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Abstract

In this thesis, two power curve models have been proposed that are based on ε-SVR, for

creating a baseline for realistic power performance evaluation for the R9000 Britwind

wind turbine.

Both models performed well in modelling a power curve for the Britwind R9000 wind

turbine. In Appendix. D is given a tabular power curve which can be used to recreate

the predictive ability of model 1.
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Chapter 1

Introduction

Wind power has been a source of great utility for many hundred years spanning its

rudimentary purpose of grinding grain in wind mills to the modern application of gen-

erating electricity in wind turbines. Even before that, wind has been used as a means

of propulsion for sailboats traversing the seas. The extensive geographical distribution

and availability of wind has in part enabled its wide adoption as a sustainable source

of renewable energy for countries across the world. As such, wind utilisation is slowly

accruing the proportion with which all energy is generated [6]. The wind power segment

has grown additionally due to concerns about the adverse effects of large-scale fossil fuel

consumption throughout the energy sector, in transportation, in construction industry

and in society at large.

Wind is intrinsically variable, hence the speed with which the wind blows fluctuate with

time. Considering wind energy is proportional to the wind speed cubed, it logically

follows that wind energy undergo similar fluctuations. Accordingly, a wind turbine that

transform kinetic energy into electric energy has a variable power output across different

wind speeds, governed by the air flow and the turbine itself. This is specified by the

theoretical power curve of wind turbines. In view of increased penetration levels of wind

power in certain countries, the stability and operability of their electrical power systems,

like the electricity grid, can be negatively affected by temporal power fluctuations. At

any time in the electricity grid, there needs to be balance between consumption and

generation of electricity in order to avoid disturbing supply and power quality. This

highlights a demand for accurate and reliable wind power prediction (WPP) methods to

minimise grid effects from elevated wind power integration.

The goal of WPP is to create models capable of approximating the real-life physical con-

ditions that wind turbine(s) endure, with minimal empirical error between forecasted
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CHAPTER 1. INTRODUCTION

and observed values. Since wind is a highly complex weather phenomenon, it makes it

very hard to model precisely and accurately. Requirements for performing WPP consist

of forecasting future weather variables for a location and comparing this with the power

curve of the wind turbine. While weather variables are determined by numerical weather

prediction (NWP) models such as those meteorological institutes use, the power curve is

supplied by the turbine manufacturer. This curve is based on such general assumptions

as incoming winds being directed straight at the rotor surface, a low turbulence intensity

of wind, standard values of air pressure, air temperature and air density [7].

In practical usage where each turbine location has its own unique topography and the

aforementioned properties are dynamic variables, power curves that are empirically de-

rived can provide better representational ability. In fact, a study in Ireland showed that

an empirically derived power curve improved its forecast root-mean-square error (RMSE)

by 20 % when compared to the manufacturer’s power curve [8]. Power curves can be

evaluated by comparing past readings of turbine power output and weather parameters,

and relate this to their respective forecasted values. To this end, there exists many sta-

tistical models in use. In recent decades, black box models based on artificial intelligence

and machine learning such as support-vector machines (SVM), have gained traction and

are able to perform well in WPP and power curve modelling [9][10][11][12][13][14]. In this

thesis, two SVM regression models, or simply support-vector regression (SVR) models,

will be used to establish more accurate power curve representations for a wind turbine

located in Western Norway.

1.1 Problem Statement

The aim of this thesis is to create intelligent performance curves in terms of power curve

models for a wind turbine. The proposed power curve models will use SVR algorithms

to establish accurate regression models in MATLAB that are superior to its theoretical

power curve counterpart:

• In model 1, wind speed will be used as input to the SVR model with wind turbine

power as its output

• In model 2, both wind speed and wind direction will be used as inputs, with wind

turbine power as the ouput

Training of the power curve models will be independently evaluated by new, unseen data

to verify the modelling performance. The turbine in question, the Britwind R9000, is a

small, 5-kW horizontal axis wind turbine belonging to The National wind energy centre

2



CHAPTER 1. INTRODUCTION

Smøla (NVES). The wind energy centre has contributed with wind data in terms of

actual wind speeds, wind directions and power outputs for their Britwind turbine over

a 4-month period covering December 2018 until March 2019 plus some days in April.

This project is a result of collaboration between UiA and NVES, where the intention is to

create a solid baseline for realistic power performance evaluation of the Britwind R9000

turbine. The turbine is located on the island of Smøla, Møre and Romsdal County, in

the northernmost part of Western Norway.

1.2 Thesis Structure

The thesis is organised into chapters in the following manner:

Chapter 2 gives an account of the necessary theoretical framework for the thesis.

Chapter 3 reviews research literature performed in the field of wind turbine power

curve modelling and WPP.

Chapter 4 elucidate on the wind turbine under study, as well as the data material for

making the power curves.

Chapter 5 details the methodology that has been used and the software that has been

applied.

Chapter 6 contains the results and discussion of the power curve modelling.

Chapter 7 concludes what the findings of the thesis are.

Chapter 8 provides suggestions for further work and necessary improvements if such

work is to be conducted.

3
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Chapter 2

Theoretical Framework

2.1 Wind Energy Fundamentals

The kinetic energy per unit time, or power, of moving air that can be harnessed by a

wind turbine depends upon the air density, the area swept by the rotor blades and the

wind speed [15]. Wind power reaching a wind turbine is thus given by

P =
1

2
ρaAtU

3 (2.1)

where ρa is the air density [kg/m3], At is the rotor swept area [m2], U is the wind speed

[m/s]. Not all of this power is exploitable by means of translating kinetic energy into

mechanical energy with the turbine rotor, and subsequently into electrical energy in

the generator. Some air will inevitably escape past the rotor and the rotor’s ability to

capture the wind energy is largely constrained by its aerodynamic profile. The ratio

of power that the rotor is able to successfully convert compared to the available wind

power, is determined by the power coefficient, Cp. Air density and rotor swept area are

linearly proportional to wind power, while wind speed is proportional by its cube. This

means that doubling the wind speed will result in an eight-fold increase in wind power.

2.1.1 Air Density

The air density varies according to temperature, elevation, atmospheric pressure and air

composition [15]. Temperature and pressure decrease by going up in elevation, and in

humid air the air density is lowered due to water molecules having a lower molecular

weight than dry air molecules [16]. With higher elevation, a decrease in pressure and

temperature will result in lower and higher air density respectively, and vice versa for

lower elevation, according to the ideal gas law. Since highest possible air density results

5



CHAPTER 2. THEORETICAL FRAMEWORK

in higher available wind power, wind power is further increased by low temperature,

high pressure and an air composition of dry air.

2.1.2 Wind Speed and Direction

The general characteristics of wind speed and wind direction is explained in great detail

in Manwell et. al. [17]. Winds on a global scale are caused by pressure differences across

the earth’s surface, which in turn ascribes to uneven surface heating by solar radiation.

A variety of factors affect the winds in the atmosphere, and a simplified model for the

mechanics of wind motion in the atmosphere considers the following atmospheric forces:

• Pressure forces

• The Coriolis force caused by earth’s rotation

• Inertial forces due to circular motion on a large scale

• Frictional forces across the earth’s surface

Wind speed varies with time and location. Depending on the time interval considered,

wind speed can vary significantly on a seasonal basis and it can vary greatly on a daily

basis. For instance, wind speed is generally highest during the day, lower during hours

of the night, and the daily variation tends to be more pronounced during spring and

summer. Location has an effect on wind speed as well due to local topography and

ground cover conditions. Wind direction varies over the same time scales that wind speed

varies. During turbulent winds, with a period of seconds to 10 minutes, the fluctuation

of wind speed and direction inflicts loading on the wind turbine structures. Thus, siting

and wind turbine design are important considerations given such wind variations [17].

2.2 Wind Turbine Performance

The performance of a wind turbine system is specified by its power curve, which is cus-

tomary for the turbine manufacturer to provide. The curve tracks the power a wind

turbine generates across the range of wind speeds in which the turbine is expected to

operate. The manufacturer’s power curve is a general performance curve based on as-

sumptions that is rarely replicated under real conditions [8].

