automated by the year 2018
[1]. It is estimated that the automated container market will experience an increase of 20%
by the year 2023. The port of Qingdao began automated container handling in the year 2017,
capable of handling 1 million TEU. The entire system cost $468 million to install. The invest-
ment reduced the number of workers from 60 to 9, while increasing the efficiency by 30%. The
investment became profitable a mere 10 month after it was opened [1].

Autonomous container handling is the future within the shipping industry. Three percent of the
big container ports in the world have installed systems of autonomous container cranes, gantry
cranes and custom-made trucks. These systems are not suited for smaller container ports, due
to complexity and price. As of today, there is no existing commercially automated system for
smaller container ports.
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1.2 State-of-the-Art

This section will discuss the highest level of general development within the container handling
industry.

The shipping industry is undergoing rapid changes. A common trend across the industry is sup-
ply chain visibility, implementation of new technology, increasing rate levels and more efficient
transportation management. Container ships are increasing their capacity which demands more
efficient container handling in the container ports. Several container ports worldwide have im-
plemented semi or fully automated container handling solutions. Automated ports make supply
chain management efficient and help to increase rate levels, shipping time and revenue.

Small high-tech companies are joining forces with global shipping firms. Carriers adopt new
technology which again boost automated online resources, increased visibility in the supply
chain and enables seamless shipping solutions worldwide [3].

For the container terminal operators, the automation is not just about handling more cargo.
Automated systems make the container ports increase the efficiency on the most limiting factor:
space. Intelligent systems know the supply chain and stack the containers in the most efficient
manner possible [4].

An automated container port requires minimum two types of hardware: An overhead crane to
unload the vessel and a vehicle to move the container to the desired location. There exist a wide
variety of automated cranes and different kinds of autonomous container handling vehicles on
the marked. Autonomous ground vehicles (AGV), straddle carriers and gantry cranes are the
solutions used on big automated ports to transport and unload containers. The hardware is well
suited for big automated ports, as of today there is few solutions to automate small container
ports.

Kalmar is currently the leading company when it comes to delivering fully automated port
systems. They deliver cranes, AGV, straddle carriers and gantry cranes as well as a full soft-
ware package called Kalmar OneTerminal. There exist several other companies that deliverers
container handling hardware and software solutions like Hyundai, Toyota and KoneCranes. A
container port software normally consists of three layers of automation: A Terminal Operating
System (TOS), Equipment Control System (ECS) and Equipment Automation.
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There exist two possible container handling solutions for small container ports. A reach stacker
or a straddle carrier as illustraded in Figure 1.1 and Figure 1.2. The two vehicles have their
own pros and cons and the choice of handling system depends on several criteria like the shape
and size of the terminal, productivity and annual TEU [5].

Figure 1.1: Reach Stacker [6] Figure 1.2: Straddle Carrier [7]

The straddle carrier is meant for small to medium size ports. It transports containers from
ship to shore cranes to the terminal or loading area. A straddle carrier can handle two 20 feet
container at the time and is capable of stacking one over two as well as stacking three containers
high. It is only capable of stacking along one row and therefor it requires a driving lane on
each side of the container stack. The straddle carrier is capable of delivering containers to road
trucks, but not to rail cars. The footprint of the straddle carrier is quite big, and they are high.
This makes them relatively slow and they can not access conventional warehouses.

The reach stacker is highly practical in small container ports and operations that require great
flexibility. Every fourth container shipped in the world today is moved by a reach stacker
container handler. [8] The reach stacker can perform several tasks on the container port like
loading and unloading small vessels, transport containers, load trucks or rail cars and drive
indoors in warehouses and stacking containers in the yard. The reach stacker is capable of
stacking container in block stacks three to four deep and four to five containers in height. The
reach stacker can manoeuvre while holding a container, which facilitates accurate positioning.
The visibility is also much better than a forklift solution.

In 2019 there is no autonomous reach stacker available on the marked. However there exist
one electric reach stacker, the XCMG XCS45-EV. There is no electric straddle carrier available,
however Kalmar deliverers a hybrid straddle carrier equipped with a sensor suit meant for total
automation.

Based on the trends within the shipping industry, there will be an increasing demand for au-
tonomous container handlers and smart shipping solutions. Big container ports have already
implemented autonomous systems, the next phase is to implement the technology to smaller
ports. The reach stacker is without doubt the most effective container handling solution on
small ports due to the versatile design and there should be an interest in the shipping industry
to develop a fully automated reach stacker.
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1.3 Objective

The main objective of this thesis is to develop a state-of-the-art autonomous ground vehicle pro-
totype for container handling on shipping yards. The vehicle should be able to autonomously
navigate from one location to another while avoiding obstacles. A sensor suite has to be con-
figured and solutions enabling autonomous navigation has to be investigated.

Red Rock requests a working prototype in 1:14 scale, that will function as a platform to show-
case their product to potential investors and buyers. The prototype must be able to navigate
in a closed area, gather information about its surrounding to determine its position, generate a
path from current location to the new desired location, and finally drive autonomously to the
goal location while avoiding dynamic obstacles.

Due to the shear size of the project, no previous experience with Robot Operating System
(ROS) and available prototype vehicle, it was decided in accordance with Red Rock and the
project supervisors to focus on the autonomous base of the container handler. The loading and
unloading of container using the container spreader is not considered a part of this project.

1.4 V-Model

The software in this master thesis is developed according to the V -Model. The V -Model is a
software development method where the development happens in a sequential manner. Each
development stage is directly associated with the testing phase. The sequence of development
is listed in a chronological order below:

• Requirement analysis
• System design
• Module design
• Software design
• Module testing
• System integration testing
• System test

The V -Model approach is described in detail in Section 3.1, in the Method-chapter.
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1.5 Thesis Structure

The report is composed of six chapters: Introduction, theory, method, results, discussion and
conclusion. In addition, there is an appendix with code and data sheets. The task, background
and state-of-the-art within autonomous container handling is presented in the introduction. The
theory chapter contains all relevant theory applied in the thesis. The method chapter describes
the practical usage of the theory and how its implemented in the software and prototype. The
results chapter presents all the results obtained in the project. The discussion chapter discuss
improvements, alternative hardware, issues with hardware and software and other relevant
aspect of the thesis. The final chapter is the conclusion chapter, which summarize the entire
thesis and draws conclusions.
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2. Theory

This chapter covers the relevant theory regarding the content of the thesis and contains theory
about: Operating system, Robot Operating System (ROS), Ackermann kinematics, sensors,
localization, GPS, extended Kalman filter, Simultaneous localization and mapping (SLAM)
and the navigation stack.

2.1 Container Port Architecture

Container ports consists of a quay and a terminal. The containers are unloaded from the ship
situated at the quay by an overhanging crane. There is an area separating the quay from the
container terminal. The terminal is the area where the containers are stored, stacked and sent
away either by a truck or railway. Figure 2.1 illustrates a typical container port architecture.

Figure 2.1: Container Port Architecture [9]

Small container ports tend to have a less systematic outlay, with container stacked where ever
there is free space rather than a continuous stack.

2.2 Operating System

This section contains information about the three levels of container port automation. The three
levels are: Terminal operating system (TOS), equipment control system (ECS) and equipment
automation. Note that autonomous container handlers refers to several different automated
container handling solutions in this chapter on a general basis, like cranes, autonomous ground
vehicle, straddle carriers and reach stacker’s. An overview of the container port automation is
displayed in Figure 2.2 on page 8.
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2.2.1 Terminal Operating System

A port with automated container solutions relies on a terminal operating system (TOS). The
TOS is the key part of the supply chain and aims to coordinate the movement and storage
of cargo. The system uses technology to monitor the flow of containers in, out and around
the container port [10]. Data from various sources are sent to a central database in real time.
The database provides information about gods status and location of the autonomous container
handlers.

The TOS system enables efficient use of resources like space, labour, equipment and workload.
Every task is monitored from high level vessel planning down to container handling in the port.
TOS has two main functions from the ECS system perspective [11]:

• Maintain a correct container inventory based on information received from the ECS
• Plan the storage location of containers and provide job orders to the ECS

2.2.2 Equipment Control System

The equipment control system (ECS) monitors and controls all events and processes at equip-
ment level. The TOS dictates which container the autonomous container handler is supposed
to move, the location of the container and where it is supposed to be moved. The ECS system
receives the information from TOS and then provides the vehicle or crane with a global path
and information about the container like serial number, colour and other useful information.
The ECS keep track of safety features and vehicles coordination. The interaction of different
equipment is also coordinated by the ECS.

The communication between the ECS and TOS contain the following information [11]:
• Submit and confirm work order
• Update status and location of equipment
• Job concluded or interrupted
• Area status update

2.2.3 Equipment Automation

This thesis is focusing on the equipment automation part of the terminal operating system. The
equipment automation is the control system implemented on the autonomous container handler.
Sensor data is processed at the equipment automation level and container handling commands
are executed. The autonomous container handler calculate local paths, avoids obstacles, lifts
the container and move to the desired position. The following functions are typically performed
at equipment level:

• Receiving work order
• Calculate path
• Avoid obstacles
• Control container movement

7
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• Simultaneous localization and mapping (SLAM)
• Validating and confirming work order

A graphical representation of the full scale operation system is illustrated in Figure 2.2.

Figure 2.2: Full Scale Operation System
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2.3 Robot Operating System

Robot Operating System, or ROS for short, is a robotics middleware that provides a framework
for robot development [12]. The system provides open source libraries and tools to help software
developers creating robot applications. It provides support for hardware, drivers, visualizers and
more.

The reason for using ROS is that it is open source and supported by user’s worldwide that
provides code and insight into projects. Instead of reinventing the wheel every time a new
project is started, the ROS frameworks help development by providing drivers, libraries and
managing how the code is developed. The ROS framework has proven to be an effective way of
boosting robot development.

2.3.1 Nodes

ROS enables communication between multiple computers with different programming lan-
guages. ROS is constructed by several nodes. A node is a executable process that performs
some sort of computation [13]. A robot usually consists of many nodes, one for each process.
The ROS-core handles the communication between the nodes and establishes the connection
between them. For example, one node control a laser rangefinder, another node control the
motor and a final node performs localization.

One of the main benefits of having a system composed of several nodes is fault tolerance, as
crashes and system faults are isolated to individual nodes and not necessary crashing the entire
system. In addition, the code is broken down to a more modular design reducing the complexity
of scripts.

2.3.2 Topics

A topic is a communication bus which nodes exchange messages [14]. In general, nodes are not
aware of what nodes they are communicating with. Instead, nodes subscribe to the relevant
topic to receive data. Nodes that generate data publish it to the relevant topic. There could be
multiple publishers and subscribers to one topic.

2.3.3 Messages

Nodes communicate with each other using messages [15]. A node publishes a message to a topic
in order to send information. For another node to receive that information, it has to subscribe
to the same topic.
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nav msg/Odometry

The most common message in ROS for mobile robotic is the nav msg/Odometry-message. The
message is standard for communicating robot pose changes and is configured for 6 degrees of
freedom (DOF). The message is a combination of a header, a Pose-message and a Twist-message
from the geometry msg-type. A typical odometry message is generated as described below:

Start by defining the variable as a nav msg/Odometry-message:

odom = nav_msg/Odometry()

The header contains a time stamp, in addition to both the parent and child-frame ID.

odom.header.stamp = rospy.Time.now()
odom.header.frame_id = "odom"
odom.child_frame_id = "base_link"

The Pose-message is a point in (x, y, z)-coordinate and an angle in quaternion-space.

odom.pose.pose.x = x
odom.pose.pose.y = y
odom.pose.pose.z = z
odom.pose.pose.theta = Quaternion(theta)

Finally, the Twist-message contains the linear and angular velocity in (x, y, z)-direction.

odom.twist.twist.linear.x = vx
odom.twist.twist.linear.y = vy
odom.twist.twist.linear.z = vz
odom.twist.twist.angular.x = rvx
odom.twist.twist.angular.y = rvy
odom.twist.twist.angular.z = rvz
odom.twist.twist.angular.w = rvw

All of the variables above have to be assigned a value to create an odometry message.
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2.3.4 ROS Qt Graph

ROS has an integrated feature to generate a graphical overview of the software in Qt, an open-
source widget for creating graphical user interfaces, called rqt graph. The graphical overview
displays the network of nodes, topics and messages. An example graph is illustrated in Figure
2.3.

Figure 2.3: RQt-graph Example from Turtle Sim

The graph consists of two nodes: /teleop turtle and /turtlesim, where /teleop turtle is
publishing the /command velocity-topic under the /turtle1 main topic. /turtlesim is sub-
scribing to the same topic, thus receiving the desired information (a velocity command in this
case).

To launch the viewer, simply execute rqt graph in the terminal.

2.3.5 Unified Robot Description Format

Unified Robot Description Format, or URDF, is the standard robot format in ROS. The format
consists mainly of two components: links and joints. The links are the physical components in
the model, for instance a wheel or chassis. Joints describes how links moves relative to each
other. A joint has a parent-link and a child-link. The documentation of a .urdf-file is based
on XML-language.

11



2. Theory

2.3.6 RViz

RViz is a 3D-visualization tool in the ROS framework [16]. The program visualizes node data
from ROS. For instance, a point cloud from a depth camera, a map generated by a robot or
path planning. The tool is very helpful for simulation, testing and development. Figure 2.4
show the default view in RViz.

Figure 2.4: Default View in RViz

Furthermore, RViz works as an HMI for ROS. The program could for an instance be used to
publish the initial pose of a robot, publish a goal pose for a robot and publish waypoints.

2.3.7 Useful ROS Commands

The following subsection lists several useful ROS commands. Table 2.1 contains the bash-
commands and a short description of their function.

Table 2.1: Useful ROS Commands

Command Description
roscore Runs ROS master-node
catkin make Compiles workspace
roscd <package> Changes directory to a ROS-package
catkin create pkg <package name> Creates a ROS-package
roslaunch <package> <launch-file> Run launch file
rosrun <package> <executable> Run individual ROS-nodes
rostopic list List all the active topics
rostopic echo <topic> Prints message being published to topic
rostopic pub <topic> <message-type> Publish message to topic
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2.4 Kinematics

The kinematics of a car-like robot could be broken down into two frames: the fixed global frame
and the dynamic local frame [17]. If the motion of the local frame is known, it could be trans-
formed to the global frame. Thus, the position could be calculated in global world coordinates.

2.4.1 Ackermann Steering

The intention of Ackermann steering is to avoid the front tires from slipping when following a
curve shaped path. Each wheel has the axle arranged as the radius of circles with a common
centre point, the instantaneous centre of rotations (ICR). The outer wheel has a greater radius
than the inner wheel. An approximation to
a perfect Ackermann steering is obtained by
moving the steering pivot points inwards. Ack-
ermann steering provides a fairly accurate dead
reckoning solution and is often the solution of
choice for big outdoor autonomous equipment
like a reach stacker. Figure 2.5 displays the
basic concept of Ackermann steering. The
Ackermann steering formula is displayed in
Equation (2.1).

The Ackermann steering allows the vehicle
to drive in a circle with a common centre
of rotation, the kinematics can therefore be
approximated by those of a tricycle.

Figure 2.5: Ackermann Steering

cot θi − cot θo = d

l
(2.1)

Where:
d: Lateral wheel separation.
l: Longitudinal wheel separation.
θi: Relative steering angle of inner wheel.
θo: Relative steering angle of outer wheel.

The vehicle is travelling at relatively low speed, it is therefore assumed that the front wheels
rolls without experiencing slip. Ackermann steering dictates that the required steering torque
will increase with increase in steering angle. In parallel steering the trend is opposite, thus
positive feedback, which is not desirable.
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The forward kinematics is used to predict the future pose of the vehicle. The model is simplified
to the three-wheeled tricycle model dis-
played in Figure 2.6. The velocity is de-
scribed by Equation (2.2) in x-direction
and Equation (2.3) in y-direction:

ẋ = u1 · cos θ (2.2)

ẏ = u1 · sin θ (2.3)

Where:
ẋ: Velocity in x-direction
ẏ: Velocity in y-direction
u1: Tangential velocity Figure 2.6: Inverse Kinematics

The rotational velocity θ̇ around the instantaneous centre of rotation (ICR) is defined by Equa-
tion (2.4):

θ̇ = u1
l
· tanφ (2.4)

Where:
θ̇: Angular velocity around ICR
l: Longitudinal wheel separation
u1: Tangential velocity
φ: Steering angle
θ: Vehicle orientation

2.5 Deadband Compensation

Deadband compensation eliminate odometry errors at low speed. The error in the odometry
data is corrected by measuring the deadband in the motor and drive chain. A deadband com-
pensation is executed in order to make the robot behave more like an ideal linear plant. The
motor and gearbox are subjected to two kinds of friction: Coulomb and viscous. Coulomb fric-
tion is mostly static and will counteract the initiation of movement. Viscous friction increases
with higher velocity.
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The coulomb friction is determined by
increasing the motors duty cycle gradually
until the wheels starts to rotate. The
coulomb friction is visible as a bias in the
compensation graph.

There is no need for measuring the actual
friction when compensating for the viscous
friction. It is enough to register a known
input duty cycle and measure the output
velocity. A plot could then be created
using linear regression on each of the
two halves (-1 to 0 and 0 to 1) which is
illustrated in Figure 2.7. Figure 2.7: Friction Plot

A motor has two individual frictions, depending on the direction of movement. Equation (2.5)
is used to calculate the duty cycle:

U =


bpos · V + cpos V > 0

0 V = 0

bneg · V + cneg V < 0

(2.5)

Where:
V : Desired velocity
U : Duty cycle signal written to the motor
bpos: Viscous friction coefficient for the positive velocity
bneg: Viscous friction coefficient for the negative velocity
cpos: Coulomb friction coefficient for the positive velocity
cneg: Coulomb friction coefficient for the negative velocity

2.6 Camera Calibration

Most cameras add some kind of distortions to an image. Distortion is a deviation from rectilinear
projection, that cause straight lines to appear curved.
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2.6.1 Distortion

The two most common types of distortion are: radial distortion and tangential distortion [18].
The radial distorting causes straight lines to appear curved. Radial distortion appears both
negative and positive. Tangential distortion occurs when the lens-plane is not parallel with the
image-plane, thus making objects in the lower part of the image seem closer and objects in the
upper part seem to be further away. Figure 2.8 illustrates both radial and tangential distortion.

Figure 2.8: No Distortion vs. Positive Radial Distortion vs. Tangential Distortion [18]

The effect of radial distortion becomes greater, further away from the centre of the image-plane.
Equation (2.6) and Equation (2.7) show how radial distortion is presented in equations:

xdistorted = x(1 + k1r
2 + k2r

4 + k3r
6) (2.6)

ydistorted = y(1 + k1r
2 + k2r

4 + k3r
6) (2.7)

Where:
k1,2,3: Radial distortion parameters

The tangential distortion is presented in Equation (2.8) and Equation (2.9):

xdistortion = x+ [2p1xy + p2(r22x2)] (2.8)

ydistortion = y + [p1(r2 + 2y2) + 2p2xy] (2.9)

Where:
p1,2: Tangential distortion parameters

To summarise, there is five parameters influencing the camera distortion:

[k1 k2 k3 p1 p2]
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Furthermore, some additional information is required: The intrinsic and extrinsic parameters
of the camera. Intrinsic parameters are specific to a camera and they include information about
the focal length (fx, fy) and optical centre (cx, cy) of the camera. The parameters are used to
create the camera matrix, which compensate for the distortion created by a lens with a specific
characteristic. The dimension of the camera matrix is 3× 3:

Camera Matrix =


fx 0 cx

0 fy cy

0 0 1



2.7 Depth Camera

Acquiring depth information from the scene is one of the most crucial problems in modern com-
puter vision. Computer vision is increasingly popular in industrial applications and is used in a
broad variety of fields such as industrial automation, safety systems, measuring equipment, 3D
recognition and augmented reality [19]. The classical depth measurement methods are stereo
vision, time-of-flight and structured light.

2.7.1 Time-of-Flight

Time-of-flight or TOF is a method where light is actively illuminating the scene. The light is
reflected back and captured by a charge-coupled device (CCD)-sensor. The distances within
the image can then be determined by calculating the phase shift of the returned light or by
calculating the time the light spent travelling to the object in the scene and back to the sensor.
The disadvantage of the TOF method is the relatively high price, low resolution and complexity
of device [20].

The advantages of this method is that the system is compact and that the illuminating source
can be placed right next to the image sensor. The TOF system does not require high com-
putational power compared to stereo vision that demand complex correlation algorithms to
measure distances. TOF cameras are suited for real time applications because they are capable
of measure distances in an entire scene in one image frame.
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There are several disadvantages with TOF cameras, especially when it comes to background
light and interference. A normal TOF camera emits approximately 1 watt of IR light per square
meter and the sun emits approximately 1050 watts of IR light per square meters. Interfering
light can cause problems outdoors. TOF cameras are also prone to interference. Multiple
reflections could cause measurement errors. The light is illuminating the entire scene and for a
phase difference device this can cause reflection problems. The light reaches the object through
several paths due to reflective surfaces, this causes the measurements to be greater than the
actual distance. Direct TOF images experiences problems when light is reflected from a specular
surface.

2.7.2 Stereo Vision

Stereo vision is based on two camera sensors separated by a certain baseline. 3D information
from the scene is obtained by examining the relative position to an object from two different
vantage points. The relative depth information is obtained in a disparity map, which refers to
the apparent horizontal pixel coordinate difference in the stereo images. The disparity values
are inversely proportional to the scene depth at the corresponding pixel location.

It is possible to combine stereo vision with a structural light source to increase the accuracy
of the camera. The Intel RealSense is an example of a active stereo camera. An IR emitter
projects a pattern of structural light in order to simplify stereo matching [21].

2.7.3 Structural Light

The structural light stereo camera experiences problems in measuring depth if there is another
IR source interfering the projection. Indirect illumination is a problem occurring on reflecting
surfaces, because dots are projected on other parts of the scene. Object situated with a flat
angle relative to the camera could also result in lack of depth information.

2.8 IMU

Inertial measurement unit or IMU, is a chip containing three gyroscopes and accelerometers
mounted orthogonal on each of the three axis. The inertial measurement unit works by detect-
ing linear acceleration using the accelerometers and rotational rate using the gyroscopes.

2.8.1 Accelerometer

Acceleration is detected by measuring deflection and thereby forces acting on a microscopic
mass-spring system. By integrating the acceleration measurement twice, the position change
is known. The acceleration measurement is in a scale where the value 1 corresponds to 1g in
forward direction and -1 corresponds to 1g of acceleration in the negative direction.
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Accelerometers detect collisions and other events which are likely to disturb the position. When
used to estimate position, the values have to be integrated twice which is a process that is ex-
tremely noise sensitive. The accelerometer requires known orientation. It is not possible to
distinguish gravity from other acceleration affecting the robot, so the estimate of the orienta-
tion will only be good if the other accelerations are small compared to gravity. Accelerometers
tend to obtain distorted values due to external forces as gravitational forces in motion; which
then accumulates as noise in the system. Accelerometers react quickly but accumulates error
over time due to accelerometer jitters and noise. Accelerometers are therefore not reliable for
inertial measurement systems alone.

2.8.2 Gyroscope

A gyroscope is a device used to determine orientation by measuring angular velocity and inte-
grate it. The gyroscope is used to reduce the uncertainty in orientation. The gyroscope chip
measures deflection caused by rotation of a small oscillating micro electro-mechanical system
(MEMS). The deflection is measured by use of the theory behind the Coriolis effect. The Cori-
olis effect states that an inertial force acts on a mass which is moving relative to a rotating
frame of reference. The main problem with a gyro is that the angle estimates drifts over time
because it only sense changes and have no fixed frame of reference. It is also sensitive to noise
and bias.

2.8.3 Combining Gyroscope & Accelerometer Data

Sensor fusion is combining sensor data such that the resulting information has less uncertainty
than individual measurements. Accelerometers and gyroscopes can obtain accurate sensor read-
ings when combined. The accelerometer is useful to calculate the position of an object moving
at relatively constant velocity. Since the accelerometer is prone to noise and disturbances due
to accelerations other than gravity and vibrations, it is not reliable alone. On the contrary a
gyroscope is used to measure angular velocity, which could be integrated into angular position
and thereby the position of a robot. Due to inaccurate measurements, a position error will accu-
mulate over time because the gyroscope only sense changes and have no fixed frame of reference.

The accelerometer and gyroscopes properties complement each other in a way that they can be
used to calibrate each other. The long-term accuracy of a gyroscope combined with the short-
term accuracy of the accelerometer improves the overall accuracy. The addition of accelerometer
data allows the bias in a gyroscope to be minimized, this reduce propagating errors and improves
orientation readings. Accelerometers sense directional changes with respect to gravity which
can orient a gyroscope to calculate angular displacement with higher accuracy.
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2.9 LiDAR

Light detection and ranging (LiDAR) is a method used to detect and measure distance to
objects. The LiDAR sensor emits a laser beam and measures differences in return time and
wavelengths to map physical features with high resolution. The point cloud from the LiDAR
provides information about the obstacles surrounding the robot.

The equation for measuring laser beam distance D is shown in Equation (2.10):

D = td · c
2 (2.10)

Where:
td: Flight time
c: Speed of light
D: Distance travelled

2.10 Localization

This section explains the theory behind the localization method used to navigate a full-scale
reach stacker. The reach stacker requires a redundant and precise GPS system, in order to nav-
igate correctly and avoid collisions. The localization system implemented on the down-scaled
prototype is also elaborated.

2.10.1 Real Time Kinematic GPS

The full-scale reach stacker rely on a Real Time Kinematic (RTK) GPS system for navigation.
The localization system should be similar to the systems used on excavators and other type
of heavy equipment. The accuracy should be within 100 mm, in order to avoid collisions and
position the reach stacker within reach of the container [22].

A high accuracy and redundancy are achieved by implementing a positioning system relying on
two signals. The two signals originate from the American GPS system and a radio transceiver
that transcends correctional signals from one or several local base stations situated on the out-
skirts of the container port. The base stations are located on an absolute position with known
world coordinates. The base stations receive the same signal with the same error as the GPS
receivers mounted on the vehicle, however the error is used to calibrate the system since the base
stations absolute position is known. The calibration messages are sent through radio link and
is used to correct the position in real time. The system is capable of pinpointing the position
with an error of a few centimetres [22]. The RTK system could be combined with IMU and
odometry data through an extended Kalman filter to achieve higher precision and redundancy.
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A radio modem broadcasting low cost signals is the preferred real time signal for the RTK GPS.
The radio signal is commonly in the Ultra High Frequency (UHF) band and most countries
provide frequencies allocated specifically for RTK purposes [23]. RTK is accurate up to about
20 km from the base station.

