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NOV National Oilwell Varco

PAF Part Affinity Fields

PnP Perspective-n-Point

R-CNN Regional Convolutional Neural Network

SSD Single Shot Detector

SVM Support Vector Machine

YOLO You Only Look Once



Preface

This thesis concludes a five year journey throughout our education at the University of Agder. The project
has expanded our knowledge within the fields of computer vision and machine learning. We’ve enjoyed our
time with this project and we are grateful for the opportunity to work with a such interesting problem.

The authors would like to extend our sincere gratitude to our supervisors, Ph.D research fellows Atle Aalerud
and Joacim Dybedal. Their excellent guidance and assistance has helped us elevate the quality of this thesis.
We would also like to thank Erind Ujkani and Andreas Gromsrud from National Oilwell Varco, for both
providing us with this interesting thesis, and their support throughout the project. Finally we would like to
thank Sondre Ripegutu for the collaboration where we merged ours and his thesis together. Sondre has also
provided invaluable assistance in the form of discussions regarding problems we had and most importantly,
friendly talks to take the mind of the thesis for a while.

Thanks to relatives and friends who kept me going, for the good introspective walks in the sun, and for
promising to be my partners in workout, which I can pick up again now that the thesis is over. Thank you
very much.

— Andreas J. Akselsen

I would like to thank the one who runs to meet me with a smile in the door everyday when I come home, my
dog Lukas. Without him, finishing this thesis would be impossible. Oh, right, I should probably also thank
my wife. Thanks.

— Harald I. Moldsvor

1



Abstract

In this thesis, a technique was developed to perform position estimation of occluded personnel in an industrial
environment, using a single RGB camera. The system detects persons using Human Pose Estimation, which
locates the joints of a person and determines their image coordinates in a given frame. An implementation
of the OpenPose library was utilized for this purpose. It was demonstrated that the system can estimate
2D monocular human positions, even under occluded scenarios, with an accuracy of 20 cm. The system was
implemented for a single person, with future extensions to multiple persons possible through added pose
tracking. The system runs at 20 FPS on a workstation using an Nvidia 1080Ti GPU. It was demonstrated
how the robustness can be improved by using multiple cameras and fusing their estimates, in a collaboration
with the multicam project by Sondre Ripegutu. Pose inference was also tested on a Nvidia AGX Xavier,
and it was demonstrated how it can perform pose inference at a rate of 10 FPS, increasing scalability by
offloading processing, and adding redundancy to the system by using multiple nodes.
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Chapter 1

Introduction

1.1 Problem description

National Oilwell Varco’s (NOV) Multi Machine Control (MMC) is the state of the art drilling equipment [1],
[2]. MMC enables one operator to operate a suite of fully automated drilling rig equipment. The machines
on the platform are equipped with NOV’s Anti-Collision Systems (ACS), [3] halting operation in case of
emergency. However this is only for machine to machine collision. To avoid human and machine collision
sensors are needed. A popular option is to utilize laser break beam sensors to create a bounding box in which
humans are not allowed to operate within. This setup comes with a set of advantages and disadvantages.
The disadvantage of being a fixed setup and safety zones cannot be changed depending on the situation. If
the robot contains a traversing base, then the enclosed area will be excessively large compared to what is
needed to secure the robot workspace. Figure 1.1 shows a person within the safety zone, which would cause
a shutdown of operation. However, if coordinates of nearby persons are known, then an adaptive safety zone
generated by a computer vision software, can be implemented, which moves along with the robot during
operation. As shown in figure 1.2, the person is able to work in proximity to the robot without entering the
safety zone. Another disadvantage with break laser beam is that it works in binary classification. It can’t
tell what has entered the area. With a computer vision based it is possible to classify that there is a human
that entered the safety zone.

Figure 1.1: Conventional safety zone with break laser system
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Figure 1.2: Adaptive safety zone for the proposed system

As of present, the system NOV has developed is capable of determining bounding boxes of persons in a 2D
image, and calculates the planar coordinates based on the bottom of the bounding box, with an accuracy
of less than 10 cm. However, this method assumes that the person is fully visible in the image, with no
obstructions in the view. When the body is only partially visible, for instance, when blocked by equipment,
crates or beams, the detection test fails.

The goal of this thesis is to develop a technique for estimating the planar coordinates of the person, even
when the image view is partially obstructed. The estimation should be robust enough to be able to work in in-
dustrial settings where challenges such as persons wearing mono-colored coveralls and helmets might interfere.

1.2 Requirements

The position estimation must be able to work with the following criteria:

• Only a single camera is guaranteed to be present

• The person is partially obscured; for example, with only the upper body visible

• The system must work in an industrial environment

• The system ideally should work with a frame rate above 10 FPS

1.3 Known limitations

A system featuring only a single, stationary 2D camera cannot fully reconstruct a 3D position, unless as-
sumptions about the environment and/or objects are made, given the lack of depth vision in such a setup.
When the person is obstructed, this becomes even harder.

All tests in this thesis will concentrate on estimating the position of a single person. Ideas about extensions
to multiple persons will be discussed, and the robustness of the human detector in the presence of multiple
persons will be carried out as well.

4



Chapter 2

State of the art

2.1 Human detection

Human Detection is the problem of finding humans within a given image. It is a subclass of the more general
problem of object detection, specifically trained to look for humans. In industrial applications, the solution
algorithms should be capable of running in real time, so they can respond quickly to detected humans from
a live video feed.

Real time object detection is a recent field of study, and all of these algorithms were developed in this millen-
nium. The algorithms tend to use a machine learning component, which can be trained to recognize patterns
in the data by feeding them categorized examples. In the classical algorithms developed in the 2000s, this
usually involved a trainable classifier like AdaBoost or SVM (Support Vector Machine), which would process
the data at the end of the pipeline. These classical algorithms were often based around the concept of sliding
windows, where a frame is slided across multiple positions in the image, and performs feature detection on
each obtained region [4].

The Viola-Jones algorithm was conceived in 2001, and was the first object detector capable of running in
real time, although it was primarily aimed at face detection. It operates by sliding a window across the
image and extracting features from each obtained region, before finally applying an AdaBoost classifier. [4]
In 2005, Histogram of Oriented Gradients (HOG) [5] was published. This algorithm operates by calculating
the gradient values in the image, and forming a histogram which can be processed by a trained classifier like
SVM. This algorithm was developed with the goal of detecting pedestrians, making it well suited for human
detection in general [5].

In recent developments and academic research, detection algorithms are usually based on deep learning.
Unlike the simpler classifiers detailed above, deep learning uses a full neural network to process the data
The most common type of neural network for object detection is the convolutional neural network (CNN).
CNNs are well suited for image processing, as they can capture spatial relationships in two-dimensional data.
[6] For more information of how neural networks learn and operate, the reader is advised to check out the
overview at [7], or the MIT-published book on the subject, which is also freely available online [8].

The usage of deep learning and CNNs for object detection came into focus after the creation of AlexNet [9] in
2012, which went on to win the ILSVRC [10] (ImageNet Large Scale Visual Recognition Challenge) contest
that same year. AlexNet combined CNNs with other recent tricks from the deep learning world, such as
rectified linear units, pooling and dropout regularization, to cut down on processing time and classification
errors. As a result, it was able to beat its competitors by a significant margin, and led to higher interest in
deep learning as means of object detection [11].

Neural networks for object detection are commonly trained on publicly available sets of data, often for the
purpose of comparing various approaches and algorithms. Examples of datasets include:
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• Common Objects in Context (COCO) [12]

• Caltech Pedestrian Dataset [13]

• PASCAL Visual Object Classes (PASCAL-VOC) [14]

The deep learning detectors presented below can be broadly classified as region based or single shot. The
region based detectors subdivide the image into a series of regions, which are then processed separately. The
idea of region-based detectors was derived from the sliding window concept used in Viola-Jones, but lets the
algorithm determine suitable regions at runtime, rather than investigating every possible region in the image.
These networks tend to be more accurate than single-shot detectors, but at the cost of slower processing time.
[15] Single shot detectors operate directly on the full image, and predict the bounding boxes and categories
of objects in a single step. This cuts down on processing time at the cost of accuracy. In particular, these
detectors often struggle to detect smaller objects [15].

You Only Look Once (YOLO) [16] is a single shot detection algorithm which is well suited for real time pro-
cessing. YOLO operates by dividing the image into a uniform grid of cells. The grid is processed by a neural
network, and for each cell, probabilities are calculated of whether it contains an object of a given category.
If an object spans multiple sections, the middle section is considered the owner of the object. Coordinates
and width/height of bounding boxes are also predicted as part of the process. The process is illustrated in
figure 2.1. The original YOLO paper was published in 2015, the algorithm has since gone through several
iterations. The latest revision, YOLOv3, was released in 2018 [17].

Figure 2.1: Working principle of the YOLO detector (grid size may be adjusted) [16] © 2011 IEEE

An alternative to YOLO is a detector simply named Single Shot Detector (SSD) [18], which was published
in 2016. For each plausible location of an object in the image, SSD will attempt to fit multiple bounding
boxes of various sizes and aspect ratios, assigning each box a confidence probability. A chain of CNNs process
the image, with the later layers given most of the responsibility for feature detection. Versions of SSD are
usually categorized by the accepted input dimension of the image, such as SSD300 or SSD512, where higher
resolutions increase accuracy at the cost of slower speed. In general, SSD tends to run fast and perform well
in real time on tested sets, as long as the objects are not too small [19].
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Figure 2.2: Working principle of the SSD detector[18]

Of the region based detectors, one common class is the R-CNN (Regional Convolutional Neural Network)
family of algorithms. The working principle of such networks is illustrated in figure 2.3. After dividing the
image into regions, they are processed separately by neural networks to detect occurrences of predetermined
categories. The regions are usually warped into squares before processing [20]. The original algorithm de-
termined regions through selective search [20], but the latest revisions use a CNN to extract a feature map,
which in turn hints at which regions to use [21], [22]. The original release of R-CNN in 2013 [20] ran very
slowly, which made it unsuitable for realtime processing. Later updates have made huge improvements in
processing speed, and the 2017 revision, Faster R-CNN [22], can run several checks per second, making it
possible to employ it for realtime detection [23]. Several offshoots of R-CNN exist, such as R-FCN [24] for
slightly faster performance, and Mask R-CNN [25], which also determines which image pixels lie inside the
person.