The theoretical power curve of a pitch-controlled wind turbine is illustrated in Fig. 2.1

and comprises two active regions of performance. During Region 1, the wind turbine

starts generating power once the wind speed has exceeded the cut-in speed (UI). The

turbine generates power exponentially with optimal efficiency as wind speeds increase

6



CHAPTER 2. THEORETICAL FRAMEWORK

to the rated speed (UR), matching the rated power (PR) where Region 1 ends. During

Region 2, the power of a pitch-controlled wind turbine is maintained at the rated power

between the rated speed and the cut-out speed (UO), beyond which the turbine stops

due to excessive wind loads. In the reverse case that wind speeds falls below the cut-out

speed again, the wind turbine generates power as previously described, until the wind

drops below the cut-in speed. Here, the turbine has insufficient access to wind power to

rotate its turbine blades.

Figure 2.1: Theoretical power curve of a pitch-controlled wind turbine [1].

There are several control methods used in wind turbines to regulate their power genera-

tion. Pitch control and yaw control are two such control mechanisms [15]. Pitch control

involves controlling the pitch, or angle, of the turbine blades along their longitudinal

axis. The blade pitch is adjusted to its optimal angle of attack during region 1, and

adjusted for shedding power to maintain the rated output during region 2, resulting in

power regulation akin to that in Fig. 2.1. Yaw control is a control mechanism to ensure

that the turbine nacelle is always faced directly towards incoming winds, either by active

or passive methods, for horizontal axis wind turbines.

2.3 Machine Learning

Wind turbine power curve modelling can be performed with high levels of precision by

incorporating machine learning (ML). Machine learning tries to answer how to build

computer systems that improve automatically through experience, and as a technical

7
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field borders computer science with statistics, while being central to both artificial intel-

ligence (AI) and data science [18]. Moreover, machine learning offers a range of methods

to detect data patterns and inference automatically so that the patterns can be used to

predict future data [19]. The ML algorithm can be used to transform a set of inputs to

outputs to facilitate learning and adaptability without explicit programming instruction

to do so [20]. In a ML algorithm, a subset of the available data material, called training

data, is incorporated in mathematical models and is later tested with the remainder of

the data, the test data, to test its learning ability. Mitchell defines learning as:

’A computer program is said to learn from experience E with respect to some class

of tasks T and performance measure P, if its performance at tasks in T, as measured by

P, improves with experience E.’ [21].

This is a broad definition that applies to many computer programs. The ability of the

learned model to correctly categorise untested data is formally known as generalisation

[22]. As such, the degree to which the learned model fails to categorise the untested data

is referred to as generalisation error or empirical error. The generalisation error is used

to evaluate the model performance.

Three types of learning paradigms can be said to exist within ML, namely: supervised

learning, unsupervised learning and reinforcement learning [18]. For wind turbine power

curve modelling, supervised learning is the appropriate paradigm due to the fundamental

regression approach that underlies this application. Supervised learning entail problems

where the aim is to learn the mapping that exists between an input, x, and a desired

output, y. For regression problems in supervised learning, eqs. 2.2 - 2.4 explain the

dimensions of the ML algorithm [20]. If a data set X contains known values of input,

xt, and output, yt, for N such examples, we have

X = {xt, yt}Nn=1 (2.2)

where t indexes the type of example. In regression, the goal is to approximate the output

yt by a learning model, f(xt|θ)1, where θ2 are the parameters of that model. These pa-

rameters are unique to the function that maps the input data. The generalisation error,

E, that indicates the difference between desired output, yt, and model approximation,

f(x|θ), can be computed by a loss function, L(·), and summing it over all instances:

E(θ|X) =
∑
n

L(yt, f(xt|θ) (2.3)

1Also known as hypothesis class, H
2Also known as an hypothesis, h ∈ H

8



CHAPTER 2. THEORETICAL FRAMEWORK

There are many such loss functions being used, which will be detailed more in chapter

2.9. In order to minimise the total error between desired and approximated output, one

has to perform optimisation to attain θ∗ given by

θ∗ = arg minθ E(θ|X) (2.4)

where arg min is the argument that ensures minimisation. The prerequisites for a well

functioning model approximation is having a hypothesis class, f(·), with sufficient ca-

pacity to represent yt, enough training data to achieve the best hypothesis, θ, within

the hypothesis class, and an optimisation method to obtain θ∗ that ensures the best

hypothesis of the training data [20]. If the hypothesis class is less complex than the

function of the underlying data this is called underfitting, or if the hypothesis class is

too complex in comparison to the function this is called overfitting.

2.4 SVM Regression

The application of SVM as ML tools for regression and classification, was first proposed

in 1992 by Vladimir Vapnik and his colleagues [23]. It has since become a powerful

tool in regression analysis where SVR have been applied in wind power forecasting and

modelling by several researchers (insert citations). The objective of SVR is to map

input data x into a high-dimensional feature space using a non-linear mapping with

kernel functions to perform linear regression in the feature space [24], see Fig. 2.2.

Accordingly, one can attain a function f(x) that closely matches the training data output

yi by no less than ε deviation, while the function stays as flat as possible [25]. This is the

goal of epsilon-insensitive SVR (ε-SVR). SVR is a non-parametric regression technique

in that it incorporates kernel functions [23].

9
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Figure 2.2: Transforming non-linear data into a high-dimensional feature space to per-

form linear regression with ε-SVR [2]. The area within the dotted lines amount to the

ε-insensitive area.

2.4.1 SVR Model Types

ε-SVR

The principle type of SVM employed for regression analysis is ε-SVR, as illustrated in

Fig. 2.3(a). It is a statistical learning approach formulated as a quadratic programming

problem with linear inequality constraints and non-negative errors in the cost function

[13]. Furthermore, it has excellent generalisation ability and provides a sparse solution

for regression models. As seen in Fig. 2.3, the ε-SVR model comprises a group of input

nodes xi in an input layer, interconnections to a hidden layer of kernel inner products

k(xi, x), emanating support vectors (αi − α∗i ) that are summed in an output node, an

additive bias term b, and a linear output ŷ (f(x)). The linear combination between these

intermediate nodes and the output is akin to the structure of neural networks. The

non-linear kernel used to achieve the non-linear mapping into the feature space, incor-

porates a high-dimensional matrix that renders optimisation of ε-SVR computationally

complex, especially for large-scale problems [13].

Least-Squares-SVR

Least-squares-SVR (LS-SVR) is a simplified least-squares version of ε-SVR, first pro-
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posed by Suykens and Vandewalle in 1999 [26]. Its solution is characterised by solving a

set of linear equations with equality constraints, as opposed to quadratic programming.

LS-SVR uses support values that are proportional to the errors (αi in Fig. 2.3(b)),

while support values in ε-SVR are either zero or support vectors with non-zero value

[26]. The least-squares version of SVR has low computational complexity and improved

rate of convergence. However, the LS-SVR model will not perform well unless the kernel

function and parameters are selected with enormous care [14].

Figure 2.3: The structure of ε-SVR in (a) and LS-SVR in (b) [3].

2.4.2 SVR Terms

Training set

A set of examples used for fitting the parameters of the regression model [27]. This set

is used in learning a function estimate for transforming input data into target output

data.

Validation set

A set of examples used for unbiased evaluation of the training set model fit while model

parameters are tuned [27]. Bias is gradually introduced as the validation set skill is

improved by configuring the model. The validation set can be a separate data set or

part of k-fold cross-validation, in which case it is referred to as a cross-validation set.

Test set

A set of examples used to provide a bias-free performance evaluation of the final model

fit on the training set [27]. It serves as the actual performance of the learned model

when faced with new, unseen data and can be compared with competing models.