The navigation system might experience problems with obtain the GPS fix quickly. The solution
to this problem is to implement an assisted Global Positioning System (aGPS). The RTK
system relies on custom base stations while aGPS uses ordinary cell phone towers to estimate
the position and signal correction [24]. The system can reduce the time to first fix (TTFF)
significantly and is used in cases of weak signals, that are only temporally available.

2.10.2 GPS Navigation

The coordinate system that is most applicable to position the full-scale reach stacker is the Uni-
versal Transverse Mercator (UTM) [25]. The UTM projection uses a two-dimensional coordinate
system to output position information.
The UTM is not a single map projection,
the surface of the earth is divided into 60
equal zones. The only region of the world
that is not uniform is located in Norway,
one region at Svalbard and one region
south west in Norway is extended.

The position of the mechatronics lab at
UiA Grimstad has the following UTM co-
ordinate: 32V 475183 6465986. 32V is the
UTM region of southern Norway. 475183
is the Easting in meters and 6465986 is the
Northing in meters. The origin is located
in the bottom left corner of the grid zone.
Figure 2.9 shows how the zones in Europe
is divided. Figure 2.9: Grid Zones Europe [26]

Due to the fact that the prototype is tested in a controlled indoor environment, the satellite
signal is blocked by the building infrastructure. An artificial GPS signal has to be created in
order to verify the pose of the vehicle. The artificial GPS signal is created with a camera and
an ArUco marker.
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2.10.3 ArUco Markers

Augmented reality markers created by the University of Córdoba, more commonly known as
ArUco markers, are often used for pose estimation, which is of great importance in robot localiza-
tion. The process is based on corre-
spondences between points in the real
environment and the 2D-image projection
[27].

The ArUco marker method uses binary
square fiducial markers composed of
a wide black border and a inner binary
matrix which determines its identifier (ID).

An ArUco marker could have various
matrix sizes, however a 4 × 4 or 6 × 6
matrix is the most common. Figure 2.10
shows some examples of ArUco markers.

Figure 2.10: Examples of ArUco Markers
[27]

2.10.4 ArUco Detection

Given an image with several ArUco markers, the detection software has to return a list of de-
tected markers. Each detected marker displays the position of the four corners in the image
and the marker ID.

The marker detection consists of two steps:

• Detection of marker candidates. The image is analyzed and square shaped marker candi-
dates is detected. The detection process starts with an adaptive image thresholding, to
segment the markers. The contours are extracted and shapes that does not approximate
a square is discarded. Additional filtering is applied to remove contours to close to each
other and to big or to small contours.

• When the detection of the square shapes is complete, the software has to determine if
the shape actually is a marker by analyzing the inner codification. The step begins with
extracting the marker bits of each marker. The extraction starts with a perspective
transformation to obtain the marker in its canonical form. Otsu’s method is applied to
separate white and black bits. The image is divided into cells depending on the marker
size and the amount of black or white pixels is counted to determine if the cell is a black
or white bit. The bits are analyzed in order to determine if the marker exists in the ArUco
library. Then the algorithm calculates the pose of the marker relative to the camera in
6DOF.
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2.10.5 Odometry

Odometry is the use of motion data to estimate the change in position over time. Data from
the motor count and the steering servo position is fed through the kinematic equations. An
approximation of the robot pose is calculated by repeatedly computing the distance moved and
the change in direction. The odometry is only valid in small time windows due to accumulat-
ing errors from the integration of the velocity. However, the odometry can be fused together
with IMU measurements and GPS data and used over small intervals to increase the accuracy
and redundancy of the pose estimate. The odometry equations listed below are based on the
Ackermann kinematics from Section 2.4.1. The tangential velocity is calculated in Equation
(2.11):

vs = mvel

i
· r (2.11)

Where:
i: Gearbox ratio
r: Wheel radius [m]
vs: Tangential velocity [m/s]
mvel: Motor velocity [rad/s]

The velocity in local x-direction is calculated in Equation (2.12):

ẋl = vs · cos(φ) (2.12)

Where:
ẋl: Local velocity in x-direction [m/s]
φ: Steering angle of centre wheel [rad]
vs: Tangential velocity [m/s]

There is assumed no slip in y-direction, thus ẏl = 0. The change in heading is calculated in
Equation (2.13):

θ̇ = tan(φ)
L

· ẋl (2.13)

Where:
L: Length of wheel base [m]
ẋl: Local velocity in x-direction [m/s]
φ: Steering angle of centre wheel [rad]
θ̇: Global change in angle, relative to origin [rad]

23



2. Theory

The global velocity in x-direction is calculated i Equation (2.14):

ẋg = ẋl · cos(θ) (2.14)

Where:
θ: Global heading angle [rad]
ẋl: Local velocity in x-direction [m/s]
ẋg: Global velocity in x-direction [m/s]

The global velocity in y-direction is calculated in Equation (2.15):

ẏg = ẋl · sin(θ) (2.15)

Where:
θ: Global heading angle [rad]
ẋl: Local velocity in x-direction [m/s]
ẏg: Global velocity in y-direction [m/s]

2.11 Kalman Filter

A Kalman filter is an algorithm that predicts future state of a system based on the previous
states. A series of observed measurements containing statistical noise are feed into the filter
that outputs an estimate of the unknown variables [28]. The joint probability distribution is
calculated for each variable at each time frame.

There are numerous control applications for the Kalman filter like guidance and navigation of
vehicles. The algorithm functions in two main steps, the prediction step and the update step.
In the prediction step, the filter makes an estimate of the current state and their uncertainties.
Then the measurement of the sensors is observed by the filter with a certain amount of error,
including noise. The estimate is then updated with a weighted average. The estimate with
highest certainty receives the highest weight [29].

The Kalman filter is recursive, which means that it uses one or more of its outputs as an input
in a feedback loop. The filter functions in real time and can handle time delays and discrete
signals by using the present input and the previous state and its uncertainty matrix, no addi-
tional past information is required.

2.11.1 Example GPS Application with Kalman Filter

Consider the problem of localizing the reach stacker container handler on a container port. The
reach stacker is equipped with a GPS sensor, to determine its position. The GPS sensor signal
contains noise with values jumping around with an error of several meters from the actual po-
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sition [29]. There is need for additional data input, so encoders are equipped on the wheels to
use odometry for dead reckoning. The dead reckoning provides a smooth signal, but it drifts
over time. The Kalman filter is implemented to predict and update the position.

The reach stacker has an old position which is modified in accordance with the kinematics of the
vehicle. A new position is predicted with an additional new covariance. The covariance might
be proportional to the velocity of the vehicle, a higher speed results in bigger position errors
due to for instance wheel slip. Next is the updating phase where the GPS position is obtained,
with a certain uncertainty. The GPS signal covariance is relative to the previous phase and it
affects how much the new measurement impacts the updated prediction. In an ideal case the
odometry drifts and is updated by the GPS estimate that pulls the estimate back towards the
actual position without disturbing to a point where the position estimate becomes noisy and
jumps around.

2.11.2 Covariance Matrix

Any robot using some kind of sensor fusion needs to know the accuracy of the sensor data in
order to weigh the data in a proper manner. There is two types of errors affecting the accuracy
of data: systematic and non-systematic errors. Systematic errors do not depend on the envi-
ronment surrounding the robot and may for an instance originate from a bias in the IMU data.
A non-systematic error depends on the environment and changes dramatically with changing
environment.

The non-systematic errors are expressed in terms of the covariance matrix. The diagonal values
are variances and all the other values are covariances. The variance is calculated using the
formula in Equation (2.16):

σ2
x =

∑N
i=1 (x− xi)2

N
(2.16)

Where:
N : Number of measurements
x: Average of measurements

The covariance is calculated using the formula in Equation (2.17):

σxσy =
∑N

i=1 (x− xi) (y − yi)
N

(2.17)

An arbitrary covariance matrix will look like the matrix below:
[
σ2

x σxσy

σyσx σ2
y

]
(2.18)
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2.12 Simultaneous Localization and Mapping

Simultaneous localization and mapping or SLAM, is the problem of constructing and updating
a map while keeping track of the robots position within the map. It is a search-based approach
where the robot moves around and explores the surroundings while mapping the surrounding
landmarks. The distance to surrounding landmarks is measured either by a LiDAR or a stereo
camera. The most frequently used SLAM-packages in ROS is: hector slam and gmapping.

The required computational power of SLAM is quite high; however it is reduced by mapping in
2D and by implementing odometry data and IMU measurements to estimate the motion of the
LiDAR. In SLAM a single point consists of a pose and a map.

2.12.1 Particle Filter SLAM

Both gmapping and hector slam utilizes Rao Blackwellized particle filter with scan matching,
also known as the grid map based fast SLAM algorithm [30]. The gmapping algorithm requires
odometry data to solve grid-based SLAM. The particle filter is used to calculate the trajectory of
the robot and the map is based on observations from the LiDAR and odometry. The algorithm
works in two steps; First the trajectory of the robot is calculated from odometry and LiDAR
data. Then the map is computed since the posterior trajectory and observations are known [31].

Each particle represents a potential trajectory. An individual map is calculated for each par-
ticle. The particle with highest probability is chosen as a reference and the associated map
is outputted by the algorithm. Scan matching is implemented to match observations with the
map constructed in the previous position, thus providing the most likely pose of the robot.

The hector slam-package in ROS, applies the Gauss-Newton approach before the scan match-
ing is conducted [32]. The approach presents the measurement as Gaussian distributions, thus
”smothering” the sampled data and generating a map with less noise. Fast scan matching en-
ables it to function without odometry data. This is practical for robots which can not provide
odometry data or have inaccurate odometry measurements. The algorithm requires a high up-
date rate to accommodate the gaps in data, due to missing odometry. A grid map discrete the
observed surroundings into an occupancy grid map, with a threshold that marks the cells either
as occupied or free. Each cell is given a value between 0 and 1, depending on the probabil-
ity for it being occupied. This approach decides the localization of the robot iterative over time.

A disadvantage of hector slam is that it has poor performance in areas without many distinct
landmarks [31]. hector slam does not provide any explicit loop closing abilities, however the
algorithm manages to close the loop in many robot applications.
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2.13 Navigation Stack

The basic concept of the navigation stack is that it takes information from the robots odometry,
sensor streams and a goal pose and outputs a velocity command which is sent to the mobile
base [33].

2.13.1 Navigation Stack Setup

In ROS, the navigation of a mobile base is handled by the navigation stack. The navigation
stack has support for navigation in three dimensions, however this thesis is based on navi-
gation in two dimensions. As pre-requisite, the robot must have a tf-compliant transform
tree, publishing sensor data using correct ROS-message types, in addition to be configured for
the shape and dynamics of the robot. Figure 2.11 show a high-level view of the navigation stack.

Figure 2.11: Navigation Stack High-Level View [34]
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2.13.2 Transform Configuration
The transform configurations in ROS is
handled by the tf-package, which keep
track of multiple coordinate frames relative
to a base frame. The tf-package stores the
relationship of frames in a tree structure
which makes it simple to get an overview
of the system [35].

Figure 2.12 illustrates an example of a
transform tree. The transform tree shows
that the transformation between the map-
frame and odom-frame is handled by the
amcl-node and the transformation between
the odom-frame and base link-frame is
handled by the ackermann odometry-node. Figure 2.12: Example of tf-tree

2.13.3 Move Base

The standard way of moving a mobile base in ROS, is through the move base-node [34]. As seen
in Figure 2.11, the move base-node receives both static and dynamic input transforms as well
as odometry, sensor and map inputs. Move base uses the global and local planner in addition
to the costmap parameters to calculate a velocity command which is sent to the base controller
through the /cmd vel-topic.

2.13.4 Occupancy Grid

The SLAM generated map is represented
as an occupancy grid. The map is divided
into small cells which are labeled as either
undiscovered, walkable or occupied. The
resolution could be altered by changing
the dimension of each cell. High-resolution
SLAM results in a computational heavy
map. Figure 2.13 show an occupancy grid
generated with SLAM. The walkable areas
are represented by white, black is occupied
and grey is unknown.

Figure 2.13: SLAM Generated Occupancy
Grid
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2.13.5 Costmap
The costmap is placed as a layer above the
occupancy grid map and contains informa-
tion about obstacles in the environment.
Sensor data is obtained from the LiDAR
and odometry and obstacles are inflated to
a size equal to the inscribed radius of the
robot. The robot is therefore configured to
never cross the inflated area with the cen-
tre of the robot. The costmap subscribes
to sensor data topics and updates itself au-
tomatically. The input data is used to in-
sert obstacles to the map or clear obstacles.
Figure 2.14 show a costmap overlay on the
previously shown occupancy grid.

Figure 2.14: Costmap Overlay on Occu-
pancy Grid

2.13.6 Obstacle Avoidance

Obstacle avoidance is achieved as a part of the overall trajectory optimization. Trajectory
optimization is concerned with finding the minimum cost trajection, thus avoiding obstacles
which have a high cost in the map. Ideally the cost value should be infinite, however this would
require optimizing hard constraints. A better solution is to use soft constraint with a quadratic
penalty term ensuring a finite cost [36]. Figure 2.15 shows an example of a penalty term with
a minimum allowed distance to an obstacle set to 0.2 meters.

Figure 2.15: Exemplary Penalty Graph [36]
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A typical discrete trajectory is composed of multiple robot poses over time. The planner arranges
each consecutive pose according to the discretization interval. To avoid the obstacle the distance
between the planned pose and obstacle has to be found. Figure 2.16 illustrates an example where
the trajectory consists of eight poses and the discretization interval of dt ref.

Figure 2.16: Example of Robot Trajectory Around Obstacle [36]

The trajectory optimization places the poses on the planned trajectory closest to the obstacle.
This only applies to a subset of poses affected by the obstacle, in this case three. The other
poses are placed by the global planner.

2.13.7 Adaptive Monte Carlo Localization

Adaptive Monte Carlo Localization, or AMCL, is a localization algorithm that track the pose of
the robot. The approach uses a particle filter to track the pose within a known map. The map
is created priorly by the SLAM algorithm. The amcl-node in ROS requires a laser-based map,
LiDAR data and a tf-message to output a pose estimate.

When the amcl-node is started, it initializes a particle filter according to the provided parame-
ters. During movement the algorithm resamples and try to estimate the pose by using Bayesian
estimation, where the particles are compared to the features of the map. The pose uncertainty
is large during the first scans, and is visualized as a cloud of vectors in RViz. The bigger the
uncertainty, the bigger the vector cloud appears. During movement the algorithm resamples,
shifts the particles and predicts the new state. When the surroundings are recognized by the
filter, the pose uncertainty decreases.
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2.13.8 Dynamic Window Approach

The Dynamic Window Approach (DWA) is the algorithm utilized by the default local plan-
ner in ROS [37]. If nothing is specified in the move base-node, DWA will be utilized. The
dwa local planner provides a controller that executes local path planning for a mobile base.
The algorithm utilizes a map and a global plan to generate a local kinematic trajectory for the
robot. A value function is created locally around the robot represented as a grid map and the
cost for traversing through the grid cells.

The basic function of the DWA-algorithm is as follows [37]:

• Discretely sample (dx, dy, dθ) in the robot’s control space.

• For each sampled velocity, perform forward simulation from the robot’s current state to
predict what would happen if the sampled velocity were applied for a short period of time.

• Evaluate each trajectory resulting from the forward simulation by: proximity to obstacles,
proximity to the goal, proximity to the global path, and speed. Discard illegal trajectories
(those that collide with obstacles).

• Pick the highest-scoring trajectory and send the associated velocity command to the mo-
bile base.

• Clear memory and repeat.

2.13.9 Time-Elastic-Band

The teb local planner [38] is a 2D local path planner utilizing the time-elastic-band (TEB)
algorithm to generate a local path. The global path planner dictates the trajectory and goal
pose of the robot and the local planner optimises the trajectory during the movement [39]. The
trajectory is optimised in order to avoid obstacles in highly dynamic environments like for an
instance a container port. The algorithm improves trajectory execution time and move with
compliance to the kinodynamic constraints. The teb local planner is meant for nonholo-
nomic vehicles. Figure 4.24 show an example of a TEB generated path around three simulated
obstacles in RViz.

Figure 2.17: Simulated teb local planner with Several Obstacles
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The planner reduces the required computing power by restricting the search space to an optimal
local area [40]. However, the path is usually non-convex, meaning that there exist several path
options due to the presence of obstacles. The teb local planner adhere to the navigation
stack by providing Twist-messages containing translational and angular velocity.

It is worth noticing that an angular velocity equal to zero ω = 0 results in an infinite turning
radius r which leads to a zero in steering angle φ = 0. For a non-zero angular velocity the turn-
ing radius r is computed by r = v/ω, the steering angle is derived by φ = tan−1(wheelbase/r).
The steering angle is therefore not defined for zero velocity. The teb local planner deals with
the problem by setting the steering angle to zero by default if the linear velocity is zero.
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3. Methods

This chapter elaborate for the methodology used to obtain the results presented in this thesis.

3.1 V-Model Approach

The V -Model is used to develop the software system. Figure 3.1 show an illustration of a typical
V -Model.

Figure 3.1: V -Model

The V -Model is supposed to follow a chronological order. The module design and software
design however were carried out as a joint effort. Some modules where added in a later stage
of the project, this demonstrates the modular capabilities of Robot Operating System (ROS).

The software is built in a universal modular manner, enabling fast implementation on different
hardware. The software functions on a small prototype as well as a full-scale reach stacker. The
universal design allows for reuse of code and further development by third party developers [41].
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3.1.1 Requirement Analysis

The requirement analysis is the start of the project. Red Rock requested the features they
wanted in the software and the prototype. It was important with detailed communication to un-
derstand the ”costumers” requirement and expectations. The software must enable autonomous
driving and be scalable, meaning that the software could be implemented on a scale prototype
as well as the full-scale container handler. The prototype has to navigate autonomously, avoid
obstacles, map the dynamic environment and update the map. The prototype hardware was
researched and purchased early i order to start development rapidly.

3.1.2 System Design

The system overview was developed in the design phase. It was decided to use ROS Kinetic
Kame as the overall operating system. The simplest way for ROS to communicate with the
hardware was via USB-ports. WiFi was utilized to enable communication with the stationary
computers handling the tracking system. WiFi was also used to connect to the prototype and to
perform manual control or changes in software during testing. The system design is explained
further in Section 4.1.

3.1.3 Module Design

The software is structured in modules. Some modules were pre-developed by members of the
ROS community while other modules was developed during this thesis. Each module can be
isolated and tested. The modules could also be implemented in other compatible system. The
pre-developed ROS modules are listed in Table 3.1 in Section 3.4.3.

3.1.4 Software Design

The software design phase stitches every module together to a functioning software suite. ROS
has specific guidelines and standards on communication and data processing. By following the
standard in each individual module, implementation to a full software suite was carried out
without any major problems. The software suite was revised several times and optimized for
better performance. Some modules where added in post.

3.1.5 Module Testing

The hardware was bought early and available at the start of the project. The ROS compatibility
of each hardware component was tested before implementation. Every module was tested before
implementation in the overall software. Incompatible software or hardware was eliminated at
an early stage and troubleshooting was made less cumbersome.
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3.1.6 System Integration Testing

The system integration testing revolves around communication and coexistence. The ROS com-
munication functions flawlessly due to the correct topics and message types being used. Some
USB connections experienced coexistence due to the hardware being routed through a USB-hub
into the single USB-port on the Jetson. This caused some minor issues.

3.1.7 System Testing

The system testing is associated with the system design phase in the beginning of the project.
This phase tests the entire system at once, or at least a collection of the modules functioning
together. It also unveils problems that is related to external factors.

3.2 Sensor Package

The full-scale reach stacker must be equipped with a perception system that enables it to
function autonomously. The sensors are used to gather information about the vehicle and the
surrounding environment. The sensors are divided into two categories:

• Proprioceptive sensors is responsible for sensing the vehicle’s internal states like inertial
measurement unit and wheel encoders.

• Exteroceptive sensors are responsible for sensing the surrounding states like LiDAR, cam-
eras, ultrasonic and RADAR.

There are two sensor packages on the reach stacker. The first package is used to drive the
vehicle around and positioning it relative to a container that is supposed to be moved. The
second package is used to position the container spreader directly above the container to enable
lifting. This thesis will focus on the vehicle positioning-package.
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3.2.1 Vehicle Positioning-Package

The vehicle positioning-package is equipped with seven different sensors: LiDAR, encoders,
GPS, stereo camera, IMU, compass and ultrasonic sensors. Figure 3.2 show the layout of the
sensor package. Please note that the range and spread of the sensors are just for illustration.

Figure 3.2: Vehicle Positioning-Package

The LiDAR are situated on each of the four corners of the reach stacker with 180 degrees line
of sight. The LiDAR point cloud is stitched together to give a two-dimensional picture of the
objects surrounding the vehicle.

Encoders will measure the steering angle, which is used in the kinematic equations to calculate
the pose and velocity of the vehicle. In addition, there will be mounted one encoder for each
wheel in order to measure the odometry more accurate.

An IMU will be placed at the centre of rotation of the reach stacker. The IMU is used for
pose-estimation and localization. The IMU contains accelerometers, gyros and a compass. The
compass outputs a fixed heading and is therefore useful to find the orientation of the vehicle.

The GPS provides an absolute measurement of position and is useful to pinpoint the position
of the vehicle and the velocity.

The stereo camera is situated in the front of the reach stacker and is used in several applications.
The camera detects humans and other obstacles. The camera can detect containers and read
the serial number in order to verify that the container is the one that is supposed to be trans-
ported. The camera can also detect ArUco markers strategically placed around the container
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port to verify that the pose estimate is correct. The container port could be configured with
a grid of lines the reach stacker could use camera vision to follow. The grid could be used to
improve accuracy and redundancy of the system.

Road markings are not visible under a layer of snow and ice or could be worn out or covered by
dust. This problem could be solved by a magnetic strip embedded in the asphalt. A magnetic
sensor could then be used to follow the line or sense information about an area.

Ten ultrasound sensors are strategically placed around the reach stacker and functions as an
electrical bumper. The ultrasound sensors are useful at low speeds and detect if any object
comes within a certain range. The sensors are practical during thigh manoeuvres and during
lifting procedures.

3.2.2 Container Spreader Package

The second sensor package is placed on the container spreader and gives feedback on the po-
sition relative to the container. The package consists of two cameras and two ultrasound
sensors. The cameras are mounted on the
diagonal on each side of the spreader. The
two ultrasound sensors are situated on
each side of the spreader. Figure 3.3 show
an illustration of where the sensors could
be placed.

The cameras look down on the container
and detects two intersecting edges on each
side. The spreader adjusts to the cor-
rect length and position. The ultrasound
sensors measure the distance between the
spreader and the container. A height dif-
ference between the two ultrasound sensors
would originate from an angle offset. The
spreader is tilted until the distance offset
is zero, and the boom is lowered until the
container is locked in position.

Figure 3.3: Container Spreader-Package
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3.2.3 Down-Scaled Sensor Package

A down-scaled sensor package was created for prototyping purposes due to both restrictions in
space and budget. The package consists of a LiDAR, depth camera, IMU and ultrasonic sensors.
In addition, there is situated an ArUco marker on top of the prototype, in order to track the
position. A voltmeter with an embedded buzzer is connected to the main LiPo battery in order
to measure the voltage on each battery cell.

The LiDAR is placed in the front of the prototype and has an approximate 230 degree view
angle, due to the laser beam being obstructed by the truck frame. The objects obstructing
the LiDAR is not within the LiDAR range and is there for not visible on the scan. The main
application of the LiDAR is obstacle avoidance and mapping.

For redundancy, a stereo camera could be mounted in the front of the prototype to provide
additional inputs to the obstacle avoidance. It could also be used in navigation and object
recognition.

An IMU is utilized to further improve the localization. The IMU uses three gyroscopes and
three accelerometers to adjust the position estimate, the magnetometers are not used due to
magnetic interference. The IMU is placed in the vehicle centre in a horizontal position.

The ultrasonic sensor could be situated at the rear bumper of the prototype and functions as
an electric bumper. The sensor would sense a possible collision when performing a K -turn or if
the prototype gets lost.

Figure 3.4: Down-Scaled Sensor Package

38



3. Methods

3.3 Hardware Setup

This section contains information about the prototype hardware. The full-scale reach stacker
has to rely on industry grade hardware, however the components selected in this section is
meant for prototyping and indoor robotics.

Red Rock requested a 1:14 scale model of a reach stacker. This would obviously be the best
platform to use in a prototype. However, the manufacturer of the reach stacker model had
ceased production and it was not possible to buy the model, neither new or used. The second-
best option was then to buy a 1:14 scale truck with the possibility to attach a trailer that could
carry a 40 feet container.

3.3.1 NVIDIA Jetson TX2 Developer Kit

The Jetson TX2 Developer Kit provides
a fast and easy way to develop software
and test it on the desired hardware. It
is ideal for deep learning; computer vi-
sion and GPU computing [42]. Figure 3.5
shows an image of the Jetson developer kit.

Figure 3.5: NVIDIA Jetson TX2 Develop-
ment Kit [42]

3.3.2 SLAMTEC RPLiDAR A3

SLAMTEC’s RPLiDAR A3 is an ultra-
thin 2D LiDAR designed both for indoor
and outdoor applications. With its 16000
samples per second and 25 meter range, it
is accurate and versatile [43]. The LiDAR
is mounted in front of the robot in order
to view the environment ahead. Figure 3.6
shows an image of the LiDAR.

Figure 3.6: SLAMTEC RPLiDAR A3 [43]
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3.3.3 Intel RealSense D435 & D435i

Intel® RealSense™ Depth Camera D435i is a depth sensing camera with the addition of an
inertial measurement unit (IMU). In ROS, the IMU input is used to improve dead reckoning
accuracy. The RealSense camera has the ability to measure distance due to the two IR image
sensors. The active IR emitter projects a coherent pattern of points and the distance is measured
by triangulation [44]. There will be one camera unit without IMU, fixed in place to detect the
ArUco marker placed on the robot. In addition, the prototype has a camera with IMU mounted
in front, which is meant for future applications. Figure 3.7 shows an image of the RealSense
camera.