Figure 2.3: Working principle of R-CNN networks [20] © 2014 IEEE

2.2 Human pose estimation

Human Pose Estimation (HPE) is a sub field within human detection where the task is to correctly identify
the joints and pose of one or multiple humans.

HPE has seen significant improvements in the recent years due to the use of CNNs and more high quality
training data. With the rapid development, the state of the art changes frequently. Tracking what is the
current state of the art is done by checking the leaderboards on the benchmarking sets. Two of the most
popular benchmarking sets are the aforementioned COCO and the Max Planck Institute Informatik (MPII)
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human pose dataset [26], which is used in their project PoseTrack [27]. These two datasets are so called
sparse datasets, meaning that they only point out a few keypoints like head, shoulder, knee, elbow etc. From
this a ”stickman” figure can be created to display the human pose estimate. Several academically developed
frameworks have surfaced in recent years to solve human estimation problems, including OpenPose [28] and
AlphaPose [29].

Figure 2.4: Example of OpenPose results [28, p. 1] @ 2018 IEEE

Recently Facebook AI Research (FAIR) released DensePose-COCO dataset and their proposal DensePose-
RCNN. As described in their article, ”DensePose-COCO dataset establishes a dense correspondence between
points on a 2D image and points on a 3D surface-based representation of the human body.” [30]. This means
that from a 2D image, it is now possible to create a 3D mesh of a person.

Figure 2.5: Example of results and dataset from DensePose [30]
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Chapter 3

Theory

3.1 Homogeneous coordinates

xy
z

 −→

wx
wy
wz
w

 (3.1)

Homogeneous coordinates are expressed as scaled versions of their Cartesian equivalents, with the scaling
factor provided as a fourth component. Depending on the type of calculation, the scaling factor may be
constant, or it may be variable and calculated as part of the process. In cases where the factor can be set
freely, it is usually equal to 1.
Homogeneous coordinates have certain advantages in this context:

• It allows for translations to be described using matrices

• When performing distance calculations derived from scaled triangles, as is done in 2D projection, the
resulting formula contains a division by a variable length. By choosing this length to be the scaling
factor and working with the scaled values, the transformations can be expressed using matrices, only
dividing by the factor at the very end of the process.

3.2 Pinhole camera model

The Pinhole camera model is often used for a simple and yet efficient camera model. It works on the
assumption that the aperture is a infinitely small point and no lenses are used to focus the incoming light.
Figure 3.1 shows a simplified camera. At the center of the coordinate axis is the Center of Projection (CoP),
which represents the aperture. Perpendicular to the principal axis is the imaginary image plane, the distance
between CoP and image plane is called the focal length (f). The reason for it being imaginary is due to
the actual image plane is behind the CoP and the image is formed upside down. To aid visualization the
imaginary image plane is used. Inspiration for figure 3.1 is from Peter Corke’s book Robotics, Vision and
Control: Fundamental Algorithms in MATLAB [31].
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P = (X,Y, Z)

z = f
Fc

zc

yc

xc

y

x

v

u

(u, v)

~u

~v

principal
point

optical
axis

Figure 3.1: Illustration of a pinhole camera

The 3D point P (X,Y, Z) is projected onto the image plane at point Pc(u, v). Both of these points form
similar triangles in respect to the CoP and principal axis. Therefore, using the laws of similar triangles the
following relations can be found.

f

Z
=

u

X
=

v

Y
(3.2)

Which in return can be solved for both u and v

u =
fX

Z
(3.3)

v =
fY

Z
(3.4)

Now using homogeneous coordinates for Pc, it can be rewritten asuv
w

 =

f 0 0
0 f 0
0 0 1

XY
Z

 (3.5)
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This transformation does not account for the origin in the image plane. Therefore it is needed to offset the
point with the translation vector [cx, cy]T .

u =
fX

Z
+ cx (3.6)

v =
fY

Z
+ cy (3.7)

Resulting in the following equation uv
w

 =

f 0 cx
0 f cy
0 0 1

XY
Z

 (3.8)

Now equation (3.8) transforms a 3D position to 2D image coordinates. However the 2D image coordinates
are expressed in meters. To convert the position into pixels the pixels per meter (m) constant is needed.
Typically, the pixels in a modern camera are square. However to generalize the problem, the pixels can be
assumed to be rectangle and therefore it is needed one constant for each dimension; mu and mv.

u = mu
fX

Z
+ cx (3.9)

v = mv
fY

Z
+ cy (3.10)uv

w

 =

muf 0 mucx
0 mvf mvcy
0 0 1

XY
Z

 (3.11)

Or in a more easily read format. uv
w

 =

fx 0 u0
0 fy v0
0 0 1

XY
Z

 (3.12)

Pc = KP (3.13)

The K matrix is the intrinsic matrix of the camera.
The second important parameter of the pinhole camera model is the extrinsic matrix. Extrinsic parameters
describe the pose of the camera relative to the global origin. If the camera is moved or rotated, these
parameters must be recalculated.
The overall camera model can be described in the form shown in equation 3.14.

s

uv
1

 =

fx 0 cx
0 fy cy
0 0 1


︸ ︷︷ ︸
Intrinsic matrix

r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz


︸ ︷︷ ︸

Extrinsic matrix


x
y
z
1

 (3.14)

where:

• (x,y,z) is the position of the point in global frame

• (u,v) is the projected position of the point in the image, measured in pixels

• s is an unknown scaling factor

• (fx, fy) are the focal lengths of the lens in x and y direction, measured in pixels

• (cx, cy) is the principal point of the image, usually near the center, measured in pixels

• (r11, r12, ..., r33) make up a rotation matrix, describing the rotation of the camera relative to global
frame

• (tx, ty, tz) is the position of the camera in global frame
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3.3 Camera distortion

The above camera model assumes that the transformation maps straight lines in the scene to straight lines in
the image. However, for the kind of surveillance cameras employed in this project, this is not the case. Real
lenses and cameras do not behave completely according to the assumptions of the pinhole camera model,
causing deviations between assumed and actual behavior. This difference is called distortion. Wide angle
lenses are especially vulnerable to this kind of behavior.

Distortion can often be corrected in software, assuming that a model of the distortion displacement can be
created. In the OpenCV and MATLAB calibration tools, this is performed as part of the intrinsic calibration.

The most common type of distortion, radial distortion, is caused by the curvature in the image. The most
common types of distortion are:

• Barrel distortion: Straight lines in the scene bend away from the center of the image. Also known as
fish-eye

• Pincushion distortion: Straight lines in the scene bend towards the center of the image

Figure 3.2: Illustration of the common types of lens distortion [32]

In addition, tangential distortions happen when the lens plane is not parallel to the image plane, causing the
image to get stretched in some direction. OpenCV and MATLAB calibration tools will usually assume it to
be zero, unless especially told otherwise.

Overall, the distortion model can be parameterized as follows: [33]

xu = x
1 + k1r

2 + k2r
4 + k3r

6

1 + k4r2 + k5r4 + k6r6
+ 2p1xy + p2(r2 + 2x2) (3.15)

yu = y
1 + k1r

2 + k2r
4 + k3r

6

1 + k4r2 + k5r4 + k6r6
+ p1(r2 + 2y2) + 2p2xy (3.16)

where

• (xu, yu) is the desired, undistorted position

• (x, y) is the originally obtained, distorted position

• r is the distorted distance from the principal point, r =
√
x2 + y2

• (k1, k2, k3, k4, k5, k6) are radial distortion coefficients, to be determined during calibration

• (p1, p2) are tangential distortion coefficients, to be determined during calibration
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3.4 Perspective-n-Point problem

The Perspective-n-Point problem (PnP) is the problem of estimating the extrinsic parameters of a camera,
using a set of visible points with known global positions. This has the advantage of aligning the global
coordinate system according to these points, making it easier to perform accuracy tests.

To solve the PnP problem, a set of n 3D points in the world frame and their corresponding points in the
image plane is required. Figure 3.3 shows correspondence between world and image points where a camera
has been rotated and translated. The minimal form of PnP problem is when n = 3, then it is called the P3P.
This is solvable, but yields multiple solutions, so to remove ambiguity using n ≥ 4 is advised. For further
information on how the PnP is solved, the reader is advised to read the paper EPnP: An Accurate O(n)
Solution to the PnP Problem by V. Lepetit, et. al. [34].

Figure 3.3: World and image points correspondence [35]

3.5 Position estimation

As previously discussed in section 3.2, the pinhole camera model is a function that maps points in R3 down
to an image in R2. However the inverse is not directly possible, due to the loss of a dimension when the
function went from R3 to R2. In order to estimate a position, one of the coordinates must be known. Since
it is desired to estimate the x, y coordinates, the z coordinate must be known.

One common method is setting the z value to 0, which represents the floor. This is a good method when it
is established that the measured object is on the floor. However when the object is partly occluded and the
lower part cannot be seen, this method fails. Therefore a generalized solution that can take an arbitrary z
value is needed. Equation 3.17 shows the pinhole camera model equation presented with slight modifications
in notation.

s

uv
1

 = C

R
 X

Y
Zconst

+ t

 (3.17)

Where:

• s - Scaling factor

• C - Intrinsic matrix
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• R - Rotation matrix

• t - Translation vector

Firstly, the inverse of the rotation and intrinsic matrix is multiplied on both sides.