11
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k-fold cross-validation

Cross validation is a well functioning technique for evaluating trained models on unseen

data. It is associated with generating a less optimistic estimate of the performance of

a model than alternative methods. The procedure of k-fold cross-validation, where the

data sample is split into k groups, is described by [28] in the following:

1. Randomise the data set and split it into k subsets, called folds

2. For each unique fold:

(a) Take 1 fold as a validation set, the remaining k-1 folds as a training set

(b) Fit a model on the training set and evaluate with the validation set

(c) Keep the evaluation score and discard the model

3. Average all evaluation scores to estimate the accuracy of the model based on k

cross-validation attempts

ε-insensitive area

The area in which data points deviate by no more than ε about the separating line cor-

responding to the relationship between independent and dependent variables of a model,

as illustrated by Fig. 2.2.

Support vector

In ε-SVR, a support vector is associated with data points with an approximation error

that is equal to or larger than ε [12]. Conversely, all data points are support vectors in

LS-SVR [11].

Cost function

A function that penalises estimation error.

Gram matrix

A n × n matrix containing elements k(xi, xj), each of which is equal to the inner product

of the inputs that is transformed by the mapping function Φ [29].

2.4.3 ε-SVR Formulation

By looking at Fig. 2.2, the non-linear relationship between a known training input x

and a known training output y can be facilitated by a mapping function Φ. If given a

training set X = {(xn,yn), n=1, ..., N}, where xn is either a single or multivariate set

12
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of independent variables and yn is the dependent variable, the goal of ε-SVR is to find

a function estimation f(x) similar to y that is of the form [30]:

f(x) = ωTΦ(x) + b (2.5)

where ω is the weight vector, T stands for the transpose, b is a bias parameter. In

order to find the flattest f(x) possible, a convex optimisation problem must be found

in minimising Eq. 2.6. This equation introduces slack variables, ξn and ξ∗n, which deals

with infeasible constraints that arise from keeping all residuals below ε deviation, which

may not be possible if the data are not linearly separable [29]. This is analogous to the

concept of the ”soft-margin” in SVM classification. Eqs. 2.6 to 2.14 are rendered from

[29] [25]. The following objective function, or primal formula, which is needed to train

the ε-SVR model, minimises the convex optimisation problem:

J(ω) =
1

2
ωTω + C

N∑
n=1

(ξn + ξ∗n) (2.6)

subject to

∀n : yn − ωΦ(xn)− b ≤ ε+ ξn

∀n : ωΦ(xn) + b− yn ≤ ε+ ξ∗n

∀n : ξ∗n ≥ 0

∀n : ξn ≥ 0

(2.7)

where C is the box constraint, a regularisation parameter that penalises observations

outside the epsilon margin (ε). The ε-insensitive loss function, Lε, treats error values

that do not exceed ε as equal to zero, and error values beyond this as follows:

Lε =

{
0 if |y − f(x)|≤ ε
|y − f(x)|−ε otherwise

(2.8)

The primal formula is more easily solved in its Lagrange dual formulation. There exists

a saddle point at the solution to the primal and dual variables of this function. Problems

of convex constrained optimisation has a global minimum and SVM are therefore not

affected by local minima problems as are Neural Networks [25]. The dual formula has

nonnegative multipliers, αn and α∗n, for each xn and a kernel function, k(xi, xj), to

generate the Gram matrix, and is solved by minimising:

L(α) =
1

2

N∑
i=1

N∑
j=1

(αi − α∗i )(αj − α∗j )k(xi, xj)− ε
N∑
i=1

(αi − α∗i ) +

N∑
i=1

yi(αi − α∗i ) (2.9)
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subject to

N∑
i=1

(αi − α∗i ) = 0

∀n : 0 ≥ an ≤ C
∀n : 0 ≥ a∗n ≤ C

(2.10)

where k(xi, xj) = {Φ(xi),Φ(xj)}. The function for predicting new values of the output,

which only includes support vectors, is given by:

f(x) =
N∑
n=1

(αn − α∗n)k(xn, x) + b (2.11)

Following the Karush-Kuhn-Tucker (KKT) complementarity conditions, the dual for-

mula must follow further constraints to obtain the optimal solution [12]. For some data

points the coefficients (αi−α∗i ) assume non-zero values in which those with approxima-

tion errors larger or equal to ε are called support vectors. A high value of ε leads to

fewer support vectors and a sparser solution since the loss function ignores training data

near the model prediction. For ε-SVR, the KKT conditions are:

∀n : αn(ε+ ξn − yn + f(xn)) = 0

∀n : α∗n(ε+ ξ∗n + yn − f(xn)) = 0

∀n : ξn(C − αn) = 0

∀n : ξ∗n(C − α∗n) = 0

(2.12)

In the solver algorithm of ε-SVR, the gradient vector ∇L is used and is updated for the

active set after each iteration [29].

(∇L)n =

{ ∑N
i=1(αi − α∗i )k(xi, xn) + ε− yn, n ≤ N

−
∑N

i=1(αi − α∗i )k(xi, xn) + ε+ yn, n > N
(2.13)

A measure of whether the optimal converged solution has been reached can be offered

by the feasibility gap convergence criteria:

∆ =
J(ω) + L(α)

J(ω) + 1
(2.14)

where J(ω) is the primal objective, L(α) is the dual objective. After each iteration,

the feasibility gap is evaluated and if the gap is below a given tolerance value, then the

algorithm has made the convergence criterion and returns a solution [29].
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2.5 Kernel Functions

The kernel function is responsible for transforming input data into a higher dimension

where there exists a dividing margin between the data, through a technique known as

the kernel trick [13]. Each element of k(xi, xj) within the Gram-matrix corresponds to

the inner product of the inputs that are transformed by Φ. In the higher dimension,

or feature space, the SVR algorithm is applied where the solution is more easily found.

Kernel functions are what enables SVM to perform well in regression analysis, and some

notable functions include [25]:

(1) The linear kernel:

k(xi, xj) = x′i · xj (2.15)

(2) The gaussian kernel:

k(xi, xj) = exp

(
−||xi − xj ||

σ2

)
(2.16)

where σ is the width of the kernel.

(3) The polynomial kernel:

k(xi, xj) = (1 + x′i · xj)d (2.17)

where d is the degree of the polynomial.

2.6 Solver Algorithms

To solve the quadratic optimisation problem which consists of minimising the objective

function in chapter 2.5.3, it is recommended to use a decomposition method to avoid

running out of memory and securing a faster computation [29]. In short, decomposition

methods involves separating all data observations into a disjoint working set and a

disjoint remaining set where only elements of the working set is modified in each iteration.

Sequential minimal optimisation (SMO) is a well-established solver algorithm for SVM

problems that uses a decomposition method. SMO modifies a working set that consists

of only two elements in each iteration and solves the Lagrange multipliers for this two-

variate problem without the need for optimisation software [31]. The process of SMO

will not be detailed here, for more on the topic see [31] and [32].

2.7 ε-SVR Modelling Steps

The overall structure of machine learning modelling with ε-SVR can be presented in

seven steps, as suggested in [33]:
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2.7.1 Gathering data

The first step is to gather the necessary data to base the ε-SVR model on. To make a

model with good predictive ability it is important to have a sufficiently large data set

of good quality. The independent variables (inputs) that have the largest influence on

estimating the dependent variable (output) should be included in the model. A priori

knowledge is therefore needed for the input selection, yet another option is to employ

selection techniques to determine the effect of each independent variable.

2.7.2 Data Preparation

With data acquisition off the way, the data can be prepared for model implementation.

If the given data set contains erroneous data points or undesirable data noise that poorly

reflect normal conditions, these points can be removed from the set. The set is trans-

ferred into a computing environment where the machine learning training is performed.

The order of the data can then be randomised to avoid biased learning [33]. It is advis-

able to preprocess data samples with a multivariate input due to the invariant scaling of

variables this permits. Preprocessing via normalisation and standardisation are common

methods to produce a scaled data set.

The model data set is generally divided into a disjoint training set, validation set and

testing set. The training set is used for fitting the parameters of the regression model

and training the model so that it learns from the data. The validation set is for unbiased

evaluation of how well the training data fits the model during hyperparameter tuning.