Figure 3.7: Intel® RealSense™ Depth Camera D435 [44]

3.3.4 Tamiya RC Truck

The prototype is built on the base of
a Tamiya 1:14 scale RC Mercedes Benz
truck. The kit was assembled without
the drivers cabin and a platform was 3D
printed and mounted to the frame. The
platform has enough room to attach the
Jetson TX2 developer board and several
different sensors and other electrical com-
ponents. The truck has a 3-stage gearbox
and servo driven Ackermann steering. The
truck is driven in second gear, with a gear
ratio of 17.761:1. Figure 3.8 shows the
Tamiya RC truck with the drivers cabin.

Figure 3.8: Tamiya Mercedes-Benz Actros
3363 [45]
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3.3.5 VESC

A Vedders Electronic Speed Controller
(VESC) is used to control the drive train of
the prototype. The VESC is an advanced
open-sourced ESC [46]. The VESC is con-
nected directly to the Jetson with an USB-
cable. The ROS community has developed
several different pre-built packages, to con-
figure the VESC for robot applications.

Figure 3.9: VESC [47]

3.3.6 SkyRC BLDC Motor

The original brush motor was replaced with
a SkyRC BLDC brushless motor [48] in or-
der to control the drive train with a VESC.
Figure 3.10 shows an image of the SkyRC
BLDC. The motor is a three-phase motor
with 2 poles, the motor will have six poles
since the pole pattern have to be repeated
for each phase.

Figure 3.10: SkyRC Ares Pro V2 Compe-
tition 540, BLDC [49]

3.3.7 Power HD-9001MG Servo Motor

A Power HD-9001MG servo motor is uti-
lized to steer the prototype. This servo is
commonly used in RC vehicles and aero-
planes and operate at a voltage between 5-
6V. The no load velocity at 5V is 60◦/0.140
sec. The servo is able to rotate ±90◦ and
has a holding torque of 0.96 Nm.

Figure 3.11: Power HD-9001MG Servo Mo-
tor [50]

41



3. Methods

3.3.8 Arduino Uno

Arduino in an open-source electronics plat-
form which utilized its own Arduino pro-
gramming language based on Processing
and C++. The Arduino board is able to
read sensor inputs and write outputs. The
Arduino Uno is based on the ATmega328P
single chip micro-controller and is powered
by an USB-cable. Figure 3.12 show an il-
lustration of the Arduino Uno. Figure 3.12: Arduino Uno [51]

3.3.9 Adafruit Servo Driver

The Adafruit servo driver uses I2C to
communicate from the Arduino to the
servo motor. It uses an external power
supply to power up-to 12 servo motors,
however for the setup in this thesis, it only
powers the steering servo.

Figure 3.13: Adafruit Servo Driver [52]

3.3.10 SparkFun 9DOF Razor IMU
SparkFun 9DOF Razor IMU M0 was se-
lected as IMU for the prototype, due to the
USB connection. The IMU has 9DOF ob-
tained from 3 accelerometers, 3 gyroscopes
and 3 magnetometers placed orthogonal in
relation to each other. The board has a
small Atmel SAMD21 Arduino-compatible
32-bit micro controller integrated. The
IMU is pre-programmed with a Arduino
bootloader and the core had to be flashed
with an Arduino program to enable ROS
communication. Figure 3.14 show an
image of the IMU. The IMU’s data sheet
is attached in Appendix E.5.

Figure 3.14: SparkFun 9DOF Razor IMU
M0 [53]
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3.3.11 Prototype Build
A 1:14 scale Tamiya RC truck was built
as prototype for testing hardware and soft-
ware. The truck came as a kit and
was assembled using the provided con-
struction manual [54] (see reference link
for full construction manual). The cabin
of the truck was removed and replaced
with a 3D printed platform (CAD drawing
in Appendix E.7) to house the batteries,
NVIDIA Jetson, LiDAR, VESC, Intel Re-
alSense, Arduino board, servo driver, IMU,
a USB-hub and the ArUco marker on top.
The final CAD model and physical model
is displayed in Figure 3.15 and Figure 3.16.

Figure 3.15: Photo of Prototype

The RPLiDAR is mounted upside down un-
der the 3D printed platform and a stereo
camera is situated on top of the platform on
a ball head. The Jetson developer board is
situated behind the camera, with an ArUco
marker placed above it. The USB dongle
and all the batteries are mounted under-
neath the platform. A bumper was mad
from aluminium and mounted to the frame
in order to shield the LiDAR in a collision.
The IMU was mounted in the middle of the
truck. There are attached more photos of
the prototype in Appendix F.

Figure 3.16: CAD Render of Prototype

Electrical Connections

The USB-connections of the prototype is
displayed in Figure 3.17. The Jetson TX2
has only one USB-port, thus all commu-
nication has to go through a USB-hub.
The VESC and Jetson TX2 are powered
by two different batteries and the rest of
the hardware is powered by the USB-cable.

Figure 3.17: USB & Battery Connections
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An Adafruit with an external power supply functions as the servo driver connected to the steer-
ing mechanism. The Adafruit is connected to the Arduino as illustrated in Figure 3.18.

Figure 3.18: Arduino Circuit Diagram

3.4 Software

This section describes the software setup on the NVIDIA Jetson TX2 Developer Kit and the
stationary computer(s) managing the ArUco detection. The software is developed on the bases
of the prototype hardware, however there are several of the software components that could be
utilized on a full-scale system due to a general structure and function of the codes.

3.4.1 JetPack

The Jetson JetPack 3.3 was flashed from a host computer running Ubuntu 16.04. JetPack in-
cludes the desired Ubuntu OS, CUDA graphics compiler, TensorFlow and OpenCV.

The installation was initialized by downloading JetPack 3.3 from NVIDIA’s developer page
[55]. The packages was downloaded and the kernel on the Jetson was flashed by following the
installer guide.

3.4.2 OpenCV

Open Source Computer Vision Library, or OpenCV, is an open source computer vision software
library. OpenCV was built to provide a common infrastructure for computer vision applications
and accelerate the usage of machine perception [56].
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More than 2500 optimized algorithms are included in the library, which includes state-of-the-art
computer vision algorithms. These algorithms can be used to identify objects, track moving
objects and pose estimation of markers. With its community of more than 47 000 users, infor-
mation and codes supplements are easy to find.

OpenCV for Ubuntu with Python integration was installed by following the guide on the
OpenCV installation page [57]. OpenCV is mainly used in the ArUco tracking, however it
could be utilized by the on-board camera on the prototype in computer vision applications.

3.4.3 ROS

The ROS Melodic is the newest ROS release and was first used in the project, however the
software caused several problems. The software did not have the same support as the older
versions within the ROS community. The decision then fell on ROS Kinetic Kame, the reason
for choosing Kinetic is that most available packages in the ROS community is supported. ROS
Kinetic was installed as described on the ROS-installation wiki-page [58].

ROS Packages

Several ROS packages had to be downloaded and complied to be able to communicate with
the different hardware. In addition a couple of packages was needed for the navigation and
localization of the prototype. Table 3.1 shows a list of the packages downloaded in addition
to a description of their function. The references in the end of the description is a link to the
GitHub-repository the packages was cloned from.

Table 3.1: ROS Packages

Packaged Description
teleop twist keyboard Keyboard teleoperation control [59]
rplidar ros Communication with RPLiDAR A3 [60]
vesc Communication with the VESC [61]
rosserial Serial Communication with Arduino [62]
razor imu 9dof Communication with the Razor IMU [63]
robot localization Package used for localization in ROS [64]
navigation Package for navigation in ROS [65]
hector slam Package containing hector slam [66]
teb local planner Package containing teb local planer [67]
follow waypoints Package for following waypoints in navigation [68]

45



3. Methods

ROS Package Installation

This subsection show an example of how to download a general ROS package and how to com-
pile it.

The first step is to create a source folder in the work directory of the catkin workspace, utilized
in all ROS applications:

$ mkdir <catkin workspace name>/src

Then change directory to the source folder and clone the GitHub-repository of the desired
package:

$ git clone <GitHub-repository URL>

Lastly, the workspace has to be compiled with the new package(s) downloaded. To compile,
run the following command in the root-directory of the workspace:

$ catkin_make

Wait for the compiler to finish. The package is now installed and ready to be utilized.

3.4.4 Intel RealSense SDK & intel-ros

The Intel RealSense cameras has to have intel-ros installed in order to be able to communicate
with ROS. The installation was compleated by following the steps in the README-file on the
GitHub-page [69]. The installation also include librealsense [70] which is the main software
developer kit (SDK) needed to run the camera. The RealSense package was also installed on
the stationary computer handling the localization.

3.5 Wireless Communication

The Jetson was configured as a WiFi hotspot in order to control and monitor the processes
on the prototype, as well as enabling connection to several node computers. However, for the
Jetson to act as a hotspot a parameter in the /sys/module/bcmdhd/parameters/op mode-file
had to be changed from "0" to "2". A hotspot connection was created in the Ubuntu WiFi
configuration. The hotspot configuration is useful when the operator wants to have manual
control over the prototype and for the node computer to transmit the necessary localization
data. ROS has a simple way of sharing messages and topics wirelessly.

The NVIDIA Jetson was set as a ROS MASTER by using the following command in the
terminal:

$ export ROS_MASTER_URI=http://<MASTER_IP_ADDRESS>:11311
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The master uniform resource identifier (URI) is set to the IP address of the Jetson as a safety
measure. The URI prevent the system from stopping or losing control if the wireless communi-
cation to other ROS nodes are lost.

All the node computers in the ROS system will communicate with each other, through the mas-
ter NVIDIA Jetson, by typing the command above in the terminal. Finally, all the computers
have to export their own IP address using:

$ export ROS_IP=<COMPUTER_IP>

With this setup, only the master has to run roscore and all the topics generated on the node
computers is accessible for every other node computers connected to the NVIDIA Jetson hotspot.

3.6 Manual Driving & Low-Level Control

The first step toward autonomous driving is to drive the prototype manually. A laptop was
used to control the prototype using the ROS-package teleop twist keyboard [71]. The teleop-
package is based upon the Twist-message in ROS, which is meant to control differential driven
robots. The Ackermann steering on the prototype require its own low-level control to convert
the Twist-message into duty-cycle controlling the VESC and an angle value sent to the steering
servo.

The lowlvlcontrol-node subscribes to the /cmd vel-topic which is the standard topic in ROS
for velocity commands. The keyboard teleop-node published to the /cmd vel-topic by default.
Twist-messages have a command-signal ranging from -1 to 1, which means that the low-level
control program have to convert the Twist-message into the range of the servo and VESC. The
servo signal was converted using the formula in Equation (3.1).

Cout = Cin ·
Rs

2 + a (3.1)

Where:
Cout: Servo command
Rs: Servo range
a: Centre value of servo
Cin: Twist message input

The converted servo command is published to the /servo cmd-topic.

The VESC already have an input of ± 1, thus it do not require conversion, however when the
deadband in the system was identified, the signal had to be compensated, thus the VESC com-
mands was implemented in the low-level control.
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3.7 Camera Calibration

The script listed in Appendix B.2 was used to remove radial and tangential distortion in the
camera. The camera calibration is a
pre-generated script included in the ArUco
Tacker-package from OpenCV. The code
was downloaded from GitHub [72].

The code utilizes input images in addition
to information about the checker board’s
geometry, like grid size and size of the
squares in the grid. The input images have
to be taken from different angles so that
the different types of distortion can be
detected. Figure 3.19 show an example of
an input image.

Figure 3.19: Example of Input Image for
Camera Calibration

In order to find the pattern in the checker board the cv.findChessboardCorners()-function
was used. The code inputs the grid dimensions, in this case a 9× 6 grid. The function returns
the corner points and a variable named: retval, which will be True if the board pattern was
obtained. The corners are placed in an order from left-to-right, top-to-bottom.

Once the corners is located, their accuracy is increased using cv.cornerSubPix() and a pattern
is drawn using cv.drawChessboardCorners().

3.8 Localization

Localization is the problem of making a robot know its own position relative to a frame of
reference.

3.8.1 Artificial GPS

The full-scale reach stacker is tracked with a GPS system. It is not possible to use GPS indoors,
therefor the prototype have to relay on another kind of tracker to manoeuvre autonomously.
The UiA Motion Lab has a Qualizys system consisting of 17 high frame rate infrared cameras.
The cameras are capable of track retro reflective spheres with high accuracy. The idea was ini-
tially to create a similar tracking system using two infrared cameras and retro reflective spheres.
Three spheres would be placed in a non-uniform triangle.

By using image segmentation, the spheres could be tracked by Hugh transformation and the
distance to each sphere and the length between them could be calculated. Based on the in-
formation the pose of the vehicle could be calculated. The same system has frequently been
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built with Microsoft Kinect cameras. However, the production of Kinect camera has ceased,
and another type of camera had to be selected. It was decided to use an Intel RealSense due
to the low price, small size and the support within the ROS community.

The librealsense-package was downloaded and the RealSense camera was launched in ROS.
When the IR video stream was displayed it was made clear that the RealSense camera projects
infrared points rather than a continues infrared illumination. This proved to be a problem since
the retro reflective spheres did not light up in the same way as in the continuous IR illumination
originating from the Kinect camera. It was therefore impossible to locate the spheres.

Eventually the reflective spheres were abandoned and it was decided to utilize an ArUco track-
ing system to determine the pose of the prototype.

3.8.2 ArUco Detection

A python script was developed in order to detect the ArUco markers. The script initializes by
calibrating the camera using the same images as described in Section 3.7. The scripts create
a subscriber to the RGB camera-topic generated by the ros-realsense launch-file. Then the
RGB image is converted into grey-scale and the algorithm search through the image looking for
ArUco markers.

The marker detection is performed in the ArUco module with the detectmarkers() function.
This function is the back bone of the module due to the fact that all the other functionality is
based on the previously detected markers returned by the detectmarkers() function.

The parameters of the detectmarkers() function are;

• The first parameter is the input image containing markers.

• Second parameter the dictionary object.

• The third parameter is storing the detected markers in the markerCorners and markerIds
structures. markerCorners is the list of corners on the detected markers. Four corners
are returned for each marker, in their original order. markerIds is a list containing all
the detected markers in the image.

• The fourth parameter is the object. This object contains all the parameters that are
possible to customise.

• The fifth parameter, rejectedCandidates, is a list of marker candidates that did not
contain a valid codification.

The drawDetectedMarkers() function serves as a method of visually inspect if the marker
detection is functioning properly. The function displays a green square around the detected
ArUco marker with an ID tag.
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3.8.3 ArUco Pose Estimation

After the ArUco marker has been detected it is possible to obtain the marker pose using the
corners of the detected marker in addition to the camera matrix and distortion coefficients. The
cameraMatrix and distcoeffs are the camera parameters. The camera matrix consists of 3×3
elements with camera centre coordinates (intrinsic parameters) and focal distance. The distor-
tion coefficients are a vector of five elements that models the camera distortion. Finally the
corners are an output from the detectMarkers()-function. These values are then fed into the
estimatePoseSingleMarkers()-function which outputs the rvec and tvec. These variables
are then used to publish the ArUco marker’s translation and rotation relative to the camera.

The full python script for both the detection and pose estimation is listed in Appendix B.3 and
is based on a ArUco tracking script downloaded from GitHub [72].

3.8.4 Depth Camera

As an attempt to improve the distance measurements of the ArUco marker, the Intel RealSense’s
integrated depth camera was utilized.

The depth camera stream is published to a ROS-topic in the same way as the RGB camera.
The pixel coordinates of the corners in the ArUco tracking script is used to create a dynamic
region of interest, or ROI for short, in which only the ArUco marker is located. By creating the
ROI, the depth measurement is only taken from the area where the marker is actually located,
thus reducing measurement noise. To increase the accuracy further the average distance to an
even smaller area within the ROI was used as the distance measurement. The script is listed in
Appendix B.4.

3.8.5 Camera Placement
The camera is placed in a position
overviewing the configuration space of
the prototype. It is important that the
camera cowers as much space as possible
with an angle that enables tracking of the
ArUco marker. The formulas shown in
Equation (3.2), (3.3), (3.4) & (3.5) is used
to calculate the camera angle, position
and viewing area based on Figure 3.20 [73].

θ1 = tan−1
(

D

H − h

)
(3.2)

θ2 = tan−1
(
d2
H

)
(3.3)

θ3 = θ1 − θ2 (3.4)

d2 = H · tan (θ2) (3.5)
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Several parameters could be decided, like height of camera H, camera vertical view angle θ3 and
target height h. By deciding the blind area d2, it is possible to calculate the maximum view
distance D.

Figure 3.20: Camera Field of View

3.8.6 Odometry

To calculate the odometry of the Ackermann-model a script was created based on the equations
from Section 2.10.5. The script subscribes to the measured motor speed and steering angle from
the servo topics and published the calculated odometry to the /odom-topic. The script is listed
in Appendix B.5.

3.8.7 IMU

The SparkFun Razor 9DOF IMU is built on an Arduino based developer board with an USB-
connection. For ROS to recognize the IMU as an independent node, a special Arduino script
had to be flashed onto the IMU. The installation setup procedure was completed by following
the README.md-file on the GitHub-page [63].

The hardware version utilized in this thesis is the SparkFun ”9DOF Razor IMU M0” version
”SEN-14001”. The version number had to be uncommented in the Arduino firmware-file to
make the software compatible with the hardware.

3.9 Extended Kalman Filter Configuration

For the localization of the prototype described in Section 3.8, the different sensor data was
combined using an extended Kalman filter in ROS named ekf localization [74]. The EKF
node combines the wheel odometry, ArUco pose and IMU measurements into a single odometry
value. The extended Kalman filter is configured for 6DOF, however the prototype operates in
3DOF, this is resolved by zeroing out the inactive matrix values.

Appendix D.1 contains all the configuration parameters for the ekf localization-node.
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3.9.1 Wheel Odometry Covariance

To use the wheel odometry in the ekf localization-node, the input has to be a OdometryWith
CovarianceStapmed-message, which means the covariance matrix has to be included in the mes-
sage.

The covariance matrix was calculated by driving the prototype manually and tune the gains; kx,
ky and kyaw until the results was satisfactory. The matrix is a 6×6-matrix since it is configured
for translation in x, y, and z-direction, in addition to rotation in x, y, and z-direction. The
covariance matrix for the odometry is displayed bellow:



kx|∆X| 0 0 0 0 0
0 ky|∆Y | 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 kyaw|∆yaw|



Where kx, ky and kyaw are the covariance-gains. The prototype operates in 3DOF, thus trans-
lation in z-direction, roll and pitch is zeroed out.

3.9.2 ArUco Pose Covariance

In order to calculate the covariance matrix of the measured ArUco pose, an ArUco marker
was fixed to a spot and the pose was measured. Since the marker is static, the ”noise” of the
measurement is used to calculate the covariance matrix of the marker localization.

A script was created to track the ArUco marker and generate a graph, exporting the measured
data in addition to calculating the covariance matrix. The relevant data is the position in x

and y-direction as well as the angle of the marker. The script is listed in Appendix B.6.

The script samples the pose of the marker at 10 Hz for 60 seconds (600 samples). All the
sampled data is stored in an array similar to the one displayed bellow:

A =


x1 y1 θ1
...

...
...

xn−1 yn−1 θn−1

xn yn θn
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The covariance matrix is calculated by finding the deviation matrix using the formula in Equa-
tion (3.6) and then multiplying it by the transposed deviation matrix as shown in Equation (3.7):

a = A−


1 1 . . . 1
...

... . . . ...
1 1 . . . 1

 ·A · 1
n

(3.6)

Covariance Matrix = aTa (3.7)

The covariance matrix is then implemented into the message sent to the ekf localization-
node.

3.9.3 Parameter Tuning

Several parameters in the EKF filter was tuned to improve the results. Initially, each of the
inputs dimensions had to be set in the config-matrix, which is displayed below:

config-matrix =



x y z

roll pitch yaw

vx vy vz

vroll vpitch vyaw

ax ay az



The wheel odometry and ArUco pose will only provide measurements for x and y-position
and yaw (z-rotation), thus these values was set to true and the rest was set to false in the
config-matrix. For the IMU, the yaw velocity and x, y and z-acceleration was used in the
config-matrix.

Each of the sensor messages has the option of being integrated differentially by setting the
differential-parameter to true or false. If the parameter is set to true, for measurement at

time t, the previous measurement is subtracted at time t-1, and the resulting value is converted
to the velocity [75]. If several measurements have an absolute pose information, these mea-
surements may get out of sync and cause oscillations in the filter. Integrating differentially will
avoid this scenario. Hence the IMU and camera pose was set to differential.
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The relative parameter was also tuned. If the parameter is set to true, the sensor data would
be fused relative to its first measurement. This is useful in order to make the state estimation
always start in (0, 0, 0). For this use-case, both the wheel odometry and IMU was set to true.

3.10 Navigation Stack

A ROS navigation stack was built to handle the navigation of the prototype. The pre-requisites
were the prototypes transform configurations and sensor streams. Furthermore, the stack con-
tains a global and local costmap. These features was implemented to the node commonly named
move base.

3.10.1 Transform Configuration

The tf-package in ROS was utilized to configure the transforms. First, the static transfor-
mations was configured. The main frame of a robot is commonly named ”base link”, which
refers to the URFD naming where a link is a rigid body. The ”base link” has its origin in
the centre of rotation of the prototype. Further the other links which will transmit or receive
data was defined relative to the base link with a (x, y, z, yaw, pitch, roll)-transformation. The
final inputs of the transform configuration is the frame parent and child ID. Below, the static
transform from the base link to the LiDAR-frame is displayed. The input values are given in
meters and radians; hence the LiDAR is placed 0.35 m in x-direction and 0.1 m in z-direction
from the centre of the base. It is also rotated upside down, thus the roll values was set to 3.14
rad = 180o.

<node pkg="tf" type="static_transform_publisher" name="base_to_laser"
args="0.35 0 0.1 0 0 3.14 base_link laser" />

The two final transforms used in the navigation stack was the dynamic transforms between the
/map-frame and /odom-frame, and the transform between /odom-frame and base link. These
transforms are used by various nodes. The transforms between the /map-frame and /odom-
frame is mainly used by the amcl-node described in Section 3.10.5. The transform between the
/odom-frame and the base link are mostly used by the ackermann odometry-node explained
in Section 3.8.6. The launch-file for the static transform configurations are listed in Appendix
C.1.

3.10.2 Costmap

The costmap in ROS navigation is an occupancy grid type map. In ROS three .yaml-files was
created with parameters for common, local and global costmap. The parameters are listed in
Appendix D.2, D.3 & D.4.

For the common parameters, the map type was defined as: costmap, the footprint of the proto-
type was defined by giving the coordinate to each of the prototypes four corners relative to the
centre of rotation. The topic and frame of the LiDAR scan was the final common parameter to
be configured.
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The local and global-costmap individual parameters was set. For the local-costmap, the global frame
was set to the /odom-topic, as for the global-costmap, it was set to the /map-topic. The
robot base frame was set to /base link for both.

3.10.3 Time-Elastic-Band Local Planner

The planing and navigation of a car-like robot is not directly supported by the navigation
stack, however teb local planer could be manipulated to support plans that are feasible for
Ackermann steered vehicles [76]. The teb local planer could then be configured to support
front wheeled steered vehicles, as the prototype, as well as rear wheel steered vehicles like the
full-scale reach stacker.

Path planing supported by car-like robots was achieved by extending the nonholonomic con-
straint by a minimum bound on the turn radius response by satisfying rmin < v/ω. The
min turning radius parameter was set. The Twist-messages from the navigation stack was
converted into messages containing the steering angle and the linear velocity, which is handled
by the ackermann odometry-node. Differential driven robots have recovery behaviour provided
by the navigation stack, this allows them to rotate around its own axis. Car-like robots must
move forward or backwards to steer, so the recovery behaviour has to be turned off or replaced.
This is further described in Section 3.10.8

The steering angle problem was fixed by teb local planner which executes the steering angle
calculations automatically by changing the parameter cmd angle instead rotvel to true and
by specifying the wheelbase wheelbase in meters [76]. The angular velocity was then substi-
tuted by the steering angle. If the vehicle is supposed to utilize rear wheeled steering, like for
an instance a reach stacker, the cmd angle instead rotvel parameter has to be negative.

The planner is configurable by changing the parameters of the configuration file listed in Ap-
pendix D.5, Table 3.2 show a list of the parameters changed and their function.

Table 3.2: teb local planner Parameters

Parameter Value Description
odom topic /odom Define what topic is to be used for odometry
map frame /map Define what topic is to be used for the map
max vel x 0.3 Maximum /cmd vel in linear.x
min turning radius 0.63 The minimum turning radius for the planner
footprint model polygon The shape the planer uses for the prototype
free goal vel False The prototype has to stop in goal, not coast
min obstacle dist 0.2 Minimum distance from obstacle
weight kinematics nh 1000 Weight for nonholonomic kinematics of robot
weight kinematics forward drive 100 Favour forward driving, reducing reversing
weight kinematics turning radius 100 Make path weight turning radius
max number classes 4 The amount of path generated/considered
enable homotopy class planning False Disabling parallel planning
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3.10.4 Global Planner

The global planner-package [77] was used as the global planner in the navigation stack. This
package adheres to the nav core and move base-package. No parameters was changed, thus
the default settings was utilized.

3.10.5 Adaptive Monte Carlo Localization

Adaptive Monte Carlo Localization, or AMCL [78], was used to improve the localization of the
prototype by combining the pose from the ArUco tracking-system with the laser scan-matching
provided by the amcl-node. The parameters are based on a default template for a differential
drive robot. Initially the global costmap and the provided map would not align when the
planner was launched and would drift apart during movement. The drift problem was solved
by setting the odom model type to diff-corrected instead of diff, in addition to adding the
odom alpha-values. The launch-file is attached in Appendix C.2.

3.10.6 Mapping

To achieve the best possible localization of the prototype, the map had to correspond well with
the actual LiDAR reading. ROS has a pre-installed SLAM package, named gmapping [79], in
addition there is another commonly used package named hector slam [80].

