
Modelling, Identification and Control
of a 5-DOF Shotcrete Robot

Development of a Framework for Automatic Application
of Shotcrete for AMV 4200H

A thesis submitted in partial fulfilment of the requirements for the degree of
Master of Science in Mechatronics

Andreas K. Auen
Tomas S. Lyngroth

Supervisor
Geir E. Hovland

This Master’s Thesis is carried out as a part of the education at the University of Agder and is
therefore approved as a part of this education. However, this does not imply that the University

answers for the methods that are used or the conclusions that are drawn.

University of Agder, 2019
Faculty of Engineering and Science
Department of Engineering Sciences

Acknowledgements

This thesis could not have been accomplished without the support and knowledge of those around
us. Therefore, we would like to show gratitude to our contributors.

First, we would like to thank AMV for giving us the opportunity of researching their shotcrete
machine for our master’s thesis. They have been very helpful and responsive to all our enquiries.
In addition, they allowed us to use their machine for physical measurements even if it meant halting
production in the meanwhile.

Thanks to the University of Agder for providing office facilities at which the project could be carried
out. Moreover, thanks to the staff, who are always kind and helpful.

We want to show special appreciation for supervisor, Professor Geir E. Hovland, who has guided
us for the duration of the project. His expertise in robotics, modelling, identification and control
has proven invaluable.

i

Abstract

Today, process automation is the primary area of development in the shotcrete industry. Automatic
shotcrete operations can yield an increase in operational efficiency and personnel safety as well as
reductions in cost and environmental impact. This thesis develops a framework for automatic
application of shotcrete using the AMV 4200H and provides an automatic spraying mode using
interoceptive sensing. The shotcrete vehicle is equipped with a five degrees-of-freedom manipulator
and is currently operated manually. Our contributions include solving the forward kinematics
through the Denavit-Hartenberg convention, and the inverse kinematics using kinematic decoupling
and iteration. Furthermore, a spraying trajectory is created based on a minimal number of reference
points provided by the operator. Curve fitting and parameterisation techniques are employed for
generating a spraying trajectory based on the desired settings. All interactions with the machine
are conveniently managed from an intuitive human-machine interface. Individual control of each
joint with feedback has been implemented on the electronic control unit from the actual machine.
Through hardware-in-the-loop simulation, the concepts have been proven, and the functionality of
the framework has been verified.

Keywords: Shotcrete Machine, 5-Degree-of-Freedom Manipulator, Kinematics, Trajectory Gen-
eration, Human-Machine Interface, Control, Hardware-In-the-Loop Simulation.

ii

Contents

Acknowledgements i

Abstract ii

Nomenclature vi

1 Introduction 1
1.1 A Brief History of Shotcrete . 1
1.2 Motivation . 1
1.3 Project Background . 2
1.4 Project Scope and Objectives . 3
1.5 Limitations . 4
1.6 State-of-the-art . 4
1.7 Document Structure . 7
1.8 Source Code Repository . 7

2 Kinematics 8
2.1 Forward Kinematics . 8

2.1.1 Denavit- Hartenberg Parameters . 10
2.1.2 Reachable Workspace . 11
2.1.3 Nozzle and Eccentric . 11
2.1.4 Nonlinear Actuation of Joint 2 . 12

2.2 Inverse Kinematics . 14
2.2.1 Solution for Boom . 15
2.2.2 Solution for Wrist . 15

2.3 The Jacobian Matrix . 16
2.4 Singular Configurations . 17
2.5 Alternative Approach for Inverse Kinematics . 18

3 Trajectory Planning 19
3.1 Surface Mapping . 19

3.1.1 Tunnel Geometry . 20
3.1.2 Normal Vector . 21

3.2 Curve Fitting . 22
3.3 Planar Trajectory . 24
3.4 Spraying Trajectory . 27

4 System Modelling 28
4.1 HIL Model . 28
4.2 Deadband . 29
4.3 Dynamic Model . 29

4.3.1 Measurements . 29
4.3.2 Grey-Box Model . 30
4.3.3 Verification of State-Space Model . 33
4.3.4 Black-Box Model . 33

iii

4.3.5 Manual Calculations . 33

5 Interface and Control 35
5.1 Danfoss Plus+1 . 35

5.1.1 CAN bus . 35
5.1.2 CANopen . 36

5.2 Setup . 36
5.3 Communication . 37
5.4 Control . 38

5.4.1 Deadband Compensation . 38
5.4.2 Transfer Function . 39
5.4.3 Controller . 40

5.5 PC Program . 40
5.5.1 HMI . 41
5.5.2 HMI and Safety Features . 42

6 Results 43
6.1 Kinematics . 43

6.1.1 Precision of Inverse Kinematics . 43
6.1.2 Computing Time for Inverse Kinematics . 43

6.2 Trajectory Planning . 44
6.2.1 Corrected Stroke Spacing . 44
6.2.2 Acceleration . 45
6.2.3 Shotcrete Distribution . 45

6.3 System Modelling . 46
6.3.1 Grey-box . 46
6.3.2 Black-box . 46
6.3.3 Manual Calculations . 51

6.4 Interface and Control . 52

7 Discussion and Further Work 54
7.1 Kinematics . 54
7.2 Trajectory Planning . 54
7.3 System Modelling . 55
7.4 Interface and Control . 56

8 Conclusion 58

Bibliography 60

List of Figures 62

List of Tables 64

Appendices 65

A Transformation Matrices 66

B Dimensions 67

C Tunnel Geometry 68
C.1 Parametric Functions . 68

D Block Diagrams 70
D.1 Simulink Blocks Speedgoat . 70
D.2 Simulink Blocks Router PC . 73
D.3 Danfoss Plus+1 . 74

E Source Code 83
E.1 MATLAB . 83

E.1.1 InverseKinematicsWrist.m . 83
E.1.2 Jacobian.m . 84
E.1.3 VibrationAnalysis.m . 85
E.1.4 ImpulseResponse.m . 86

E.2 Python . 87
E.2.1 kin.py . 87
E.2.2 pattern_generator.py . 91
E.2.3 surf_trans.py . 92
E.2.4 main.py . 94

Nomenclature

Abbreviations

AADT Average Annual Daily Traffic

AMV Andersen Mekaniske Verksted

ARMAX Autoregressive-moving-average model with exogenous inputs

CAN Controller Area Network

CGA Conformal Geometric Algebra

CiA CAN in Automation

COB-ID Communication Object Identifier

CPU Central Processing Unit

CR Centre of Rotation

DH Denavit–Hartenberg

DOF Degrees Of Freedom

ECU Electronic Controller Unit

GIL Global Interpreter Lock

HIL Hardware-In-the-Loop

HMI Human-Machine Interface

I/O Input/Output

LIDAR Light Detection And Ranging

LTI Linear Time-Invariant

NCP Nozzle Centre Point

NRMSE Normalised Root Mean Square Error

PDO Process Data Object

PID Proportional-Integral-Derivative

RT Real-Time

SIMO Single-Input and Multiple-Outputs

UDP User Datagram Protocol

Symbols

vi

αi Angle about common normal, from zi−1 to zi rad

β Roll angle rad

δ Logarithmic decrement −

γ Pitch angle rad

ẋ Derivative of state vector −

A System matrix −

B Input matrix −

C Output matrix −

D Feedforward matrix −

u Input vector −

x State vector −

y Output vector −

ω Nutation velocity rad/s

ωd Damped frequency rad/s

ωn Natural frequency rad/s

ψ4,stat Static deflection rad

τstat Static torque Nm

θi Joint angle of joint i rad

ϕ Nozzle spread angle rad

ζ Damping ratio −

A Amplitude of peak deg

ai Length of the common normal m

beq Equivalent viscous damping Ns/m

di Offset along previous z to the common normal m

Ds Distance from nozzle to surface m

keq Equivalent spring stiffness Nm/rad

Larc Arc length of tunnel m

Pd Damped period s

Qm Volumetric flow rate of hydraulic motor m3/s

rs Spread radius of nozzle jet on surface m

Tw Transformation matrix for wrist frame −

vm Hydraulic motor displacement m3/rad

xw x-position of wrist frame m

yw y-position of wrist frame m

zw z-position of wrist frame m

Chapter 1

Introduction

1.1 A Brief History of Shotcrete

Application of concrete by means of spraying was first introduced by American inventor and taxi-
dermist Carl Ethan Akeley (1864–1926), (Teichert, 2002). In June 1907, Akeley presented the first
modern concrete applicator called the "Plastergun". This device pumped dry plaster through a hose
using compressed air to convey the material to the nozzle where it was mixed with water before
being projected at high velocity onto a receiving surface. Later in 1911, a patent was issued for an
"Apparatus for mixing and applying plastic or adhesive materials" named the "Cement gun", and
in 1912 the sprayed material was patented under the name "Gunite". Today, gunite is no longer
proprietary and is commonly called sprayed concrete or shotcrete.

Since Akeley‘s time, there have been tremendous developments in shotcrete technology. Noteworthy
is the invention of wet-mix concrete in 1955, (Dhir, 1976). Wet-mixed concrete refers to concrete
that has been premixed with water and admixtures before being pumped. Compared to dry-mix
("Gunite"), wet-mix shotcrete has several advantages in large scale operations; it can be prefab-
ricated in large external batch plants before being transported on-site and allows larger diameter
hoses with higher volumetric flow rates. It also ensures a more homogeneous mix and consistency,
while producing less dust and rebound, contributing to increased operational safety and efficiency.
Wet-mixed concrete was later adopted by the shotcrete industry in the mid ’90s and has since be-
come the industry standard for large scale operations. Other significant developments in shotcrete
technology include the rotary applicator gun, more effective pumps, higher quality materials and
admixtures and the advancements of the modern computer. The modern computer made it possible
to introduce robotic placement of shotcrete and employ advanced inspection methods for monit-
oring deposition and automated operations. The future of shotcrete technology is only limited by
the rate of new innovations.

1.2 Motivation

In Norway, shotcrete is heavily used in tunnel construction both as temporary lining before place-
ment of concrete elements and as permanent lining for rock support. Shotcrete is popular in tunnel
construction for several reasons such as high compressive strength, low permeability, fast curing
and no need for formwork, which greatly reduce cost. It is also the only practical construction
material capable of handling the sheer scale and uneven surface topology of tunnel excavation.

The primary method of tunnelling in Norway is the so-called "drill and blast" method. This method
is a sequential process which in short involves drilling holes for explosives, blasting 3-5 m sections,
ventilating, mucking and scaling. After mucking and scaling of the newly blasted tunnel section,
the site is still not secure for human personnel. This is because there is no guarantee that all loose
debris has been dislodged and there is still a potential for cracking due to stresses in the rocks.
Shotcrete is therefore applied to the tunnel walls in order to secure the area and to make the surface

1

impermeable. Shotcrete is typically applied using a layer thickness of ≈ 10 cm, depending on rock
quality and specifications (AMV, 2018).

The main criteria for the shotcrete operation are as follows:

1. The minimum thickness must be fulfilled (usually ≈ 10 cm depending on rock quality).

2. Minimise concrete usage to reduce cost and environmental impact.

a. It is essential that shotcrete is applied perpendicular to the spraying surface at the
correct distance in order to reduce rebound and overspray.

b. It is also crucial that the thickness of the applied concrete layer is "thick enough" ac-
cording to specifications, but not excessive.

Rebound of applied material is inevitable. The US Army Corps of Engineers (2005) estimated
that under normal conditions, when spraying perpendicular to the surface, the rebound will be
between 2-5 % for application to floors or slabs, up to 5-10% on sloping or vertical walls and as
much as 10-15% for overhead work. In addition, if the spraying angle is not perpendicular to the
surface and differs from 90◦, the rebound may increase up to 50 % (Girmscheid and Moser, 2001).
The spraying distance is also important. Optimal spraying distance is 1.2 to 1.5 metres, but in
practice, this may be hard to achieve with human operators and between 1 to 2 meters is acceptable
(Hofler and Schlumpf, 2004). If the spraying distance becomes shorter, the amount of rebound will
increase, and if the spraying distance becomes too large, it may also increase rebound, affect layer
compaction and degrade layer strength.

Quality of applied shotcrete also depends on factors such as the speed of application, types of
aggregates, accelerators, admixtures, the machinery and more. However, the most detrimental
factor is the skill-set of the nozzle operator and their ability to keep the correct spraying angle
and distance. In practice, studies show that human operators tend to spray concrete until the
finished layer has a smooth and even look, when in fact, they could have used less concrete. Using
smoothness as a stopping condition for layer thickness also means that there is a risk of the concrete
layer being too thin in certain places, making the strength of the layer insufficient.

For human operators and personnel, shotcrete has a severe drawback in terms of health, safety and
environment. Sprayed concrete releases chemicals and airborne dust, which may prove harmful to
the respiratory system and can lead to medical conditions such as chronic obstructive pulmonary
disease. Furthermore, production of concrete has a large carbon footprint, and application of
shotcrete may contribute to the release of chemical substances which are not beneficial for the
environment. For these reasons, it is desirable to keep the operator at a safe distance and minimise
excessive use of shotcrete.

1.3 Project Background

Andersen Mekaniske Verksted (AMV) AS is a Norwegian company founded in 1860. The company
produces industrial machinery for mining and tunnelling operations, in addition to equipment for
the oil and gas industry. As part of their research and technological development, the company
wants to improve the shotcrete operation in the "Drill and Blast"-method of tunnelling. They
aim to make the process safer for personnel and the environment, with better quality and cost-
effectiveness. The platform for this research is the AMV 4200H, depicted in Figure 1.1. AMV wants
to develop a framework for achieving automatic application of shotcrete. Automatic spraying gives
more control over the operational parameters and may also contribute to reducing the required
operator interaction.

2

Figure 1.1: 3D render of the AMV 4200H, courtesy of AMV.

The AMV 4200H was originally designed for manually controlled operations. The kinematic struc-
ture has 5 degrees of freedom (DOF) and is simple enough that manual control of individual joints
is intuitive for the operator. The machine has a telescopic boom capable of extending up to 15 m,
giving reach far into unsupported areas while keeping the operator at a safe distance. The main
drawback is that the operator must have the nozzle within line of sight during the application pro-
cess. Due to poor visibility caused by dust, spraying mist and distance to the nozzle, the operator
may be forced to get close to potentially hazardous areas. Reducing the required input from the
operator by automation is desirable for the health and safety of personnel as well as the possibility
of increased operational efficiency and reduction in material cost.

On the AMV 4200H, ready mixed concrete is poured from a concrete transport vehicle into the
receiving hopper at the front of the heavy-duty truck. The concrete mix is pumped through hoses
to the nozzle at the end of the manipulator. When the wet-mix reaches the nozzle, hardener and
pressurised air are added to accelerate the curing process and to increase the pressure and velocity
of the shotcrete. Today, the manipulator is manually controlled by a nozzleman, either from a
panel within the vehicle or over radio. Furthermore, the key specifications of the AMV 4200H are:

• Hybrid, both electric and diesel operation.

• Gross weight approximately 37 metric tonnes.

• Electric system; 3 1000VAC at 50Hz. Control system electronics: 24VDC.

• 2 pcs 90kW 1000VAC electric motors for operation of the concrete pump, boom and com-
pressors.

• Danfoss ECU using CAN bus communication.

1.4 Project Scope and Objectives

The scope of this project is to produce a framework for automatic application of shotcrete to new
tunnel sections using the AMV 4200H. Application of shotcrete will be performed with individual
kinematic closed-loop control of each joint. External feedback from exteroceptive sensors, such
as laser measurements are not considered in this thesis. The tunnel surface is parameterised by
reference points provided by the nozzleman. The tunnel section is assumed to be relatively smooth
with constant cross section. The spraying angle is set equal to the normal on the tunnel surface
and uneven surface topologies are not explicitly considered. AMV has stated their expectations for
the thesis, summarised as follows:

3

• Solve forward and inverse kinematics.

• Programming of a control system for automatic shotcrete application.

• Generation of a spraying plan on the tunnel surface, at a given velocity and surface distance.

• Development of a graphical user interface for automatic spraying.

• Development of a CANopen interface between a PC and the Danfoss ECU.

• Modelling of the physical system in Simulink for testing and control.

1.5 Limitations

This project is subject to some limitations. The main limiting factor is the scale of the project
concerning time. Several simplifying assumptions have been made to ensure that a minimal working
example of the proposed framework could be completed in time. This, for example, includes
operation without exteroceptive sensing of the environment, not using laser scanning data and
instead assuming that the spraying surface can be modelled as a surface using polynomials. Another
limitation is related to project planning, as the project has several dependencies, accurate estimation
of time usage can be difficult. Moreover, the authors started this thesis with little prior knowledge
on many of the core concepts required for the execution, such as shotcrete technology, robotics,
CAN bus communication and Python programming. Lastly, the physical machine is not at the UiA
campus, and validation testing cannot be performed until the end of the project.

1.6 State-of-the-art

Using robotic manipulators for application of sprayed concrete is not a novel idea. The first robotic
shotcrete manipulators appeared over 40 years ago (Kurth et al., 2010). Typically, any machine
with the ability to manipulate a nozzle was retrofitted with shotcrete equipment. The resulting
machines were rudimentary and only applied dry-mix concrete, and since these machines were not
purpose-built for shotcrete operations, they often proved inefficient with little flexibility in terms
of manipulability.

Over the next decades, along with an increasing demand for operational safety, accountability
and efficiency, shotcrete manipulators became more specialised for the given application and be-
came equipped with dedicated equipment on-board such as concrete pumps, compressors, tanks for
accelerators, dosage units and more. Further improvements were achieved concerning materials,
fibres and aggregates, as well as chemical products such as water reducing admixtures and pump-
ing aids, plasticisers, set accelerators, hydration control and concrete improving and curing agents
(Girmscheid and Moser, 2001).

By the 2000s, Girmscheid and Moser (2001) demonstrated the first fully automatic shotcrete robot.
Their research was carried out for an existing 8-DOF manipulator called the MEYCO Robojet. The
complex kinematic chain did not have a closed-form solution, and they relied on numerical meth-
ods for calculation of the inverse kinematics. Their work provided the Robojet with what they
call "application intelligence", and refers to automatic correction and optimisation of operational
parameters to achieve theoretical final lining thickness with high quality and minimal rebound.
Application intelligence was obtained by combining empirical research on optimal shotcrete depos-
ition with laser measurements and an application process control program to estimate optimum
parameter settings. They provided three operational modes; manual, semi-automatic and fully
automatic mode.

• Manual mode: The complex kinematic structure was simplified so that the Cartesian path
of the nozzle could be controlled with a 6D-joystick. This mode is used when the presence
and skill of the operator are required, for example on highly irregular surfaces or holes. The
operator controls application parameters.

4

• Semi-automatic: The operator controls the translation and velocity of the nozzle along
the tunnel surface. Other process variables such as wall distance and nozzle orientation are
handled by the application process control and mechanical control system.

• Fully automatic: Takes complete control over the application process and determines neces-
sary shotcrete capacity, air pressure, distance to tunnel surface, rotational and translational
speed of nozzle. All based on the required layer thickness. This mode is suitable for sections
with predictable surface geometry, such as smoothly blasted excavations and profiles drilled
by tunnel boring machines.

For the semi-automatic and automatic modes, the operational area must be scanned with laser
prior to the shotcrete application to calculate the operational parameters. In fully automatic
mode, the tunnel profile scanned twice. First, it is divided into a grid structure, and the required
deposition for each cell in the grid is calculated as the difference between measured and theoretical
thickness. The process control system uses the required layer thickness to interpolate the nozzle
velocity along each cell in the grid to provide the correct deposition. After shotcreting, the tunnel
is scanned again to assess the layer deposition. Girmscheid and Moser conclude that no single
operating mode is superior and that each operating mode serves a specific purpose depending on
the boundary conditions.

Others have also performed similar research to that of Girmscheid and Moser but have, on the
contrary not provided the same application intelligence. The research has in general been more
focused on robotic modelling and automation of similar machines (Cheng et al., 1996), (Honegger
et al., 2002), (Wang and Su, 2007), (Xuewen et al., 2010).

More recent work on fully automatic operations was performed by Nabulsi et al. (2010) on the
Sika R-Putzmeister PM-407 shotcrete machine. This machine has a 5-DOF manipulator, and the
inverse kinematics were solved using decoupling and iteration methods. They provide two modes,
manual and semi-automatic, with the same principal functionality as Girmscheid and Moser. In
their discussions, they discuss several drawbacks with the retrofitted machine such as complex
kinematics, lack of hydraulic power to actuate all joints simultaneously and that the machine is
directly operated on hydraulics without load-sensing.

The use of laser scanning is not new in the shotcrete industry. The effectiveness of laser scanning
before and after shotcrete application is well proven. A trail project demonstrated a reduction
in concrete expenditure by 20-30 % due to more accurate thickness control and operator training
(Norwegian Tunnelling Society, 2017). Today, one of the most promising developments for the
shotcrete industry comes from the field of 3D mapping and segmentation. New methods and
techniques have made it feasible to achieve a fully autonomous shotcrete operation where all process
parameters are monitored, optimised and corrected in real-time (RT) based on 3D data. On this
basis, AMV’s goal for the future is to take full advantage of the potential in modern 3D techniques.
They aim to realise a new system with automated real-time concrete thickness measurement though
3D-vision. The system shall work in dusty low-light conditions with real-time transfer of 3D-data
to the control system for automatic corrections of errors in shotcrete deposition and layer thickness.

Unlike Girmscheid and Moser (2001), the AMV 4200H has a similar kinematic structure to the
machine used by Nabulsi et al. (2010) and is simple enough that manual joystick control is intuitive.
Thus, the kinematic structure does not have to be simplified further. In comparison to Nabulsi et al.
(2010), the hydraulic system of the AMV 4200H has more overhead and modern load-independent
flow control valves, making the machine more suited for automatic control. However, as pointed
out by Nabulsi et al. (2010), robotisation of a machine that is not purpose-built for automatic
control usually present unexpected difficulties. As an example, most autonomous industrial robots
are created with automatic control in mind, and considerable effort is given to provide a closed-
form solution for the inverse kinematics. Most existing shotcrete machines are intended for manual

5

operation, and little thought has been given to the kinematic structure, often leading to unsolvable
systems of equations.

In this thesis, "application intelligence", i.e. optimisation of shotcrete application parameters, have
not been considered. However, a manual and fully automatic mode will be provided without the
use of laser scanning, using closed-loop control with joint feedback. A polynomial representation
of the tunnel surface is created from probed points provided by the operator. The wall distance
will be determined from the position of the provided reference points, and the nozzle orientation
is set equal to the normal on the surface. This approach assumes even cross sections and does
not consider the optimal nozzle angle to the real and uneven tunnel topology. A trajectory will
be generated on the polynomial tunnel surface, and the operator will have full control over the
shape of the pattern and the nozzle velocity. Moreover, a graphical user interface is provided for
simple planning and administration of the spraying procedure. In addition, the required software
and interfacing with the on-board electronic control unit (ECU) is provided.

This thesis does not provide a solution for fully automatic shotcrete operations with real-time
application process control but provides a prestudy and foundation for further work. The contri-
butions include providing:

• A solution to the forward and inverse kinematics of the AMV 4200H.
• An algorithm for generating the spraying pattern and a method for mapping the spraying
pattern onto the polynomial tunnel surface.
• An implementation of individual joint control with feedback.
• A method for automatic application of shotcrete without exteroceptive sensor feedback.
• A computer application with a graphical user interface, implementing the methods.
• A communication interface between the ECU and a PC.
• Verification of the developed model through hardware-in-the-loop testing.

Special effort is also given to prepare the concepts and ideas presented in this thesis for further
development.