Lastly, the test set provides unbiased evaluation of the final model fit on data the model

has never before been trained on. The distinction between the training and validation

sets is erased if k-fold cross-validation is in place [27]. This is because the the cross-

validation and training set is divided within k folds or subsets that are interchangeably

trained and evaluated within the same set.

2.7.3 Choosing a model

Models based on SVMs for regression have demonstrated better performance compared

to many routine methods [10]. The selection of SVM model has an obvious effect on gen-

eralisation ability, as model structures and solver algorithms differ. ε-SVR is a proven

regression technique for non-linear problems that can be set up in a computing environ-

ment according to its mathematical formulation to build a model.
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2.7.4 Training

The principle part of machine learning is conducted in the training stage. In this stage

the training data containing known input and output values is implemented, with the

intention of learning the non-linear mapping function, the weight vector, and the bias

term, of eq. 2.5. The model is built on the training data set and is initialised with a

kernel function and parameters such as the box constraint C, ε deviation, and kernel

parameters such as σ and d. A solver algorithm is used to solve the quadratic program-

ming problem of minimising the primal and dual formulations of the objective function

from the training set. Once the training has produced a solution, the model prediction

output can be compared with the actual output. Model parameters and kernel function

can then be adjusted and iteratively compared for performance, each cycle of which is

called a training step [33].

2.7.5 Evaluation

After training, the model must be evaluated to assess performance on data not previously

used for training. The validation set uses unseen, unbiased data to evaluate the model

fit on the training data. One or more performance metrics should be implemented to

quantify the prediction accuracy of the trained model while fitted with the validation set.

The metrics are evaluated by each training step until the learned model realise optimal

settings. For well-performing machine learning models using k-fold cross-validation, the

k value is typically fixed to 5 or 10, due to empirical studies demonstrating acceptable

bias and variance [28]. Fig. 2.4 shows how the training and validation sets are merged

together, e.g. during cross-validation.

Figure 2.4: An illustration of how a machine learning data set is typically split [4].

2.7.6 Hyperparameter tuning

Having performed training and evaluation on the validation set, the model parameters

and kernel function can be changed and tuned to attain better generalisation, before
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another training step is initiated. These parameters, referred to as hyperparameters

[33], are repeatedly tuned until the conditions for the global optimum is reached. This

corresponds to training data model fit with the most accurate model estimate. The

procedure for finding the best hyperparameters is a challenging process where one al-

ternative is to perform an exhaustive grid search of the effects the parameters have on

performance. Another option is to employ an optimisation algorithm that finds the

optimal hyperparameter configuration.

2.7.7 Prediction

The final step of ε-SVR modelling is predicting the generalisation ability of the fully-

specified and optimised model. The learned model fit on the training set is evaluated

by the test set because it is unbiased, independent of the other two sets, and provides

insight into the actual performance of the completed model. This test set must not be

subjected to any tuning. A range of metrics exist for evaluating the model performance,

which is detailed in the next section.

2.8 Model Performance Evaluation

The performance of the ε-SVR model is evaluated until the optimal model is reached,

and a selection of metrics is used to quantify the prediction accuracy of the model. The

validation data set repeatedly provides unbiased evaluation of how well the training data

fits the model, as the hyperparameters are tuned. The test data can then provide the

unbiased evaluation of the final model fit on the training data set, using new and unseen

data.

Metrics based on squared prediction error are commonly used to quantitatively determine

the difference between predicted and observed values. The mean squared error (MSE)

and the root-mean-square error (RMSE) are examples of this [34]. MSE takes the average

of the squared prediction error over all predictions and measures both accuracy and

precision. MSE is defined as:

MSE =
1

N

N∑
i=1

(p̂i+h − pi+h)2 (2.18)

where N is the number of prediction values, p̂i+h is the predicted output, pi+h is the

observed output. A widely used measure of accuracy, RMSE, takes the root of MSE and

is given by:
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RMSE =

√∑N
i=1(p̂i+h − pi+h)2

N
(2.19)

Metrics based on absolute error have less pronounced magnitudes than squared errors.

The mean-absolute error (MAE) is an easily interpretable metric of the average absolute

difference between a predicted and observed output, given by [11]:

MAE =
1

N

N∑
i=1

|(p̂i+h − pi+h)| (2.20)

Normalised metrics are useful when comparing data sets or models with different scales

[35]. One way to normalise a performance metric is according to its range of maximum

value minus minimum value. For normalised RMSE (NRMSE) this gives:

NRMSE =
1

pmax − pmin

√∑N
i=1(p̂i+h − pi+h)2

N
(2.21)

where pmax is the maximum output values, pmin is the minimum output value. The

coefficient of determination, R2, determines the degree to which the observed outputs

are reproduced by the model, given by [9]:

R2 = 1−
∑N

i (p̂i+h − pi+h)2∑N
i (pi+h − p̄)2)

(2.22)

where p̄ is the mean of the observed output. A R2 value of 1 is equivalent to a perfect

fit, while 0 is the worst possible fit. Smaller values of MSE, RMSE, MAE and NRMSE

indicate better agreement between predicted and observed values.
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Chapter 3

Literature Review

Sohoni et. al. [5] in their review on power curve modelling techniques for wind tur-

bines, identifies several modelling approaches for power curves, issues that occur during

modelling and the general objectives of wind turbine power curves. They highlight wind

power assessment and forecasting as essential objectives of power curve modelling, in

addition to estimation of the capacity factor and online monitoring of power curves to

indicate under-performance or faults. Furthermore, they point among other things to

insufficient attention to influencing factors and the turbine behaviour during cut-in and

cut-out speeds, as important modelling issues. For a comprehensive overview of the

classification of power curve models, see Fig. 3.1.

In a paper by Ouyang et. al. [9], wind turbine power curve models were proposed

based on data partitioning and data mining. The wind speed data was partitioned into

intervals, each of which had its centre computed. A SVM algorithm was used to build a

non-parametric model for the power curve, and a model with 20 partitions gave the best

performing model with an acceptable computational cost. As a preprocessing step, data

points related to under-performance or abnormal operation were removed from the set.

Goudarzi et. al. [36] did a comparative analysis of 10 parametric and non-parametric

modelling techniques for power curve modelling of wind turbines. The power curve

regions between cut-in and rated wind speed for three commercial wind turbines were

considered in the analysis, using manufacturer performance curves. The accuracy of

the models was evaluated by error measurements NRMSE and R2 which singled out a

non-parametric model as outperforming the rest. A genetic algorithm was used on the

non-parametric model to optimise its coefficients and improve the model accuracy. This

model was finally compared to equivalent power curve models based on artificial neural

networks (ANNs), in which the latter reached a higher performance.
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Figure 3.1: Techniques for making power curve models for wind turbines [5].

Short-term time-series WPP using wavelet SVM was performed by [10] and [11]. Liu

et. al. [10] presented two prediction methods based on SVM and turbine power curves,

method 1 built on the principles of wavelet transforms (WT), method 2 built on a wavelet

kernel function. Both methods used piecewise SVM that trained models on wind turbine

power output below and above the inflection point near the rated speed of the power

curve, due to scatter differences. Sine and cosine values of wind speed and hourly wind

power output averages were used as input values to the SVM models. The WT-SVM

model in method 1 had lower prediction errors than method 2 across all testing time

scales.

Zeng and Qiao [11] proposed a wavelet SVM-based model for short-term WPP using a

new multidimensional wavelet kernel function. The wavelet kernel would serve to im-

prove the generalisation ability of the SVM. The WPP model included a preprocessing

step, wavelet SVM-based prediction of wind power, and conversion of wind speed to wind

power by an empirically-derived power curve. Results obtained from their wavelet SVM

model showed that it outperformed the prediction accuracy of a RBF-SVM model, and
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was effective in short-term WPP. The proposed model was unable to perform long-term

WPP due to loss of correlation. In an earlier work by Zeng and Qiao [12], they made

a precursory SVM model without use of wavelet principles. Also this model performed

well in very short-term to short-term WPP.