Both packages have a similar setup. They require to know the static transforms between the
physical components, in addition to the dynamic transform between the map and the odometry-
frame. The launch-file used to run these nodes are listed in Appendix C.3 for gmapping and
Appendix C.4 for hector slam.

3.10.7 Move Base

The move base-node is used to drive the prototype. The node handles the map and path plan-
ning. In the move base launch-file the map server-node and amcl-node is first launched. Then
the parameters for the costmaps and teb local planner is loaded and teb local planner is
started. The launch-file is attached in Appendix C.5.

3.10.8 Recovery Behaviour

When driving autonomously, the prototype might get stuck. A recovery behaviour was imple-
mented into the navigation stack to unstuck the prototype.

ROS comes with several recovery behaviours implemented, rotate recovery, clear costmap -
recovery and move slow and clear [33]. These behaviours are pretty self-explanatory, where
rotate recovery make the robot rotate in place (works only on differential drive robots),
clear costmap recovery clears the entire costmap and start gathering data for a new costmap.
move slow and clear forces the robot to move slowly and clear non-existing objects from the
costmap.

56



3. Methods

rotate recovery is the default behaviour in the navigation stack, however this was changed to
clear costmap recovery, since the prototype is not a differential driven robot.

3.11 Autonomous Driving

The autonomous driving was executed by combining the localization and navigation stack.
By launching the move base-file in ROS, the prototype is able to navigate to a goal posi-
tion. The goal position is determined by using 2D Nav Goal-tool in RViz or by publishing a
geometry msg/PoseStamped-message to the /move base simple/goal-topic. Furthermore, the
path can be configured to intersect waypoints by using the Publish Point-tool in RViz or by pub-
lishing a geometry msg/PointStamped-message to the /clicked point-topic. Lastly, to help
with the localization of the prototype, an initial pose could be assigned in RViz using the 2D
Pose Estimate-tool or by publishing a geometry msg/PoseWithCovarianceStamped-message to
the /initialpose-topic.

3.12 Continuous Autonomous Driving Through Waypoints

A program making the prototype continuously drive through user defined waypoints was devel-
oped to showcase the prototype’s autonomous capabilities. The program uses move base with
the teb local planner to navigate as before, however in the program the ”goal” is set by using
the follow waypoints-node [81]. The node has a list of waypoints situated in a map. When
the command is executed the prototype move to each waypoint in the order it was assigned.
The user assigns goals by using the 2D Pose Estimation Tool in RViz. When the waypoints are
assigned, the prototype will navigate to each waypoint when the following command is executed
in the terminal window:

$ rostopic pub /path_ready std_msgs/Empty -1

The follow waypoints-node does not enable continuous driving alone, thus a program was
developed to enable the robot to drive in a continuous loop.

The continuous loop ability was enabled by implementing a while-loop into the path execu-
tions class of the script. The while-loop run as long as a counter n is less or equal to the
length of the waypoints-list. Secondly if the counter n exceeds the number of paths, it resets
itself, thus forcing the while-loop to restart and the first waypoint will be set as the current goal.

The continuous-loop script is attached in Appendix B.8.

57



4. Results

4. Results

This chapter present the result of the previously described method followed in this thesis. Please
note that the source codes was made as modular as possible in order to have a set of packages
which could be rearranged and utilized for future applications.

Due to the confidentiality of this thesis, the code is uploaded to a private GitHub repository
which can only be accessed by receiving an invitation. To request an invitation to the reposi-
tory, please send an email with the GitHub account to:

magnus.tomren@gmail.com

A video demonstrating the prototype was made. The video demonstrates: SLAM, point-to-point
driving and continuous driving. The test in the video also showcases the prototypes ability to
avoid dynamic obstacles being placed and removed. The video is uploaded to YouTube and is
accessed through the following link:

https://www.youtube.com/watch?v=TfkkGDr1rkw

4.1 System Architecture

The system architecture of an autonomous vehicle is generally divided into three categories:
perception, planning and actuation [82].

Perception uses internal and external sensors to understand the surroundings. The planning
uses the output of the perception and usually some type of map to generate a plan for where
the vehicle is heading.

A planner usually consists of a global and a local planner. The global planner keep track of
where the vehicle is heading and the current position. A local planner is used to avoid dynamic
obstacles and obstacles not present in the initial map. The local planner communicates directly
to the low-level control which connects the planning and the acting of the vehicle. The actuation
is the part of the system which control the physical vehicle based on the inputs provided by the
previous systems.
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Figure 4.1 displays the general system architecture of the prototype.

Figure 4.1: System Architecture for Autonomous Vehicle

Figure 4.2 displays a sketch of the indoor localization-system based on the ArUco tracker.

Figure 4.2: Sketch of System Overview

In the RQt-graph (attached to the very last page), the entire ROS communication is visualized.
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4.2 Camera Calibration

Figure 4.3 displays the result of the camera
calibration using the script described in
Section 3.7.

By locating each corner in the grid, the
script generates the calibrated camera
matrix which was equal to:

Figure 4.3: Camera Calibration Result

Camera Matrix =


fx 0 cx

0 fy cy

0 0 1

 =


724.7 0.0 377.8
0.0 2777.9 320.1
0.0 0.0 1.0



4.3 ArUco Marker Detection

The ArUco tracker worked rather well and
was able to detect a 20 × 20 mm marker
from a distance of 15 meters. Figure 4.4
show a screen-shot of the viewfinder gener-
ated by the ArUco tracker code described
in Section 3.8.3, detecting a marker.

When the angle of the marker was too
shallow (Approximately 30o), the algo-
rithm had trouble detecting the marker.
Various lighting-conditions also caused
some issues to the tracker’s accuracy. How-
ever, these problems where only present in
extreme conditions not experienced in the
controlled testing area.

Figure 4.4: ArUco Marker ID 1 Detected
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4.4 Depth Camera Measurement

When the ArUco tracker managed to
detect a marker, the region of interest
(ROI) in Figure 4.5 was generated. The
image is binary, with the white area cor-
responding to a value received and black
area corresponding to no data received.

Figure 4.5: Depth Image ROI Generated
by ArUco Marker

The RGB-camera was implemented as an
output to show only the ROI. This made
it simpler to locate the depth camera and
understand where the measurement was
taken. Figure 4.6 show the RGB ROI,
where the blue square inside is the area is
where the depth data is gathered.

The code utilized to gather ArUco data is
described in Section 3.8.4. Figure 4.6: RGB ROI

4.5 Manual Driving & Deadband Compensation

The manual driving of the prototype was tested using the keyboard teleoperation described in
Section 3.6, on a laptop connected to the prototype wirelessly. It was discovered that there was
a significant deadband present when driving the prototype forward and in reveres. The dead-
band was identified by incrementing the motor duty cycle until the prototype started moving.
The test resulted in a deadband of ±0.05 in the duty cycle.

A set of if-statements was implemented in the low-level control to compensate for the deadband,
in order to prevent the prototype from jerking at small duty cycles. The if-statements are listed
below:

if duty_cycle > 0:
duty_cycle = duty_cycle + 0.05

if duty_cycle < 0:
duty_cycle = duty_cycle - 0.05

if duty_cycle == 0:
duty_cycle = 0
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4.6 Odometry

The accuracy of the odometry script was tested and the results was visualized in RViz to con-
firm that the generated turning radius corresponded to the actual values measured with the
prototype. Table 4.1 shows the results from the simulated and measured maximum turning
radius and Figure 4.7 show a plot from the simulated odometry in RViz.

Table 4.1: Ackermann Odometry Turning Radius

Simulated [m] Measured [m]
0.628 0.63

The steering angle, α, was tuned until the simulated results was close to the measured results.
The maximum steering angle of the prototype was eventually measured to 0.5 rad = 29o.

Figure 4.7: Odometry Mapping in RViz

The prototype was manually driven 3 meters in x-direction and 1 meter in y-direction. Table
4.2 show the simulated and measured results.

Table 4.2: Ackermann Odometry Turning Radius

Direction Simulated [m] Measured [m]
x 2.98 3.00
y 0.90 1.00
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Figure 4.8 shows the simulated results in RViz.

Figure 4.8: Odometry Test in RViz

The short-term accuracy of the wheel odometry was deemed sufficient.

4.7 Transform Configuration

The static transforms was configured as shown in Figure 4.9, where x-direction is red, y-direction
is green and z-direction is blue. The odometry-frame is placed on the rear axle of the truck and
the IMU and base link is placed in the centre of rotation. The IMU is mounted upside-down
to enable USB-port connection. By configuring the transform to the physical position and ori-
entation, the output of the IMU orientation is correct relative to the rest of the truck. The
same goes for the ArUco marker on top of the prototype, which is rotated 90 degrees relative
to the local x-direction of the model. Finally, the LiDAR is mounted upside-down, by rotating
the frame 180 degrees in the transform-node the laser scan is not inverted.

Figure 4.9: Static Transform Configurations Viewed in RViz
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4.8 Localization

A test of the localization system was conducted. The test was setup up with the stationary
cameras looking down on the test area. The prototype was manually driven around and the
position was registered. The ArUco tracker data was combined with the wheel odometry in an
extended Kalman filter-node to estimate an accurate pose of the prototype.

4.8.1 ArUco Tracking

The ArUco tracking uses the RGB camera and the ArUco tracking code described in Section 4.3.
The depth camera measures the distance to the midpoint of the physical marker as described in
Section 3.8.4. The depth camera was presumed to measure distance more accurately than the
RGB camera. However, the depth camera experienced noise. Figure 4.10 show how much the
dept camera measurement varies over time compared to the RGB ArUco tracker. The tracker
provides one pose constantly, while the measurement from the depth camera jumps back and
forth with ±0.25 m, which is not sufficient.

Figure 4.10: Pose by ArUco Tracker (Blue) & Depth Camera (Yellow)

The depth camera approach had to be abounded and the ArUco tracker uses only the RGB
sensor for tracking.

A Odometry-message was generated using the odometry script listed in Appendix B.7. The
odometry script utilizes the values from the ArUco-tracker script described in Section 4.3. The
odometry script generates a relative pose of the marker, meaning that the position where the
ArUco marker is located when the localization is initialized is set to the initial pose of the marker.
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Figure 4.11 show the output of the Intel RealSense camera when localizing the prototype. The
ArUco marker is recognized and the (x, y)-coordinate and pose is further used in the localization
of the robot.

Figure 4.11: Localization Test Viewed from Camera

The optimal position to obtain the greatest field-of-view is calculated from the equations in
Section 3.8.5. A camera mounted obliquely cover more area than a camera facing straight
down. The test results of the oblique camera were not good due to shallow angle relative to
the flat mounted ArUco markers. The camera had trouble detecting the marker and the varied
lighting condition also affected the result. Figure 4.12 and 4.13 show two screenshots from
the test where the ArUco marker is not detected and next image showing that the marker is
detected. Mounting the camera higher would improve the result.

Figure 4.12: ArUco Not Detected Figure 4.13: ArUco Detected

Facing the camera straight down obtained the best results. Both in tracking the ArUco and
measuring its position within the camera frame, however the field of view is more limited than
the obliquely mounted camera.
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4.9 Extended Kalman Filter Configuration

This section presents the results of the extended Kalman filter configuration, including covari-
ance gains for the wheel odometry, the generated covariance matrix for the ArUco tracker and
tuning of the ekf localization-node parameters.

4.9.1 Wheel Odometry

The prototype was driven around manually to gather odometry data in order to tune the
covariance matrix described in Section 3.9.1. Due to the backlash in the steering and other
sources of error the prototype drifts to either left or right, thus the ky and kyaw was adjusted
until the results was satisfactory. Moreover, the distance in x-direction was pretty accurate
which made the kx-gain quite small. The final gains are listed in Table 4.3.

Table 4.3: Wheel Odometry Covariance Gains

Variable Value
kx 0.1
ky 0.5
kyaw 0.5

4.9.2 ArUco Pose

The ArUco pose measurement is not static. The pose measurement noise was outputted from
the script described in Section 3.9.2 and plotted over a time span of 60 seconds. The pose
measurement plot is shown in Figure 4.14. The ArUco marker was situated 2 meters away from
an arbitrary place in the camera frame. The plot show that the measurement is not static and
has some noise, however these peaks are small, with only a few millimeters of inaccuracy, which
will not affect the overall performance of the tracking.

Figure 4.14: ArUco Pose Measurements
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The covariance matrix of the ArUco pose measurement was calculated from the gathered data
and is presented below:

Covaraince Matrix =


0.00126893 0.00080084 0.02373705
0.00080084 0.0005075 0.01506908
0.02373705 0.01506908 0.44778692


The variances are the diagonal values and the covariances values are the non-diagonals.

4.9.3 Parameter Tuning

To further improve the results of the ekf localization-node, the ArUco tracker and odometry
data was compared. Figure 4.15 show the ArUco tracker in red versus the wheel odometry in
green. As seen, there is some error in the odometry relative to the tracker. To improve the
odometry measurement, the maximum steering angle was decreased from 0.5 rad = 29o to
0.45 rad = 26o. The result after tuning is shown in Figure 4.16.

Figure 4.15: ArUco Tracking (Red) vs.
Odometry Before Tuning (Green

Figure 4.16: ArUco Tracking (Red) vs.
Odometry After Tuning (Green)

Figure 4.17 shows a test where the prototype drives in a straight line. The steering inaccuracy
causes the prototype to drift to the left. The green arrows are the wheel odometry going
straight. The yellow arrows are the ArUco tracker which clearly show that the prototype is
drifting. Lastly, the red arrows are the output from the ekf localization-node which has a
bias towards the more accurate ArUco tracker which is the desired result. From this test it
is obvious that the ArUco tracker registers the drift and the extended Kalman filter helps to
improve the position estimate.

Figure 4.17: Localization Drift Test
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4.10 Mapping

The mapping abilities was configured in several tests. The ROS integrated gmapping-package
was the first to be implemented and tested on the prototype. The gmapping algorithm encoun-
tered several problems and results was not satisfactory. The problems where mainly due to the
algorithm relaying too much on the inaccurate odometry data. This problem is further discussed
in Section 5.5. The gmapping algorithm was abandoned and hector slam was implemented as
the SLAM-algorithm.

4.10.1 Short Distance Mapping

Initially a small closed-off area in the Machine Hall at UiA was mapped to ensure that hector slam
worked as expected. The scan matching-based algorithm worked immediately and obtained an
accurate map of the surroundings. Figure 4.18, show the map generated with hector slam in
addition to the driven path (green line) originating from odometry data.

Figure 4.18: SLAM of Test Area in the Machine Hall

4.10.2 Loop Closing

An important aspect of a SLAM-algorithm is the loop-closing ability. As mentioned in the
theory, hector SLAM does not provide an explicit loop closing ability, but manages to create a
continuous loop in many robot applications. The loop closing was tested for hector slam by
driving the robot manually around a hallway shaped like a rectangle in the A3 building at UiA.
Figure 4.19 shows the floor plan of the hallway. The orange area is the hallway driven by the
prototype. The long stretch in the hallway is roughly 30 meters long.

68



4. Results

Figure 4.19: Building Plan of Hallway A3, UiA [83]

Figure 4.20 show the generated map of the hallway. The resulting map was accurate and demon-
strates the ability to construct a continuous map with hector slam.

Figure 4.20: SLAM of Hallway A3, UiA

4.10.3 Long-Distance

Finally, a long-distance test was conducted. The hector slam algorithm was tested in the
longest continuous hallway at campus (main straight is approximately 50 m long). The robot
was driven to the end of one of the side hallways, executed a K -turn and drove out the same
hallway, before continuing through to the next hallway. The result is presented in Figure 4.21.
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The map appears to have some angular offset in the third corner, which does not appear to be
exactly 90 degrees. In the area marked with 1 it is possible to see the legs of several lockers
placed against the wall. In Area 2 the lockers was situated directly on the floor. Area 3 there is
a window at the end of the hallway, which the LiDAR see straight trough. Thus, the lines that
appears to ”grow” out of the map. Area 4 shows the K -turn carried out at the corner. In Area
5 the robot drove over 2 doorsteps, which lead to inaccuracies in the map. However, the result
was quite good and the prototype is able to SLAM areas much bigger than the configured area
at Red Rock, with high accuracy.

Figure 4.21: SLAM of Hallway A1, UiA

4.11 Point-to-Point Driving

The point-to-point driving test was carried out in an open environment without obstacles to
make it as simple as possible. The goal of this test was to confirm that the communication with
RViz and the low-level control through the move base-node worked as expected. The prototype
was given an initial pose by using 2D Pose Estimation. The global frame was set to /map in a
known map and the robot was supposed to navigate to a goal pose by using 2D Nav Goal with
the global frame set to /odom in RViz.

The first test was carried out using the default local planner in ROS, the dwa local planner.
Initially it worked when the prototype was set to drive in a straight line. However, when the
prototype was set to turn, it did not take the Ackermann kinematics into consideration. This
resulted in the prototype turning the wheels to the maximum angle while not moving forward.
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A Twist-message, giving a value to the angular.z-parameter, will make a differential drive
robot rotate in place, this is not the case for Ackermann steered robots. After discovering the
kinematic problem, the dwa local planner was abounded.

The teb local planner, was tested. This planner can be manipulated to function with Acker-
mann steered robots. The planner managed to implement the steering radius of the prototype
and added K -turns to the planned path, thus completing the straight-line test and making the
prototype able to turn around.

4.12 Path Planning

After testing the planner’s ability to drive from point-to-point without any obstacles, a test for
verifying how the planner handles known static obstacles and unknown dynamic obstacles was
executed.

4.12.1 Simulation Test of TEB

A simulation test of the teb local planner algorithm was conducted before implementing it in
the navigation stack. The planner was tested in a simulated environment containing obstacles
in RViz. The simulated path goes from one point to another in a horizontal line. Three tests
were conducted: The first test contained one obstacle, the second test contained three obstacles.
The third test placed the obstacles in a manner that required a K -turn. The algorithm plots
every possible trajectory and chooses the trajectory with shortest execution time with a certain
distance to the obstacles in order to avoid a collision.

The result from the test with one obstacle is displayed in Figure 4.22 and 4.23. There are two
paths available, one of the paths is longer than the other. The path with red arrows is the
chosen path and it is obvious that it is the shortest path, with shortest execution time. The two
plots in Figure 4.23 contains the translational velocity in m/s and rotational velocity in rad/s
from the chosen path.

Figure 4.22: Simulated teb local planner with One Obstacle
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Figure 4.23: Velocity Graph from Simulated teb local planner with One Obstacle

The result from the test with three obstacles is displayed in Figure 4.24 and 4.25. The algorithm
finds five possible paths and chooses the path with red arrows. The two plots in Figure 4.25
contains the translational velocity in m/s and rotational velocity in rad/s from the chosen path.

Figure 4.24: Simulated teb local planner with Several Obstacles

Figure 4.25: Velocity Graph from Simulated teb local planner with Several Obstacles
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The result from the K -turn test is displayed in Figure 4.26 and 4.27. The planner makes two
paths with a K -turn. One of the paths is slightly longer than the other. The path with red
arrows is the chosen path and it is the shortest path, with shortest execution time. The K -turn
is visible in Figure 4.26.

It is observed in the translational velocity plot in Figure 4.27 that the velocity is negative. The
simulated vehicle had to reverse and then steer around the obstacle to reach the goal position.

Figure 4.26: Simulated Path in teb local planner with K -turn

Figure 4.27: Velocity Graph from Simulated Path in teb local planner with K -turn

4.12.2 Real World Test of TEB

In this test, a known map with obstacles was provided, in addition to one unknown ”dynamic”
obstacle represented by a cardboard box. The prototype was localized in the map and given a
goal destination behind the obstacle. The global path was generated and teb local planner
provided the local path in real-time as the truck started to drive. The obstacle was detected
and added to the local costmap when the robot was within a range of 2 m. The local planner
calculated a new path around the obstacle and preceded to drive around it.
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Figure 4.28 show the initial pose of the prototype with the local costmap (blue and purple pix-
els) is detecting the walls surrounding the prototype’s footprint model (dark green rectangle)
using the LiDAR scan (red particles) while the prototype starts to move towards the goal posi-
tion (green arrow) set to the left in the map. In Figure 4.29 the prototype detect the dynamic
obstacle and re-plan a path around it (dark blue line). The red arrows are the discrete pose of
the prototype.

Figure 4.28: Goal Received Figure 4.29: Re-Planning Around Obstacle

In Figure 4.30 it could be observed that the prototype avoided the obstacle and proceeded to
the first goal. When the prototype reached the first goal pose, a second goal pose was given.
Figure 4.31 show the prototype reversing into a K -turn to turn around and proceed to the
second goal pose.

Figure 4.30: Avoided Obstacle Figure 4.31: K -turn to Reach New Goal
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Figure 4.32 show the path planner creating two K -turns for the prototype to turn 180 degrees
and Figure 4.33 show the prototype just before the final goal was reached.

Figure 4.32: Turning Around Figure 4.33: Reached Final Goal

Please note that all the screen captures from RViz was taken in real-time, thus they do not
always show the optimal illustration of the scenario. The local planner iterates the path at 5Hz
and is therefore continuously making small adjustments to the path.

4.13 Continuous Autonomous Driving Through Waypoints

The follow waypoints-node was tested. The test was carried out in the small testing area in
the Machine Hall at UiA. The waypoints were assigned in clockwise direction, thus making the
prototype drive in a loop. Figure 4.34 show the setup of the waypoints in the map of the testing
area.

Figure 4.34: Path Driven Through Waypoints
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A test of the continuous driving was conducted. The while-loop approached worked as ex-
pected and the prototype drove until it was stopped manually. It is also seen from Figure 4.34
that the prototype drives different paths for each loop. This is due to the algorithm always
trying to drive the path that takes the shortest time and slight difference in position at each lap.

To make the prototype drive smoother and not spend time on getting the orientation of the
waypoint vector right, the goal tolerance was increases. The prototype is configured to drive
within a radius of 20 cm of the waypoint and not to mimic the direction of the waypoint vector.
The tolerance is the reason for why the prototype did now drive completely through the third
waypoint. This could be tuned further to reach a more specific result.

A second test with a dynamic obstacle was also conducted. The prototype drove three times
through the waypoints. First without obstacle, secondly with an obstacle placed in OB1 and
lastly the obstacle was moved to OB2. As seen from the result in Figure 4.35, the prototype
manage to re-plan the path around the dynamic obstacle and continued driving to the next
waypoint.

Figure 4.35: Obstacle Avoidance Through Waypoints

The path highlighted in blue is the path the prototype drove to avoid the first obstacle, OB1.
The obstacle was then moved to OB2 and the prototype drove the path highlighted in red.

4.14 User Manual

To simplify the somewhat intricate start-up procedure of the prototype, a user manual with a
step-by-step explanation on how to use the prototype and start the different modes, in addition
to troubleshooting and known issues was created. The user manual is attached in Appendix A.
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5. Discussion

This chapter discuss the theory, methodology and results obtained in the master thesis, in
addition to elaborating improvements and further work.

5.1 V-Model

It was decided to use the V -Model approach as a software development guideline in the begin-
ning of the project. The methodology was systematic and worked relatively well. The V -Model
is highly disciplined and not prone to changes. Some requirements changed during the scope
of the project, like changes in the tracking system and the use of a truck rather than a reach
stacker as a base for the prototype.

The V -Model approach was not followed explicitly in the module design and software design
phase. The V-model states that every module should be finished when the software is stitched
together, in the software design phase. This was not the case in this project, mainly due to the
use of ROS. ROS enables modules to be tested together at a low level. The module design and
software design phase were therefore more of a joint effort, where modules was tested together
in a subsystem. The entire software was revised and tested again. Functionalities where added
along the scope of the project until the entire software functioned in the desired manner.

It could be argued that the V -Model was not the right methodology for this specific project.
The V -Model is not prone to frequent changes and the fact that ROS allows low-level software
testing and implementation. The Incremental Model [84] would probably function better, due
to the model combining the elements of the waterfall model with the iterative philosophy of
prototyping.

5.2 Software & Hardware Issues

The fact that choosing the newest software and hardware is not always a best option was learnt
the hard way in this project. A lot of time was spent making the ROS operating system work
and make components work together.

5.2.1 Ubuntu & ROS Issues

A virtual machine running Ubuntu was used in the beginning of the project. The virtual
machine was not suited for the project due to limited processor usage and difficulties to connect
USB components. The hard drive was partitioned, and the newest software Ubuntu 18.04 was
installed. However, the newest software had limited support within the ROS community, so
the software had to be downgraded to Ubuntu 16.04. The hard drive also encountered some
problems with the partition, leading to problems in the Windows partition of the hard drive.
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The ROS distribution Melodic Morenia was first used in the project. The version was launched
on May 23rd, 2018. The software experienced a lot of compatibility problems and was down-
graded to ROS Kinetic Kame from May 2016 which worked well.

5.2.2 Hardware Issues

In future work it would be desirable to use an external SSD-drive to run Ubuntu. A hard drive
partition could possible lead to problems with existing software. The software on the external
hard drive could just be booted from any computer. Unless a project serves the purpose of
evolving the newest software and has to use cutting edge technology, it is often more convenient
to use an older software edition with more documentation and help available.

Some of the components used in this project was relatively new, which again lead to compat-
ibility problems. There is also a low amount of available help and information related to new
hardware. The components that experienced problems was the IMU, Intel RealSense camera
and the VESC. The IMU has USB connection and an integrated Arduino board and the ROS
compatible firmware had to be flashed to the IMU kernel. This proved to be a time-consuming
problem, the software had to be altered and debugged to obtain compatibility. The VESC
controls the brush less motor. The VESC has a servo out cable that was intended to be used
to control the servo motor used in the steering. However, the firmware was the latest release
and not ROS compatible, a lot of effort was made to flash the kernel with an earlier firmware,
without results. The solution was then to drive the servo using an additional Arduino board
and a servo driver board from Adafruit.

The newest Intel RealSense camera was implemented, and several issues became apparent. The
camera did not work together with ROS on one of the computers. There was also some firmware
problems and a variety of smaller compatibility issues.

The prototype was initially supposed to be tracked by retro reflective spheres and it was therefor
decided to use an IR camera. It became apparent that the RealSense camera only emits a point
cloud which does not enable sphere tracking. It was therefor decided to track ArUco markers
with the RGB sensor. A better suited camera should replace the RealSense.