R−1C−1s

uv
1

 =

 X
Y

Zconst

+R−1t (3.18)

To ease readability, both left- and right-side of the equation are stored in variables A,B

A = R−1C−1

uv
1

 (3.19)

B = R−1t (3.20)

As

uv
1

 =

 X
Y

Zconst

+ B (3.21)

Now the scaling factor s can be calculated using the last row in the matrices.

s =
Zconst + B2,0

A2,0
(3.22)

Finally the world coordinates X,Y can be calculated.

[
X
Y

]
= R−1

sC−1

uv
1

− t
 (3.23)

3.6 3D position estimation

The aforementioned position estimation method only works when the person stands on the floor. If the
person stands on a chair or ladder or in more general terms, the person stands with a distance of ∆z above
the ground, then position estimate will be wrong. However, with a few assumptions about the measured
person, then the full 3D position of the person can be estimated by measuring two points. The following
assumptions are:

• The points have the same x and y coordinates.

• The z distance between the points are known.

• Intrinsic and extrinsic parameters are known.

In this example the two measured points will be on the top of the head and the bottom of the feet of the
person. Since the person stands above the ground, the feet coordinates will be at height ∆z and the head at
∆z + z. Where z is the known height of the person.
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Now both positions of the coordinates can be calculated with the following equations:

p1 = R−1

(∆z +B[2, 0])C−1

u1v1
1

− t
 (3.24)

p2 = R−1

(z + ∆z +B[2, 0])C−1

u2v2
1

− t
 (3.25)

Now the output from p1 and p2 will look the following:

p1 =

α1 ·∆z + β1
α2 ·∆z + β2

∆z

 p2 =

α3 ·∆z + β3
α4 ·∆z + β4

∆z + z

 (3.26)

Here αn and βn are stand in variables for calculated coefficients. Since it is assumed that p1 is in the same
x and y position as p2, then the it is possible to take the first element of each vector and calculate ∆z.

α1 ·∆z + β1 = α3 ·∆z + β3 (3.27)

∆z =
β3 − β1
α1 − α3

(3.28)

Now this ∆z variable can be used to estimate the full 3D position, which is done by inserting the now known
value into equation 3.24 or 3.25.
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Chapter 4

Method

4.1 Preprovided code

As part of the project material, a Python deep learning library for human detection was supplied by NOV.
The library comes with two detectors, one based on Faster R-CNN and one based on SSD. The library
estimates the bounding boxes of objects in the picture, and provides confidence values for each bounding
box. The image coordinates of the boxes are also available, as normalized values between 0 and 1.
If the body is fully visible, the body coordinate corresponds to the middle of the bottom of the bounding
box. This is used by the prewritten code to produce an estimate of the 2D floor position of the person.

4.2 Test site and equipment

It is desired to test the system in an environment that resembles an industrial workplace. Therefore a test
site was setup in the UiA Industrial Robotics lab (IRL). This lab contains three industrial robot arms which
can be used to occlude a human and provide test scenarios to see how well the system can detect humans
near dangerous robot arms.

In IRL there are several landmarks which have been precisely measured. Which enables the group to have a
reference to a coordinate system. The landmarks can be seen on the floor in figure 4.1.

Video of the IRL lab is captured with three HikVision RGB IP cameras (figure 4.2) that are installed in
different corners in the IRL. The cameras stream at a resolution of 1920x1080 pixels and 20 FPS with an 80◦

field of view. The cameras can output at a higher resolution, but due to computation power limits, it was
chosen not to.

The entire system runs on a computer running a Windows 10 operating system, with an Intel Xeon W-2123
CPU, Nvidia GTX 1080Ti GPU and 32 GB of RAM. The software is programmed in Python 3.6, and deep
learning calculations are performed using the TensorFlow library (version 1.12), which employs the NVIDIA
CUDA 9.0 and cuDNN 7.1 libraries for GPU calculations.
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Figure 4.1: UiA Industrial Robotics Lab Figure 4.2: HIKvision camera

4.3 Camera calibration

Camera calibration requires two steps: Intrinsic and extrinsic calibration, which respectively determines the
intrinsic and extrinsic parts of the camera matrix. Intrinsic calibration depends only on the lens, and remains
constant as long as the camera zoom/focal length is not changed. Distortion coefficients are also calculated as
part of this process. Extrinsic calibration depends on the placement and orientation of the camera, requiring
the process to be repeated over if the camera is moved and/or rotated.

Intrinsic calibration can be done with different types of patterns, this project uses a checkerboard of white
and black fields, as shown in figure 4.3. The checkerboard features a 9x6 layout, where each field has a side
length of 150.2 mm. A series of images must be taken, where the checkerboard is placed in different parts of
the image, as well as with different orientations. A calibration tool can detect the relative corner positions
between the fields of the checkerboard, and use this to estimate lens properties. A total of 100 images were
taken in the IRL lab, simulating various checkerboard placements and orientations was performed by moving
the checkerboard around and panning/tilting the lens. A selection of some of the images are shown in figure
4.4.

Figure 4.3: Checkerboard pattern used for calibration
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Figure 4.4: Intrinsic calibration images

Afterwards, the images were analyzed using the MATLAB calibration tool. In addition to performing intrin-
sic calibration, this tool analyzes the precision of the images and calculates the reprojection error for each
image. The reprojection error is the average 2D distance between each checkerboard point, and the predicted
position of that point in the model. Images with high error were automatically rejected and omitted from
the result. The resulting reprojection errors and checkerboard placements are shown in figures 4.5, 4.6

Figure 4.5: Reprojection errors Figure 4.6: Checkerboard placements

Extrinsic calibration can be performed in a variety of ways. In this project, it is advantageous to have a
known global reference frame which the accuracy can be tested against. Those extrinsic parameters are
found by solving the PnP problem as described in the theory section, using the set of markers in the room.
The coordinates of the markers were known in advance with high precision, and image coordinates were
obtained manually from the resulting camera images. From this process, extrinsic parameters with respect
to the global system can be obtained. Figure 4.7 shows the relative placements of the visible markers; actual
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visibility varied over the course of the project, depending on the placement of robots and other equipment
in the lab. Table 4.1, shows the ground truth values for each keypoint.

Figure 4.7: Placements of room markers visible from the camera

ID x y unit
21 4.712 1.999 [m]
22 4.693 5.299 [m]
23 4.280 9.204 [m]
31 5.252 2.000 [m]
32 5.275 5.288 [m]
33 5.417 9.235 [m]
41 6.999 1.999 [m]
44 6.996 10.380 [m]

Table 4.1: Ground truth values for landmarks

4.4 Human Pose Estimation

Human Pose Estimation (HPE) is the process of discovering the location of humans and their various body
parts in an image. In other words, in addition to discovering persons in the image, it also finds the precise
image locations of feet, hands, shoulders and other parts. Based on the results of pose estimation, a stickman
figure of the person can be drawn onto the image, so it matches the pose of the actual person. In theory,
this process can be used to estimate pose for any object with a predictable shape, including various types
of animals and machines, even bicycles. That said, pose estimation systems are usually trained to detect
humans and their various joints.

Pose estimators comes with differing amounts of detail, with the most detailed ones being able to produce
a full 3D mesh of a person. The simpler and faster ones look for a set of predetermined keypoints, which
correspond to the set of joints/body parts implemented in the HPE. Out of these estimators, one of the
most commonly used family of HPEs is OpenPose[28]. OpenPose has multiple, independently developed
implementations, including the reference implementation [36], the simpler and lighter tf-pose-estimation [37]
and the newer OpenPose Plus [38].
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Several models for body keypoints exist, with the commonly used COCO and MPII datasets comes with their
own custom keypoint models. The OpenPose HPE and its derivatives use a custom variant of the COCO
[39] keypoint set, containing the following parts and their respectively keypoint identifiers:

• Nose [0]

• Neck [1]

• Shoulders [2, 5]

• Elbows [3, 6]

• Wrists [4, 7]

• Hips [8, 11]

• Knees [9, 12]

• Ankles [10, 13]

• Eyes [14, 15]

• Ears [16, 17]

For the keypoint types that come in both left and right versions, such as ears and shoulders, their side will
also be classified by the HPE. These points are labelled as left and right according to what the persons
themselves considers to be their left and right parts, and this is done correctly regardless of which side the
person is seen from. All of the keypoints and their ordering are illustrated in figure 4.8.

Figure 4.8: COCO Keypoints provided by OpenPose and its derivatives [36] © 2018 IEEE
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In the OpenPose architecture, there are two general stages to the pose detection process. It must detect the
various joints, identifying the positions and types of each joint. Second, it must estimate the limbs between
joints, tying the parts together and distinguishing different humans.

To estimate keypoints, the pose estimator produces a set of confidence maps, one for each type of keypoint.
Each pixel in the image is assigned a confidence value, corresponding to the likelihood of the pixel belonging
to a keypoint of given type. Small regions of high confidence are likely to contain the desired keypoint. If
there are multiple persons in the image, the confidence map may contain several regions where the confidence
is high, corresponding to the likely location of each keypoint type for each person [28].

Grouping related keypoints is performed using the technique of Part Affinity Fields (PAF) [28]. One affinity
field is created for each possible type of limb, where a limb corresponds to a connected pair of keypoints. For
each pixel in the image, the affinity field is assigned a 2D vector indicating the strength and orientation of a
limb present at that position. As with keypoints, there may be more than one limb of each type if the image
contains multiple persons.