Chang et. al. [37] performed a comparative analysis of four empirical power curve models

to estimate a pitch-controlled wind turbine’s capacity factor. The capacity factor indi-

cates the efficiency of a wind turbine by dividing average power with the rated power. In

their paper, a linear, quadratic, cubic and general power curve model was applied using

Weibull probability distribution of wind speed. The empirical models were validated for

accuracy by seven power curves from manufacturers across different operating speeds.

They highlighted that the manufacturer’s power curves had superior capacity factors as

compared to the empirical models, with the quadratic model being most similar to the

manufacturer’s.

WPP and power curve modelling were performed by [38] and [39] respectively, using the

ANN machine learning framework. Li et. al. [38] focused on a neural network (NN)

architecture with four inputs based on wind speed data and wind direction data from

two meteorological masts to predict the power generated by 12 wind turbines. The per-

formance of their neural network was far superior to the traditional single parameter

model they compared it to. They highlighted the importance of WPP as a diagnostic

tool for indicating maintenance requirements with under-performing wind turbines.

Pelletier et. al. [39] focused on reducing the scatter and improving the power curve

of a wind turbine by implementing an ANN-model based on nacelle anemometry. The

ANN model used 6 inputs in a multi-stage modelling technique and was compared with

parametric, non-parametric, and discrete methods based on IEC 61400-12-1 and IEC

61400-12-2 standards. Out of 50 available input parameters, they found 6 parameters

that ensured lower error levels in power curve scatter as compared to traditional models:

wind speed, wind direction, air density, turbulence intensity, wind shear and yaw error.

The proposed ANN model exhibited lower levels of error and demonstrated its potential

as a power performance model for wind turbines.
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Chapter 4

Study Case

4.1 Description of the Case

The work conducted in this thesis utilises data material from a wind turbine located on

the island of Smøla, in Western Norway, belonging to NVES. The wind energy centre

performs daily measurements of wind speed, wind direction and power output generated

by the wind turbine, with a time interval of 5-minutes. By using the data which have

been collected over a 4-month period, empirical ε-SVR power curve models will be made

that are better at characterising the real performance of the wind turbine when one

compares them to the manufacturer’s power curve. As such, these intelligent curve

models will be able to provide accurate function estimations that describe the shape of

the power curve well.

4.2 Description of the Britwind R9000

The Britwind R9000 is a small 5-kW, pitch-controlled wind turbine with passive yaw

control. Some specifications for the turbine is given in Tab. 4.1. As the turbine has yaw

control, it is able to align the rotor with incoming winds. However, due to the passive

control nature of the yaw, the turbine used in this work have on occasion displayed

wrong yaw alignment during weaker winds. The turbine has also encountered problems

with periods of zero production, which was likely due to an inverter malfunction.
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Table 4.1: Summary specifications for the Britwind R9000 wind turbine. See. Appendix

B.1 for more specifications.

Architecture 3 bladed rotor, self-regulating

Rated power 5 kW

Cut-in wind speed 3 m/s

Cut-out wind speed None - continues to survival wind speed

Survival wind speed 60 m/s

Control system Reactive pitch control

Rotor diameter 5.5 m

Design longevity 20 years

4.3 Data Set

The data set used in this work spans a 4-month period from the start of December 2018

to April 4th 2019. An excerpt of the data is shown in Appendix A. The data material

in the form of a power curve scatter plot is given in Fig. 4.1, where the manufacturer’s

power curve is rendered also. The manufacturer power curve has been produced from

tabular specifications of its power performance as found in Table 2 of Appendix B.2. It

becomes evident by looking at Fig. 4.1 that the theoretical power curve is insufficient in

describing the underlying relationship between wind power and the variables that cause

it. This highlights a need for more accurate curve representation.
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Figure 4.1: Actual power scatter from the NVES data set, fitted with the Britwind

R9000 power curve with standard uncertainty.

Fig. 4.2 shows how wind speed, wind direction and wind turbine power output of the

NVES data set looks like in a 3D scatter plot. This is three-dimensional representation

of the power curve scatter

Figure 4.2: 3D power scatter of the NVES data set, incorporating wind direction with

wind speed.

27



CHAPTER 4. STUDY CASE

28



Chapter 5

Methodology

The bulk of the work in this thesis was performed in the MATLAB software, where

the power curve models are made. In MATLAB, the fitrsvm functionality was used to

train the ε-SVR power curve models. For the MATLAB code, consult Appendices C.1

through C.6.

5.1 Data Acquisition and Preparation

NVES provided the data material that is used in this thesis, which originally consisted

of a larger and longer data set than was used in training and testing the ε-SVR models.

Erroneous data samples due to the inverter malfunction problem and other irregularities,

were removed from the data set. Once the appropriate data material had been prepared

in Excel, the data observations were shuffled randomly, and transferred to MATLAB.

The total NVES data set consists of 20188 observation of wind speed, direction and

power data. It was divided into a training set corresponding to 70 % of the data, which

includes the cross-validation set as well, and an independent testing set corresponding

to 30 %. The training data was subsequently preprossessed using standardisation, more

on the standardisation procedure refer to [40].

5.2 Model Selection and Training Procedure

The regression analysis method of ε-SVR was chosen as the model architecture for mod-

elling the wind turbine power curves as it is a proven method for non-linear regression.

Model 1 (Appendix C.2) consisting of known wind speed values and wind power outputs

was implemented in a training algorithm, and fitted with a set of kernel functions and

hyperparameters:
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• Kernel function: linear, Gaussian, polynomial

• Box Constraint: C

• error term: ε

• Kernel width: σ

• polynomial degree d

Model 2 consisting of known wind speed input, wind direction input and wind power

output values was implemented in a similar training algorithm (Appendix C.5). Both of

the power curve training models were initiated with some hyperparameter settings and

the quadratic programming problem described in Chapter 2.4.3 was solved using SMO

to achieve the convergence criteria.

5.3 Cross-Validation and Hyperparameter Tuning

To evaluate the skill of the training models on new data, a cross-validation set mea-

sured the RMSE and R2 performance metrics of the two ε-SVR power curve models

using 10-fold cross-validation (k-fold)). By tuning the hyperparameters and varying the

training data size, the skill was assessed repeatedly by the cross-validation set. Using

a bayesian optimisation functionality embedded in MATLAB, hyperparameters proving

great generalisation abilities were found. Refer to Appendix C.3 and C.6 for more.

5.4 Performance Evaluation

When hyperparameter tuning and optimisation had given satisfactory generalisation

performance on the training set using 10-fold cross-validation, ε-SVR model 1 and 2

were evaluated by the test set on the training model using several performance metrics.

These metrics are MSE, RMSE, MAE, NRMSE and R2.
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Results and Discussion

6.1 Hyperparameters

The set of optimised hyperparameters and kernel function that was found for ε-SVR

model 1 is shown in Tab. 6.1.

Table 6.1: The set of optimal hyperparameters and kernel function for ε-SVR model 1,

including the corresponding cross-validation error metrics.

C σ ε
Kernel

function
RMSE R2

167.41 0.39761 3.439 gaussian 272.2016 0.9757

The set of optimsed hyperparameters and kernel function that was found for ε-SVR

model 2 is shown in Tab. 6.2.

Table 6.2: The set of optimal hyperparameters and kernel function for ε-SVR model 2,

including the corresponding cross-validation error metrics.

C σ ε
Kernel

function
RMSE R2

973.82 0.15968 3.1316 gaussian 250.9733 0.9793

Further conditions for the optimal result obtained for ε-SVR model 1 can be seen in

Tab. 6.3.
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Table 6.3: Additional conditions of the optimal ε-SVR power curve model 1

Bias parameter 3214.3

Nr. of support vectors 13798

Feasibility gap 1.80e-04

Gap tolerance 1.00e-03

Solver algorithm SMO

Optimisation algorithm Bayesian optimisation

Further conditions for the optimal result obtained for ε-SVR model 2 can be seen in

Tab. 6.4.

