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Abstract

The processes at a wastewater treatment plant (WWTP) are complex systems that

clean the wastewater before it is released into the environment. Total phosphorous

(TP), biological oxygen demand (BOD) and chemical oxygen demand (COD) are

critical measurements of the water quality. Measuring BOD and COD are too slow

to effectively control the wastewater treatment processes (5 days and a couple of

hours respectively) as the wastewater treatment process at Saulekilen WWTP uses

about 30-40 minutes from influent to effluent. Measurements of effluent TP are also

performed and are quicker but controlling by the use of effluent TP is too slow. Hence

it is a goal for this thesis to propose models that can predict the values of BOD, COD

and TP quicker by the use of multiple linear regression (MLR) and artificial neural

networks (ANN). Results of this thesis indicate that measurements of effluent TP

can be predicted with reasonable accuracy. Further, the influent BOD and COD

measurements can be predicted with good accuracy. These promising predictions

may be important in further work for an improved wastewater treatment.

A sensitivity analysis has been performed to determine which input parameters being

the most effective in modelling the output. Input parameters in this thesis have

consisted of TP, water discharge, the local temperature and the date for predictions

of TP, COD and BOD. Measurements of influent BOD and COD has also been used

as inputs for prediction of effluent BOD and COD, while total solids (TS), total

percent solids (TS(%)), reject water, pH, the process additive PIX and turbidity has

been used as inputs for predictions of effluent TP. The results of the models have

been considered with respects to correlation, mean squared error (MSE) and mean

absolute percentage error (MAPE).
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Chapter 1

Introduction

1.1 Thesis overview

This thesis explores the possibilities of introducing an artificial neural network (ANN)

to model some of the processes of Saulekilen wastewater treatment plant (WWTP).

This introduction chapter will explain what the target of the thesis is and in short

detail also the main purposes of a WWTP and an ANN before these are more deeply

elaborated upon in further chapters. Table 1.1 presents a graphical overview of the

thesis.

Table 1.1: Graphical overview of thesis

Chapter 1: Introduction

Chapter 2: Wastewater treatment

plants

Chapter 3: Data analysis and

modelling theory

Overview over the processes of a WWTP, its

main measurement methods and how this is

all applied at Saulekilen WWTP.

Theoretical background for model generation

based on multiple linear regression (MLR)

and ANN.

Chapter 4: Experimental methodology

Methods used to analyse data and setting up experiments for MLR and ANN models.

Chapter 5: Data analysis results Chapter 6: ANN and MLR model

results

Data trends, correlations and time period

splits.

MLR and ANN models with respective

sensitivity analyses

Chapter 7: Discussions

Chapter 8: Conclusions

1



1.2. TASK DESCRIPTION AND MOTIVATION

1.2 Task description and motivation

The municipality of Arendal is the owner and operator of the Saulekilen wastewater

treatment plant, which receives wastewater equivalent to 70,000 people from its own

municipality and parts of Grimstad municipality. The cleaning process takes place in

four steps; mechanical coarse cleaning, mechanical screening, biological cleaning and

chemical cleaning. Extensive renovations and extensions have been carried out at the

facility since its establishment in 1978. The plant now meets all state requirements

but the operational costs for the plant have escalated. Although the treatment effi-

ciency of the plant is significantly better today, it still drops below the accepted level

and sometimes it can also become unnecessarily high. The increased costs are related

to increased consumption of energy and chemicals, which in the purification process

are the major input factors. The municipality sits on varying amounts of historical

measurement data from the treatment plant which can be used to optimise the use

of resources. Arendal municipality in collaboration with UiA seeks to investigate the

possibilities of generating a model of the wastewater treatment plant based on arti-

ficial intelligence (AI). An artificial neural network can be trained by historical data

to represent the wastewater treatment plant, and help an operator control the plant.

Modelling the processes of a WWTP with the use of an ANN has had some success

in existing literature. Such a model will enable the optimisation of the chemical use

in the plant which could help generate a more stable treatment process and reduce

the operating costs.

1.3 Wastewater treatment

Wastewater treatment is an important field for the preservation of the natural envi-

ronments in urban and industrial areas. Activities in these areas utilise a huge amount

of natural water and discharges chemicals that need, to the extent possible, to be ex-
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tracted before the water is released to nature again [1][2]. A wastewater treatment

plant brings discharge water through a multiple of processes to extract these chemi-

cals and essentially clean the water [2][3]. The effluent1 water from the plant needs to

satisfy certain governmental criteria to be considered safe for the environment [4]. To

be able to uphold these standards a reliable plant model needs to be created in order

to predict which performance parameters the plant should follow. Measurements of

key parameters of the influent2 can be time consuming, and the correlation between

the different chemicals seldom exist [1]. In Norway it is required to report Biological

Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Nitrogen and the total

Phosphorous amount (TP) for both influent and effluent [4]. Additionally, suspended

solids3 and dissolved solids4 are measurements that gives a good indication of how

clean the water is [2]. The traditional models currently used does not always give

satisfying results compared to the amount of time and resources used to obtain them

[5]. This is especially a problem concerning measurements of BOD which requires 5

days to obtain [6][7]. Additional complexity to model the WWTP comes from the

dynamic behaviour of wastewater. This can be due to the following: weekend effects,

where industrial wastewater can be lower; seasonal weather effects in the sense of dif-

ferent rainfall and temperature; holiday periods were wastewater can both decrease

or increase based on the local norm; and heavy rain falls, dry seasons, and other ab-

normal weather effects that does not necessarily follow the seasonal norm. Modelling

of the plant can therefore require at least one year of data to make sure most types

of influents are covered [8].

1Water flowing out of the plant
2Water flowing in to the plant
3Solids still in suspension in water, measured as the amount of solids not able to pass through a filter
4Solids dissolved in water, measured as the amount of solids able to pass through a filter
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1.4 Artificial neural network

Artificial neural networks (ANN) is a computer technique that is commonly used

for feature extraction, pattern recognition and classification [9]. E.g. this can be

to detect certain features in an image [10], recognise a pattern in a database [11,

Chapter 4] or classify written numbers [11, Chapter 1]. The neurons are meant to

artificially simulate the human brain and to harness its powerful ability of learning,

which computers previously has been incapable of [12][13][14]. The implementation

of artificial neural networks to the processes of wastewater treatment introduces new

opportunities for both economic and environmental optimisation. An ANN’s ability

to learn the correlation between input and output can be an incredibly useful method

of optimising the amount of additives during the treatment process. Additionally, it

can be useful to estimate values quickly that would otherwise be time consuming by

using traditional methods.

1.5 State-of-the-art of WWTP modelling

The implementation of artificial neural networks to the processes of wastewater treat-

ment is not entirely new, but has acquired more consideration in the recent decade

[9]. By studying the existing literature in the field, it is evident that ANN models

are capable of predicting both effluent and influent values of important wastewater

quality parameters.

Rene et al., 2008, proposed an ANN model of a WWTP, training with only 103 data

points on a model with a single hidden layer of less than 10 neurons with over 5000

epochs. They concluded that an ANN model was an accurate and effective way of

predicting unknown concentrations of effluent BOD and COD values. During training

of the ANN model, they found that they could increase their network accuracy by
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varying the training count and number of neurons in the hidden layer, while varying

the learning rates did not have any significant impact. They also found that removing

certain input variables could increase the accuracy and that using a single-output

ANN model was superior to a multiple-output model. The best performing models

included total organic carbon, phenol concentration, total suspended solids, total

dissolved solids, Kjeldahl’s nitrogen and ammoniacal nitrogen [1].

In a paper from 2008, Dogan et al. attempted to use an ANN to estimate the influent

values of BOD in a biological WWTP. Good results were recorded with training on 244

data points stretching over a single year using only small single hidden layer. In this

paper the results of the ANN model were compared to a multiple linear regression

(MLR) model which in this case proved that a MLR model can give good results

but that the ANN was superior. They used a sensitivity analysis which compared

the effect on the BOD prediction by removing input parameters one by one. This

analysis showed that all the available data inputs (total phosphorus, total nitrogen,

suspended solids, water discharge and COD) provided some explanatory power for

the ANN model but that water discharge decreased the MLR performance. COD

had the biggest contribution to the results in both models [5]. The results of this

paper is interesting as it shows that accurate predictions of influent BOD values can

be obtained without waiting five days for a laboratory test.

Ozkan et al., 2009, developed an ANN model based on the Levenberg-Marquet learn-

ing algorithm which estimated effluent BOD values based on input values of total

nitrogen, total phosphorus, suspended solids, COD and total dissolved solids. With

910 data points used for training stretching over a four-year period, the model man-

aged to predict BOD with high accuracy. The conclusion was that effluent BOD

values could be predicted much faster with an ANN model than by laboratory tests

[15].
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Nasr et al., 2010, applied a deep neural network to predict effluent COD, BOD and

total suspended solids amounts based only on influent values of the same parameters.

One year worth of measurements were used, training with the Levenber-Marquet

learning algorithm which resulted in high correlation values for every output [16].

A different method was proposed by Zhang et al., 2012, with the use of a NW multi-

layer feedforward small world ANN which was used because of its ability to offset one

neurons weakness by learning from other neurons strong points. The network used a

normal feedforward layer connection while also connecting a few sets of neurons which

were not already connected. This made some neurons connect to neurons of two dif-

ferent layers. The network used inputs of influent COD, pH, BOD and suspended

solids and predicted effluent BOD values with incredible accuracy, which compared

to be superior to a normal ANN model which was also produced [17].

Similarly to Ozkan et al., a study of using the Levenberg-Marquet learning algorithm

with an ANN was performed by Abba et al., 2015, to predict effluent COD values.

Good results were achieved by using influent values of COD, BOD, ph, conductivity,

total nitrogen, total phosphates, total suspended solids and suspended solids. A

sensitivity analysis showed that using all input parameters gave a superior model and

that an ANN model had a better performance than an equivalent MLR model. Data

used in this paper was 312 data points based on a three year period [9].

Hamada et al., 2018, compared the performance of a normal ANN model with a MLR

model and a radial basis function (RBF) neural network on the prediction of effluent

BOD, COD and total suspended solids. The models were trained with 65 data points

containing input data of influent temperature, pH, BOD, COD, TSS. The conclusions

of the paper was that an ANN model had a better explanatory power over both the

RBF and MLR models, while a sensitivity analysis showed that influent pH had

almost no contribution to the result [18].
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Some repeating factors within the existing literature is: the 70%-30% split of training

and test data respectively; the low amount of available data, often being in the range

of 100-300 observations; the use of small single hidden layer ANN architectures, often

using only around 3-8 neurons; and the use of Matlab as a model generator, which

has the Levenber-Marquet learning algorithm easily available.
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Chapter 2

Wastewater treatment plants

This chapter will give an overview over the main processes of a WWTP. This in-

cludes explaining a typical treatment cycle and what, why and how pollutants are

measured. The last section explains how this is performed at Saulekilen WWTP.

Some information about the data used in this thesis will also be given.

2.1 Treatment cycle

Wastewater is normally divided into two major groups: sewage water, which is

wastewater from urban areas, and industrial wastewater, which is wastewater from

industrial activities. In addition, this is mixed with unabsorbed rain water which

can often be a key factor in the fluctuations of influent wastewater for the WWTP

[2][19]. At the treatment plants, the wastewater normally undergoes five major pro-

cesses: preliminary treatment, primary treatment, secondary treatment, disinfection

and sludge treatment. To balance all the processes correctly, water or particles from

some processes can be diverted back to previous processes which helps with stabilisa-

tion. The full process can take about seven hours to complete before the cleaner water

is released to the environment, but some of the sludge processing can take weeks to

handle. The information about the treatment cycle in this section is mainly gathered

from [3], but also [2].

In Figure 2.1 a simple overview over the four stages often used for wastewater treat-

ment is shown. This process begins with sewage and wastewater being brought to the

WWTP through the sewage system and ends by discharging the treated water into

the environment. An explanation of the steps is shown next to the figure. A more

in depth overview is shown in Figure 2.2 were the process of managing overflow and

sludge is also shown.
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The preliminary treatment is the first step and is a

mechanical process which filters out larger objects

that could damage the sewage pumps and other

equipment. The objects are stopped by a filter (e.g.

metal bars) and is removed and transported to landfills.

The primary treatment is a settling process which

slows down the water flow to make heavier solids

settle to the bottom of the tank and let lighter ma-

terials float to the top of the water. The solids, or

sludge, and materials are then removed by mechanical

scrapers and surface-skimmers respectively, and the re-

maining water is pumped to the next treatment process.

The secondary treatment takes the wastewater through

aeration tanks that injects air so that microorganisms

can consume most of the remaining organic materials.

The heavier particles that are then formed, settles to

the bottom of another settling tank. At this point,

85-95% of the pollutants from the untreated wastewater

has been removed.

In the disinfection process, special made chemical mixes

are added to the water which kill harmful organisms.

The water is now considered clean enough to be released

into the environment and measurements of the water

cleanliness is performed to make sure the WWTP is

upholding the required level of quality.

Figure 2.1: Four main stages of

wastewater treatment.
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2.1. TREATMENT CYCLE

Figure 2.2: Overview over all main process in a WWTP [20].

The last step is sludge treatment, which is only applied to the sludge that is removed

from the earlier steps. This is a much longer treatment and is mostly to create a

more manageable waste product. Here the sludge is first put in settling tanks where

it thickens after settling from the water. After thickening, the sludge is placed in an

anaerobic environment at around 35 degrees Celsius for a couple of weeks to stimulate

growth of bacteria. This process produces gas, water and a more concentrated sludge.

At last, the sludge is dewatered by using centrifuges that forces water out of the

sludge and leaves a more solid substance also known as biosolids which can be used

as fertilisers for agriculture or be buried underground in sanitary landfills. In cases

where the sludge could contain toxic industrial chemicals, it is not used on agriculture

meant for human consumption.
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2.1.1 Measurements

To maintain control over the treatment cycle and especially to make sure that un-

wanted pollutants are not unknowingly released into the environment, some key mea-

surements has to be taken in the plant.

Two of the major methods of measuring the water quality of wastewater are biological

oxygen demand (BOD) [5][15] and chemical oxygen demand (COD) [1][9]. They are

both a measure of the oxygen required for microorganisms to carry out biological

decomposition of dissolved solids or organic matter1 [9]. A body of water with a high

BOD or COD amount provides less dissolved oxygen for higher animals such as fish

[21].

For the BOD test, a sample of the wastewater is sealed in a small bottle for 5 days at 20

degrees Celsius together with dissolved oxygen, nutrients and a buffer. The resulting

oxygen demand is referred to as the BOD5 [6][7]. On the contrary to the BOD test,

the COD test uses a strong chemical oxidising agent to chemically oxidise the organic

material in a wastewater sample, and only uses a couple of hours to complete [6][22].

The test indicates the amount of non-biodegradable organic material in wastewater.

The ratio between COD and BOD can indicate the amount of biodegradable material

in the water. If the ratio is lower than 2, the water is readily biodegradable, but if

the ratio is more than 2, it can be suspected portions of the organic material in the

sample is not biodegradable by ordinary microorganisms [22].

Additionally, each WWTP can have different standards they need to relate to from

their municipality. In Norway it is required to report total nitrogen (TN), total

phosphorous (TP), BOD, COD and suspended solids (SS) together with total water

discharge (Qw) [23]. Nitrogen and phosphorous can lead to overfertilisation of fresh

1Carbon-based compounds found in water
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waters, fjords and coastal waters [4].

2.2 Saulekilen treatment plant

The Saulekilen treatment plant is a wastewater treatment plant located south west

of Arendal in southern Norway. Around 90-95% of the influent water is received from

Arendal while the remaining water comes from the neighbouring town Grimstad. The

wastewater is mostly from urban districts but also includes some industrial wastew-

ater which can at times fluctuate the water quality. The amount of sewer is rather

constant, so the main varying factor is therefore the amount of rain water. While the

plant is dimensioned for 70,000 people, the rain water can sometimes cause certain

parts of the plant to either flood or to require an unrecommended high velocity. This

can cause a decrease in quality of the treatment process.

The Saulekilen plant is a mechanical, biological, and chemical plant. Instead of

using sedimentation, the Saulekilen plant uses flotation for sludge removal. The

wastewater is first taken through the preliminary treatment which removes larger

and smaller objects before it goes straight in to a sand trap which removes sand and

grease by using compressed air. Then it enters six filters which removes solids with a

mechanical belt, transporting solids out of the water. The next step is the biological

step where microorganisms remove biological materials that has been dissolved in the

water. The wastewater is then transported to a floc reactor where a solution called

PIX is added to create a metal reaction between the negatively loaded ions of the

wastewater and the positively loaded ions of the additive. The result is that the

phosphorus in the water separates and sludge is created. Polymer is then added to

help coagulate2 the wastewater and form larger masses. In the last step before the

water is considered “clean”, water and air is used to force the sludge to the surface

2The process of a liquid changing to a solid or semi-solid state.
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where it can be scraped off for further treatment. The water in the sludge is removed

by entering a cylindrical apparatus which spins the water and relies on centrifugal

forces to separate the water from the solids. The water normally takes about 30-40

minutes from it enters the preliminary treatment step until it reaches a floc reactor.

The amount of polymer added to the flocculation step is depended on the amount

of influent water, i.e. more water means more polymers. The amount of PIX that

is added per litre of water decreases when there is a higher water influent. This is

due to there being a very stable amount of sewage entering the plant at all times

and excess water is often regarded as being rain water which does not need to be

excessively treated. A measurement of the influent pH is also used to determine the

correct amount of PIX to add. The reject water is taken from the centrifuges and

sludge thickening steps of the sludge treatment and added to the influent water.

2.2.1 Measurement methods

At Saulekilen, measurements are performed in a variety of methods. Certain pa-

rameters are measured continuously and are used to display the state of the plant

for the operators at any time. These are the many water flow measurements, water

volumes, pressures and pH. A daily sensor check is also performed where the most

important parameters are noted, which in addition to the continuous measurements

also include TP, total solids (TS) and additives (PIX). Turbidity is also included on

the daily check and is measured by lowering a disk into the effluent water and noting

the depth which it can no longer be seen. This can lead to some inaccuracies in the

measurements as different operators can measure it differently. TP is measured with

a sensor in an automatic sampler of the wastewater. 24 times a year, BOD and COD

tests get sent to a laboratory to control the performance of the plant. In addition, a

few pollutant tests like quicksilver, lead and zinc are control checked a couple of times

each year. It should be noted that the phosphorous sensor had not been calibrated
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before this thesis started and could potentially be incorrect. In Figure 2.3 a simple

overview over the measurement points at Saulekilen is shown. This highlights where

the the influent and effluent measurements are in regard to PIXadd.