Figure 4.9: Architecture of the OpenPose neural network setup [28, p. 3] © 2018 IEEE

Figure 4.10: Illustration of the OpenPose process [28, p. 2] © 2018 IEEE

In the OpenPose architecture, the confidences and affinity fields are formed in a multistage CNN neural
network. This is illustrated in figure 4.9. The network goes through the same stages multiple times, refining
the accuracy of the predictions at each step. Greedy bipartite matching is carried out on the resulting data
to form the final human and pose estimations [28]. The full process is illustrated visually in figure 4.10.
This project uses the tf-pose-estimation HPE [37], which is a small and fast Python implementation of
the OpenPose architecture. The library is simple to set up and use, and integrates well with the existing
Python/TensorFlow setup, while still running fast and efficiently.
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tf-pose-estimation can be trained using a multitude of datasets, although it comes with two pretrained models:
CMU and MobileNet-thin. CMU is the model which shipped with the original OpenPose implementation.
MobileNet-thin is a small and very fast model, which is well suited for embedded and/or time-critical applica-
tions. According to the tf-pose-estimation module developer [37], mobileNet-Thin features a CNN structure
optimized according to the MobileNet paper [40], and the result runs about seven times faster than the CMU
model under tf-pose-estimation. Using the 1080Ti, and slightly shrinking the image before pose processing,
tf-pose-estimation with MobileNet-Thin can run at a processing time of 30 ms per frame. The fast perfor-
mance of the library makes it possible to run the full program at an average of 20 FPS, which is well suited
for real time processing, and leaves room for more features to be added without the program becoming too
slow for real-time usage. The latter model also have less restrictive terms concerning commercial usage, as
discussed in section 8.

For each frame, the HPE outputs a series of entries corresponding to each detected person in the image. Each
entry contains the following:

• A list of keypoints detected on the person, including the type of keypoint, the normalized location in
the image, and a confidence value between 0 and 1. Only the discovered keypoint types are returned

• A score indicating the likelihood that the detected entity is a person. This value is not normalized
and will usually take on values higher than 1. The true nature of this score is not fully known, but
is assumed to grow with the number of detected keypoints and limbs on a person, as well as their
confidence values

It should be noted that some competing HPEs, like AlphaPose [29], will always return an estimate of every
possible keypoint even when they are invisible. But for those invisible keypoints, the confidence scores will
be very low.

Image size and pose performance

Inference time of the HPE is highly dependent on the image size during pose processing, with bigger images
taking longer to process than small ones. As the image obtained from the camera is large (1920x1080), pose
estimation on the full, unedited image slows the process to a crawl. This problem must be mitigated for the
algorithm to be able to run in real time.

A possible strategy is to use a bounding box detector to determine which parts of the image contains per-
sons. Areas inside and near the boxes can be segmented into separate images and processed separately. This
removes the need to process the entire image; however, it comes with its own set of problems. First, it
makes the detection accuracy highly dependent on the bounding box detector. Compared to the pose de-
tector, bounding boxes struggle more when the person is occluded, which lowers detection accuracy in many
of the critical scenarios in this project. This is demonstrated in figure 4.11, where the system fails to de-
tect a person partially hidden behind a robot but still visible, because the bounding box cannot see the person.

Figure 4.11: Failure to detect partially obscured person, when using bounding box detector for segmentation

Second, as the number of persons in the frame increases, performance slows down drastically. tf-pose-
estimation does not support parallel processing of multiple images out of the box, so the pose estimation
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must be rerun for every candidate segment in the frame. Combined with the issue demonstrated above, this
made bounding box segmentation unsuitable for the problem, and the method was quickly dropped once a
better solution was found.

Another, easier method is to reduce the size of the full image before pose processing, which speeds up the
program drastically compared to using the full image. This must be carefully weighted against another trade-
off, however: If the image is downsized too much, detection accuracy will decrease. The low resolution makes
persons harder to detect, as well as harder to separate when multi-person estimation is to be implemented.

To test the effect of image size on inference time and accuracy, an experiment was carried out. The basis of
the experiment is a short video clip, including a total of 90 frames recorded at 20 FPS (4.5 seconds of footage
in total). For the sake of future proofing, the video contains two persons. Both persons are always visible,
although they cross very close to each other at one point, potentially leading to the estimator interpreting
the result as a single person if the image resolution is too low. The video was recorded and stored using the
full 1920x1080 resolution of the original camera. A selection of frames from this video are shown in figure 4.12.

Figure 4.12: A few frames from the 4.5 second video clip used for pose performance analysis

At each iteration of the experiment, the image size was reduced, using a scaling factor that was varied on each
step. Both axes were scaled equally so the aspect ratio of 16:9 was preserved. Pose inference was performed
over all 90 frames using the given scaling, and the average processing time and number of detected persons
were recorded. The detection was carefully filtered during the process to remove all traces of false detection.
Accuracy was obtained by the average number of persons discovered over all frames, where 100% corresponds
to always discovering both persons in every frame.

This experiment was carried out on the target hardware, as well as on the Xavier, to gain an understanding
of typical pose inference time for multiple
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Pose failure cases

OpenPose and its derivatives sometimes struggle to detect persons as expected. Some common issues include:

• Random background objects may be interpreted as humans

• When feet are occluded, the system may ”fill in the blanks” and predict erroneous ankle locations
nearby

• Two overlapping persons may be detected as a single person

• Inconsistent detection when only legs are visible

These issues were gradually discovered over the course of the project, and tests were performed to document
the issues. More on this in the result section.

4.5 Human body proportions

The post estimator identifies several keypoints on the human body. Where most of the points are used to
estimate the persons position. Keypoints such as elbows and hands are excluded from the position estimation.
This is due to the person can move the arms without changing position.

In order to use the keypoints properly it is needed to know at which height or z-plane the keypoint is at. To
generalize the problem it was desired to have this as a ratio between keypoint height and total height.

To identify these ratios, a small test was executed. 6 individuals were measured and the measurements can
be found in table 4.2, while the ratios can be found in table 4.3. It is important to note that these results
are based on a small sample set with only male individuals. The numbers might not be representative for
a larger population. Despite the low amount of samples, the standard deviation on the different ratios were
sufficiently low.

Figure 4.13: Human proportions
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Name Total Height Eyes Ears Shoulders Hips Knees Ankles Unit
Person 1 185 173 170 150 97 59 20 [cm]
Person 2 178 168 162 145 96 56 19 [cm]
Person 3 190 178 175 153 104 60 22 [cm]
Person 4 190 180 169 156 100 60 20 [cm]
Person 5 186 175 172 150 96 56 18 [cm]
Person 6 191 180 177 158 102 61 21 [cm]
Average 186.7 175.7 170.8 152 99.2 58.7 20 [cm]
std 4.89 4.68 5.27 4.69 3.37 2.16 1.41 [cm]

Table 4.2: Measured keypoint heights

Name Eyes Ears Shoulders Hips Knees Ankles Unit
Person 1 0.94 0.92 0.81 0.56 0.35 0.13 [-]
Person 2 0.94 0.91 0.81 0.57 0.35 0.13 [-]
Person 3 0.94 0.92 0.81 0.58 0.34 0.14 [-]
Person 4 0.95 0.89 0.82 0.56 0.36 0.13 [-]
Person 5 0.94 0.92 0.81 0.55 0.33 0.12 [-]
Person 6 0.94 0.93 0.83 0.57 0.34 0.13 [-]
Average 0.94 0.92 0.82 0.57 0.35 0.13 [-]
std 0.0041 0.0138 0.0084 0.0105 0.0105 0.0063 [-]

Table 4.3: Measured keypoints ratio, keypoint/height

4.6 Relative height estimation

Being able to estimate the height of a person is important to achieve best possible accuracy, a higher confidence
in the height estimation will yield a higher confidence in the position estimation. The proposed method for
height estimation utilizes the assumption that the measured person is completely visible and is standing
straight up. Then the HPE will detect a full pose and return a list with image coordinates for each joint
in the pose estimation. From the foot features, a good estimation of position in the world frame can be
estimated. Since OpenPose detects the ankle joint which is above the ground, a small z-value must be added.
Here a z-value of 20 cm is used. Empirical tests in section 4.5 showed that ankle heights usually tends to be
at that value. Now the persons position and image coordinate for head features are known. Using the same
method for position estimation as described in section 3.5, however with the modification of estimating the
scaling factor s with either X or Y coordinates. Then calculating the Z-value with the following equation:

s =
X0 + B0

A0
(4.1)

Zestimate = sA2 −B2 (4.2)

It is important to note that this method does not provide the total height of the person. Only the height up
to the eyes and ears. OpenPose does not give out the image coordinate to the top of the head and thus it is
not possible to estimate the person height without using human proportions. The height up to the eyes and
ears follows a known ratio (Reye) and from this, the total height of the person can be estimated.

Zeye = Reye · Zperson (4.3)

Zperson =
Zeye

Reye
(4.4)

While testing the height estimation, fluctuations in the height were witnessed. Even though they were not
critical, it was decided to create a filter that finds an estimate with higher probability of being closer to the
actual value. This was done by storing previous measurements in an list of fixed size. The newest value (Zi)
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is added to the right of the list (Z) and the oldest one removed, to keep the list at a fixed size. The variance
of this list is then calculated and if it is sufficiently low (i.e. all the measurements are relatively consistent)
then the average of the list is calculated and stored as variable Ẑperson.

1.815 1.816 1.848 1.793 · · · 1.803 1.770 1.771 · · · 1.836

k-elements

Figure 4.14: Fixed list of k elements sliding through measurements

Ẑperson =
1

k

k∑
i=0

Zi (4.5)

Humans can move their bodies into many types of postures, sitting, squatting, standing and kneeling. The
proposed position estimation method works for all the previous methods, although it is needed to know the
relative height of the person. What is meant with the relative height is the distance between the feet and
head in different postures. A persons height does not change with different postures but their relative height
changes.

4.7 Weighted sum position

If the full person is detected, there will be a total of 13 position estimates, using each of the keypoints which
are likely to move smoothly as the person moves. To gain a better overall position estimate, the average of
the positions can be used.