6

1.7 Document Structure
This thesis is structured into 8 chapters, a summary of each is given below:

• Chapter 1 – Introduction – starts with setting the stage and giving a general introduction to
the key concepts, methods and limitations of shotcrete technology. Moreover, the background
for the project is given along with the project scope, objectives and limitations. Then, a state-
of-the-art on shotcrete technology is presented.
• Chapter 2 – System Description – describes the physical system and explains how the
forward and inverse kinematics are solved. It also gives a discussion and analysis on some of
the unique mechanical components such as the nozzle eccentric and the actuating geometry
for boom elevation. In addition, the system Jacobian is derived along with an analysis of
kinematic singularities.
• Chapter 3 – Trajectory Planning – gives explanations for the whole process of generating the

spraying trajectory and the nozzle orientation reference. The chapter starts with defining the
coordinate systems used to parameterise the spraying surface and how the geometry of road
tunnels are in general. Furthermore, it describes how reference points given by the operator
are used for generating the tunnel surface, and how the planar trajectory is generated and
mapped onto the surface.
• Chapter 4 – System Modelling – starts with giving motivation for HIL-setup and dynamic
modelling. Then a thorough explanation is given on how the HIL model works and why it
can be simplified. Then, modelling of system dynamics are presented along with the different
methods that were employed to fit a model to the measured validation data.
• Chapter 5 – Interface and Control – presents the communication and setup between the
physical system, ECU and user interface PC. It also describes the blocks, logic and com-
munication created in the Danfoss Plus+1 software, and gives a brief introduction to CAN
bus and CANopen. Furthermore, the proposed control structure and deadband compensator
are presented. Lastly, the developed software and graphical user interface are illustrated and
explained in detail.
• Chapter 6 – Results – presents the results from research and development.
• Chapter 7 – Discussion and Further Work – provides a discussion on the obtained results
and recommendations for further work.
• Chapter 8– Conclusion – Lastly, a conclusion to the work and project is drawn.

1.8 Source Code Repository
The methods in this thesis are implemented in the form of a Python application. The source code
is included in Appendix E.2 as well as a GitHub repository for easier reference and cloning.

https://github.com/auen/auto_shotcrete

7

https://github.com/auen/auto_shotcrete

Chapter 2

Kinematics

While applying shotcrete, the vehicle is stationary and partially sustained by support legs. The
application is solely executed by the boom assembly depicted in Figure 2.1, accommodating five
kinematic joints:

• Revolute joint for slewing, θ1.
• Revolute joint for elevation, θ2.
• Prismatic joint for the telescope, d3.
• Revolute joint for nozzle roll, θ4.
• Revolute joint for nozzle pitch, θ5.

The slewing drive, which turns the boom about the base, is actuated by two hydraulically driven
worm gears. The elevation is handled by two hydraulic cylinders, connected in parallel to form
an inverted slider-crank mechanism with the revolute joint. The prismatic joint consists of a two-
stage telescopic arm which is actuated by two hydraulic cylinders in series inside the boom. Unlike
load-bearing cranes, the cylinders are not actuated in sequence. This means that, while the total
extension is measured, the individual extension of the boom elements is unknown under partial
extension. The two last joints form a wrist mechanism, controlling roll and pitch of the nozzle.

Figure 2.1: CAD model of boom assembly with reduced detailing.

The nozzle is connected to the machine via an eccentric mechanism which rotates to create a
spraying cone. This mechanism is a closed kinematic loop itself and serves the purpose of increasing
the spread of the nozzle jet. Note that the eccentric mechanism is not treated as a part of the
kinematic analysis. Only the centre point of rotation is considered. The eccentric is discussed
further in Section 2.1.3.

2.1 Forward Kinematics
Forward kinematics refers to the use of kinematic equations to calculate the pose of the end effector
given a set of joint variables, represented as a block-diagram in Figure 2.2. In practical terms, it

8

describes how to apply data from sensors to determine the position and orientation of the nozzle.

(x, y, z, β, γ)
Forward Kinematics

(θ1, θ2, d3, θ4, θ5)

Figure 2.2: Forward kinematics: From Joint Space to Cartesian coordinates.

The forward kinematics is analysed following the joint frame assignment technique of Denavit-
Hartenberg, (Spong et al., 2005). Using the DH-convention, each joint frame can be described by
a coordinate transformation from the previous joint frame i− 1 to the current frame i. All motion
is described relative to a non-moving frame, referred to as the base frame. Each joint frame i may
be described by a certain set of successive translations and rotations from the previous joint frame
i− 1. This relation is given by the transformation

Ti−1
i =

 R T

0 0 0 1

 = Rotzi−1(θi) ·Transzi−1(di) ·Transxi−1(ai) ·Rotxi−1(αi) (2.1)

where

θi : Joint angle of Joint i [rad]
di : Offset along the previous z to the common normal [m]
ai : Length of the common normal [m]
αi : Angle about common normal from zi−1 to zi axis [rad]
R : Rotation matrix containing the column vectors rx, ry, rz [−]
T : Translational vector containing the coordinates (x, y, z) [m]

The matrices in Equation (2.1); Rotz, Transz, Transx, Rotx are given in Appendix B.1.

Equation (2.1) describes how to get from one joint to the next by multiplication of two screw
displacements. First a rotation θi is performed around the previous z-axis, zi−1, followed by a
translation di along the direction of zi−1 to the common normal of axes of zi−1 and zi. Next,
the coordinate system i − 1 is translated along the common normal a distance ai. Lastly, the
coordinate system is rotated around the previous x-axis, xi−1 such that the new z-axis, zi aligns
with the axis of revolution or translation for Joint i. Note that the y-axis is obtained by completing
the right-handed coordinate frame.

For a serial manipulator, the transformation from the base frame to the end effector is simply the
ordered matrix product of the individual joint transformations:

T1
n = T1

2 ·T2
3 ... ·Tn−1

n (2.2)

Applying the above-stated method to the AMV 4200H shown in Figure 2.1, one obtains the kin-
ematic map in Figure 2.3. From the figure, it can be seen that the construction has two joint offsets.
One at the base between Joint 1 and Joint 2, the other at the wrist frame between Joint 4 and the
end effector. In general, joint offsets can increase the difficulty of finding closed-form solutions for
the inverse kinematics. Furthermore, Joint 4 is moved such that it is perpendicular to Joint 5 by
adding the distance from Joint 4 to joint 5 to the length d3. The angle of Joint 2, θ2 is offset by 90◦

such that the telescopic boom is horizontal in the home position. The coordinate system of Joint
6 does not represent an actual joint. The sixth coordinate system is included to orient the z-axis
of the end effector such that it points in the spraying direction of the nozzle. Moreover, the only
change from Joint 6 to the end effector is a translation of length d6.

9

1
1z

3d

2x

3z

22z

1x

1a−

1d

2a

3x

4z

4x

4a−

5z
5x

4

5

ex

ey
ez

6d
6z

6x
5a−

5d−

Figure 2.3: Kinematic model of the boom assembly on AMV 4200H. Note that joint motions are
indicated in red.

Using Equation (2.2), the complete transformation from the base frame to the end effector is found
from ordered matrix multiplication of all intermediate joint transformations:

T1
e = T1

2 ·T2
3 ·T3

4 ·T4
5 ·T5

6 ·T6
e (2.3)

Interpreting the rotation matrix, R itself is not particularly intuitive. Furthermore, since the
machine is 5-DOF, it is under-actuated in terms of a 6-DOF space. Two rotations can therefore
describe the functional rotation. The nozzle is directed along the ze-axis. Consequently, the yaw
(z-rotation) becomes insignificant since it does not affect the task, and we are left with roll and pitch
denoted as β and γ, respectively. Expressing the orientation by Euler angles using the Tait-Bryan
convention in the x− y − (z) sequence gives:

β = arctan 2(−R(2, 3),R(3, 3)) (2.4)
γ = arcsin(R(1, 3)) (2.5)

Note that arcsin has infinite periodic solutions at n · 2π and a complimentary solution at π − γ.
However, for spraying purposes it is only its principal value that is of interest. For the case of zero
roll, both solutions yield the same x-vector, while the z-vector is flipped.

2.1.1 Denavit- Hartenberg Parameters

Table 2.1: Denavit–Hartenberg parameters for AMV 4200H. The ranges of the definition are given
in degrees.

i θi di ai αi Range
1 θ1 d1 −a1

π
2 θ1 ∈ [−65, 65]◦

2 θ2 + π
2 0 a2

π
2 θ2 ∈ [−16, 57]◦

3 0 d3 0 0 d3 ∈ [7.012, 15.012] m
4 θ4 0 −a4

π
2 θ4 ∈ [−180, 180]◦

5 θ5 −d5 −a5 −π
2 θ5 ∈ [−118, 62]◦

6 0 d6 0 0 −

The dimensions in Table. 2.1 is found in Appendix B.1.

10

2.1.2 Reachable Workspace

The reachable workspace of the end effector is plotted by looping the forward kinematics through
the ranges of definition given in Table 2.1. The two last joints, (θ4, θ5) are excluded for simplicity
due to little contribution to the reachable workspace. Note that only the reachable workspace, i.e.
the volume reachable in at least one orientation is illustrated. It does not represent the dexterous
workspace, which is the volume reachable in all orientations.

Figure 2.4: Reachable workspace for the boom assembly of AMV 4200H, excluding the nozzle.

2.1.3 Nozzle and Eccentric

During application of shotcrete, the nozzle is rotated in small overlapping circles. This is done to
improve surface finish, facilitate mixing and improve the overall structural integrity of the shotcrete.
The nozzle rotates on an eccentric, i.e. a disk with an axle offset from the centre of rotation, see
Figure 2.5. The eccentric is driven by a hydraulic motor and is connected to the nozzle body, hinged
to a universal coupling on the connecting bracket. As the motor rotates, the nozzle will follow in
a circular motion within a cone whose origin is located directly below the universal coupling. The
distance Loffset is the constant offset between the centre of rotation (CR) for the nozzle and the
coordinate system of Joint 6. Rotation of the nozzle creates a cone with an angular opening of
ϕ ≈ 4, 5 degrees. Note that the nozzle tip follows a skewed circle within the cone due to the
mechanical constraints of the universal coupling, resulting in the nozzle moving back and forth in
the z-direction as it rotates about the CR.

11

offsetL

ex

ez

6d

6x

6z
CR

Figure 2.5: Nozzle and eccentric; dotted line shows nozzle in the upper position. The solid line
shows the nozzle in the lower position. Note that nozzle rotation is out-of-plane.

The nozzle nutation is not considered in the kinematic analysis since its purpose is to disperse the
shotcrete jet. As a simplification for the kinematics, the nozzle centre point (NCP) is defined as
lying on a straight line drawn from the CR at a distance d6 from coordinate system 6. The value
of d6 is considered to be the middle value of the nozzle tip translation in the z-direction due to the
eccentric. The simplification contributes to an inaccuracy of the nozzle position by ≈ ±19 mm in
the ze-direction.

The nutation velocity ω, can be measured by an encoder or estimated, since the displacement of the
hydraulic motor is known and the incoming flow is measured. By estimation, the nozzle rotational
velocity is

ω = Qm
vm

[rad/s] (2.6)

where vm is the motor displacement and Qm is the volumetric flow rate. Assuming steady-state
operation and no radial acceleration, the mean spread radius of shotcrete on the tunnel surface can
be approximated as

rw = tan(ϕ) · (Loffset + d6 +Ds) [m] (2.7)

where

rw : Spread on surface [m]
Ds : Distance to surface [m]
ϕ : Nozzle spread angle [rad]

2.1.4 Nonlinear Actuation of Joint 2

All rotational links with the exception of θ2 are driven by hydraulic motors. The angular dis-
placements can be assumed directly proportional to the volumetric flow through the motors. Con-
sequently, a linear conversion between the actuator space and joint space can be assumed. However,
Joint 2, with angle θ2 is manipulated by means of two hydraulic cylinders, attached symmetrically
about the rotation axis. The geometry – where the cylinders are not tangent to the arc of the driven
element – is illustrated in Figure 2.6. This geometric condition prevents a direct variation between
the volumetric flow in the actuators and the angular displacement θ2. The relation between cylin-
der length LC and joint angle θ2 is solvable by examining the geometry of the mechanism. LC is

12

the distance between the upper and lower attachment points. Applying the Pythagorean theorem
for the cylinder length yields:

LC(θ2) =
√

(Ly1 + Ly2 cos θ2 − Lx2 sin θ2)2 + (Lx2 cos θ2 − Lx1 + Ly2 sin θ2)2 [m] (2.8)

CL
2T

1xL

1yL

2yL

2xL

CL
2T

1xL

1yL

2yL

2xL

CL
2T

1xL

1yL

2yL

2xL

Figure 2.6: Actuating mechanism for joint θ2.

The function is evaluated within the operating range from Table 2.1. In Figure 2.7 the real relation is
plotted and compared to a proportional relation between θ2 and LC . The dimensions are presented
in Appendix B in Table B.2.

Figure 2.7: Cylinder length to angle relation for θ2.

13

2.2 Inverse Kinematics
Whereas the forward kinematics describes the pose of the end effector in Euclidean space, the
inverse kinematics defines the joint variables as a function of the end effector pose. A block-
diagram representation is illustrated in Figure 2.8. Given that the robot in question is a 5-DOF
machine, the reachable workspace lies in a 5-DOF subspace (Craig, 2014). An example could be
to control a line segment in space, where the rotation about the line is not considered. Similarly,
for shotcrete spraying, the nozzle rotation about its own axis does not affect the task.

Inverse Kinematics
(θ1, θ2, d3, θ4, θ5)(x, y, z, β, γ)

Figure 2.8: Inverse kinematics: From Cartesian coordinates to Joint Space.

yes

no

Wrist
Inverse Kinematics

all Joints
Forward Kinematics

Reference
Offset Boom

Error Magnitude
Calculate Position

Start

Tolerance
Position Error <

Boom
Inverse Kinematics

end

Figure 2.9: Flow chart representation of in-
verse kinematics algorithm.

No exact closed-form solution has been found for
the manipulator and as such the inverse kinemat-
ics is divided into two analytical segments using kin-
ematic decoupling. The first segment is defined as
the transformation from the base to the wrist frame,
illustrated in Figure 2.3 as frame 4. This transform-
ation incorporates the three first joints (θ1, θ2, d3),
and is solved in terms of translation. The second
segment is specified as the remaining transforma-
tion, called the wrist. It is comprised of the last two
joints (θ4, θ5) and the nozzle. This transformation
is solved in terms of orientation. Both segments are
solved analytically and coupled to obtain a complete
solution. Because the wrist is offset and translates
the nozzle, it affects the final position, rendering the
calculation incorrect with respect to position. How-
ever, the calculation serves as an initial guess for an
iterative solver, where the final values are resolved
numerically. A flow chart representation is presented
in Figure 2.9 comprising the following operations:

• Start: Position error magnitude is initialised to
infinity in order to trigger the while condition.
• Inverse Kinematics Boom: Inverse kinematics
for the first transformation is calculated analytic-
ally such that the wrist frame coincides with the
goal position.
• Inverse Kinematics Wrist: The wrist mechan-
ism inverse kinematics is calculated to obtain the
correct nozzle orientation.
• Forward Kinematics: Forward kinematics is

applied to the proposed solution to acquire the
pose of the proposed solution.
• Offset Boom Reference: The position error is
calculated and used as the offset for the first trans-
formation.
• Calculate Position Error Magnitude: Pos-
ition error magnitude is updated and evaluated
against the tolerance.

14

2.2.1 Solution for Boom

Wrist frame position is controlled using the first three joints θ1, θ2, d3 in a similar configuration to
a polar robot. The first joint θ1 controls the slewing motion of the boom about the global yaw
axis, meaning that the joint only affects the x-y-position of the wrist frame. The second joint θ2
controls the boom inclination, and the prismatic joint d3 controls the boom length. Extracting the
relevant transformations from Eq. (2.3) gives:

T1
4 = T1

2 ·T2
3 ·T3

4 (2.9)
Expressions for the wrist frame coordinates are extracted

xw = T1
4(1, 4) = − cos(θ1)

(
a1 + a2 sin(θ2)− d3 cos(θ2)

)
[m] (2.10)

yw = T1
4(2, 4) = − sin(θ1)

(
a1 + a2 sin(θ2)− d3 cos(θ2)

)
[m] (2.11)

zw = T1
4(3, 4) = d1 + a2 cos (θ2) + d3 sin (θ2) [m] (2.12)

and solved for the joints

θ1 = arctan
(
yw
xw

)
[rad] (2.13)

θ2 = 2 arctan
(√

2a1xwc(θ1) + (a2
1 − a2

2 − 2d1zw + z2
w)c(θ1)2 + x2

w + c(θ1)(z − d1)
xw + (a1 + a2)c(θ1)

)
− π

2 [rad]

(2.14)

d3 = −d1 + zw − a2 · c(θ2)
s(θ2) [m] (2.15)

providing a closed-form solution to the inverse kinematics of the wrist frame position. Note that
s, c are abbreviations for the sine and cosine functions, respectively.

2.2.2 Solution for Wrist

The principal functionality for the wrist transformation is to manipulate the nozzle orientation,
and thus the inverse kinematics are solved in terms of roll and pitch. To define the pitch and roll,
we start by examining the product of the nozzle spatial rotations about the global x and y-axes,
and the orientation obtained through the forward kinematic transformations

T1
e(1:3, 1:3) = Re = Rotx(β) ·Roty(γ) (2.16)

The matrix Re has dimension (3, 3). However, since a 5-DOF machine can only guide a line segment
in space, the complete pose cannot be determined arbitrarily. The kinematics is configured such
that the nozzle aligns with the z-axis of the end frame, meaning that the desired nozzle orientation
is described using the third column in the rotation matrix, producing the following equation:

Re(1:3, 3) = T1
e(1:3, 3) (2.17)

Which, when expanded becomes:

s (γ) = c (θ1) c (θ5) s
(
θ2 + π

2

)
− s (θ5)

(
s (q1) s (θ4) + c (q1) c (θ4) c

(
θ2 + π

2

))
(2.18)

−c (γ) s (β) = s (θ5)
(
c (q1) s (θ4)− c (θ4) c

(
θ2 + π

2

)
s (q1)

)
+ c (θ5) s (q1) s

(
θ2 + π

2

)
(2.19)

c (β) c (γ) = −c (θ5) c
(
θ2 + π

2

)
− c (θ4) s (θ5) s

(
θ2 + π

2

)
(2.20)

15

Note that, also here, s, c are abbreviations for the sine and cosine. Assuming that we know the
values for the first rotational joints (θ1, θ2) and orientation (β, γ), the set of equations is solved using
MATLAB. The solution yields extensive expressions for the wrist joints (θ4, θ5) and is intentionally
not included in the text. The source code is presented in Appendix E.1.1.

2.3 The Jacobian Matrix

The Jacobian matrix has many useful applications in robotics. It provides a relationship between
the system description in operational space and joint space. The Jacobian can be used to describe
and deduce joint space velocities, accelerations and forces, as well as determine Cartesian forces,
velocities and accelerations based on values in joint space. In addition, it is a useful tool in the
analysis of singularities, and can be used for numerical computation of the inverse kinematics. In
this thesis, the Jacobian is not used explicitly but is provided for future work and as a part of the
system description.

The Jacobian matrix defines a linear mapping that relates joint space velocities, q̇ to the Cartesian
velocity of the end effector, ẋe:

ẋe = J(q)q̇ (2.21)

Applying the chain rule to Eq. (2.21), the expression for end effector acceleration, ẍe becomes:

ẍe = J(q)q̈ + J̇(q)q̇ (2.22)

From Eq. (2.21) and Eq. (2.22) it is also possible to obtain the expressions for joint space velocities
and accelerations. The equations are derived using algebra and the inverse Jacobian

q̇ = J−1(q)ẋ (2.23)

q̈ = J−1(q)(ẍ− J̇(q)q̇) (2.24)

Using the Jacobian to calculate joint space velocities and accelerations does however require that
the matrix is non-singular, i.e. that there exists an inverse. For the Jacobian to be invertible, it
must be square (n-by-n), and the determinant must be different from zero. The geometric Jacobian
of the AMV 4200H is non-square with dimension (6, 5), this is because the workspace has six DOF,
and the machine is underactuated with only five joint variables. The geometric Jacobian contains
the derivatives of nozzle translation (x, y, z) and orientation column vectors (rx, ry, rz), with respect
to all five joint variables. Since there are only five joint variables and the geometric Jacobian has
rank six, matrix multiplication is not defined. Therefore, we require that the Jacobian is square
with dimensions 5-by-5 such that it is possible to associate the number of reference variables to the
number of DOFs on the machine. This is achieved by exchanging the derivatives of (rx, ry, rz) with
the derivatives of the expressions for β (roll) and γ (pitch) from Eq.(2.4) and Eq.(2.5), discussed
in Section 2.1. A relation between the actual and controllable DOFs is obtained

ẋe =

ẋ
ẏ
ż

β̇
γ̇

 = J(q) ·

q̇1
q̇2
q̇3
q̇4
q̇5

 (2.25)

where β, γ represents roll and pitch of the nozzle respectively. This formulation enables the matrix
product to be defined as well as the inverse of the Jacobian, given det(J) 6= 0. On this basis, an
analytical Jacobian matrix can be formed as the partial derivative of the Cartesian variables with

16

respect to all joint variables:

J(q) = ∂fi
∂qj

=

∂x

∂q1

∂x

∂q2

∂x

∂q3

∂x

∂q4

∂x

∂q5
∂y

∂q1

∂y

∂q2

∂y

∂q3

∂y

∂q4

∂y

∂q5
∂z

∂q1

∂z

∂q2

∂z

∂q3

∂z

∂q4

∂z

∂q5
∂β

∂q1

∂β

∂q2

∂β

∂q3

∂β

∂q4

∂β

∂q5
∂γ

∂q1

∂γ

∂q2

∂γ

∂q3

∂γ

∂q4

∂γ

∂q5

(2.26)

For more details on obtaining the Jacobian matrix, the reader is referred to Appendix E.1.2.

2.4 Singular Configurations
When controlling a manipulator in Cartesian space it is desirable to know the limitations. The
limitations of a manipulator are referred to as singularities and typically represent configurations
at which a machine loses one or more degrees of freedom. The effects of kinematic singularities are
of interest for the following reasons summarised by Siciliano et al. (2009, p. 116):

(a) Singularities represent configurations at which mobility of the structure is reduced, i.e., it is
not possible to impose an arbitrary motion to the end effector.

(b) When the structure is at a singularity, infinite solutions to the inverse kinematics problem
may exist.

(c) In the neighbourhood of a singularity, small velocities in the operational space may cause large
velocities in the joint space.

Furthermore, it is common to classify singularities as either boundary singularities, i.e. singularities
that occur at the boundary of the reach of the manipulator, or as internal singularities, which are
caused by geometric relations in joint space.

The singularities can be identified by examining the Jacobian matrix. Singularities are found
where the Jacobian matrix is rank-deficient. If the Jacobian is rank deficient, it means that one
or more mathematical couplings are missing between the description in joint space and Cartesian
space, hence the controllability is degraded. Furthermore, the geometric locations and analytical
expressions for the singularities can be identified by solving the determinant of the Jacobian equal
to zero, det(J) = 0. However, the Jacobian of the AMV 4200H is very complex, and there are no
analytical solutions to the expression det(J) = 0.

Since the singular configurations are hard to obtain analytically, they may be found empirically.
By empirical testing and analysis. No joint space singularities were found for the AMV 4200H.
However, it is subject to one representational singularity, when the nozzle ze-axis is collinear to the
global x-axis, i.e. when in the home position.

17

2.5 Alternative Approach for Inverse Kinematics
As an alternative approach to the inverse kinematics problem, Conformal Geometric Algebra (CGA)
can be used to obtain solutions to problems that are not solvable with traditional methods. As an
example, Kleppe and Egeland (2016) showed that it is possible to obtain a closed-form solution for
the Universal Robots UR5. In addition, Tørdal et al. (2016) showed that by using GCA, the inverse
kinematics of the COMAU Smart-5 NJ-110 can be solved 45 times faster than the software provided
by the manufacturer. CGA is a method for assessing geometric shapes from a higher-dimensional
space. In the case of using CGA to evaluate shapes in 3D-space, the problem is projected into a 5D
vector space. The benefit of CGA is that operations such as reflections, rotations and translations
become effortless to solve in conformal space. For this reason, an attempt was made to solve the
inverse kinematic problem by CGA using the visualisation software developed by Perwass (2004).
However, no solution was identified as a consequence of the joint offsets between θ1−θ2 and θ4−θ5.
The authors were not able to form a set of shapes and intersections that unambiguously produced
an exact solution.

18

Chapter 3

Trajectory Planning

Trajectory planning is the procedure of determining the desired motion of an end frame. The motion
is described as a timeseries of the desired position and orientation at given points in time. For this
particular application, the process is three-fold. First, the workspace needs to be determined in
terms of a surface. The surface dimensions, in combination with the desired shape and velocity
parameters, lay the foundation for creating a planar spraying pattern. Finally, the pattern is
mapped onto the surface to obtain position references in terms of Cartesian coordinates and Euler
rotations. The sequence is illustrated in Figure 3.1, where each block is described further in their
respective sections.