Figure 2.3: Overview over positioning of measurement points at Saulekilen.

2.2.2 Available data

Two different data sets (bi-weekly3 data set and daily data set) were given by Saulek-

ilen. The first included around 22 observations per year from 2001 to 2018 with COD,

BOD and TP measurements for both influent and effluent as well as Qw for influent.

The second included daily measurements from 2017 to 2019 with a wider range of

measurements. For influent measurements there were: Qw and TPin as well as the

additive PIX and reject water Qrw. For effluent measurements there were: TSout,

pHout, TS(%)out, TPout, and turbidity (Turb.).

An advantage of these data sets was their inclusion of all seasons over multiple years.

3Every two weeks
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The difference in weather for these periods should reflect the different water qualities

that the plant would have to treat. Considering the daily data set, a longer span

of years would give a better guarantee for the inclusion of certain extreme weather

periods, like the one that was experienced in the Norwegian summer of 2018 [24],

the average weather of the area should be well represented over a two year period.

In addition to the data given from Saulekilen, temperature readings from the local

area was retrieved from Yr.no for every hour from 04.04.2006 to 01.05.2019 and was

averaged for each day and then paired with the Saulekilen data.

A few important events for Saulekilen should be noted that could have had some

effect on the measurements. From October 2016 to the middle of March 2017 the

bio-reactor was out of order and its area was being rebuilt. From September 2017

the plant started precipitation of iron. In addition, a few malfunctions had been

registered.

A statistical analysis of the data that was used are shown in Tables 2.1 and 2.2.

Table 2.1: Statistical analysis of bi-weekly data.

Parameters Unit Mean Max Min Standard deviation

TPin mg/l 3.782 9.8 0.34 1.591

TPout mg/l 0.321 1.3 0.044 0.2055

BODin mg/l 154.2 500 16 72.16

BODout mg/l 49.02 180 4.2 35.26

CODin mg/l 418.4 1100 105 163.7

CODout mg/l 120.3 310 16 61.61

Qwin m3/day 16871 59896 2386 7305

Temp. oC 8.64 22.7 -9.083 6.755
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Table 2.2: Statistical analysis of daily data.

Parameters Unit Mean Max Min Standard deviation

Qwin m3/day 15402 40603 3721 6500

TPin mg/l 2.587 6.7 0.25 0.9123

Qrw m3/day 133 401 20.33 72.5

TSout m3/day 74.98 183 8.833 32.21

pHout pH 7.373 8.04 6.36 0.1819

TS(%)out % 4.299 9.13 2.59 0.7252

PIXadd l/d 3080 5786 786.5 1097

Turbout meters 0.6776 1.7 0 0.2345

TPout mg/l 0.19 0.9 0 0.1337

Temp. oC 8.314 22.4 -9.2417 6.557
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Chapter 3

Data analysis and modelling theory

A foundation for every claim that is made during the report should be based upon

scientific theories and mathematical equations. In this chapter the main theories used

will be explained to introduce the reader to the science behind the report. The first

section will describe the basis of data analysis which is the foundation of the data

modelling methods used in this thesis. The second section will describe how data can

be approximated with the help of data regression. An introduction to the history of

artificial neural networks is then given in the third section which will simultaneously

describe an ANN’s foundations. The following two sections will further elaborate on

the functionality of an ANN and how this computer technique is able to learn patterns

in a similar way to humans. Finally, the last section will give an overview over the

different techniques that can be used when improving an ANN.

3.1 Data regression

There are different methods to make a regression model fit to certain data. Multiple

linear regression (MLR) attempts to model the relationship between the explanatory

(independent, input) variables, {x1, x2, x3, ..., xp}, and response (dependent, output)

variable, y. The linear Equation (3.1) gives the best fit based on all the explanatory

variables, and is in essence an expanded version of the least-squares method that only

uses a single explanatory variable. For i=1, 2, ..., n observations,

yi = β0 + β1 · xi1 + β2 · xi2 + ...+ βp · xip + εi (3.1)

where yi is the dependent variable, xip are the explanatory variables, β0 is the y-

intercept (constant term), βp are the slope coefficients for each explanatory variable,

and εi is the models error term. The chosen values for the constant terms, β0, β1, ..., βp,
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are chosen based on the least squares criterion given by

min
(∑

i

(yi − ŷi)2
)
, (3.2)

where ŷi is the estimated value of yi, given xi for the given observation i [25][26][27].

MLR can be scaled down to just a single explanatory variable as well, which gives a

normal linear regression model by only using the first part of Equation (3.1): yi =

β0 + β1 · xi1 + εi [25]. This model can then be expanded to create a non-linear model,

while still only using a single explanatory variable. The formula remains fairly similar,

but instead returns a polynomial of the qth degree that best fits the data as shown

in Equation (3.3) [28]:

yi = β0 + β1 · xi + β2 · x2
i + ...+ βp · xqi + εi (3.3)

3.2 Data analysis

Data analysis is a method of describing data with the use of statistics. Several ex-

periments or surveys are performed to collect variables of interest which are then

further analysed. The usual statistical measures are a data’s mean, median, mode,

percentiles, range, variance, and standard deviation. These measures can be used to

give significant information about a data set, or they can be used to compare multiple

different data sets. Another method of comparing data sets is the use of regression

and correlation analyses. Data regression is often used as an initial hypothesis for the

relationship between a measured and an estimated data set. To determine the good-

ness of fit of the model, a common method used is the coefficient of determination.

For i=1, 2, ..., n observations,

SST =
∑
i

(yi − ȳi)2, (3.4)
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where SST is the measure of total variation, yi is the measured value being estimated,

ȳi is the mean of of all yi,

SSE =
∑
i

(yi − ŷi)2, (3.5)

where SSE is the measure of unexplained variation, ŷi is the estimated value by the

model,

SSR + SSE = SST, (3.6)

where SSR is the part explained by the estimated regression equation, and

r2 =
SSR

SST
, (3.7)

where r2 is the coefficient of determination. A value of r2 = 1 means there is a

perfect linear relationship between the data sets, while a value of r2 = 0 means there

is absolutely no such relationship.

“For typical data found in the social sciences, values of r2 as low as 0.25

are often considered useful. For data in the physical sciences, r2 values of

0.60 or greater are frequently found.” [25]

Similar to determination is correlation which is sometimes calculated as the square

root of the determination coefficient. The correlation coefficient is denoted r, and has

the same sign as the first slope coefficient, β1, of the linear regression equation (Equa-

tion (3.1)). This means it has a range of [-1, 1], where a value of 1 means the data

sets are perfectly positively related, a value of -1 means they are perfectly negatively

related, and a value of 0 means there is no linear relationship. It is important to note

that correlation does not necessarily mean causation [25]. Another way of measuring

the correlation coefficient, and the most commonly used one, is the Pearson’s linear

correlation coefficient which is defined as:

rXY =

∑n
i=1(Xi − X̄)(Yi − Ȳ )√∑n

i=1(Xi − X̄)2
√∑n

i=1(Yi − Ȳ )2
, (3.8)
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where rXY is the Pearsons’s correlation coefficient given data sets X and Y , contain-

ing values Xi and Yi for i=1, 2, ..., n observations, and data set means X̄ and Ȳ

respectively [29].

3.3 History of artificial neural networks

The idea of artificial neural networks can be traced all the way back to 1943 where

neurophysiologist Warren McCulloch and mathematician Walter Pitts described bi-

nary threshold neurons. They proposed these neurons as a simple model of how the

neurons in the brain might work [12][13][14]. These neurons worked by receiving an

input value and multiplying it by a weight before comparing it to a threshold value.

It then ultimately outputted either a 1 or a 0, depending on whether or not it was

above the threshold value. This system was proven to be capable of replicating the

basic OR/AND/NOT functions. While this was a big step forward in the science of

AI, the lack of a learning mechanism meant that it was not satisfactory in its current

state [13]. As neurons were thought of as a representation of the brain, scientific ad-

vances and new ideas within the field of cognitive psychology had the potential to be

beneficial also for the development of AI. Donald Hebb (1949) explored the methods

of which the brain learned, and pointed out that neural pathways are strengthened

each time they are used [13][14].

This idea lead to the introduction of perceptrons, popularised by Frank Rosenblatt

(1958), which included this crucial learning mechanism [12][13][30]. Rosenblatt dis-

cussed the crucial importance of an AI’s ability to learn instead of just remembering.

A system that had been given a huge data set containing e.g. pictures of different

poses of a person could only recognise another person if a too large number of factors

were met. This could include angle, posture, position, lighting, colour, background,

other objects and sizes. For the system to be able to recognise people effectively, the
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data set would have to be ridiculously large and the searching method, incredibly

quick [30].

“In general, identities of this sort must be learned, or acquired from

experience, and if the system is to be economical, the number of functional

units in the storage system, or memory, should be much less than the num-

ber of forms or memories to be retained.”[30, p. 1]

The learning mechanism of the perceptron will train the neuron to produce the correct

output by altering the weights and biases. This process would be repeated for all data

sets that were chosen for training until the perceptron did not make any more mistakes

[13][30]. While such a system seemed promising, a publication by Marvin Minsky and

Seymour Papert (1969) proved, among other things, that the perceptrons were unable

to learn the simple Boolean function XOR because it is not linearly separable. The

idea that artificial neural networks were fundamentally flawed therefore falsely spread

and lead to a decrease in development in the field [12][13][14].

During the 1980’s, the introduction of both multilayered networks, non-binary ac-

tivation functions and backpropagation meant that artificial neural networks were

beginning to look much more like how they are used today. These improvements

made it possible to approximate more advanced functions which makes it more ap-

plicable to the real world [13].

3.4 The artificial neural network

Most of the theories described in this thesis about artificial neural networks are based

on the “neural network and deep learning” e-book by Michael Nielsen [11]. In an

artificial neural network, the neurons have the job of calculating an output based

on a set number of inputs. The network works together to create an output that is
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more complicated than what a single neuron could create. The reason it is called

a network is because the neurons are connected in a web-like fashion with so-called

weights. These weights, w, multiply with the input neurons value, x, before they are

added with a bias, b, which then becomes the output of the neuron in question, z.

A demonstration of this is shown in Figure 3.1 and should be considered together

with Equation (3.9). This equation is called an activation function and can take both

linear and non-linear forms [11].

Figure 3.1: A single neuron.

z = x · w + b (3.9)

Equation (3.9) is actually only part of the full equation which is normally used in the

network. Most networks utilise multiple inputs and multiple neurons in what is called

layers. The first layer, as can be seen in Figure 3.2, is the input layer, and contains

the input values. The middle layers are ’hidden’ layers which are named thus as they

are not inputs or outputs of the network. The output layer is where the result of the

network can be gathered. Using a non-linear activation function for these neurons, it

is possible to derive an equation that fully represents the output of a neuron in the

hidden and output layer as seen in Equation (3.10). An activation function called the

sigmoid function, as shown in Equation (3.11), is showcased here, and is one of many
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Figure 3.2: Classification of layers in a artificial neural network [11].

non-linear activation functions [11].

alj =
1

1− exp
{
−
∑

k(wl
jk · a

l−1
k + blj)

} (3.10)

alj = f(zlj) =
1

1− exp
{
−zlj

} (3.11)

Beware that the variables of Equation (3.10) differ slightly from Equation (3.9)

where the activation of the previous layer, al−1
k , is used instead of the data input x

to the input layer, and the activation of the current layer, alj, is used instead of the

linearly activated function z. As an example, wl
jk should be read as; the weight for

the connection from the kth neuron in the (l − 1)th layer to the jth neuron in the lth

layer [11].
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3.5. BACKPROPAGATION

3.5 Backpropagation

Backpropagation is a method of finding suitable weights and biases based on the error

of the current network, or in other words, a training method for the network. The

network improves by making small changes to its weights and biases for every training

sequence, or epoch. These small changes are the reason the classical perceptron does

not work well to model, as even a tiny change could completely flip the output from

0 to 1 or the opposite. The use of non-binary activation functions therefore becomes

important. Instead of the complete switch, small changes ∆wj in the weights and ∆b

in the bias will produce a small change ∆a in the output from the neuron. This can

be represented by

∆a ≈
∑
j

δa

δwj

∆wj +
δa

δb
∆b, (3.12)

where wj is the sum over all the weights and δa/δwj and δa/δb denote partial deriva-

tives of the output with respect to wj and b, respectively. To determine how well

the weights and biases chosen are performing, a loss function is used, as shown in

Equation (3.13).

CMSE(a) =
1

n

n∑
i=1

(yi − ai)2 (3.13)

Where ai represents the activation vector of the neurons for the i = 1, 2, 3, ..., n

observation. This activation is then compared to yi which are the actual values

being approximated and the desired output. This loss function is known as the

mean squared error function. The sum over all observations i, indicate the networks

performance and should with training approach 0, C(a) ≈ 0. Another loss function

is the mean absolute percentage error (MAPE), as shown in Equation (3.14), which

instead of squaring the difference between yi and ai, uses the absolute value of them.

The main difference between the two equations is that MSE give more weight to larger
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errors, while MAPE treats all errors linearly.

CMAPE(a) =
100

n

n∑
i=1

∣∣∣∣yi − aiyi

∣∣∣∣ (3.14)

The loss function gives information about how much the activation has to increase

or decrease to reach the desired value. As the activation is a function of the weight,

bias and previous layer’s activation, all these needs to change in the desired direction.

Again, the previous layer’s activation is a function of the previous layer’s weights,

biases and the activation before that layer again. This all backpropagates to the

input layer, and to make sure the final output changes correctly, all previous weights

and biases needs to change.

One way to approach 0, or at least the lowest possible value, is by the use of gradient

descent. The following describes the basics of gradient descent optimisation. The

idea here is that for every combination of weights and biases, the value of the loss

function equals a value which can, at least for a one- or two-dimensional system, be

represented by a graph. The lowest point in the graph represents the optimal weights

and biases. To get there is therefore the goal. As all weights and biases are, generally,

randomly chosen before the first epoch of the network, the fastest way ”downhill” is

also the fastest way to find the optimal weights and biases. In Figure 3.3, this process

is visualised by the use of a ball which represents the initial value of the loss function.

The ball would through each epoch roll closer and closer to the lowest point. This

graph is notably fairly simple and only uses one input value, while a larger network

would use too many to visually represent [11].

One problem with gradient descent is that the loss function is calculated as an average

for individual training inputs. In other words, the gradient needs to be computed

separately for each training input before averaging them, which takes time. A solution

to this is to use multiple training inputs together before calculating the gradient.

It turns out that the gradient of a randomly selected number of training inputs is
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Figure 3.3: Gradient descent, given inputs x.
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approximately equal to the gradient of individual training inputs. This can be shown

as in Equation (3.15), ∑m
j=1∇CXj

m
≈
∑

x∇Cx

n
= ∇C, (3.15)

where∇C is the notation for gradient descent and m is the number of random training

inputs, X1, X2, ..., Xm are chosen for what is called a mini-batch of training. As long

as the mini-batch of m training inputs is large enough, this approximation is accurate.

When training with a mini-batch, the weights and biases in the network are changed,

before a new mini-batch is chosen and used for training until all training inputs has

been exhausted. At this point one epoch has been completed and the process can

start again. Several algorithms use this theory for optimising an artificial neural

network [11]. Notable examples are the Stochastic gradient descent algorithm (SGD)

and the Adam optimiser. The Adam optimiser tends to perform well in the initial

portion of training, but does not generalise as well as SGD. SGD does however have

a disadvantage of scaling the gradient uniformly in all directions, which the Adam

optimiser attempts to correct by diagonally scaling the gradient via estimates of the

function’s curvature [31].

3.6 Improving the way ANN learns

There are a great range of methods that can be used to improve the way the ANN

learns. These includes methods for e.g. normalising the input data, generating larger

data sets, and choosing the best hyperparameters [11, Chapter 3]. The point is to

make the network be able to ”fit” the data better, but when improving the network,

it is important to be wary of underfitting and overfitting.
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3.6.1 Underfitting and overfitting

When a network is unable to model the complexity of a model, i.e. by trying to explain

a exponential function with a linear model, it is said that the network is underfitted.

The network wrongly assumes that the model is simple and can be explained with only

a few parameters. This can happen when too few neurons are used [5]. Overfitting

on the other hand is when the network is no longer generalising to the data. The

network could be trying to make a model which is either too complex or only learns

how to remember the training data instead of generalising to new data. This can

be detected by the increase of the loss function, the stabilising of the accuracy or

when the training accuracy reaches close to 100% while the test accuracy stays low.

This does not necessarily mean that when these instances happen, that overfitting

is happening, but it can be safe to assume so. In general, one of the best ways of

reducing overfitting is to increase the size of the training data [11, Chapter 3]. Some

of the reason why overfitting occurs will be explained later in this section.

3.6.2 Hidden layer design

The process of designing the hidden layers does not follow any ordinary rules, but

researchers have instead developed many design heuristics1 which can be used. The

size and the number of the layers are what to be chosen. While it could be tempting

to simply use a large deep artificial neural network2, this could have a few drawbacks.

One is the time needed for computation, but the other is the occurrence of overfitting.