P (x, y) =
1

n

n∑
i=1

Pn(x, y) (4.6)

However, this will only work optimally when the noise in the system is evenly distributed. When the posi-
tion estimate of each keypoint is graphed then a slight bias is seen, which increases with the height. Since
it is difficult to show that the error grows further up, figure 4.15 shows how the position estimate for the
keypoints. Note that the deviations have been artificially altered to emphasize the differences between real
and expected position estimates.

Figure 4.15: Deviations in position estimation for different keypoints
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In order to estimate the keypoint biases, each keypoint and its position estimate was stored when a person
stood on a landmark. To avoid that the biases represents only one orientation of the person, the position
estimates were recorded while the person rotated 360◦ on the landmark. Furthermore, the same recordings
were done on multiple landmarks to ensure spatial invariance. The bias was set to be the difference between
estimated position and the known true position. Since there were numerous estimates from the different
orientations and landmarks, the final bias value was set to be the average of all estimated biases for each
keypoint.

β =
1

n

n∑
i=1

Pi(x, y)− P ∗
i (x, y), (4.7)

Where:

• Pi(x, y) is the known landmark position

• P ∗
i (x, y) is the estimated position

• n is the number of samples

Figure 4.16 shows the different uncorrected position estimates on landmarks: 21, 22, 23, 31, 32, 41. The
different colors represents different keypoints. A legend in the figure is not provided due to the number of
different keypoints and the goal of the figure is to illustrate drift in position estimation.

Figure 4.16: Variance in position estimates

From the empirical tests, it seems that keypoints closer to ground are more accurate. Therefore it is desired
that these keypoints have a greater impact on the estimation rather than the more uncertain higher keypoints.
The resulting method is a weighted mean function. Here the σi is a scalar ranging from 0 to 1. A high σi
value means that the keypoint is more trusted and thus contributes more to the total sum. The βi value is
the bias for that keypoint.

PWMS(x, y) =

∑n
i=1 σi(P

∗
i (x, y)− βi)∑n
i=1 σi

(4.8)
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Figure 4.17 shows how the position estimates are after inclusion of biases. As shown, the spread in measure-
ments are significantly lower.

Figure 4.17: Position estimates with biases included

4.8 Sensitivity analysis of position estimation

The purpose of a sensitivity analysis is to gain knowledge of how a system reacts to uncertainties in the
input. If a system is highly sensitive, then a small change in the input would change the output significantly.
However if the system is robust, i.e. not sensitive, then the output would not change substantially. In regards
of the position estimation, it is not known how sensitive the method is to changes in pixel coordinates or the
height of the person. Therefore, sensitivity test will be carried out to measure this fact.

4.9 Edge Computing

In the recent years a new class of microprocessors called AI accelerators has emerged, designed as hardware
acceleration for machine learning applications. Products such as the Nvidia Jetson series, Google Coral, Intel
Movidius fall into this category. These products work similar to a GPU however with one large difference,
GPUs work with high precision arithmetic while AI accelerators work on low-precision arithmetic (LPA) .
Diving deeper into how these products differ and how high/low-precision arithmetic works, is beyond the
scope of this thesis. A gross oversimplification is that machine learning networks does not always need the
high precision arithmetic for inference and LPA also require less memory and computes faster.

The current setup computes everything on a centralized point. One computer that deals with all the compu-
tation and collection of videofeeds. This setup has the advantages by consisting of off-the-shelf hardware that
could be easily bought in local computer hardware stores. However it has the negative sides of being harder
to scale up to larger systems. Then there can be potential problems with receiving all the video feeds due
to bandwidth limitations. Furthermore, running OpenPose on numerous videofeeds would require extreme
computational power that would require multiple GPUs. How OpenPose works on multi GPU setup is not
known. The largest disadvantage is that a centralized setup has no redundancy against hardware failure.
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One single point of failure and the entire system collapses. On the other hand a decentralized system is
implemented in the form of edge computing. Meaning that the position estimation is calculated on the edge,
i.e. right next to the camera. Then the only information being sent a cross the communication network would
be the position. Which is insignificant in size compared to a video feed. Now the hardware requirements for
the main computer is reduced since it only needs to receive positions from the nodes, thus making it cheaper
to have a another computer as redundancy. If the system is set up so there is sufficient overlap between the
nodes, one can fail and the entire system will not collapse while the nodes awaits replacement.

Figure 4.18: NVIDIA Jetson AGX Xavier embedded computing board, image courtesy of Nvidia
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Chapter 5

Results

5.1 Human Pose Estimation (HPE)

Image size and pose performance

As detailed in section 4.4 page 22, pose estimation was run over the 4.5 second video clip for multiple image
scalings, measuring the average inference time and average number of detected persons. The latter was con-
verted to a percentage where 100% corresponds to the detection of both persons in every frame. The results
are shown in figure 5.1.

Figure 5.1: Result of investigating relation between image scaling and time/accuracy
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As a result of this experiment, the image scaling was set to 40%, giving an inference image size of (768,432),
This led to a good detection rate while still not using more processing time than required. At this scale, the
program was able to find both persons in nearly all frames, while only taking just above 30ms on average to
process each frame. As the pose detection is the most resource intensive component of the current implemen-
tation, the result should work well in real time. Keep in mind that this result may not match the real-time one.

To clarify the relation between image area and inference time, the time graph above can be expressed in
terms of area scaling factor, which is achieved by squaring the image side scaling factor. The result is given
in figure 5.2.

Figure 5.2: Result of investigating relation between image area scaling and time/accuracy

As can be seen from the graph, there is an approximately linear relationship between image area and av-
erage processing time, given the same underlying images. The values in the graph depend on the setup,
software configuration and optimizations, but an underlying linear graph, given a constant setup, is expected
to remain. Note that, according to documentation for the original OpenPose implementation [28], inference
time under this architecture is almost independent on the number of persons in the image, compared to
architectures based on R-CNN and AlphaPose.

The real program runs slower, because of the added processing complexity of running the entire program.
To verify this, another test was performed. The real program was run for 30 seconds, with a single person
always visible and walking around in the image. The pose processing time was recorded, as well as the full
execution time of a single loop in the position estimator. The test was performed with an image scaling of
35%, 40% and 100% respectively; where the two first values are close to the one chosen in the previous test.
The result is given in table 5.1.

Image scaling Average pose processing time [ms] Average loop time [ms] Average frame rate
100% 237 261 3.8
40% 44 51 19.8
35% 36 43 23.2

Table 5.1: Result of testing effect on image scaling during pose processing, in the real program
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The pose processing time is slightly higher in the real program than in the experiment, for the scaling of
40%, and the additional processing done by the remainder of the program increases the time slightly further.
However, the frame rate still remains at an average of just under 20 FPS, which is fast enough for real-time
processing. The final image scaling is set to the value of 40%, leading to a pose processing image size of
768x432.

False human detection

Over the course of the project, the HPE would sometimes misclassify random background object as humans.
The OpenPose paper [28] documents this as a common issue when the image contains statues or animals. In
early stages of the project, chairs and ABB robots would sometimes be interpreted as humans, even though
the detector would usually only find a few of their ”keypoints”. An example of such a detection is shown in
figure 5.3.

Figure 5.3: Example of false human detection

The amount and severity of false detections varied through different stages of the project. In some situations,
they would barely show up, and only remain for a couple of detection cycles at most. At other times, the
detections would linger and take on the shape of a human for several frames. These detections were often
hard to reproduce in later stages, making them difficult to fully understand and document. For example, the
ABB robots present in the room would occasionally show up as a human, as shown in figure 5.3. But this
was rare, and in most other cases, they would not be ”detected” at all. It is possible that, in addition to
their relative placements, that lighting conditions also played a role.

The problem can be reduced by raising the human threshold score, keeping in mind that this score is not
normalized, and will often take values higher than 1. In the tf-pose-estimation implementation itself, this
value is set to 0.4. Through trial and error, the threshold was set to a value of 0.8, eliminating the vast
majority of false detections while all humans still showed up as desired. A few fleeting ones can sometimes
appear, although they only tend to persist for one or two frames and feature almost no keypoints, making
them fairly easy to sort out. Higher values of the score would sometimes make it harder to detect persons
that are partially occluded, so this must be done with care. For the remainder of single-human tests in the
project, only the human with the highest score will be kept, filtering away the remaining ones.

For the most part, a brief detection with a low number of parts, as well as low human score (< 0.8) and low
part confidences, can be considered untrustworthy, especially if it is far away from areas where occlusion is
likely.
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False ankles and keypoint confidences

If most of the upper body is visible while the legs are (partially) hidden, the pose estimator would sometimes
make a guess of where the feet are. This may or may not be caused or worsened by nearby edges present
at the locations where the feet realistically could have been. These fake feet may be too long, too short,
or twisted into unrealistic positions. A couple of such cases are shown in figure 5.4. Because of this, care
may have to be taken when evaluating the position of the ankles. Similar issues were less likely to happen
with parts belonging to upper body, which can usually be trusted assuming that the human detection is not
entirely false. In situations where these edge cases become prominent, the confidence values of the ankles
can be checked, testing whether the ankles can be trusted. As part of the experiments, a test was be carried
out where the confidences of false feet are compared to those of the rest of the keypoints.

Figure 5.4: Examples of false foot detection

A somewhat contrived edge case was set up, which leads to the detection of a pair of very short ”ankles”.
The resulting pose detection, along with its confidence map, are shown in figure 5.5, and the confidence
values of each keypoint are listed in table 5.2. As can be seen from the image, the lower detected ankles
do not really exist, leading to overly short legs. However, from the accompanied score map, the confidence
values of the ankles are very low compared to nearly every other detected keypoint. The left and right ankles
have confidence scores of respectively 22% and 31%, which are lower than for all other visible keypoints.
By contrast, all body parts which are clearly visible, such as the left and right eyes and shoulders, all have
confidences that exceed 60%, with the eyes and right ear exceeding 70%. The result also contains a fake wrist
detection, but it only has a confidence value of 36%. In any case, wrists and arms are not used for position
estimates, making this a non-issue. Out of all the detections that are not false positives, the lowest one is
the left ear with 49%, which makes sense as the left ear faces away from the camera.