(x, y, z, β, γ)(u, v)Range(u)
Fitting
Curve Surface

Mapping
Planar

Trajectory

(a, b0...3, c0...4)

Shape and
Velocity Parameters

Knot
Points

Figure 3.1: Block diagram representation of trajectory planning strategy.

3.1 Surface Mapping
As a simplification, the tunnel is parametrised as a cylinder-like, developable surface, i.e. a surface
with zero Gaussian curvature that can be flattened without any distortion. The advantage of this
simplification is that the spraying pattern can be designed in planar coordinates while the distances
and velocities are preserved when transforming to 3D-space. However, it assumes that the tunnel
wall topology is smooth and that the cross section is constant. The resulting coordinate systems
are illustrated in Figure 3.2.

19

z

x

yz

x

y

x

y

zu

v

u

v

x

y

z

Figure 3.2: Planar and Cartesian coordinate systems in relation to tunnel geometry.

3.1.1 Tunnel Geometry

The Norwegian Public Roads Administration has issued standard cross-sectional profiles for road
tunnels (Norwegian Public Roads Administration, 2004). There are two main profile types, where
the dimensions are dependent on the average annual daily traffic (AADT). Both profiles are illus-
trated in Figure 3.3.

Verge
area

Verge
area

x
2

x
2

Ve
rti

ca
l c

le
ar

an
ce

 4
.6

0m

Carriageway width B
Total width B

K

T

C
en

tre
 li

ne

x
2

x
2

Ve
rti

ca
l c

le
ar

an
ce

 4
.6

0m

C
en

tre
 li

ne

Verge
area

Verge
areaCarriageway width B

Total width B
K

T

Figure 3.3: Standard cross sections for Norwegian road tunnels. Courtesy of the Norwegian Public
Roads Administration.

Parametric polynomial functions are commonly used to describe arcs and as such, the (y, z)-
coordinates are parameterised with respect to u. Increasing the polynomial degree enhances flexib-
ility in terms of shaping, by increasing the maximum number of inflexion points. However, a higher
degree polynomial can cause unwanted oscillatory behaviour. Therefore, the parametric polyno-
mial degrees should be kept as low as possible, but high enough to capture the tunnel geometry.
Exact replicas of the major Norwegian road tunnel profiles were used as references to evaluate the
necessary polynomial degree. The different polynomial degrees were increased and compared to
the reference tunnel until a significant drop in mean square error (MSE) was achieved. Results for
the T8.5 profile is presented in Table 3.1. Results for all major Norwegian road tunnel profiles are
presented in Appendix C.1.

20

Table 3.1: Mean square error for best fit of y and z parametric functions by polynomial degree for
T8.5 profile.

Degree 1 2 3 4

MSE y [m] 0.5048 0.5048 0.0020 -
z [m] 4.1432 0.0376 0.0376 0.0001

Results for the parametric curves are illustrated in Figure 3.4. An overview of all the common
tunnel profiles is presented in Appendix C.

Figure 3.4: Parametric tunnel approximation for profile T8.5 by polynomial degrees of y and z
functions.

The analysis shows that cubic- and quartic functions are sufficient to describe the y and z-
coordinates respectively. Parametric equations describing the Cartesian coordinates in terms of
u, v coordinates become

x(v) = v + a [m] (3.1)
y(u) = b3 · u3 + b2 · u2 + b1 · u+ b0 [m] (3.2)
z(u) = c4 · u4 + c3 · u3 + c2 · u2 + c1 · u+ c0 [m] (3.3)

where coefficients a, bi and ci are determined from the tunnel dimensions.

3.1.2 Normal Vector

Keeping the nozzle relatively normal to the surface is instrumental to reduce rebound and overspray
and as such an expression for the normal vector is required. The normal vector to a parametric
surface at some point is defined by Marsden and Tromba (2012) as

Nu,v = Tu ×Tv (3.4)

Tu =
[
∂x

∂u
,
∂y

∂u
,
∂z

∂u

]
(3.5)

Tv =
[
∂x

∂v
,
∂y

∂v
,
∂z

∂v

]
(3.6)

21

where

Nu,v : Normal vector in point (u, v)
Tu : Tangent vector in u direction
Tv : Tangent vector in v direction

Substituting in the equations for the surface model provides an expression for the normal vector in
terms of u:

Tu =
[
0, 3b3 · u2 + 2b2 · u+ b1, 4c4 · u3 + 3c3 · u2 + 2c2 · u+ c1

]
(3.7)

Tv =
[
1, 0, 0

]
(3.8)

Nu,v =
[
0, 4c4 · u3 + 3c3 · u2 + 2c2 · u+ c1, −(3b3 · u2 + 2b2 · u+ b1)

]
(3.9)

The normal vector Nu,v is subsequently normalised to unit representation:

N̂u,v = Nu,v

|Nu,v|
(3.10)

Note that the direction of the normal vector depends on the direction of spraying. When spraying
from positive y-values to negative y-values (see Figure 3.2 for reference), the right-handed coordin-
ate system ensures that the normal points out from the tunnel surface, i.e. pointing outwards
from the cross-sectional centre. In the opposite case, spraying from negative y-values to positive
y-values, the sign of u changes, and hence the direction of the normal vector is flipped. Therefore
the direction of the normal is adjusted accordingly in the software.

3.2 Curve Fitting

With the surface model in place, the coefficients (a, b0..3, c0..4) need to be approximated according
to the tunnel geometry. Coefficients (b0..3, c0..4) define the cross sectional shape of the tunnel,
while a specifies the depth offset between (u, v) and (x, y, z). The approximation is subject to two
goals; the resulting surface needs to be as close to the actual tunnel geometry as possible, and
should provide a developable surface approximation. The requirements are satisfied using a two-
step procedure. First, the shape is created with an initial parameterisation, using the parameter
s = [0 . . . 1]. From this shape, the arc length is estimated, and the curve is reparameterised to the
parameter u = [0 . . . Larc] such that line integrals in the plane and surface are equal.

Values for (b0..3, c0..4) are approximated by curve fitting using the least squares method. Observa-
tions are provided by the operator, where the NCP is navigated manually to collect knot points.
Therefore, the number of observations will be sparse compared to e.g. a LIDAR-generated point
cloud. For a parametric equation, the number of observations must be at least be equal to the
number of coefficients to be determined. Therefore, an n-th degree polynomial requires n + 1 ob-
servations. In this case, the expression for z is a 4th-degree polynomial, and as such requires at
least five observations.

As the observations are collected manually by an operator, they cannot be assumed to be uniformly
spaced along the parametric curve. Determining the correct parameter value for each knot point
is a complex issue which can be solved by numerical methods (Grossman, 1971). In this thesis,
the parameter values are approximated linearly by connecting the knot points with chords. The
sum of all chords is regarded as a downscale of the true arc length and is the denominator in the

22

following equation

sk =

k∑
i=2

√
(zi − zi−1)2 + (yi − yi−1)2

n∑
i=2

√
(zi − zi−1)2 + (yi − yi−1)2

[−] (3.11)

where

sk : Estimated parameter value for knot point k
n : Total number of knot points

The chord-length approximation is demonstrated as a comparison to a regular approximation,
assuming even spacing in Figure 3.5. The first and last knot points are placed at the start and end
of the curve, while the other points are placed randomly within (1

4 ,
2
4 ,

3
4)± 1 [m] respectively. The

chord length approximation always gives a more accurate result than the uniform spacing-method.

Figure 3.5: Curve fitting from five pseudo-random knot points for T8.5 profile.

While the shape is determined, the surface is still not conforming with the requirement of de-
velopability. Arc length, Larc is assessed by dividing the curve into segments and summing the
Euclidean distances, i.e. the chords. Due to the discretisation, the precision is directly affected
by the number of knot points. All of the six major tunnel profiles were evaluated to investigate
a feasible resolution. Approximated arc lengths by the number of line segments are presented in
Figure 3.6. The approximations converge within a resolution of 20 chords.

Figure 3.6: Arc length approximation by discretisation resolution.

23

The parametric curve is reparameterised to attain the parameter range u = [0 . . . Larc]. Parameter
values for each observation are approximated using the same formula as before, where the arc length
is known:

uk = 1
Larc

·
k∑
i=2

√
(zi − zi−1)2 + (yi − yi−1)2 [m] (3.12)

The Python implementation of the methods above is found in Appendix E.2.3.

3.3 Planar Trajectory

The objective of the planar trajectory is to allow the nozzle to spray an area as large as possible with
continuous motion while the keeping movement of the manipulator to a minimum. Traditionally,
the pattern resembles a square wave, providing an impractical trajectory for the corners. Constant
velocity through 90 degree turns requires unbounded acceleration, which is undesirable. Firstly it is
not possible to achieve in reality. Secondly, it contributes to vibrations and strain on the mechanical
system. Therefore a new pattern is proposed, where the transitions between strokes are semicircular
arcs. Both patterns are illustrated in Figure 3.7. Strokes are chosen to be horizontal (x-direction
in Figure 3.2) to achieve minimum energy expenditure during operation, since the boom elevation
stays near constant during horizontal strokes. The long boom construction of the AMV 4200H is
prone to vibrations and resonance. Therefore, attention is given to make the transition between
strokes smoother by rounding the transitions.

Figure 3.7: Planar trajectory curve with semicircular transitions between strokes. The square
trajectory curve is superimposed with a dotted line.

The pattern is created using the driving parameters u and v, where u describes the translation along
the arc of the tunnel surface and v the depth in the x-direction in Figure. 3.2. The parameters

24

that define the planar pattern is specified by the operator and includes:

ssdes : Desired stroke spacing between each horizontal segment [m]
d : Depth of the spraying pattern in the x-direction of the tunnel [m]
ve : Velocity of the end effector along the trajectory [m/s]

The operator sets the parameters. Subsequently, they are corrected to fit an integer number of
strokes over the given arc length of the tunnel surface. The correction is determined by finding the
nearest integer to the ratio of arc length to desired stroke spacing

nseg = round
(
Larc
ssdes

)
[−] (3.13)

where Larc is the arc length of the tunnel. If the number of segments, nseg is an odd number,
the direction of the return stroke is opposite to the starting stroke, and if the number is even, the
return stroke will have the same direction as the starting segment.

When the number of segments has been calculated, the desired stroke spacing must be recalculated
to accommodate the number of segments without a remainder. This is done by taking the ratio of
total arc length to number of segments

sscor = Larc
nseg

[m] (3.14)

where sscor is the corrected stroke spacing. The next step in creating the planar trajectory is to
calculate the total length of the spraying path. The total path length is calculated as the sum of
all segments:

Lpath = (d− sscor) · (nseg + 1) + sscor + π · sscor2 · nseg [m] (3.15)

From Eq. (3.15), we have an expression for the total distance travelled by the nozzle. In addition,
the specified velocity, v is known, and hence the total runtime, tend can be calculated:

tend = Lpath
ve

[s] (3.16)

The number of points used to describe the planar trajectory is an independent parameter, and
can be chosen freely depending on the requirements for resolution. The default value is set to one
point per centimetre. Once the number of points and runtime is calculated, the sample time of the
trajectory can be calculated

dt = tend
np

[s] (3.17)

where dt is the sample time and np is the number of points for the trajectory. From the pattern
parameters, the time intervals at which the pattern is horizontal or rounded can be calculated.
This is done simply by dividing the total travel distances by the specified velocity

thorz = d− sscor
ve

[s] (3.18)

tround = πd

2ve
[s] (3.19)

where thorz is the time for one horizontal stroke and tround is the transition time between strokes.
The period of the driving parameter u is equal to the time of one horizontal stroke plus the time
of one transition:

Pu = thorz + tround [s] (3.20)

25

The algorithm for generating the planar pattern takes the above-calculated constants as input and
returns the values for u, v as functions of time. The algorithm for pattern generating is shown
below in Algorithm 1.

Algorithm 1: Generation of planar trajectory
input : stroke spacing, depth, velocity, number of segments, number of points, end time,

sample time, stroke time, transition time, period u
output: driving parameters u and v as functions of time
for i in number of points do

time = (sample time) ·i;

period number of u = floor
(time
period u

)
;

shifted time = time - (period number of u) · (period u);
if shifted time < transition time then

// u stays constant and v increases/decreases linearly
u=(period number of u)· depth;
if period number of u is even then

v=velocity· (shifted time)+stroke spacing
2 ;

else

v=−velocity· (shifted time)+depth−stroke spacing
2 ;

else
// create argument to drive trigonometric function

arg = π

stroke time · (shifted time− transition time) + 3π
2 ;

// u, v in semicircle transition

u = stroke spacing
2 · sin(arg) + (period number of u) · (stroke spacing) + stroke spacing

2 ;
if period number of u is even then

v = stroke spacing
2 · cos(arg) + depth− stroke spacing

2 ;
else

v = stroke spacing
2 · cos(arg + π) + stroke spacing

2 ;

return u, v

Algorithm 1 does, however, leave the starting and ending segments incomplete by a distance equal
to the radius of the transition, which corresponds to half the stroke spacing. Therefore, the lists
for u, v are padded with the additional distances to complete the first and last strokes.

Below in Figure 3.8, the u, v coordinates used to create Figure 3.7 are presented as functions of
time. This example was plotted for a tunnel with a depth of 5 [m], an arc length of 5 [m] and a
stroke spacing of 0.714 [m]. The complete script for generating the planar trajectory can be found
in Appendix E.2.2.

26

Figure 3.8: Rounded trajectory in u, v-coordinates plotted as functions of time.

3.4 Spraying Trajectory
Combining the methods discussed in this chapter; using five semi-random points to describe a T 9.5
tunnel profile, and using the aforementioned curve fitting techniques along with a planar pattern
with a depth of 5 m and a stroke spacing of 0.7 m. The spraying trajectory example is presented
in Figure 3.9.

Figure 3.9: Spraying trajectory mapped onto T 9.5 surface. Knot points are indicated in blue and
the normal vectors are indicated with arrows.

27

Chapter 4

System Modelling

The goal of system modelling is two-fold; create a model capable of emulating the actual system
such that the developed framework and ECU can be tested, and to develop a rigorous understanding
of system dynamics, which in turn may be used to improve the controller and framework. For the
Hardware-In-the-Loop (HIL)- simulation, dynamics were simplified. In this chapter, the HIL-model
is presented, subsequently, the measured validation data from the machine is used to derive a model
of the system dynamics. The intention is to estimate the vibration and deflection characteristics
of the boom and to evaluate its impact on the kinematics.

4.1 HIL Model
To test and verify that the Danfoss ECU can control the machine, a simulation model of the plant
was developed. The model is simplified and assumes that valve commands directly affect the states
of the hydraulic actuators and hence, the joint variables. The hydraulic valves on the AMV 4200H
have load-independent flow control, meaning that the flow stays near constant, independent of
the pressure differential. This internal valve regulation gives rise to dynamics resembling a free
integrator, where the valve command is directly proportional to the velocity of the actuator. Based
on these assumptions, the dynamic plant model was created as illustrated in Figure 4.1.

Valve

Dead	zone

1
u

1
theta

Saturation

1
s

Nonlin

Figure 4.1: Example of a dynamic model. Note that the block "Nonlin" holds Eq. (2.8) and that
it only applies to θ2.

Below, a list is presented with explanations for each block.

• u: Input valve command.
• Dead zone: Block to simulate a range of input values where the output of the physical
system is zero due to the valve deadband.
• Saturation: Block to limit valve signal to the upper and lower saturation values of ±1.
• Gain: Scales input of u to actuator velocity. Maximum valve command corresponds to
maximum actuator velocity.
• Integrator: Sums the input velocity over time and outputs actuator position. The integrator

has internal saturation which ensures that joint variables are within their respective ranges
of definition.
• Nonlin*: Nonlinear relation between actuator length and joint angle θ2. *Applies only to
θ2.

28

• theta: Output joint angle. Note that for the prismatic joint the output is d3.

The complete HIL-setup is found in Appendix D.1.

4.2 Deadband
The deadband represents a range of valve openings that are below the threshold for achieving
response in the hydromechanical system. The deadband may change dynamically based on the
load condition and can, in general, be hard to model. As a simplification, the deadband is set
equal to the mechanical deadband in the spool. The valves on the AMV 4200H is of the type Sauer
Danfoss PVG 32, and according to the technical specification of the valves (Danfoss, 2015), the
mechanical deadband of the spool under normal load conditions is:

% Deadband Spool = ± Deadband Distance
Spool Travel Distance · 100% = ±1.5 mm

7 mm · 100% ≈ ±21.5% (4.1)

Note, that in practice the mechanical deadband is always present, but the total deadband will be
larger depending on the load condition.

4.3 Dynamic Model
The boom assembly is long and slender, rendering a rigid approximation incorrect. Furthermore, the
telescopic elements are non-uniform and slides on nylon bushings during extension and retraction.
A traditional cantilever bending model is insufficient to describe the bending dynamics. In this
section, the flexibility dynamics are further investigated to create a system model. The principle
behind system identification is to induce an exciting input to the system and monitor the outputs.
Afterwards, a model is constructed to produce a similar output signal when excited by the same
input. A block diagram is illustrated in Figure 4.2, where the excitation and response data are
known.

Excitation Response
Model

Figure 4.2: System identification block diagram.

Real validation data was measured on the AMV 4200H, and three different approaches to system
identification were investigated; grey-box modelling, black-box modelling and manual vibration
calculations.

4.3.1 Measurements

The physical system was measured to collect validation data of flexibility, using a Leica AT960
absolute tracker. This device tracks the position of a cat’s eye-reflector at 1000Hz with an an-
gular accuracy of ±15µm + 6µm/m and distance accuracy of ±10µm (Hexagon Manufacturing
Intellegence, 2016). Note that the accuracy values are given in mean percentage error. The tracker
was connected to a Beckhoff CX2040-series CPU module in conjunction with a load cell to monitor
position and force simultaneously. Capturing the dynamics requires multiple measurements, while
the tracker can only follow one reflector at a time, calling for a repeatable test. A mass m was
tied to the end of the boom via the load cell; the string was cut while the force and position were
recorded. The experiment manifests as underdamped free vibrations with an initial position and
no initial velocity. The test was repeated four times, while positions [1 . . . 4] indicated in Figure 4.3
were measured. Likewise, this procedure was performed for four different boom lengths, ranging
from fully extended to completely retracted pose. A second set of measurements were also taken

29

1 2 3 4

m

Figure 4.3: Test setup for flexibility measurement.

to capture the boom’s transverse dynamics. However, these measurements were corrupted and are
therefore omitted. The transverse measurements will not be discussed further in this thesis.
The measurements were converted to angles ψ1...4, and the applied load was converted into a torque
about point 4. All tests for a given boom length were synchronised to the instant where the string
was cut. Results for the fully extended boom are presented in Figure 4.4.

Figure 4.4: Input and output measurements for the flexible model of the fully extended boom.

4.3.2 Grey-Box Model

Grey-box modelling is an identification technique where coefficients of a mathematical structure
are fitted using measured data to create a model of the system. The greyest-function in MATLAB
requires a state-space representation of the system and a data-set of input and output data. The
state-space representation is a mathematical model used to describe a system of first-order differ-
ential equations (Nise, 2011). The system is represented using two equations; a state equation and
an output equation, presented in Eq. (4.2) and Eq. (4.3) respectively. The presented system is
time-invariant, meaning that the coefficients are constant. Simulation and response to stimuli are
administered in the state equation, where each of the internal states are calculated. The output
equation provides an expression of the output in terms of the inputs and internal states.

ẋ(t) = Ax(t) + Bu(t) (4.2)

y(t) = Cx(t) + Du(t) (4.3)

Where

30

x : State vector
ẋ : Derivative of state vector
y : Output vector
A : System matrix
B : Input matrix
C : Output matrix
D : Feedforward matrix
u : Input vector

State vector x contains the internal states of the system, where the system matrix A describes
their mathematical relation. Input matrix B describes how the inputs excite the system. For the
case of a single-input model, it is reduced to a vector. The output matrix C characterises relations
between internal states and system outputs. Similarly to the input matrix, it is reduced to a vector
for a single-output model.

For the physical interpretation of the deflection, a serialised four-body system was designed, illus-
trated in Figure 4.5. Note that gravity is not explicitly included in the model, as a simplification.
The effects of gravity are instead identified as part of the inertia. The boom is considered as four
rigid bodies interconnected via revolute joints, rotational springs and viscous dampers, composing
a single-input, multiple-output (SIMO) system. The four bodies are assumed to align with the
points in Figure 4.3, where the mechanical rotational reference is connected to θ2.

τ

k1 k2 k3 k4

b1 b2 b3 b4

J1 J2 J3 J4ψ1 ψ2 ψ3 ψ4θ2

Figure 4.5: Simplified physical deflection model. Positive rotation anticlockwise. Note that θ2 is
considered as the ground reference and that gravity is identified as part of the inertia.

Where

Ji : Moment of inertia for body i [kgm2]
bi : Viscous damping for damper i [Nms/rad]
ki : Spring stiffness for spring i [Nm/rad]
ψi : Angle of rotation for body i with respect to inertial frame [rad]
τ : External torque imposed on body 4 [Nm]

From this model, Newton’s second law of motion for rotation, presented in Eq. (4.4), is applied to
derive a set of differential equations:

Jnψ̈n =
∑
τ [Nm] (4.4)

J1ψ̈1 = k1(θ2 − ψ1) + b1(θ̇2 − ψ̇1) + k2(ψ2 − ψ1) + b2(ψ̇2 − ψ̇1) (4.5)

J2ψ̈2 = k2(ψ1 − ψ2) + b2(ψ̇1 − ψ̇2) + k3(ψ3 − ψ2) + b3(ψ̇3 − ψ̇2) (4.6)

J3ψ̈3 = k3(ψ2 − ψ3) + b3(ψ̇2 − ψ̇3) + k4(ψ4 − ψ3) + b4(ψ̇4 − ψ̇3) (4.7)

J4ψ̈4 = k4(ψ3 − ψ4) + b4(ψ̇3 − ψ̇4) + τ (4.8)

31

A linear time-invariant (LTI) state-space model is constructed, adopting the angular positions and
their time derivatives as internal states together with the angular position for θ2. The state vector
is assumed:

x = [ψ1, ψ̇1, ψ2, ψ̇2, ψ3, ψ̇3, ψ4, ψ̇4, θ2] (4.9)

Whereas the system matrix becomes:

A =

0 1 0 0 0 0 0 0 0
−k1+k2

J1
− b1+b2

J1
k2
J1

b2
J1

0 0 0 0 k1
J1

0 0 0 1 0 0 0 0 0
k2
J2

b2
J2

−k2+k3
J2

− b2+b3
J2

k3
J2

b3
J2

0 0 0
0 0 0 0 0 1 0 0 0
0 0 k3

J3
b3
J3

−k3+k4
J3

− b3+b4
J3

k4
J3

b4
J3

0
0 0 0 0 0 0 0 1 0
0 0 0 0 k4

J4
b4
J4

−k4
J4
− b4
J4

0
0 0 0 0 0 0 0 0 0

(4.10)

Depending on the context, the system is subjected to different inputs. The validation data incor-
porates a torque input at the tip of the boom. However, when simulating, the system is excited by
a proportional hydraulic valve operating with overhead, rotating θ2. Consequently, it is convenient
to use θ̇2 as input for simulation purposes. In either case, the model has a single input, and B
becomes a vector where each index defines how the input excites the corresponding system state.
The input configurations for validation and simulation are presented in Eq. (4.11) and Eq. (4.12)
respectively.

B1 =
[

0 0 0 0 0 0 0 − 1
J4

0
]T

(4.11)

B2 =
[

0 b2
J1

0 0 0 0 0 0 1
]T

(4.12)

Correspondingly, the output matrix is context dependent. The number of rows coincides with
the number of outputs, while the columns specify linear relations between states and outputs.
The validation data includes outputs for all the angular positions(ψ1, ψ2, ψ3, ψ4), establishing the
output matrix presented in Eq. (4.13). In the simulation, only ψ4 is considered, as presented in
Eq. (4.14).