5.3 Prototype

The main difference between the optimal full-scale system and the down scaled prototype is the
kinematics. The turning radius is far greater on the prototype truck than on a reach stacker, in
addition the reach stacker’s steering wheels are situated on the rear axle. This is not a major
difference from the prototype truck alone. It simply means that the kinematics is inverse.
The prototype could have been driven backwards, but this configuration would not allow the
prototype truck to pull a trailer.
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5.3.1 Steering

The steering on the prototype appears to be one of the main sources of positioning error. The
steering appears to have some backlash and is wobbly. This became apparent when driving
the prototype in a straight line forward, the prototype would start to deviate from the coarse.
The steering made the prototype deviate 6 cm to the left when travelling a distance of one
meter. The steering link was adjusted; however, the prototype still experienced a drift of 1 cm
in y-direction, for every meter driven in x-direction.

The drift result in an error in the measured odometry. However, the Kalman filter and amcl-
node compensates for it. Steering components machined in aluminium is a possible solution to
the drift problem.

5.3.2 Ackermann Steering vs. Differential Drive

For prototyping purpose and proof-of-concept, a differential driven base would have been easier
and faster to build and program. The Ackermann steering was used due to the fact that the
full-scale reach stacker rely on the same principle. Differential driven robots are easy to control
and program. Differential driven robots are more common in the ROS community and a lot
more information is available compared to car like robots. Ackermann drive was challenging to
configure but gave valuable insight and information that could help further development of the
Red Rock autonomous reach stacker.

5.4 Localization

The ArUco tracker script had the world origin in the centre of the frame, which resulted in the
ArUco odometry being negative relative to the wheel odometry. This made localization difficult
and caused problems.

The Intel RealSense was not suited for the project and should be replaced with a high accuracy
RGB camera meant for computer vision purposes. The RealSense was originally bought to
replace the Kinect in the IR tracking. However, the RealSense did not work in the tracking of
retro reflective markers due to it relying on structural light rather than complete illumination.
It was therefor decided to track the ArUco marker instead.

The RGB camera track the ArUco marker and the depth camera calculate the distance to the
centre of the marker. The RGB camera tracked the marker well and locked on to the marker
immediately, however the depth camera on the Intel RealSense had highly oscillating behaviour
and the ArUco tracker functioned best by only relying on the RGB camera on the RealSense.
The camera system was considered to be excessive due to the prototype navigating with high
accuracy using LiDAR, odometry and the amcl-node. In addition, the camera system has to be
mounted and configured for each area the prototype is used. This would make it cumbersome
to bring the robot to exhibitions or other places for showcasing the product.
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The ArUco tracker works and was meant to simulate a GPS signal. With another camera system
and further work it would function with high accuracy. The full-scale reach stacker relies on
GPS and the prototype code has been configured for future implementation of a UTM-GPS
signal.

5.5 Mapping

The ability to perform mapping with simultaneous localization and mapping (SLAM) is an im-
portant feature enabling fast implementation of the robot in a new environment. A map could
be constructed by hand from blueprints, however there are often problem with the approach.
Many buildings do not comply with the blueprints generated by the architects. Most buildings
also have furniture and machines present, which alter the robot’s perception of the environment.
Mapping is truly one of the core elements of a completely autonomous robot.

The particle filter-based SLAM utilized by the gmapping-package did not function properly on
the prototype. The algorithm managed to provide SLAM data, however the resulting map was
just a cluster and did not make any sense. The main reason for the bad result is the Ackermann
steering. The prototype steering is quite wobbly and has some backlash. The odometry from
the kinematic equations are also not accurate due to the accuracy of the steering mechanism.

The ArUco tracking system could possibly have provided accurate odometry data to the gmapping
SLAM algorithm. However, the camera system would then have to be installed and configured
for the respective area. The camera system would also have a limited range, of about 10 meters.
This would pose an issue when obtaining SLAM in larger areas.

The hector slam worked well and provided god maps of the environment. A higher updating
frequency significantly increased the accuracy of the map.

5.6 Local planner

Two different local planners was tested in this thesis: dwa planner and teb local planner. In
this section the performance of the planners is discussed and evaluated.

5.6.1 Dynamic Window Approach Local Planner

The dwa local planer does not take into account non-holonomic kinematics of Ackermann
steered vehicles. This resulted in the prototype simply turning its wheels with out any forward
motion when it was commanded to make a turn. DWA was therefore replaced by TEB.
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5.6.2 Time-Elastic-Band Local Planner

The map updating frequency was configured to 0.2 seconds. During testing of the TEB planer
there was a constant warning message stating that the map update took 2.7 seconds, making the
prototype drive blind for 2.7 seconds. The delay caused the prototype to collide with obstacles
and caused problems with following the path.

The problem was initially resolved by changing the local costmap’s cell size resolution from 0.05
m to 0.2 m, in addition to changing the local cost map size from 6 × 6 m to 4 × 4 m. The
changes decreased the computation time and the desired update frequency was achieved. Figure
5.1 show the initial local costmap resolution and Figure 5.2 show the downgraded resolution
used for testing. The low resolution caused obstacles to appear lager, resulting in the prototype
not being able to navigate through seemingly open areas.

Figure 5.1: High Resolution Local Costmap Figure 5.2: Low Resolution Local Costmap

Moreover, teb local planner does not have a linear behaviour due to its parallel planning
in distinctive topologies (homotopy class). Since multiple trajectories are optimized at once,
the process requires allot of CPU resources, thus the time complexity increases. By disabling
the parallel planning, the performance increases significantly. The parallel planning is disabled
by changing enable homotopy class planning from True to False. Disabling the parallel
planning reduced the loop time from 2.7 seconds down to 0.2 seconds. The prototype was then
able to function with the initial resolution without warnings.

5.7 Prototype Getting Stuck

During testing the prototype sometimes ”got stuck” for no obvious reason. From the local
costmap there was usually space for it to continue on the path or just simply reverse to where
it came from. However the prototype went into recovery behaviour, which did not always solve
the problem (this issue is addressed in Section 5.8.2). A solution to the problem was to manual
drive the prototype in a short time period, forcing it to reverse and then letting it continue on
its path.

81



5. Discussion

5.8 Improvements & Further Work

This section presents possible improvements and further work.

5.8.1 Path Planning

A local path planning algorithm specially designed for the kinematics of a full size reach stacker
would probably be an advantage. The TEB planer could be configured for car like robots with
rear wheel steering. The planner could also be based on other algorithms for instance the
dynamic window approach to name one.

In further work different global planners could be experimented with. In this thesis the default
ROS global planner worked well, and was therefor used. However both the sbpl lattice pl-
anner [85] and carrot planner [86] are widely used and could be considered in further work.

5.8.2 Recovery Behaviour

The default recovery behaviour of the navigation stack, is rotating behaviour. The feature
only works with differential driven robots. The clear costmap behaviour is a good solution,
however it is not ideal. One recovery behaviour which could be developed would be to make
the prototype back-track by reversing the path it just had driven, in addition to clearing the
costmap for obstacle which is not present anymore. A second solution could be to turn around
by using several small K -turns. This behaviour mimics the already exciting rotating behaviour
and aims to solve the problem in a similar fashion.

5.8.3 Reversing Sensors

The ultrasound sensor should be implemented in further work. The sensor would function as
additional redundancy. The prototype keeps track of the surrounding obstacles with the LiDAR
scan, however there could be situations where dynamic obstacles suddenly appears behind the
prototype. An ultrasound sensor would also be useful in situations where the prototype loses
track of its position. This could solve some of the issues with the prototype getting stuck and be
useful in the recovery behaviour. Most ideally the prototype could have featured a 360 degree
field of view LiDAR, however due to the RC truck design it was not possible to achieve.

5.8.4 Multithreading & GPU Acceleration

The ROS package implemented on the prototype does not support multithreading or GPU
acceleration. The path planning algorithm is using most of the computing power and is running
on one core of the processor. The full potential of the NVIDIA Jetson is therefore not utilized.
In further work the workload should be moved to the GPU.

The main advantage of using the GPU is that the local costmap could be increased in size,
without suffering from reduced loop time. By increasing the size of the local costmap the
prototype would be able to plan further ahead, thus improving the overall performance of the
autonomous driving.
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5.8.5 Container Detection

Although the sensor suit for the container spreader was defined in this thesis, a prototype was
not developed. However, it should be possible to detect a container using edge detection in an
image from the camera mounted on the container spread.

Differentiate between the three ISO sizes of containers (10 feet, 20 feet and 40 feet), is fairly
simple by creating a rectangular bounding box around the detected container and then calcu-
lating the ratio between the length and width of the rectangle. The containers have the same
width, the ratio of a 10 feet container is close to 1:1, thus a 20 feet container have a ratio of 2:1
and a 40 feet container have a ratio of 4:1.

5.8.6 Large Scale Prototype

The next prototyping step should be to; design a container spreader, test the prototype outside
with a GPS sensor and increase the scale of the prototype. If possible, the prototype should be
as close to a reach stacker as possible to obtain more accurate results. With the increased size
and amount of sensors, the computing power should also be increased, as it was seen to cause
issues in the small scale testing.

Outdoor Localization

The geonav transform-package [87] in ROS could be used to implement a GPS sensor in
the navigation stack. The package transforms 2D geographic coordinates to local x and y-
coordinates. The GPS data is converted to the UTM coordinate system. The geonav transform-
node then publishes a transform from /utm to /map.

The package utilizes the geonav transform-method to convert from geographic to local co-
ordinates. The geonav transform node receives an odometry message from the GPS sensor
containing sensor frame orientation and velocity. The message is transformed to a new odome-
try message containing information in the UTM frame and odometry frame. The tf-library is
used to broadcast two transforms: /utm → /odom and /odom → /base link.

The information from the geonav transform-package is intended to be utilised parallel to IMU’s
and then fused together in the ekf localization-node. The ekf localization-node is used
to estimate the pose of a robot with measurements originating from different sources through
an extended Kalman filter.

The process is listed below [74]:

• Convert GPS data to UTM coordinates.

• Use UTM coordinate, EKF output and IMU data to generate a static transform T from
UTM grid to robot world frame.

• Transform all future GPS data using T .

• Feed output back into the extended Kalman filter.
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6. Conclusion

This thesis covers the process of constructing and testing a functional autonomous ground ve-
hicle prototype for moving containers. An indoor localization system was successfully designed
to precisely estimate the pose of the prototype and enabling autonomous navigation in a map
generated using simultaneous localization and mapping (SLAM). The prototype is able to sense
dynamic obstacles and avoid them.

The reach stacker is the optimal container handling solution for small container ports due to
the versatile design. The vehicle is agile and has the ability to perform all the tasks required in
container handling operations. The container spreader is flexible which makes the positioning
of the base less important.

After several design revisions, the indoor localization system was developed and tested. The
odometry was successfully combined with the ArUco tracker’s pose estimation and the IMU
measurement in an extended Kalman filter. The resulting odometry signal was used in combi-
nation with scan matching in an Adaptive Monte Carlo Localization-algorithm, to provide the
final pose estimation for the prototype. The system manages to adjust for the drift in wheel
odometry created by mechanical backlash in the steering.

The prototype is able to provide real time SLAM. The gmapping did not function as intended
due to inaccurate odometry data causing problems when generating a map and estimating pose.
Moreover, the hector slam-algorithm worked well and provided a high accuracy map, due to
it relying on the LiDAR measurement and scan-matching.

The teb local planer have a good performance keeping track of the path and avoiding obsta-
cles. The teb local planner obtained the best results with parallel planning disabled. Contin-
uous driving was implemented to enable the prototype to drive in a loop through user-defined
waypoints, whilst avoiding dynamic obstacles. The prototype would have obtained better path
planing performance with multithreading and GPU acceleration, the CPU has limited comput-
ing resources, thus restraining the size of the local costmap.

Lastly it could be concluded that a fully autonomous prototype has been successfully developed,
with a scalable and modular software package.

84



6. BIBLIOGRAPHY

Bibliography

[1] iContainers. The future of automation at terminals and ports. https://www.icontainers.
com/us/2018/10/09/the-future-of-automation-at-terminals-and-ports/. ac-
cessed 2019-05-21.

[2] Port of Kristiansand. Containers. https://www.portofkristiansand.no/container.
accessed 2019-01-10.

[3] More Than Shipping. SHIPPING INDUSTRY TRENDS TO LOOK OUT FOR IN 2019.
https://www.morethanshipping.com/shipping-industry-trends-to-look-out-
for-in-2019/. accessed 2019-02-17.

[4] FORTUNE. U.S. Ports Take Baby Steps in Automation as Rest of the World Sprints.
http://fortune.com/2018/01/30/port- automation- robots- container- ships/.
accessed 2019-02-17.

[5] Port Strategy. STRADS VERSUS STACKERS. https : / / www . portstrategy . com /
news101/port-operations/cargo-handling/strads_and_stackers_get_to_grips_
with_key_issues. accessed 2019-02-17.

[6] kisspng. Reach Stacker. https://www.kisspng.com/png-forklift-reach-stacker-
tire-intermodal-container-m-4658197/download-png.html. accessed 2019-02-04.

[7] konecranesusa. Straddle Carrier. https://www.konecranesusa.com/sites/default/
files/gallery/jpglarge_3d_boxrunner.jpg. accessed 2019-01-10.

[8] Kalmar. Autonomous container terminals vs. self-driving cars: differences and similarities.
https://www.kalmarglobal.com/news-- insights/2018/20181219_autonomous-
container-terminals-vs.-self-driving-cars-differences-and-similarities/.
accessed 2019-01-10.

[9] Amir Hossein Gharehgozli. “Sea Container Terminals: New Technologies, OR models, and
Emerging Research Areas”. ERIM Report dissertation. Rotterdam School of Management,
2014.

[10] RBS EMEA UG. Container Terminal Operating System. https://www.rbs-emea.com/
glossary/container-terminal-operating-system-tos/. accessed 2019-04-04.

[11] PEMA. Container Terminal Automation. https : / / www . pema . org / wp - content /
uploads/downloads/2016/06/PEMA- IP12- Container- Terminal- Automation.pdf.
accessed 2019-04-04.

[12] Open Source Robot Foundation. ROS, Documentation. http://wiki.ros.org/. accessed
2019-01-25.

[13] Open Source Robot Foundation. ROS, Nodes. http://wiki.ros.org/Nodes. accessed
2019-01-25.

[14] Open Source Robot Foundation. ROS, Topics. http://wiki.ros.org/Topics. accessed
2019-01-25.

[15] Open Source Robot Foundation. ROS, Messages. http://wiki.ros.org/Messages.
accessed 2019-01-25.

85

https://www.icontainers.com/us/2018/10/09/the-future-of-automation-at-terminals-and-ports/
https://www.icontainers.com/us/2018/10/09/the-future-of-automation-at-terminals-and-ports/
https://www.portofkristiansand.no/container
https://www.morethanshipping.com/shipping-industry-trends-to-look-out-for-in-2019/
https://www.morethanshipping.com/shipping-industry-trends-to-look-out-for-in-2019/
http://fortune.com/2018/01/30/port-automation-robots-container-ships/
https://www.portstrategy.com/news101/port-operations/cargo-handling/strads_and_stackers_get_to_grips_with_key_issues
https://www.portstrategy.com/news101/port-operations/cargo-handling/strads_and_stackers_get_to_grips_with_key_issues
https://www.portstrategy.com/news101/port-operations/cargo-handling/strads_and_stackers_get_to_grips_with_key_issues
https://www.kisspng.com/png-forklift-reach-stacker-tire-intermodal-container-m-4658197/download-png.html
https://www.kisspng.com/png-forklift-reach-stacker-tire-intermodal-container-m-4658197/download-png.html
https://www.konecranesusa.com/sites/default/files/gallery/jpglarge_3d_boxrunner.jpg
https://www.konecranesusa.com/sites/default/files/gallery/jpglarge_3d_boxrunner.jpg
https://www.kalmarglobal.com/news--insights/2018/20181219_autonomous-container-terminals-vs.-self-driving-cars-differences-and-similarities/
https://www.kalmarglobal.com/news--insights/2018/20181219_autonomous-container-terminals-vs.-self-driving-cars-differences-and-similarities/
https://www.rbs-emea.com/glossary/container-terminal-operating-system-tos/
https://www.rbs-emea.com/glossary/container-terminal-operating-system-tos/
https://www.pema.org/wp-content/uploads/downloads/2016/06/PEMA-IP12-Container-Terminal-Automation.pdf
https://www.pema.org/wp-content/uploads/downloads/2016/06/PEMA-IP12-Container-Terminal-Automation.pdf
http://wiki.ros.org/
http://wiki.ros.org/Nodes
http://wiki.ros.org/Topics
http://wiki.ros.org/Messages


6. BIBLIOGRAPHY

[16] Open Source Robot Foundation. rviz. http://wiki.ros.org/rviz. accessed 2019-02-14.
[17] Open Source Robot Foundation. QA - Get odometry from car-like robot. https : / /

answers.ros.org/question/235519/get- odometry- from- car- like- robot/. ac-
cessed 2019-02-25.

[18] OpenCV. Camera Calibration. https://docs.opencv.org/3.4/dc/dbb/tutorial_py_
calibration.html. accessed 2019-02-11.

[19] Hindawi. Depth Measurement Based on Infrared Coded Structured Light. https://www.
hindawi.com/journals/js/2014/852621/. accessed 2019-02-19.

[20] Miles Hansard. Time of Flight Cameras: Principles, Methods, and Applications. https:
//hal.inria.fr/file/index/docid/725654/filename/TOF.pdf. accessed 2019-02-19.

[21] Fei-Fei Li. Lecture 9 10: Stereo Vision. http://vision.stanford.edu/teaching/
cs131_fall1415/lectures/lecture9_10_stereo_cs131.pdf. accessed 2019-02-19.

[22] Teknisk Ukeblad. Slik styres gravemaskinen til siste centimeter. https://www.tu.no/
artikler/slik- styres- gravemaskinen- til- siste- centimeter/258240. accessed
2019-02-06.

[23] Hermann Eul. Navigation and Communication 2006. http://wpnc.net/fileadmin/
WPNC06/CFP_WPNC06.pdf. accessed 2019-02-20.

[24] DANIEL RUBINO. GPS vs. aGPS: A Quick Tutorial. https://www.windowscentral.
com/gps-vs-agps-quick-tutorial. accessed 2019-02-20.

[25] Øystein B. Dick. UTM. https://snl.no/UTM. accessed 2019-02-16.
[26] Wikipedia. File:LA2-Europe-UTM-zones.png. https://en.wikipedia.org/wiki/Universal_

Transverse_Mercator_coordinate_system#/media/File:LA2-Europe-UTM-zones.
png. accessed 2019-02-16.

[27] doxygen. Detection of ArUco Markers. https://docs.opencv.org/3.1.0/d5/dae/
tutorial_aruco_detection.html. accessed 2019-02-04.

[28] Bilgin’s Blog. Kalman Filter For Dummies. http://bilgin.esme.org/BitsAndBytes/
KalmanFilterforDummies. accessed 2019-03-21.

[29] Bzarg. How a Kalman filter works, in pictures. http://www.bzarg.com/p/how- a-
kalman-filter-works-in-pictures/. accessed 2019-03-22.

[30] Peng Wang. A loop closure improvement method of Gmapping for low cost and reso-
lution laser scanner. https : / / www . sciencedirect . com / science / article / pii /
S2405896316308278. accessed 2019-03-22.

[31] Kamarulzaman Kamarudin. Performance Analysis of the Microsoft Kinect Sensor for 2D
Simultaneous Localization and Mapping (SLAM) Techniques. https://www.ncbi.nlm.
nih.gov/pmc/articles/PMC4299068/. accessed 2019-03-22.

[32] S. Kohlbrecher et al. “A Flexible and Scalable SLAM System with Full 3D Motion Estima-
tion”. In: Proc. IEEE International Symposium on Safety, Security and Rescue Robotics
(SSRR). IEEE. Nov. 2011.

[33] Open Source Robot Foundation. ROS - Navigation. http://wiki.ros.org/navigation.
accessed 2019-02-28.

[34] Open Source Robot Foundation. move base. http://wiki.ros.org/move_base. accessed
2019-03-28.

86

http://wiki.ros.org/rviz
https://answers.ros.org/question/235519/get-odometry-from-car-like-robot/
https://answers.ros.org/question/235519/get-odometry-from-car-like-robot/
https://docs.opencv.org/3.4/dc/dbb/tutorial_py_calibration.html
https://docs.opencv.org/3.4/dc/dbb/tutorial_py_calibration.html
https://www.hindawi.com/journals/js/2014/852621/
https://www.hindawi.com/journals/js/2014/852621/
https://hal.inria.fr/file/index/docid/725654/filename/TOF.pdf
https://hal.inria.fr/file/index/docid/725654/filename/TOF.pdf
http://vision.stanford.edu/teaching/cs131_fall1415/lectures/lecture9_10_stereo_cs131.pdf
http://vision.stanford.edu/teaching/cs131_fall1415/lectures/lecture9_10_stereo_cs131.pdf
https://www.tu.no/artikler/slik-styres-gravemaskinen-til-siste-centimeter/258240
https://www.tu.no/artikler/slik-styres-gravemaskinen-til-siste-centimeter/258240
http://wpnc.net/fileadmin/WPNC06/CFP_WPNC06.pdf
http://wpnc.net/fileadmin/WPNC06/CFP_WPNC06.pdf
https://www.windowscentral.com/gps-vs-agps-quick-tutorial
https://www.windowscentral.com/gps-vs-agps-quick-tutorial
https://snl.no/UTM
https://en.wikipedia.org/wiki/Universal_Transverse_Mercator_coordinate_system#/media/File:LA2-Europe-UTM-zones.png
https://en.wikipedia.org/wiki/Universal_Transverse_Mercator_coordinate_system#/media/File:LA2-Europe-UTM-zones.png
https://en.wikipedia.org/wiki/Universal_Transverse_Mercator_coordinate_system#/media/File:LA2-Europe-UTM-zones.png
https://docs.opencv.org/3.1.0/d5/dae/tutorial_aruco_detection.html
https://docs.opencv.org/3.1.0/d5/dae/tutorial_aruco_detection.html
http://bilgin.esme.org/BitsAndBytes/KalmanFilterforDummies
http://bilgin.esme.org/BitsAndBytes/KalmanFilterforDummies
http://www.bzarg.com/p/how-a-kalman-filter-works-in-pictures/
http://www.bzarg.com/p/how-a-kalman-filter-works-in-pictures/
https://www.sciencedirect.com/science/article/pii/S2405896316308278
https://www.sciencedirect.com/science/article/pii/S2405896316308278
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4299068/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4299068/
http://wiki.ros.org/navigation
http://wiki.ros.org/move_base


6. BIBLIOGRAPHY

[35] Tully Foote. “tf: The transform library”. In: Technologies for Practical Robot Applications
(TePRA), 2013 IEEE International Conference on. Open-Source Software workshop. Apr.
2013, pp. 1–6. doi: 10.1109/TePRA.2013.6556373.

[36] Open Source Robot Foundation. Obstacle Avoidance and Robot Footprint Model. http:
//wiki.ros.org/teb_local_planner/Tutorials/Obstacle%20Avoidance%20and%
20Robot%20Footprint%20Model. accessed 2019-04-05.

[37] Open Source Robot Foundation. dwa local planner. http://wiki.ros.org/dwa_local_
planner. accessed 2019-04-05.

[38] Open Source Robot Foundation. teb local planner. http://wiki.ros.org/teb_local_
planner. accessed 2019-02-25.
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A. User Manual

This Appendix includes the user manual for the prototype developed in this thesis. The user
manual contains start-up procedure, trouble shooting and known issues.

A.1 Prototype Start-Up

To initiate the prototype the following steps has to be performed:

• Connect each of the three batteries. The 4S LiPo battery has to be connected to the
Jetson’s power-input. The 7.5V NiMH battery has to be connected to the VESC. Finally
connect the alkaline battery package to the servo driver.

• Make sure that every USB cable is connected to the USB-hub

• Press the power button on the Jetson and wait few seconds for it to boot

• When the Jetson has booted, it will pop-up as an wireless hotspot on your Ubuntu laptops
network manager. Connect to the hotspot to gain access to the prototype.

• When the connection is established, the user can utilise Remmina Remote Desktop Client
to stream the display output on the Jetson to the laptop connected to the hotspot

• On the Ubuntu laptop, open a new terminal (ctrl + alt + t)

• Check laptop IP using ifconfig in the terminal

• Export as ROS MASTER URI and ROS IP using export ROS MASTER URI=http://<MASTER
IP ADDRESS>:11311 and export ROS IP=<IP ADDRESSE>

• In the terminal, run the command roscore to start the ROS Master-node

• In Remmina, open a new terminal on the Jetson and run the command roslaunch
rr racer bringup.launch to start all the hardware communication (Arduino, VESC,
RPLiDAR, IMU), in addition to launch the static transform-node and the Ackermann
transform publisher node.

• The prototype is now initiated and ready to be driven around manually.
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After running the bringup.launch-file the user can start generate a map using SLAM, or start
an autonomous driving sequence to a single goal or drive continuous through user defined way-
points.

A.1.1 SLAM

To start SLAM with hector slam, the following command has to be executed in a new terminal
window:

$ roslaunch rr_racer hector_mapping.launch

The user will be greeted with a RViz-window setup to with the necessary displays for SLAM.

A.1.2 Point-to-Point Autonomous Driving

For the prototype to navigate autonomously in a provided known map from an initial pose, to
a user defined goal, the following command had to be executed in a new terminal window:

$ roslaunch rr_racer move_base_teb.launch

The user will be greeted with a RViz-wind setup to with the necessary displays for autonomous
driving. The user has to provide the prototype with an rough estimate in the map with the 2D
Pose Estimation-tool. The goal pose can now be provided by changing the Fixed Frame-topic
to the /odom-topic in the top left corner, under Global Options, and using the 2D Nav Goal-tool
and click on the map.