Table 6.4: Additional conditions of the optimal ε-SVR power curve model 2

Bias parameter 2832.5

Nr. of support vectors 13840x2

Feasibility gap 9.56e-04

Gap tolerance 1.00e-03

Solver algorithm SMO

Optimisation algorithm Bayesian optimisation

6.2 ε-SVR Power Curve - Model 1

The final ε-SVR model 1 can be seen in Fig. 6.1, along with the manufacturer’s power

curve. The power curve represented by model 1 is a far more accurate representation of

the power output of the R9000 win turbine than the theoretical curve. The performance

evaluation of this model can be seen in Tab. 6.5.
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CHAPTER 6. RESULTS AND DISCUSSION

Figure 6.1: The ε-SVR power curve of model 1, fitted with the manufacturer’s power

curve and the test data power scatter.

Table 6.5: Testing data performance evaluation for model 1.

MSE [W] RMSE [W] MAE [W] NRMSE R2

1457.5 294.9 187.5 0.0589 0.9713

In Fig. 6.2 the observed power output of the NVES testing data and the ε-SVR model

are compared. The two plots are very same, which indicates that model 1 is a good

power curve model.
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CHAPTER 6. RESULTS AND DISCUSSION

Figure 6.2: Testing data comparison between observed power output and model 1, ε-SVR

power output.

Fig. 6.3 shows the error of the predicted output by model 1.

Figure 6.3: Error distribution between predicted and observed power output of ε-SVR

model 1 with the test data set.

The power curve in Fig. 6.4 based on model 2, is a simplified power curve which can

replace the manufacturer’s curve, since it is more accurate and easy to use. Appendix

D contains the tabular values for recreating the power curve in Fig. 6.4.
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CHAPTER 6. RESULTS AND DISCUSSION

Figure 6.4: Simplified power curve based on ε-SVR model 1 with test data set.

6.3 ε-SVR Power Curve - Model 2

Figure 6.5: The ε-SVR power curve of model 2, fitted with the test data power scatter.
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CHAPTER 6. RESULTS AND DISCUSSION

Figure 6.6: The 3D ε-SVR power curve of model 2, fitted with the test data power

scatter.

Table 6.6: Testing data performance evaluation for model 2.

MSE [W] RMSE [W] MAE [W] NRMSE R2

287.9 263.7 159.4 0.0527 0.9770

In Fig. 6.2 the observed power output of the NVES testing data and the ε-SVR model

are compared. The two plots are very same, which indicates that model 2 is a good

power curve model.
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CHAPTER 6. RESULTS AND DISCUSSION

Figure 6.7: Testing data comparison between observed power output and model 2, ε-SVR

power output.

Fig. 6.3 shows the error of the predicted output by model 1

Figure 6.8: Error distribution between predicted and observed power output of ε-SVR

model 2 with the test data set.
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Chapter 7

Conclusion

In this thesis, two power curve models have been proposed that are based on ε-SVR, for

creating a baseline for realistic power performance evaluation for the R9000 Britwind

wind turbine.

Both models performed well in modelling a power curve for the Britwind R9000 wind

turbine. In Appendix. D is given a tabular power curve which can be used to recreate

the predictive ability of model 1.

The two ε-SVR models proposed in this master’s thesis could be incorporated with

accurate WPP accounting for the topological wind conditions at the NVES site, to

provide accurate forecasting of future turbine power generation.
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APPENDIX A. NVES WIND DATA

Appendix A

NVES Wind Data

Figure A.1: An excerpt of the wind data received from NVES.

45



Appendix B

Wind Turbine Data Sheets

B.1 Britwind R9000 Specifications
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Britwind R9000

5kW Wind Turbine

•	 MCS approved product

•	 Eligible for Feed-in Tariffs

•	 Generates power continuously from 3m/s

•	 Reliability backed by millions of operating hours 
in the field

•	 Outstanding durability - minimal maintenance

•	 Low environmental impact – noise, visual & 
foundations

•	 Single or three phase connection

•	 On-grid & off-grid solutions 

•	 Conforms to IEC 61400-2 international standard

The Britwind R9000 small wind turbine is the result of 
years of dedicated research and development, based on 
engineering experience of designing big wind turbines.

Specifically designed to capture more energy at lower 
wind speeds, the Britwind R9000 is one of the most 
efficient small wind turbines available.

The Britwind R9000 has MCS certification in the UK, and 
has also received certification in Japan.

The efficient and reliable Britwind R9000 is already 
enabling homes, farms and businesses around the world 
to reduce energy bills and carbon footprint.
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 Architecture Upwind, 3 bladed rotor, self regulating
Nominal Power 5kW  
BWEA Reference Power 4711W (power output at 11m/s (24.6 mph))
Annual Energy Yield 9170kWh with Annual Mean Wind Speed (AMWS) of 5m/s (11.2mph)

(to IEC & BWEA Standards)
Cut-In Wind Speed 3m/s (6.7mph)
Cut-Out Wind Speed None – continuous generation to survival wind speed
Survival Wind Speed 60m/s (134mph)
IEC Turbine Class Conforms to IEC 61400 to Class II – AMWS up to 8.5m/s (19mph)
Control System Patented Reactive Pitch™ control
Rotor Diameter: 5.5m (18’) Speed: 200rpm nominal
Blade Fully optimised aerofoil ensuring max yield & min noise. Low reflection, 

UV & anti-erosion coatings
Generator Patented brushless direct drive, air-cored high efficiency Permanent 

Magnet Alternator
Gearbox None required (see generator)
Emergency Braking Patented automatic ElectroBrake™ (with manual control for servicing). 

No moving parts
Yaw Control Passive tail vane and rotor
Tower Free-standing monopole, hydraulic RAM or Gin pole tilt 

Heights: 10m, 12m, 15m & 18m (33’, 40’, 50’ & 60’)
Tower Foundation Root, pad & rock options
Design Longevity 20 years minimum with regular serv   ice inspection
Noise Lp, 25m = 52.8dB(A). BWEA Reference Sound Level at 8m/s (17.9mph) & 

25m (82’) distance
Lp,60m = 45.3dB(A). BWEA Reference Sound Level at 8m/s (17.9mph) & 
60m (197’) distance

Operating Temperature Range -20C - +50C
Warranty 5 years (see Evance Terms & Conditions for details) 

Specification

Average Power vs Wind Speed Noise Levels

© Evance Wind Turbines Ltd

Evance Wind Turbines Ltd
Unit 6, Weldon Road, Loughborough, Leicestershire LE11 5RN United Kingdom

T: +44 (0)1509 215669
F: +44 (0)1509 267722
E: enquiries@evancewind.com
www.evancewind.com

We are continually improving our products and reserve the right to alter the above specifications at any time 
without notice. All trademarks and registered trademarks used herein are the property of their respective owners.   

SM0174-06

Certificate Number MCS WT0039
Small Wind Turbine

Architecture Upwind, 3 bladed rotor, self regulating

Nominal Power 5kW

BWEA Reference Power 4711W (power output at 11m/s (24.6 mph))

Annual Energy Yield 9170kWh with Annual Mean Wind Speed (AMWS) of 5m/s 
(11.2mph) (to IEC & BWEA Standards)

Cut-In Wind Speed 3m/s (6.7mph)

Cut-Out Wind Speed None – continuous generation to survival wind speed

Survival Wind Speed 60m/s (134mph)

IEC Turbine Class Conforms to IEC 61400 to Class II – AMWS up to 8.5m/s (19mph)

Control System Patented Reactive Pitch™ control

Rotor Diameter: 5.5m (18’) Speed: 200rpm nominal

Blade Fully optimised aerofoil ensuring max yield & min noise. 
Low reflection, UV & anti-erosion coatings

Generator Patented brushless direct drive, air-cored high efficiency Permanent Magnet Alternator

Gearbox None required (see generator)

Emergency Braking Patented automatic ElectroBrake™ (with manual control for servicing). No moving parts

Yaw Control Passive tail vane and rotor

Tower Free-standing monopole, hydraulic RAM or Gin pole tilt 
Heights: 10m, 12m, 15m & 18m (33’, 40’, 50’ & 60’)