The power of the ANN means that if there is a possible model that describes the data

well, the network should be able to find it given enough complexity in the hidden

1“A method of learning or solving problems that allows people to discover things themselves and learn from their

own experiences.” [32]
2A deep artificial neural network is a network which uses more than one hidden layer [11]
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layers. This is well described by the universal approximation theorem, as described

by Cybenko, G. (1989):

“(...) Any continuous function can be uniformly approximated by a

continuous artificial neural network having only one internal, hidden layer

and with an arbitrary continuous sigmoidal nonlinearity.” [33, p. 312]

Even with just a single layer, any continuous function, regardless of complexity, may

be approximated using a neural net with a non-linear activation function. For prac-

tical terms, this means that, as long as the input and output data is sufficient and

contains some sort of relationship, a neural net should be powerful enough to approx-

imate it [11, Chapter 4]

3.6.3 Activation functions

As there are many activation functions to choose from, picking the correct one could

prove difficult as there are no solid rules on how to choose and how to modify the best

activation function. Once again, these choices are based on design heuristics which

mostly prove that certain functions are only marginally better than others in some

tasks. However, a few functions are more used than others as they generally generate

good results. Slightly different from the sigmoid function, which is more traditionally

used, is the hyperbolic tangent (tanh) function, which is fairly similar in shape and

also includes negative values, where the sigmoid only has positive. A problem that

is sometimes present with these functions is the saturation they experience when the

output gets closer to their maximum or minimum ([0,1] and [-1,1] for sigmoid and

tanh respectively). This phenomenon is called the vanishing gradient problem and

effectively hinders the weight from changing its value as the derivative of the gradient

is approximately zero. Another function, called the Rectified Linear Unit (ReLU)

does not experience this saturation, and will not lead to learning slowdown in the
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same way as it is linear for positive values and zero for negative values [11, Chap-

ter 3]. ReLU produces another problem however, as it is entirely non-negative it has a

mean activation larger than zero. This can lead to a phenomenon called “bias shift”

or a “dead” activation function. In short this means that a neuron learns a large

negative bias which makes the activation function unlikely to ever activate. This can

result in a network only producing zero-values for its estimations. [34] introduces the

Exponential Linear Unit (ELU) which is similar to ReLU but uses an exponential

function multiplied by a constant when below zero. This shifts the activation mean

towards zero which speeds up learning, ensures a noise-robust deactivation state, and

learning does not result in zero-values for estimations. Additionally, the linear func-

tion, which is directly linear to z can be mentioned as it is the most basic activation

function. The activation functions mentioned in this section are shown in Equations

(3.16) through (3.20) and Figure 3.4.

Sigmoid:

f(z) =
1

1− exp{−z}
(3.16)

ReLU:

f(z) = max(z, 0) (3.17)

Tanh:

f(z) = tanh(z) (3.18)

Linear:

f(z) = z (3.19)

ELU:

f(z) =

{
z for z > 0

c · (exp{z} − 1) for z ≤ 0
(3.20)
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Figure 3.4: Response of different activation functions.
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3.6.4 Regularisation

A method of reducing overfitting is what is known as weight decay or L2 regularisa-

tion. This method adds an extra term to the cost function. Equation (3.21) shows

the regularisation term together with an arbitrary loss function, C0.

C = C0 +
λ

2n

∑
w

w2 (3.21)

where λ is the regularisation parameter, n is the size of the training set, and
∑

w w
2

is the sum of all weights in the network. The effect of this method is to punish the

network for choosing larger weights. This can also help the network from getting

stuck in local minima of the cost function at times. For more complex systems it

could however be beneficial to use an unregularised network, as the large weights

helps modelling the complexities. Similar to L2 regularisation is L1 regularisation,

where the difference is that it uses the absolute value of the weight instead of the

square. This method results in weights being reduced by a constant amount instead

of a proportional one and means that larger weights gets reduced less than smaller

weights. In effect, this leads to the network concentrating on a smaller number of

high importance connections and reduces other weights towards zero.

3.6.5 Dropout

Dropout is a method that modifies the network structure continuously during training.

Given an ordinary network, as shown in Figure 3.5a, the input values are forward-

propagating through the connections, and then backpropagated. With dropout, a

specified amount of random neurons are temporarily deleted (as shown in Figure

3.5b) before the usual forward-propagating and backpropogating takes place in the

remaining connections. This happens once for each mini-batch and for every time a

new set of random neurons are deleted. With this method, it is like multiple networks
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(a) Without dropout [11]. (b) With dropout [11].

Figure 3.5: Illustration of dropout in an arbitrary artificial neural network.

are being trained and the results are being averaged between them. This usually gives

a better result and helps reducing overfitting. In addition, the effect of dropout can

be described as by A. Krizhevsky et.al. (2012):

“This technique reduces complex co-adaptations of neurons, since a neu-

ron cannot rely on the presence of particular other neurons. It is, therefore,

forced to learn more robust features that are useful in conjunction with

many different random subsets of the other neurons.” [35, p. 6]

3.6.6 Artificially expanding the training data

As previously mentioned, a network usually creates better results if it is given a larger

data set for input. While it can be difficult to obtain additional data, it is possible to

artificially expand the existing data set. E.g. for number recognition, where numbers
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written by humans are to be identify by the ANN, this could be done by expanding,

reducing, rotating or skewing the number slightly. While the input values would be

different, it would for the human eye still be easily recognisable as the same number.

It should therefore still be possible for the ANN to identify the number correctly.

Adding or reducing noise could also help create a larger data set. The important

factor is that the new data needs to still represent reality and not create relationships

or correlations where there are none. An ANN which is given pure noise would, given

enough complexity, still be able to find some sort of pattern and correlations, which

is unwanted in most cases.

3.6.7 Normalising inputs and activations

When solving practical tasks, it is not unusual for input parameters to vary in sizes

and ranges. One parameter could e.g. have a range of [1000, 50000] while another has

[0.2, 2.5]. Having such a difference in ranges between input parameters can slow down

learning. By normalising the input parameters to have similar ranges, this problem

can be avoided [36]. In Equation (3.22) a normalisation method is shown:

x̂i =
xi −min(x)

max(x)−min(x)
(3.22)

where xi is the unnormalised value, x is the parameter vector and x̂i is the updated,

normalised value. This results in a range of [0, 1] which is easier to use.

Normalising can also be included as a part of the model architecture and is usually

called batch-normalisation. This method was developed by Sergey Ioffe and Christian

Szegedy [37] and is effective as it speeds up training of deep neural networks and

allows for higher learning rates. The batch-normalisation works by fixing the means

and variances of layer activations for every individual mini-batch. Equations (3.23)

through (3.25) shows the algorithm used to accomplish the batch-normalisation. First
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calculating the mean:

µB =
1

m

m∑
i=1

ai (3.23)

where µB is the mini-batch mean, ai is the activation of i = 1, 2, ...,m observations

in the mini-batch. Then calculating the variance:

σ2
B =

1

m

m∑
i=1

(ai − µB)2 (3.24)

where σ2
B is the mini-batch variance, and then finally calculating the normalised value:

âi =
ai − µB√
σ2
B + ε

(3.25)

where âi is the updated and normalised activation value and ε is a constant added

for numerical stability.

3.6.8 Hyper-parameter tuning

When improving the network, choosing the optimal hyper-parameters can be bene-

ficial. These are parameters that are set before training is started which determines

the structure of the network and the variables which determine how the network is

trained. Knowing which hyper-parameter to change to get a better result is difficult

and usually requires testing. In previous sections, hyper-parameters of dropout, L1

and L2 regularisation and hidden layer size has been discussed. While changing these

might help, it is important to also consider the following parameters: Learning rate,

epochs and mini-batch size.

The learning rate is a measure of how large of a step the gradient descent is taking.

Too large and it might skip right past the optimal value of the loss function, too small

and it might take forever to get there. Finding a good learning rate needs some testing

to understand how changing the learning rate affects the loss function. Even with

an optimal learning rate, the loss could begin to stagnate without it actually having
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reached the optimal loss value. When the loss quickly decreases before it stagnates,

it could be beneficial to combine it with a learning rate decay. The decay means

that the learning rate gets smaller for every epoch, resulting in a learning rate that

is better suited for the current epoch. When getting closer and closer to the optimal

value of the loss function, smaller and smaller steps are required to not overstep it,

which is why a learning rate decay can give slightly better results.

The epoch, as explained earlier, is the amount of times the network runs through all

observations in the training data set. Choosing the number of epochs should be based

on when the network stops learning anything of value. If both the accuracy on the

test data and the loss has stagnated, the remaining epochs are usually unnecessary.

It is however important to experiment with more epochs as a network can sometimes

stagnate for a while before it suddenly starts improving again.

A mini-batch is the randomly chosen training inputs that are used during gradient

descent when trying to decrease the loss. An option is to use a mini-batch size of

just 1, which would give some noticeable errors for each mini-batch. However, due to

how often the gradient updates, the general direction of the gradient is maintained.

As the network has to loop over each mini-batch until all training inputs has been

exhausted, having such a small mini-batch can be time consuming. A similar but

more directionally reliable method is to use a small mini-batch size of between 2 or

32 as proposed by Dominic Masters and Carlo Luschi [38]. This allows for faster

computation while avoiding memory problems and still being able to update the

gradient frequently.
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Chapter 4

Experimental methodology

This chapter will explain the methods used in this thesis and was based on the theories

from the theory chapter (Chapter 3). These methods were mainly completed with

the help of three programs: Microsoft Excel, MATLAB and Python. Excel was used

to have good visual control over the data. MATLAB was used to import and export

data between programs and create multiple linear regression models. Python was used

to create the artificial neural networks with the Keras package. As the Levenberg-

Marquet algorithm which has been frequently used in recent studies of this topic is

not as easily available in the Keras package as it is in Matlab, it has been chosen to

use the well performing optimisers available in Keras instead.

4.1 Data correlation and analysis

The data that was available for the WWTP had already been divided into months for

the daily data set and years for the bi-weekly data set. This meant that it was not easy

to look at long term trends and to export the data to different software. To more easily

analysis the data, the data sets were structured into two tables. However, both data

sets had some incomplete and false series. The false series were series where some of

the values were obviously misentered as the values were incoherent with the rest of the

data set. I.e. values that were larger than the possible limits or values that were lower

than the previous in an ever-increasing series. The incomplete series were deleted,

while the false series were fixed by entering the values that were assumed to be correct.

During the time spans of the data sets there had been made changes to the plant in

different ways which could potentially alter how each parameter correlated to each

other. For instances where the plant had been partly out of service or malfunctioning,

the data series were removed as they did not represent the normal behaviour of the
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plant.

As the plant has been running for many years, there was a possibility that the data

did not behave consistently in correlation to each other. Physical alterations of the

plant and process changes could mean that one model would not be able to describe

the plant well both before and after the changes. With larger differences between

the different time periods, it would be necessary to make models which described the

more recent time period in addition to a model which described the plant for the

complete data set. The following dates had comments either about process changes,

installations or malfunctions:

• 05.09.14 - 07.10.14: Only one pool was in operation.

• 06.08.15: The plant was out of service.

• 05.03.16: Bio reactor start.

• 14.06.16: Salsnes filter installed.

• 24.09.16: Centrifuges installed.

• 05.10.16 - 14.03.17: Bio reactor out of service.

• 08.12.16: Machine malfunction.

• 28.08.17: Precipitation1 of iron begins.

• 13.09.17-14.09.17: Flotation out of service.

• 26.09.17, 28.09.17 - 29.09.17: Salsnes filter out of service.

• 01.03.18: Failure of polymer pump for flotation.

• 17.07.18: Ran for a few hours without course treatment.
1“Chemical precipitation in water and wastewater treatment is the change in form of materials dissolved in water

into solid particles.” [39]
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• 01.08.18: Large parts of the day without a blower in the grit remover.

• 30.08.18: Line 1 closed due to defect in Nikuni pumps.

• 17.10.18: Troubles with polymers due to full scale test.

• 08.11.18 - 09.11.18: Displacement pump stopped for 2.5h for maintenance work.

• 07.12.18: Change of PLS which affected the polymer additives.

• 16.01.19: Downscaling of line 1. New point for adding iron.

Note that these dates may be inaccurate compared to when the events actually hap-

pened at the plant and that they might have been of a slightly different duration,

start or stop date due to how the events were logged.

The data was analysed to find any existing correlations using the Pearson’s correla-

tion coefficient. Parameters with high correlation could be crucial in describing each

other either directly or in combination with other parameters. If there proved to be

noticeable differences during the time span of the data either due to the mentioned

plant deviations or other reasons, it could also be necessary to compare correlations

from only specific time periods. Even though it would be beneficial for training to

use as much data as possible, using all of it could be a misstep due to how much the

plant had changed over the years. Using only the more recent data could therefore

be a possibility.

It could also be seen in Tables 2.1 and 2.2 that the overlapping values of TPin, TPout,

and Qwin gave deviating values. As these were supposed to be identical for the

same time period (note that the referenced tables are of different time periods) a

comparison of the values were performed. This was performed by extracting values

that were measured on the same day and comparing them.
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4.2 Regression models

Before making the more complicated ANN models, regression models were made for

each data set. The results of these models could be used as a comparison to the

ANN models, and as the MLR models were faster to train and experiment with,

they were used to get a good idea about the optimal inputs and data ranges to use.

As the bi-weekly data set used four inputs and three outputs, three models were

needed, one for each output. Because of the single output of the daily data set, one

model was sufficient. In addition, there was made models for the daily data set which

contained either all input parameters, and only influent parameters. As the time

between the measurement of TPin and the flocculation step was only about 30-40

minutes, it was theorised that measurements could be collected over this time period

and combined for a single set of model inputs which would control the next 30-40

minutes of wastewater. I.e. the measurements of Qwin and TPin would be measured

for a single sample of water which would then use some time to reach the next

measurement points. Once the sample had reached all measurement points the data

could be used by the model to predict the influent water and then control the amount

of PIX added to the water. This model would then repeat continuously. While such

a model was not made in this thesis due to lack of time continuous measurements,

testing the quality of both influent and effluent input parameters would give valuable

information about its possibilities.

To determine if one or more of the parameters reduced the quality of the model, a

sensitivity analysis was performed by using different combinations of input parameters

and considering the different effects the parameters had on the result. This would

also give information about which parameters were the most important to include in

a data-driven model of the plant and which could potentially have a negative effect

on the result. The models were made in MATLAB and were based on the methods
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described in Chapter 3.1 and used one constant multiplier for each parameter used.

In addition, any values below zero were changed to zero as negative numbers would

not be possible. The data were split into 70% training data and 30% test data, both

sampled in a random order. To avoid obtaining models that were based on statistical

outliers, the tests were re-run 1001 times. The median result, in regard to correlation

between model output and actual output, was chosen as the MLR model. This was

also the model that was used for the sensitivity analysis. As the median of a series

finds the average of the two middle values if the series is of even numbers, an odd

number was used.

The quality of the models were considered with respect to correlation, r, mean squared

error (MSE) and mean absolute percentage error (MAPE). The correlation coefficient

indicates how much the estimated values increase or decrease in correlation with the

actual values. Both MSE and MAPE describes how far each value is from the expected

value, and as MSE punishes larger errors more, it suggests more about the larger errors

which are unwanted. MSE and r were considered the major quality parameters as it

was important that the models had as few large deviations as possible and responded

proportionally with the reference values. When models were compared to each other,

MSE and MAPE values were only considered when comparing models with the same

setup. This was to avoid problems with a superior model having a higher MSE or

MAPE values than an inferior model due to using data with higher values in general.

4.3 Artificial neural network setup

The ANN models were made with the same approach as with the MLR models re-

garding inputs, outputs and amount of data used. Data was also randomly split into

70% training data and 30% test data. While the MLR models were obtained by

choosing a median result based on multiple training attempts, the ANN models were
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not trained in this way. This was because an ANN model takes considerably longer

to train compared to an MLR model. Every test was also run on the same random

state for easier parameter tuning. Although it would be possible to use only a single

model with three outputs for the bi-weekly data set, this was not done. It was instead

decided that a more tailored model would be more beneficial as the optimal model

for the different output parameters would not necessarily be the same. This has also

shown to be a valid concern in existing literature [1]. Due to the different architecture

of the ANN models compared to the MLR models, a new sensitivity analysis was also

performed.

The setups that proved the best for the MLR models were used as base models for

the ANN before new setups were examined. This was in regard to time periods and

input parameters. The quality of the ANN models were also considered based on the

same parameters as the MLR models: correlation (r), MSE and MAPE. In addition,

any negative values were changed to zero as negative numbers would not be possible.

As the ANN models had more room for improvement than the MLR models, they

were tested by adding and removing the different functions described in Chapter 3 as

well as changing the different hyper-parameters. Initially, the base model for the bi-

weekly data set composed of 3 input neurons, 10 neurons in a single hidden layer, and

1 output layer. This is shortened as a 3-10-1 network. The daily data set had a base

model structure of 7-10-1 due to more available input parameters. As new parameters

like Temp., date, Qrw, and Qwin were added, the base of the models were changed to

8-10-1 and 12-10-1 respectively, using all input parameters. An 8-10-1 layer setup was

also used for the daily data set which removed the input parameters that had their

measurement point after PIXadd was added. In other words, this model only used

influent input parameters. All of the models used an MSE loss function, stochastic

gradient descent optimiser function, sigmoid activation function, 100 epochs, a batch
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4.3. ARTIFICIAL NEURAL NETWORK SETUP

size of 10 and a 0-1 normalised input with all the default options to begin with.

These models were then optimised separately with the use of the following methods

and functions: noise, batch normalisation, regularisers and dropout. In addition,

the hyper-parameters of the base model were optimised, and different optimisers,

activations, and loss functions were tried.
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Chapter 5

Data analysis results

This chapter shows the results in regards to the data analysis. First the data trends

will be shown and the data will be split into 6 different time periods which is meant to

better represent the plant at its different stages through 2002 - 2019. The correlation

between each parameter is then calculated based on these time periods. At last, a

comparison between overlapping values of the bi-weekly and daily data set is shown

regarding TPin, TPout, and Qwin.

5.1 Data trends

In Figures 5.1a through 5.1g the different parameters of the bi-weekly data set is

shown. The first observation is at 04.04.06 and the last is at 13.12.18, with about 2

years and 6 month to 3 years and 4 month between every 50th observation (about

3 years on average). These figures exclude data prior to 04.04.06 as measurements

of Qwin and Temp. were not present. In Figures 5.2a through 5.2k the different

parameters of the daily data set is shown. The first observation is at 02.01.17 and the

last is at 12.03.19, with about 5 months between every 100th observation. There were

a few instances where noticeable changes had happened: a drop in values of BODout

and CODout occurred in August 2015 in the bi-weekly data set (observation 156-226);

a steady decrease of TSout happened between September 2017 and April 2018 before it

instantaneously increased five-fold, which resembled values present previously in the

daily data set (observation 178-310); PIXadd more than doubled in value after July

of 2017 in the daily data set (observation 130-543). In regards to the rebuilding and

process changes of the plant, there was not noticed any obvious direct change in the

behaviour of the future data except for when precipitation of iron begun, which lined

up well with the steady decrease of TSout. However these results may be unrelated.
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5.1. DATA TRENDS

Note that even though the treatment efficiency Treateff has been shown in Figure

5.2j, it has not been used in any of the models and has only been included to showcase

its trends. Malfunctions and other process stops had at times some potential direct

effect on the data, and these were removed from the data sets. The data were split

into six different time periods with similar behaviour as these changes could mean

that there would be a reduced correlation between the different periods. These time

periods are shown in each of the data trends. In Figures 5.1d, 5.1f, 5.2g and 5.2d the

time period splits can be seen matching up with the mentioned changes. The daily

data set starts in the middle of time period 3 as the first data of the set is at 02.01.17.