A.1.3 Continuous Autonomous Driving

To let the prototype run continuously through user defined waypoints with dynamic obstacle
avoidance, the user has to execute the following command in a new terminal window:

$ roslaunch rr_racer continious_waypoints.launch

Then the user will be greeted with a RViz-window setup to with the necessary displays for con-
tinuous autonomous driving. The user can now provide as many waypoints as desired, as long
as they are spaced evenly throughout the map, with the 2D Pose Estimation-tool. Finally the
user has to execute the following command in another terminal window to start the continuous
driving:

$ rostopic pub /path_ready std_msgs/Empty -1

The prototype will start to move after a few seconds and its progress can be monitored in RViz.
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A.2 Indoor Localization Start-Up

To start the indoor camera-based localization system, the camera has to be connected to a com-
puter via a USB 3.0-port. Secondly the computes has to connect to the WiFi-hotspot created
by the NVIDIA Jetson on the prototype. Then run the following command in the terminal on
the computer to launch the RealSense-node:

$ roslaunch realsense2_viewer rs_camera.launch

When the node is started, the ArUco tracker-node run the python-script by changing directory
into the script-folder and execute:

$ python aruco_pub.py

Lastly, the relative odometry generation node has to be started by running the script from the
terminal:

$ python odom_relative_gen.py

If everything has been stated correctly, the computer should now publish the generated odom-
etry to the correct topic.

A.3 Battery & Charging

The prototype has three batteries: one 4S LiPo, one 7.5V NiHM and a 4x AA-battery pack.
Both the LiPo and NiHM is rechargeable, and should be charged frequently. The AA-battery
pack, which provides power to the steering servo, is not rechargeable. If the servo does not turn
the steering-wheels, it could mean that the AA battery-pack is discharged.

A.4 Known Issues

This section will describe the know issues with the prototype and how to solve them.

A.4.1 Recovery Behaviour

Sometimes the prototype ”get stuck” due to obstacle in the costmap, this forces it into recovery
behaviour. As of right the recovery behaviour does not work as intended, due to there is not
implemented any Ackermann specific behaviours. To unstuck the prototype, simply run the
manual teleoperation and force it into reverse. By doing this a couple of times, the prototype
tends to clear the costmap enough for it to resume autonomous driving.
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A.4.2 Steering Servo Power Supply

The power supply for the steering servo has a tendency to loosen over time. In addition it
also seem to have poor contact, thus require the user to squeeze the connection to ensure good
contact.

A.4.3 ttyAMC

Due to the Jetson only having a single USB-port, a USB-hub is utilized. The IMU and VESC
are both connected to the Jetson through the USB-hub, which sometime caused problems for the
ttyAMC-ports they are provided in the source files. By default, the IMU is set to ttyAMC1 and
the VESC to ttyACM2. If the bringup.launch has an error, try swapping the ttyAMC-port of the
IMU with the VESC. The ports can be changed for the VESC in the vesc driver node.launch
and the my razor.yaml parameter-file for the IMU.
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B. Scripts

This Appendix include all the scripts utilized in this thesis.

B.1 Low-Level Control

1 #!/ usr/bin/env python
2 #
3 # Author : jksllk
4 # Version : 04.03.19
5 #
6 # Converts Twist messages into
7 # VESC and servo commands
8 #
9 #

10 # Update :
11 #
12 # Added friction compensation
13 #
14 # -------------------------------------
15

16 import rospy , time
17 from std_msgs .msg import Float64 , UInt16
18 from geometry_msgs .msg import Twist
19

20

21 global vesc_max , vesc_min , servo_max , servo_min , k_m , b
22 # Motor max/min
23 vesc_max = 0.3
24 vesc_min = -0.3
25

26 # Servo max/min
27 servo_max = 350
28 servo_min = 100
29

30 # Motor friction
31 k_m = 2.4
32 b = 0.06
33

34
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35 class LowLvlCtrl ():
36 # Low level control for RC Truck in ROS
37 def __init__ (self):
38 rospy. loginfo (" Setting up the node ..")
39 rospy. init_node (" lowlvlctrl ")
40

41 # Create Publishers
42 self. vesc_pub =rospy. Publisher ('commands /motor/ duty_cycle '

, Float64 , queue_size =10)
43 self. servo_pub =rospy. Publisher ('/ servo_pos ', UInt16 ,

queue_size =10)
44

45 # Create Subscriber to / cmd_vel
46 self. twist_sub =rospy. Subscriber ("/ cmd_vel ", Twist , self.

set_actuator_from_cmdvel )
47 rospy. loginfo ("> Subscirber correctly initizlized ")
48

49 # Save last time we got a reference
50 self. _last_cmd = time.time ()
51 self. _timeout_s = 5
52

53 rospy. loginfo (" Initizlization complete ")
54

55 # SERVO CONTROL
56 def servo_value_out (self , servo_in ):
57 """
58 Given an input refreance in [-1, 1], it converts it in

the actual range
59 """
60 servo_in =- servo_in
61 center_val = 226
62 range = 350
63 half_range = 0.5* range
64

65 self. servo_out = int( servo_in * half_range + center_val )
66 # Set max min range
67 if self. servo_out > servo_max :
68 self. servo_out = servo_max
69

70 if self. servo_out < servo_min :
71 self. servo_out = servo_min
72
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73 return self. servo_out
74

75

76 # VESC CONTROL
77 def vesc_value_out (self , vesc_in ):
78 """
79 Given an input refreance in [-1, 1], it converts it in

the actual range
80

81 Compensate for measured motor friction
82 """
83 # Compensate for friciton
84 if vesc_in > 0:
85 self. vesc_out = k_m *0.1* vesc_in + b
86

87 if vesc_in == 0:
88 self. vesc_out = 0
89

90 if vesc_in < 0:
91 self. vesc_out = k_m *0.1* vesc_in - b
92

93 # Set max min range
94 if self. vesc_out > vesc_max :
95 self. vesc_out = vesc_max
96

97 if self. vesc_out < vesc_min :
98 self. vesc_out = vesc_min
99

100 return self. vesc_out
101

102

103 def set_actuator_from_cmdvel (self , message ):
104 """
105 Get a Twist message from cmd_vel , assuming max input is 1
106 """
107 # Save time
108 self. _last_cmd = time.time ()
109

110 # Convert vel into servo
111 servo_msg = self. servo_value_out ( message . angular .z) #

positive rgt
112 # Convert vel into VESC
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113 vesc_msg = self. vesc_value_out ( message . linear .x)
114

115 # Publish the message using a function
116 self. vesc_pub . publish ( vesc_msg )
117 self. servo_pub . publish ( servo_msg )
118

119

120 def run(self):
121 # Set control rate
122 rate = rospy.Rate (30)
123

124 while not rospy. is_shutdown ():
125 #print(self. _last_cmd )
126 rate.sleep ()
127

128

129 """
130 Execute the main file
131 """
132 if __name__ == '__main__ ':
133 lowlvlctrl = LowLvlCtrl ()
134 lowlvlctrl .run ()
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B.2 OpenCV Camera Calibration

1 import numpy as np
2 import cv2
3 import glob
4

5

6 WAIT_TIME = 1000
7

8 # termination criteria
9 criteria = (cv2. TERM_CRITERIA_EPS + cv2. TERM_CRITERIA_MAX_ITER ,

27, 0.001) # Square size 25mm
10

11 # prepare object points , like (0 ,0 ,0) , (1 ,0 ,0) , (2 ,0 ,0)
.... ,(6 ,5 ,0)

12 objp = np.zeros ((9*6 ,3) , np. float32 )
# 6x9

13 objp [: ,:2] = np.mgrid [0:6 ,0:9].T. reshape (-1,2)
# 6x9

14

15 # Arrays to store object points and image points from all the
images .

16 objpoints = [] # 3d point in real world space
17 imgpoints = [] # 2d points in image plane.
18

19 images = glob.glob('calib_images /rs_2 /*. png ')
20

21 for fname in images :
22 img = cv2. imread (fname)
23 gray = cv2. cvtColor (img ,cv2. COLOR_BGR2GRAY )
24

25 # Find the chess board corners
26 ret , corners = cv2. findChessboardCorners (gray , (9 ,6) ,None) #

9,6 Grid size of checker board
27

28 # If found , add object points , image points (after refining
them)

29 if ret == True:
30 objpoints . append (objp)
31

32 corners2 = cv2. cornerSubPix (gray ,corners ,(11 ,11) ,(-1,-1),
criteria )
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33 imgpoints . append ( corners2 )
34

35 # Draw and display the corners
36 img = cv2. drawChessboardCorners (img , (6 ,9) , corners2 ,ret)

# 6,9 grid
37 cv2. imshow ('img ',img)
38 cv2. waitKey ( WAIT_TIME )
39

40 cv2. destroyAllWindows ()
41 ret , mtx , dist , rvecs , tvecs = cv2. calibrateCamera (objpoints ,

imgpoints , gray.shape [:: -1] , None ,None)
42

43 print(ret)
44 print(mtx)
45 print(dist)
46 print(rvecs)
47 print(tvecs)
48 cv_file = cv2. FileStorage (" calib_images /test.yaml", cv2.

FILE_STORAGE_WRITE )
49 cv_file .write(" camera_matrix ", mtx)
50 cv_file .write(" dist_coeff ", dist)
51 # note you * release * you don 't close () a FileStorage object
52 cv_file . release ()
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B.3 ArUco Marker Detection

1 #!/ usr/bin/env python
2 # Author : jksllk
3 # Version : 18.03.19
4 #
5 # First run roscore and roslaunch realsense2_camera rs_rgbd

. launch
6 # to initialize the camera nodes.
7 #
8 # This script will detect ArUco markers and publish its

pixel coordinates
9 # to a topic.

10 #
11 #

----------------------------------------------------------------------------------------------

12 import roslib
13 import sys
14 import rospy
15 import cv2
16 import numpy as np
17 from numpy import *
18 from cv_bridge import CvBridge , CvBridgeError
19 from sensor_msgs .msg import Image
20 import cv2.aruco as aruco
21 import glob
22 import sys , tty , termios , time
23 from std_msgs .msg import Int32 , Float32
24 import matplotlib . pyplot as plt
25

26 # Create the ArUco Tracker class
27 class ArucoTracker ( object ):
28 # Initialize nodes , publishers and subsrcibers
29 def __init__ (self):
30 self. bridge_object = CvBridge ()
31 # Create a subsrciber to the RGB camera topic
32 self. image_sub = rospy. Subscriber ("/ camera /color/

image_raw ", Image , self. camera_callback )
33 # Create a publisher to publish ArUco corner coordinates
34 self. x1_pub = rospy. Publisher ("/aruco/ corner1 /x", Int32 ,

queue_size =10)
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35 self. y1_pub = rospy. Publisher ("/aruco/ corner1 /y", Int32 ,
queue_size =10)

36 self. x2_pub = rospy. Publisher ("/aruco/ corner2 /x", Int32 ,
queue_size =10)

37 self. y2_pub = rospy. Publisher ("/aruco/ corner2 /y", Int32 ,
queue_size =10)

38 self. x3_pub = rospy. Publisher ("/aruco/ corner3 /x", Int32 ,
queue_size =10)

39 self. y3_pub = rospy. Publisher ("/aruco/ corner3 /y", Int32 ,
queue_size =10)

40 self. x4_pub = rospy. Publisher ("/aruco/ corner4 /x", Int32 ,
queue_size =10)

41 self. y4_pub = rospy. Publisher ("/aruco/ corner4 /y", Int32 ,
queue_size =10)

42 # Create publisher for ArUco translation
43 self. tx_pub = rospy. Publisher ("/aruco/trans/x", Float32 ,

queue_size =10)
44 self. ty_pub = rospy. Publisher ("/aruco/trans/y", Float32 ,

queue_size =10)
45 self. tz_pub = rospy. Publisher ("/aruco/trans/z", Float32 ,

queue_size =10)
46 # Create publisher for ArUco rotation
47 self. rx_pub = rospy. Publisher ("/aruco/rot/x", Float32 ,

queue_size =10)
48 self. ry_pub = rospy. Publisher ("/aruco/rot/y", Float32 ,

queue_size =10)
49 self. rz_pub = rospy. Publisher ("/aruco/rot/z", Float32 ,

queue_size =10)
50 # Create pixel publisher
51 self. cx_pub = rospy. Publisher ("/aruco/pixel/x", Float32 ,

queue_size =10)
52 self. cy_pub = rospy. Publisher ("/aruco/pixel/y", Float32 ,

queue_size =10)
53 rospy. loginfo ("Node Initialized ")
54 rospy. loginfo (">> Tracking ArUco")
55

56 # Callback function for RGB camera
57 def camera_callback (self , data):
58 try:
59 # Select brg8 because its the OpenCV encoding by

default
60 cv_image = self. bridge_object . imgmsg_to_cv2 (data ,
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desired_encoding ="bgr8")
61

62 except CvBridgeError as e:
63 print(e)
64

65 # Set cap to cv image from topic
66 cap = cv_image
67

68 while (True):
69 # Operations on the frame come here
70 gray = cv2. cvtColor (cap , cv2. COLOR_BGR2GRAY )

# Converte to gray -scale
71 aruco_dict = aruco. Dictionary_get (aruco. DICT_6X6_250 )

# Find 6x6 ArUco Code
72 parameters = aruco. DetectorParameters_create ()

# Detet parametes
73 # Lists of ids and the corners beloning to each id
74 corners , ids , rejectedImgPoints = aruco. detectMarkers

(gray , aruco_dict , parameters = parameters )
75 font = cv2. FONT_HERSHEY_SIMPLEX # Font for

displaying text (below)
76 if np.all(ids != None):
77 # Estimate pose of each marker and return the

values rvet and tvec --- different from camera
coefficients

78 rvec , tvec , _ = aruco. estimatePoseSingleMarkers (
corners [0], 0.18 , mtx , dist) # 0.18 = maker
side length

79 cor=aruco. drawAxis (cap , mtx , dist , rvec [0], tvec
[0], 0.05) # Draw Axis

80 aruco. drawDetectedMarkers (cap , corners )
# Draw A square around the

markers
81 #rospy. loginfo ( corners ) # Top left(xy),

top right (xy), bottom right (xy), bottom left
(xy)

82 rot_mtx = np.zeros(shape =(3 ,3))
83 cv2. Rodrigues (rvec , rot_mtx )
84 rect = cv2. minAreaRect ( corners [0])
85 box = cv2. boxPoints (rect)
86 area = cv2. contourArea (box)
87 # Find pixe coordinates of center to ArUco
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88 C = cv2. moments (box)
89 px = int(C["m10"] / C["m00"])
90 py = int(C["m01"] / C["m00"])
91 #print(px ,py)
92 # Draw ID
93 cv2. putText (cap , "Id: " + str(ids), (0 ,64) , font ,

1, (0 ,255 ,0) ,2,cv2. LINE_AA )
94 # Generate list from array
95 a= corners
96 b = a [0][0]
97 c = b.ravel ()
98 d = list(c)
99

100 # Get translation values
101 tx=tvec [0][0][0]
102 ty=tvec [0][0][1]
103 tz=tvec [0][0][2]
104 # Get rotation values
105 rx=rvec [0][0][0]
106 ry=rvec [0][0][1]
107 rz=rvec [0][0][2]
108

109 # Publish corners to topic
110 self. x1_pub . publish (int(d[0]))
111 self. y1_pub . publish (int(d[1]))
112 self. x2_pub . publish (int(d[2]))
113 self. y2_pub . publish (int(d[3]))
114 self. x3_pub . publish (int(d[4]))
115 self. y3_pub . publish (int(d[5]))
116 self. x4_pub . publish (int(d[6]))
117 self. y4_pub . publish (int(d[7]))
118 # Publish translation values top topic
119 self. tx_pub . publish (tx)
120 self. ty_pub . publish (ty)
121 self. tz_pub . publish (tz)
122 # Publish rotation values top topic
123 self. rx_pub . publish (rx)
124 self. ry_pub . publish (ry)
125 self. rz_pub . publish (rz)
126 # Publish ArUco 's center piexl coordinates
127 self. cx_pub . publish (px)
128 self. cy_pub . publish (py)
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129 #print(tx ,ty)
130

131 # Create grid in image
132 cv2.line(cv_image , (0 ,240) ,(640 ,240) , (0, 255, 0), 2)
133 cv2.line(cv_image , (320 ,0) ,(320 ,480) , (0, 255, 0), 2)
134 # Show image
135 cv2. imshow ("Image Window ", cv_image )
136 cv2. waitKey (1)
137 break
138

139 # Main function
140 def main ():
141 rospy.sleep (0.1)
142 rospy. init_node (" aruco_tracker_node ", anonymous =True)
143 aruco_tacker_object = ArucoTracker ()
144 rate = rospy.Rate (10) # 10 Hz refresh rate
145 try:
146 while not rospy. is_shutdown ():
147 rate.sleep ()
148

149 except KeyboardInterrupt :
150 print(" Shutting down")
151

152

153 if __name__ == '__main__ ':
154 # Frist run camera calibration
155 # Termination criteria
156 criteria = (cv2. TERM_CRITERIA_EPS + cv2.

TERM_CRITERIA_MAX_ITER , 27, 0.001) # 25 mm sqare
157 # Prepare object points , like (0 ,0 ,0) , (1 ,0 ,0) , (2 ,0 ,0)

.... ,(6 ,5 ,0)
158 objp = np.zeros ((9*6 ,3) , np. float32 ) #

9x6
159 objp [: ,:2] = np.mgrid [0:6 ,0:9].T. reshape (-1,2) #

9x6
160 # Arrays to store object points and image points from all the

images .
161 objpoints = [] # 3d point in real world space
162 imgpoints = [] # 2d points in image plane.
163 images = glob.glob('calib_images /rs_2 /*. png ')
164

165 for fname in images :
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166 img = cv2. imread (fname)
167 gray = cv2. cvtColor (img ,cv2. COLOR_BGR2GRAY )
168 # Find the chess board corners
169 ret , corners = cv2. findChessboardCorners (gray , (6 ,9) ,None

) # 9x6
170 # If found , add object points , image points (after

refining them)
171

172 if ret == True:
173 objpoints . append (objp)
174 corners2 = cv2. cornerSubPix (gray ,corners ,(11 ,11)

,(-1,-1),criteria )
175 imgpoints . append ( corners2 )
176 # Draw and display the corners
177 img = cv2. drawChessboardCorners (img , (6 ,9) , corners2 ,

ret) # 9x6
178

179 ret , mtx , dist , rvecs , tvecs = cv2. calibrateCamera (objpoints ,
imgpoints , gray.shape [:: -1] , None ,None)

180

181 # Run main function
182 main ()
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B.4 ArUco Depth Measure

1 #!/ usr/bin/env python
2 # Author : jksllk
3 # Version : 21.02.19
4 #
5 # This script will recive pixel coordinates by subsrcibing

to the
6 # different topics and give actual depth from RealSense

Camera .
7 #
8 #

----------------------------------------------------------------------------------------------

9 import roslib
10 import sys
11 import rospy
12 import cv2
13 import cv2.aruco as aruco
14 from cv_bridge import CvBridge , CvBridgeError
15 import numpy as np
16 from numpy import *
17 import glob
18 import sys , tty , termios , time
19 from sensor_msgs .msg import Image
20 from std_msgs .msg import Int32 , Float32
21

22 # Define global values
23 global sqr , edg
24 sqr = 5 # Define size of sqare in pixels to probe depth data

from ROI
25 edg = 0 # Reduce ArUco area in pixels
26

27 # Create Depth Camera class
28 class DepthCamera ( object ):
29 # Initialize node , pusblishers and subsrcibers
30 def __init__ (self):
31 rospy.sleep (1)
32 # Define CvBridge objects
33 self. bridge_depth_object = CvBridge ()
34 self. bridge_rgb_object = CvBridge ()
35 # Create pixel coordinate subsrcibers
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36 self. x1_sub =rospy. Subscriber ("/aruco/ corner1 /x", Int32 ,
self.x1)

37 self. y1_sub =rospy. Subscriber ("/aruco/ corner1 /y", Int32 ,
self.y1)

38 self. x2_sub =rospy. Subscriber ("/aruco/ corner2 /x", Int32 ,
self.x2)

39 self. y2_sub =rospy. Subscriber ("/aruco/ corner2 /y", Int32 ,
self.y2)

40 self. x3_sub =rospy. Subscriber ("/aruco/ corner3 /x", Int32 ,
self.x3)

41 self. y3_sub =rospy. Subscriber ("/aruco/ corner3 /y", Int32 ,
self.y3)

42 self. x4_sub =rospy. Subscriber ("/aruco/ corner4 /x", Int32 ,
self.x4)

43 self. y4_sub =rospy. Subscriber ("/aruco/ corner4 /y", Int32 ,
self.y4)

44 # Create a subsrciber to the Depth camera topic
45 self. depth_image_sub =rospy. Subscriber ("/ camera /depth/

image_rect_raw ", Image , self. depth_camera_callback )
46 self. rgb_image_sub =rospy. Subscriber (" camera /color/

image_raw ", Image , self. rgb_callback )
47 # Create publisher to publish ArUco depth (z) from depth

camera_callback
48 self. depth_pub =rospy. Publisher ("/aruco/depth/ avg_depth ",

Float32 , queue_size =10)
49 rospy. loginfo ("Node Initialized ")
50 rospy. loginfo (">> Measuring Distance to ArUco")
51

52

53 # Get values from subsrcibers
54 def x1(self , msg):
55 global x_1
56 x_1=msg.data -edg
57

58 def x2(self , msg):
59 global x_2
60 x_2 = msg.data -edg
61

62 def x3(self , msg):
63 global x_3
64 x_3=msg.data -edg
65
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66 def x4(self , msg):
67 global x_4
68 x_4 = msg.data -edg
69

70 def y1(self , msg):
71 global y_1
72 y_1=msg.data -edg
73

74 def y2(self , msg):
75 global y_2
76 y_2 = msg.data -edg
77

78 def y3(self , msg):
79 global y_3
80 y_3=msg.data -edg
81

82 def y4(self , msg):
83 global y_4
84 y_4 = msg.data -edg
85

86

87 # Region of intrest
88 def region_of_intrest (self , image , p1 , p2 , p3 , p4):
89 # Create a polygon from corners
90 polygon = np.array ([[( p1), (p2), (p3), (p4)]])
91 # Create bounding rectangle
92 rect = cv2. boundingRect ( polygon )
93 x,y,w,h = rect
94 # Crop image to rectangle
95 croped = image[y:y+h, x:x+w]. copy ()
96 return croped
97

98

99 # Get depth camera data
100 def depth_camera_callback (self , data):
101 try:
102 # Select brg8 because its the OpenCV encoding by

default
103 cv_depth_image =self. bridge_depth_object . imgmsg_to_cv2

(data , desired_encoding ="32 FC1")
104

105 except CvBridgeError as e:
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106 print(e)
107

108 # Create region of intrest from function
109 roi_img =self. region_of_intrest ( cv_depth_image , (x_1 , y_1)

,(x_2 , y_2) ,(x_3 , y_3) ,(x_4 , y_4))
110 # Get size of image. The size varies with where the

marker is located
111 height , width = roi_img .shape [:2]
112 xmin =( width /2) -sqr
113 xmax =( width /2)+sqr
114 ymin =( height /2) -sqr
115 ymax =( height /2)+sqr
116 # Find depth value from ROI
117 roi_val = roi_img [xmin:xmax , ymin:ymax]
118 # Use only non -zero values . Remove noise
119 val_non_zero = roi_val [ roi_val != 0]
120 # Calculate average distance over ROI
121 avg_dist =sum( val_non_zero )/len( val_non_zero )
122 #print( avg_dist )
123 # Publish the average depth of ArUco marker
124 self. depth_pub . publish ( avg_dist )
125

126

127 # Show RGB image to ilustrate where the camera is measuring
128 def rgb_callback (self , data):
129 try:
130 # Select brg8 because its the OpenCV encoding by

default
131 rgb_img =self. bridge_rgb_object . imgmsg_to_cv2 (data ,

desired_encoding ="bgr8")
132

133 except CvBridgeError as e:
134 print(e)
135

136 polygon = np.array ([[( x_1 , y_1) ,(x_2 , y_2) ,(x_3 , y_3) ,(
x_4 , y_4)]])

137 # Draw polygon around ArUco
138 cv2. polylines (rgb_img , polygon , False , (0, 255, 0),

3)
139 # Crop the bounding rect
140 rect = cv2. boundingRect ( polygon )
141 x,y,w,h = rect

109



B. Scripts

142 rgb_croped = rgb_img [y:y+h, x:x+w]. copy ()
143 # Get height and width date from image
144 height , width = rgb_croped .shape [:2]
145 # Create a square to read depth data from
146 xmin =( width /2) -sqr
147 xmax =( width /2)+sqr
148 ymin =( height /2) -sqr
149 ymax =( height /2)+sqr
150 # Draw rectangle Top left Bottom rigth

Color line thickness
151 cv2. rectangle (rgb_croped , (xmin , ymin), (xmax , ymax),

(255 , 0, 0), 3)
152 # View RGM image
153 cv2. imshow ("RGB", rgb_croped )
154 cv2. waitKey (1)
155

156

157 if __name__ == '__main__ ':
158 # Sleep for 1 secon to allow data to be recived
159 rospy. init_node (" depth_camera_node ", anonymous =True)
160 depth_camera_object = DepthCamera ()
161 rate=rospy.Rate (10) # 10 Hz refresh rate
162 try:
163 while not rospy. is_shutdown ():
164 rate.sleep ()
165

166 except KeyboardInterrupt :
167 print(" Shutting down")
168 cv2. destroyAllWindowws ()
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B.5 Ackermann Odometry

1 #!/ usr/bin/env python
2 #
3 # Author : jksllk
4 # Version 30.03.19
5 #
6 # Calculate Ackermann odometry from
7 # Servo and VESC and publish transform
8 #
9 #

----------------------------------------------------------------

10 import math
11 from math import sin , cos , pi , tan
12 import time
13 import rospy
14 import tf
15 from std_msgs .msg import Float32 , UInt16
16 from vesc_msgs .msg import VescStateStamped
17 from nav_msgs .msg import Odometry
18 from geometry_msgs .msg import Point , Pose , Quaternion , Twist ,

Vector3
19

20 # Define global paramerers
21 global r, i, L, dt , cov_x , cov_y , rcov_z
22 r =0.0425 # Wheel radius
23 i =17.761 # Gear ratio
24 L=0.34 # Wheel base
25 dt = 30 # Sample rate
26