C1 =

1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0

 (4.13)

C2 =
[

0 0 0 0 0 0 1 0 0
]

(4.14)

Applying the grey-box method to this model, makes the system identification a matter of fitting
values for (J1...4, b1...4, k1...4). However, the deflection is highly dependent on the extension of the
boom. Validation data were collected for four different boom lengths d3 = (7, 9.7, 12.3, 15) [m],
imposing a different set of coefficients for each case. The selected approach is to create the system
matrix A for each length and interpolate the coefficients, creating a variable system matrix as a
function of boom length d3. The output is not directly affected by any inputs and therefore, the
feedforward matrix is empty in both cases. The state- and output equations are adapted:

ẋ(t) = A(d3)x(t) + Bu(t) (4.15)

y(t) = Cx(t) (4.16)

32

4.3.3 Verification of State-Space Model

To verify that the proposed state-space system behaves as expected, the impulse response was
simulated using θ2 as input. Inertia, damping and stiffness were all approximated as an informed
guess. The MATLAB implementation is found in Appendix E.1.4.

Figure 4.6: Impulse response showing all position states, with θ̇2 as input.

The response uncovers that the model behaves as expected, where the excitation propagates from
the mechanical joint towards the tip of the boom. In addition, it is observed that the ψ1-state is
affected by the first peak in ψ2, meaning that the states influence each other in both directions.

4.3.4 Black-Box Model

System identification by black-box modelling assumes that the structure of the system is unknown.
The model is constructed purely by evaluating exciting inputs and the corresponding output reac-
tions. This method is useful if the system dynamics are problematic to model analytically. Given
its flexible nature and preferred disturbance dynamics handling, the autoregressive-moving-average
model with exogenous inputs (ARMAX) is popular for black-box identification (National Instru-
ments, 2018). As a benchmark to test if a mathematical model is obtainable for the acquired
validation data, the ARMAX model was employed with varying number of coefficients.

4.3.5 Manual Calculations

As a control, a manual calculation was undertaken using traditional vibration analysis. The cal-
culations interpret the boom as a single spring-damper-inertia system where the tests are free
underdamped vibrations with the static deflection as initial position and no initial velocity. All of
the following formulas originate from (Rao, 1995). Starting with the static deflection to determine

33

spring stiffness, the torque is calculated considering the hanging load as force and boom length as
the effective arm.

keq = τstat
ψ4,stat

[Nm/rad] (4.17)

Where

keq : Equivalent spring stiffness [Nm/rad]
τstat : Static torque [Nm]

ψ4,stat : Static deflection [rad]

Damping is approximated by investigating at which rate the oscillations decrease. The logarithmic
decrement δ is calculated by assessing the change of amplitude between two adjacent peaks.

δi = ln
(
Ai
Ai+1

)
[−] (4.18)

Where

δi : Logarithmic decrement of peak pair [−]
Ai : Amplitude of peak i [deg]

Ai+1 : Amplitude of peak i+ 1 [deg]

Decrement is calculated for all observed peak pairs and averaged. Damping ratio, ζ is a distinction
of the logarithmic decrement and is found solving the following formula

ζ = δ√
(2π)2 + δ2 [−] (4.19)

which is useful, in combination with the damped frequency, ωd to find the natural frequency,
ωn. Damped frequency is approximated by measuring the period between adjacent peaks in the
validation data and converting to frequency:

ωn = ωd√
1− ζ2 = 2π

Pd ·
√

1− ζ2 [rad/s] (4.20)

Where

ωn : Natural frequency [rad/s]
ωd : Damped frequency [rad/s]
Pd : Average damped period [s]

From which the inertia of the boom is derived:

Jeq = keq
ω2
n

[kgm2] (4.21)

And finally, the damping beq is calculated:

beq = ζ · 2Jeq · ωn [Ns/m] (4.22)

Simulating using the differential equation:

ψ̈4 = − 1
Jeq
· (keqψ4 + beqψ̇4) [rad/s2] (4.23)

The calculations were completed using MATLAB, where the source code is available in Appendix
E.1.3. For real-time simulation, the estimated properties can be implemented in state-space rep-
resentation using a simplified form of the system matrix in Eq. (4.10). The traditional vibration
analysis only exposes the first mode of vibration. However, the properties are a direct estimation
for the physical properties of the system.

34

Chapter 5

Interface and Control

For this project, it was decided to create a virtual representation of the AMV 4200H to be used for
hardware-in-the-loop simulation. Using an HIL-model serves several benefits compared to direct
implementation and testing on a physical system. Firstly, the physical machine that will be used
for final validation testing is still under construction at the time of writing, besides, the physical
location of the machine is not at campus. By using a virtual model, construction may continue
uninterrupted while the project is carried out in parallel.

Using HIL-simulation allows testing without danger of harm to personnel or equipment. Moreover,
it provides a way of developing control strategies early in the design process and allows for rapid
synthesis and testing which would otherwise be difficult or impractical. Furthermore, using HIL-
simulations allows testing of edge cases that would not be tested on the real system, for example
testing the controller to instability.

5.1 Danfoss Plus+1

The programmable logic controller on the AMV 4200H is an electric control unit (ECU) from the
Danfoss MC024-series. This device is programmed through function blocks in the proprietary soft-
ware, Danfoss plus+1. The communication is via CAN bus. The hardware supports CANopen,
which is a higher-level protocol built upon the CAN bus standard and is used for in-vehicle commu-
nication on the machine. The CANopen protocol standardises communication, device definitions
and interfacing between devices and applications from different manufacturers. The top layer of
the Danfoss application discussed in the following sections is found in Appendix D.14.

5.1.1 CAN bus

Controller Area Network (CAN) is the industry standard for in-vehicle communication. The stand-
ard was developed by Bosch in 1985 (National Instruments, 2019) to reduce wiring and copper use
in vehicle communication systems. Since 1985, several higher-level protocols have been developed,
among them the CANopen protocol.

By using CAN bus, the devices on the network can communicate over one single bus, significantly
reducing the number of input/output (I/O) connections. The network is low cost, low weight and
provides all devices with intelligence. Each CAN device has a built-in CAN-controller, making the
devices able to read/write and filter messages on the network. This functionality also makes it
possible to modify the CAN network with minimal impact. Each CAN bus message has a priority
which is determined from the sending ID, called the arbitration ID. If two nodes on the network
transmit simultaneously, the message with higher priority will be sent first, and the lower priority
message will be postponed. In addition, the CAN bus standard has a built-in error checking
mechanism. In each CAN message, there is a field called the Cyclic Redundancy Code. This field
determines whether a frame has an error or not. If there is an error, the message is discarded by
the whole network, and an error frame can be transmitted to signal the error to the network.

35

An example of a standard CAN frame with 8-bit data length is presented in Figure 5.1. Note that
a CAN message can carry up to 8 bytes of data.

DATA

CAN
LO

Arbitration Field Control Data CRC Field End of Frame
Complete CAN Frame

00000000000000110011000000000000000011000000000000001100110000000011110000000000000011001111111111111111111111

11 4 8 15

S
ta

rt
of

 F
ra

m
e

ID
10

ID
9

ID
8

ID
7

ID
6

ID
5

ID
4

ID
3

ID
2

ID
1

ID
0

R
eq

u.
 R

em
ot

e
ID

 E
xt

. B
it

R
es

er
ve

d
D

L3
D

L2
D

L1
D

L0
D

B7
D

B6
D

B5
D

B4
D

B3
D

B2
D

B1
D

B0

C
R

C
10

C
R

C
9

C
R

C
8

C
R

C
7

C
R

C
6

C
R

C
5

C
R

C
4

C
R

C
3

C
R

C
2

C
R

C
1

C
R

C
0

C
R

C
14

C
R

C
13

C
R

C
12

C
R

C
11

C
R

C
 D

el
im

ite
r

A
ck

no
w

. S
lo

t B
it

A
ck

no
w

. D
el

im
ite

r
E

O
F6

E
O

F5
E

O
F4

E
O

F3
E

O
F2

E
O

F1
E

O
F0

IF
S

2
IF

S
1

IF
S

0

CAN
HI

Figure 5.1: CAN-Bus-frame in base format without stuffbits. Used under licence of Wikimedia
Commons (Wikimedia Commons, 2014).

5.1.2 CANopen

In this project, the CANopen protocol is not explicitly used, but instead it is ensured that the
definitions of messages do not conflict with the CANopen protocol. In CANopen, the arbitration
ID is referred to as the Communication Object Identifier (COB-ID). The COB-ID is the 11-bit
arbitration field split into two parts. First, a 4-bit function code defining the transmission type
of the message. The 7 last bits represents the node-ID. For simple CANopen networks, CAN
in Automation (CiA) 301 specifies some predefined message identifiers for Process Data Objects
(PDOs):

Table 5.1: Pre-defined connection set for PDOs in CANopen. CiA 301 (CAN in Automation, 2002).

Communication Object COB-ID(s) hex Slave Nodes

PDO

0x180 + NodeID 1. Transmit PDO
0x200 + NodeID 1. Receive PDO
0x280 + NodeID 2. Transmit PDO
0x300 + NodeID 2. Receive PDO
0x380 + NodeID 3. Transmit PDO
0x400 + NodeID 3. Receive PDO
0x480 + NodeID 4. Transmit PDO
0x500 + NodeID 4. Receive PDO

A Process Data Object (PDO) can represent any process variable that changes over time, and the
PDO protocol is used to process and distribute the real-time data among nodes. For this thesis,
only the three first PDO transmits are used. The PDOs are used for transmitting sensor values and
status flags from the ECU to the human-machine interface HMI PC, and valve commands from the
ECU to the real-time target.

5.2 Setup
To achieve a working HIL-simulation and to test the system, HMI interface and computer applic-
ation, communication must be established between the real-time target, ECU and the HMI PC.
The Danfoss ECU has two CAN bus-channels, channel one is used at the maximum baud rate of
1 Mbit/s, to give as much overhead as possible for data transfer between the ECU and HMI PC.
The second CAN bus-channel is used for inter-vehicular communication as well as sending data
to the physical system, and runs at 250 kbit/s. The physical system is in this case simulated by

36

the real-time target Speedgoat Baseline-S (Speedgoat GmbH, 2019). The real-time target runs
Simulink Real-Time, which makes it possible to compile models directly from MATLAB/Simulink.
The problem, however, is that the Speedgoat does not support CAN bus without an additional
and expensive CAN I/O module. It does, however, support communication over UDP. The full
communication layout is presented in Figure 5.2.

ECUReal-time
Target

Physical System

HMI PCRouterUDP CAN 0 CAN 1

Figure 5.2: Communication layout between Real-time target and HMI PC.

An extra computer is added to the physical system. In practice, this computer only functions as
a router. The PC runs Simulink with MATLAB’s Vehicle Network Toolbox and supports CAN
bus communication. The PC receives incoming CAN bus signals over CAN 0 from the ECU
and forwards the data over UDP to the Speedgoat, the Speedgoat replies over UDP which is
subsequently translated back to CAN bus, and forwarded back to the ECU. UDP provides a
throughput tenfold higher than CAN bus, capable of speeds up to 1 Gbit/s. However, by using
UDP, one cannot guarantee transmission without packet loss. For the CAN bus network, packets
may get lost if an error occurs, which in turn depends highly on the signal to noise ratio, length of
cables and bus load. For this particular setup, conditions are ideal; the UDP Ethernet cable and
CAN bus connections have lengths of ≈ 1 m, there are few nodes in the experimental network and
the bus loads are relatively low; not higher than 3 %. In addition, all reference signals have high
resolution and should function even in the case of packet loss.

5.3 Communication
There are four nodes in the communication network, as shown in Figure 5.2. The actual sensors on
the machine provide a 16-bit resolution when used as single turn encoder (Pepperl+Fuchs, 2018).
All sensor values and joint space references are therefore created with 16-bit precision. Since one
CAN frame can carry up 8-bytes of data, one frame can hold up to four sensor values. Joint space
references and sensor values therefore need two PDOs. Below, a short explanation is given for each
send/receive operation:

• HMI PC to ECU: PC sends joint space reference over CAN 1, using PDOs 1 and 2, and
the node ID of the PC is 0x2. Resulting in COB-IDs 0x182, 0x282 respectively. The imple-
mentation is found in the script main.py in Appendix E.2.4 under the module CANInterface.

• ECU to HMI PC: The ECU relays the sensor values from the RT-target over CAN 1 to
the HMI PC to update the nozzle position. In addition, it also sends the value of a joystick
button used for collecting knot points. The ECU sends on PDO 1,2,3, and the node ID
of the ECU is 0x3. Therefore, the HMI PC listens for messages with COB-ID 0x183 and
0x283, representing the sensor values, as well as COB-ID 0x383 for the joystick button. The
implementation of packing and sending the data in Danfoss Plus+1 can be found in Appendix
D.9 and D.8, respectively.

• ECU to RT-target: The ECU sends valve commands over CAN 0 to the RT-target. The
signals originate either directly from the joysticks or the control system depending on a status
flag indicating manual or regulating mode. The data is sent with COB-IDs 0x183 and 0x283.
The packing and sending of data to the RT-target can be found in D.10 and D.11, respectively.

• RT-target to ECU: The RT-target sends the simulated sensor values back to the ECU over
CAN 0. The node ID of the RT-target is 4, and PDO 1,2 are used. Thus the ECU listens for

37

COB-IDs 0x184 and 0x284. The implementation for receiving data from the RT-target can
be found in Appendix D.7.

• Router PC: All information to and from the RT-target is translated and forwarded by the
Routing PC. CAN bus messages are translated to UDP and vice versa. The Routing PC
block-diagrams are found in Appendix D.2.

5.4 Control
For individual joint control of the AMV 4200H, five proportional-integral (PI)-controllers were
proposed. The PI-controller is a robust and reliable variant of the three-term controller, the PID-
controller. In the industry, the Derivative-term is often omitted, because the term is sensitive to
high-frequency noise due to the derivative action on the error signal. The D-term may e.g. become
a problem in applications prone to vibrations and other disturbances. Fast changes in setpoint or
disturbances can cause large outputs from the D-term, which in turn may cause unwanted effects
and lead to instability. In industrial settings the PID-controllers constitutes more than 95% of all
control loops, and most are PI-controllers (Åström and Hägglund, 2006). The PI-controller may
be slower than a full three term controller but typically provides better steady-state stability in the
presence of noise. The drawback to the I-term is a phenomenon called integral windup, which refers
to the integral of the error accumulating faster than the controller can compensate. In such cases,
it is common to reset or deactivate the I-term. Below, a description of the proposed controller is
given.

5.4.1 Deadband Compensation

Two types of deadband compensation are used in this thesis, namely deadband tolerance and output
deadband. The deadband tolerance is integrated in the Danfoss PI-controller-block, and operates
on the control error such that the output valve command

uout = 0 if |e(t)| ≤ Tol (5.1)

where e(t) is the current error and Tol is the tolerance at which the controller output is set to zero.
The deadband tolerance prevents "hunting" of the setpoint by turning off the controller when the
machine is "close enough". This provides smoother operation and helps reduce jitter and integral
windup.

The output deadband, on the other hand, prevents unnecessary wear on the valves by avoiding
repeated activation-deactivation cycles when the valve commands are less than required for achiev-
ing response in the mechanical system. As discussed in Section 4.2, dead zone dynamics has been
included in the HIL-setup to simulate the deadband in the valves. Therefore a compensator is made
to compensate for the effect of the deadband. The compensator works by evaluating the incoming
valve signals, such that the output

uout =

DB+ + (1−DB+) · uin if uin ≥ DB+

0 if DB− < uin < DB+

DB− + (1 + DB−) · uin if uin ≤ DB−
(5.2)

where (DB+,DB−) represents the positive and negative deadband values, respectively. The im-
plementation of the output deadband compensator in Danfoss plus+1 can be found in Appendix
D.13.

38

5.4.2 Transfer Function

The chosen controller type is the PI-controller. This controller has the mathematical representation

u(t) = Kp (e(t) + 1
Ti

∫ t

0
e(τ) dτ) (5.3)

where

u(t) : Control signal
e(t) : Current error
Kp : Proportional gain
Ti : Integration time [s]

In the Laplace domain, the the transfer function of the PI-controller is as follows

Gc(s) = Kp

(
1 + 1

Ti s

)
(5.4)

where Gc(s) is the transfer function of the controller. The transfer function of the simplified plant
model is found by dividing the output and input of the HIL-model

Gp(s) = Kvel

s
(5.5)

where Gp(s) is the plant transfer function and Kvel is the plant open-loop gain that scales the valve
commands ui to joint velocity.

Since the HIL-model is a type 1 system, it is guaranteed that there will be no overshoot, and hence
proportional control is sufficient. Therefore, the I-term is turned off in the HIL-simulation since
the introduction of the integral-term will introduce overshoot. For the real system, dynamics will
be of a higher order, and the integral action will contribute to the elimination of steady-state error.

39

5.4.3 Controller

An illustration of the proposed controller is presented in Figure 5.3. The implementation in Danfoss
Plus+1 is found in Appendix D.12.

d3

qref

DBC
e2

θ2

u2

θ2 sensor

PI

DBC
e1

θ1

u1

θ1 sensor

PI

DBC
e3 u3PI

DBC
e4

θ4

u4

θ4 sensor

PI

DBC
e5

θ5

u5

θ5 sensor

PI

d3 sensor
4200H
AMV

θ5

θ4

d3

θ2

θ1

Figure 5.3: Control structure; five proportional-integral (PI) controllers with deadband compens-
ation (DBC). Note that the I-term is turned off in the HIL-simulation as discussed in Section
5.4.2.

5.5 PC Program

The developed software is created in Python 3.7 and consists of three main modules and a main
script importing the three modules. The first module contains all the kinematic equations and the
inverse kinematic algorithm discussed in Chapter 2. This module is called kin.py and can be found
in Appendix E.2.1. Module two contains the functionality for parameterisation and generating
of the tunnel surface, as well as mapping of the planar trajectory onto the tunnel surface. The
material for module two is covered in Chapter 3, under Sections 3.1 and 3.2. The module is called
surf_trans.py and can be found in Appendix E.2.3. The third module handles the correction of
user input parameters and the generating of the planar trajectory discussed in Chapter 3 under
Section 3.3. This module is called pattern_generator.py and can be found in Appendix E.2.2. The
main script imports the previously presented modules and runs the backend of the user interface.
The main script contains instructions for all interaction between the user and interface, as well as
CAN bus-communication, the inverse kinematics and Cartesian references. The script main.py is
found in Appendix E.2.4.

40

5.5.1 HMI

The Human-Machine Interface was developed using a combination of Python and the Qt-framework.
The frontend of the HMI was created using Qt-designer, which is a tool for designing and building
graphical user interfaces. Whereas the backend was created using Python 3.7 and the PyQt5
framework. The appearance of the user interface is presented in Figure 5.4 and is made to emulate
the existing style theme used in the other interfaces used by AMV. Below, an explanation is given
for each of the different buttons, fields and their functionality:

Figure 5.4: Human-Machine Interface for application of shotcrete.

• Status: Field indicating the current status of the program. Grey text indicates either "idle-
mode" or holds the name of the previously completed process. Yellow text indicates ongoing
processes and red text indicates an error.
• Trajectory preferences: Sliders controlling the parameters; depth, stroke spacing and
velocity of the trajectory.
• Nozzle position: Indicates the Cartesian position of the end effector and is updated in
real-time based on sensor values from the ECU.
• Knot points: List containing a minimum of five knot points for approximation of the tunnel
surface.

41

• Generate surface: Creates the nozzle trajectory with the parameters specified in "Trajectory
preferences". It calls a multiprocessing method to calculate the spraying trajectory.
• 3D plot: A matplotlib-widget that plots the trajectory and position of the nozzle, indicated
by a yellow line and a green vector, respectively. The trajectory is updated each time a new
surface is generated, and the nozzle position is updated in real-time based on sensor values
from the ECU. The plotting method is inspired by Tosi (2009).
• Reset all: Removes all existing data.
• Remove selected: Removes individual knot points.
• Toggle CAN: Connect or disconnect CAN bus.
• Inverse kinematics: Calculates joint space references. The button initiates a multipro-

cessing pool, taking advantage of the maximum number of processor threads available on the
given computer to reduce computation time.
• Spray: Initiates spraying procedure. This operation will not start until the operator provides
confirmation from the joysticks. Once confirmation is provided, the joint space reference is
transferred over CAN bus to the ECU for the execution of the spraying procedure. The
Spray-button changes to a Pause button once spraying is initiated.
• Progress bar: Indicates working progress for large tasks. Used during calculation of the

inverse kinematics and the spraying procedure.
• CAN status: Indicates the status of CAN bus-communication. Red text indicates a CAN
bus error.

5.5.2 HMI and Safety Features

There are two main safety features in the developed software. Firstly, to make the program stable,
independent of user interaction; it is ensured that any button can be pressed at any time without
causing the program to crash. In addition, clear instructions are prompted to the user if improper
operations are attempted or if operations are initiated in the wrong order. The second safety feature
is related to the actual operation of the machine; before initialisation of the spraying procedure,
the operator must be present at the manual controller to initialise spraying. As such, the operator
can pause, abort or take manual control over the machine at any time. Pressing the joystick button
will pause the machine from spraying, and any movement of the joysticks will immediately give the
operator manual control and stop the controller from regulating.

42

Chapter 6

Results

Before the proposed methods can be used confidently for real-world applications, the system per-
formance should be considered. This chapter presents key results to highlight the benefits and
drawbacks of the implementation.

6.1 Kinematics
While the inverse kinematics solver developed in this project provides an analytical solution in terms
of the nozzle orientation, it does not place the NCP exactly at the reference position. Therefore,
it is of particular interest to evaluate the accuracy and computing time of the solver. A typical
scenario was created in the PC program; fitting a surface to a T9.5 tunnel profile, using a depth of
5 m and stroke spacing ssdes = 0.65 m resulting in 16075 points to evaluate. The inverse kinematics
was evaluated both in terms of accuracy and computing time.

6.1.1 Precision of Inverse Kinematics

While the NCP is never placed precisely at the reference, it will approach the reference position,
increasing the precision for each iteration. Before the proposed inverse kinematic method can
be applied, the accuracy should be considered. The aforementioned scenario was solved and the
magnitude of position error e was logged for each iteration of each point. The data-set was analysed
by evaluating the maximum error, emax after 1, 2, and 3 iterations as well as the average value,
e and standard deviation, σe. The results are presented in Table 6.1. It becomes evident that
the solver is within millimetre precision after two iterations and micrometre precision after three
iterations. Thus, demonstrating that the inverse kinematic solver can reach a sufficient working
accuracy for shotcrete application.

Table 6.1: Maximum, average, and standard deviation for inverse kinematics error magnitude.

Iteration emax [m] e [m] σe [m]
1 0.711 0.680 0.015
2 6.00 e-3 4.184 e-3 0.746 e-3
3 43.389 e-6 16.565 e-6 8.181 e-6

Note that at the first iteration, the error is equal to the distance from the wrist frame, i.e. θ4, to
the NCP and that the magnitude depends on the current angle of θ5.

6.1.2 Computing Time for Inverse Kinematics

In addition to increasing the spraying uniformity, the automation is intended to save time over a
manual operation. Therefore, the computing time is decisive in determining the feasibility of the
inverse kinematics solver. For the given scenario, the inverse kinematics was evaluated in terms of
computing time. The code was run in the following environment:

43

Table 6.2: Test environment for the inverse kinematics performance test.

Designation Specification
Language Python 3.7 (32-bit)
CPU Intel i7 4810MQ 4x2.8 GHz
OS Windows 10 64-bit

Where the solver was run using multiprocessing. This escapes Python’s global interpreter lock
(GIL) and runs the code in parallel, maximising all the available CPU threads. Source code is
available in Appendix E.2.4. The points were processed in 11.06 s, implying an average time of
0.688 ms processing time per set of five joint angles.

6.2 Trajectory Planning

A well-planned trajectory lays the foundation for a good overall result. Both in terms of spraying
as the operator intends and taking into account the attributes of the machine. The AMV 4200H is
a long slender machine, susceptible to resonance and vibrations. Furthermore, the stroke spacing
is adapted to fit the surface model, meaning that the resulting spacing is not necessarily the same
as requested by the operator. These two aspects are investigated further in this section.