Tower Foundation Root, pad & rock options

Design Longevity 20 years minimum with regular service inspection

Noise
Lp, 25m = 52.8dB(A). BWEA Reference Sound Level at 8m/s (17.9mph) & 25m (82’) distance

Lp,60m = 45.3dB(A). BWEA Reference Sound Level at 8m/s (17.9mph) & 60m (197’) distance

Operating Temperature Range -20°C - +50°C

Warranty 5 years (see Britwind Terms & Conditions for details)

Specification

Average Power vs Wind Speed Noise levels

 Architecture Upwind, 3 bladed rotor, self regulating
Nominal Power 5kW  
BWEA Reference Power 4711W (power output at 11m/s (24.6 mph))
Annual Energy Yield 9170kWh with Annual Mean Wind Speed (AMWS) of 5m/s (11.2mph)

(to IEC & BWEA Standards)
Cut-In Wind Speed 3m/s (6.7mph)
Cut-Out Wind Speed None – continuous generation to survival wind speed
Survival Wind Speed 60m/s (134mph)
IEC Turbine Class Conforms to IEC 61400 to Class II – AMWS up to 8.5m/s (19mph)
Control System Patented Reactive Pitch™ control
Rotor Diameter: 5.5m (18’) Speed: 200rpm nominal
Blade Fully optimised aerofoil ensuring max yield & min noise. Low reflection, 

UV & anti-erosion coatings
Generator Patented brushless direct drive, air-cored high efficiency Permanent 

Magnet Alternator
Gearbox None required (see generator)
Emergency Braking Patented automatic ElectroBrake™ (with manual control for servicing). 

No moving parts
Yaw Control Passive tail vane and rotor
Tower Free-standing monopole, hydraulic RAM or Gin pole tilt 

Heights: 10m, 12m, 15m & 18m (33’, 40’, 50’ & 60’)
Tower Foundation Root, pad & rock options
Design Longevity 20 years minimum with regular serv   ice inspection
Noise Lp, 25m = 52.8dB(A). BWEA Reference Sound Level at 8m/s (17.9mph) & 

25m (82’) distance
Lp,60m = 45.3dB(A). BWEA Reference Sound Level at 8m/s (17.9mph) & 
60m (197’) distance

Operating Temperature Range -20C - +50C
Warranty 5 years (see Evance Terms & Conditions for details) 

Specification

Average Power vs Wind Speed Noise Levels

© Evance Wind Turbines Ltd

Evance Wind Turbines Ltd
Unit 6, Weldon Road, Loughborough, Leicestershire LE11 5RN United Kingdom

T: +44 (0)1509 215669
F: +44 (0)1509 267722
E: enquiries@evancewind.com
www.evancewind.com

We are continually improving our products and reserve the right to alter the above specifications at any time 
without notice. All trademarks and registered trademarks used herein are the property of their respective owners.   

SM0174-06

Certificate Number MCS WT0039
Small Wind Turbine

Britwind Ltd, Unicorn House, 7 Russell Street, Stroud, Gloucestershire, GL5 3AX, United Kingdom 
tel: +44 (0)1453 759 408  |  enquiries@britwind.co.uk  |   www.britwind.co.uk

 Part of the Ecotricity group 

 Architecture Upwind, 3 bladed rotor, self regulating
Nominal Power 5kW  
BWEA Reference Power 4711W (power output at 11m/s (24.6 mph))
Annual Energy Yield 9170kWh with Annual Mean Wind Speed (AMWS) of 5m/s (11.2mph)

(to IEC & BWEA Standards)
Cut-In Wind Speed 3m/s (6.7mph)
Cut-Out Wind Speed None – continuous generation to survival wind speed
Survival Wind Speed 60m/s (134mph)
IEC Turbine Class Conforms to IEC 61400 to Class II – AMWS up to 8.5m/s (19mph)
Control System Patented Reactive Pitch™ control
Rotor Diameter: 5.5m (18’) Speed: 200rpm nominal
Blade Fully optimised aerofoil ensuring max yield & min noise. Low reflection, 

UV & anti-erosion coatings
Generator Patented brushless direct drive, air-cored high efficiency Permanent 

Magnet Alternator
Gearbox None required (see generator)
Emergency Braking Patented automatic ElectroBrake™ (with manual control for servicing). 

No moving parts
Yaw Control Passive tail vane and rotor
Tower Free-standing monopole, hydraulic RAM or Gin pole tilt 

Heights: 10m, 12m, 15m & 18m (33’, 40’, 50’ & 60’)
Tower Foundation Root, pad & rock options
Design Longevity 20 years minimum with regular serv   ice inspection
Noise Lp, 25m = 52.8dB(A). BWEA Reference Sound Level at 8m/s (17.9mph) & 

25m (82’) distance
Lp,60m = 45.3dB(A). BWEA Reference Sound Level at 8m/s (17.9mph) & 
60m (197’) distance

Operating Temperature Range -20C - +50C
Warranty 5 years (see Evance Terms & Conditions for details) 

Specification

Average Power vs Wind Speed Noise Levels

© Evance Wind Turbines Ltd

Evance Wind Turbines Ltd
Unit 6, Weldon Road, Loughborough, Leicestershire LE11 5RN United Kingdom

T: +44 (0)1509 215669
F: +44 (0)1509 267722
E: enquiries@evancewind.com
www.evancewind.com

We are continually improving our products and reserve the right to alter the above specifications at any time 
without notice. All trademarks and registered trademarks used herein are the property of their respective owners.   
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Small Wind Turbine
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1. Introduction 
 
 
This document summarises the results of UK MCS product certification conducted on an Evance 
R9000 wind turbine. Tests were carried out in accordance with MCS 0061 & MCS 0112 which 
subsequently reference BWEA Feb 083 and British Standards - 61400-24, 61400-115 and 61400-126. 
 
All measurements were undertaken at two certified test sites located in Pendeen, Cornwall and 
Hoswick, Shetland. 
 
The power performance and acoustic noise assessments were updated in February 2012 in order to 
reflect minor improvements made to the turbine and inverter since the original certification.   
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2. Power Curve 

Table 1 and Table 2 show the power performance results at sea level air density for the Evance 
R9000. 
 

BWEA Reference Power (Watts) 4711 

Cut-in Wind Speed (m/s) 3 

Maximum Power (Watts) 5254 

 
TABLE 1 - BWEA DEFINITION RESULTS 

 

Measured power curve 

Reference air density: 1.225kg/m³  Category A Category B 
Combined 

uncertainty 

Bin 
no. 

Hub height 
wind speed 

 
m/s 

Power 
output 

 
Watts 

Cp 

No. of data 
sets 

 
1 min. Avg. 

Standard 
uncertainty 

si 
Watts 

Standard 
uncertainty 

ui 
Watts 

Standard 
uncertainty 

uci 
Watts 

1 0.59 9 0 38 0 18 18 

2 1.00 5 0 69 1 18 18 

3 1.53 -3 0 154 1 18 18 

4 2.03 -4 0 294 0 18 18 

5 2.50 -2 0 457 0 18 18 

6 3.00 13 0.03 476 1 19 19 

7 3.53 73 0.11 806 2 34 34 

8 4.00 201 0.21 1160 3 72 72 

9 4.51 385 0.29 1197 4 99 99 

10 5.00 619 0.34 1319 5 129 129 

11 5.50 864 0.36 1389 6 139 139 

12 6.00 1174 0.37 1306 7 175 175 

13 6.50 1508 0.38 1369 8 196 196 

14 7.00 1894 0.38 1433 9 231 231 

15 7.50 2271 0.37 1561 9 228 229 

16 8.01 2710 0.36 1757 10 268 269 

17 8.50 3150 0.35 1806 10 281 281 

18 9.00 3523 0.33 1900 11 244 244 

19 9.50 3918 0.31 1951 10 260 260 

20 10.00 4244 0.29 1885 9 224 225 

21 10.49 4496 0.27 1713 9 178 178 

22 10.99 4711 0.24 1453 8 155 155 

23 11.49 4834 0.22 1167 7 98 98 

24 11.99 4929 0.20 964 7 80 80 

25 12.48 4975 0.18 724 7 53 53 

26 12.99 4971 0.16 508 10 41 42 

27 13.49 4972 0.14 314 15 41 43 

28 13.99 4947 0.12 238 23 45 50 



Evance Ltd 

  
TR098/6 Product Certification – Evance R9000 UK MCS Certification Summary                                      5 of 11 
Evance Ltd operates a one-live-source electronic document control system. Consequently all paper copies should be considered 
uncontrolled.  
Evance Ltd is registered in England. Company No.9040997 
Registered Office: Unicorn House, 7 Russell Street, Stroud, Gloucestershire, GL5 3AX, United Kingdom                                                                  
 