27 # Covariance tuning
28 cov_x = 0.1
29 cov_y = 0.5
30 rcov_z = 0.5
31

32

33 alpha = 0
34 m_vel = 0
35

36

37 def steering_angle_callback (msg):
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38 global alpha
39 alpha = -(msg.data -224) *(0.5/125) # Angle is 27 deg = 0.47

rad
40

41

42 def motor_vel_callback (msg):
43 global m_vel
44 m_vel = (msg.state.speed)*(2* pi /60) # Convert from rpm to rad

/s
45

46

47 def main ():
48 # Init Node
49 rospy. init_node (" ackermann_odometry ")
50 rospy. loginfo (" Initizalized Node")
51 # Create Publishers
52 odom_pub = rospy. Publisher ("/odom", Odometry , queue_size =50)
53 odom_broadcaster = tf. TransformBroadcaster ()
54

55 # Creat Subscribers
56 sub_servo = rospy. Subscriber ("/ servo_pos ", UInt16 ,

steering_angle_callback )
57 sub_vel = rospy. Subscriber ("/ sensors /core", VescStateStamped ,

motor_vel_callback )
58

59 current_time = rospy.Time.now ()
60 last_time = rospy.Time.now ()
61 # Wait for data to be reviced
62 rospy.sleep (1)
63 rate = rospy.Rate(dt)
64

65 # Set initial pose
66 x_g = 0
67 y_g = 0
68 x_l = 0
69 y_l = 0
70 theta = 0
71

72 rospy. loginfo (">> Process Started ")
73 while not rospy. is_shutdown ():
74 # Truning radius
75 #R = L/( tan(alpha) +0.00000001)
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76 #print(R)
77 # Tangential velocity
78 v_s = (m_vel/i)*r
79

80 #-- Local
81 # Vel of robot center point in robot frame
82 xdot_l = v_s*cos(alpha)
83 ydot_l = 0 # No slip
84

85 #-- Global
86 theta_dot = (tan(alpha)/L)* xdot_l
87 theta += theta_dot /dt
88

89 xdot_g = xdot_l *cos(theta)
90 ydot_g = xdot_l *sin(theta)
91

92 x_l += xdot_l /dt
93 y_l += ydot_l /dt
94 x_g += xdot_g /dt
95 y_g += ydot_g /dt
96

97 # since all odometry is 6DOF we'll need a quaternion
created from yaw

98 odom_quat = tf. transformations . quaternion_from_euler (0,
0, theta)

99

100 # first , we'll publish the transform over tf
101 odom_broadcaster . sendTransform (
102 (x_g , y_g , 0), # position
103 odom_quat , # ang
104 rospy.Time.now (), # time
105 " base_link ", # child
106 "odom" # parrent
107 )
108

109 # next , we'll publish the odometry message over ROS
110 odom = Odometry ()
111 odom. header .stamp = rospy.Time.now ()
112 odom. header . frame_id = "odom"
113

114 # set the position
115 odom.pose.pose = Pose(Point(x_g , y_g , 0.) , Quaternion (*
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odom_quat ))
116 odom.pose. covariance = [cov_x , 0, 0, 0, 0, 0,
117 0, cov_y , 0, 0, 0, 0,
118 0, 0, 0, 0, 0, 0,
119 0, 0, 0, 0, 0, 0,
120 0, 0, 0, 0, 0, 0,
121 0, 0, 0, 0, 0, rcov_z ]
122

123 # set the velocity
124 odom. child_frame_id = " base_link "
125 odom.twist.twist = Twist( Vector3 (xdot_g , ydot_g , 0),

Vector3 (0, 0, theta_dot ))
126

127 # publish the message
128 odom_pub . publish (odom)
129 #print(odom)
130 last_time = current_time
131

132 rate.sleep ()
133

134

135 if __name__ == '__main__ ':
136 main ()
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B.6 ArUco Marker Covariance Generator

1 #!/ usr/bin/env python
2 # Author : jksllk
3 # Version : 23.04.19
4 #
5 # Run aruco_pub .py first
6 #
7 #
8 # This script will track an ArUco marker and plot the

position
9 # in addition to genetating the Covaraince matrix of the

tracker
10 #
11 #

----------------------------------------------------------------------------------------------

12 import sys
13 import time
14 import rospy
15 import math
16 import numpy as np
17 import matplotlib . pyplot as plt
18 from std_msgs .msg import Int32 , Float32
19 from geometry_msgs .msg import Point , Pose , Quaternion , Vector3 ,

Twist
20 from nav_msgs .msg import Odometry
21 from array import *
22

23 # Define global values
24 global dt
25 dt = 10 # rate
26

27

28 # Initialize variables
29 x = 0
30 y = 0
31 theta = 0
32 tx = 0
33 ty = 0
34 xt = 0
35 yt = 0
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36 theta_t = 0
37

38 # Define values of variables from subscribers
39 def trans_x (msg):
40 global tx
41 tx = msg.data
42 #print(tx)
43

44 def trans_y (msg):
45 global ty
46 ty = msg.data
47 #print(ty)
48

49 def trans_z (msg):
50 global tz
51 tz = msg.data
52 #print(tz)
53

54 def rot_x(msg):
55 global rx
56 rx = msg.data
57 #print(rx)
58

59

60 # Generate Covariance
61 def covar_generator ():
62 rospy. init_node (" covar_generation_node ", anonymous =True)
63 # Define subscribers to recive translation coordinate

from topics
64 # Get xyz coordinates from ArUco Tracker
65 trans_x_sub =rospy. Subscriber ("/ aruco/trans/x", Float32 ,

trans_x )
66 trans_y_sub =rospy. Subscriber ("/ aruco/trans/y", Float32 ,

trans_y )
67 trans_z_sub =rospy. Subscriber ("/ aruco/trans/z", Float32 ,

trans_z )
68 # Only rotation which is nesessary is rotation about the

x axis
69 rot_x_sub =rospy. Subscriber ("/aruco/rot/x", Float32 , rot_x

)
70 # Sleep for 1 seconds to allow data to be recived
71 rospy.sleep (1)
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72 # Define rate of script
73 rate=rospy.Rate(dt) # 10 Hz
74 # Coordinate message , position and orientation
75 # Initialize variables
76 xtt = tx
77 ytt = -ty
78 theta_tt = rx
79 x = 0
80 y = 0
81 theta = 0
82 xdot = 0
83 ydot = 0
84 theta_dot = 0
85 t = 0
86 tmax = 60* dt
87 A = [] # Create empty matrix
88 rospy. loginfo ("Node Initialized ")
89 rospy. loginfo (">> Gathering Sample Data")
90 try:
91 while not rospy. is_shutdown ():
92 current_time = rospy.Time.now ()
93 # Set current values
94 xt = tx
95 yt = -ty
96 theta_t = rx
97 # Find change in position , by subtracting current

from previous
98 xdot = xt - xtt
99 ydot = yt - ytt

100 theta_dot = theta_t - theta_tt
101 # Update previous value
102 xtt = xt
103 ytt = yt
104 theta_tt = theta_t
105 # Update position
106 x += xdot
107 y += ydot
108 # Angle is taken from the rotation of the ArUco
109 theta += theta_dot
110 data = [x, y, theta]
111 #print(data)
112 # Sample data
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113 x_i , y_i , th_i = data
114 # Appender add to end of array
115 A. append ([x_i , y_i , th_i , t])
116

117 # Count time up
118 t += 1
119 """
120 # Progress bar
121 prcnt = t
122 print(prcnt)
123 sys. stdout .write ('\r[{0}] {1}% '. format ('='*( prcnt

/3) , prcnt))
124 sys. stdout .flush ()
125 """
126 # Quit loop when time is up!
127 if t >= tmax:
128 break
129

130 rate.sleep ()
131

132 except KeyboardInterrupt :
133 print(" Shutting down")
134

135 # Done sampling
136 rospy. loginfo (" >>>> Done!")
137 A = np.array(A)
138 X = A[:, 0]
139 Y = A[:, 1]
140 TH = A[:, 2]
141 T = A[:, 3]/ dt # Convert from samples to time
142

143 print(A.shape) # Print shape to veryfi size
144 #rospy. loginfo (" Printed Data Array ")
145

146 # -- Create subplots and save figure
147 plt. subplot (3, 1, 1)
148 plt.plot(T,X, '-')
149 plt.title('ArUco Tracker ')
150 plt. ylabel ('X Position [m]')
151

152 plt. subplot (3, 1, 2)
153 plt.plot(T,Y, '-')
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154 plt. ylabel ('Y Position [m]')
155

156 plt. subplot (3, 1, 3)
157 plt.plot(T,TH , '-')
158 plt. xlabel ('time [s]')
159 plt. ylabel ('Angle [rad]')
160 #plt. savefig ('/ home/ jksllk / Desktop / Results / matplotlib /

aruco_covar .png ')
161 plt.show ()
162 rospy. loginfo (" Ploted and Saved Graph")
163

164 # Remove the time column (T) from A
165 A = np. delete (A, 3, 1)
166

167 # Deviation matrix
168 AA = np.dot(np.ones ([ len(A), len(A)]), A)
169 AN = np.dot(AA , 1/( len(A)))
170 a = A - AN
171 # Covariance matrix
172 rospy. loginfo (" Calculate Covaraince Matrix ")
173 at = a. transpose ()
174 cov = np.dot(at , a)
175 print(cov)
176

177

178

179 # CHECK IF NAME == MAIN
180 if __name__ == '__main__ ':
181 covar_generator ()
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B.7 ArUco Tracker Odometry Generator

1 #!/ usr/bin/env python
2 # Author : jksllk
3 # Version : 27.03.19
4 #
5 # Script creating a odometry message from the topics

generated
6 # by the ArUco tracker and depth camera
7 # (Relative , Starts in zero regardless of where it is)
8 #
9 #

-------------------------------------------------------------------------

10 import rospy
11 import math
12 import numpy as np
13 import matplotlib . pyplot as plt
14 import tf
15 from std_msgs .msg import Int32 , Float32
16 from geometry_msgs .msg import Point , Pose , Quaternion , Vector3 ,

Twist
17 from nav_msgs .msg import Odometry
18 # Define global values
19 global H, h, cov_x , cov_x , rcov_z
20 H = 0.7 # [m] Height camera is palced , constant
21 h = 0.2 # [m] Heigth of car , constant
22 # Covariance tuning
23 cov_x = 0.00126893
24 cov_y = 0.0005075
25 rcov_z = 0.44778692
26

27 # Initialize variables
28 x = 0
29 y = 0
30 theta = 0
31 tx = 0
32 ty = 0
33 xt = 0
34 yt = 0
35 theta_t = 0
36
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37 # Define values of variables from subscribers
38 def pixel_x (msg):
39 global px
40 px = msg.data
41 #print(px)
42

43 def pixel_y (msg):
44 global py
45 py = msg.data
46 #print(py)
47

48 def trans_x (msg):
49 global tx
50 tx = msg.data
51 #print(tx)
52

53 def trans_y (msg):
54 global ty
55 ty = msg.data
56 #print(ty)
57

58 def trans_z (msg):
59 global tz
60 tz = msg.data
61 #print(tz)
62

63 def depth_z (msg):
64 global depth_z
65 depth_z = (msg.data)/1000 # Converte to meters
66 #print( depth_z )
67

68 def rot_x(msg):
69 global rx
70 rx = msg.data
71 #print(rx)
72

73 def twist_callback (msg):
74 global aruco_twist
75 aruco_twist = msg
76

77 # Generate 2D pose message
78 def odom_generator ():
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79 rospy. init_node (" odom_generation_node ", anonymous =True)
80 # Define subscribers to recive translation coordinate

from topics
81 # Get xyz coordinates from ArUco Tracker
82 pixel_x_sub =rospy. Subscriber ("/aruco/pixel/x", Float32 ,

pixel_x )
83 pixel_y_sub =rospy. Subscriber ("/aruco/pixel/y", Float32 ,

pixel_y )
84 trans_x_sub =rospy. Subscriber ("/aruco/trans/x", Float32 ,

trans_x )
85 trans_y_sub =rospy. Subscriber ("/ aruco/trans/y", Float32 ,

trans_y )
86 trans_z_sub =rospy. Subscriber ("/ aruco/trans/z", Float32 ,

trans_z )
87 # Subscribe to depth camera topic
88 depth_z_sub =rospy. Subscriber ("/ aruco/depth/ avg_depth ",

Float32 , depth_z )
89 # Only rotation which is nesessary is rotation about the

x axis
90 rot_x_sub =rospy. Subscriber ("/aruco/rot/x", Float32 , rot_x

)
91 # / cmd_vel twist
92 twist_sub =rospy. Subscriber ("/ cmd_vel ", Twist ,

twist_callback )
93 # Create publisher to publish coordinate message
94 odom_msg_pub =rospy. Publisher ("/cam1/aruco/odom", Odometry

, queue_size =10)
95 # Sleep for 1 seconds to allow data to be recived
96 rospy.sleep (1)
97 # Define rate of script
98

99 rate=rospy.Rate (10) # 10 Hz
100 # Coordinate message , position and orientation
101 # Initialize variables
102 xtt = tz
103 ytt = -tx
104 theta_tt = rx
105 x = 0
106 y = 0
107 theta = 0
108 xdot = 0
109 ydot = 0
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110 theta_dot = 0
111 rospy. loginfo ("Node Initialized ")
112 rospy. loginfo (">> Generating Odometry Message ")
113 try:
114 while not rospy. is_shutdown ():
115 current_time = rospy.Time.now ()
116 # Using Pytagoras to calculate x coordinate
117 #y = np.sqrt(np. square ( depth_z )-np. square (H-h))
118 # Set current values
119 xt = tz
120 yt = -tx
121 theta_t = rx
122 #print(xt , yt , theta_t )
123 # Find change in position , by subtracting current

from previous
124 xdot = xt - xtt
125 ydot = yt - ytt
126 theta_dot = theta_t - theta_tt
127 #print(xdot , ydot , theta_dot )
128 # Update previous value
129 xtt = xt
130 ytt = yt
131 theta_tt = theta_t
132 #print(xdot , ydot , theta_dot )
133 # Update position
134 x += xdot
135 y += ydot
136 #print(x, y)
137 # Angle is taken from the rotation of the ArUco
138 theta += theta_dot
139 # Publish the pose message
140 odom = Odometry ()
141 aruco_twist = Twist ()
142 # aruco_twist = # ?
143 odom. header .stamp = current_time
144 odom. header . frame_id = "odom"
145 odom. child_frame_id = " base_aruco_link "
146 odom.pose.pose. position .x = x
147 odom.pose.pose. position .y = y
148 odom.pose.pose. position .z = 0
149 odom_quat =tf. transformations .

quaternion_from_euler (0, 0, theta)
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150 odom.pose.pose. orientation = Quaternion (*
odom_quat )

151 odom.pose. covariance = [cov_x , 0, 0, 0, 0,
0,

152 0, cov_y , 0, 0, 0,
0,

153 0, 0, 0, 0, 0,
0,

154 0, 0, 0, 0, 0,
0,

155 0, 0, 0, 0, 0,
0,

156 0, 0, 0, 0, 0,
rcov_z ]

157

158 odom.twist.twist = aruco_twist
159 odom_msg_pub . publish (odom)
160 #print(odom)
161 rate.sleep ()
162

163 except KeyboardInterrupt :
164 print(" Shutting down")
165

166

167 if __name__ == '__main__ ':
168 odom_generator ()
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B.8 Follow Waypoints Continuously

1 #!/ usr/bin/env python
2 #
3 # Edit:
4 # Make path run contuniously
5 #
6 #

---------------------------------------------------------------------------

7 import threading
8 import rospy
9 import actionlib

10

11 from smach import State , StateMachine
12 from move_base_msgs .msg import MoveBaseAction , MoveBaseGoal
13 from geometry_msgs .msg import PoseWithCovarianceStamped ,

PoseArray
14 from std_msgs .msg import Empty
15

16 waypoints = []
17 n = 0
18

19 class FollowPath (State):
20 def __init__ (self):
21 State. __init__ (self , outcomes =['success '], input_keys =['

waypoints '])
22 self. frame_id = rospy. get_param ('˜ goal_frame_id ','map ')
23 # Get a move_base action client
24 self. client = actionlib . SimpleActionClient ('move_base ',

MoveBaseAction )
25 rospy. loginfo ('Connecting to move_base ... ')
26 self. client . wait_for_server ()
27 rospy. loginfo ('Connected to move_base .')
28

29 def execute (self , userdata ):
30 global waypoints , n
31 # Execute waypoints each in sequence
32 while n <= len( waypoints ):
33 for waypoint in waypoints :
34 # Break if preempted
35 if waypoints == []:
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36 rospy. loginfo ('The waypoint queue has been
reset.')

37 break
38 # Otherwise publish next waypoint as goal
39 goal = MoveBaseGoal ()
40 goal. target_pose . header . frame_id = self. frame_id
41 goal. target_pose .pose. position = waypoint .pose.

pose. position
42 goal. target_pose .pose. orientation = waypoint .pose

.pose. orientation
43 rospy. loginfo ('Executing move_base goal to

position (x,y): %s, %s' %
44 ( waypoint .pose.pose. position .x, waypoint .

pose.pose. position .y))
45 rospy. loginfo ("To cancel the goal: 'rostopic pub

-1 / move_base / cancel actionlib_msgs / GoalID --
{}'")

46 self. client . send_goal (goal)
47 self. client . wait_for_result ()
48

49 n=n+1
50

51 if n>len( waypoints ):
52 n = 0
53

54 print(n)
55

56

57

58 return 'success '
59

60 def convert_PoseWithCovArray_to_PoseArray ( waypoints ):
61 """ Used to publish waypoints as pose array so that you can

see them in rviz , etc."""
62 poses = PoseArray ()
63 poses. header . frame_id = 'map '
64 poses.poses = [pose.pose.pose for pose in waypoints ]
65 return poses
66

67 class GetPath (State):
68 def __init__ (self):
69 State. __init__ (self , outcomes =['success '], input_keys =['
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waypoints '], output_keys =['waypoints '])
70 # Create publsher to publish waypoints as pose array so

that you can see them in rviz , etc.
71 self. poseArray_publisher = rospy. Publisher ('/ waypoints ',

PoseArray , queue_size =1)
72

73 # Start thread to listen for reset messages to clear the
waypoint queue

74 def wait_for_path_reset ():
75 """ thread worker function """
76 global waypoints
77 while not rospy. is_shutdown ():
78 data = rospy. wait_for_message ('/ path_reset ',

Empty)
79 rospy. loginfo ('Recieved path RESET message ')
80 self. initialize_path_queue ()
81 rospy.sleep (3) # Wait 3 seconds because `rostopic

echo ` latches
82 # for three seconds and

wait_for_message () in a
83 # loop will see it again.
84 reset_thread = threading . Thread ( target =

wait_for_path_reset )
85 reset_thread .start ()
86

87 def initialize_path_queue (self):
88 global waypoints
89 waypoints = [] # the waypoint queue
90 # publish empty waypoint queue as pose array so that you

can see them the change in rviz , etc.
91 self. poseArray_publisher . publish (

convert_PoseWithCovArray_to_PoseArray ( waypoints ))
92

93 def execute (self , userdata ):
94 global waypoints
95 self. initialize_path_queue ()
96 self. path_ready = False
97

98 # Start thread to listen for when the path is ready (this
function will end then)

99 def wait_for_path_ready ():
100 """ thread worker function """
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101 data = rospy. wait_for_message ('/ path_ready ', Empty)
102 rospy. loginfo ('Recieved path READY message ')
103 self. path_ready = True
104 ready_thread = threading . Thread ( target =

wait_for_path_ready )
105 ready_thread .start ()
106

107 topic = "/ initialpose "
108 rospy. loginfo (" Waiting to recieve waypoints via Pose msg

on topic %s" % topic)
109 rospy. loginfo ("To start following waypoints : 'rostopic

pub / path_ready std_msgs /Empty -1'")
110

111 # Wait for published waypoints
112 while not self. path_ready :
113 try:
114 pose = rospy. wait_for_message (topic ,

PoseWithCovarianceStamped , timeout =1)
115 except rospy. ROSException as e:
116 if 'timeout exceeded ' in e. message :
117 continue # no new waypoint within timeout ,

looping ...
118 else:
119 raise e
120 rospy. loginfo (" Recieved new waypoint ")
121 waypoints . append (pose)
122 # publish waypoint queue as pose array so that you

can see them in rviz , etc.
123 self. poseArray_publisher . publish (

convert_PoseWithCovArray_to_PoseArray ( waypoints ))
124

125 # Path is ready! return success and move on to the next
state ( FOLLOW_PATH )

126 return 'success '
127

128 class PathComplete (State):
129 def __init__ (self):
130 State. __init__ (self , outcomes =['success '])
131

132 def execute (self , userdata ):
133 rospy. loginfo ('############################### ')
134 rospy. loginfo ('##### REACHED FINISH GATE ##### ')
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135 rospy. loginfo ('############################### ')
136 return 'success '
137

138 def main ():
139 rospy. init_node ('follow_waypoints ')
140

141 sm = StateMachine ( outcomes =[ 'success '])
142

143 with sm:
144 StateMachine .add('GET_PATH ', GetPath (),
145 transitions ={'success ':'FOLLOW_PATH '},
146 remapping ={'waypoints ':'waypoints '})
147 StateMachine .add('FOLLOW_PATH ', FollowPath (),
148 transitions ={'success ':'PATH_COMPLETE '

},
149 remapping ={'waypoints ':'waypoints '})
150 StateMachine .add('PATH_COMPLETE ', PathComplete (),
151 transitions ={'success ':'GET_PATH '})
152

153 outcome = sm. execute ()
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C. Launch-Files

This Appendix include all the launch-files utilized in this thesis.

C.1 Static Transform Configurations

1 <!-- -*- mode: XML -*- -->
2 <!-- Center of Rotation / base_link is Set to the IMU Location -->
3 <launch >
4

5 <!-- Odometry to base_link -->
6 <!-- node pkg="tf" type=" static_transform_publisher " name="

odom_to_basefootprint "
7 args="0.0 0.0 0.0 0 0 0.0 /odom / base_link 40" /-->
8

9 <!-- base_link to base_footprint -->
10 <node pkg="tf" type=" static_transform_publisher " name="

base_footprint_to_base_link "
11 args="0.0 0.0 0.0 3.14 0 0 / base_link / base_footprint 40

" />
12

13

14 <!-- IMU is rotated 180 degrees -->
15 <node pkg="tf" type=" static_transform_publisher " name="

base_link_to_imu "
16 args="0 0 0 0 0 0 / base_link / base_imu_link 50"/>
17

18 <!-- ArUco -->
19 <node pkg="tf" type=" static_transform_publisher " name="

base_link_to_aruco "
20 args="0.17 0 0.11 0 0 3.14 / base_link / base_aruco_link 50

"/>
21

22 <!-- LiDAR -->
23 <node pkg="tf" type=" static_transform_publisher " name="

base_link_to_laser "
24 args="0.3 0 0.03 3.14 0 3.14 / base_link /laser 100"/>
25

26

27 </launch >
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C.2 AMCL

1 <launch >
2

3 <!-- AMCL -->
4 <node pkg="amcl" type="amcl" name="amcl" output =" screen ">
5 <!--param name ="/ use_sim_time " value="true"/-->
6 <remap from="scan" to="/scan"/>
7 <param name=" odom_frame_id " value="odom"/>
8 <param name=" base_frame_id " value=" base_link " />
9 <param name=" global_frame_id " value="map" />

10 <param name=" odom_model_type " value="diff - corrected "/>
11 <param name=" odom_alpha5 " value="0.1"/>
12 <param name=" initial_pose_x " value="0.0"/>
13 <param name=" initial_pose_y " value="0.0"/>
14 <param name=" initial_pose_a " value="0.0"/>
15 <param name=" transform_tolerance " value="0.2" />
16 <param name=" gui_publish_rate " value="10.0"/>
17 <param name=" laser_max_beams " value="60"/>
18 <param name=" min_particles " value="500"/>
19 <param name=" max_particles " value="5000"/>
20 <param name=" kld_err " value="0.05"/>
21 <param name="kld_z" value="0.99"/>
22 <param name=" odom_alpha1 " value="0.2"/>
23 <param name=" odom_alpha2 " value="0.4"/>
24 <param name=" odom_alpha3 " value="0.6"/>
25 <param name=" odom_alpha4 " value="0.4"/>
26 <param name=" laser_min_range " value="0.15"/>
27 <param name=" laser_max_range " value="16.0"/>
28 <param name=" laser_z_hit " value="0.5"/>
29 <param name=" laser_z_short " value="0.05"/>
30 <param name=" laser_z_max " value="0.05"/>
31 <param name=" laser_z_rand " value="0.5"/>
32 <param name=" laser_sigma_hit " value="0.2"/>
33 <param name=" laser_lambda_short " value="0.1"/>
34 <param name=" laser_lambda_short " value="0.1"/>
35 <param name=" laser_model_type " value=" likelihood_field "/>
36 <param name=" laser_likelihood_max_dist " value="2.0"/>
37 <param name=" update_min_d " value="0.2"/>
38 <param name=" update_min_a " value="0.5"/>
39 <param name=" odom_frame_id " value="odom"/>
40 <param name=" resample_interval " value="1"/>
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41 <param name=" transform_tolerance " value="0.2"/>
42 <param name=" recovery_alpha_slow " value="0.0"/>
43 <param name=" recovery_alpha_fast " value="0.0"/>
44 </node >
45

46 </launch >
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C.3 gmapping

1 <launch >
2 <arg name=" scan_topic " default ="scan" />
3 <arg name=" base_frame " default =" base_link "/>
4 <arg name=" odom_frame " default ="odom"/>
5

6 <node pkg=" gmapping " type=" slam_gmapping " name=" slam_gmapping "
output =" screen ">

7 <param name=" base_frame " value="$(arg base_frame )"/>
8 <param name=" odom_frame " value="$(arg odom_frame )"/>
9 <param name=" map_update_interval " value="0.01"/>