The bi-weekly data set stops in the middle of time period 6 as the last data of the

set is at 13.12.18.

• Period 1: 20.Feb 2002 - 03.Apr 2006

• Period 2: 04.Apr 2006 - 13.Aug 2015

• Period 3: 14.Aug 2015 - 10.Jul 2017

• Period 4: 11.Jul 2017 - 14.Sep 2017

• Period 5: 15.Sep 2017 - 06.Apr 2018

• Period 6: 07.Apr 2018 - 12.Mar 2019
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5.1. DATA TRENDS

5.1.1 Bi-weekly data set trends
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Figure 5.1: Bi-weekly data set parameters plots, 04.04.06 - 13.12.18.
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Figure 5.1: Bi-weekly data set parameters plots, 04.04.06 - 13.12.18 (Cont.).
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Figure 5.1: Bi-weekly data set parameters plots, 04.04.06 - 13.12.18 (Cont.).
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Figure 5.1: Bi-weekly data set parameters plots, 04.04.06 - 13.12.18 (Cont.).
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5.1. DATA TRENDS

5.1.2 Daily data set trends
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Figure 5.2: Daily data set parameters plots, 02.01.17 - 12.03.19.
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Figure 5.2: Daily data set parameters plots, 02.01.17 - 12.03.19 (Cont.).
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Figure 5.2: Daily data set parameters plots, 02.01.17 - 12.03.19 (Cont.).
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Figure 5.2: Daily data set parameters plots, 02.01.17 - 12.03.19 (Cont.).
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0 100 200 300 400 500

Observations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

m
g

/l

T
im

e
 p

e
ri
o

d
 4

T
im

e
 p

e
ri
o

d
 5

T
im

e
 p

e
ri
o

d
 6

TP
out

(i) TPout.

0 100 200 300 400 500

Observations

0.4

0.5

0.6

0.7

0.8

0.9

1

P
e

rc
e

n
t 

(%
)

T
im

e
 p

e
ri
o

d
 4

T
im

e
 p

e
ri
o

d
 5

T
im

e
 p

e
ri
o

d
 6

Treat.
eff

(j) Treat.eff .

Figure 5.2: Daily data set parameters plots, 02.01.17 - 12.03.19 (Cont.).
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Figure 5.2: Daily data set parameters plots, 02.01.17 - 12.03.19 (Cont.).

5.2 Data correlations

The Pearson’s correlation coefficient was used to find correlations between the dif-

ferent parameters. Correlation between output and input data did not give values
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5.2. DATA CORRELATIONS

higher than 0.5 for neither the bi-weekly or daily data set using time periods 2-6 and

3-6 respectively. Correlations were however in general much higher when using time

period 3-6 for the bi-weekly data set and time period 6 for the daily data set. When

using the bi-weekly data set and time period 2, BODout and CODout has much higher

correlations with influent values than in later time periods. In Tables 5.2 and 5.4 the

correlation between each parameter is shown for all data of their respective data sets,

and in Tables 5.3 and 5.5 the correlation between each parameter is shown for only

the later periods for the bi-weekly and daily data sets respectively. Table 5.1 shows

the correlation of the bi-weekly data set using time period 2. Notably there was a

high correlation between TPin, CODin and BODin for the bi-weekly data set, as well

as between BODout and CODout. There was a large negative correlation between

Qwin and the influent parameters TPin, BODin and CODin. For the daily data set,

there was only a significant correlation between Qwin and TPin using all time peri-

ods. When using only time period 6, there were however much higher correlations in

regards to both PIXadd and TPout with other parameters.

Table 5.1: Correlation between parameters in bi-weekly data set for time period 2, 04.04.06 - 13.08.15.

Parameter TPin TPout BODin BODout CODin CODout Qwin Temp.

TPin 1.00 0.40 0.68 0.41 0.75 0.42 -0.52 0.20

TPout - 1.00 0.38 0.34 0.35 0.44 -0.11 0.13

BODin - - 1.00 0.76 0.84 0.69 -0.55 0.02

BODout - - - 1.00 0.66 0.86 -0.38 -0.25

CODin - - - - 1.00 0.67 -0.58 0.04

CODout - - - - - 1.00 -0.38 -0.24

Qwin - - - - - - 1.00 0.00

Temp. - - - - - - 1.00
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5.2. DATA CORRELATIONS

Table 5.2: Correlation between parameters in bi-weekly data set for time periods 2-6, 04.04.06 -

13.12.18.

Parameter TPin TPout BODin BODout CODin CODout Qwin Temp.

TPin 1.00 0.40 0.75 0.17 0.80 0.22 -0.57 0.25

TPout - 1.00 0.36 0.29 0.37 0.40 -0.14 0.20

BODin - - 1.00 0.45 0.86 0.43 -0.58 0.09

BODout - - - 1.00 0.42 0.89 -0.21 -0.23

CODin - - - - 1.00 0.46 -0.59 0.12

CODout - - - - - 1.00 -0.23 -0.20

Qwin - - - - - - 1.00 -0.06

Temp. - - - - - - 1.00

Table 5.3: Correlation between parameters in bi-weekly data set using time periods 3-6, 14.08.15 -

13.12.18.

Parameter TPin TPout BODin BODout CODin CODout Qwin Temp.

TPin 1.00 0.44 0.87 -0.14 0.93 0.16 -0.74 0.35

TPout - 1.00 0.34 0.03 0.43 0.34 -0.29 0.39

BODin - - 1.00 0.01 0.91 0.26 -0.72 0.25

BODout - - - 1.00 -0.02 0.79 0.08 -0.45

CODin - - - - 1.00 0.24 -0.70 0.29

CODout - - - - - 1.00 -0.14 -0.28

Qwin - - - - - - 1.00 -0.23

Temp. - - - - - - - 1.00
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Table 5.4: Correlation between parameters in daily data set for time period 3-6, 02.01.17 - 12.03.19.

Parameter Qwin TPin Qrw TSout pHout TS(%)out PIXadd Turb.out TPout Temp.

Qwin 1.00 -0.72 0.08 0.11 -0.15 -0.08 0.53 0.11 -0.39 -0.28

TPin - 1.00 -0.14 -0.06 0.22 0.17 -0.36 -0.22 0.47 0.37

Qrw - - 1.00 0.39 -0.16 -0.39 -0.24 -0.10 -0.08 0.07

TSout - - - 1.00 -0.17 -0.21 -0.11 0.04 -0.13 0.42

pHout - - - - 1.00 0.38 0.32 -0.27 0.26 0.2

TS(%)out - - - - - 1.00 0.5 -0.33 0.33 0.2

PIXadd - - - - - - 1.00 -0.14 -0.05 0.01

Turb.out - - - - - - - 1.00 -0.45 -0.29

TPout - - - - - - - - 1.00 0.3

Temp. - - - - - - - - - 1.00

Table 5.5: Correlation between parameters in daily data set using time period 6, 07.04.18 - 12.03.19.

Parameter Qwin TPin Qrw TSout pHout TS(%)out PIXadd Turb.out TPout Temp.

Qwin 1.00 -0.78 -0.00 0.31 -0.32 -0.29 0.77 0.49 -0.59 -0.47

TPin - 1.00 -0.00 -0.23 0.29 0.25 -0.66 -0.48 0.58 0.49

Qrw - - 1.00 0.47 0.23 0.19 0.29 -0.34 0.21 0.36

TSout - - - 1.00 0.10 0.20 0.63 0.10 -0.22 0.32

pHout - - - - 1.00 0.10 -0.08 -0.32 0.21 0.38

TS(%)out - - - - - 1.00 -0.04 -0.21 0.26 0.42

PIXadd - - - - - - 1.00 0.42 -0.54 -0.18

Turb.out - - - - - - - 1.00 -0.58 -0.46

TPout - - - - - - - - 1.00 0.31

Temp. - - - - - - - - - 1.00
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5.3. COMPARISON OF BI-WEEKLY AND DAILY OVERLAPPING MEASUREMENTS

5.3 Comparison of bi-weekly and daily overlapping measure-

ments

The three parameters TPin, TPout, and Qwin which were present in both data sets are

compared in Figures 5.3a through 5.3c. Only measurements that were taken on the

same day has been compared. The bi-weekly data set generally gives higher values for

TPin and TPout, but values are fairly similar for Qwin. A histogram of the deviations

are shown in Figures 5.4a and 5.4b together with their respective normal distribution.
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Figure 5.3: Comparison of overlapping data parameters for bi-weekly and daily data set.
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Figure 5.3: Comparison of overlapping data parameters for bi-weekly and daily data set (Cont.).
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Figure 5.4: Histogram of deviations between overlapping parameters.
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Chapter 6

ANN and MLR model results

This chapter show the results from the ANN and MLR models. At first a high

correlation between TPin, CODin and BODin is used to generate MLR models which

could be used to guess upcoming CODin and BODin values before they are measured

by a laboratory. Secondly the MLR models for the bi-weekly data set is shown using

time period 2 but also the results of time periods 2-6 and 3-6 are shown. This is

also performed for the daily data set in the same way with time periods 3-6 and then

6. The results show how well the data can be estimated by a simple model. An

output sensitivity analysis is also given to determine which parameters give the best

and worst effect on the result. The same procedure is repeated for ANN models.

All models has been generated with 70% training data and 30% test data which was

randomly sampled. Data will be referred to as either training data, test data or all

data, where all data includes both training and test data. Plots of the models are

shown using all data, and correlations and MSE values are shown for both all data and

for test data. Sensitivity analyses are compared in regards to all data to keep some

consistency in the results. Note that the trends in this chapter has been randomly

sorted before training, but has been sorted by date after testing was finished.

6.1 BOD and COD influent models

The high correlation between TPin, BODin and CODin was used to generate a linear

approximation of their relationships shown in Figures 6.1a and 6.2b using all time

periods. The day, month, year, TPin, Qw, and Temp. were used as input for the MLR

models. The correlation coefficient (r) and the mean squared error (MSE) are also

shown for both test data and all data. Figures 6.3a and 6.3b uses only time periods

3-6 but show higher correlations. The models were also made by using only TPin as
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6.1. BOD AND COD INFLUENT MODELS

an input. These models gave a slightly higher correlation but much worse MSE for

time period 3-6, slighly lower correlations and worse MSE for time period 2-6 and

time period 2. These models are not shown.
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(a) BODin model.

0 50 100 150

Observations

0

200

400

600

800

1000

m
g
/l

r
test

 = 0.774,           r
all

 = 0.787

mse
test

 = 14660.7448, mse
all

 = 10250.3715

COD
in

Linear

(b) CODin model.

Figure 6.1: MLR models for generating BODin and CODin, using time period 2, 04.04.06 - 04.08.15.
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(a) BODin model.
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Figure 6.2: MLR models for generating BODin and CODin, using time period 2-6, 04.04.06 -

13.12.18.
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(a) BODin model.
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Figure 6.3: MLR models for generating BODin and CODin, using time periods 3-6, 14.08.15 -

13.12.18.

6.2 MLR effluent models

Figures 6.4a, 6.4b, and 6.4c show the results of the MLR models for the bi-weekly

data set using time period 2. Results for time periods 2-6 and 3-6 are shown in Table

6.1. This split was performed to show how correlations are generally high for time

period 2 but are low for 3-6. Correlations are also much higher for BODout and

CODout than for TPout. For these models, the month, year, TPin, BODin, CODin,

Qw and Temp. were used as inputs.

For the daily data set Figures 6.5a and 6.5b show the results of MLR models using

data from time period 3-6. These models uses only influent parameters (month,

year, Qwin, TPin, Qrw and PIXadd) and all parameters (month, year, Qwin, TPin,

Qrw, TSout, pHout, TS(%)out, PIXadd and Turb.out) respectively. This is also the

case for Figures 6.6a and 6.6b, but these models uses only data from time period 6.

The results are better when using all inputs compared to using only influent inputs
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(with correlation increasing from 0.58 to 0.61 and 0.68 to 0.72 respectively), but

improves more significantly when using only data from time period 6 (with correlation

increasing from 0.58 to 0.68 and 0.61 to 0.72 respectively). In the plots the correlation

coefficient (r) and the mean squared error (MSE) are shown.

6.2.1 Bi-weekly data set models

0 50 100 150

Observations

0

0.5

1

1.5

m
g

/l

r
test

 = 0.417,           r
all

 = 0.525

mse
test

 = 0.02784, mse
all

 = 0.0326

TP
out

Linear

(a) TPout model.
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Figure 6.4: MLR models of the bi-weekly data set using time period 2, 04.04.06 - 13.08.15.
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Figure 6.4: MLR models of the bi-weekly data set using time period 2, 04.04.06 - 13.08.15 (Cont.).

Table 6.1: Remaining MLR models of bi-weekly data set.

Output Time period Dates rtest MSEtest rall MSEall

TPout 2-6 04.04.06 - 13.12.18 0.415 0.04113 0.488 0.03206

BODout 2-6 04.04.06 - 13.12.18 0.683 674.2 0.712 610.8

CODout 2-6 04.04.06 - 13.12.18 0.732 1781 0.754 1634

TPout 3-6 14.08.15 - 13.12.18 0.425 0.02626 0.497 0.02708

BODout 3-6 14.08.15 - 13.12.18 0.485 147.9 0.589 185.3

CODout 3-6 14.08.15 - 13.12.18 0.321 1147 0.46 617.0
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6.2.2 Daily data set models
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(a) TPout model with only influent inputs.
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Figure 6.5: MLR models for daily data set using time periods 3-6, 02.01.17 - 13.03.19.
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(a) TPout model with only influent inputs.
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Figure 6.6: MLR models for daily data set using time period 6, 07.04.18 - 12.03.19.
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6.3 MLR effluent models sensitivity

To test which input parameters affected the results of the MLR models the most,

all parameters were removed from the model one at the time and the results are

compared. The analysis was based on the median result from the MLR models and

are in Figures 6.7a through 6.11c compared by all data results. The graphs should be

interpreted as the parameters that are furthest from the ’no effect’ value (where no

parameter is removed) are the ones that give the biggest effect on the result. A red

bar colour has been given to parameters which give a positive effect when removed,

while blue (daily data set) or purple (bi-weekly data set) is considered the opposite.

In other words, parameters in a red colour should be removed from an optimal model.

To get some consistency in the results, the sensitivity is compared by all data results,

because test results gave different results between each test.

6.3.1 Bi-weekly data set

The results of Figures 6.7a and 6.7b closely mirror each other and show that TPout

is reliant on Temp., Qwin, TPin, month, and year more than other parameters, while

the day slightly worsen the result. The same can somewhat be said about MAPE in

Figure 6.7c where Qwin is the most significant parameter. For BODout the results

in Figures 6.8a and 6.8b show that BODin is by far the most significant parameter,

followed by Temp., TPin and CODin. Figures 6.9a, 6.9b, and 6.9c show that CODout

is reliant on Temp., BODin, CODin and year.
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Figure 6.7: TPout sensitivity of dropping input parameters for the bi-weekly data set using time

period 2, 04.04.06 - 13.08.15.
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Figure 6.7: TPout sensitivity of dropping input parameters for the bi-weekly data set using time

period 2, 04.04.06 - 13.08.15 (Cont.).

63



6.3. MLR EFFLUENT MODELS SENSITIVITY

D
a
y

M
o
n

th

Y
e

a
r

T
P

in

B
O

D
in

C
O

D
in

Q
w

in

T
e

m
p

.

N
o

n
e

0.72

0.74

0.76

0.78

0.8

0.82

C
o
rr

e
la

ti
o
n
 (

r)

No effect

(a) Sensitivity compared by correlation.

D
a
y

M
o
n
th

Y
e
a
r

T
P

in

B
O

D
in

C
O

D
in

Q
w

in

T
e
m

p
.

N
o
n
e

420

440

460

480

500

520

540

560

580

M
S

E

No effect

(b) Sensitivity compared by MSE.

Figure 6.8: BODout sensitivity of dropping input parameters for the bi-weekly data set using time

period 2, 04.04.06 - 13.08.15.
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Figure 6.8: BODout sensitivity of dropping input parameters for the bi-weekly data set using time

period 2, 04.04.06 - 13.08.15 (Cont.).
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Figure 6.9: CODout sensitivity of dropping input parameters for the bi-weekly data set using time

period 2, 04.04.06 - 13.08.15.
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Figure 6.9: CODout sensitivity of dropping input parameters for the bi-weekly data set using time

period 2, 04.04.06 - 13.08.15 (Cont.).
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6.3.2 Daily data set

For Figures 6.10a, 6.10b, and 6.10c TPin, month, and turb.out seems to be the most

important parameters for TPout. A slight negative effect is found from Qrw and pHout

for MAPE. For Figures 6.11a, 6.11b, and 6.11c which only uses time period 6, Qrw,

TPin, Turb.out, PIXadd, and Temp. all give consistently positive results for TPout

over all measurements. pHout is shown to be slightly negative.
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Figure 6.10: TPout sensitivity of dropping input parameters for the daily data set using time periods

3-6, 02.01.17 - 12.03.19.
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Figure 6.10: TPout sensitivity of dropping input parameters for the daily data set using time periods

3-6, 02.01.17 - 12.03.19 (Cont.).
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Figure 6.11: TPout sensitivity of dropping input parameters for the daily data set using time period

6, 07.04.18 - 12.03.19.
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Figure 6.11: TPout sensitivity of dropping input parameters for the daily data set using time period

6, 07.04.18 - 12.03.19 (Cont.).