As can be seen from this test, fake ankles can be spotted and ignored in position estimates if their confidence
values are very low compared to the rest of the values.
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Figure 5.5: Resulting detection and confidence map in fake foot test, fake ankles circled

Keypoint type Confidence
Nose 74%
Neck 75%

Right shoulder 77%
Right elbow 57%
Right wrist 67%

Left shoulder 64%
Left elbow 62%
Left wrist 36%
Right hip 67%

Right knee 55%
Right ankle 31%

Left hip 60%
Left knee 52%
Left ankle 22%
Right eye 77%
Left eye 72%

Right ear 82%
Left ear 48%

Table 5.2: Keypoint confidences from the fake ankle experiment

Incorrect merging of two persons

While the HPE performs well at separating different persons most of the time, as can be seen from the test in
section 4.4, the aforementioned test also demonstrates how it can fail when one person is directly in front of
another. This might be more likely to happen if the persons hold different poses, with one of them standing
and another sitting in such a way that their heads align and confuse the system. This is illustrated in figure
5.6. As discussed in section 4.4, this issue also becomes more likely if the image size is reduced too much, for
the sake of lowering inference time. So the problem can be mitigated by making sure the image used during
pose inference has sufficiently high resolution to separate the persons. The pose scenario illustrated in the
figure can be considered fairly rare and not applicable most of the time. The original clip where this scenario
was observed, was specifically set up to be difficult to solve, and the persons were correctly seen as a single
person as soon as they separated again.
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The remainder of the results will center on single person estimation, so this scenario is mostly considered
future proofing. If multi person estimation is implemented, edge cases could be solved using a conservative
approach. If two persons is reduced to one near an obstacle, and the likelihood of the person being too close
to the obstacle is high according to prior position estimates, it may be time to shut off the nearby machine.

Figure 5.6: Failure case: One person in front of another, different poses

Failure to detect person

Perhaps the most serious issue of the HPE is inconsistent detections when only the legs are visible. As noticed
during the experiments, the pose estimation usually runs well even when the feet and lower parts of the body
are hidden, but detection becomes less reliable when all of the upper body is hidden. This issue is illustrated
in figure 5.7.

Additionally, the HPE can struggle to detect persons lying on the ground, especially when lying parallel to
the camera plane in a way that causes the feet to obscure each other. While this is not a major concern in
this report, as position estimation breaks down regardless in this case, it is mentioned for completeness.
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Figure 5.7: Inconsistency in detection when torso is occluded

5.2 Position sensitivity

The tests were carried out around the point with image coordinates (1000,500), which is approximately at
the center of the image, in the region where most of the image processing will take place.

Deviation in uv-coord Deviation in xy-coord [mm] Absolute deviation [mm]

5, 0 4̇.12, -40.27 40.4
0, 5 -57.2, 9.92 58.1

-5, 0 -4.12, 40.30 40.5
0, -5 57.4, 9.96 58.3

Table 5.3: Result of pixel coordinate sensitivity test

For the height sensitivity test, calculations were carried out around the height of 180cm, with the uncertainty
in z-value added to this value. The planar position with image coordinates of (1000,500) was once again
used.

Deviation in z-value [mm] Deviation in xy-coord[mm] Absolute deviation[mm]
-150 149.0, 44.0 216.0
-100 99.5, 29.7 144.0
-50 49.8, 14.8 72.1
50 -49.8, -14.8 72.1

100 -99.5, -29.7 144.0
150 -149.0, -44.0 216.0

Table 5.4: Result of height sensitivity test

As can be seen from table 5.4, for a given planar position, the estimation error is proportional to the difference
in height.
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5.3 Position estimation

Static position, no occlusion

The first test is while standing still on the landmarks with no occlusion. This test will provide a baseline for
future reference in regards of accuracy. The estimated position was recorded for each visible landmark and
calculated the absolute deviation, results can be seen in table 5.3. A composite image has been created to
visualize the results. As shown in figure 5.9, the system is able to estimate the position with great accuracy
(< 10cm), even when the person is standing with their back towards to camera.

Figure 5.8: Position estimate, no occlusion Figure 5.9: Position estimate

ID x y |error| unit
21 4.67 1.95 0.057 [m]
22 4.68 5.23 0.070 [m]
23 4.28 9.29 0.090 [m]
31 5.26 1.97 0.032 [m]
32 5.52 5.22 0.072 [m]
33 5.52 9.28 0.121 [m]
41 7.03 2.08 0.098 [m]
44 7.09 10.35 0.104 [m]

Table 5.5: Estimated positions and absolute error

In table 5.3, all estimated positions and the euclidean error are listed. Note that there are more entries than
shown in the composite. The reduced number in figures was done to not overcrowd the image.

Static position with occlusion

In this test a simple occlusion was made by placing a tool trolley in front of the person. The trolley was
chosen since it is easy to maneuver around and is a common object in a industrial setting.

From the figures 5.10 and 5.11, it can be seen that the system is still able to detect and estimate the position
of the person when only upper torso is shown. The average error is around 30 cm, with a maximum error of
40 cm and minimum of 13 cm.
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Figure 5.10: Pose estimate occlusion Figure 5.11: Position estimate

ID x y |error| unit
21 4.80 5.24 0.121 [m]
22 4.76 1.88 0.076 [m]
23 4.21 9.30 0.122 [m]
31 5.18 2.04 0.081 [m]
32 5.19 5.22 0.100 [m]
33 5.29 9.12 0.163 [m]
41 6.73 2.15 0.305 [m]
44 6.92 10.05 0.337 [m]

Table 5.6: Estimated positions and absolute error

Testing with industrial coveralls and helmet

Since the system is intended to work in an industrial setting, it is upmost important that it is able to detect
the pose when the subject is wearing coveralls and helmet. Since most of the training data for OpenPose
was not with uniform colored clothes and helmet it was feared that OpenPose would struggle with detection.
Nonetheless, OpenPose detected the human without significant trouble and achieved similar results as without
coveralls and helmet in fully visible and occluded scenarios. Even when the person is occluded and stands
with the back against camera (figure 5.14, center), the accuracy is still quite good.

Figure 5.12: Coveralls and helmet test, no occlusion Figure 5.13: Position estimate
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ID x y |error| unit
21 4.66 1.95 0.064 [m]
22 4.56 5.24 0.142 [m]
23 4.24 9.32 0.094 [m]
31 5.26 2.02 0.022 [m]
32 5.40 5.32 0.124 [m]
33 5.43 9.27 0.044 [m]
41 7.01 2.15 0.160 [m]
44 7.09 10.25 0.164 [m]

Table 5.7: Estimated positions, no occlusion

Figure 5.14: Coveralls and helmet test, occlusion Figure 5.15: Position estimate

ID x y |error| unit
21 4.98 1.75 0.36 [m]
22 4.84 5.28 0.15 [m]
23 4.18 9.10 0.14 [m]
31 5.66 1.86 0.43 [m]
32 5.62 5.24 0.34 [m]
33 5.50 9.07 0.19 [m]
41 7.37 2.09 0.32 [m]
44 7.17 10.40 0.17 [m]

Verification of using landmarks

In this thesis the landmarks are used to solve the PnP problem and for ground truth in position estimation.
This could be an issue due to the same points are now used for both creating the extrinsic matrix and esti-
mating the position. One metaphor for this, a student who creates his own exam, will know the answers. To
verify that the previous tests are valid, tests on other points that were not used in the PnP problem is needed.

In this test, 10 additional points have been created and measured up. The new landmarks were placed along
a straight line between other landmarks with a fixed distance. Then the position of the landmarks could be
calculated using trigonometry. The point P5 ended up being severly occluded and is therefore not included
in the estimated positions. Calculations of the positions are trivial and therefore not shown.
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Figure 5.16: Illustration of how new landmarks were calculated

The results from the position estimation on these new points, is that they show similar accuracy results when
compared to the landmarks. Therefore it is believed that the previous results are representable. Quantified
results can be seen in table 5.8. Note that in one of the test results in image 5.18, the red marker is on top of
the black part which represents the robot trolley axis. This is not an error, the trolley was moved closer to
the wall and the map was not updated correctly. In the same figure two lines are drawn to aid visualization.

Figure 5.17: Landmark verification Figure 5.18: Position estimates, landmark verification

ID x y |error| unit
P1 4.38 8.21 0.12 [m]
P2 4.49 7.22 0.12 [m]
P3 3.69 5.30 0.23 [m]
P4 4.69 4.30 0.10 [m]
P6 5.28 4.29 0.07 [m]
P7 5.28 3.29 0.12 [m]
P8 5.38 8.23 0.06 [m]
P9 5.31 7.24 0.09 [m]
P10 4.51 6.19 0.09 [m]

Table 5.8: Estimated position, verification test for landmarks

Dynamic testing

To contrast all the previous tests, this test is taken while the person was walking. The test was executed with
a person walking in straight lines between landmarks. The result can be seen in figure 5.19. Since there is
no external position measurement systems in the lab, ground truth cannot be obtained. Nevertheless, from
a purely visual standpoint, it shows that the system is able to estimate the position quite well, with little
noise.

40



Figure 5.19: Results from dynamic test

To gain better information on how the system performs, a test where the person walks in only a straight line
and then view the position estimates for each axis separately can provide some information. The test person
walked along a line that was drawn on the floor at x value of 5.0 m. This provided the group a possibility to
check error in the x axis

Figure 5.20: Results from dynamic test
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Figure 5.21 shows both the position estimate error and the velocity for the test. Note that there is not given
units for the velocity. This is due to how the velocity is calculated. It was calculated by taking difference of
y values between measurements. The FPS varies slightly during operation, which in turn makes the velocity
calculation invalid. Therefore the velocity plot is only meant to give an indication of velocity rather than
actual values. The error in x axis is calculated by subtracting 5.0 m from the estimated value.