6.2.1 Corrected Stroke Spacing

Adapting the stroke spacing to achieve a common divisor with the estimated arc length causes a
difference between the desired spacing requested by the operator and the actual spacing used for
the trajectory. The mismatch was investigated to evaluate its extent by evaluating the ratio ∆ss,
and recalling Eq. (3.13) and Eq. (3.14):

∆ss(ssdes) = ssdes − sscor
ssdes

= 1− Larc

round
(
Larc
ssdes

)
· ssdes

[−] (6.1)

The equation indicates that the highest deviations occur in the smallest tunnels. Therefore, the
formula was evaluated using the arc length of a T5.5 tunnel profile, Larc = 14.9m. The stroke
spacing was evaluated over the selectable range in the HMI. The result is presented in Figure 6.1.

Figure 6.1: Deviation of corrected stroke spacing as a percentage of the desired stroke spacing for
the T5.5 tunnel profile.

The highest deviation from requested stroke spacing ssdes is 5 %, meaning that the corrected
parameters will be close to the operator’s request; within 5 %, depending on the tunnel shape.

44

6.2.2 Acceleration

In Figure 3.7, both a traditional square path and the proposed semicircular-transition path are
illustrated. Both paths were evaluated at a constant trajectory velocity ve = 0.1m/s, where the
planar acceleration magnitudes are presented in Figure 6.2. The calculations were computed nu-
merically with dt = 1 ms. The solution without rounded transitions has acceleration characteristics
resembling impulse functions in the corners. Smaller values for dt were tested, where the impulses
approach infinity as dt approaches zero. Acceleration in the semicircular transitions is constant,
which agrees with the formula for centripetal acceleration a = v2/r. Therefore, the acceleration is
bounded, indicating that the trajectory is physically possible to follow.

(a) Semicircular transitions. (b) Without rounded transitions.

Figure 6.2: Comparison of acceleration in the planar trajectory, using square and semicircular
transitions.

On the contrary, the third derivative is not bounded in either case. This is because the transition
from horizontal stroke to circular motion requires an instant change from zero to constant centri-
petal acceleration. In robotics, it is common to consider the third derivative of position, referred
to as jerk. Jerk is a measure of the rate of change of acceleration and has the SI-unit m/s3. The
phenomenon is often perceived as smoothness of motion during acceleration, e.g. the difference
between a smooth push of the brake pedal in a car and an abrupt push to the pedal. Since accel-
eration determines the force and forces are the cause of vibrations, jerk in the trajectory can be
considered as a measure of the induced disturbances. It is especially important to consider jerk in
situations where the equipment is prone to resonance and vibrations, as is the case for the AMV
4200H. For these reasons, it is desirable to minimise jerk to achieve smooth motion; minimising
strain and disturbances in the machinery.

6.2.3 Shotcrete Distribution

Under ideal circumstances, the shotcrete is distributed as a uniform layer over the working surface.
When the volumetric flow and nozzle trajectory velocity is constant, the distribution is dictated only
by the spraying pattern. The distribution characteristics for semicircular and square transitions
were studied by simulating shotcrete deposits along the trajectory. The simulation assumes that
the distribution within the cone described in Section 2.1.3 is uniform. In reality, it is affected by the
spread angle of the jet as well as the nozzle nutation rate ω. The simulation results are illustrated
in Figure 6.3. Dashed lines indicate the trajectories.

Both patterns are identical except for transitions between the strokes. The figure indicates that
the semicircular trajectory seems more susceptible to material buildup in the centre of rotation.
Furthermore, the semicircular trajectory boundary fluctuates more than the square trajectory.
Consequently, the footprint is less square-like.

45

(a) Semicircular transitions. (b) Without rounded transitions.

Figure 6.3: Comparison of shotcrete distribution for square and rounded transitions in the planar
trajectory.

It should be noted that the shotcrete deposition in Figure 6.3b is not entirely representative of
a real scenario. This is because the deposition is plotted with a constant velocity through the
90-degree corners. In reality, the actual machine must either slow down or overshoot to complete
these corners, and deposition will deviate from the simulated deposition.

6.3 System Modelling
Results for the system modelling are presented in two categories; estimation using the MATLAB
System Identification Toolbox, incorporating grey-box and black-box results, as well as manual
calculations as a control. As described in Section 4.3.1, four different boom lengths were evaluated,
ranging from fully retracted to fully extended, i.e. for d3 = [7.012, 15.012] m. Normalised root
mean square error (NRMSE) is used as the key performance index. For the grey-box and black-box
approaches, the validation data was packed in a timeseries in MATLAB and fed into the estimation
function.

6.3.1 Grey-box

Employing the greyest-function in MATLAB did not yield any useful results as the algorithm
did not converge towards any particular solution. The implications are further assessed in the
discussion.

6.3.2 Black-box

Using the armax-function for fitting, a model was identified for all boom lengths. Afterwards, the
identified model was compared to the validation data using the compare-function. The best fit was
found using 5th-degree polynomials. Results for all states are separated into individual figures by
boom length in Figure 6.4 through 6.7.

46

Figure 6.4: Comparison between validation data from the fully retracted pose and associated
ARMAX fit for SIMO-model.

47

Figure 6.5: Comparison between validation data from the second most retracted pose and associated
ARMAX fit for SIMO-model.

48

Figure 6.6: Comparison between validation data from the second most extended pose and associated
ARMAX fit for SIMO-model.

49

Figure 6.7: Comparison between validation data from the fully extended pose and associated
ARMAX fit for SIMO-model.

50

6.3.3 Manual Calculations

The traditional evaluation of the validation data yielded approximations for inertia Jeq, spring
stiffness keq, viscous damping beq and natural frequency ωn, depending on the boom length d3.
The relevant validation data is presented in Figure 6.8, where the peaks used for calculations are
indicated. The figure also presents a simulation of the free vibrations using the calculated properties
and initial conditions from the validation data.

Figure 6.8: Comparison between validation data and manual simulation for different boom lengths.

The diagram reveals that the system behaves less and less like a damped oscillator as the boom is
retracted. A possible source of errors is that the boom sustains a hose for carrying shotcrete. This
hose weighs in at over 3000N at most and is anchored at three points on the boom. In the fully
extended pose, it is relatively uniformly distributed, however when retracting the boom, the hose
folds and eventually makes contact with the ground.

51

This characteristic is apparent in the calculated values as well, presented in Table 6.3. While the
effective moments of inertia follow a decreasing trend along with the reduction in boom length, the
spring stiffness breaks the trend for the innermost pose.

Table 6.3: Manually estimated flexibility properties by boom length.

d3 [m] Jeq [104 · kgm2] keq [106 ·Nm/rad] beq [104 ·Ns/rad] ωn [rad/s]
7 1.4684 6.6925 1.8056 21.3491
9.7 2.9854 9.8988 3.4036 18.2093
12.3 4.7770 7.3270 2.5215 12.3847
15 8.0473 5.5675 2.8875 8.3177

6.4 Interface and Control

Table 6.4: Trajectory preferences
for HIL testing.

Preference Value
Velocity 0.1 [m/s]
Spacing 0.7 [m]
Depth 5.0 [m]

Results for interface and control were obtained through HIL-
simulation. As long as the deflection dynamics are not imple-
mented in real-time, the overall purpose of the simulation is
to verify that the interfacing, control structure and planning
algorithm works as intended. Considering that the dynamics
in the HIL model are simplified and that the controller gains
are not directly applicable to the physical system, the control-
ler was tuned rudimentary. The physical system is simulated
on the Speedgoat, controlled by the Danfoss ECU, based on
setpoints provided by the HMI PC. Trajectory preferences
were adjusted as presented in Table 6.4, producing the refer-
ence and simulated trajectory illustrated in Figure 6.9.

Figure 6.9: Comparison between reference and simulated trajectory in Cartesian coordinates.

52

The magnitude of the error between the trajectories is presented in Figure 6.10, while the NCP
velocity is shown in Figure 6.11 and valve commands for a single stroke and two transitions are
demonstrated in Figure 6.12.

Figure 6.10: Simulated trajectory error magnitude.

Figure 6.11: Simulated trajectory velocity.

Figure 6.12: Simulated valve commands for one stroke.

53

Chapter 7

Discussion and Further Work

This chapter gives a discussion on the obtained results and the developed framework in general.
Recommendations for further work and improvement are also given, indicated by indented sections
under each discussed topic.

7.1 Kinematics

For the kinematic structure of the AMV 4200H, no closed-from solution has been found. Analytical
expressions have been established for the boom position and the nozzle orientation separately, using
kinematic decoupling. The proposed method requires iterations, as previously explained. The
drawback of iterative methods is that the time of convergence cannot be guaranteed. In addition,
it is computationally intensive, rendering the method unsuited to run in real-time on the ECU.
Eliminating the iterations from the calculations would render the computing time more predictable
since an exact solution would be acquired at the first evaluation. Furthermore, it would make the
inverse kinematics faster, opening for the possibility of running the calculations in real-time on the
ECU. It may also simplify the Jacobian matrix, requiring less computational effort to calculate the
joint velocity, acceleration and reaction forces. In other words, obtaining a closed-form solution to
the inverse kinematics is beneficial in all robotic applications.

Further work: The current kinematic configuration of the AMV 4200H is cumbersome from
an inverse kinematics perspective. The mechanical design should be redesigned to provide
a closed-form solution. For a 6-DOF manipulator, a sufficient condition for guaranteeing a
closed-form solution is that three consecutive joint axes intersect at a point (Craig, 2014). On
6-DOF industrial robots, it is typically the three last joints that intersect, making it possible
to decouple the position and orientation, hence obtaining a closed-form solution. By the same
reasoning, a closed-form solution should exist for the AMV 4200H if the last three joints are
reconfigured to intersect at a single point.

7.2 Trajectory Planning

Surface: The proposed surface model is suited to the standard tunnel profiles used in Norwegian
road tunnels. However, other tunnel geometries, such as railway tunnels and tunnels used in
other countries, are not assessed in this thesis. This may render the surface model insufficient
to describe certain tunnels. While the chord-length method provides a better fit than uniform
parameterisation, the approximation error can be minimised further using numerical methods, as
proposed by Grossman (1971). The methods used in the thesis are based on AMV’s request to
use a minimum of knot points to create a surface model, meaning that the operator dictates the
measurement accuracy. We considered the alignment of the vehicle as a better approximation to
the v-axis than the operator measurements. Therefore, the surface coordinate system is positioned
such that the v-axis is parallel to the x-axis on the vehicle.

54

Further work: In a practical situation, the positioning of the vehicle should be taken into
account, such that a spraying procedure can be initiated independent of the orientation of
the vehicle. This can e.g. be achieved by positioning the vehicle within a virtual model of the
environment and calculating the transform between the global tunnel coordinates and local
coordinates on the vehicle. The authors consider the next natural progression for surface
mapping to replace the manually collected knot points with laser measurements. This will
increase point density and reduce measuring uncertainties.

Pattern: The traditional square pattern was evaluated as well as a pattern with semicircular
transitions. Both patterns revealed strengths and disadvantages. The square pattern provides a
more uniform distribution of shotcrete, while the rounded pattern provides a smoother operation.
The rounded pattern imposes a sudden jump in acceleration when entering transition mode. This
may induce oscillations in the boom, and a transition with continuous acceleration profile, such
as Bezier curves may be considered to achieve a trajectory with higher continuity. The authors
have not reviewed the optimal trajectory preferences, as adjusted in the HMI, with regard to layer
thickness and distribution.

Further work: A thorough investigation of the effects on shotcrete distribution and nozzle
accuracy from different patterns should be backed by field-testing. An optimal pattern is
possibly a blend of the trajectories mentioned above, where the corners are rounded with a
radius determined as a function of the nozzle velocity.

7.3 System Modelling

Dynamics: The AMV 4200H holds a multitude of system dynamics. This includes flexible bodies,
hydraulics, rotating equipment and the concrete pump which creates pulsation effects. The impact
of different system dynamics should be considered before relying on simulation results. The authors
made an effort to model the complete hydraulic system in Simscape Multibody. However, this model
proved too CPU intensive for the RT target. The hydraulic system is load-sensing and operates
with overhead. Furthermore, the valves incorporate closed-loop control to ensure a linear relation
between the valve input and hydraulic flow. Therefore, the hydraulic dynamics were considered
negligible in relation to mechanical deflection.

Measurements: Measurements of the physical system was subject to temporal limitations. Both
since the timing of the field-trip needed to adhere to the production cycle of the machine, and since
the allotted time for the visit was limited. This means that the measurements were taken at an
early stage in the project and that a "safe approach", by measuring free vibrations, was selected
instead of frequency response testing. Measurements were taken; both for vertical and transverse
motion, to create a 2-DOF deflection model. However, the transverse measurements were corrupted
due to complications with the load-cell, causing inconsistencies in the magnitude of the input. The
authors did observe that the transverse movements were subject to backlash in the connections
between telescopic elements. This phenomenon should possibly be investigated further in future
measurements.

Toolbox identification: The attempts to create a full system approximation using the proposed
grey-box model did not yield any useful results. This suggests that the proposed state-space model
of the physical system is not sufficient to capture all the system dynamics from the validation data.
It is theorised that a more complex state-space model may have yielded a higher fit. The grey-box
method assumes that the mathematical structure is known, and tries to estimate the unknown
system coefficients based on the validation data. The black-box model, on the other hand, does not
require a system model and as such, gives higher flexibility in terms of modelling errors. However,
while the ARMAX-model provides high flexibility, the lack of a physical model means that it is
not possible to select different inputs or outputs to a model after identification. This is the case
for the measurements, where the validation data input is torque at the tip, while in simulation the

55

input is θ̇2. Not being able to change the inputs and outputs from the model renders the black-box
model of little use for simulation purposes. The black-box model provides confirmation that it is
possible to obtain a fit to the measurements.

Manual calculations: While the toolbox approaches produced little useful results, the manual
calculations provided useful approximations to physical properties of the system. On the other
hand, it is evident that the resulting deflection behaviour is a superposition of multiple dynamics.
The manual calculations only capture the first and slowest vibrational mode. This is the most
dominant mode, and it is unknown to the authors if the remaining vibrational modes appear
prominent during operation. The manual calculations have provided several system parameters
such as stiffness, damping and eigenfrequencies that may be of interest in future work.

Further work: Creating a dynamic model of the system is essential for achieving a rep-
resentative simulation and for further insight into control optimisation. The authors suggest
conducting a field-test to validate if the damped oscillator model provides a sufficient approx-
imation to estimate the NCP position. If this is not the case, the state-space model can be
expanded upon. An alternative approach could be to test the system by means of frequency
response.

7.4 Interface and Control

Communication: The communication setup between the Speedgoat, Danfoss ECU, Router PC
and HMI PC is not an optimal setup with regard to concerning data transmission. The Router
PC contributes to unnecessary latency and has no practical function for the overall system other
than forwarding and translating incoming/outgoing data. However, since the system response is
relatively slow and HIL-simulation was performed under ideal circumstances with relatively low
bus loads, latency in the communication has not been an issue.

Further work: For future hardware simulations, dedicated hardware capable of both direct
CAN bus communication and real-time simulation should be used to eliminate the Router
PC and ensure more reliable communication.

Automatic spaying: When running the automatic spraying mode, the setpoint of the nozzle is
updated in real-time based on periodic reference messages sent by the HMI PC. However, these
messages are sent from an environment under the GIL, which means, depending on the CPU-load
for that particular process, that the periodic messages may in some cases be postponed and sent
in bulk as soon as the processor becomes available. The velocity deviations have been measured
and were found to be relatively small, but the rate of setpoint updates, and therefore the nozzle
velocity, cannot be guaranteed.

Further work: Ensuring that the joint space references are updated at the correct time
instant is instrumental for precise control of the machine. The ECU is purpose-built for con-
trolling industrial systems, capable of running tasks in proper real-time with high reliability.
Therefore, a possible solution is to build an array on the ECU before initiation of the spray-
ing procedure, subsequently reading out the references using a timed process in the ECU.
However, taking into account AMV’s plans of achieving fully automatic shotcrete application
with real-time process control and correction, it may prove impractical to upload static values.
Another, and a possibly better solution would be to move calculation of inverse kinematics to
the ECU; having a central processing computer that interprets the environment, monitors the
application process and corrects the nozzle Cartesian position and orientation. In this case,
only the Cartesian position and orientation references are updated, and all inverse kinematics,
which is specific to the machine, is run on the ECU.

56

PC application: The Python application provides a working implementation of the proposed
methods in accordance with modular programming techniques. Kinematics, surface transformation
and pattern generation are divided into separate modules. This is part of an effort to simplify
testing of different trajectory concepts or kinematic configurations and reduce dependencies. Each
module can be developed separately without requiring particular knowledge of the other modules.
Moreover, the computer application is equipped with safety features and protection against invalid
user interactions to establish it as a platform for field-testing.

Control: The proposed control structure should, with proper tuning, be sufficient for controlling
the nozzle in automatic spraying mode. However, the controller has not been tested in the presence
of complex dynamics and disturbances. Therefore, optimal gain settings have not been investigated.
The primary purpose of control in this thesis has been to verify that the developed system works,
i.e. that the HMI PC correctly calculates and transfers data to the ECU, and that the ECU tracks
the setpoint accordingly, albeit with simplified system dynamics. As a measure to protect the
sliding joints from debris, the AMV 4200H is equipped with a suspended cover over the boom
assembly. The cover retracts onto a spring-loaded roller. Boom extension, d3 is measured using
a rotary encoder embedded in the roller. This mechanism is potentially sensitive to disturbances,
such as shotcrete debris. It is not known to which extent this may affect the accuracy of the d3
measurements.

Further work: The next natural step of development is to finalise the dynamic model and
provide the control system with disturbances such that controller performance can be as-
sessed. It may also be possible to reduce mechanical disturbances by using the identified
eigenfrequencies of the boom to filter the input signal. Using a lookup table of the eigenfre-
quencies and applying the correct cutoff frequency based on the extension of the boom could
reduce resonance.

57

Chapter 8

Conclusion

This research aimed to provide a framework for automatic application of shotcrete for the AMV
4200H. An automatic spraying mode was developed that relies on interoceptive sensing, i.e. on joint
feedback for the execution of the spraying procedure. First, an operator must provide a minimum
of five probed reference points of the tunnel geometry. These points are subsequently used to
generate the tunnel surface and spraying trajectory. Through an intuitive graphical user interface,
the operator manages the spraying procedure and has full control over the process parameters such
as the shape of the spraying pattern and nozzle velocity. Once a satisfactory trajectory is selected,
the inverse kinematics are calculated and transferred to the ECU with ease. The proposed methods
and framework have been tested and verified through HIL-simulation with the ECU of the AMV
4200H.

Throughout the thesis, several subjects have been investigated. This includes; forward and inverse
kinematics, surface transformations and pattern generation, dynamic modelling and control, HIL-
simulation and the development of a PC application with a functional HMI.

Forward kinematics were solved in a straightforward manner using the DH-convention. The inverse
kinematics, on the other hand, were more challenging as no closed-form solution was found. The
proposed method utilises a combination of kinematic decoupling and iteration to obtain the final
solution. This method has shown promise in regard to computing time and convergence. An
analytic solution would be preferable for real-time application. Unsolvable kinematic structures
are a reoccurring problem with retrofitting automatic control to machines intended for manual
operation. This may be considered somewhat analogous to how early robotic manipulators were
not initially designed for shotcrete equipment, as most shotcrete manipulators of today are not
purpose-built for automatic control.

The spraying trajectory was created based on simplified assumptions. These assumptions include
assuming zero Gaussian curvature, an approximation of tunnel cross section by polynomials and the
creation of a spraying pattern resembling a square pulse wave. The developed spraying trajectory
serves as intended, but no further investigation has been conducted in regard to optimal trajectory
for application of shotcrete. For industrial implementation, the trajectory should be developed
in collaboration with experts in the field and should be subject to rigorous testing for identifying
optimal process settings.

Identification of flexible-body dynamics was conducted using validation data from the physical
system. Attempts were made using traditional free vibration theory, as well as grey-box and
black-box identification, where only the manual calculations yielded credible results. For accurate
simulation, it is necessary to consider the system dynamics. The identified model has not been
compared to the physical system in terms of tracking the NCP.

Fundamental closed-loop control, incorporating PI-controllers and deadband compensation was
developed. A testing platform, consisting of a computer application, Danfoss ECU and an HIL setup
with simplified dynamics was constructed. The simulation provided confirmation of interfacing and

58

verification of the ECU-implemented controller, while the computer application incorporated the
methods for kinematics and trajectory planning. The setup was composed such that the simulated
system can be replaced with the physical machine for field-testing. Preferences in the computer
application are managed from a simple and intuitive HMI, however, it has not been assessed by an
operator.

In this thesis, many subjects have been investigated; some more than others. Due to the scale of
the research, not all subjects could be studied in-depth as much as the authors desired to, and work
remains for a commercially viable solution. However, methods, results and discussions are divided
into separate categories, formulating distinct research areas. This facilitates future development by
allowing many researchers to collaborate on the same project.

This work serves as a foundation for further development towards AMV’s goal of realising a fully
autonomous shotcrete operation with real-time process control and correction.

59

Bibliography

AMV. Application for An innovative machine for digitalization of shotcrete operations in tunnelling
with real-time process control and 3D mapping. 2018.

Åström, K. J. and Hägglund, T. Advanced PID Control. ISA - Instrumentation, Systems, and
Automation Society, 2006.

CAN in Automation. CiA 301 - CANopen Application Layer and Communication Profile. 2002.

Cheng, M., Liang, Y., Wey, C., Chou, J., and Chen, J. Development of a New Dimension and
Computer-Aided Construction System for Shotcreting Robot. Proceedings of the 13th Interna-
tional Symposium on Automation and Robotics in Construction, 1996.

Craig, J. J. Introduction to robotics : mechanics and control. Springer, 2014.

Danfoss. Technical Information, PVG 32. 2015.

Dhir, R. K. Advances in ready mixed concrete technology : proceedings of the first International
Conference on Ready-Mixed Concrete. Pergamon Press, 1976.

Girmscheid, G. and Moser, S. Fully automated shotcrete robot for rock support. Computer-Aided
Civil and Infrastructure Engineering, 2001. 16(3). doi:10.1111/0885-9507.00226.

Grossman, M. Parametric Curve Fitting. The Computer Journal, 1971.

Hexagon Manufacturing Intellegence. Leica Absolute Tracker AT960 ASME Specifications.
2016. URL https://www.hexagonmi.com/-/media/Files/Hexagon/HexagonMI/Brochures/
LaserTrackerSystems/HexagonMIAT960DatasheetA4_en.ashx.

Hofler, J. and Schlumpf, J. Shotcrete in Shotcrete in Tunnel Construction. 2004.

Honegger, M., Schweitzer, G., Tschumi, O., and Amberg, F. Vision supported operation of a con-
crete spraying robot for tunneling work. 2002. pages 230–233. doi:10.1109/mmvip.1997.625333.

Kleppe, A. L. and Egeland, O. Inverse Kinematics for Industrial Robots using Conformal Geometric
Algebra. Modeling, Identification and Control, 2016. 37(1).

Kurth, T., Gause, C., and Rispin, M. Robotic shotcrete applications for mining and tunneling.
North American Tunneling 2004, 2010. doi:10.1201/9781439833759.ch27.

Marsden, J. E. and Tromba, A. Vector Calculus. W.H. Freeman and Company Publishers, 6. ed
edition, 2012.

Nabulsi, S., Rodriguez, A., and Rio, O. Robotic Machine for High-Quality Shotcreting Process.
ISR/Robotik 2010, 2010. pages 1137–1144.

National Instruments. Selecting a Model Structure in the System Identification Process. 2018.
URL http://www.ni.com/product-documentation/4028/en/.

National Instruments. Controller Area Network (CAN) Overview. 2019. URL http://www.ni.com/
en-no/innovations/white-papers/06/controller-area-network--can--overview.html.

60

http://dx.doi.org/10.1111/0885-9507.00226
https://www.hexagonmi.com/-/media/Files/Hexagon/Hexagon MI/Brochures/Laser Tracker Systems/Hexagon MI AT960 Datasheet A4_en.ashx
https://www.hexagonmi.com/-/media/Files/Hexagon/Hexagon MI/Brochures/Laser Tracker Systems/Hexagon MI AT960 Datasheet A4_en.ashx
http://dx.doi.org/10.1109/mmvip.1997.625333
http://dx.doi.org/10.1201/9781439833759.ch27
http://www.ni.com/product-documentation/4028/en/
http://www.ni.com/en-no/innovations/white-papers/06/controller-area-network--can--overview.html
http://www.ni.com/en-no/innovations/white-papers/06/controller-area-network--can--overview.html

Nise, N. S. Control Systems Engineering. Wiley, 2011.