6.4 ANN model improvements

Several improvements were done to the base models described in Chapter 4.3. While

many changes were performed without any noticeable effect on the result, a few

changes stood out for all models. The following changes can be considered to be

in an approximate order of most significant to least significant change: using specific

time periods; increasing the layer size of layer 1; adding new input parameters (Temp.,

date, and Qwin for both data sets and Qrw for the daily data set); adding a second

layer; changing the activation functions to ELU; increasing learning rate and adding

learning rate decay; and changing the input normalising to be between 0.1 and 0.9.

Additionally, some models were improved my the following changes: adding a weight

decay; adding dropout between first, second and output layer; and changing the batch

size. The final models that were used to produce the results shown in Chapter 6.5

are shown in Tables 6.3 and 6.4 for the bi-weekly and daily data set respectively.

In these tables some abbreviations are used which are clarified in Table 6.2. These
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abbreviations will not be used again and is just to more easily represent the neural

network setup in this section.

Table 6.2: Abbreviations used in ANN model explanation

Abbreviation Explanation Abbreviation Explanation

LS Layer size O Optimiser function

NIn Input normalisation LR Learning rate

AF Activation function LRD Learning rate decay

WD Weight decay (L2) L Loss function

E Epochs BS Batch size

DO
Dropout between previous

and current layer

Table 6.3: Final ANN models for bi-weekly data set

Layer In Layer 1 Layer 2 Layer Out Optimiser Other

TPout, Time period 2, All inputs

LS = 8 LS = 400, LS = 60, LS = 1 O = Adam L = MSE

NIn = (0.1,0.9) AF = ELU, AF = ELU, AF = ELU, LR = 0.003 E = 400

WD = 0.001 LRD = 0.002 BS = 8

BODout, Time period 2, All inputs

LS = 8 LS = 1000, LS = 200, LS = 1 O = Adam L = MSE

NIn = (0.1,0.9) AF = ELU, AF = ELU, AF = ELU, LR = 0.001 E = 400

WD = 0.1 DO = 0.2 DO = 0.2 LRD = 0.0002 BS = 8

CODout, Time period 2, Influent inputs

LS = 8 LS = 1000, LS = 200, LS = 1 O = Adam L = MSE

NIn = (0.1,0.9) AF = ELU, AF = ELU, AF = ELU, LR = 0.004 E = 400

WD = 0.001 LRD = 0.002 BS = 8
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Table 6.4: Final ANN models for daily data set

Layer In Layer 1 Layer 2 Layer Out Optimiser Other

TPout, Time period 6, Influent inputs

LS = 8 LS = 800, LS = 30, LS = 1 O = Adam L = MSE

NIn = (0.1,0.9) AF = Linear, AF = ELU, AF = ELU, LR = 0.003 E = 400

LRD = 0.003 BS = 14

TPout, Time period 6, All inputs

LS = 12 LS = 30, LS = 3, LS = 1 O = Adam L = MSE

NIn = (0.1,0.9) AF = Linear, AF = ELU, AF = ELU, LR = 0.003 E = 400

LRD = 0.003 BS = 12

TPout, Time period 3-6, Influent inputs

LS = 8 LS = 800, LS = 30, LS = 1 O = Adam L = MSE

NIn = (0.1,0.9) AF = ELU, AF = ELU, AF = ELU, LR = 0.003 E = 400

LRD = 0.005 BS = 12

TPout, Time period 3-6, All inputs

LS = 12 LS = 800, LS = 30, LS = 1 O = Adam L = MSE

NIn = (0.1,0.9) AF = Linear, AF = ELU, AF = ELU, LR = 0.003 E = 400

LRD = 0.003 BS = 12

6.5 ANN effluent models

Figures 6.12a, 6.12b, and 6.12c show the results of the ANN model for the bi-weekly

data set using time period 2. The correlations are rather low for TPout with only 0.52

for test data, but much higher for BODout and CODout at 0.82 and 0.76 respectively.

For these models the day, month, year, TPin, BODin, CODin, Qwin and Temp. were

used as inputs. The same inputs were used for models using time period 2-6 and 3-6

as shown in Table 6.5.

For the daily data set Figures 6.13a and 6.13b show the results of ANN models using
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data from time periods 3-6. These models uses only influent parameters (day, month,

year, Qwin, TPin, Qrw and PIXadd) and all parameters (month, year, Qwin, TPin,

Qrw, TSout, pHout, TS(%)out, PIXadd and Turb.out) respectively. This is also the case

for Figures 6.14a and 6.14b, but these models only uses data from time period 6. The

results are better when using all inputs compared to using only influent inputs (with

correlation increasing from 0.55 to 0.62 and 0.75 to 0.77 respectively), but improves

more significantly when using only data from time period 6 (with correlation increas-

ing from 0.55 to 0.75 and 0.62 to 0.77 respectively). In the models the correlation

coefficient (r), and the mean squared error (MSE) are shown.

6.5.1 Bi-weekly data set models
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Figure 6.12: ANN models of the bi-weekly data set using time period 2, 04.04.06 - 13.08.15.
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Figure 6.12: ANN models of the bi-weekly data set using time period 2, 04.04.06 - 13.08.15 (Cont.).

Table 6.5: Remaining ANN models of bi-weekly data set.

Output Time period Dates rtest MSEtest rall MSEall

TPout 2-6 04.04.06 - 13.12.18 0.483 0.03315 0.485 0.0323

BODout 2-6 04.04.06 - 13.12.18 0.831 429.4 0.837 373.4

CODout 2-6 04.04.06 - 13.12.18 0.761 1676 0.795 1392

TPout 3-6 14.08.15 - 13.12.18 0.348 0.0315 0.524 0.02617

BODout 3-6 14.08.15 - 13.12.18 0.37 202.8 0.531 198.2

CODout 3-6 14.08.15 - 13.12.18 0.21 808.9 0.581 709.2
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6.5.2 Daily data set models
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(a) TPout model with only influent inputs.
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Figure 6.13: ANN models for daily data set using time periods 3-6, 02.01.17 - 13.03.19.
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(a) TPout model with only influent inputs.
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(b) TPout model with all inputs.

Figure 6.14: ANN models for daily data set using time period 6, 07.04.18 - 12.03.19.
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6.6 ANN effluent models sensitivity

To test which input parameters affected the results of the ANN models the most,

all parameters were removed from the model one at a time and the results were

compared. Figures 6.15a through 6.19c show how each of the parameters compares

to the all data results. The graphs should be interpreted as the parameters that are

furthest from the ’no effect’ value (where no parameter is removed) are the ones that

give the biggest effect on the result. A red bar colour has been given to parameters

which give a positive effect when removed, while blue (daily data set) or purple (bi-

weekly data set) is considered the opposite. In other words, parameters in a red

colour should be removed from an optimal model.

6.6.1 Bi-weekly data set

For TPout Figures 6.15a and 6.15b show that the year, TPin, and Qwin all give a

positive effect on the result, and the same can be said for Figure 6.15c but here Qwin

gives the biggest positive effect. In Figures 6.16a through 6.16c BODin is by far the

most significant parameter, with the date, TPin, and Temp. also giving a positive

effect. Figures 6.17a through 6.17c show that CODout is most reliant on the year,

Temp., CODin, and BODin, while the month gives a slight negative effect.
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Figure 6.15: TPout sensitivity of dropping input parameters for the daily data set using time period

2, 04.04.06 - 13.08.15.
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(c) Sensitivity compared by MAPE.

Figure 6.15: TPout sensitivity of dropping input parameters for the daily data set using time period

2, 04.04.06 - 13.08.15 (Cont.).

75



6.6. ANN EFFLUENT MODELS SENSITIVITY

D
a
y

M
o
n

th

Y
e

a
r

T
P

in

B
O

D
in

C
O

D
in

Q
w

in

T
e

m
p

.

N
o

n
e

0.74

0.76

0.78

0.8

0.82

0.84

C
o
rr

e
la

ti
o
n
 (

r)

No effect

(a) Sensitivity compared by correlation.

D
a
y

M
o
n
th

Y
e
a
r

T
P

in

B
O

D
in

C
O

D
in

Q
w

in

T
e
m

p
.

N
o
n
e

400

450

500

550

M
S

E

No effect

(b) Sensitivity compared by MSE.

Figure 6.16: BODout sensitivity of dropping input parameters for the daily data set using time

period 2, 04.04.06 - 13.08.15.
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(c) Sensitivity compared by MAPE.

Figure 6.16: BODout sensitivity of dropping input parameters for the daily data set using time

period 2, 04.04.06 - 13.08.15 (Cont.).
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Figure 6.17: BODout sensitivity of dropping input parameters for the daily data set using time

period 2, 04.04.06 - 13.08.15.
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(c) Sensitivity compared by MAPE.

Figure 6.17: CODout sensitivity of dropping input parameters for the daily data set using time

period 2, 04.04.06 - 13.08.15 (Cont.).
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6.6.2 Daily data set

By using time periods 3-6 for the daily data set, Figures 6.10a through 6.10c show

that TPout is reliant on most parameters available but mostly on the year, TPin,

Qrw, Turb.out, and Temp. The day and Qwin has a slight negative effect on MAPE.

For Figures 6.11a through 6.11c, TPout seems to be most reliant on TPin, Qrw, and

Turb.out.
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Figure 6.18: TPout sensitivity of dropping input parameters for the daily data set using time periods

3-6, 02.01.17 - 12.03.19.
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(c) Sensitivity compared by MAPE.

Figure 6.18: TPout sensitivity of dropping input parameters for the daily data set using time periods

3-6, 02.01.17 - 12.03.19 (Cont.).
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Figure 6.19: TPout sensitivity of dropping input parameters for the daily data set using time period

6, 07.04.18 - 12.03.19.
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Figure 6.19: TPout sensitivity of dropping input parameters for the daily data set using time period

6, 07.04.18 - 12.03.19 (Cont.).
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Chapter 7

Discussions

This chapter includes discussions about the results of Chapter 5 and 6, and the

methods that were used to accomplish these results.

7.1 Data analysis

The goal of the data analysis was to make a judgement on the available data sets.

These data sets were not made to be used for data modelling and could therefore

have been in the worst case either useless, inadequate or in a better case effective in

describing the plant. Having only around 24 measurements per year for the bi-weekly

data set was a concern as this could potentially give an inadequate explanation of

the full year the data was meant to cover. The fact that the data stretched over

almost 17 years could also mean that data from the beginning of the data set was

not comparable to newer data. This problem was however not as prevalent for the

daily data set which featured 535 measurements for 26 months in total. This meant

that the data better described the different shifts that would occur through from day

to day. The choice to remove data prior to when temperature and water discharge

measurements begun was done because: 1) it was believed results would benefit from

additional parameters and 2) the many changes in the plant would mean that data

from this period would have a much lower explanatory power than newer data on the

current plant state.

7.1.1 Trends of influent and effluent parameters

The results of the data analysis reflect the fact that the plant has been changing

throughout the years. For the bi-weekly data set, this is seen in both BODout and

CODout as they have generally decreased to much lower values than from before
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August 2015, as seen in Figures 5.1d and 5.1f. No obvious change in behaviour was

detected in TPout in neither the bi-weekly or daily data set (Figures 5.1b and 5.2i).

TPout does however seem to have some sort of cyclic behaviour which somewhat

correlates to the temperature. The same can be seen for TPin as seen in Figure

5.2b. For other effluent values like TS(%)out, Turb.out and pHout no obvious changes

could be seen (Figures 5.2f, 5.2h, and 5.2e). The only other effluent parameter with

noticeable changes was TSout as seen in Figure 5.2d. The behaviour here is curious

due to the linear change between time period 5 and 6 before the huge immediate

increase. One possible fault for some of the data points in the daily data set could be

how the data was recorded. Manual measurements, data readings and data recordings

could easily lead to human errors. This was evident when going through the data set

as many measurements had been misentered. Another possible fault could be some of

the uncalibrated and possibly faulty sensors that were used to gather measurements.

These faults are quite possibly part of the reasons for the behaviour of TSout which

would mean the data is not entirely reliable.

Most influent parameters were stable or continuously cyclic which is to be expected

as changes in the plant would not affect the wastewater before it enters the plant.

Some outliers in e.g. TS(%)out, pHout and Treat.eff could be due to, in addition to

the previously described faults, certain machine failures etc. that was not noted in

the data sets. Arguments could be made to exclude these observations as they were

most likely due to events that were not in line with the ordinary operations of the

plant. This could possibly contribute negatively in the MLR and ANN models. As

no solid proofs for such a decision was found they were however included.
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7.1.2 Time periods

The 6 time periods that were chosen seemed to represent the different changes in the

data sets well. While it is curious why they do not line up well with the different

changes in the plant as exact as would be expected, they still seem to represent

different time periods of the plant. Due to lack of daily data from before 2017, it is

possible that some change in the behaviour of other plant parameters could be the

explanation of the decrease in BODout and CODout. This is also the period where the

bio reactor, Salsnes filter and centrifuges were installed which could all possibly have

had a contribution to keeping BODout and CODout values low. While the decrease

happened about 7 months before the new machines were installed, it is not unlikely

that they incidentally were installed at the same time as BODout and CODout had

some sort of cyclic low period. This could explain why the values started early and

stayed low for the remaining 3.5 years. It could therefore be possible to change the

beginning of time period 3 to 06.03.16 instead of 14.08.15.

It was also difficult to conclude some of the reasons for the last 3 time periods. Time

period 4 was made because of a change in the PIX formula used in an attempt to

increase the plant performance. Comparing TPout values (as well as other effluent

values) from before and after this change, it could seem like the change of formula

has not had any impact. Due to a lack of daily measurements from before 2017, this

can however not be concluded. Precipitation of iron begun at about the same time

as TSout begun to decrease which was the start of time period 5. The big jump at

07.04.18 which begun time period 6 was more difficult to explain based on changes

at the plant. As previously explained, the reasons for the behaviour of TSout might

be due to how it was recorded which would mean that the measurement could be

unreliable.
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7.1.3 Data correlations

The most notable findings with the data correlations was the general increase in

correlations when using only newer data or only older data shown in Table 5.2 against

Tables 5.1 and 5.3 for the bi-weekly data set and Table 5.4 against 5.5 ofr the daily

data set. This could mean that older data has a low correlation with newer data,

which strengthens the reason to split it into different time periods. Some correlations

can also be seen to decrease significantly as well. This can be due to there not actually

being a correlation between the values on a day to day basis but rather that they follow

the general changes over the years similarly. Correlations between PIXadd, TS(%)out

and other values are heavily depended on their behaviour in time periods 3, 4 and 5,

and therefore give more reliable results when only considering time period 6. This is

also likely to be the reason there is a notable difference in model performance when

using either only old, old and new, and only new data for MLR and ANN models.

The decrease in correlation between BODout and CODout, and influent parameters

when going from using time period 2 to using any newer time period is most likely

due to the same changes that decreased their values around 2015-2016.

The negative correlation between Qwin and TPin, BODin, and CODin is likely since

the amount of sewage is regarded as stable, while the increase in water may vary.

More water is unlikely to be the causation of more pollutants, and it would instead

decrease the amount of pollutants per litre. Note that this does not mean that the

total amount of pollutants would decrease.

The increase in correlation between TPin, BODin, and CODin is strange as the plant

should not have interfered with the wastewater before a sample is gathered for testing.

A possibility would be a change in test procedures, which would not be surprising

after 18 years of testing. It is also possible that some changes to sewage system or
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plant inlet has slightly changed in such a way that the pollutants have become more

correlated.

7.1.4 Available data parameters and differences between bi-weekly and

daily data set

The available parameters were typical of what was used in existing literature, but

as the data in this thesis was split into two data sets, each data set was partly

lacking. Suspended solids, total nitrogen, pH, and COD can be seen as the most

frequently used input parameters. In addition, total dissolved solids, BOD, TP, and

total suspended solids were used by more than one paper. Out of these, the bi-weekly

data set only contains COD, BOD, and TP as input parameters, while the daily data

set only has pH and TP. While the parameters used in different papers does vary,

and many of parameters used in this thesis has been used in one or more papers, it is

evident that certain parameters with great explanatory power has not been included

in this thesis. To improve the results of the models it would probably be beneficial

to include measurements of suspended solids, total nitrogen and COD due to their

performance in the existing literature. To make an effective model to control the

additive PIX, it could also be beneficial to make measurements automated and time

continuous. By measuring these additional parameters together with the ones already

in use continuously over a longer time period, it is likely that an effective model could

be generated to control parts of the plant processes.

A difference between the two data sets was the deviations between TP measurements.

As this was a measurement of the same parameter, it should under perfect circum-

stances be identical. This is however not the case, and the comparison between them

shows that the bi-weekly measurements were in general much higher. The histograms

showing the deviations also showed that the bi-weekly data set gave higher values.
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This is most likely due to the plant sensor being uncalibrated, that the tests were

performed at different times, and that the tests could have been conducted differently.

Note that with only 36 observations, the histograms would not be entirely accurate.

Additionally, there was deviations between Qwin measurements which could be due

to what time of day the measurement was taken and how it was calculated. Different

measurement timings could also have influenced the TP deviations.

7.2 MLR and ANN models in general

Based on the findings of the data analysis results chapter the data were modelled with

the use of MLR and ANN. The models showed that the plant was possible to model

accurately for certain parameters while others were not so successful. The choice of

randomly splitting data into 70% training and 30% test data for the models gave the

models more credibility. If all data had been used on both testing and training, it

would not have been able to prove its ability to generalise for new data. The random

split also meant that tests were not only performed on e.g. the newest data, which

would only have represented a specific, small time period instead of getting test data

from the whole time span of the data set. Testing on only new data would however

give the most updated view of the plant, but with the small amount of data available,

this would not be optimal.

Due to the random selection of test data, the choice of running the tests 1001 times

to get a median result for the MLR models also helped generating a reliable result

that would likely perform equally well on new data. Some of the outlier tests in this

method gave results that were far above, or below, the median result, and they would

not have been a good representation of the model. The median result would also

most likely include a good representation of normal plant operation values and and

some more extreme plant operation values, which would make it better at estimating
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both cases. As the ANN models were based on a single random state, the test and

train data were randomly chosen, but always chose the same random data every time.

Implementing a method which made new random states for every iteration like with

the MLR models would be beneficial but was more difficult for the ANN models as

the whole model had to be re-initialised for every iteration. Some other problems

with implementing this method would be: models with different test and train data

could converge differently, and at times overfit for some models; the amount of time

per iteration would decrease the speed of progress when working on the models; and

the whole model would have to be fully re-initialised to not use weights, biases, etc.

form previous models. While this would have been beneficial, it was not performed

in this thesis. Some manual testing of different random states showed that results

were acceptable.