Figure 5.21: Error and velocity plot

From the previous test, an oscillating pattern can be seen, this could be from walking where the feet moving
together and apart which could influence the position estimation. To test whether the stride length has an
impact on the oscillation on the position estimation, additional tests with short and long stride length was
completed. The person moved in the same straight line as the previous test. The position estimates can be
seen in figures 5.22 and 5.23, estimation error for x axis and velocity can be seen in figures 5.24 and 5.25.

42



Figure 5.22: Position estimation with short strides

Figure 5.23: Position estimation with long strides
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Figure 5.24: Error and velocity plot for short stride Figure 5.25: Error and velocity plot for long stride

From the tests it can be seen that the maximum error does increase with stride length. The most notable
result is that the large oscillations in the short stride length is reduced. The end result is that the position
estimation suffers slightly when the person is moving, although even with long strides the maximum deviation
is around 20 cm.

5.4 Edge Computing - Nvidia AGX Xavier timing test

The inference time on OpenPose is heavily linked to the resolution, as shown in section 4.4 the inference time
is linear in respect to the image area. In the same section the downsampling scale was also found. As shown
there the image can be scaled down 40% without loss in accuracy. The original image is 1920x1080 before
downsampling, after downsampling the image resolution will be 768x432. Creators of tf-pose-estimation have
tested the software on a Nvidia Jetson TX2, where it was able to run at 10 FPS on a image resolution of
368x368. Our downsampled image will be ≈ 2.44 times larger in area than the image resolution which was
tested on the Jetson TX2. Therefore it is believed that the Jetson TX2 is not powerful enough to run on
the required image resolution and inference time. However Nvidia has released another AI accelerator which
is called the Jetson AGX Xavier, which is claimed to be 20x more powerful than the Jetson TX2. If this is
true and tf-pose-estimation runs with same computational efficiency on both sets of hardware, then it could
be able to run the HPE with the required FPS and resolution. However this is all speculative and needs to
verification by testing,

The pose inference test from section 5.1 on page 30, was rerun on the Xavier hardware. Detection accuracy
was equal to the results on the workstation hardware, and the resulting average inference time at each scaling
are given in figure 5.26.
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Figure 5.26: Frequency test performed on the Xavier

As can be seen from the graph, the Xavier performs slower than the workstation setup, taking about three
times longer for the same scaling values. For a scaling of 40%, as is used in the original program, the Xavier
barely remains below 100ms (just above 10 Hz). Since actual program performance might vary, and pose
tracking functionality would be implemented on top of this in the future, the real performance frequency
could easily drop below 10Hz for equivalent image sizes.

The original Jetson TX2 test performed on tf-pose-estimation by its creators [37] was run for a resolution
of 368x368, and it was able to run the HPE at a frame rate of 10 FPS. It is useful to know the relative
performance of an equivalent image on the Xavier, compared to the TX2 test given above. As inference time
depends primarily on area, this involves testing an image of equal area to that used in the 368x368 test,
calculating the resulting FPS, and contrasting with the above result. To produce this area, both sides of the
image must be scaled, according to the factor s given by the equation

368 · 368 = (s · 1920) · (s · 1080), (5.1)

which gives a resulting scaling factor of

s =

√
368 · 368

1920 · 1080
≈ 0.256 = 25.6% (5.2)

Obtaining the resulting inference time from figure 5.26 the result would run at ≈ 66ms (≈ 15 FPS). While
this suggest faster performance on the Xavier compared to the TX2, it is still only a speedup of 50%, which
is far lower than 20x. There are likely other, unknown bottlenecks at play.
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Chapter 6

Personnel tracking using human pose
estimation in multi-camera setup

6.1 Method and purpose

This chapter is a collaboration between two master theses that are both writing for NOV. The first group
consists of Sondre Ripegutu, this project concerns with multi-camera person tracking. Second group consist
of Andreas J. Akselsen and Harald I. Moldsvor and their project concerns with position estimation of oc-
cluded person. Further on in this section we will use ”the multi-cam group” and ”the occlusion group” to
identify the different projects.

The purpose of this collaboration is to investigate the possibility of merging the two theses, where the sym-
biosis can be beneficial for both groups. The idea is to use the tracking implemented by the multi-cam group,
and combine it with the detection framework constructed by the occlusion group. Since the reader might not
read both of the theses, a short introduction for each project is given.

The multi-cam group code uses detections from multiple cameras to track personnel. The tracking algorithm
retrieves detections from each camera and clusters it with a modified version of hierarchical clustering. New
clusters are matched with previous clusters, saved as nodes, where a positive match will update the node,
and no match will create a new node. The nodes locks on a unique ID to the matched cluster, where Kalman
filter is the underlying algorithm.

The occlusion group code first estimates the human pose which is done by a machine learning application.
This returns a ”stick-figure” of the detected pose and gives out the image coordinate for each joint. Through
projective geometry calculations using the image coordinates, intrinsic, and extrinsic matrices, the position
can be estimated. In order for the code to work it needs an estimate of the persons height, which is
automatically detected when the person is fully visible.

6.2 Setup and results

The multi-cam group code runs a bounding box detector on the camera image, and assumes that the lower
middle part of the box corresponds to the position of the feet which is touching the ground. This makes the
code run easily with multiple persons, as there is no need to keep track of individual heights. However, it
also makes the code less robust in the presence of occlusions, making the positions unreliable when the feet
are not visible.

For this chapter, the code was edited to use the pose based estimator instead of the bounding box, to make
it more robust in the presence of occlusion. As with the occlusion code, this test is restricted to a single
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person. Extensions for multiple persons should work with this code as well.

To test the resulting code fusion, the position was tracked as a person walked along a predetermined path,
consisting of straight lines where each corner has a known position. Various obstructions were added close
to the path, ensuring that the person has multiple positions where feet and other lower limbs are obscured
from view, sometimes in both cameras at the same time. The setup and the traced path are illustrated in
figure 6.1.

Figure 6.1: Room setup and traced path during multicam test

Illustrated in the figure 6.2, the merged system outperforms the original multicam system (figure 6.3) when
occlusions are present. In figure 6.3, showing the bounding box detectors results, it is clearly shown where the
position estimation went wrong for both cameras, as witnessed the dotted lines abruptly changes direction
when the occlusion appears, which in return throws the merged estimation off.

Figure 6.2: Result after merging of systems with occlusions
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Figure 6.3: Result from original multicamera setup with occlusions

Ticks and grid is omitted in figure 6.3 because the multicam and occlusion systems work on different coor-
dinate systems and to avoid confusion was removed.

In the end, the pose detector improves accuracy in the presence of occlusion, giving a position estimate even
when the person is partially hidden, and the benefit of using a pose based detector is clear. This setup used
two cameras, however adding more cameras can increase accuracy and robustness.
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Chapter 7

Future work

Extensions to multiple persons

If the code is to be extended to multiple persons, one main challenge surfaces. In the current, single-person
setup, the code makes an estimation of the person height, and stores it for further estimation in following
frames. If the code is to be extended to multiple persons, this process must be repeated for every visible
person. But this requires the ability to track the detected persons across frames, assigning an ID to each
person, so each height can be assigned to the correct person in future estimates. Pose tracking uses the
detected poses, and perhaps some form of visual data, to perform this ID assignment.

A simple scheme could be made by creating a cost/similarity function comparing the image locations of the
keypoints in two given poses, such as a weighted average of differences between image locations. Matching
could be carried out by combining the pairs in a way that minimizes this function for each pair, likely com-
bined with some level of thresholding to prevent matching of widely different poses. As this does not rely
on visual features, matching time would likely not be a major issue unless there are a massive number of
persons in the frame, but the robustness of the matching would be in question.

A few research projects for pose tracking exist, one of which is the PoseFlow framework. PoseFlow ships with
the AlphaPose HPE, but can be paired with any pose estimator which outputs data compatible with the
common COCO or MPII keypoint formats. The tracking technique is described in a paper and implemented
in Python as a separate GitHub repository. The tracker takes in a set of frames, as well as the corresponding
poses from each frame, and forms pose IDs which persist across frames. In addition to pose data, the tracker
makes use of visual data from each frame, to generate more robust poses than what is achieved by pose data
alone. The overall pipeline and procedure of PoseFlow is illustrated in figure 7.1.

However, the currently implemented codebase of PoseFlow is primarily geared towards high accuracy, and
as such, it is not optimized. It relies on feature matching functionality which, although in principle can be
implemented on a GPU, is currently not. And the implementation also performs feature matching across
the entire image, even though the paper itself suggests only running it in bounding boxes near the detected
poses [41, p. 5]. Because of this, when performing tracking over a test video as part of this thesis, it runs at a
very slow speed (over 700ms for a pair of frames). A tradeoff between speed and accuracy can be performed
by tweaking the nFeatures parameter in the matching.py file, adjusting the complexity of feature matching.
From the test below, it may be possible to lower the inference time to acceptable levels this way. However,
a GPU implementation of the feature matching (or verifying whether it can be eliminated, or use velocity
matching instead of visual matching) would likely be a better long-term solution.

For illustration purposes, PoseFlow tracking was performed on a prerecorded video, to show what can be
achieved given the right implementation and/or tweaks to the code. Even with a highly reduced complexity
of feature matching (reduced from 10000 to 300), while still running matching over the entire image, the code
was able to track the persons well within this video. Some frames from the result, spread across in time, are
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Figure 7.1: Illustration of the PoseFlow tracking process [41]

shown in figures 7.2. On average, it took 65ms to process each pair of frames; limiting the search to areas near
the matched poses might make even lower feature numbers possible, and a GPU implementation would be
even more ideal. The colors of the person poses correspond to their respective IDs. A cross-frame ID system
could be built using such a tracking principle, assuming that a good balance of accuracy and performance
can be obtained. Fully investigating this possibility is left as future work.
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Figure 7.2: Illustration frames from the video with applied tracking

As PoseFlow ships as part of the AlphaPose pose estimation framework [29], it is bound by the same license
terms as AlphaPose, with the package being free for non-commercial use. Commercial terms are not public
and must be agreed upon with the researchers directly.