Norwegian Public Roads Administration. Road Tunnel Design Manual. Norwegian Public Roads
Administration, 2004. URL https://www.vegvesen.no/_attachment/61416/binary/14123.

Norwegian Tunnelling Society. The Principles of Norwegian Tunnelling. Norwegian Tunnelling
Society, 2017.

Pepperl+Fuchs. Datasheet - ENA42HD-S***-CANopen. 2018. URL https://www.
pepperl-fuchs.com/norway/no/classid_362.htm?view=productdetails&prodid=76995.

Perwass, C. Teaching Geometric Algebra with CLUCalc. 2004.

Rao, S. S. Mechanical Vibrations. Prentice Hall, third ed. edition, 1995.

Siciliano, B., Sciavicco, L., Villani, L., and Oriolo, G. Robotics - Modelling, Planning and Control.
Springer, 2009.

Speedgoat GmbH. Speedgoat Baseline real-time target machine. 2019. URL https:
//www.speedgoat.com/products-services/real-time-target-machines/baseline/
capabilities.

Spong, M. W., Hutchinson, S., and Vidyasagar, M. Robot Modeling and Control. Wiley, 2005.

Teichert, P. Carl Akeley, A tribute to the founder of shotcrete. Shotcrete, 2002.

Tørdal, S. S., Hovland, G. E., and Tyapin, I. Efficient Implementation of Inverse Kinematics on
a 6-DOF Industrial Robot using Conformal Geometric Algebra. Advances in Applied Clifford
Algebras, 2016. 27(3).

Tosi, S. Matplotlib for Python Developers. Packt Publishing, 2009.

US Army Corps of Engineers. Standard Practice for Shotcrete. 2005.

Wang, X. and Su, X. Modeling and sliding mode control of the upper arm of a shotcrete robot
with hydraulic actuator. IEEE ICIT 2007 - 2007 IEEE International Conference on Integration
Technology, 2007. pages 714–718. doi:10.1109/ICITECHNOLOGY.2007.4290413.

Wikimedia Commons. CAN-bus-frame in base format without stuffbits. 2014. URL https:
//en.wikipedia.org/wiki/File:CAN-Bus-frame_in_base_format_without_stuffbits.svg.

Xuewen, R., Yibin, L., and Rui, S. Kinematic analysis of a shotcreting robot. 2010 International
Conference on Mechanic Automation and Control Engineering, MACE2010, 2010. (1):2640–2643.
doi:10.1109/MACE.2010.5536789.

61

https://www.vegvesen.no/_attachment/61416/binary/14123
https://www.pepperl-fuchs.com/norway/no/classid_362.htm?view=productdetails&prodid=76995
https://www.pepperl-fuchs.com/norway/no/classid_362.htm?view=productdetails&prodid=76995
https://www.speedgoat.com/products-services/real-time-target-machines/baseline/capabilities
https://www.speedgoat.com/products-services/real-time-target-machines/baseline/capabilities
https://www.speedgoat.com/products-services/real-time-target-machines/baseline/capabilities
http://dx.doi.org/10.1109/ICITECHNOLOGY.2007.4290413
https://en.wikipedia.org/wiki/File:CAN-Bus-frame_in_base_format_without_stuffbits.svg
https://en.wikipedia.org/wiki/File:CAN-Bus-frame_in_base_format_without_stuffbits.svg
http://dx.doi.org/10.1109/MACE.2010.5536789

List of Figures

1.1 3D render of the AMV 4200H, courtesy of AMV. 3

2.1 CAD model of boom assembly with reduced detailing. 8
2.2 Forward kinematics: From Joint Space to Cartesian coordinates. 9
2.3 Kinematic model of the boom assembly on AMV 4200H. Note that joint motions are

indicated in red. 10
2.4 Reachable workspace for the boom assembly of AMV 4200H, excluding the nozzle. . 11
2.5 Nozzle and eccentric; dotted line shows nozzle in the upper position. The solid line

shows the nozzle in the lower position. Note that nozzle rotation is out-of-plane. . . 12
2.6 Actuating mechanism for joint θ2. 13
2.7 Cylinder length to angle relation for θ2. 13
2.8 Inverse kinematics: From Cartesian coordinates to Joint Space. 14
2.9 Flow chart representation of inverse kinematics algorithm. 14

3.1 Block diagram representation of trajectory planning strategy. 19
3.2 Planar and Cartesian coordinate systems in relation to tunnel geometry. 20
3.3 Standard cross sections for Norwegian road tunnels. Courtesy of the Norwegian

Public Roads Administration. 20
3.4 Parametric tunnel approximation for profile T8.5 by polynomial degrees of y and z

functions. 21
3.5 Curve fitting from five pseudo-random knot points for T8.5 profile. 23
3.6 Arc length approximation by discretisation resolution. 23
3.7 Planar trajectory curve with semicircular transitions between strokes. The square

trajectory curve is superimposed with a dotted line. 24
3.8 Rounded trajectory in u, v-coordinates plotted as functions of time. 27
3.9 Spraying trajectory mapped onto T 9.5 surface. Knot points are indicated in blue

and the normal vectors are indicated with arrows. 27

4.1 Example of a dynamic model. Note that the block "Nonlin" holds Eq. (2.8) and that
it only applies to θ2. 28

4.2 System identification block diagram. 29
4.3 Test setup for flexibility measurement. 30
4.4 Input and output measurements for the flexible model of the fully extended boom. . 30
4.5 Simplified physical deflection model. Positive rotation anticlockwise. Note that θ2 is

considered as the ground reference and that gravity is identified as part of the inertia. 31
4.6 Impulse response showing all position states, with θ̇2 as input. 33

5.1 CAN-Bus-frame in base format without stuffbits. Used under licence of Wikimedia
Commons (Wikimedia Commons, 2014). 36

5.2 Communication layout between Real-time target and HMI PC. 37
5.3 Control structure; five proportional-integral (PI) controllers with deadband com-

pensation (DBC). Note that the I-term is turned off in the HIL-simulation as dis-
cussed in Section 5.4.2. 40

5.4 Human-Machine Interface for application of shotcrete. 41

62

6.1 Deviation of corrected stroke spacing as a percentage of the desired stroke spacing
for the T5.5 tunnel profile. 44

6.2 Comparison of acceleration in the planar trajectory, using square and semicircular
transitions. 45

6.3 Comparison of shotcrete distribution for square and rounded transitions in the planar
trajectory. 46

6.4 Comparison between validation data from the fully retracted pose and associated
ARMAX fit for SIMO-model. 47

6.5 Comparison between validation data from the second most retracted pose and asso-
ciated ARMAX fit for SIMO-model. 48

6.6 Comparison between validation data from the second most extended pose and asso-
ciated ARMAX fit for SIMO-model. 49

6.7 Comparison between validation data from the fully extended pose and associated
ARMAX fit for SIMO-model. 50

6.8 Comparison between validation data and manual simulation for different boom lengths. 51
6.9 Comparison between reference and simulated trajectory in Cartesian coordinates. . . 52
6.10 Simulated trajectory error magnitude. 53
6.11 Simulated trajectory velocity. 53
6.12 Simulated valve commands for one stroke. 53

C.1 Comparison of parametric tunnel approximation by polynomial degree of y and z
functions. 68

D.1 Top layer block in RT-target. Contains CAN/UDP communication and the physical
system AMV 4200H- . 70

D.2 This block is the AMV 4200H from Figure D.1. It represents the physical system in
the HIL-setup. 71

D.3 Block diagram for Speedgoat receiving valve commands over UDP from Router PC,
and for sending the sensor values back to the Router PC. 72

D.4 Block diagram for receiving CAN messages from microcontroller and receiving in-
coming sensor values from the Speedgoat over UDP and routing back to the micro-
controller over CAN bus. 73

D.5 Block diagram representing the "RCV function" from Figure D.4. Subsystem active
on message recieved. 73

D.6 Page for receiving reference values from HMI PC. Contains CANopen Rx block and
conversion from U16 to S16. 74

D.7 Page for receiving sensor values from RT-target. Contains CANopen Rx block and
conversion from U16 to S16. 75

D.8 Page for transmitting joystick button press used for knot points, controller on/off
Boolean and sensor values to HMI PC. Using PDOs 1,2 and 3, from sending node 3. 76

D.9 Block for packing joystick button press, controller on/off Boolean and joint angles.
Packs data to arrays of U8. 77

D.10 Block for sending data joint angles to RT target. Block contains a switch mechanism
to toggle manual and PI control. 78

D.11 Block for packing valve commands from U16 to arrays of U8. 79
D.12 PI-controller implementation. 80
D.13 Deadband compensator. 81
D.14 Main page in Danfoss application. Contains communication, controller, data con-

version and joysticks. 82

63

List of Tables

2.1 Denavit–Hartenberg parameters for AMV 4200H. The ranges of the definition are
given in degrees. 10

3.1 Mean square error for best fit of y and z parametric functions by polynomial degree
for T8.5 profile. 21

5.1 Pre-defined connection set for PDOs in CANopen. CiA 301 (CAN in Automation,
2002). 36

6.1 Maximum, average, and standard deviation for inverse kinematics error magnitude. . 43
6.2 Test environment for the inverse kinematics performance test. 44
6.3 Manually estimated flexibility properties by boom length. 52
6.4 Trajectory preferences for HIL testing. 52

B.1 Kinematic dimensions. 67
B.2 Actuating geometry for joint q2. 67

C.1 Mean square error for best fit of y and z parametric functions by polynomial degree
for major Norwegian road tunnel profiles. 69

64

Appendices

65

Appendix A

Transformation Matrices

Ti−1
i =

 R T

0 0 0 1

 = Rotzi−1(θi) ·Transzi−1(di) ·Transxi−1(ai) ·Rotxi−1(αi) (A.1)

Rotzi−1(θi) =

cos θi − sin θi 0 0
sin θi cos θi 0 0

0 0 1 0
0 0 0 1

 (A.2)

Transzi−1(di) =

1 0 0 0
0 1 0 0
0 0 1 dn

0 0 0 1

 (A.3)

Transxi−1(ai) =

1 0 0 ai

0 1 0 0
0 0 1 0
0 0 0 1

 (A.4)

Rotxi−1(αi) =

1 0 0 0
0 cosαi − sinαi 0
0 sinαi cosαi 0
0 0 0 1

 (A.5)

Note that line separation in the matrices are given to separate rotation and translation.

Rotational Matrices for Nozzle Roll and Pitch

Rotx(α) =

 1 0 0
0 cos(α) − sin(α)
0 sin(α) cos(α)

 (A.6)

Roty(γ) =

 cos(γ) 0 sin(γ)
0 1 0

− sin(γ) 0 cos(γ)

 (A.7)

66

Appendix B

Dimensions

Table B.1: Kinematic dimensions.

Length [m]
a1 0.235
a2 0.355
a4 0.201
a5 0.355
d1 0.505
d5 0.008
d6 0.678

Table B.2: Actuating geometry for joint q2.

Length [m]
Lx1 0.335
Lx2 0.985
Ly1 0.290
Ly2 0.630

67

Appendix C

Tunnel Geometry

C.1 Parametric Functions

Figure C.1: Comparison of parametric tunnel approximation by polynomial degree of y and z
functions.

68

Table C.1: Mean square error for best fit of y and z parametric functions by polynomial degree for
major Norwegian road tunnel profiles.

MSE y [m] z [m]
Degree 1 2 3 1 2 3 4
T5.5 0.3575 0.3575 0.0083 3.2876 0.0672 0.0672 0.0030
T7 0.3734 0.3734 0.0043 3.5125 0.0510 0.0510 0.0016
T8.5 0.5048 0.5048 0.0020 4.1432 0.0376 0.0376 0.0001
T9.5 0.4806 0.4806 0.0007 4.0366 0.0241 0.0241 0.0000
T11.5 0.6185 0.6185 0.0008 4.7071 0.0126 0.0126 0.0014
T12.5 0.5650 0.5650 0.0011 4.6832 0.0084 0.0084 0.0006

69

Appendix D

Block Diagrams

D.1 Simulink Blocks Speedgoat

Send	to	CAN

U1

U2

U3

U4

U5

CAN	UDP	interface

u1

u2

u3

u4

u5

T

Sensors

AMV	4200H

File	Scope
Id:	3

Figure D.1: Top layer block in RT-target. Contains CAN/UDP communication and the physical
system AMV 4200H-

70

u d

q3

u theta

q4

u theta

q5

Kinematics

u theta

q1

u theta

q2

1
u1

2
u2

3
u3

4
u4

5
u5

1
T

2
Sensors

theta1

theta2

d3

theta4

theta5

Sensor	data

Figure D.2: This block is the AMV 4200H from Figure D.1. It represents the physical system in
the HIL-setup.

71

Target	Scope
Id:	2

CAN	Recieve	

Target	Scope
Id:	1

CAN	transmit

Send	UDP	packets
Using	host-target	connection	

To:	192.168.7.2:25000

Data

Length

Send	

Pack1
Send	to	CAN

Receive	UDP	packets
Using	host-target	connection	

From:	192.168.7.2

Data

Length

Receive

Unpack

40

u1

u2

u3

u4

u5

1
U1

2
U2

3
U3

4
U4

5
U5

Sensors

U1

U2

U5

U3

U4

Valves

Figure D.3: Block diagram for Speedgoat receiving valve commands over UDP from Router PC,
and for sending the sensor values back to the Router PC.

72

D.2 Simulink Blocks Router PC

PEAK-System	PCAN-...
PCAN_USBBUS1

Bus	speed:	250000

PEAK-System	PCAN-...
PCAN_USBBUS1

Std.	IDs:	all
Ext.	IDs:	all

f()

CAN	Msg

CAN u
function()

Rcv	function

Send	UDP	packets
Using	host-target	connection	

To:	192.168.7.1:25001

Data

Length

Send

40

Pack

Receive	UDP	packets
Using	host-target	connection	

From:	192.168.7.1

Data

Length

Receive

Message:	Long_frame
Standard	ID:	388

theta_1

theta_2

d_3

theta_4

CAN	Msg

CAN	message	long	

Unpack

Message:	Short_frame
Standard	ID:	644theta_5 CAN	Msg

CAN	message	short

PEAK-System	PCAN-...
PCAN_USBBUS1CAN	Msg

PEAK-System	PCAN-...
PCAN_USBBUS1CAN	Msg

Figure D.4: Block diagram for receiving CAN messages from microcontroller and receiving incoming
sensor values from the Speedgoat over UDP and routing back to the microcontroller over CAN bus.

f()

function

1
CAN

1
u

Message:	long_rcv
Standard	ID:	387CAN	Msg

u_1
u_2
u_3
u_4

Message:	short_rcv
Standard	ID:	643CAN	Msg u_5

Figure D.5: Block diagram representing the "RCV function" from Figure D.4. Subsystem active on
message recieved.

73

D.3 Danfoss Plus+1

Figure D.6: Page for receiving reference values from HMI PC. Contains CANopen Rx block and
conversion from U16 to S16.

74

Figure D.7: Page for receiving sensor values from RT-target. Contains CANopen Rx block and
conversion from U16 to S16.

75

Figure D.8: Page for transmitting joystick button press used for knot points, controller on/off
Boolean and sensor values to HMI PC. Using PDOs 1,2 and 3, from sending node 3.

76

Figure D.9: Block for packing joystick button press, controller on/off Boolean and joint angles.
Packs data to arrays of U8.

77

Figure D.10: Block for sending data joint angles to RT target. Block contains a switch mechanism
to toggle manual and PI control.

78

Figure D.11: Block for packing valve commands from U16 to arrays of U8.

79

Figure D.12: PI-controller implementation.

80

Figure D.13: Deadband compensator.

81

Figure D.14: Main page in Danfoss application. Contains communication, controller, data conver-
sion and joysticks.

82

Appendix E

Source Code

E.1 MATLAB

E.1.1 InverseKinematicsWrist.m

This script finds a solution for (θ4, θ5) when (θ1, θ2, β, γ) is known.
1 %% Initialise and declare
2 clear all
3 close all
4 clc
5 syms q1 q2 q3 q4 q5 beta gamma x y z real
6

7 %% Solve
8 q = [q1 q2 q3 q4 q5];
9 T = fk(q); % Forward kinematics transformation matrix

10 eq = T(1:3 ,1:3) == rotx(beta)*roty(gamma); % Rotational sequence : ’X Y(Z)’
11 sol = solve(eq (1:3 ,3) ,[q4 q5]," Real", true);
12

13 q4 = sol.q4 (2)
14 q5 = sol.q5 (2)
15

16 %% Functions
17 function T = fk(q)
18 % Geometry
19 a1 = 0.235;
20 a2 = 0.355;
21 a4 = 0.20098;
22 a5 = 0.345;
23 d1 = 0.505;
24 d5 = 0.00837;
25 d6 = 0.6928;
26

27 % DH table
28 DH = [
29 q(1) d1 -a1 pi /2;
30 q(2)+pi/2 0 a2 pi /2;
31 0 q(3) 0 0;
32 q(4) 0 -a4 pi /2;
33 q(5) -d5 -a5 -pi /2;
34 0 d6 0 0];
35

36 % Transformation matrices
37 T1 = T_DH(DH (1 ,:));
38 T2 = T_DH(DH (2 ,:));
39 T3 = T_DH(DH (3 ,:));
40 T4 = T_DH(DH (4 ,:));
41 T5 = T_DH(DH (5 ,:));
42 T6 = T_DH(DH (6 ,:));
43

44 T = T1*T2*T3*T4*T5*T6;
45 end

83

46

47 function T = T_DH(u)
48 T = Rot_z(u(1))* Trans_z (u(2))* Trans_x (u(3))*Rot_x(u(4));
49 end
50

51 function u = Rot_z(theta)
52 u=[
53 cos(theta) -sin(theta) 0 0;
54 sin(theta) cos(theta) 0 0;
55 0 0 1 0;
56 0 0 0 1];
57 end
58

59 function u=Rot_x(alpha)
60 u=[1 0 0 0
61 0 cos(alpha) -sin(alpha) 0;
62 0 sin(alpha) cos(alpha) 0;
63 0 0 0 1];
64 end
65

66 function u= Trans_x (r_n)
67 u=[
68 1 0 0 r_n;
69 0 1 0 0;
70 0 0 1 0;
71 0 0 0 1];
72 end
73

74 function u = Trans_z (d_n)
75 u=[
76 1 0 0 0;
77 0 1 0 0;
78 0 0 1 d_n;
79 0 0 0 1];
80 end

E.1.2 Jacobian.m

This script calculates the Jacobian matrix by decoupling translation and rotation.

1 %% Initialise and declare
2 clear all
3 close all
4 clc
5 syms q1 q2 q3 q4 q5 roll pitch real
6 q = [q1 q2 q3 q4 q5];
7

8 %% Forward kinematic transformation
9 Tsym = fk(q); % Symbolic transformation matrix

10 Re = Tsym (1:3 ,1:3); % Rotational transformation
11 pe = Tsym (1:3 ,4); % Translational transformation
12

13 %% Orientation reference
14 Rref = rotx(roll)*roty(pitch); % Rotational reference , rotation =’xyz ’
15 beta = atan2(-Re (2 ,3) ,Re (3 ,3)); % Calculate euler angle beta(roll)
16 gamma = asin(Re (1 ,3)); % Calculate euler angle gamma(pitch)
17 Orient = [beta; gamma];
18

19 %% Create Jacobian
20 Jp = jacobian (pe ,q); % Translational part of Jacobian matrix
21 Jo = jacobian (Orient ,q); % Rotational part of Jacobian matrix
22 J = vertcat (Jp ,Jo); % Jacobian

84

E.1.3 VibrationAnalysis.m

This script calculates physical properties of the boom when evaluated as a single spring-mass-inertia
model under free underdamped vibrations.

1 %% Initialise and declare
2 clear all
3 close all
4 clc
5 run = 1;
6 transverse = false;
7

8

9 %% Calculate properties the different boom lengths
10 for boom_pos = 1:4
11 clear input output initial_states origin
12

13 % Load data (parsing of data is handled in another function)
14 [input , output , initial_states , origin] = cleanData (run , transverse , boom_pos)

;
15 time = [1: length (input)]./1000;
16

17 % Locate peaks
18 [pks ,locs]= findpeaks (output (: ,5) ,’MinPeakDistance ’,3,’MinPeakProminence ’,(max

(output (: ,5))-min(output (: ,5)))/25);
19

20 % Calculate applied torque
21 arm = pdist ([origin (1 ,:); origin (end ,:)]) +0.3; %Mass tied 30cm farther out than

reflector
22 if boom_pos == 1
23 T = -41*9.81* arm; % 41kg mass for fully extended boom
24 else
25 T = -82*9.81* arm; % 82kg mass for remaining boom lengths
26 end
27

28 % Stiffness
29 k_eq(boom_pos) = T/ output (1 ,5);
30

31 % Frequency
32 for i = 1: length (pks) -1
33 log_dec_data (i) = log(pks(i)/pks(i+1));
34 end
35 log_dec = mean(log_dec_data);
36 damping_ratio = log_dec /sqrt ((2* pi)^2+ log_dec ^2);
37 period = mean(diff(locs /1000));
38 omega_d (boom_pos) = 1/ period *2* pi;
39 omega_n (boom_pos) = omega_d (boom_pos)/sqrt (1- damping_ratio ^2);
40

41 % Inertia
42 J_eq(boom_pos) = k_eq(boom_pos)/ omega_n (boom_pos)^2;
43

44 % Damping
45 critical_damping = 2* J_eq(boom_pos)* omega_n (boom_pos);
46 b_eq(boom_pos) = critical_damping * damping_ratio ;
47

48 % Simulate
49 [sim_pos , sim_time] = springInertiaDamping (J_eq(boom_pos),k_eq(boom_pos),b_eq(

boom_pos),output (1 ,5) ,time(end) -1);
50

51 end
52

53

54 %% Differential equation
55 function [pos ,time] = springInertiaDamping (J, k, c, theta_0 , t_stop)
56

57 % Parameters
58 dt = 0.001;

85

59 N = round(t_stop /dt);
60 time = linspace (0, t_stop ,N);
61

62 % Initialise
63 pos = zeros(N ,1);
64 theta = theta_0 ;
65 theta_dot = 0;
66

67 % Simulation
68 for n = 1:N
69 theta_ddot = 1/J*(-k*theta -c* theta_dot);
70 theta_dot = theta_dot + theta_ddot *dt;
71 theta = theta+ theta_dot *dt;
72 pos(n) = theta;
73 end
74 end

E.1.4 ImpulseResponse.m

This script tests the state-space model for an impulse response using θ2 as input.
1 %% Initialise
2 clear all
3 close all
4 clc
5

6 %% Specs
7 J = [10000 , 5000 , 3000 , 1000];
8 b = [1, 1, 1, 1]*15000;
9 k = [6, 5, 4, 3]*220000;

10

11 %% State -space representation
12 % System matrix
13 A = zeros (9 ,9);
14 A(1 ,2) = 1;
15 A(2 ,:) = [-(k(1)+k(2))/J(1) , -(b(1)+b(2))/J(1) , k(2)/J(1) ,b(2)/J(1) ,0,0,0,0,k(1)/J

(1)];
16 A(3 ,4) = 1;
17 A(4 ,1:6) = [k(2)/J(2) ,b(2)/J(2) ,-(k(2)+k(3))/J(2) , -(b(2)+b(3))/J(2) , k(3)/J(2) , b

(3)/J(2)];
18 A(5 ,6) = 1;
19 A(6 ,3:8) = [k(3)/J(3) , b(3)/J(3) ,-(k(3)+k(4))/J(3) ,-(b(3)+b(4))/J(3) , k(4)/J(3) , b

(4)/J(3)];
20 A(7 ,8) = 1;
21 A(8 ,5:8) = [k(4)/J(4) , b(4)/J(4) , -(k(4))/J(4) , -b(4)/J(4)];
22

23 % Input
24 B = [0, b(2)/J(1) , 0, 0, 0, 0, 0, 0, 1]’; % For q velocity input
25 % B = [0, 0, 0, 0, 0, 0, 0, -1/J(4) , 0]’; % For torque input
26

27 % Output
28 C = zeros (5 ,9);
29 C(1 ,9) = 1;
30 C(2 ,1) = 1;
31 C(3 ,3) = 1;
32 C(4 ,5) = 1;
33 C(5 ,7) = 1;
34