The use of the date in this thesis gave some additional explanatory power as the

changes to the plant and the seasonal changes could be more easily modelled. It

could be possible that using the weekday instead of the day of the month would be

beneficial as this could help model shifts during the week and weekends. With no data

from weekends in the current data sets, this would however most likely not give any

significant results currently. The date could also tell the model that the parameters

available does not necessarily explain the whole process perfectly. When experiencing

two equal input sets, it is possible that the output would not be equal due to some

missing information. The date could in this case add some flexibility to the model.

7.3 Bi-weekly data set influent models

Influent models were made for BODin and CODin with MLR which gave accurate es-

timations as shown in Figures 6.1b through 6.3b. The quality of each model increases

by how much more newer data is used and how much less old data is used. The model
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using time period 3-6 ends with a correlation of 0.86 and 0.91 for BODin and CODin

respectively which can be considered to be quite accurate. The differences between

the different model accuracy’s can be reflected in the correlations between each pa-

rameter in Tables 5.1 through 5.3. Due to the high correlation between BODin and

CODin, and TPin, TPin is by far the most significant parameter in the model, and

this can be seen in the correlation tables as well. This high correlation leads to believe

that a polynomial model could be made which would be purely dependant on TPin.

This model could potentially give even better results than the MLR models as the

polynomial model could focus more on a potential non-linear relationship between the

parameters. That the MLR models which only used TPin as an input were similar

in quality to the models using all input parameters strengthens this belief. Creating

an ANN model of the influent values could also be beneficial but due to the high

dependence on a single input value it is not necessarily that an ANN would be too

different from a linear or polynomial model.

7.4 Bi-weekly data set models

The effluent MLR models for the bi-weekly data set gave a fairly high correlation

between measured and estimated data for time period 2 for BODout and CODout as

seen in Figures 6.4b and 6.4c. It could however be seen that this correlation decreased

when including time periods 3-6, and there was very low correlation when using only

time periods 3-6 as seen in Table 6.1. This is most likely due to a larger change

in the plant after 2015. It can be suspected that it is the same change that caused

BODout and CODout to decrease around 2015-2016. Due to not enough data for

such a small time period, it is difficult to make a definite conclusion, but the most

likely event is the installation of the bio-reactor, Salsnes filter and centrifuges, which

all happened in between March and September of 2016. This probably changed the

process in such a way that the available parameters were not sufficient in modelling
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BODout and CODout anymore. Due to these changes, the current models are not

capable of representing the processes at the plant currently, but the results show that

it has been possible. With the addition of new parameters, it is possible that a better

model could be made. It is worth mentioning that due to the method of which the

bi-weekly measurements are done, a model could not have been made to control the

plant directly. For this a model which was only based on tests that were quickly

completed (TP and somewhat COD) would have to be made. It would also have

been crucial to measure these parameters every day.

For TPout the bi-weekly data set seems to be incapable of generating sufficient results

for both older, and newer data as seen in Figure 6.4a and Table 6.1. As the daily

data set manages this better, this leads to believe that some of the parameters of the

daily data set could have been used to help model the laboratory measurements of

TPout. However, with only 36 overlapping measurement dates, this tactic would not

have been able to give reliable results yet. Given more time and measurements, this

could be a possibility in the future.

The ANN models of the effluent values of the bi-weekly data set gave even higher

correlation values than for the MLR models (0.42 to 0.52 for TPout, 0.79 to 0.82 for

BODout, and 0.75 to 0.76 for CODout) as seen in Figures 6.4a through 6.4c. While the

difference is not substantial, it does show that the ANN models give better results.

As the ANN models could have been trained further, it is likely that even further

improvements could be made. Table 6.5 show that the models of time period 3-6 are

both better than their respective MLR models, but also better than the ANN models

of time period 2 for BODout and CODout. As the models for time period 3-6 are

much worse, it would be expected that the newer data decreased the model quality.

It is however possible that due to how few observations are used in time period 3-6

that these values did not impact the result significantly, and that the models for time
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period 2-6 were better trained than the models for time period 2. Using more time

on training these models could therefore give a more easily explained result. It is also

possible that the random states used in sampling testing and training data were more

beneficial for the models of time period 2-6.

7.4.1 Sensitivity analysis

The sensitivity analyses gave a good overview over which parameters were most effi-

cient in modelling the plant as shown in Figures 6.7a through 6.9c and 6.15a through

6.17c. While it would have given a better overview by using test data for compar-

isons, the amount of test data was not enough to give consistent results. Two different

samples of test data could give different results as to which parameters were most

important. By using all data, it was always the same data that was analysed, and

therefore gave more consistent results. It would have been possible to use every it-

eration used in the MLR models for the sensitivity analysis and consider the trend

of which parameters were generally significant, but this was not done in this thesis.

That there were generally few parameters which gave a negative effect means that

the models are dependant on getting as much information as possible. Adding more

parameters to the model would therefore be beneficial.

As the bi-weekly data set MLR model for TPout had a correlation of only 0.42 for

test data (Figure 6.4a), the sensitivity analysis of it might not be as reliable as for

the other parameters. The parameters that did well in this test might not have

performed well in a model which had better results. Something that supports this

claim is that the month is the most important parameter for the result. While the

month could give information about seasonal shifts, it does not give information about

the plant processes. That the year is also among the most important parameters is

also suspect as this mostly gives information about larger shifts throughout the years,
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e.g. changes to the plant. The sensitivity analysis using the ANN model in Figure

6.12a gives somewhat similar results but relies less on the month and more on the

day and year. As there should not be any significant change based on which day of

the month it was, it is possible that this was just random noise that, due to the low

amount of data and model correlation, coincidentally gave a positive effect.

For BODout and CODout the analyses in Figures 6.8a through 6.9c for the MLR

models give more reliable results which tell that they are mostly dependant on their

own influent values but also each other’s influent values. As they are closely related,

this is to be suspected. The analyses for BODout and CODout also give similar results

for the ANN models (Figures 6.16a through 6.17c), which strengthens the theory that

BODin and CODin but also Temp. are the most important parameters in modelling

them. CODin is seen to be less important for BODout for the ANN model compared

to the MLR model with TPin being more significant. This compares well to the

correlation analysis in Table 5.1 and the existing literature. It must be noted that

these sensitivity analyses may be inaccurate in describing the current plant state as

they were based on time period 2.

7.5 Daily data set models

For the daily data set (Figures 6.5a through 6.6b and 6.13a through 6.14b), the models

were better when predicting TPout than the bi-weekly models, but were reliant on

using only time period 6 to model TPout well. It can be seen that the models are also

somewhat reliant on using both influent and effluent values, mostly due to Turb.out

as was shown in the sensitivity analysis. While it is promising that the model based

purely on influent parameters had a high correlation, the results does show that there

is potential in a model that uses all input parameters. As all measurements used for

in this thesis were measured at approximately the same time, it can be argued that

91



7.5. DAILY DATA SET MODELS

whether some measurement points were before or after PIX was added would not be

decisive. It would however be interesting to explore a model which was based on time

continuous measurements.

The increased correlation of the models when using only newer data can also be

reflected in the correlation analysis of the data sets (Tables 5.4 and 5.5), where corre-

lations between parameters were generally higher for time period 6. Using only time

period 6 meant that only 11 months of data was used, giving the models less chance to

learn special occurrences and getting a better overview over the plant. This amount

of data should still be sufficient however, as most types of influent levels should be

reflected. The newer data should also give a better representation of the current state

of the plant.

By inspecting the graphs using only influent inputs against the ones using all inputs,

it can be seen that the models with all inputs better model the noise of the measured

values. This could mean that the influent only models are slightly underfitting the

data and are not able to generalise as well. Yet it could also be a positive sign as the

TP sensors were expected to have some errors and possibly added noise. Modelling a

more average version of the noise could be beneficial. It could also be negative if the

sensors are more correct than anticipated, which would mean the highest and lowest

values that the plant would experience would not be modelled correctly.

The models with much higher all data correlation than test data show that the models

are not generalising as well to new inputs. In the cases where the test results were

higher, like with the daily data set models using time period 6 (Figures 6.14a and

6.14b), its possible that the random state that was chosen was conveniently good for

the test data. The correlation values shown could therefore be slightly better than

what the median result test used with the MLR models would have given.

92



7.5. DAILY DATA SET MODELS

7.5.1 Sensitivity analysis

Comparing the sensitivity of TPout it can be seen that it is more dependant on just

a few parameters with the MLR model as seen in Figures 6.10a through 6.11c, while

it seems dependant on all parameters with the ANN model in Figures 6.18a through

6.19c. This may be due to how the MLR method finds its slope coefficients, as it

sometimes lowers certain coefficients almost to zero. For the outliers, the two models

are however fairly similar when considering time periods 3-6. TPin and Turb.out

are for both models the most effective. Turb.out can be an effective methods of

determining the cleanliness of the water, which is why it most likely is so effective

in modelling TPout. It is also, together with TPin, the parameter with the highest

correlation with TPout. As TPout has not been modelled by the literature reviewed

in this thesis, no comparison can be made here. For the ANN model, Qrw, the

year, and Temp. were also significant in modelling TPout. Temp. has in general been

successful in describing most effluent values which leads to believe that the processes

are dependant on the weather and season. Since Qrw also has a significant effect

on the results of both models, it is possible that controlling this value with other

methods than is currently used could be beneficial. Due to the changes in the plant

over the 26 months the daily data set covers, the year also adds some effect. The

MLR model using time period 6 is more like its equivalent ANN model with the

effectiveness of the parameters being almost identical. As with the time period 3-6

model, TPin and Turb.out are crucial. The year is less important in this model, and

this may be because the data only includes 11 months which have experienced no

notable change in the plant. Besides this, these results are similar to the ANN model

using time period 3-6 as Qrw and Temp. also give some positive effect. This leads to

believe that the mentioned parameters have great explanatory power for TPout.
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7.6 ANN model improvements

The final models used in the thesis proved to be quite superior to the initial models

proposed. The addition of new input parameters and dividing into different time pe-

riods gave some important structural improvements and possibly granted the largest

increase in correlations. Due to the complexities of the data sets, it was also crucial

to use larger layer sizes and even a second hidden layer for all models. These were

the changes that were by far the most important which shows that understanding the

parameters used in the models can be crucial. While using less data is normally a

drawback for training and testing, as discussed earlier, the different changes to the

plant made this necessary and also improved the result.

Using the Adam optimiser function proved to give generally better results than

stochastic gradient descent. Together with increasing the layer sizes, increasing the

learning rate helped speeding up the learning process and made convergence faster.

This was also helped by using a learning rate decay which made sure the learning

rate was more fitting for the current epoch. Both learning rate decay, weight decay,

and dropout helped reducing overfitting when they were used.

It was difficult to determine if smaller changes actually gave a change to the result

or if it was mostly based on the random nature of the training process. As a single

random state was used in training, this did help reduce the noise and was important

when learning how to create the optimal network. As mentioned earlier, having only

a single random state for the results could make it appear better than it would be on

new test data. It can therefore be expected that some correlations are slightly higher

than they would have been using multiple random states.

The sigmoid and ReLU activation functions were primarily attempted as these are

frequently used in ANN’s. Both activation functions did however provide challenges
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as they frequently produce zero-values and near zero-values for the estimations. This

can be explained by the presence of the vanishing gradient problem and the bias

shift problem respectively. The change of activation function to the ELU function

eliminated these problems and provided for a much simpler learning process. The

same argumentation can be used for the linear function which is similar to ELU but

is linear also below 0. The linear function in sparse cases produced slightly better

results than ELU.
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Chapter 8

Conclusions

The wastewater treatment process at Saulekilen has in this thesis been modelled by

the use of multiple linear regression (MLR) and artificial neural networks (ANN’s).

The MLR and ANN predicted values of influent and effluent measurements are

promising. The ANN models prove to be superior to the MLR models in prediction

of total phosphorous (TP), biological oxygen demand (BOD) and chemical oxygen

demand (COD) for effluent wastewater. For influent BOD and COD measurements,

only MLR models were made.

Two data sets have been used to model the wastewater treatment process at Saulek-

ilen. The two data sets are measurements acquired bi-weekly over a total period

of 17 years and daily over a total period of 26 months. Due to the changes to the

wastewater treatment processes over these years, the data sets have been split into 6

time periods of different lengths in order to obtain the best possible models.

The most notable results are the predictions of effluent TP using the daily data set and

the data from time period 6. The best results of the models with regards to correlation

were obtained for influent BOD and COD, especially for time periods 3-6. The models

gave good correlations for effluent BOD and COD for time period 2. Sensitivity

analyses of the model outputs were performed. These showed that the models were in

most cases improved by including all the available input parameters. Some parameters

proved to be more effective in modelling the output than others. These parameters

were: reject water, turbidity and influent TP for effluent TP; influent BOD for effluent

BOD; influent BOD, COD and temperature for effluent COD; and influent TP for

both influent BOD and COD. The choice of ANN architecture has also shown to be

crucial to generate the best results.
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Appendix A

Code to produce model results

This appendix includes two examples of the codes used to generate the results of

this thesis. The first code is the code to generate the MLR models made in Matlab.

Results of the code are shown as they are generated. The results are in this case

for predictions of influent BOD and COD. Note that predictions of effluent TP is

also generated but this result is not used. The second code is the code to generate

the ANN models made in python. This example code predicts effluent TP for the

bi-weekly data set.
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A.1. MLR CODE FROM MATLAB

A.1 MLR code from Matlab
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close all;
clear;

This code generates BODout, CODout and
TPout predictions with bi-weekly data

%Loading data set
a = load('C:\Users\magga\Documents\MAS500 - Masteroppgave
\SaulekilenDataBWTemp.mat');
%x = normalize(a.a,1,'range'); %Normalising data set

For loop to run through code 1001 times
for t=1:1001 %1001 chosen as a large, odd number
    x = a.a;
    %x(156:end,:) = []; %Removes newer data
    x(1:155,:) = []; %Removes older data
    %Randomly sorts data
    x = [x,randperm(length(x))'];
    x = sortrows(x,12);
    %Splits data into 70% training and 30% testing
    x_train = x(1:round(size(x,1)*0.7),:);
    x_test = x(round(size(x,1)*0.7)+1:end,:);

    %Names for figures and file names
    Name2 =
 ["Day", "Month", "Year", "TP_{in}", "BOD_{in}", "COD_{in}",...
        "Qw_{in}", "Temp.", "None"];
    Name = ["TP_{in}", "BOD_{in}", "COD_{in}"];
    %D1 M2 Y3 TPin4 TPout5 BODin6 BODout7 CODin8 CODout9 Qw10 Temp11
    if size(a.a,1) == size(x,1)
        testsize = "Full";
    elseif size(a.a,1)-120 > size(x,1)
        testsize = "Partial";
    else
        testsize = "Old";
    end

    %For loop for running through each output parameter
    kk=0;
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    for k=[4,6,8] %Chooses outputs [TPout,BODout,CODout]
        kk=kk+1;
        ll=0;
        %Saving correct parameter for plotting
        if kk == 1
            x_saveTP(:,:,t) = x(:,:);
        elseif kk == 2
            x_saveBOD(:,:,t) = x(:,:);
        else
            x_saveCOD(:,:,t) = x(:,:);
        end

        %For loop for running through all input parameters for
            %sensitivity analysis
        for l=[1,2,3,4,10,11,12]
            ll = ll+1;
            %Remain removes one parameter for every iteration
            remain = [1,2,3,4,10,11];
            if l<12
                remain(ll) = [];
            end
            %y is output parameter, split into testing and training
            y = x(:,k); %[4,5]=TP [6,7]=BOD [8,9]=COD
            y_train = y(1:round(size(y,1)*0.7),:);
            y_test = y(round(size(y,1)*0.7)+1:end,:);
            %xp chooses input parameters based on remaining inputs
            xp = [x(:, remain), ones(size(x,1),1)];
            xp_train = [x_train(:, remain), ones(size(x_train,1),1)];
            xp_test = [x_test(:, remain), ones(size(x_test,1),1)];
            L = size(xp,2)-1;
            %Regression of training data
            b = regress(y_train,xp_train);

            %Creates prediction formulas based on regression
            y_predictTest = 0;
            y_predictAll = 0;
            for i=1:L+1
                if i==L+1
                    y_predictTest = y_predictTest + b(i);
                    y_predictAll = y_predictAll + b(i);
                else
                    y_predictTest = y_predictTest + b(i)*xp_test(:,i);
                    y_predictAll = y_predictAll + b(i)*xp(:,i);
                end
            end
            for i=1:size(y_predictTest,1)
                if y_predictTest(i,1)<0
                    y_predictTest(i,1) = 0;
                end
            end
            for i=1:size(y_predictAll,1)
                if y_predictAll(i,1)<0
                    y_predictAll(i,1) = 0;
                end
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            end
            pt = [y_test,y_predictTest];
            pa = [y,y_predictAll];
            %Correlation of measured vs. predicted
            rt = corr(y_test,y_predictTest);
            ra = corr(y,y_predictAll);
            %MSE of measured vs. predicted
            mset = immse(y_test,y_predictTest);
            msea = immse(y,y_predictAll);

            %Name for figures
            FigName = ["TPinBW", "BODinBW", "CODinBW"];

            %MAPE for measured vs. predicted
            percent=0;
            for i=1:size(x_test,1)
                percent = percent+abs(y_test(i)-y_predictTest(i))/
max(y_test(i),0.01);
            end
            MAPEt = percent*100/size(y_predictTest,1);
            percenta=0;
            for i=1:size(x,1)
                percenta = percenta+abs(y(i)-y_predictAll(i))/
max(y(i),0.01);
            end
            MAPEa = percenta*100/size(y_predictAll,1);