 

29 14.49 4931 0.11 178 30 42 52 

30 14.96 4965 0.10 113 39 51 64 

31 15.49 5014 0.09 91 45 56 72 

32 15.98 5079 0.09 63 40 69 80 

33 16.47 5096 0.08 45 28 44 52 

34 17.00 5073 0.07 28 49 45 66 

35 17.42 5056 0.07 12 64 45 78 

36 17.91 5072 0.06 6 58 44 73 

37 18.40 5026 0.06 4 142 59 154 

38 19.13 5123 0.05 1 0 75 75 

 
TABLE 2 - POWER PERFORMANCE RESULTS AT SEA LEVEL AIR DENSITY, 1.225kg/m³ 

 
 
Figure 1 shows the Evance R9000 power curve normalised to sea level air density, 1.225kg/m³. The 
combined standard uncertainties of the results are indicated on the graph by the vertical error 
bars. 

 
 

 
 

FIGURE 1 - POWER CURVE AND COMBINED STANDARD UNCERTAINTY AT SEA LEVEL AIR DENSITY, 1.225kg/m³ 
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3. Annual Energy Production 

 
Table 3 gives the BWEA Reference Annual Energy for the Evance R9000. Table 4 shows the AEP 
estimations for hub height integer annual average wind speeds from 4m/s, up to the maximum 
wind speed for the turbine Class (i.e. 4, 5, 6, 7 and 8m/s for the Class II Evance R9000) at sea level 
air density. 
 

BWEA Reference Annual Energy (kWh) 9170 (3 significant figures) 

 
TABLE 3 - BWEA REFERENCE ANNUAL ENERGY 

 
 

Estimated Annual Energy Production 
Reference Air Density: 1.225kg/m3 

Cut Out Wind Speed: No cut out wind speed but extrapolation taken up to 25 m/s 

Hub height 
annual average 

wind speed 
(Rayleigh) 

 
m/s 

AEP-measured 
(measured 

power curve) 
 

kWh 

Standard 
uncertainty in 

AEP 
 

kWh 

Standard 
uncertainty in 

AEP 
 

% 

AEP-extrapolated 
(extrapolated 
power curve) 

 
kWh 

 

 

 

4 4962 746 15 4962 COMPLETE 

5 9164 1003 11 9167 COMPLETE 

6 13605 1152 8 13653 COMPLETE 

7 17586 1204 7 17877 COMPLETE 

8 20654 1194 6 21582 COMPLETE 

 
TABLE 4 - ESTIMATED ANNUAL ENERGY PRODUCTION AT SEA LEVEL AIR DENSITY, 1.225kg/m³ 

 
Figure 2 shows the expected annual energy production for the Evance R9000 at various hub height 
wind speeds in graphical format. 
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FIGURE 2 – ESTIMATED ANNUAL ENERGY PRODUCTION AT SEA LEVEL AIR DENSITY, 1.225kg/m³ 
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4. Noise Immission 

 
The noise label for the Evance R9000 is below in Figure 3. The key results are the Declared 
Apparent Emission Sound Power Level, LWd,8m/s, at 8m/s hub height wind speed and noise immission 
predictions for a range of slant distances and hub height wind speeds. 
 
 
 

 
 

FIGURE 3 – NOISE LABEL 
 

 
The assessment established the turbine should not be declared as ‘tonal’ and therefore no penalty 
should be applied. 
 
The BWEA Reference Sound Levels at 25m and 60m at an 8m/s hub height wind speed are: 
 

Lp,25m = 52.8dB(A) 
Lp,60m = 45.3dB(A) 
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5. Duration Test 

 
Table 5 presents a summary of the results from the duration test. All the requirements were 
successfully achieved.  
 
Test statistics: 
 

 Start date/time:  20/11/2009 at 15:03  
   End date/time: 10/06/2010 at 09:55 

      Mean hub height wind speed: 8.27m/s 
Average turbulence intensity at 15m/s: 7.96%  
       Highest instantaneous wind speed: 34.8m/s 
 

 Requirement Duration Test Result PASS/FAIL 

GENERAL At least 6 months of operation 6 months 19 days PASS 

 
At least 2500 hours of power production in 

winds of any velocity 
4384 hours PASS 

 
At least 250 hours of power production in winds 

of 1.2Vave and above (10.2m/s for Class II) 
849 hours PASS 

 
At least 25 hours in wind speeds of 15m/s and 

above 
238 hours PASS 

 
At least 25 hours of power production in winds 

of 1.8Vave and above (15.3m/s for Class II) 
218 hours PASS 

RELIABLE 
OPERATION 

Operational time fraction of at least 90% 100% PASS 

 
No major failure of the turbine or components 

in the turbine system 
No major failure PASS 

 
No significant wear, corrosion or damage to 

turbine components 
No significant wear, 
corrosion or damage 

PASS 

 
No significant degradation of produced power 

at comparison wind speeds 
No significant degradation 

of produced power 
PASS 

DYNAMIC 
BEHAVIOUR 

No excessive tower vibrations or resonances, 
turbine noises or tail and yaw movements  

Nothing unusual 
witnessed. Measured 

tower loads within design 
limits 

PASS 

 
TABLE 5 - DURATION TEST SUMMARY  
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Appendix C

MATLAB Code

C.1 ε-SVR Model 1

The script for ε-SVR model 1 with wind speed as the only input.

61







APPENDIX C. MATLAB CODE

C.2 ε-SVR Training Algorithm 1

The script for the ε-SVR training algorithm of model 1 with wind speed as the only

input.
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APPENDIX C. MATLAB CODE

C.3 ε-SVR Optimisation Algorithm 1

The script for the ε-SVR optimisation algorithm of model 1 with wind speed as the only

input.
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APPENDIX C. MATLAB CODE

C.4 ε-SVR Model 2

The script for ε-SVR model 2 with wind speed and wind direction as the inputs.
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APPENDIX C. MATLAB CODE

C.5 ε-SVR Training Algorithm 2

The script for the ε-SVR training algorithm of model 2 with wind speed and wind

direction as the inputs.
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APPENDIX C. MATLAB CODE

C.6 ε-SVR Optimisation Algorithm 2

The script for the ε-SVR optimisation algorithm of model 2 with wind speed and wind

direction as the inputs.
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Appendix D

Tabulation of Improved Power

Curve

75



Bin 
no. 

Wind speed 
[m/s] 

Power output 
[W] 

1 0 0 

2 0.50 0 

3 1.00 0 

4 1.50 0 

5 1.93 0 

6 2.50 0 

7 3.02 47 

8 3.52 3 

8 3.52 3 

9 4.00 3 

10 4.50 15 

11 5.00 80 

12 5.50 219 

13 6.00 410 

14 6.50 635 

15 7.00 890 

16 7.50 1169 

17 8.00 1470 

18 8.50 1802 

19 9.00 2180 

20 9.50 2585 

21 10.00 2990 

22 10.51 3396 

23 11.00 3768 

24 11.50 4095 

25 12.00 4334 

26 12.50 4485 

27 13.00 4571 

28 13.50 4625 

29 14.00 4663 

30 14.50 4692 

31 15.00 4710 

32 15.50 4719 

33 16.00 4716 

34 16.51 4704 

35 17.00 4694 

36 17.50 4698 

37 18.00 4713 

38 18.50 4721 

39 19.00 4706 

40 19.50 4670 

41 19.96 4633 
 