35 % Feedthrough
36 D = zeros (5 ,1);
37

38 sys = ss(A,B,C,D);
39

40 %% Simulate response
41 [Y,T,X] = impulse (sys ,15);
42

86

43 %% Plot
44 Fig = figure ;
45 for n = 1:5
46 subplot (5,1,n)
47 plot(T,Y(:,n))
48 grid
49 if n == 1
50 title(’\ textbf { Impulse response }’)
51 ylabel (’$\ theta_2 \,\, [rad]$’)
52 else
53 ylabel (strcat (’$\psi_{’,string (n -1) ,’}\,\, [rad]$’))
54 end
55 late(Fig)
56 xlim ([0 T(end)])
57 end
58 xlabel (’Time [s]’)
59

60 % Save figure
61 FigPrint (Fig , ’Impulse_SS ’, 500, 1.18 , 0.97)

E.2 Python

E.2.1 kin.py

1 from copy import deepcopy
2 from numpy import sin , cos , pi , tan , arctan , array , arctan2 , square , arcsin ,

savetxt
3 from math import pi , inf , sqrt , radians
4

5

6 def fk(q):
7 # Geometry
8 a1 = 0.235
9 a2 = 0.355

10 a4 = 0.20098
11 a5 = 0.345
12 d1 = 0.505
13 d5 = 0.00837
14 d6 = 0.6928
15

16 # DH table
17 dh = array([[q[0], d1 , -a1 , pi / 2],
18 [(q[1] + pi / 2), 0, a2 , pi / 2],
19 [0, q[2], 0, 0],
20 [q[3], 0, -a4 , pi / 2],
21 [q[4], -d5 , -a5 , -pi / 2],
22 [0, d6 , 0, 0]])
23

24 # Transformation matrices
25 t1 = t_dh(dh[0, :])
26 t2 = t_dh(dh[1, :])
27 t3 = t_dh(dh[2, :])
28 t4 = t_dh(dh[3, :])
29 t5 = t_dh(dh[4, :])
30 t6 = t_dh(dh[5, :])
31

32 t = t1 @ t2 @ t3 @ t4 @ t5 @ t6
33

34 return t
35

36

37 def t_dh(u):
38 a = rot_z (u[0])
39 b = trans_z (u[1])
40 c = trans_x (u[2])

87

41 d = rot_x (u[3])
42

43 t = a @ b @ c @ d
44

45 return t
46

47

48 def rot_z(theta):
49 u = array([[cos(theta), -sin(theta), 0, 0],
50 [sin(theta), cos(theta), 0, 0],
51 [0, 0, 1, 0],
52 [0, 0, 0, 1]])
53

54 return u
55

56

57 def rot_x(alpha):
58 u = array([[1, 0, 0, 0],
59 [0, cos(alpha), -sin(alpha), 0],
60 [0, sin(alpha), cos(alpha), 0],
61 [0, 0, 0, 1]])
62

63 return u
64

65

66 def trans_x (a_n):
67 u = array([[1, 0, 0, a_n],
68 [0, 1, 0, 0],
69 [0, 0, 1, 0],
70 [0, 0, 0, 1]])
71

72 return u
73

74

75 def trans_z (d_n):
76 u = array([[1, 0, 0, 0],
77 [0, 1, 0, 0],
78 [0, 0, 1, d_n],
79 [0, 0, 0, 1]])
80

81 return u
82

83

84 def fk_wrist (q):
85 # Geometry
86 a4 = 0.20098
87 a5 = 0.345
88 d5 = 0.00837
89 d6 = 0.6928
90

91 # DH table
92 dh = array([[q[0], 0, -a4 , pi/2],
93 [q[1], -d5 , -a5 , -pi/2],
94 [0, d6 , 0, 0]])
95

96 # Transformation matrices
97 t1 = t_dh(dh[0, :])
98 t2 = t_dh(dh[1, :])
99 t3 = t_dh(dh[2, :])

100

101 t = t1 @ t2 @ t3
102

103 return t
104

105

106 def fk_boom (q):
107 # Geometry

88

108 a1 = 0.235
109 a2 = 0.355
110 d1 = 0.505
111

112 # DH table
113 dh = array([[q[0], d1 , -a1 , pi / 2],
114 [(q[1] + pi / 2), 0, a2 , pi / 2],
115 [0, q[2], 0, 0]])
116

117 # Transformation matrices
118 t1 = t_dh(dh[0, :])
119 t2 = t_dh(dh[1, :])
120 t3 = t_dh(dh[2, :])
121 t = t1 @ t2 @ t3
122

123 return t
124

125

126 def ik_wrist (qb , rx , ry):
127 t2 = tan(ry / 2)
128 t3 = t2 ** 2
129 t5 = tan(qb[0] / 2)
130 t6 = t5 ** 2
131 t7 = t3 * t6
132 t11 = tan(qb[1] / 2 + pi / 4)
133 t14 = tan(rx / 2)
134 t15 = t14 * t5
135 t16 = t11 ** 2
136 t19 = t14 ** 2
137 t20 = t19 * t6
138 t21 = t19 * t3
139 t24 = t2 * t11
140 t25 = 2 * t24
141 t28 = 4 * t15 * t11
142 t31 = t19 * t2
143 t33 = 2 * t31 * t11
144 t34 = t2 * t6
145 t36 = 2 * t34 * t11
146 t37 = t6 * t11
147 t39 = 2 * t31 * t37
148 t40 = t14 * t3
149 t41 = t5 * t11
150 t43 = 4 * t40 * t41
151 t44 = t19 * t16 + t20 * t16 + t3 * t16 + t7 * t16 + t21 * t6 + t21 - t25 + t28

- t33 + t36 + t39 - t43 + t6 + 1
152 t45 = t6 * t16
153 t48 = t21 * t16 + t21 * t45 + t16 + t19 + t20 + t25 - t28 + t3 + t33 - t36 -

t39 + t43 + t45 + t7
154 t51 = sqrt(t44 / t48)
155 t55 = t45 * t51
156 t65 = t16 * t51
157 t67 = t19 * t11 + t20 * t11 - t21 * t11 + t7 * t11 - 2 * t15 * t16 + t31 * t16

- t34 * t16 + t20 * t51 + 2 * t24 *
t51 + t31 * t6 - 2 * t40 * t5 + t7 *
t51 + 2 * t15 - t31 + t34 + t55 + t65

158 t79 = t11 * t51
159 t88 = t5 * t16
160 t92 = -2 * t31 * t37 * t51 + 4 * t40 * t41 * t51 + t3 * t11 - 4 * t15 * t79 +

t2 * t16 + t19 * t51 - t21 * t37 +
t21 * t55 + t21 * t65 + t3 * t51 -
t31 * t45 + 2 * t31 * t79 - 2 * t34 *

t79 + 2 * t40 * t88 - t11 - t2 - t37
161 t94 = t14 * t6
162 t96 = t2 * t5
163 t108 = t14 * t16 - t40 * t16 - t94 * t16 + 2 * t96 * t16 + 2 * t31 * t5 + 2 *

t31 * t88 + t40 * t45 + t40 * t6 +
t14 - t40 - t94 + 2 * t96

89

164 t111 = arctan ((t67 + t92) / t108)
165 q_4 = 2 * t111
166

167 t1 = sin(rx)
168 t2 = cos(ry)
169 t6 = qb[1] / 2 + pi / 4
170 t7 = sin(t6)
171 t8 = cos(t6)
172 t10 = sin(qb[0])
173 t13 = 2 * t1 * t2 * t7 * t8 * t10
174 t14 = cos(rx)
175 t15 = t14 * t2
176 t16 = t8 ** 2
177 t18 = 2 * t15 * t16
178 t19 = sin(ry)
179 t21 = cos(qb[0])
180 t24 = 2 * t19 * t7 * t8 * t21
181 t29 = sqrt(-(t13 + t18 - t24 - t15 + 1) / (t13 + t18 - t24 - t15 - 1))
182 t30 = arctan (t29)
183 q_5 = -2 * t30
184

185 q = [q_4 , q_5]
186

187 return q
188

189

190 def ik_boom (x, y, z):
191

192 q_1 = arctan2 (y, x)
193 q_2 = 2* arctan2 ((200*z*cos(q_1)-101*cos(q_1)+(7369*cos(q_1) ** 2-40400*z*cos(q_1

) ** 2+40000*z ** 2*cos(
194 q_1) ** 2+18800*x*cos(q_1)+40000*x ** 2) ** (1/2)), (2*(100*x+59*cos(q_1))))-pi/

2
195 q_3 = -(71*cos(q_2)-200*z+101)/(200*sin(q_2))
196

197 q = [q_1 , q_2 , q_3]
198

199 return q
200

201

202 def ik_iter (cart_ref):
203 tol = 1e-4
204 max_iter = 10
205

206 x = cart_ref [0]
207 y = cart_ref [1]
208 z = cart_ref [2]
209 nx = cart_ref [3]
210 ny = cart_ref [4]
211 nz = cart_ref [5]
212 counter = 0
213

214 ry = arcsin (nx)
215 rx = - arctan2 (ny , nz)
216

217 t = deepcopy ([x, y, z])
218 pos_err_magnitude = inf
219 q = []
220

221 while pos_err_magnitude > tol:
222

223 q = ik_boom (t[0], t[1], t[2])
224 q[3:] = ik_wrist (q[0:3], rx , ry)
225 tf = fk(q)
226

227 pos_err = array(tf[:3, 3] - [x, y, z])
228 pos_err_magnitude = sqrt(sum(square (pos_err)))

90

229 # print (" Error after ", counter , " iterations : ", pos_err_magnitude)
230 t = t - pos_err
231 counter += 1
232 if counter > max_iter :
233 raise Exception (’Failed to converge inverse kinematics after {}

attempts ’. format (max_iter))
234

235 return q
236

237

238 def lim_check (q_ref):
239 lim = array([[radians (-65), radians (65)],
240 [radians (-16), radians (57)],
241 [7.012 , 15.012],
242 [-pi , pi],
243 [radians (-118), radians (62)]])
244

245 for i in range(len(q_ref)):
246 q = q_ref[i]
247

248 if not lim[0, 0] <= q[0] <= lim[0, 1]:
249 raise Exception ("q1 out of range.")
250

251 if not lim[1, 0] <= q[1] <= lim[1, 1]:
252 raise Exception ("q2 out of range.")
253

254 if not lim[2, 0] <= q[2] <= lim[2, 1]:
255 raise Exception ("q3 out of range.")
256

257 if not lim[3, 0] <= q[3] <= lim[3, 1]:
258 raise Exception ("q4 out of range.")
259

260 if not lim[4, 0] <= q[4] <= lim[4, 1]:
261 raise Exception ("q5 out of range.")

E.2.2 pattern_generator.py

1 from math import floor , pi , sin , cos
2 from numpy import linspace
3

4

5 def correct_params (arc_length , depth , spacing_desired , vel):
6 res = 100
7

8 segments = round(arc_length / spacing_desired) # return stroke is opposite
direction if segments is even

9 spacing = arc_length / segments
10 path_length = (depth - spacing) * (segments +1) + spacing + pi * spacing /2 *

segments
11 n = round(path_length *res)
12 t_end = path_length /vel
13

14 return segments , t_end , spacing , n
15

16

17 def path(depth , spacing , vel , t_end , n, segments):
18

19 dt = t_end / n
20 t_rise = (depth - spacing) / vel
21 t_adv = (spacing * pi) / (2 * vel)
22 p_u = t_rise + t_adv
23

24 t_pad = spacing / (2 * vel)
25 n_pad = round(t_pad / dt)
26 u = n_pad * [0]
27 v = list(linspace (0, spacing /2, n_pad))
28

91

29 for i in range(n_pad , n - n_pad):
30 t = dt * i - t_pad
31 period_number_u = floor(t / p_u)
32 t_shift = t - period_number_u * p_u
33

34 if t_shift < t_rise :
35 u. append (period_number_u * spacing)
36 if period_number_u % 2 == 0:
37 v. append (vel * t_shift + spacing / 2)
38 else:
39 v. append (- vel * t_shift + depth - spacing / 2)
40

41 else:
42 p = (pi / t_adv) * (t_shift - t_rise) + 3 / 2 * pi
43 u. append (spacing / 2 * sin(p) + period_number_u * spacing + spacing /

2)
44

45 if period_number_u % 2 == 0:
46 v. append (spacing / 2 * cos(p) + depth - spacing / 2)
47 else:
48 v. append (spacing / 2 * cos(p + pi) + spacing / 2)
49

50 for i in range(n_pad):
51 u. append (u[-1])
52

53 if segments % 2 == 0:
54 a = linspace (v[-1], v[-1] + spacing /2, n_pad)
55 for i in range (n_pad):
56 v. append (a[i])
57 else:
58 a = linspace (v[-1], 0, n_pad)
59 for i in range (n_pad):
60 v. append (a[i])
61

62 return [u, v]

E.2.3 surf_trans.py

1 from math import sqrt
2 from numpy import linspace
3 from scipy import optimize
4 from scipy. linalg import norm
5

6

7 def fit(p, *n):
8 if n == ():
9 n = 1000

10 n_reparam = 1000
11 x_data = []
12 y_data = []
13 z_data = []
14 d = []
15 y_reparam = []
16 z_reparam = []
17 u_reparam = []
18 u_coeffs = []
19 u_scaled = linspace (0, 1, n_reparam)
20 ut = linspace (0, 1, n)
21 chord = []
22 du = ut[1] - ut[0]
23 parameter = []
24

25 for i in range(len(p)):
26 pt = p[i]
27 x_data . append (pt[0])
28 y_data . append (pt[1])
29 z_data . append (pt[2])

92

30

31 for i in range(1, len(p)):
32 chord. append (sqrt ((z_data [i]- z_data [i-1]) ** 2+(y_data [i]- y_data [i-1]) ** 2))
33

34 chord_arc = sum(chord)
35

36 for i in range(len(chord)):
37 parameter . append (sum(chord[:i])/ chord_arc)
38 parameter . append (1)
39

40 y_coeffs , y_cov = optimize . curve_fit (y_func , parameter , y_data)
41 z_coeffs , z_cov = optimize . curve_fit (z_func , parameter , z_data)
42

43 for i in range(n):
44 par = ut[i]
45

46 yen = y_func (par + du , * y_coeffs)
47 ye = y_func (par , * y_coeffs)
48 zen = z_func (par + du , * z_coeffs)
49 ze = z_func (par , * z_coeffs)
50

51 d. append (sqrt ((yen-ye) ** 2+(zen-ze) ** 2))
52 perimeter = sum(d)
53

54 if y_data [0] < y_data [-1]:
55 direction = 1
56 else:
57 direction = -1
58

59 for i in range(n_reparam):
60 y_reparam . append (y_func (u_scaled [i], * y_coeffs))
61 z_reparam . append (z_func (u_scaled [i], * z_coeffs))
62

63 for i in range(1, n_reparam):
64 u_reparam . append (sqrt ((z_reparam [i]- z_reparam [i-1]) ** 2+(y_reparam [i]-

y_reparam [i-1]) ** 2))
65

66 u_chord_arc = sum(u_reparam)
67

68 for i in range(len(u_reparam)):
69 u_coeffs . append (sum(u_reparam [:i]))
70 u_coeffs . append (u_chord_arc)
71

72 u_coeffs , u_cov = optimize . curve_fit (u_func , u_coeffs , u_scaled)
73

74 return perimeter , x_data [0], [y_coeffs , z_coeffs , u_coeffs , direction]
75

76

77 def y_func (x, a, b, c, d):
78 return a * x ** 3 + b * x ** 2 + c * x + d
79

80

81 def y_func_diff (x, a, b, c, d):
82 return 3 * a * x ** 2 + 2 * b * x + c
83

84

85 def z_func (x, a, b, c, d, e):
86 return a * x ** 4 + b * x ** 3 + c * x ** 2 + d * x + e
87

88

89 def z_func_diff (x, a, b, c, d, e):
90 return 4 * a * x ** 3 + 3 * b * x ** 2 + 2 * c * x + d
91

92

93 def u_func (x, a, b, c, d, e, f):
94 return a * x ** 5 + b * x ** 4 + c * x ** 3 + d * x ** 2 + e * x + f
95

93

96

97 def surf(uv_list , params , offset):
98 u = uv_list [0]
99 v = uv_list [1]

100 y_coeffs = params [0]
101 z_coeffs = params [1]
102 u_coeffs = params [2]
103 direction = params [3]
104 x = []
105 y = []
106 z = []
107 nx = []
108 ny = []
109 nz = []
110

111 for i in range(len(u)):
112 par = u_func (u[i], * u_coeffs)
113 x. append (v[i] + offset)
114 y. append (y_func (par , * y_coeffs))
115 z. append (z_func (par , * z_coeffs))
116

117 x_diff = 0
118 y_diff = y_func_diff (par , * y_coeffs)
119 z_diff = z_func_diff (par , * z_coeffs)
120

121 scale = - direction *norm([x_diff , y_diff , z_diff])
122

123 nx. append (0)
124 ny. append (z_diff /scale)
125 nz. append (- y_diff /scale)
126

127 return [x, y, z, nx , ny , nz]

E.2.4 main.py

1 import sys , can , struct , traceback
2 from time import time , sleep
3 from math import pi , radians
4 import numpy as np
5 from numpy import savetxt
6 import main_window
7 import surf_trans as pp
8 import pattern_generator as pg
9 import kin

10 from PyQt5. QtWidgets import QMessageBox , QMainWindow , QApplication ,
QListWidgetItem

11 from PyQt5. QtCore import QThread , pyqtSignal , QTimer , QAbstractEventDispatcher , Qt
12 from multiprocessing import Queue , freeze_support , cpu_count , set_start_method ,

get_context
13 from queue import Empty
14

15

16 def generate_pattern (param , point_cloud , cart_queue , dt_queue):
17

18 print (" Params ", param)
19 depth = param[0]
20 stroke_spacing_des = param[1]
21 vel = param[2]
22

23 d, offset , params = pp.fit(point_cloud) # (self. point_cloud)
24

25 segments , t_end , stroke_spacing , n = pg. correct_params (d, depth ,
stroke_spacing_des , vel)

26 uv_path = pg.path(depth , stroke_spacing , vel , t_end , n, segments)
27

28 cart_ref = pp.surf(uv_path , params , offset)
29

94

30 dt = t_end/n
31 print ("t_end: ", t_end)
32 return cart_queue .put(cart_ref), dt_queue .put(dt)
33

34

35 class Main(QMainWindow , main_window . Ui_MainWindow):
36

37 # Static values
38 vel_min = 0.05
39 vel_max = 0.7
40 stroke_spacing_min = 0.1
41 stroke_spacing_max = 1.5
42 depth_min = 2
43 depth_max = 8
44

45 def __init__ (self , parent =None):
46 super (Main , self). __init__ (parent)
47 self. setupUi (self)
48

49 # Correct this later
50 dummy_points = [[8.0, 4. 7453950103830715 , 1.0],
51 [8.3, 3. 966736204580941 , 5. 5543035725747485],
52 [7.8, 0. 9811185945264055 , 7. 326604185118965],
53 [8.0, -3. 6612492782151276 , 5. 901951891186886],
54 [8.1, -4. 7453950103830715 , 1.0]]
55 # dummy_points . reverse ()
56

57 self. knot_points = []
58 for i in range (5):
59 pos = dummy_points [i]
60 self. knot_point_list . addItem (QListWidgetItem (str("X: {:.2f} Y: {:.2f}

Z: "
61 "{:.2f}". format (pos[0],

pos
[
1
]
,

pos
[
2
]
)
)
)
)

62 self. knot_points . append (pos)
63

64

65 # Multiprocessing
66 self. cart_ref_out = Queue ()
67 self. ikin_out = Queue ()
68 self. mode_flag = Queue ()
69 self. param_queue = Queue ()
70 self. point_queue = Queue ()
71 self. dt_queue = Queue ()
72

73 # Plot
74 self. plot_widget . canvas .ax. mouse_init ()
75

76 # Methods
77 self. mythread = MultiprocessThread (self. cart_ref_out , self.ikin_out , self.

mode_flag , self. param_queue ,
78 self. point_queue , self. dt_queue)
79 self. mythread . cart_done . connect (self. done_cart)

95

80 self. mythread . ik_done . connect (self. done_ik)
81 self. mythread . progress . connect (self. update_progressbar)
82 self. mythread .start ()
83

84 # Update KPI
85 self.timer = QTimer ()
86 self.timer. timeout . connect (self. update_kpi)
87 self.timer.start(200)
88

89 # Initialise variables
90 self. slider_velocity ()
91 self. slider_stroke_spacing ()
92 self. slider_depth ()
93 self. knot_x = []
94 self. knot_y = []
95 self. knot_z = []
96 self. cart_ref = []
97 self.q_ref = []
98 self. status = "Idle"
99 self. can_status = "Not initialised "

100 self.dt = 0
101

102 # Buttons
103 self. ik_btn . clicked . connect (self. start_ik)
104 self. cart_btn . clicked . connect (self. start_pattern)
105 self. toggle_can_btn . clicked . connect (self. toggle_can)
106 self. remove_btn . clicked . connect (self. remove_knot_point)
107 self. reset_btn . clicked . connect (self. reset_all)
108 self. spray_btn . clicked . connect (self. init_spray)
109

110 # Sliders
111 self. velocitySlider . sliderMoved . connect (self. slider_velocity)
112 self. stroke_spacing_slider . sliderMoved . connect (self. slider_stroke_spacing)
113 self. depth_slider . sliderMoved . connect (self. slider_depth)
114

115 # CAN interface
116 self. connect_can ()
117

118 def closeEvent (self , event):
119 reply = QMessageBox . question (self , ’Message ’, "Are you sure to quit?",

QMessageBox .Yes | QMessageBox .No ,
120 QMessageBox .No)
121

122 if reply == QMessageBox .Yes:
123 self. can_bus . shutdown ()
124 else:
125 event. ignore ()
126

127 def toggle_can (self):
128 if self. can_status == " Connected ":
129 self. disconnect_can ()
130 else:
131 self. connect_can ()
132

133 def connect_can (self):
134 self. can_bus = CANInterface ()
135 try:
136 self. can_bus . start ()
137 self. can_bus . joy_btn . connect (self. add_knot_point)
138 self. can_indicator . setStyleSheet (’color: # eff0f1 ’)
139 self. can_status = " Connected "
140 self. can_bus . progress . connect (self. update_progressbar)
141 self. can_bus . spray_error . connect (self. spray_error)
142 self. can_bus . spray_done . connect (self. spray_done)
143 self. can_bus . can_error . connect (self. can_error)
144

145 except :

96

146 self. can_indicator . setStyleSheet (’color: # ff0000 ’)
147 self. can_status = "Error"
148 QMessageBox . information (self , " Warning ", "CAN interface cannot connect

")
149

150 def disconnect_can (self):
151 self. can_bus . shutdown ()
152 self. can_indicator . setStyleSheet (’color: # eff0f1 ’)
153 self. can_status = " Disconnected "
154

155 def plot_path (self):
156 self. plot_widget . canvas .ax.clear ()
157 self. plot_widget . canvas .ax. set_xlabel (’X [m]’)
158 self. plot_widget . canvas .ax. set_ylabel (’Y [m]’)
159 self. plot_widget . canvas .ax. set_zlabel (’Z [m]’)
160 self. plot_widget . canvas .ax. set_aspect (’equal ’)
161

162

163

164 # Aspect ratio correction
165 max_range = np.array(
166 [np.array(self. cart_ref [0]).max () - np.array(self. cart_ref [0]).min (),
167 np.array(self. cart_ref [1]).max () - np.array(self. cart_ref [1]).min (),
168 np.array(self. cart_ref [2]).max () - np.array(self. cart_ref [2]).min ()])

.max ()
169

170 xb = 0.5 * max_range * np.mgrid[-1:2:2, -1:2:2, -1:2:2][0]. flatten () + 0.5
* \

171 (np.array(self. cart_ref [0]).max () + np.array(self. cart_ref [0]).min ())
172

173 yb = 0.5 * max_range * np.mgrid[-1:2:2, -1:2:2, -1:2:2][1]. flatten () + 0.5
* \

174 (np.array(self. cart_ref [1]).max () + np.array(self. cart_ref [1]).min ())
175

176 zb = 0.5 * max_range * np.mgrid[-1:2:2, -1:2:2, -1:2:2][2]. flatten () + 0.5
* \