            %saving values for later use
            rts(kk,ll,t)=rt;
            msets(kk,ll,t)=mset;
            MAPEts(kk,ll,t)=MAPEt;
            ras(kk,ll,t)=ra;
            mseas(kk,ll,t)=msea;
            MAPEas(kk,ll,t)=MAPEa;

            ys(:,kk,t)=y;
            ys_predictAll(:,kk,t)=y_predictAll;
            ys_test(:,kk,t)=y_test;
            ys_predictTest(:,kk,t)=y_predictTest;

        end
    end
end

Find median result
%Finds median result index based on test correlation
inxTP = ceil(find(rts==median(rts(1,end,:)))/3)/ll; inxTP = 1; %inxTP
 = 1...
     %to make sure the following code works. Predictions of TP is
 not...
     %important in this example code.
inxBOD =  ceil(find(rts==median(rts(2,end,:)))/3)/ll;
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inxCOD =  ceil(find(rts==median(rts(3,end,:)))/3)/ll;
inx = [inxTP, inxBOD, inxCOD];

%Chooses the correct data based on index
ypTP = ys(:,1,inx(1));
ypBOD = ys(:,2,inx(2));
ypCOD = ys(:,3,inx(3));
yp_predictAllTP = ys_predictAll(:,1,inx(1));
yp_predictAllBOD = ys_predictAll(:,2,inx(2));
yp_predictAllCOD = ys_predictAll(:,3,inx(3));

%Sorts data based on time instead of being randomly sorted
x_saveOutTP = x_saveTP(:,:,inx(1));
ypTP = [ypTP,x_saveOutTP(:,1:3)];
yp_predictAllTP = [yp_predictAllTP,x_saveOutTP(:,1:3)];
ypTP = sortrows(ypTP,[4,3,2]);
yp_predictAllTP = sortrows(yp_predictAllTP,[4,3,2]);

x_saveOutBOD = x_saveBOD(:,:,inx(2));
ypBOD = [ypBOD,x_saveOutBOD(:,1:3)];
yp_predictAllBOD = [yp_predictAllBOD,x_saveOutBOD(:,1:3)];
ypBOD = sortrows(ypBOD,[4,3,2]);
yp_predictAllBOD = sortrows(yp_predictAllBOD,[4,3,2]);

x_saveOutCOD = x_saveCOD(:,:,inx(3));
ypCOD = [ypCOD,x_saveOutCOD(:,1:3)];
yp_predictAllCOD = [yp_predictAllCOD,x_saveOutCOD(:,1:3)];
ypCOD = sortrows(ypCOD,[4,3,2]);
yp_predictAllCOD = sortrows(yp_predictAllCOD,[4,3,2]);

Plot median result
%Loop for running through each output parameter
for i=1:3
    if i == 1
        pa = [ypTP(:,1),yp_predictAllTP(:,1)];
    elseif i == 2
        pa = [ypBOD(:,1),yp_predictAllBOD(:,1)];
    else
        pa = [ypCOD(:,1),yp_predictAllCOD(:,1)];
    end
    %Printing figure
    figure;
    plot(pa);
   
 legend(convertStringsToChars(Name(i)),'Linear','Location','Northwest','FontSize',12);
    txt = ['r_{test} = ' num2str(round(rts(i,end,inx(i)),3)) ',       
    r_{all} = ' num2str(round(ras(i,end,inx(i)),3))];
    txt2 = ['mse_{test} = ' num2str(round(msets(i,end,inx(i)),5)) ',
 mse_{all} = ' num2str(round(mseas(i,end,inx(i)),5))];
    text(size(pa,1)/3,max(pa(:,1))/0.9,txt,'FontSize',12)
    text(size(pa,1)/3,max(pa(:,1))/1,txt2,'FontSize',12)
    ylabel('mg/l','FontSize',12);
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    xlabel('Observations','FontSize',12);
    xlim([0,size(x,1)]);
    ylim([0,max(max(pa))*1.2]);
    set(gca,'FontSize',12);
    figpath = 'C:\Users\magga\Dropbox\Apps\Overleaf\GeneralKenobi
\Pictures\';
    figname = convertStringsToChars(FigName(i)+testsize);
    %print([figpath,figname], '-depsc');
end
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Sensitivity of median result
%Extract the correct scores
for i=1:3
    score(i,:,1) = rts(i,1:ll,inx(i)); %[TP/BOD/COD, paramremoved,
 median]
    score(i,:,2) = msets(i,1:ll,inx(i));
    score(i,:,3) = MAPEts(i,1:ll,inx(i));
    score(i,:,4) = ras(i,1:ll,inx(i));
    score(i,:,5) = mseas(i,1:ll,inx(i));
    score(i,:,6) = MAPEas(i,1:ll,inx(i));
end
%Figure and file names
param = ["TPin", "BODin", "CODin"];
ylabelName = ["Correlation (r)", "MSE", "MAPE"];
fig = ["rSensitivityBW", "MSESensitivityBW", "MAPESensitivityBW"];

%For loops for running through results of "all data" and output
 parameters
for i=4:6 %Teller for r/mse/mape
    for j=1:3 %Teller for Tp/cod/bod
        %Printing bar figures
        figure;
        b1 = bar(score(j,:,i));
        b1.FaceColor = 'flat';
        for k=1:size(score,2)
            if i==4
                if score(j,k,i) > score(j,end,i)
                    b1.CData(k,:) = [1, 0, 0];
                else
                    b1.CData(k,:) = [0.4940, 0.1840, 0.5560];
                end

            else
                if score(j,k,i) < score(j,end,i)
                    b1.CData(k,:) = [1, 0, 0];
                else
                    b1.CData(k,:) = [0.4940, 0.1840, 0.5560];
                end
            end
        end
        ylim([min(score(j,:,i))*0.98,max(score(j,:,i))*1.02])
        ylabel(convertStringsToChars(ylabelName(i-3)),'FontSize',12)
        set(gca, 'XTick', 1:size(Name2,2), 'XTickLabel',
 Name2,'FontSize',12);
        xtickangle(90)
        hold on;
        yline1 = yline((score(j,end,i)),'-','No
 effect','FontSize',12);
        yline1.LabelHorizontalAlignment = 'right';
        figpath = 'C:\Users\magga\Dropbox\Apps\Overleaf\GeneralKenobi
\Pictures\';
        figname = param(j)+fig(i-3)+testsize;

7



        %print([figpath,convertStringsToChars(figname)], '-depsc');
    end
end
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A.2. ANN CODE FROM PYTHON

A.2 ANN code from python

'''Initializing code'''

import scipy.io as sio

import numpy as np

from keras.backend import epsilon

from statistics import mean

from sklearn import preprocessing

from keras.models import Sequential

from keras.layers import Dense, BatchNormalization, Activation, Dropout, \

GaussianNoise

from keras.layers import LeakyReLU, ELU

from scipy.stats.stats import pearsonr

from keras import regularizers, optimizers

from keras.callbacks import History

import matplotlib.pyplot as plt

import scipy.io

import time

start_time = time.time()

#Chooses seed for single random state

seed = 6

np.random.seed(seed)

Listing 1: Example code
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A.2. ANN CODE FROM PYTHON

'''Getting data and converting into right shape'''

#Get data from Mat file --- A1

MatFile = sio.loadmat('SaulekilenDataBWTemp.MAT')

Val_unnormalized = MatFile['a'].astype('float32')

InputIndex = [0,1,2,3,5,7,9,10] #Chooses input parameters

OutputIndex = [4] #Chooses output parameters

#Parameters are as follows with index:

#D0 M1 Y2 TPin3 TPout4 BODin5 BODout6 CODin7 CODout8 Qw9 Temp10

#Normalizing Val matrix and chooses time period (155:221 = time period 3-6)

min_max_scaler = preprocessing.MinMaxScaler()

Val = min_max_scaler.fit_transform(Val_unnormalized[155:221,InputIndex])\

*0.8+0.1 #1:154 , 155:221

Val = np.c_[Val,Val_unnormalized[155:221,OutputIndex]] #1:154 , 155:221

#Shuffling to make sure data is evenly spread

shuffle = np.arange(0,Val.shape[0])

np.random.shuffle(shuffle)

#Dividing into 70\% training and 30\% testing

TrainMax = round(Val.shape[0]*0.7)

Val_train = Val[shuffle[0:TrainMax]]

Val_test = Val[shuffle[TrainMax:Val.shape[0]]]

Listing 2: Example code
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A.2. ANN CODE FROM PYTHON

#Dividing into input and output data

#D0 M1 Y2 TPin3 BODin4 CODin5 Qw6 Temp7

InputIndex = [0,1,2,3,4,5,6,7]

OutputIndex = [8]

x_train = Val_train[:, InputIndex]

x_test = Val_test[:, InputIndex]

y_train = Val_train[:, OutputIndex]

y_test = Val_test[:, OutputIndex]

Listing 3: Example code
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A.2. ANN CODE FROM PYTHON

#%% ANN model

def baseline_model():

model = Sequential()

model.add(GaussianNoise(0, input_shape=(x_train.shape[1],)))

model.add(Dense(800, activation='elu', \

kernel_regularizer=regularizers.l2(0.01)))

#model.add(BatchNormalization(momentum=0.95))

#model.add(ELU(alpha=1.0))

#model.add(Dropout(0.2))

model.add(Dense(30, activation='elu'))

#model.add(ELU())

#model.add(Dropout(0.2))

#model.add(Dense(100, activation='exponential'))

model.add(Dense(1, activation='elu'))

#model.add(ELU(alpha=1.0))

#model.add(Activation('sigmoid'))

Adam = optimizers.adam(lr=0.0005, beta_1=0.9, beta_2=0.999, decay=0.02)

model.compile(loss='mse', optimizer=Adam, metrics=['mean_squared_error'])

return model

model = baseline_model()

history = model.fit(x_train, y_train, validation_data=(x_test, y_test), \

epochs=400, batch_size=10, verbose=0)

Listing 4: Example code
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A.2. ANN CODE FROM PYTHON

#%% Predictions

x_all = np.vstack((x_train, x_test))

y_predict = model.predict([x_test])

y_predictTrain = model.predict([x_train])

y_all = np.vstack((y_train, y_test))

y_predictAll= model.predict([np.vstack((x_train, x_test))])

#%% Printing losses

model.test_on_batch(x_test, y_test)

model.metrics_names

# list all data in history

print(history.history.keys())

# summarize history for accuracy

fig = plt.figure()

fig.subplots_adjust(left=0.125, right=1.5, bottom=0.1, top=0.5, wspace=0.2)

ax1 = fig.add_subplot(1,2,1)

#plt.plot(history.history['mean_absolute_percentage_error'])

ax1.plot(history.history['val_mean_squared_error'])

plt.title('model accuracy')

plt.ylabel('accuracy')

plt.xlabel('epoch')

plt.legend(['test', 'test'], loc='upper left')

# summarize history for loss

ax2 = fig.add_subplot(1,2,2)

ax2.plot(history.history['loss'])

ax2.plot(history.history['val_loss'])

Listing 5: Example code
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plt.title('model loss')

plt.ylabel('loss')

plt.xlabel('epoch')

plt.legend(['train', 'test'], loc='upper left')

plt.show()

#%% Calculate quality

percent = np.zeros((1,1))

percentA = np.zeros((1,1))

#Correlation

r = pearsonr(y_test[:,0], y_predict[:,0])

rA = pearsonr(y_all[:,0], y_predictAll[:,0])

#Mean squared error

MSE = sum((y_predict[:,0]-y_test[:,0])**2)/len(y_predict[:,0])

MSE_All = sum((y_predictAll[:,0]-y_all[:,0])**2)/len(y_predictAll[:,0])

#Mean absolute percentage error

for i in np.arange(0, len(y_predict[:,0])):

percent = percent+abs(y_test[i,0]-y_predict[i,0])/max(y_test[i,0],0.01)

MAPE = percent*100/len(y_predict[:,0])

for i in np.arange(0, len(y_predictAll[:,0])):

percentA = percentA+abs(y_all[i,0]-y_predictAll[i,0])/max(y_all[i,0],0.01)

MAPE_All = percentA*100/len(y_predictAll[:,0])

MSEp = "MSE: "

MAPEp = "MAPE: "

rp = "r: "

Listing 6: Example code
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MSEp = MSEp+str(round(np.median(MSE),5))+", "+str(round(np.median(MSE_All),5))\

#np.median er kun for å gjøre slik at round faktisk funker

MAPEp = MAPEp+str(round(np.median(MAPE),5))+", "+\

str(round(np.median(MAPE_All),5))

rp = rp+str(round(np.median(r[0]),5))+", "+str(round(np.median(rA[0]),5))

#%% Print results

print(MSEp)

print(MAPEp)

print(rp)

print(str(round(np.median(MSE),5))+" "+str(round(np.median(MAPE),5))+" "+\

str(round(np.median(r[0]),5))+" %s" % (round(time.time() - start_time,1)))

y_plotAllSort = np.vstack((y_all[:,0] , y_predictAll[:,0], x_all[:,0],\

x_all[:,1], x_all[:,2])).transpose()

y_plot0 = np.vstack((y_test[:,0] , y_predict[:,0])).transpose()

#y_plot0 = y_plot0[y_plot0[:,0].argsort()] #Sorts after size

y_plotAll = np.vstack((y_all[:,0] , y_predictAll[:,0])).transpose()

fig = plt.figure()

fig.subplots_adjust(left=0.125, right=1.6, bottom=0.1, top=2.3, wspace=0.2)

fig.subplots_adjust(left=0.125, right=1.6, bottom=0.1, top=0.6, wspace=0.2)

ax1 = fig.add_subplot(1,2,1)

ax1.plot(y_plot0)

plt.title('TPout test')

#plt.show()

Listing 7: Example code
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ax2 = fig.add_subplot(1,2,2)

ax2.plot(y_plotAll)

plt.title('TPout train+test')

plt.show()

y_plot1 = np.vstack((y_test[:,1] , y_predict[:,1])).transpose()

#y_plot0 = y_plot0[y_plot0[:,0].argsort()] #Sorts after size

y_plotAll1 = np.vstack((y_all[:,1] , y_predictAll[:,1])).transpose()

fig = plt.figure()

fig.subplots_adjust(left=0.125, right=1.6, bottom=0.1, top=2.3, wspace=0.2)

fig.subplots_adjust(left=0.125, right=1.6, bottom=0.1, top=0.6, wspace=0.2)

ax1 = fig.add_subplot(1,2,1)

ax1.plot(y_plot1)

plt.title('BODout test')

#plt.show()

ax2 = fig.add_subplot(1,2,2)

ax2.plot(y_plotAll1)

plt.title('BODout train+test')

plt.show()

y_plot2 = np.vstack((y_test[:,2] , y_predict[:,2])).transpose()

#y_plot0 = y_plot0[y_plot0[:,0].argsort()] #Sorts after size

y_plotAll2 = np.vstack((y_all[:,2] , y_predictAll[:,2])).transpose()

Listing 8: Example code
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fig = plt.figure()

fig.subplots_adjust(left=0.125, right=1.6, bottom=0.1, top=2.3, wspace=0.2)

fig.subplots_adjust(left=0.125, right=1.6, bottom=0.1, top=0.6, wspace=0.2)

ax1 = fig.add_subplot(1,2,1)

ax1.plot(y_plot2)

plt.title('CODout test')

#plt.show()

ax2 = fig.add_subplot(1,2,2)

ax2.plot(y_plotAll2)

plt.title('CODout train+test')

plt.show()

#Saving models

#print("--- %s seconds ---" % (time.time() - start_time))

#scipy.io.savemat(r'C:\Users\magga\Documents\MAS500 - Masteroppgave/ANNy_plotAllTP23.mat', mdict={'y_plotAll': y_plotAll})

#scipy.io.savemat(r'C:\Users\magga\Documents\MAS500 - Masteroppgave/ANNy_plot0TP23.mat', mdict={'y_plot0': y_plot0})

#scipy.io.savemat(r'C:\Users\magga\Documents\MAS500 - Masteroppgave/ANNy_plotAllSortTP23.mat', mdict={'y_plotAllSort': y_plotAllSort})

'''

#Calculation of learning rate decay trend

lr = np.zeros((200,1))

lr[0] = 0.001

d=1

for i in np.arange(1,200):

lr[i] = lr[i-1]*1/(d+1)

'''

Listing 9: Example code
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Appendix B

Agendas and minutes of meetings

This appendix includes the agendas and minutes of meetings for the thesis. As soon as

the thesis had gained some momentum, a fortnightly meeting was scheduled to have

a continuous discussion between student and supervisors. Additionally the meetings

with the staff of Saulekilen are included in this appendix.
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B.1. AGENDA #1

B.1 Agenda #1

Location: UiA, Grimtad, room A3-095

Date: 07.02.2019

Time: 12:15-13:15

Attendees: Magnus Ersdal, Morten Ottestad, Andreas Klausen

Issues to be discussed

• Report structure

1. Introduction-Theory-Method-Results-Discussion-Conclusion, a good struc-

ture?

2. Contents of theory chapter: More focus on ANN or WWTP?

3. Contents of method chapter: More focus on ANN or WWTP?

• Gannt chart

1. Current progress good?

2. Add or subtract certain items?

3. Change durations?

• What should be the upcoming focus?
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B.2. MINUTES OF MEETING #1

B.2 Minutes of meeting #1

Location: UiA, Grimtad, room A3-095

Date: 07.02.2019

Time: 12:15-13:15

Attendees: Magnus Ersdal, Morten Ottestad, Andreas Klausen

Table B.1: Minutes of meeting #1

Item Issue Discussed
1 Report structure

1.1 Background: Should discuss what I should do in regards to what others have done

as things could be different here.

1.2 Motivation should be after background as a follow up.

1.3 General processes of WWTP should be described in chapter 2 together with the

data and processes of Sauekilen as a concrete example.

1.4 Theory chapter should be moslty ANN and the method chapter should be the

methods I have used.

1.5 Advanced chemical and biological theory should not be a focus in second chapter

(WWTP chapter).

2 Gannt chart

2.1 Gannt chart looks fine, but will as always change over time.

2.2 MNIST study seems to be a good place to begin with Keras.

3 Upcoming focus

3.1 Get Keras to work with MNIST.

3.2 Analyse data, plan data setup and additional data.

3.3 Sensor min/max could potentially be used as normalised min/max.
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B.3. AGENDA #2

B.3 Agenda #2

Location: UiA, Grimtad, room C3-093

Date: 18.02.2019

Time: 13:00-14:30

Attendees: Magnus Ersdal, Morten Ottestad, Andreas Klausen

Issues to be discussed

• Progress since last meeting (Quick briefing)

1. MNIST model

2. Universal approximation theorem

3. Evaluation of current progress

• What inputs/outputs should be used?