Retraining model for specific needs

Not all detected keypoints are used for positioning (like hands and elbows), and others are possibly redundant
(eyes and nose). If the model can be retrained to only detect the useful keypoints, the model may perform
faster. Investigations could be carried out to figure out exactly which keypoints are required for acceptable
model accuracy, and the model would only have to determine the locations of these keypoints. Alternatively,
the model could be trained to better recognize feet or persons lying down, to gain better performance in
these areas if required.
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Chapter 8

Discussion

Human Pose Estimators (HPE)

Compared to using bounding box detectors, a HPE performs better when trying to detect partially obscured
persons, while also giving more information about which parts of the person are visible. HPEs still have
problems in certain cases, nevertheless, the field has seen great advancements in recent years, and future
HPEs might reduce or get rid of the current issues.

The HPE is robust enough to tackle humans wearing equipment, including helmets and jackets, as long as
the result looks humanoid in appearance. This makes it suitable for industrial environments.
The human confidence score, which is useful for filtering away false human detection, is not well explained
in the documentation. Both in the OpenPose architecture and in competing systems like AlphaPose, there
is no clear upper limit to this score. The chosen threshold value of 0.8 may or may not generalize well to
future scenarios.

Regarding the issue when detection fails when only legs are visible, the issue could be mitigated by training
the network to recognize feet, but this could also harm detection accuracy on full body images. The reference
OpenPose implementation, which was not utilized in this project, features a custom foot detection framework
and dataset [28], which might be useful if this issue is to be improved on. For the current system, this is an
inherent limitation in the way the HPE operates.

Dynamic position estimation

As shown in section 5.3 page 40, the position estimation oscillates in x axis when the person is moving. To
gain a better position estimate a Kalman filter is adviced. This thesis focused on position estimation and
not filtering, therefore the Kalman filter was not implemented, to keep the results unfiltered.

3D Position estimation

In the theory chapter a full 3D position estimation method was proposed. This method was tested, however
the method was not stable enough to be implemented. One of the issues might be that it uses only two key-
points, top of the head and feet. If more keypoints were used, it might stabilize the estimation. Nevertheless,
to prove that the method works in theory with two keypoints, manual calculations have been done and are
shown in appendix B.
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Edge Computing

The overall performance is slower than on the workstation. Once multi-person tracking is implemented,
smaller image sizes will likely be required to run the detector at required accuracy and speed. However, if
the number of cameras increase or redundancy is required, a high number of nodes would perform faster
than a similar computation on the workstation alone. Computer performance would gradually degrade with
each camera added, while the equivalent degradation caused by more nodes would be much lower. If multiple
nodes are to be implemented, each node should only cover a small area, allowing it to process the area quickly
to within the desired detection accuracy. For large camera images, a single image could be divided among
multiple nodes.

Licensing

Open-source HPEs like OpenPose [28] and AlphaPose [29] are freely available for non-commercial use and
academic research, but come with restrictions for usage in commercial environments.

The license of the original OpenPose only allows for non-commercial use, and provides a contact link on
its Github Page [36] for interested commercial parties. The commercial license of OpenPose carries costs of
$25000 per year. Similar restrictions likely apply to the CMU pose model, which ships with OpenPose and
can also be used as part of other pose libraries.

tf-pose-estimation is developed independently of the reference OpenPose implementation. According to its
license page on GitHub [37], it is provided under the Apache License 2.0 [42], which allows for commercial
usage as long as the original creators are credited and no claim to ownership is made. However, as the library
can be considered a simplified subset of OpenPose, the restrictions of OpenPose may apply for this library
as well. In particular, the OpenPose license considers all ”derivatives” of the software to be covered by its
license, where a derivative is any piece of software that uses parts of the original code or its documentation.
It is unclear whether this extends to the OpenPose paper itself. It should be noted that this report does
not use the original, non-commercial OpenPose CMU model, but instead uses the simplified Mobilenet-thin
model [40], which is also provided under the Apache 2.0 license.

Prior to further implementation, the OpenPose developers should be contacted, following the process listed
on its official GitHub page [36].
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Chapter 9

Conclusion

In this project a method for monocular real-time position estimation of occluded humans has been developed.
The developed system is able to determine the position of a person with ≈ 10 cm accuracy when the person
is not occluded, around ≈ 20 cm when the person is partly occluded. Even with coveralls and helmet, the
position estimation maintained the same accuracy for both fully visible and occluded scenarios. Using pro-
jective geometry and human pose estimation has proven to be a good solution for this problem. The system
has been tested on a workstation with a Nvidia 1080Ti GPU, which resulted in a frame rate of 20 FPS for
the resulting program. As hardware and pose estimation libraries are further developed and optimized, this
method will become more suitable for real-time applications.

The implementation of the method was programmed to only estimate the position of one person. If pose
tracking is implemented, persons can be tracked across multiple frames, and their heights can be assigned to
an ID. From this, the positions of multiple persons can be estimated.

In cooperation with Sondre Ripegutu, our position estimation was fused with Sondre’s multicamera system.
The result of this was an even more robust estimate. While the combined system ran more slowly, it still
was able to run at 10 FPS.

The Nvidia Jetson AGX Xavier module has been tested to see if it is capable of running pose inference.
Using the same image resolution as on the main hardware, it held an inference frame rate of 10 FPS. Xavier
nodes can be used to scale up the covered area of the system, by offloading processing from the workstation
to the nodes, making it possible to increase the number of cameras even further for the same workstation
hardware. If multiple cameras cover the same areas, the positions can be fused using the aforementioned
multicam system. This can also provide redundancy; if one node fails, there is still a camera covering the area.
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Appendix A

Calibration

Intrinsic parameters

The intrinsic matrix and distortion parameters:

Intrinsic matrix =

1317.07992 0 989.3528
0 1324.3600 581.9859
0 0 1

 (A.1)

Radial distortion parameters =
[
−0.3495 0.1053

]
(A.2)

The radial distortion parameters correspond to the k1 and k2 parameters from the OpenCV distortion model
[33],as also explained in the theory section.

Extrinsic matrix

Matrix calculated from solvePnP using landmarks:


0.03442472 −0.99871261 −0.03725673 4.98542743
−0.71656598 0.00132136 −0.69751806 3.30740039
0.69666932 0.05070877 −0.71559799 3.9774644

0 0 0 1

 (A.3)
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May 20, 2019

In [1]: from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np
import sympy as sp
%matplotlib inline

In [2]: # Define camera parameters
# Assume a image resolution of 640x480
# Principal point is therefore 320x240
C = np.array([[500, 0, 320],

[0, 500, 240],
[0, 0, 1]])

# Set a seed to avoid potential errors with changing values
np.random.seed(0)
R = np.random.rand(3,3)
t = np.random.rand(3,1)
# Concatenate rotation matrix and translation vector
extrinsic = np.hstack((R, t))
# Define the global coordinates
x, y = 2.0, 3.0
z1, z2 = 1.0, 2.0
# Z corresponds to the height of the person
Z = z2 - z1
# Define two global points
P1 = np.array([[x], [y], [z1], [1]])
P2 = np.array([[x], [y], [z2], [1]])
# Calculate the uv-points
uv1 = C @ extrinsic @ P1
uv2 = C @ extrinsic @ P2
uv1 = np.divide(uv1, uv1[2]).round()
uv2 = np.divide(uv2, uv2[2]).round()
print("Homogeneous pixel coordinates")
sp.pprint([uv1, uv2])

Homogeneous pixel coordinates
[[739.] , [[722.]
[617.] [610.]
[ 1.]] [ 1.]]

1

Appendix B

2D to 3D position estimation
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In [3]: ## Now calculate back the position.
# Calculate the inverse of rotation and intrinsic matrix
invC = np.linalg.inv(C)
invR = np.linalg.inv(R)
A1 = invR @ invC @ uv1
A2 = invR @ invC @ uv2
B = invR @ t

In [4]: # Define everything as sympy variables and matrices
dZ = sp.Symbol('dZ')
invC = sp.Matrix(invC)
invR = sp.Matrix(invR)
A1 = sp.Matrix(A1)
A2 = sp.Matrix(A2)
B = sp.Matrix(B)
t = sp.Matrix(t)

In [8]: p1 = invR @ ((dZ + B[2,0])/A1[2,0] * invC @ uv1 - t)
p2 = invR @ ((Z + dZ + B[2,0])/A2[2,0] * invC @ uv2 - t)
sp.pprint(p1)
print("\n")
sp.pprint(p2)

1.25914469013157dZ + 0.715888718009561

0.763586256576719dZ + 2.19831404062789

1.0dZ + 2.66453525910038e-15

0.878132607928419dZ + 1.10768021697801

0.537174088710764dZ + 2.44648536552801

1.0dZ + 0.999999999999999

In [7]: # Solve for delta Z
dZ_estimated = sp.solve(p1[0] - p2[0], dZ)
print("Estimated Points")
print("Point 1\t\t Point 2")
sp.pprint([p1.evalf(subs={dZ: dZ_estimated[0]}), p2.evalf(subs={dZ: dZ_estimated[0]})])
# Compare it to the original point
print("Actual Values")
print("\nPoint1\tPoint 2")
sp.pprint([sp.Matrix(P1[0:3]), sp.Matrix(P2[0:3])])

Estimated Points
Point 1 Point 2

2



2.0106565445631 2.0106565445631

2.98350332472096, 2.99885693392039

1.0282915352788 2.0282915352788
Actual Values

Point1 Point 2
2.0 2.0

3.0, 3.0

1.0 2.0

3