10 <param name=" maxUrange " value="4.0"/>
11 <param name=" maxRange " value="5.0"/>
12 <param name="sigma" value="0.05"/>
13 <param name=" kernelSize " value="3"/>
14 <param name="lstep" value="0.05"/>
15 <param name="astep" value="0.05"/>
16 <param name=" iterations " value="5"/>
17 <param name=" lsigma " value="0.075"/>
18 <param name="ogain" value="3.0"/>
19 <param name="lskip" value="0"/>
20 <param name=" minimumScore " value="30"/>
21 <param name="srr" value="0.01"/>
22 <param name="srt" value="0.02"/>
23 <param name="str" value="0.01"/>
24 <param name="stt" value="0.02"/>
25 <param name=" linearUpdate " value="0.05"/>
26 <param name=" angularUpdate " value=" 0.0436 "/>
27 <param name=" temporalUpdate " value=" -1.0"/>
28 <param name=" resampleThreshold " value="0.5"/>
29 <param name=" particles " value="8"/>
30 <!--
31 <param name="xmin" value=" -50.0"/>
32 <param name="ymin" value=" -50.0"/>
33 <param name="xmax" value="50.0"/>
34 <param name="ymax" value="50.0"/>
35 make the starting size small for the benefit of the Android

client 's memory ...
36 -->
37 <param name =" xmin" value =" -1.0"/ >
38 <param name =" ymin" value =" -1.0"/ >
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39 <param name =" xmax" value ="1.0"/ >
40 <param name =" ymax" value ="1.0"/ >
41

42 <param name =" delta" value ="0.05"/ >
43 <param name =" llsamplerange " value ="0.01"/ >
44 <param name =" llsamplestep " value ="0.01"/ >
45 <param name =" lasamplerange " value ="0.005"/ >
46 <param name =" lasamplestep " value ="0.005"/ >
47 <remap from =" scan" to="$(arg scan_topic )"/>
48 </node >
49 </launch >
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C.4 hector slam

1 <launch >
2

3 <!-- Launch Default RPLiDAR A3 Node -->
4 <!-- include file="$(find rplidar_ros )/ launch / rplidar_a3 .

launch "/-->
5

6 <!--node pkg="tf" type=" static_transform_publisher " name="
map_to_odom "

7 args="0.0 0.0 0.0 0 0 0.0 /map /odom 40" /-->
8

9 <!--node pkg="tf" type=" static_transform_publisher " name="
odom_to_basefootprint "

10 args="0.0 0.0 0.0 0 0 0.0 /odom / base_footprint 40" />
11

12 <node pkg="tf" type=" static_transform_publisher " name="
base_footprint_to_base_link "

13 args="0.0 0.0 0.0 0 0 0 / base_footprint / base_link 40"
/-->

14

15 <!-- Publish Static Transform for the LiDAR -->
16 <!--node pkg="tf" type=" static_transform_publisher " name="

base_link_to_laser "
17 args="0 0 0 3.14 0 0 / base_link /laser 40"/-->
18

19 <include file="$(find hector_mapping )/ launch / mapping_default .
launch " />

20

21 <node pkg="rviz" type="rviz" name="rviz" args="-d $(find
rr_racer )/rviz/ hector_mapping .rviz" />

22

23 <include file="$(find hector_geotiff )/ launch / geotiff_mapper .
launch " />

24

25 </launch >
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C.5 move base

1 <launch >
2 <!-- Global Parameters -->
3 <!--param name="/ use_sim_time " value="true"/-->
4

5 <!-- Map Server -->
6 <node name=" map_server " pkg=" map_server " type=" map_server " args

="$(find rr_racer )/maps/ rauland_up .yaml"/>
7

8 <!-- AMCL Global Planner -->
9 <include file="$(find rr_racer )/ launch / amcl_teb . launch "/>

10

11 <!-- move_base -->
12 <node pkg=" move_base " type=" move_base " respawn ="false" name="

move_base " output =" screen ">
13 <rosparam file="$(find rr_racer )/param/ navigation /

costmap_common_params .yaml" command ="load" ns="
global_costmap " />

14 <rosparam file="$(find rr_racer )/param/ navigation /
costmap_common_params .yaml" command ="load" ns="
local_costmap " />

15 <rosparam file="$(find rr_racer )/param/ navigation /
local_costmap_params .yaml" command ="load" />

16 <rosparam file="$(find rr_racer )/param/ navigation /
global_costmap_params .yaml" command ="load" />

17 <rosparam file="$(find rr_racer )/param/ navigation /
base_local_planner_teb2 .yaml" command ="load" />

18

19 <param name=" base_local_planner " value=" teb_local_planner /
TebLocalPlannerROS " />

20 <param name=" controller_frequency " value="10.0" />
21 </node >
22

23 </launch >
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D. Parameters

This Appendix contains the .yaml-files which launch-files access to get different parameters.

D.1 ekf localization

1 # The frequency , in Hz , at which the filter will output a
position estimate . Note that the filter will not begin

2 # computation until it receives at least one message from one of
the inputs . It will then run continuously at the

3 # frequency specified here , regardless of whether it receives
more measurements . Defaults to 30 if unspecified .

4 frequency : 10
5

6 # The period , in seconds , after which we consider a sensor to
have timed out. In this event , we carry out a predict

7 # cycle on the EKF without correcting it. This parameter can be
thought of as the minimum frequency with which the

8 # filter will generate new output . Defaults to 1 / frequency if
not specified .

9 sensor_timeout : 0.1
10

11 # ekf_localization_node and ukf_localization_node both use a 3D
omnidirectional motion model. If this parameter is

12 # set to true , no 3D information will be used in your state
estimate . Use this if you are operating in a planar

13 # environment and want to ignore the effect of small variations
in the ground plane that might otherwise be detected

14 # by , for example , an IMU. Defaults to false if unspecified .
15 two_d_mode : true
16

17 # Use this parameter to provide an offset to the transform
generated by ekf_localization_node . This can be used for

18 # future dating the transform , which is required for interaction
with some other packages . Defaults to 0.0 if

19 # unspecified .
20 transform_time_offset : 0.0
21
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22 # Use this parameter to provide specify how long the tf listener
should wait for a transform to become available .

23 # Defaults to 0.0 if unspecified .
24 transform_timeout : 0.0
25

26 # If you 're having trouble , try setting this to true , and then
echo the / diagnostics_agg topic to see if the node is

27 # unhappy with any settings or data.
28 print_diagnostics : true
29

30 # Debug settings . Not for the faint of heart. Outputs a ludicrous
amount of information to the file specified by

31 # debug_out_file . I hope you like matrices ! Please note that
setting this to true will have strongly deleterious

32 # effects on the performance of the node. Defaults to false if
unspecified .

33 debug: false
34

35 # Defaults to " robot_localization_debug .txt" if unspecified .
Please specify the full path.

36 # debug_out_file : /home/ nvidia / RR_RACER_ws /file.txt
37

38 # Whether to broadcast the transformation over the /tf topic.
Defaults to true if unspecified .

39 publish_tf : true
40

41 # Whether to publish the acceleration state. Defaults to false if
unspecified .

42 publish_acceleration : false
43

44 # REP -105 (http :// www.ros.org/reps/rep -0105. html) specifies four
principal coordinate frames : base_link , odom , map , and

45 # earth. base_link is the coordinate frame that is affixed to the
robot. Both odom and map are world -fixed frames .

46 # The robot 's position in the odom frame will drift over time ,
but is accurate in the short term and should be

47 # continuous . The odom frame is therefore the best frame for
executing local motion plans. The map frame , like the odom

48 # frame , is a world -fixed coordinate frame , and while it contains
the most globally accurate position estimate for your

49 # robot , it is subject to discrete jumps , e.g., due to the fusion
of GPS data or a correction from a map -based
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50 # localization node. The earth frame is used to relate multiple
map frames by giving them a common reference frame.

51 # ekf_localization_node and ukf_localization_node are not
concerned with the earth frame.

52 # Here is how to use the following settings :
53 # 1. Set the map_frame , odom_frame , and base_link frames to the

appropriate frame names for your system .
54 # 1a. If your system does not have a map_frame , just remove

it , and make sure " world_frame " is set to the value of
55 # odom_frame .
56 # 2. If you are fusing continuous position data such as wheel

encoder odometry , visual odometry , or IMU data , set
57 # " world_frame " to your odom_frame value. This is the default

behavior for robot_localization 's state estimation nodes.
58 # 3. If you are fusing global absolute position data that is

subject to discrete jumps (e.g., GPS or position updates
59 # from landmark observations ) then:
60 # 3a. Set your " world_frame " to your map_frame value
61 # 3b. MAKE SURE something else is generating the odom ->

base_link transform . Note that this can even be another state
62 # estimation node from robot_localization ! However , that

instance should *not* fuse the global data.
63 map_frame : map # Defaults to "map" if unspecified
64 odom_frame : odom # Defaults to "odom" if unspecified
65 base_link_frame : base_link # Defaults to " base_link " if

unspecified
66 world_frame : odom # Defaults to the value of odom_frame

if unspecified
67

68 # The filter accepts an arbitrary number of inputs from each
input message type ( nav_msgs /Odometry ,

69 # geometry_msgs / PoseWithCovarianceStamped , geometry_msgs /
TwistWithCovarianceStamped ,

70 # sensor_msgs /Imu). To add an input , simply append the next
number in the sequence to its "base" name , e.g., odom0 ,

71 # odom1 , twist0 , twist1 , imu0 , imu1 , imu2 , etc. The value should
be the topic name. These parameters obviously have no

72 # default values , and must be specified .
73

74

75 # Pose from camera 1
76 odom0: /cam1/aruco/odom
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77 # Camera gives x,y,yaw
78 odom0_config : [true , true , false ,
79 false , false , true ,
80 false , false , false ,
81 false , false , false ,
82 false , false , false]
83 odom0_differential : true
84 odom0_relative : true
85 odom0_queue_size : 5
86 odom0_rejection_threshold : 2 # Note the difference in parameter

name
87 odom0_nodelay : false
88

89

90

91

92 odom1: / odom_ackermann
93

94 # Each sensor reading updates some or all of the filter 's state.
These options give you greater control over which

95 # values from each measurement are fed to the filter . For example
, if you have an odometry message as input , but only

96 # want to use its Z position value , then set the entire vector to
false , except for the third entry. The order of the

97 # values is: x, y, z,
98 # roll , pitch , yaw ,
99 # vx , vy , vz ,

100 # vroll , vpitch , vyaw ,
101 # ax , ay , az.
102 #
103 #Note that not some message types do not provide some of the

state variables estimated by the filter . For example , a
TwistWithCovarianceStamped message

104 # has no pose information , so the first six values would be
meaningless in that case. Each vector defaults to all false

105 # if unspecified , effectively making this parameter required for
each sensor .

106 odom1_config : [true , true , false ,
107 false , false , true , # Steering angle is not

accurate enough
108 false , false , false ,
109 false , false , false ,
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110 false , false , false]
111

112 # If you have high - frequency data or are running with a low
frequency parameter value , then you may want to increase

113 # the size of the subscription queue so that more measurements
are fused.

114 odom1_queue_size : 5
115

116 # [ ADVANCED ] Large messages in ROS can exhibit strange behavior
when they arrive at a high frequency . This is a result

117 # of Nagle 's algorithm . This option tells the ROS subscriber to
use the tcpNoDelay option , which disables Nagle 's

118 # algorithm .
119 odom1_nodelay : false
120

121 # [ ADVANCED ] When measuring one pose variable with two sensors , a
situation can arise in which both sensors under -

122 # report their covariances . This can lead to the filter rapidly
jumping back and forth between each measurement as they

123 # arrive . In these cases , it often makes sense to (a) correct the
measurement covariances , or (b) if velocity is also

124 # measured by one of the sensors , let one sensor measure pose ,
and the other velocity . However , doing (a) or (b) isn 't

125 # always feasible , and so we expose the differential parameter .
When differential mode is enabled , all absolute pose

126 # data is converted to velocity data by differentiating the
absolute pose measurements . These velocities are then

127 # integrated as usual. NOTE: this only applies to sensors that
provide pose measurements ; setting differential to true

128 # for twist measurements has no effect .
129 odom1_differential : false
130

131 # [ ADVANCED ] When the node starts , if this parameter is true ,
then the first measurement is treated as a "zero point"

132 # for all future measurements . While you can achieve the same
effect with the differential paremeter , the key

133 # difference is that the relative parameter doesn 't cause the
measurement to be converted to a velocity before

134 # integrating it. If you simply want your measurements to start
at 0 for a given sensor , set this to true.

135 odom1_relative : false
136
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137 # [ ADVANCED ] If your data is subject to outliers , use these
threshold settings , expressed as Mahalanobis distances , to

138 # control how far away from the current vehicle state a sensor
measurement is permitted to be. Each defaults to

139 # numeric_limits <double >:: max () if unspecified . It is strongly
recommended that these parameters be removed if not

140 # required . Data is specified at the level of pose and twist
variables , rather than for each variable in isolation .

141 # For messages that have both pose and twist data , the parameter
specifies to which part of the message we are applying

142 # the thresholds .
143 odom1_pose_rejection_threshold : 5
144 odom1_twist_rejection_threshold : 1
145

146

147 # Pose from Camera 2
148 #odom2: /cam2/aruco/odom
149 # odom2_config : [true , true , false ,
150 # false , false , true ,
151 # false , false , false ,
152 # false , false , false ,
153 # false , false , false]
154 # odom2_differential : false
155 # odom2_relative : false
156 # odom2_queue_size : 5
157 # odom2_rejection_threshold : 2 # Note the difference in parameter

name
158 # odom2_nodelay : false
159

160

161 # values is: x, y, z,
162 # roll , pitch , yaw ,
163 # vx , vy , vz ,
164 # vroll , vpitch , vyaw ,
165 # ax , ay , az.
166 #
167 imu0: /imu
168 imu0_config : [false , false , false ,
169 false , false , false ,
170 false , false , false ,
171 false , false , true ,
172 true , true , true] # false , false , false]
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173 imu0_nodelay : false
174 imu0_differential : true
175 imu0_relative : true
176 imu0_queue_size : 10
177 imu0_pose_rejection_threshold : 0.8 # Note the difference in

parameter names
178 imu0_twist_rejection_threshold : 0.8 #
179 imu0_linear_acceleration_rejection_threshold : 0.8 #
180

181 # [ ADVANCED ] Some IMUs automatically remove acceleration due to
gravity , and others don 't. If yours doesn 't, please set

182 # this to true , and *make sure* your data conforms to REP -103 ,
specifically , that the data is in ENU frame.

183 imu0_remove_gravitational_acceleration : true
184

185 # [ ADVANCED ] The EKF and UKF models follow a standard predict /
correct cycle. During prediction , if there is no

186 # acceleration reference , the velocity at time t+1 is simply
predicted to be the same as the velocity at time t. During

187 # correction , this predicted value is fused with the measured
value to produce the new velocity estimate . This can be

188 # problematic , as the final velocity will effectively be a
weighted average of the old velocity and the new one. When

189 # this velocity is the integrated into a new pose , the result can
be sluggish covergence . This effect is especially

190 # noticeable with LIDAR data during rotations . To get around it ,
users can try inflating the process_noise_covariance

191 # for the velocity variable in question , or decrease the
variance of the variable in question in the measurement

192 # itself . In addition , users can also take advantage of the
control command being issued to the robot at the time we

193 # make the prediction . If control is used , it will get converted
into an acceleration term , which will be used during

194 # predicition . Note that if an acceleration measurement for the
variable in question is available from one of the

195 # inputs , the control term will be ignored .
196 # Whether or not we use the control input during predicition .

Defaults to false.
197 use_control : false
198 # Whether the input ( assumed to be cmd_vel ) is a geometry_msgs /

Twist or geometry_msgs / TwistStamped message . Defaults to
199 # false.
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200 stamped_control : false
201 # The last issued control command will be used in prediction for

this period . Defaults to 0.2.
202 control_timeout : 0.2
203 # Which velocities are being controlled . Order is vx , vy , vz ,

vroll , vpitch , vyaw.
204 control_config : [true , false , false , false , false , true]
205 # Places limits on how large the acceleration term will be.

Should match your robot 's kinematics .
206 acceleration_limits : [1.3 , 0.0, 0.0, 0.0, 0.0, 3.4]
207 # Acceleration and deceleration limits are not always the same

for robots .
208 deceleration_limits : [1.3 , 0.0, 0.0, 0.0, 0.0, 4.5]
209 # If your robot cannot instantaneously reach its acceleration

limit , the permitted change can be controlled with these
210 # gains
211 acceleration_gains : [0.8 , 0.0, 0.0, 0.0, 0.0, 0.9]
212 # If your robot cannot instantaneously reach its deceleration

limit , the permitted change can be controlled with these
213 # gains
214 deceleration_gains : [1.0 , 0.0, 0.0, 0.0, 0.0, 1.0]
215

216 # [ ADVANCED ] The process noise covariance matrix can be difficult
to tune , and can vary for each application , so it is

217 # exposed as a configuration parameter . This matrix represents
the noise we add to the total error after each

218 # prediction step. The better the omnidirectional motion model
matches your system , the smaller these values can be.

219 # However , if users find that a given variable is slow to
converge , one approach is to increase the

220 # process_noise_covariance diagonal value for the variable in
question , which will cause the filter 's predicted error

221 # to be larger , which will cause the filter to trust the incoming
measurement more during correction . The values are

222 # ordered as x, y, z, roll , pitch , yaw , vx , vy , vz , vroll , vpitch
, vyaw , ax , ay , az. Defaults to the matrix below if

223 # unspecified .
224 process_noise_covariance : [0.05 , 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0,
225 0, 0.05 , 0, 0, 0, 0, 0,

0, 0, 0, 0, 0,
0, 0, 0,
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226 0, 0, 0.06 , 0, 0, 0, 0,
0, 0, 0, 0, 0,

0, 0, 0,
227 0, 0, 0, 0.03 , 0, 0, 0,

0, 0, 0, 0, 0,
0, 0, 0,

228 0, 0, 0, 0, 0.03 , 0, 0,
0, 0, 0, 0, 0,

0, 0, 0,
229 0, 0, 0, 0, 0, 0.06 , 0,

0, 0, 0, 0, 0,
0, 0, 0,

230 0, 0, 0, 0, 0, 0,
0.025 , 0, 0, 0, 0, 0,

0, 0, 0,
231 0, 0, 0, 0, 0, 0, 0,

0.025 , 0, 0, 0, 0,
0, 0, 0,

232 0, 0, 0, 0, 0, 0, 0,
0, 0.04 , 0, 0, 0,

0, 0, 0,
233 0, 0, 0, 0, 0, 0, 0,

0, 0, 0.01 , 0, 0,
0, 0, 0,

234 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0.01 , 0,

0, 0, 0,
235 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0.02 ,
0, 0, 0,

236 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0,

0.01 , 0, 0,
237 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0,
0, 0.01 , 0,

238 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0,

0, 0, 0.015]
239

240 # [ ADVANCED ] This represents the initial value for the state
estimate error covariance matrix . Setting a diagonal
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241 # value ( variance ) to a large value will result in rapid
convergence for initial measurements of the variable in

242 # question . Users should take care not to use large values for
variables that will not be measured directly . The values

243 # are ordered as x, y, z, roll , pitch , yaw , vx , vy , vz , vroll ,
vpitch , vyaw , ax , ay , az. Defaults to the matrix below

244 #if unspecified .
245 initial_estimate_covariance : [1e-9, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0,
246 0, 1e-9, 0, 0, 0, 0,

0, 0, 0, 0, 0,
0, 0, 0, 0,

247 0, 0, 1e-9, 0, 0, 0,
0, 0, 0, 0, 0,

0, 0, 0, 0,
248 0, 0, 0, 1e-9, 0, 0,

0, 0, 0, 0, 0,
0, 0, 0, 0,

249 0, 0, 0, 0, 1e-9, 0,
0, 0, 0, 0, 0,

0, 0, 0, 0,
250 0, 0, 0, 0, 0, 1e-9,

0, 0, 0, 0, 0,
0, 0, 0, 0,

251 0, 0, 0, 0, 0, 0,
1e-9, 0, 0, 0, 0,

0, 0, 0, 0,
252 0, 0, 0, 0, 0, 0,

0, 1e-9, 0, 0, 0,
0, 0, 0, 0,

253 0, 0, 0, 0, 0, 0,
0, 0, 1e-9, 0, 0,

0, 0, 0, 0,
254 0, 0, 0, 0, 0, 0,

0, 0, 0, 1e-9, 0,
0, 0, 0, 0,

255 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1e

-9, 0, 0, 0, 0,
256 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0,
1e-9, 0, 0, 0,
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257 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0,

0, 1e-9, 0, 0,
258 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0,
0, 0, 1e-9, 0,

259 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0,

0, 0, 0, 1e -9]
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D.2 Common Costmap

1 # Costmap common
2 #
3 # Version : 19.03.19
4 # Changes made:
5 #
6 # ...
7 #
8 map_type : costmap
9 origin_z : 0.0

10

11 obstacle_range : 2
12 raytrace_range : 2
13 # footprint : [[x0 , y0], [x1 , y1], ... [xn , yn]]
14 # robot_radius : ir_of_robot
15 # robot_radius : 0.5 # distance a circular robot should be clear of

the obstacle
16 footprint : [[ -0.2 , 0.1] , [0.33 , 0.1] , [0.33 , -0.1], [-0.2,

-0.1]]
17 inflation_radius : 0.1
18

19 observation_sources : laser_scan_sensor # point_cloud_sensor
20

21 # marking - add obstacle information to cost map
22 # clearing - clear obstacle information to cost map
23 laser_scan_sensor : { sensor_frame : laser , data_type : LaserScan ,

topic: scan , marking : true , clearing : true}
24

25 # point_cloud_sensor : { sensor_frame : frame_name , data_type :
PointCloud , topic: topic_name , marking : true , clearing : true
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D.3 Local Costmap

1 #
2 # Version : 07.04.19
3 # Changes made:
4 #
5 # Reduced resolution to help with process speed
6 #
7 # -----------------------------------------------
8 # Local Costmap Params
9 local_costmap :

10 global_frame : odom
11 robot_base_frame : base_link
12 update_frequency : 5
13 publish_frequency : 2
14 static_map : false
15 rolling_window : true
16 width: 2.5
17 height : 2.5
18 resolution : 0.05
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D.4 Global Costmap

1 # Global Costmap Params
2 #
3 # Version : 29.03.19
4 # Chages made:
5 #
6 # Selected true on static_map
7 #
8 global_costmap :
9 global_frame : map

10 robot_base_frame : base_link
11 publish_frequency : 5
12 static_map : true
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D.5 teb local planer

1 # Version : 12.04.19
2 #
3 # Changes made:
4 #
5 # Added viapoint capabilities , homotopy
6 #
7 TebLocalPlannerROS :
8

9 # Mics
10 odom_topic : odom
11 map_frame : /map
12

13 # Trajectory
14 teb_autosize : True
15 dt_ref : 0.3
16 dt_hysteresis : 0.2
17 global_plan_overwrite_orientation : True
18 max_global_plan_lookahead_dist : 2.0
19 feasibility_check_no_poses : 5
20 goal_plan_viapoint : 1 # NEW
21

22 # Robot
23 max_vel_x : 0.2
24 max_vel_x_backwards : 0.2
25 max_vel_theta : 2
26 acc_lim_x : 1
27 acc_lim_theta : 2
28 wheelbase : 0.33 # NEW TEST
29 cmd_angle_instead_rotvel : True # NEW TEST
30 min_turning_radius : 0.63
31 footprint_model : # types: "point", " circular ", " two_circles ", "

line", " polygon "
32 type: " polygon "
33 vertices : [[ -0.2 , 0.1] , [0.33 , 0.1] , [0.33 , -0.1], [-0.2,

-0.1]]
34

35 # GoalTolerance
36 xy_goal_tolerance : 0.2
37 yaw_goal_tolerance : 0.34 #20 deg
38 free_goal_vel : False

151



D. Parameters

39

40 # Obstacles
41 min_obstacle_dist : 0.1
42 include_costmap_obstacles : True
43 costmap_obstacles_behind_robot_dist : 1.0
44 obstacle_poses_affected : 30
45 costmap_converter_plugin : ""
46 costmap_converter_spin_thread : False
47 costmap_converter_rate : 5
48

49 # Optimization
50 no_inner_iterations : 5
51 no_outer_iterations : 4
52 optimization_activate : True
53 optimization_verbose : False
54 penalty_epsilon : 0.1
55 weight_max_vel_x : 2
56 weight_max_vel_theta : 1
57 weight_acc_lim_x : 1
58 weight_acc_lim_theta : 1
59 weight_kinematics_nh : 1000
60 weight_kinematics_forward_drive : 10 # 1, NEW TEST
61 weight_kinematics_turning_radius : 100
62 weight_optimaltime : 1
63 weight_obstacle : 50
64 weight_dynamic_obstacle : 100 # not in use yet
65 weigth_viapoint : 1000 # NEW
66 alternative_time_cost : False # not in use yet
67 allow_init_with_backward_motion : True # NEW TEST
68

69

70 # Homotopy Class Planner
71 enable_homotopy_class_planning : False #True
72 enable_multithreading : True
73 simple_exploration : False
74 max_number_classes : 4
75 roadmap_graph_no_samples : 15
76 roadmap_graph_area_width : 5
77 h_signature_prescaler : 0.5
78 h_signature_threshold : 0.1
79 obstacle_keypoint_offset : 0.1
80 obstacle_heading_threshold : 0.45
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81 visualize_hc_graph : False
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E. Data Sheets

E. Data Sheets

This Appendix include all the data sheets for the components utilized in this thesis
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E. Data Sheets

E.1 Intel® RealSense™ D435(i)
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E. Data Sheets

E.2 SLAMTEC RPLiDAR A3
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E.4 Servo
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E.5 SparkFun 9DoF Razor IMU M0
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E.6 Tamiya Mercedes-Benz Actros 3363 6x4 GS - Kit

The construction manual for the kit can be accessed by following the link below:

https://d1hu0eys0tj9xi.cloudfront.net/media/files/56348ml-779-3f46.pdf
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E.7 3D Printed Platform
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F. Photos of Prototype

F. Photos of Prototype

Figure F.1: Right Front View of Prototype

Figure F.2: Side View of Prototype
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F. Photos of Prototype

Figure F.3: Prototype with Trailer

Figure F.4: Front View of Prototype

163



F. Photos of Prototype

Figure F.5: Prototype with Trailer Detached

Figure F.6: Testing Area at Red Rock
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