1. Wide variety between other projects.

2. Often: TSS, BOD, COD, TP, TN and pH in, and COD, BOD and TSS out.

3. Current data only includes TP, BOD and COD in/out.

• How many data points do we need?

1. Other projects varies from 100 to 300 to 1200. We currently have around

350 from 2001-2018.

• How can we use the predicted BOD/COD/TSS to optimise the plant?

• What do we do with outliers and incomplete data points?

• ANN model design.

• What should be the upcoming focus?
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B.4. MINUTES OF MEETING #2

B.4 Minutes of meeting #2

Location: UiA, Grimtad, room C3-093

Date: 18.02.2019

Time: 13:00-14:00

Attendees: Magnus Ersdal, Morten Ottestad, Andreas Klausen

Table B.2: Minutes of meeting #2

Item Issue Discussed
1 Saulekilen data analysis

1.1 Contact Knut Berg Larsen for data.

1.2 Amount of water might be an important input.

1.3 Make a network based on the ∼ 350 data points to make sure there are no bottle-

necks.

2 ANN model

2.1 Make multiple models, f.ex.: COD+BOD output, COD output, BOD output etc.

2.2 Increase the model size to include additives as well.

2.3 Use additive model as a model for the whole plant which can be used as a controller.

3 Output data analysis

3.1 Power point tracking can be used to find best values for additives.

3.2 Important to test the network well: If additives goes up, quality should go up as

well.

3.3 Manually check if there are outliers in the output.
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B.5. AGENDA #3

B.5 Agenda #3

Location: Saulekilen Renseanlegg

Date: 12.03.2019

Time: 9:30-10:30

Attendees: Magnus Ersdal, Saulekilen staff

Issues to be discussed

• How does Saulekilen decide additives today?

• Where does the measurement points lay in relation to the additive points?

• What do Saulekilen measure and add?

• Could some of the measurements of others be of any use for Saulekilen?

• Are there certain additives/measurements that are planned to be added?

• Do measurements happen for every settler?

• How is Saulekilen data compared to UCI data?

• How is the performance of the plant so far?

• How important is it for the performance to be as required?
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B.6. MINUTES OF MEETING #3

B.6 Minutes of meeting #3

Location: Saulekilen Renseanlegg

Date: 12.03.2019

Time: 9:30-10:30

Attendees: Magnus Ersdal, Saulekilen staff

Table B.3: Minutes of meeting #3

Item Issue Discussed
1 Additives

1.1 Additives are decided based on amount of water and pH.

1.2 Small changes in sewage, but larger changes in additional water.

1.3 If the amount of water goes down, the additives are increased.

1.4 Additives are added during flocculation.

2 Measurement points

2.1 Measurement points are prior to the flocculation.

3 Data amounts

3.1 Water, pH and Suspended solids are measured continuously.

3.2 Phosphor is measured every day, BOD and COD 24 times a year.

3.3 PIX (based on pH and Q) and polymer (based on Q) are the additives.

3.4 Pollutants is measured a couple of times a year.

4 Saulekilen compared to other plants

4.1 No additives/measurements are planned to be added.

4.2 No obvious reason to use others measurement methods.

4.3 Measurements does not happen for every settler, does therefore not compare to

UCI data.

6 Plant performance

6.1 Performance does vary a lot, but is mostly sufficient.

6.2 Performance can be way too high or not high enough.
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B.7. AGENDA #4

B.7 Agenda #4

Location: UiA, Grimstad, room C3-094

Date: 13.03.2019

Time: 13:00-14:00

Attendees: Magnus Ersdal, Morten Ottestad, Andreas Klausen

Issues to be discussed

• Progress since last meeting (Quick briefing)

1. Wide range of models attempted.

2. Network setups seems to increase accuracy slightly.

3. Hyperparameters does not seem to increse accuracy enough.

4. Current accuracy still very low.

5. MLR model also gives low accuracy

6. Found a new data set online (UCI) that gave same results.

• Review of Saulekilen meeting

1. Received 2017-2019 daily data (500+ data points).

2. Retrieving continuous data from server not easy.

3. Saulekilen only adds PIX and polymers.

4. Does only measure: pH, Water, SS, Phosphor, BOD and COD.

• Is the low accuracy due to data that does not cover the whole plant?

• Could there be any structural mistakes in the network?

• Should the Report still be wrote about ANN even with bad results?

• How should the introduction include sources?

• What should be the upcoming focus?
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B.8. MINUTES OF MEETING #4

B.8 Minutes of meeting #4

Location: UiA, Grimtad, room C3-094

Date: 13.03.2019

Time: 13:00-15:00

Attendees: Magnus Ersdal, Morten Ottestad, Andreas Klausen

Table B.4: Minutes of meeting #4

Item Issue Discussed
1 Insufficient data

1.1 The residence time between input and output data could be crucial to account for.

1.2 Can use auto correlation on water in/out to find the residence time if Saulekilen

staff does not have the information.

1.3 The amount of influent water might have a significant effect.

1.4 Possible that there is not enough available data for a sufficient model.

2 Other models

2.1 Look for another model with available data that can be repeated to check for

differences.

2.2 Contact Grimstad/Kristiansand plant and check for differences in data.

3 Citation

3.1 Introduction should include citation in the same way as the rest of the text.
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B.9. AGENDA #5

B.9 Agenda #5

Location: UiA, Grimstad, room C3-092

Date: 01.04.2019

Time: 11:15-12:15

Attendees: Magnus Ersdal, Morten Ottestad, Andreas Klausen

Issues to be discussed

• Progress since last meeting (Quick briefing).

1. Extracted data from the new data set.

2. Many incorrect values/formulas were fixed.

3. Did not find any new data sets to work with.

4. Did not find any literature about the UCI database that uses ANN.

5. Made a MLR model for the new data set with r=0.62.

6. Made an ANN model for the new data set with r=0.63.

7. Called Groos treatment plant and found that they used slightly different

methods.

• Should the missing data be filled in or deleted?

• Continue to look for similar literature with available data?

• How detailed should the ANN theories be?

• The existing literature on the UCI data uses decision trees, is this worth com-

paring to?

• Should I focus more on writing now, or should I start a plan B?
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B.10. MINUTES OF MEETING #5

B.10 Minutes of meeting #5

Location: UiA, Grimtad, room C3-092

Date: 01.04.2019

Time: 11:15-12:15

Attendees: Magnus Ersdal, Andreas Klausen

Table B.5: Minutes of meeting #6

Item Issue Discussed
1 Data correlation

1.1 Current correlation of r=0.62, not good enough to use.

1.2 Due to the high correlation between T-P in and BOD/COD in, it could be possible

to generate data for BOD/COD and use this in the model.

1.3 The correlation between COD/BOD out could be used to make a prediction on

the BOD out data without having to wait 5 days.

1.4 Should be careful about generating new data without proof of realism.

2 Other models

2.1 Could be useful to compare the UCI ANN to the decision tree models in existing

literature.

2.2 Could be useful to compare Groos data to Saulekilen data, and if it is possible to

make a good model for Groos, a conclusion should be drawn to improve Saulekilen

data.

3 Writing

3.1 Should focus on writing.

3.2 Not necessary to describe ANN in too full of a detail. Back propagation probably

not necessary.
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B.11. AGENDA #6

B.11 Agenda #6

Location: UiA, Grimstad, room C4-043

Date: 08.04.2019

Time: 13:00-14:30

Attendees: Magnus Ersdal, Morten Ottestad, Andreas Klausen

Issues to be discussed

• Progress since last meeting (Quick briefing)

1. Wrote about theory and method.

2. Groos data is similar in setup to Saulekilens bi-weekly data.

3. Made a linear and non-linear model for TP to BOD/COD

• Report setup

1. How should the top text be?

2. Necessary to describe MLR and polynomial regression?

3. How large should the figures be?

4. Is Latex’ standard positioning the best option for figures and tables?

5. Should task description be a copy of the task description given by UiA?

• Sources

1. Is the NNaDL by Nielsen enough of a source for theory?

2. What are the rules when copying pictures from other sources?

3. Should even the basic material be backed up better?

4. Is a blog like HydroTech a valid source?
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B.12. MINUTES OF MEETING #6

B.12 Minutes of meeting #6

Location: UiA, Grimtad, room C4-043

Date: 08.04.2019

Time: 13:00-14:30

Attendees: Magnus Ersdal, Andreas Klausen

Table B.6: Minutes of meeting #6

Item Issue Discussed
1 Regression models and data

1.1 Calculate standard deviation to use as noise for TP to BOD/COD.

1.2 Include water flow for the bi-weekly model.

1.3 Get the formula for PIX from Saulekilen to include in the bi-weekly data.

1.4 Possible that some of the data should be removed as it was measured during special

environments (during malfunctions etc.).

2 Report setup

2.1 Save Matlab files as ”eps” to get better resolution.

2.2 Figures should fit the linewidth, but most importantly be easily readable.

2.3 The task description can stay as it is for now, but should probably be slightly

changed when the full scope of the project is figured out.

3 Sources

3.1 Not a necessary improvement to have multiple sources if a single source is credible.

3.2 The HydroTech blog post could be considered credible.

3.3 Possible to refer to sources in the beginning of a section.
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B.13. AGENDA #7

B.13 Agenda #7

Location: Saulekilen Renseanlegg

Date: 24.04.2019

Time: 10:00-11:30

Attendees: Magnus Ersdal, Geir Breimyr

Issues to be discussed

• Presentation of the work so far

1. Created model that finds TPout from the measurements in the daily and

bi-weekly data set.

2. PIX will be the control parameter.

3. Accuracy is descent.

• Information about plant

1. Where is visible depth measured compared to PIX?

2. Can one days treatment have an effect on the next day?

3. How large can measurement errors be?

4. What is the reason for all the large changes in the data?

5. What is the formula for PIX?

• Model

1. Are there other measurement methods that could have been interesting to

add to the plant?

2. Are there other measurements that should be included in the current model?

3. Is it alright to add and correct values that are wrong in the way it is currently

done?

• Report

1. Is the current text describing Saulekilen accurately?

2. Is it called PIX or PAX?
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B.14. MINUTES OF MEETING #7

B.14 Minutes of meeting #7

Location: Saulekilen Renseanlegg

Date: 24.04.2019

Time: 10:00-11:30

Attendees: Magnus Ersdal, Geir Breimyr

Table B.7: Minutes of meeting #7

Item Issue Discussed
1 Information about plant

1.1 Visible depth, TS, TS(%) and pH are all measured after PIX is added.

1.2 It is possible that one days measurements could affect the next day. There are at

least not usually large changes from day to day.

1.3 Changes in methods, repairs, rebuildings etc. are probably the reason for the data

changes.

1.4 PIX formula based on measurements that are not available in the current data set.

2 Measurement errors

2.1 Visible depth is done by eyesight and could differ from one inspector to another.

Expected to have some error here.

2.2 Phosphorous sensor has not been calibrated and probably gives wrong numbers.

This will be fixed soon. This is probably the reason why laboratory measurements

are different from plant measurements on TP.

2.3 pHin has not been used for a long while and could therefore give wrong numbers.

3 Model discussion

3.1 Should check if there are more inconsistencies between the daily and bi-weekly

data set. Possible that Saulekilen should replace their phosphorous sensor.

3.2 Suspended solids could have been interesting to include. Nitrogen could be noted

as well.

3.3 As the temperature of the local weather is thought to affect the wastewater, this

could be an interesting addition to the model.

3.4 The current method of editing and adding values seems logical.

4 Report

4.1 The current description of Saulekilen seems accurate.

4.2 PAX was the old additive, PIX is the new additive.
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B.15. AGENDA #8

B.15 Agenda #8

Location: UiA, Grimstad, room C4-041

Date: 25.04.2019

Time: 10:00-11:30

Attendees: Magnus Ersdal, Morten Ottestad, Andreas Klausen

Issues to be discussed

• Presentation of the work so far and Saulekilen meeting

1. Adding water flow for the bi-weekly model gave minimal improvement.

2. The data set has been divided into 6 different time periods to reflect the

changes to the plant.

3. Only Qw and TPin are measured before PIX is added.

4. Large possibility for measurement errors.

5. PIX formula based on measurements that are not available in the current

data set.

• Model

1. Could temperature (or any other weather measurements) be interesting to

add to the model?

2. What measures should be taken regarding the measurement errors?

3. Is it sufficient to only use data from the last 7-9 months as this is the only

time where data does not fluctuate due to plant changes?

• Report

1. Should every test be included in the Report, and in that case, how?

2. Should the Method chapter be setup with the basis on the scientific method?

(Observation, Question, Hypothesis, Prediction, Tests, Results)

3. If the scientific method should be used, are the current hypothesis sufficient?

• Would an automatic measurement of visible depth be an good addition for a

model which uses continuous measurement data?
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B.16. MINUTES OF MEETING #8

B.16 Minutes of meeting #8

Location: UiA, Grimstad, room C4-041

Date: 24.04.2019

Time: 10:00-11:50

Attendees: Magnus Ersdal, Morten Ottestad, Andreas Klausen

Table B.8: Minutes of meeting #8

Item Issue Discussed
1 Data

1.1 Correlation between lab and plant data looks better for TPin as the values are

higher, meaning smaller percentage errors.

1.2 Temperature could be interesting to use. A webcrawler could extract the necessary

data from i.e. Yr.no.

1.3 Good to divide into time periods as the system is not equal at all times.

2 Model

2.1 For the MLR model it is possible to use some data for training and other for

testing to make sure it generalises.

2.2 As the system that is being analysed is changing over time, it could be useful to

use a continuous model for new data.

3 Report

3.1 It should not be assumed that the reader knows much about WWTP and the text

should reflect that.

3.2 Should be mentioned in the Report that Saulekilen does not use sedimentation

3.3 Should write about the variance and correlation between the lab and plant data.

3.4 Result graph showing both MSE and correlation could be used and the larger

changes should be explained.

3.5 Could have two result chapters where one is for data analysis and the other is for

ANN/MLR results.

3.6 Tables and graphs that show results should not be in the method chapter.

3.7 Method chapter should explain what was done before testing and what should be

done if tests showed specific results.
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B.17. AGENDA #9

B.17 Agenda #9

Location: UiA, Grimstad, room D3-051

Date: 06.05.2019

Time: 13:00-14:00

Attendees: Magnus Ersdal, Morten Ottestad, Andreas Klausen

Issues to be discussed

• Presentation of the work so far

1. Including Qr and dates helped with the results at times.

2. Added all current results except for ANN to the Report.

3. BODin and CODin models are massively improved by using recent data

• Model

1. Should the MLR model also use train vs test data?

2. Should ANN/MLR quality be considered by test/train/all or a mix?

• Report

1. Should formulas be written with variable first or explanation first?

2. How are the current examples of thesis statements?

3. How does the link between method and result look now?

4. Are the new figures readable enough, and how should the bar graphs be?

5. The book by Michael Nielsen uses 1/(2n) for MSE, but this is not used other

places, which should be used?

6. How should the sensitivity graphs look?

7. Useful to mention all the different dates with a malfunction/error?

8. Any more results that should be included? More time periods

9. Should the gannt charts be included?
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B.18. MINUTES OF MEETING #9

B.18 Minutes of meeting #9

Location: UiA, Grimstad, room D3-051

Date: 06.05.2019

Time: 13:00-14:00

Attendees: Magnus Ersdal, Morten Ottestad, Andreas Klausen

Table B.9: Minutes of meeting #9

Item Issue Discussed
1 Data

1.1 Check if there is any i.e. Gaussian noise on the deviation between lab and plant

measurements of TPout.

2 Model

2.1 Better to use test data and train data for MLR as well.

3 Report

3.1 Could have lines in the data trends to show the different time period splits.

3.2 Be more descriptive in each caption.

3.3 Caption for tables should be above the table.

3.4 Important to mention that the sensors are not calibrated and are not equal to the

lab tests.

3.5 Be consistent when writing about variables: variable x is this, y is that.

3.6 Showing results for the all time periods and just the recent time periods is good.

3.7 Gannt charts not that important to include.

3.8 The bar graphs could be split up, more important that they are easy to read than

there being many of them.
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B.19. AGENDA #10

B.19 Agenda #10

Location: UiA, Grimstad, room C4-095

Date: 15.05.2019

Time: 14:00-15:00

Attendees: Magnus Ersdal, Morten Ottestad, Andreas Klausen

Issues to be discussed

• Presentation of the work so far

1. Go through last meetings MoM.

2. Have made all tests depend on shuffled train/test data.

3. ”Finished” theory, method and WWTP chapters.

• Model

1. Would standard deviation be an interesting comparison between ytest and

y? They seem to usually have different noise levels and ranges.

• Report

1. Is any of the pictures describing the WWTP good?

2. What could the reason for the COD/BOD ratio be, and why is it so different

from Saulekilen’s ratio.

3. How should the progression to and final ANN models be described?

4. Should the UCI database be included in the report?

5. What is most important to include in appendix?

6. Anything to add to the result chapter?

7. How should the structure of the discussion chapter be?

8. Not always simple to rewrite formula description to become ”active” reading.

9. In Equation 3.1, should it be ŷi or yi?
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B.20. MINUTES OF MEETING #10

B.20 Minutes of meeting #10

Location: UiA, Grimstad, room C4-095

Date: 15.05.2019

Time: 14:00-15:30

Attendees: Magnus Ersdal, Morten Ottestad, Andreas Klausen

Table B.10: Minutes of meeting #10

Item Issue Discussed
1 Model

1.1 Expected to have less noise in estimated data than measured data, could be written

about as well.

2 Report

2.1 Motivation should be before ANN which should be before background.

2.2 Both pictures in WWTP describes it well, can use both.

2.3 The COD/BOD ratio could be misleading or based on different circumstances.

Should read up on it to make sure the introduction is clear.

2.4 Get better understanding for the biological and chemical processes.

2.5 Should describe possible measurement errors in WWTP chapter.

2.6 Model comparison should be explained in theory chapter.

2.7 Variance is not necessary to show as standard deviation is more descriptive.

2.8 Should explain the main points of improvement of the ANN’s.

2.9 UCI database did not lead anywhere, so it is unecessary to write about.

2.10 Appendix could include additional results and code for MLR and ANN model.

2.11 Correct to use yi and ŷi as it is.

2.12 Nothing obvious to add to result chapter.

2.13 Discussion should focus on what the result showed and what has been discovered

through the thesis.
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