177 (np.array(self. cart_ref [2]).max () + np.array(self. cart_ref [2]).min ())
178

179 for a, b, c in zip(xb , yb , zb):
180 self. plot_widget . canvas .ax.plot([a], [b], [c], ’w’)
181

182 self. plot_widget . canvas .ax. plot3D (self. cart_ref [0],
183 self. cart_ref [1],
184 self. cart_ref [2], c=’yellow ’)
185 self. plot_widget . canvas .ax. scatter (self.knot_x , self.knot_y , self.knot_z ,

c=’# DD0000 ’)
186

187 self. plot_widget . canvas .draw ()
188

189 def start_pattern (self):
190 self. update_progressbar (0)
191 # Clear parameter queue
192 try:
193 while True:
194 self. param_queue . get_nowait ()
195 except Empty:
196 pass
197

198 self. param_queue .put([self.depth , self. stroke_spacing_des , self. velocity])
199

200 if len(self. knot_points) >= 5: # Adjust to maximal number of coefficients
in parametric functions

201 self. ik_btn . setEnabled (False)
202 self. cart_btn . setEnabled (False)
203 self. reset_btn . setEnabled (False)
204 self. remove_btn . setEnabled (False)
205 self. spray_btn . setEnabled (False)

97

206

207 self. status = " Parametrising surface "
208 self. status_indicator . setStyleSheet (’color: # ffff00 ’)
209

210 self.q_ref = []
211 # Clear output queue
212 try:
213 while True:
214 self. cart_ref_out . get_nowait ()
215 except Empty:
216 pass
217

218 # Clear flag queue
219 try:
220 while True:
221 self. mode_flag . get_nowait ()
222 except Empty:
223 pass
224

225 self. point_queue .put(self. knot_points)
226 self. param_queue .put([self.depth , self. stroke_spacing_des , self.

velocity])
227 self. mode_flag .put("Path Gen")
228 else:
229 QMessageBox . information (self , " Warning ", " Collect 5 or more knot

points ")
230

231 def done_cart (self):
232 try:
233 self. cart_ref = self. cart_ref_out .get(True)
234 self.dt = self. dt_queue .get(True)
235 self. ik_btn . setEnabled (True)
236 self. cart_btn . setEnabled (True)
237 self. reset_btn . setEnabled (True)
238 self. remove_btn . setEnabled (True)
239 self. spray_btn . setEnabled (True)
240 print(" Number of points : ", len(self. cart_ref [1]))
241 self. progressBar . setMaximum (len(self. cart_ref [1]))
242 print(" Cartesian reference stored in variable ")
243 self. plot_path ()
244 self. status = " Surface generated "
245 self. status_indicator . setStyleSheet (’color: # eff0f1 ’)
246

247 # savetxt (’ cart_ref .txt ’, np.array(self. cart_ref), delimiter =’ ’)
248

249 except Empty:
250 print("No Cartesian reference returned from thread !")
251

252 def start_ik (self):
253 if len(self. cart_ref) == 0:
254 QMessageBox . information (self , " Warning ", " Create spraying plan before

calculating inverse
kinematics ")

255 elif len(self.q_ref) > 0:
256 QMessageBox . information (self , " Warning ", " Inverse kinematics already

calculated ")
257 else:
258 self. ik_btn . setEnabled (False)
259 self. cart_btn . setEnabled (False)
260 self. reset_btn . setEnabled (False)
261 self. remove_btn . setEnabled (False)
262 self. spray_btn . setEnabled (False)
263

264 self. status = " Calculating inverse kinematics "
265 self. status_indicator . setStyleSheet (’color: # ffff00 ’)
266

267 # Clear output queue

98

268 try:
269 while True:
270 self. ikin_out . get_nowait ()
271 except Empty:
272 pass
273

274 # Clear flag queue
275 try:
276 while True:
277 self. mode_flag . get_nowait ()
278 except Empty:
279 pass
280

281 self. mode_flag .put(" Inverse Kinematics ")
282

283 def done_ik (self):
284 self. ik_btn . setEnabled (True)
285 self. cart_btn . setEnabled (True)
286 self. reset_btn . setEnabled (True)
287 self. remove_btn . setEnabled (True)
288 self. spray_btn . setEnabled (True)
289

290 try:
291 self.q_ref = self. ikin_out .get(True , 0.1)
292

293 # print (" Shape of ikin", np.shape(np.array(self.q_ref)))
294

295 # savetxt (’q_ref.txt ’, np.array(self.q_ref), delimiter =’ ’)
296

297 print("Joint space reference stored in variable ")
298 self. status = " Inverse kinematics calculated "
299 self. status_indicator . setStyleSheet (’color: # eff0f1 ’)
300

301 try:
302 kin. lim_check (self.q_ref)
303 except Exception as e:
304 QMessageBox . information (self , "Error", "{} Reposition vehicle !".

format (e))
305 self. reset_all ()
306

307 except Empty:
308 print("No joint space reference returned from thread !")
309

310 def slider_velocity (self):
311 self. velocity = self. vel_min + self. velocitySlider .value ()/100 * (self.

vel_max - self. vel_min)
312 self. vel_disp . setText (" Velocity : {:.2f} [m/s]". format (self. velocity))
313

314 def slider_stroke_spacing (self):
315 self. stroke_spacing_des = self. stroke_spacing_min + self.

stroke_spacing_slider .value () /
100 * \

316 (self. stroke_spacing_max - self.
stroke_spacing_min
)

317 self. stroke_spacing_label . setText (" Stroke spacing : {:.2f} [m]". format (self
. stroke_spacing_des))

318

319 def slider_depth (self):
320 self.depth = self. depth_min + self. depth_slider .value ()/100 * (self.

depth_max - self. depth_min)
321 self. depth_label . setText ("Depth: {:.2f} [m]". format (self.depth))
322

323 def add_knot_point (self):
324 self. can_bus . joy_btn . disconnect (self. add_knot_point)
325 pose = kin.fk(self. can_bus . sensor_values)
326 pos = list(pose[:3, 3])

99

327 self. knot_points . append (pos)
328

329 # Plot
330 self. plot_widget . canvas .ax. scatter (pos[0], pos[1], pos[2], c=’# DD0000 ’)
331 self. plot_widget . canvas .draw ()
332 self. plot_widget . canvas .ax. mouse_init ()
333

334 # Add to list in GUI
335 self. knot_point_list . addItem (QListWidgetItem (str("X: {:.2f} Y: {:.2f} Z: "
336 "{:.2f}". format (pos[0],

pos
[
1
]
,

pos
[
2
]
)
)
)
)

337

338 # Cool down
339 QTimer . singleShot (1000 , self. connect_knot_signal) # Increase timeout

later
340

341 def connect_knot_signal (self):
342 self. can_bus . joy_btn . connect (self. add_knot_point)
343

344 def remove_knot_point (self):
345 row = self. knot_point_list . currentRow ()
346 item = self. knot_point_list .item(row)
347

348 if item is not None:
349 self. knot_point_list . takeItem (row)
350 del self. knot_points [row]
351

352 else:
353 QMessageBox . information (self , "Info", " Select which knot point to

delete ")
354

355 def update_kpi (self):
356 pose = kin.fk(self. can_bus . sensor_values)
357 pos = list(pose[:3, 3])
358

359 # print (" Sensor values : {}". format (self. can_bus . sensor_values))
360

361 self.x_pos. setText ("{:.2f} [m]". format (pos[0]))
362 self.y_pos. setText ("{:.2f} [m]". format (pos[1]))
363 self.z_pos. setText ("{:.2f} [m]". format (pos[2]))
364

365 self. status_indicator . setText (self. status)
366 self. can_indicator . setText (self. can_status)
367

368 if self. knot_points != []:
369 self.knot_x , self.knot_y , self. knot_z = zip(*self. knot_points)
370 else:
371 self. knot_x = []
372 self. knot_y = []
373 self. knot_z = []
374

375 if len(self. cart_ref) == 0:
376 scale = 2

100

377 self. plot_widget . canvas .ax.clear ()
378 self. plot_widget . canvas .ax. set_xlabel (’X [m]’)
379 self. plot_widget . canvas .ax. set_ylabel (’Y [m]’)
380 self. plot_widget . canvas .ax. set_zlabel (’Z [m]’)
381 self. plot_widget . canvas .ax. set_aspect (’equal ’)
382 self. plot_widget . canvas .ax. scatter (self.knot_x , self.knot_y , self.

knot_z , c=’red ’)
383 self. plot_widget . canvas .ax. set_xlim3d (-5.2, 21.54)
384 self. plot_widget . canvas .ax. set_ylim3d (-13.37 , 13.37)
385 self. plot_widget . canvas .ax. set_zlim3d (-8.81 , 17.94)
386 else:
387 scale = 1
388 self. plot_path ()
389

390 self. plot_widget . canvas .ax. quiver (pose[0][3], pose[1][3], pose[2][3],
391 pose[0][2] * scale , pose[1][2] * scale ,

pose
[
2
]
[
2
]

*

scale
,

392 color=[0.3, 1, 0.2], pivot=’tip ’)
393 self. plot_widget . canvas .draw ()
394

395 def check_q (self):
396 print (" Length q:", len(self. mythread .q))
397

398 def update_progressbar (self , value):
399 self. progressBar . setValue (value)
400

401 def reset_all (self):
402 reply = QMessageBox . question (self , ’Message ’, "Do you want to reset all

parameters ?", QMessageBox .Yes
403 | QMessageBox .No , QMessageBox .No)
404 if reply == QMessageBox .Yes:
405 self. knot_points = []
406 self. knot_point_list .clear ()
407 self. cart_ref = []
408 self.q_ref = []
409 self. depth_slider . setSliderPosition (50)
410 self. stroke_spacing_slider . setSliderPosition (50)
411 self. velocitySlider . setSliderPosition (50)
412 self. slider_velocity ()
413 self. slider_stroke_spacing ()
414 self. slider_depth ()
415 self. status_indicator . setStyleSheet (’color: # eff0f1 ’)
416 self. status = "Idle"
417 self. update_progressbar (0)
418 else:
419 pass
420

421 def init_spray (self):
422 if len(self.q_ref) == 0:
423 QMessageBox . information (self , " Warning ", " Calculate inverse kinematics

before spraying ")
424 else:
425 reply = QMessageBox . question (self , ’Message ’, "Move to initial

position ?", QMessageBox .Yes
426 | QMessageBox .No , QMessageBox .No)

101

427 if reply == QMessageBox .Yes:
428 self. ik_btn . setEnabled (False)
429 self. cart_btn . setEnabled (False)
430 self. reset_btn . setEnabled (False)
431 self. toggle_can_btn . setEnabled (False)
432 self. remove_btn . setEnabled (False)
433 self. spray_btn . setEnabled (False)
434

435 self. can_bus . joy_btn . disconnect (self. add_knot_point)
436 self. spray_btn . clicked . disconnect (self. init_spray)
437 self. can_bus . counter = 0
438

439 print ("q_ref", self.q_ref[0])
440

441 self. can_bus . send_data (self.q_ref[0])
442 self. can_bus . joy_btn . connect (self. run_machine)
443 self. status = " Waiting for button press"
444 self. status_indicator . setStyleSheet (’color: # ffff00 ’)
445 else:
446 pass
447

448 def pause_spray (self):
449 self. can_bus . stop_spray ()
450 self. can_bus . joy_btn . disconnect (self. pause_spray)
451 self. can_bus . manual_mode . disconnect (self. pause_spray)
452

453 reply = QMessageBox . question (self , ’Message ’, " Resume spraying ? Remember
to enable automatic mode",
QMessageBox .Yes

454 | QMessageBox .No , QMessageBox .No)
455 if reply == QMessageBox .Yes:
456 self. can_bus . timer (self.dt)
457 self. can_bus . joy_btn . connect (self. pause_spray)
458 self. can_bus . manual_mode . connect (self. pause_spray)
459 else:
460 self. spray_btn . clicked . disconnect (self. pause_spray)
461 self. can_bus . joy_btn . connect (self. add_knot_point)
462 self. spray_btn . setText ("Spray")
463 self. spray_btn . clicked . connect (self. init_spray)
464 self. update_progressbar (0)
465 self. can_bus . counter = 0
466 self. status = " Inverse kinematics calculated "
467 self. status_indicator . setStyleSheet (’color: # eff0f1 ’)
468 self. ik_btn . setEnabled (True)
469 self. cart_btn . setEnabled (True)
470 self. reset_btn . setEnabled (True)
471 self. toggle_can_btn . setEnabled (True)
472 self. remove_btn . setEnabled (True)
473

474 def run_machine (self):
475 self. can_bus . joy_btn . disconnect (self. run_machine)
476 self. spray_btn . clicked . connect (self. pause_spray)
477 self. spray_btn . setEnabled (True)
478 self. spray_btn . setText ("Pause")
479 self. status = " Spraying "
480 self. can_bus .q_ref = self.q_ref
481 self. can_bus .timer(self.dt)
482 QTimer . singleShot (1000 , self. joy_pause)
483

484 def joy_pause (self):
485 self. can_bus . joy_btn . connect (self. pause_spray)
486 self. can_bus . manual_mode . connect (self. pause_spray)
487

488 def spray_done (self):
489 print ("Done spraying !")
490 QMessageBox . information (self , "Info", "Done spraying ")
491 self. status = "Done spraying "

102

492 self. can_bus . joy_btn . disconnect (self. pause_spray)
493 self. can_bus . joy_btn . connect (self. add_knot_point)
494 self. spray_btn . clicked . disconnect (self. pause_spray)
495 self. spray_btn . clicked . connect (self. init_spray)
496 self. spray_btn . setText ("Spray")
497 self. ik_btn . setEnabled (True)
498 self. cart_btn . setEnabled (True)
499 self. reset_btn . setEnabled (True)
500 self. toggle_can_btn . setEnabled (True)
501 self. remove_btn . setEnabled (True)
502 self. reset_all ()
503

504 def spray_error (self):
505 self. status = " Spraying aborted "
506 self. status_indicator . setStyleSheet (’color: # ff0000 ’)
507 QMessageBox . information (self , " Warning ", "Error in spraying !")
508 self. spray_btn . setText ("Spray")
509 self. can_bus . joy_btn . disconnect (self. pause_spray)
510 self. can_bus . joy_btn . connect (self. add_knot_point)
511 self. spray_btn . clicked . disconnect (self. pause_spray)
512 self. spray_btn . clicked . connect (self. init_spray)
513 self. ik_btn . setEnabled (True)
514 self. cart_btn . setEnabled (True)
515 self. reset_btn . setEnabled (True)
516 self. toggle_can_btn . setEnabled (True)
517 self. remove_btn . setEnabled (True)
518

519 def can_error (self):
520 self. can_indicator . setStyleSheet (’color: # ff0000 ’)
521 self. can_status = "Error"
522 QMessageBox . information (self , " Warning ", "Error in CAN bus")
523

524

525 class MultiprocessThread (QThread):
526

527 cart_done = pyqtSignal (bool)
528 ik_done = pyqtSignal (bool)
529 progress = pyqtSignal (int)
530

531 def __init__ (self , cart_ref_out , ikin_out , mode_flag , param_queue , point_q ,
dt_queue): # mode_flag

532 super (MultiprocessThread , self). __init__ ()
533 self.cartQ = cart_ref_out
534 self.ikinQ = ikin_out
535 self.flag = mode_flag
536 self.param = param_queue
537 self.flag.put("Idle Mode")
538 self. cart_ref = []
539 self.q_ref = []
540 self.n = cpu_count ()
541 self. point_cloud_q = point_q
542 self. dt_queue = dt_queue
543 freeze_support ()
544 print (" Multiprocess object initialised ")
545

546 def run(self):
547 while True:
548 flag = self.flag.get(block=True)
549 print(" Multiprocessing mode: {}". format (str(flag)))
550 if flag == "Path Gen":
551 try:
552 param = self.param.get(block=True)
553 except Empty:
554 print(" Parameter q empty")
555 break
556 point_cloud = self. point_cloud_q .get(block=True)
557

103

558 self. pattern_process = get_context ("spawn"). Process (target =
generate_pattern , args=(
param , point_cloud , self.
cartQ , self.dt_queue ,))

559 self. pattern_process .start ()
560 try:
561 self. cart_ref = self.cartQ.get(block=True)
562 except Empty:
563 print("CartQ is Empty!")
564 break
565

566 self.cartQ.put(self. cart_ref)
567 self.flag.put("Idle Mode")
568 self. pattern_process .join ()
569 self. cart_done .emit(True)
570

571 if flag == " Inverse Kinematics ":
572 if len(self. cart_ref) is 0:
573 print(" Provide Cartesian Path")
574 pass
575 else:
576 prog = 0
577 with get_context ("spawn").Pool(processes =self.n) as self.pool:

must be guarded
with self

578 obj = zip(*self. cart_ref)
579 self. cart_ref .clear ()
580 res = self.pool.imap(kin.ik_iter , obj)
581 for i in res:
582 self.q_ref. append (i)
583 prog += 1
584 self. progress .emit(prog)
585

586 self.ikinQ.put(self.q_ref)
587 sleep (.1) # need sleep , or queue not ready
588

589 self.q_ref.clear ()
590 self.flag.put("Idle Mode")
591 self.pool.close ()
592 self.pool.join ()
593 self. ik_done .emit(True)
594 self. progress .emit(0)
595

596 if flag == "stop":
597 break
598

599

600 class CANInterface (QThread):
601 id_long = 0x183
602 id_short = 0x283
603 id_button = 0x383
604 id_pc = 0x2
605

606 # Offsets and multipliers
607 offsets = [-32768 , -14364 , 57442 , -32678 , -42962]
608 multipliers = [3. 46210941710301e -05 , 1. 94410759575784e -05 , 0.

000122070312500000 , 9. 58737992428526e
-05 ,

609 4. 79368996214263e -05]
610

611 joy_btn = pyqtSignal (bool)
612 progress = pyqtSignal (int)
613 spray_error = pyqtSignal (bool)
614 spray_done = pyqtSignal (bool)
615 can_error = pyqtSignal (bool)
616 manual_mode = pyqtSignal (bool)
617

104

618 def __init__ (self):
619 QThread . __init__ (self)
620 self.bus = can.Bus(bustype =’kvaser ’, channel =0, bitrate = 1000000)
621 print ("CAN interface created ")
622

623 self.id_f1 = self.id_pc + 0x180
624 self.id_f2 = self.id_pc + 0x280
625

626 self. sensor_values = [0, 0, 0, 0, 0]
627

628 self.Btn = False
629 self. controller_off = False
630

631 self. update_sensors = False
632 self.q_ref = []
633

634 self. counter = 0
635 self. dt_timer = QTimer (singleShot =False , timerType =Qt. PreciseTimer)
636

637 def __del__ (self):
638 self.wait ()
639

640 def run(self):
641 self. update_sensors = True
642 self.start ()
643 try:
644 while self. update_sensors :
645 msg = self.bus.recv(0.1)
646 # for msg in self.bus:
647 if msg. arbitration_id == self. id_short :
648 frame_2 = struct . unpack (’!H’, msg.data)
649 self. sensor_values [4] = self. multipliers [4] * (frame_2 [0] +

self. offsets [4])
650

651 if msg. arbitration_id == self. id_long :
652 frame_1 = struct . unpack (’!HHHH ’, msg.data)
653 self. sensor_values [0] = self. multipliers [0] * (frame_1 [0] +

self. offsets [0])
654 self. sensor_values [1] = self. multipliers [1] * (frame_1 [1] +

self. offsets [1])
655 self. sensor_values [2] = self. multipliers [2] * (frame_1 [2] +

self. offsets [2])
656 self. sensor_values [3] = self. multipliers [3] * (frame_1 [3] +

self. offsets [3])
657

658 if msg. arbitration_id == self. id_button :
659 frame_3 = struct . unpack (’!B’, msg.data)
660

661 if frame_3 [0] == 1:
662 self. joy_btn .emit(True)
663 elif frame_3 [0] == 2:
664 self. manual_mode .emit(True)
665 elif frame_3 [0] == 3:
666 self. joy_btn .emit(True)
667 self. manual_mode .emit(True)
668

669 except Exception :
670 print(" Exception in CAN receive ")
671 self. can_error .emit(True)
672

673 def shutdown (self):
674 self. update_sensors = False
675 QTimer . singleShot (1000 , self.bus. shutdown)
676 print ("CAN interface disconnected ")
677

678 def timer(self , dt):
679 self. dt_timer . timeout . connect (self. msg_send)

105

680 self. dt_timer .start(dt*700)
681

682 def send_data (self , data):
683

684 data_int = []
685 for i in range (len(data)):
686 num = int(round(data[i] / self. multipliers [i] - self. offsets [i]))
687

688 if num < 0 or num > 2 ** 16:
689 raise Exception ("Data conversion out of range")
690 data_int . append (num)
691

692 data_long = struct .pack(’!HHHH ’, * data_int [0:4])
693 data_short = struct .pack(’!H’, data_int [4])
694

695 msg_long = can. Message (data=data_long , arbitration_id =self.id_f1 ,
is_extended_id =False)

696 msg_short = can. Message (data=data_short , arbitration_id =self.id_f2 ,
is_extended_id =False)

697

698 try:
699 self.bus.send(msg_long , timeout =0.1)
700 self.bus.send(msg_short , timeout =0.1)
701 # print (" Message sent {}". format (msg_long))
702 except can. CanError :
703 self. dt_timer . timeout . disconnect (self. msg_send)
704 print("x0 message NOT sent at: ", self. counter)
705 self. spray_error .emit(True)
706

707 def msg_send (self):
708 if self. counter >= len(self.q_ref):
709 self. progress .emit(0)
710 self. dt_timer . timeout . disconnect (self. msg_send)
711 self. spray_done .emit(True)
712 else:
713 self. send_data (self.q_ref[self. counter])
714 self. progress .emit(self. counter)
715 self. counter += 1
716

717 def stop_spray (self):
718 self. dt_timer . timeout . disconnect (self. msg_send)
719

720 def main ():
721 app = QApplication (sys.argv)
722 set_start_method (’spawn ’)
723 form = Main ()
724 # form. showFullScreen ()
725 form.show ()
726 sys.exit(app.exec_ ())
727

728

729 if __name__ == ’__main__ ’:
730 main ()

106

	Acknowledgements
	Abstract
	Nomenclature
	Introduction
	A Brief History of Shotcrete
	Motivation
	Project Background
	Project Scope and Objectives
	Limitations
	State-of-the-art
	Document Structure
	Source Code Repository

	Kinematics
	Forward Kinematics
	Denavit- Hartenberg Parameters
	Reachable Workspace
	Nozzle and Eccentric
	Nonlinear Actuation of Joint 2

	Inverse Kinematics
	Solution for Boom
	Solution for Wrist

	The Jacobian Matrix
	Singular Configurations
	Alternative Approach for Inverse Kinematics

	Trajectory Planning
	Surface Mapping
	Tunnel Geometry
	Normal Vector

	Curve Fitting
	Planar Trajectory
	Spraying Trajectory

	System Modelling
	HIL Model
	Deadband
	Dynamic Model
	Measurements
	Grey-Box Model
	Verification of State-Space Model
	Black-Box Model
	Manual Calculations

	Interface and Control
	Danfoss Plus+1
	CAN bus
	CANopen

	Setup
	Communication
	Control
	Deadband Compensation
	Transfer Function
	Controller

	PC Program
	HMI
	HMI and Safety Features

	Results
	Kinematics
	Precision of Inverse Kinematics
	Computing Time for Inverse Kinematics

	Trajectory Planning
	Corrected Stroke Spacing
	Acceleration
	Shotcrete Distribution

	System Modelling
	Grey-box
	Black-box
	Manual Calculations

	Interface and Control

	Discussion and Further Work
	Kinematics
	Trajectory Planning
	System Modelling
	Interface and Control

	Conclusion
	Bibliography
	List of Figures
	List of Tables
	Appendices
	Transformation Matrices
	Dimensions
	Tunnel Geometry
	Parametric Functions

	Block Diagrams
	Simulink Blocks Speedgoat
	Simulink Blocks Router PC
	Danfoss Plus+1

	Source Code
	MATLAB
	InverseKinematicsWrist.m
	Jacobian.m
	VibrationAnalysis.m
	ImpulseResponse.m

	Python
	kin.py
	pattern_generator.py
	surf_trans.py
	main.py

